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Abstract

In this thesis, a preliminary investigation on the use of a self-sensing inertial actuator
to apply vibroacoustic control on flexible plates is presented. A commercially available
vibration speaker, driven by a small audio amplifier, is used as a low-cost proof-mass
actuator to reduce the vibration of a thin aluminum plate arranged in the laboratory.
A skyhook control strategy is employed, meaning that the transverse velocity of the
vibrating structure is fed back to the collocated actuator to reproduce the effect of a
damper attached to a fix point in space. The control logic is digitally implemented on a
standard desktop computer running a real-time software. A common way to provide
the feedback signal could be to obtain the transverse velocity by integration of the plate
acceleration, measured placing a small lightweight accelerometer on the bottom side of
the plate, in correspondence of the inertial actuator. In this thesis it is investigated the
possibility to reconstruct the plate velocity without the need of an accelerometer, there-
fore without the need to have accessibility to both sides of the plate. An expression for
the plate transverse velocity is derived, based only on the characteristics of the actua-
tor and having as inputs only tension and current applied to the actuator itself. This
expression is tested both numerically and experimentally, firstly on a single-degree-of-
freedom model of the plate, then on a full plate model and eventually on the prototype
aluminum plate. Some modifications of the transfer functions for the reconstruction of
the velocity are proposed and tested, in order to overcome instability problems arised
during the numerical testing. Eventually a digital filtering of the electrical quantities
is proposed, discussed and tested, with the aim to delay the onset of high frequency
instability due to control spillover. The quality of the model of the self-sensing actuator
is addressed comparing its result with the velocity computed by pseudo-integration of
the plate acceleration. In the end the limits of the experimental setup are considered
and some guidelines for further evaluations are drawn - among which advantages and
limitations of the digital control implemented, with respect to a partially, or fully, ana-
logical approach.

xi





Chapter 1

Introduction

1.1 Motivation of the work

In recent years noise pollution has become more and more a topic of significant con-
cern, partially due to the higher and higher anthropic density, and partially because
people are becoming increasingly aware of the concept of vibroacustic comfort. Re-
cent studies have demonstrated the detrimental effect that prolonged exposure to noise
source can have on both the psychological and physical health - going from nuisance
and discomfort, troubled sleeping, reduced working performances and lower speech
intelligibility in the least severe circumstances [1] - to hypertension, hearing deteriora-
tion and ischemic heart disease in the worst cases [2, 3].
Noise pollution affects people’s everyday life, their homes, the transportation they use,
their working places. Indeed residential and business buildings frequently have large
window-like surfaces, often constituting the primary path for external noises, while
cabin thin panels and shell structures generate acoustic vibrations inside cars, trains
and aircrafts [4].

The unceasing need of relying on thinner and thinner structural elements has exacer-
bated the problem. The classical approach for noise and vibration reduction consists
in the passive addition of mass or damping material over a large area of the radiating
structure [5, 6, 7], but this is often not feasible, due to mass or volume requirements.
Moreover surface treatments are usually effective in suppressing high frequency vi-
bration, but they would require the addition of too much mass to work in the low
frequency range. It is in fact in this peculiar - but not rare - conditions, in which the
active vibration controls are a viable option [8]. One of the main drawbacks of active
control of radiating surfaces is the fact that a suitable measure of the vibration of the
structure is needed. Classically it’s obtained with collocated accelerometers, but they
often require double accessibility on the structure. It is in this context that sensorless or
self-sensing actuators became an interesting solution [9, 10].

1



2 Chapter 1. Introduction

1.2 Aim of this thesis

The present work can be considered as a preliminary study aimed to asses the pos-
sibility to obtain a digitally implemented active vibration control, using self-sensing
inertial actuators, to damp the resonance frequencies of an host structure subjected to
broadband random disturbances.
This thesis follows from the work of Di Girolamo [11], who developed an active vibra-
tion control using commercial and low-cost voice-coil vibration speakers as proof-mass
actuators.
Vibration speakers are electromechanical transducers capable of turning surfaces into
loudspeakers, Figure 1.1.

Figure 1.1: Vibration speaker

They are mainly composed by a base plate - to be attached to the host structure and
solidal to a reversible voice coil - and a free-to-move permanent magnet. The voice coil
is essentially an electromagnet that, when the actuator is powered with a time varying
voltage, generates an induced magnetic fields that interacts with the permanent mag-
net. The result of this interaction is a force acting on both components with opposite
direction, such that if the permanent magnet is pushed away from the host structure,
the voice coil is pushed towards it. When the driving voltage changes sign, the forces
are reversed. Taking advantage of this phenomenon the vibration speaker is able to
cause a vibration on the host structure - usually with the aim of transforming it into
a sound radiating surface. According to this physical mechanism, the idea is to use a
vibration speaker as a control device instead of a sound device, i.e., introduce vibration
waves into the attached surface which can suppress the vibration induced by external
noise sources, instead of generating sound.

Vibration speakers could be implemented in different strategies to achieve active vi-
broacoustic control, according to the specific application [12], but since the current
work is focused on the response to broadband random disturbances, the most viable
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option is to implement a feedback strategy. The implementation of a feedforward con-
troller, on the contrary, would provides good effects for tonal disturbances, which can
be easily characterized in advance allowing to build a reference signal well correlated
to the disturbance to be controlled [13].
A feedback logic for vibroacustic control can be implemented using only one actua-
tor - obtaining a single-input single-output system (SISO) - or using more - obtaining
a multi-input multi-output system (MIMO). In the latter case a distinction can be in-
troduced between centralized and decentralized configuration. In the first case the
control action provided by one actuator is computed taking into account the read-
ings of all sensors, in the second case each collocated sensor/actuator pair acts in-
dependently from the others. The implementation of decentralized control strategies,
for which no communication between the control units is permitted, is particularly
relevant since the stability is ensured [10]. Previous works on decentralized control
of flexible structures, has focused on providing active damping by velocity feedback
[14, 15, 16, 17]. This strategy, often called skyhook control since it is equivalent of having
viscous dampers attached to a fixed point in the sky [18, 17, 19, 20], leads to an un-
conditionally stable closed-loop system when ideal collocated sensor/actuators pairs
are used. Of course in practice both sensors and actuators are far from being ideals,
actuators have internal dynamics and the velocity is usually obtained from integration
of acceleration measurements.

In the context of decentralized skyhook control, one of the limit is often to achieve
truly collocated sensor/actuator pairs, one possibility to overcome this problem and to
reduce the complexity of the installation is to use self-sensing actuators. A self-sensing
actuator is basically a reversible electromechanical transducer which uses simultane-
ously the function of sensing and actuation [9]. The self-sensing actuation concept was
developed by Hagood et al. [21] and Dosch et al. [22], at the end of the last century.
At the beginning only PZT elements were used as self-sensing actuators, reducing im-
plementation, complexity and cost, and achieving truly collocated control. The idea
was then expanded to active vibration control on beams [23], plates [24] and vibration
damping [25]. Finally in 2000, Leo et al. [26], extended the sensorless concept to electro-
dynamic loudspeakers, and Hanson et al. used electromagnetic actuators in 2004 [27].
It shall be pointed out that the vast majority of the works about self-sensing actuators
implement fully analogical controls, this could lead to very complex system if a large
decentralized self-sensing skyhook control logic has to be implemented on a real struc-
ture. It’s a relatively new research area and many aspect has to be analyzed yet. This
work tries to fill a hole in the present knowledge, focusing on digital implementation
of a self-sensing actuator control logic for broadband noise rejection. Indeed as said
before only few works have been done using a digital implementation, but for what
has been found in literature, they had considered only harmonic disturbances [28].
None of them addresses the combined problem of digital implementation and random
disturbances together, that, how will be seen later, give raise to peculiar complications.



4 Chapter 1. Introduction

1.3 Structure of the thesis

1 - Introduction A brief introduction regarding the motivation, the aim and the struc-
ture of the thesis is presented. The focus is placed on the reasons for choosing a sen-
sorless approach, on its difficulties and on how this work is innovative.

2 - Mathematical Models The mathematical derivation of the models used to de-
scribe the main components of the experimental system is presented. At first, the
lumped-parameters models for the vibration speaker and the audio amplifier are in-
troduced, dynamics equations are derived and peculiar characteristics are presented.
Then the core of this work - the formulation that allows to reconstruct the plate trans-
verse velocity and the actuator proof-mass velocity from only current and voltage mea-
surements - is derived. Finally the plate model and the S-GUF formulation on which
is based is briefly presented.

3 - Experimental Characterization The prototype arranged in the laboratory - plate,
actuators and amplifiers - is presented and the experimental characterization performed
to build the mathematical models is described.

4 - Numerical Testing The velocity reconstruction formulation derived in Chapter 2
is tested numerically. Firstly over a simple model where the plate is described only
with its first natural frequency, than on the complete flexible model of the structure,
both in frequency and time domain. Some modification to the self-sensing actuator
equation will be needed in order to achieve stability even in real operating conditions.

5 - Experimental Testing The reconstruction of the velocity derived in Chapter 4 is
implemented in a real-time skyhook control logic in laboratory. Many criticalities are
found, filters are designed allowing to improve the performances and the basis for
future developments are layed.



Chapter 2

Mathematical Models

In this chapter the mathematical models used in the following are derived. Firstly the
lumped-parameter model of the inertial actuator is described along with the experi-
mental method used to obtain its parameters - then the sensor-actuator formulation is
presented. For the vibrating plate two different models are used: at first an advanced
sublaminate formulation, then a single degree of freedom model. Although much less
complete, the latter can be useful to gain some insight on the problem under analysis.
Eventually plate and actuator models are merged together, giving rise to a complete
description of the problem under analysis, that can be implemented both in frequency
and in time domain.

2.1 Vibration speakers

plate

ka ca

ma

fc(t)

fc(t)

kem

i(t) R L

v(t)w(t)

z(t)

Figure 2.1: Schematic representation of the lumped-parameters model of the inertial actuator,
when it is attached to a flexible surface.

5



6 Chapter 2. Mathematical Models

The vibration speakers used in this work can be modeled as proof-mass electrody-
namic actuators, also called inertial actuators in the following. A proof-mass actuator
is a device able to provide a force on the supporting structure, by accelerating a sus-
pended mass. Such a device can be schematized as a mass, elastically connected to the
structure on which control has to be obtained, bound to move perpendicularly to the
structure itself. If the movable mass - also called inertial mass in the following - is a
permanent magnet, and if it is subjected to a variable magnetic field produced by a coil
attached to the support structure, then the device is called an electrodynamic actuator.
The magnetic field generated by the coil is proportional to the current flowing in it,
such a current can be directly provided by a current source or can arise from a voltage
applied by a voltage source. In the former case the actuator can be defined as current
driven, in the latter as voltage driven.
A single degree of freedom lumped-parameters model is adopted to describe the elec-
tromechanical dynamics of the actuator as shown in Figure 2.1.

2.1.1 Dynamics equations

In this section the dynamics equations for the inertial actuator are derived in the contest
of the lumped-parameter approach depicted in Figure 2.1. As reported in Ref. [29],
Lagrange’s equations can be used for the task. The following relevant quantities are
defined:

T∗ =
1
2

maż2 Complementary kinetic energy (2.1)

V =
1
2

ka(z − w)2 Potential energy (2.2)

W∗
m =

1
2

Lq̇2 + kem(z − w)q̇ Complementary magnetic energy (2.3)

D =
1
2

ca(ż − ẇ)2 +
1
2

Rq̇2 Dissipation function (2.4)

δWnc = δq v Virtual work by non-conservative forces (2.5)

Where:

ma Proof mass of the actuator [kg]

ca Damping of the actuator [Ns m−1]

ka Suspension stiffness of the actuator [N m−1]

R Coil resistance [Ω]

L Coil inductance [H]

kem Electromagnetic coupling factor [NA−1]
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q(t) Electric charge in the coil [F]

i(t) Electric current flowing in the coil [A]

v(t) Electric voltage source [V]

z(t) Absolute displacement of the proof mass [m]

w(t) Absolute displacement of the support structure [m]

The Lagrangian of the system is defined as:

L = T∗ − V + W∗
m =

1
2

maż2 − 1
2

ka(z − w)2 +
1
2

Lq̇2 + kem(z − w)q̇ (2.6)

The Lagrange’s equations read:

d
dt

(
∂L
∂ż

)
− ∂L

∂z
+

∂D
∂ż

= Qz (2.7)

d
dt

(
∂L
∂q̇

)
− ∂L

∂q
+

∂D
∂q̇

= Qq (2.8)

Leading to the following dynamics equations:
maz̈(t) + ca[ż(t)− ẇ(t)] + ka[z(t)− w(t)]− kemq̇(t) = 0

Lq̈(t) + Rq̇(t) + kem[ż(t)− ẇ(t)] = v(t)
(2.9)

That can be rewritten considering q̇(t) = i(t) as:
maz̈(t) + ca[ż(t)− ẇ(t)] + ka[z(t)− w(t)]− kemi(t) = 0

L
di(t)

dt
+ Ri(t) + kem[ż(t)− ẇ(t)] = v(t)

(2.10)

The first equation describes the mechanical behavior, whereas the second is referred to
the dynamics of the electrical part. The actuator is mechanically equivalent to a spring-
mass-damper system subjected to a control force due to the electromechanic coupling
fc(t) = kemi(t). The current i(t) arises from the electrical equation if the actuator is
voltage driven. If current driven, instead, it is directly provided by the current source
and the electrical equation is discarded.

2.1.2 State space realization

The system in Eq. 2.10 can be conveniently rewritten in state space introducing the
following substitutions:
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x1 = z

x2 = ż

x3 = i


u1 = w

u2 = ẇ

u3 = v

(2.11)

Obtaining three first order differential equations, as follows.



ẋ1 = x2

ẋ2 = − ka

ma
x1 −

ca

ma
x2 +

kem

ma
x3 +

ka

ma
u1 +

ca

ma
u2

ẋ3 = −kem

L
x2 −

R
L

x3 +
kem

L
u2 +

1
L

u3

(2.12)


ẋ1

ẋ2

ẋ3

 =


0 1 0

− ka

ma
− ca

ma

kem

ma

0 −kem

L
−R

L




x1

x2

x3

+


0 0 0

ka

ma

ca

ma
0

0
kem

L
1
L




u1

u2

u3

 (2.13)

That can be written in the form

ẋ = Ax + Bu (2.14)

Where A =


0 1 0

− ka

ma
− ca

ma

kem

ma

0 −kem

L
−R

L

 and B =


0 0 0

ka

ma

ca

ma
0

0
kem

L
1
L


The state space realization has been used in MATLAB to couple the different dynamic
system described in this chapter. Of course it is not the only way - for instance every-
thing could be done through transfer functions obtaining exactly the same results. The
process for obtaining the state space model of a system is straightforward and has been
described above, therefore - for the sake of brevity - it will not be repeated for every
system.

2.1.3 Static residualization of the electrical dynamics

If the electrical dynamics is faster enough than the mechanical dynamics, a static resid-
ualization of the former can be introduced. Starting from the dynamics system in Eq.
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2.10 and introducing the approximation of
di(t)

dt
= 0, the electrical equation is simpli-

fied as follows.


maz̈(t) + ca[ż(t)− ẇ(t)] + ka[z(t)− w(t)]− kemi(t) = 0

i(t) = −kem

R
[ż(t)− ẇ(t)] +

1
R

va(t)
(2.15)

Substituting the expression of i(t) from the electrical equation into the mechanical
equation, it can be obtained the following differential expression for the actuator with
residualized electric dynamics.

maz̈(t) +

(
ca +

k2
em
R

)
[ż(t)− ẇ(t)] + ka[z(t) + w(t)] =

kem

R
va(t) (2.16)

2.1.4 Rigid base

ground

ka ca

ma

fc(t)

fc(t)

kem

i(t) R L

v(t)

z(t)

Figure 2.2: Schematic representation of the lumped-parameters model of the inertial actuator,
when it is attached on a fixed, rigid surface.

So far it has been considered an actuator attached on a generic flexible surface. In
Chapter 3 it will be described the experimental procedure adopted to compute the co-
efficients of the lumped-parameters model described previously. It will be seen later
that the most practical solution is to attach the speaker on an infinitely rigid - therefore
fixed - surface. Doing so allows to drop the dependency on the movement of the base
and simplifies the mathematical description, thus the mathematical model of the actu-
ator mounted on a rigid surface is required.
The derivation of the dynamics equations could be performed exactly as done for the
flexible base case, computing the energies involved in the system and writing the La-
grange’s equations. Alternatively it can be observed, comparing Figure 2.1 and Figure
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2.2, that the only difference between the two systems is the dependency on the struc-
tural degree of freedom w(t). Therefore it is enough to drop the terms in w(t) and ẇ(t)
from Eq. 2.10, to obtain the dynamics equation for the actuator when mounted on a
rigid base, Eq. 2.17.


maz̈(t) + caż(t) + kaz(t)− kemi(t) = 0

L
di(t)

dt
+ Ri(t) + kemż(t) = v(t)

(2.17)

2.1.5 Proof-mass acceleration response

In this section the actuator dynamics is described through the proof-mass acceleration
response, defined as the transfer function between the electrical source and the accel-
eration of the moving mass. Dependently on how the electromagnetic inertial actuator
is driven - in current or in voltage - different transfer functions are obtained.
In both cases the derivation starts form the dynamics equations in Eq. 2.17. In the volt-
age driven case both equations are used, whereas in the current driven case the second
one can be dropped.

Voltage driven

Taking the Laplace transform of Eq. 2.17


(mas2 + cas + ka)z(s)− kemi(s) = 0

(Ls + R)i(s) + kemz(s) = v(s)
(2.18)

Computing i(s) form the second equation and substituting it in the first, the following
expression is obtained:

(
mas2 + cas + ka +

k2
ems

R + sL

)
z(s)− kem

R + sL
v(s) = 0 (2.19)

The dependency of the proof-mass acceleration on the driving voltage can now be
readily obtained isolating z(s) and taking the second time derivative:

z̈(s) =
s2keem

(R + sL)(mas2 + cas + ka) + sk2
em

v(s) (2.20)

The proof-mass acceleration response for the voltage driven actuator can now be made
explicit, writing the following transfer function:

H̃aV(s) =
z̈(s)
v(s)

=
s2keem

(R + sL)(mas2 + cas + ka) + sk2
em

(2.21)



2.1. Vibration speakers 11

If the frequency separation between the mechanical and the electrical poles is high
enough, it could be computationally useful to introduced the static residualization de-
scribed before. Doing so the proof-mass acceleration response reads:

H̃aV res(s) =
z̈(s)
v(s)

=
s2keem

R(mas2 + cas + ka) + sk2
em

(2.22)

In Figure 2.3a both H̃aV(s) and H̃aV res(s) are depicted, using the parameters computed
in Chapter 3 for a real actuator (Dayton A in Table 3.4). As predicted the two curves
differs only at high frequencies, if this difference is acceptable is a matter that depends
on the specific application and that will be analyzed later.

(a) Voltage driven (b) Current driven

Figure 2.3: On the left: comparison of the proof-mass acceleration response for a voltage driven
actuator with complete and residualized electrical dynamics. On the right: proof-mass acceler-
ation response for a current driven actuator.

Current driven

As anticipated, the derivation of the proof-mass acceleration response for a current
driven actuator is a straightforward process. The system is described with only the
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mechanical equation, therefore the dynamics of the actuator is reduced to the first
equation of Eq. 2.18:

(mas2 + cas + ka)z(s)− kemi(s) = 0 (2.23)

It can be immediately computed z(s), derived two times and rearranged to obtain
the transfer function that describes the proof-mass acceleration response of a current
driven actuator. Figure 2.3b shows its plot.

H̃ai(s) =
z̈(s)
i(s)

=
s2kem

mas2 + cas + ka
(2.24)

The plots in Figure 2.3a and 2.3b anticipate the behaviour of one of the actuator that
will be used in this work. Note that both voltage and current driven responses show a
resonance peak at the same frequency, around 30Hz. This is the fundamental frequency
of the single degree of freedom model used to describe the actuator.

2.1.6 Electrical input impedance

Another way of characterizing the electromechanic dynamics of a proof-mass actuator
is to study its electrical input impedance. The electric circuit composing the driver of
the vibration speaker is well described by a RL circuit. The electrical impedance of
such a circuit is an extension of the concept of electric resistance in simple resistive
circuit, therefore the ratio of the applied voltage over the flowing current. As done
in the context of the proof-mass acceleration response, the derivation of the electrical
input impedance transfer function starts from the dynamics equations of the actuator
when it is attached on a fixed surface, Eq. 2.17. The Laplace transform of the system is
the same as before and it’s reported here for the sake of clarity:


(mas2 + cas + ka)z(s)− kemi(s) = 0

(Ls + R)i(s) + kemz(s) = v(s)
(2.25)

The aim is to obtain an expression depending only on i(s) and v(s). It can be easily
done isolating z(s) in the second equation.


(mas2 + cas + ka)z(s)− kemi(s) = 0

z(s) =
1

kems
v(s)− R + sL

kems
i(s)

(2.26)

Substituting z(s) back in the mechanical equation the following expression is obtained:

(mas2 + cas + ka)v(s) =
[
(R + sL)(mas2 + cas + ka)− k2

ems
]

i(s) (2.27)
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It can be expressed in the form of a transfer function:

H̃Vi(s) =
v(s)
i(s)

=
(R + sL)(mas2 + cas + ka)− k2

ems
mas2 + cas + ka

(2.28)

As before, it could be interesting to consider the statically residualized electric case.

H̃Vi res(s) =
v(s)
i(s)

=
R(mas2 + cas + ka)− k2

ems
mas2 + cas + ka

(2.29)

Figure 2.4: Comparison of the electrical input impedance of an actuator when complete and
residualized electrical dynamics are considered.

Plots of both H̃Vi(s) and H̃Vi res(s) are displayed in Figure 2.4, having assumed the
parameters of the actuator Dayton A in Table 3.4. If there were no mechanical dynam-
ics and electrical inductance, the electrical impedance would have been an horizontal
straight line equal to the electrical resistance R. The peak at low frequency is due to
the mechanical poles, while the behaviour at high frequency is entirely determined by
the inductance L. Indeed the effect of the inductance is to create an opposing induced
current in the circuit, this is coherent with both the increase in impedance and with the
lag of the current with respect to the tension displayed in the plot for high frequencies.
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2.2 Reconstruction of the velocities

Aim of this section is to derive the mathematical formulation on which the sensor-
actuator concept described in Chapter 1 is based. The objective is to obtain an ex-
pression that, by receiving as inputs only current and voltage, allows to reconstruct
the transverse velocity of the plate to be used in the skyhook control strategy. The
derivation follows what proposed in Ref. [9, 10], with the purpose to remove the need
of accelerometers to obtain the transverse plate velocity. The same procedure will be
also applied to reconstruct the velocity of the inertial mass of the actuator that could
be needed in more advanced control logic to increase stability limits. Note that in the
following, whenever a velocity is call reconstructed, reference is always made to the
velocity obtained by current and voltage measurements.

2.2.1 Plate transverse velocity

plate

massless base

ka ca

ma

fc(t)

fc(t)

kem

i(t) R L

v(t)
w(t)

z(t)

Figure 2.5: Schematic representation of the lumped-parameters model of the inertial actuator,
when it is attached on a flexible surface.

The physical concept on which is based this work is the following: when a vibration
speaker is mounted on a vibrating surface, the displacement of the base - w(t) in Figure
2.5 - causes a relative displacement of the inertial mass with respect to the base, causing
- through the electromagnetic coupling - an induced current in the electrical circuit.
The electrical quantities will thus contain "information" about the movement of the
surface on which the actuator is attached. The derivation of a way to retrieve such an
"information" moves form the dynamics equations of the actuator when attached on a
flexible surface, reported in Eq. 2.30.
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maz̈(t) + ca[ż(t)− ẇ(t)] + ka[z(t)− w(t)]− kemi(t) = 0

L
di(t)

dt
+ Ri(t) + kem[ż(t)− ẇ(t)] = v(t)

(2.30)

Rewriting the same equations in the Laplace’s domain:


s2maz(s) + sca[z(s)− w(s)] + ka[z(s)− w(s)]− kemi(s) = 0

sLi(s) + Ri(s) + skem[z(s)− w(s)] = v(s)
(2.31)

The aim is now to obtain an equation where the plate degree of freedom w(s), depends
only on the applied voltage v(s), and on the flowing current i(s). To do so it has to be
eliminated the dependency on the inertial mass degree of freedom z(s). Rearranging
the electrical equation z(s) can be isolated:

z(s) = w(s)− R + sL
skem

i(s) +
1

skem
v(s) (2.32)

Substituting it into the mechanical equations it is obtained an expression in w(s), v(s)
and i(s) alone.

s2maw(s)−

 (R + sL)
(

s2ma + sca + ka

)
skem

+ kem

 i(s) +
s2ma + sca + ka

skem
v(s) = 0

(2.33)

It’s now possible to isolate w(s):

w(s) =

 (R + sL)
(

s2ma + sca + ka

)
+ sk2

em

s3makem

 i(s)−
[

s2ma + sca + ka

s3makem

]
v(s) (2.34)

Taking the first time derivative, the desired transverse plate velocity is obtained:

ẇ(s) =

 (R + sL)
(

s2ma + sca + ka

)
+ sk2

em

s2makem

 i(s)−
[

s2ma + sca + ka

s2makem

]
v(s) (2.35)

= Hi(s)i(s)− Hv(s)v(s)
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Eq. 2.35 allows to reconstruct the plate velocity - in the point where the actuator is
placed - measuring only voltage and current.
It has to be pointed out that the current related transfer function - Hi(s) - is not proper,
being the numerator of higher order than the denominator. This problem - among
others - will be extensively addressed later. One possible way to overcome it, consists
in the static residualization of the electric dynamic.

Static residualization

The equation for the reconstruction of the plate transverse velocity in a statically resid-
ualized framework could be obtained intuitively just removing sL from Eq. 2.35, but
for the sake of completeness it’s hereby analytically derived. The derivation shall move
from the dynamics equations for a statically residualized actuator attached on a flexible
surface, Eq. 2.36.


maz̈(t) + ca[ż(t)− ẇ(t)] + ka[z(t)− w(t)]− kemi(t) = 0

Ri(t) + kem[ż(t)− ẇ(t)] = va(t)
(2.36)

Rewriting the same equations in the Laplace’s domain:


s2maz(s) + sca[z(s)− w(s)] + ka[z(s)− w(s)]− kemi(s) = 0

Ri(t) + skem[z(s)− w(s)] = va(s)
(2.37)

From the electrical equation can be obtained z(s):

z(s) = w(s)− R
skem

i(s) +
1

skem
v(s) (2.38)

Substituting it into the mechanical equations:

s2maw(s)−

R
(

s2ma + sca + ka

)
skem

+ kem

 i(s) +

[
s2ma + sca + ka

skem

]
v(s) = 0 (2.39)

Isolating w(s):

w(s) =

R
(

s2ma + sca + ka

)
+ sk2

em

s3makem

 i(s)−
[

s2ma + sca + ka

s3makem

]
v(s) (2.40)
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And deriving it:

ẇ(s) =

R
(

s2ma + sca + ka

)
+ sk2

em

s2makem

 i(s)−
[

s2ma + sca + ka

s2makem

]
v(s) (2.41)

As anticipated the only difference with the complete electrical dynamics case is the
absence of the sL contribution.

2.2.2 Inertial mass velocity

As anticipated before it’s possible to apply the same method and derive a formulation
for the velocity of the inertial mass, depending only on the voltage applied to the iner-
tial actuator and on the current flowing in it.
As before the derivation moves from the dynamics equations for the inertial actuator
mounted on a flexible surface.


maz̈(t) + ca[ż(t)− ẇ(t)] + ka[z(t)− w(t)]− kemi(t) = 0

L
di(t)

dt
+ Ri(t) + kem[ż(t)− ẇ(t)] = v(t)

(2.42)

Rewriting the same equations in the Laplace’s domain:


s2maz(s) + sca[z(s)− w(s)] + ka[z(s)− w(s)]− kemi(s) = 0

sLi(s) + Ri(s) + skem[z(s)− w(s)] = v(s)
(2.43)

As above the electrical equation can be rearranged isolating, this time, the transverse
plate velocity w(s):

w(s) = z(s) +
R + sL

skem
i(s)− 1

skem
v(s) (2.44)

Substituting it into the mechanical equation is obtained an expression in z(s), v(s) and
i(s) alone:

s2maz(s)−
(
(R + sL) (sca + ka)

skem
+ kem

)
i(s) +

sca + ka

skem
v(s) = 0 (2.45)

Isolating z(s):
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z(s) =

[
(R + sL) (sca + ka) + sk2

em
s3makem

]
i(s)−

[
sca + ka

s3makem

]
v(s) (2.46)

Taking the first derivative the velocity of the inertial mass of the actuator is obtained:

ż(s) =

[
(R + sL) (sca + ka) + sk2

em
s2makem

]
i(s)−

[
sca + ka

s2makem

]
v(s) (2.47)

The statically residualized version of the previous equation can be easily obtained just
dropping the inductance related term sL.

ż(s) =

[
R (sca + ka) + sk2

em
s2makem

]
i(s)−

[
sca + ka

s2makem

]
v(s) (2.48)

2.3 Pseudo-integrator

In a skyhook control strategy the transverse velocity of the plate is usually obtained
by integration of the transverse acceleration. In later chapters, the performances of the
reconstruction of the velocity obtained in the context of the self-sensing actuator, will
be often compared to the classical approach. In this section is thus briefly described
how to properly integrate the acceleration signal to obtain the velocity, as done in [11].
In the Laplace domain, the transfer function of a pure integrator would be:

yvel(s)
yacc(s)

=
1
s

If the acceleration signal presents a DC components - such the gravity - or even a small
offset due to acquisition errors, a pure integral action is not recommended. Instead,
the following pseudo-integration can be adopted.

yvel(s)
yacc(s)

=
s

s2 + 2ξpiωpis + ω2
pi

(2.49)

The parameters that will be used in the following - as selected in [11] - are reported in
Table 2.2.

Parameter Value Units

Integrator Frequency 2 π [rad s−1]

Damping Coefficient 0.707 [−]

Table 2.2: Pseudo-integrator parameters.
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2.4 Power amplifiers

In the experimental setup object of this work, the vibrations speakers are driven by
signals generated by a computer. Although the PC could provide a sufficiently large
voltage output to drive directly the speakers - ±10V - it can not produce the required
current due to it’s high output impedance - therefore neither the required power -
that’s why a power amplifier is required. A power amplifier is a common device that
reproduces low power signals at levels that are strong enough for powering the most
various items. Not only they provide enough current do drive low impedance devices,
but they also give a mean to amplify the driving voltage. While the former aspect sim-
ply allows the speaker to work properly and does not require any mathematical mod-
elling, the latter introduces a voltage gain that has to be quantified, if the behaviour of
the amplifier has to be simulated numerically.
As will be discussed in Chapter 3, the speakers used in this work have an input impedance
of 4Ω, allowing to drive them with common audio amplifiers.
Broadly speaking, an audio amplifier can be modeled as a band pass filter, whose be-
haviour is represented by the following transfer function:

H(s) = g̃amp
s

(s + a)(s + b)

Where g̃amp is the voltage gain described above and a and b are respectively the low
frequency and high frequency poles of the band pass filter. Taking into account that the
range of human hearing spans form 20Hz to 20kHz [30], it’s foreseeable that the high
frequency pole of the amplifier would be around 20kHz, far higher than the frequency
range of interest of this work. Then, for the purpose of this thesis, the high frequency
pole can be ignored and the audio amplifier transfer function can be reduced as fol-
lows:

H(s) = gamp
s

s + a

2.5 Plate Model

As outlined before, the plate has been modeled relying on the sublaminate generalized
unified formulation (S-GUF) [31], developed through a collaboration between Politec-
nico di Milano and Université of Paris X. Although such a complex formulation would
not be strictly required to model the thin homogeneous aluminum plate object of this
work, it has been chosen because its versatility allows to promptly extend the results
of the present work to more complex vibrating structures, in particular to multilay-
ered composite and sandwich panels. In the following the key points of the S-GUF
formulation are described, for the complete derivation make reference to [31].
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2.5.1 The Sublaminate Generalized Unified Formulation

The majority of the nowadays available approaches to plate modeling are based on
reducing the 3-D problem to a 2-D problem, introducing in advance some kinematic
assumptions about the behaviour of the displacement field in the thickness direction of
the plate. Such a modelling strategy is known as axiomatic displacement-based approach
and the resulting 2-D models are called displacement-based plate theories.

The most used displacement-based plate theories are the Calssical Plate Theory (CPT)
and the First-order Shear Deformation Theory (FSDT). These theories originally ad-
dressed the need of working with computational economical models that could be
handled by limited computational capabilities, however they could lead to inaccu-
rate results when thick or multilayered structures are considered. These inaccuracies
arise because a simple 2-D model can’t properly catch some relevant 3-D effects such
as transverse shear and normal deformations, cross-section warping, boundary layer
stresses and through-the-thickness zig-zag behaviour of the displacement field. Indeed
a formulation able to account in some way for these effects while keeping a relatively
simple 2-D model of the plate - avoiding the need to resort to a cumbersome fully 3-D
formulation - would be a powerful and interesting tool, that’s in fact the case of the
S-GUF approach.

Figure 2.6: S-GUF geometric description
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A peculiar characteristic of the S-GUF formulation is the fact that the kinematic de-
scription can be enriched when needed, introducing different 2-D kinematic theories
of arbitrary order in different sub-regions of the plate thickness, so that a virtually in-
finite amount of plate models can be derived from a single general formulation. This
approach shows its full potential with multilayered plates, when the concept of sub-
laminate - a group of adjacent physical plies with a specific kinematic description - can be
introduced. The concept of sublaminates can be seen in Figure 2.6: a plate of thickness
h, composed by Np physical plies of homogeneous orthotropic material, is subdivided
into k = 1, 2, · · · , Nk sublaminates of thickness hk, numbered from bottom to top.

As previously said, in the S-GUF approach the user can introduce a different kine-
matic description in each sublaminate. Such an approach is called layerwise (LW) and
it’s formal expression is


up,k

x (x, y, zk, t) = Fαux (zk)u
p,k
xαux

(x, y, t) (αux = 0, 1, · · · , Nx)

up,k
y (x, y, zk, t) = Fαuy (zk)u

p,k
yαuy

(x, y, t) (αuy = 0, 1, · · · , Ny)

up,k
z (x, y, zk, t) = Fαuz (zk)u

p,k
zαuz

(x, y, t) (αuz = 0, 1, · · · , Nz)

(2.50)

Where up,k
r (x, y, zk, t) are the displacements components (r = x, y, or z), Fαur(zk) are

thickness functions defined in terms of the sublaminate coordinate zk, and up,k
rαur

(x, y, t)
are the kinematic variables for layerwise description in the ply p = 1, 2, · · · , Nk

p of the
sublaminate k. Nr is the order of expansion of the ur component. Eq. 2.50 represent the
most general case. If the same kinematics is adopted for all the plies of one sublaminate
than the approach is said equivalent single-layer (ESL) and can be expressed dropping
the index p. It’s worth to be noted that a specific local kinematics can be specified in
each sublaminate, with the possibility to obtain a multiple-kinematics model of the
plate in a straightforward way. For instance a sandwich panel can be divided in three
sublaminates: two low-order sublaminates describing the stiff laminated skins and
one higher-order sublaminate for the soft thick core. Of course also common single
kinematic model can be obtained as special cases when a single sublaminate is used to
describe the whole plate. In particular, the thin isotropic aluminum plate object of this
work can be described by a full ESL model, whose S-GUF parameters are defined as
follows



p = 1
k = 1

Nx = 1
Ny = 1
Nz = 0

F0 = 0
F1 = z

(2.51)
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Corresponding to the classical first-order shear deformation theory (FSDT) kinematics,
with a displacement field described as:


ux = ux0 + z ux1

uy = uy0 + z uy1

uz = uz0

(2.52)

2.5.2 Constitutive equations

If linearly elastic materials are considered, stress σij and strain εij, are represented by
second order tensors and are related through the fourth order elasticity tensor Cijkl as
in the following constitutive equation:

σij = Cijklεkl (2.53)

Where i, j, k, l = 1, 2, 3. Thanks to the symmetry of both stress and strain - meaning
σij = σji and εkl = ε lk - a more convenient matrix notation can be introduced.

σm = Cεm (2.54)

Making all terms explicit



σ11
σ22
σ33
σ23
σ31
σ12


=



C11 C12 C13 C14 C15 C16
C21 C22 C23 C24 C25 C26
C31 C32 C33 C34 C35 C36
C41 C42 C43 C44 C45 C46
C51 C52 C53 C54 C55 C56
C61 C62 C63 C64 C65 C66





ε11
ε22
ε33
ε23
ε31
ε12


(2.55)

The matrix C is a 6 × 6 matrix, with 36 independent components but some simplifi-
cations can be introduced for the simple aluminum plate under analysis. If a strain
energy function can be defined, C becomes symmetric and the free components are re-
duced to 21. If the material is also isotropic - having identical properties in any direction
- the Hooke’s law reduces as follows.



σ11
σ22
σ33
τ23
τ31
τ12


=



C11 C12 C12 0 0 0
C11 C12 0 0 0

C11 0 0 0
C44 0 0

sym C44 0
C44





ε11
ε22
ε33
γ23
γ31
γ12


(2.56)
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Where the engineering stress and strain vectors have also been introduced. Due to
their symmetric properties, isotropic materials as the plate under analysis involve only
3 elastic constants: C11, C12 and C44, related to physical and mechanical properties as:

C11 =
E(1 − ν)

(1 + ν)(1 − 2ν)
(2.57)

C12 =
Eν

(1 + ν)(1 − 2ν)

C44 =
E

(1 + ν)

Where E is the Young’s modulus and ν is the Poisson’s ratio.

Going back to the more general orthotropic case, a mean to express strain and stress of
all physical plies in the same reference frame is needed. It can be introduced a reference
frame (x, y, z) for the whole laminate and transform the quantities of each ply into this
new frame. Exploiting the matrix representation introduced above it can be easily done
as follows.

σ = Tσm (2.58)

εm = TTε (2.59)

Where the matrix T is defined as

T =



cos2 θ sin2 θ 0 0 0 −2 sin θ cos θ

sin2 θ cos2 θ 0 0 0 2 sin θ cos θ
0 0 1 0 0 0
0 0 0 cos θ sin θ 0
0 0 0 − sin θ cos θ 0

sin θ cos θ − sin θ cos θ 0 0 0 cos2 θ − sin2 θ


(2.60)

Where θ is the angle between the two reference frames. Putting together Eq. (2.59),
(2.54) and (2.58) the Hooke’s law in the laminate coordinates can be rewritten as

σ = C̃ε (2.61)

Where C̃ = TCTT.

If stress and strains are divided between in-plane and out-of plane components:
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σΩ =
[

σxx σyy τxy

]T
εΩ =

[
εxx εyy γxy

]T
(2.62)

σn =
[

τyz τxz σzz

]T
εn =

[
γyz γxz εzz

]T
(2.63)

the Hooke’s law can be rewritten as follows:

σΩ = C̃ΩΩεΩ + C̃Ωnεn (2.64)

σn = C̃nΩεΩ + C̃nnεn (2.65)

Since the material can be different for each physical ply, to the above equations can
be added the superscripts p and k, in order to refer them to the p-th ply of the k-th
sublaminate.

2.5.3 Gradient equations

If a linear framework is assumed, a matrix of differential operators can link strains and
displacements as follows.

ε = Du (2.66)

With

D =



∂
∂x 0 0
0 ∂

∂y 0
∂

∂y
∂

∂x 0
∂
∂z 0 ∂

∂x
0 ∂

∂z
∂

∂y
0 0 ∂

∂z


(2.67)

u =
[

ux uy uz

]T
(2.68)

Recalling the distinction between in-plane and normal strain components introduced
before, Eq. 2.66 can be rewritten as follows.

εΩ = DΩu (2.69)
εn = (Dn + Dz) u (2.70)
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Where

DΩ =


∂

∂x 0 0
0 ∂

∂y 0
∂

∂y
∂

∂x 0

 Dn =

 0 0 ∂
∂x

0 0 ∂
∂y

0 0 0

 Dz =

 ∂
∂z 0 0
0 ∂

∂z 0
0 0 ∂

∂z


Such that, the strain components for the p-th ply of the k-th sublaminates can be ex-
pressed as:

ε
p,k
Ω = DΩup,k (2.71)

ε
p,k
n = Dnup,k + Dzup,k (2.72)

2.5.4 Ritz approximation

Let’s assume the plate to have a density ρ = ρ(x, y, z), to occupy a volume V = Ω ×
[h/2, h/2] - where Ω is the reference surface - and to be subjected to a normal pressure
ftop = f top

z and fbot = f bot
z applied at its top and bottom surfaces, respectively z = h/2

and z = −h/2. The equilibrium condition can be written resorting to the Principle of
Virtual Displacements (PVD), as follows

∫
Ω

∫ h/2

−h/2
δεTσ dz dΩ = −

∫
Ω

∫ h/2

−h/2
δuTρ ü dz dΩ +

∫
Ω

δutop ftop dΩ +
∫

Ω
δubot fbot dΩ

(2.73)

That can be rewritten in the context of the S-GUF formulation taking into account each
ply p of each sublaminate k.

Nk

∑
k=1

Nk
p

∑
p=1

∫
Ω

∫ ztop
p

zbot
p

(
δε

p,kT

Ω σ
p,k
Ω + δε

p,kT

n σ
p,k
n

)
dz dΩ =

−
Nk

∑
k=1

Nk
p

∑
p=1

∫
Ω

∫ ztop
p

zbot
p

δup,kT
ρp,k üp,k dz dΩ + δu

Nk
p,Nk

z0 f top
z + δu1,1

z1 f bot
z (2.74)

Where up,k is the displacement vector at ply p of sublaminate k.

The weak form of the equilibrium condition expressed so far by the principle of virtual
displacement in Eq. 2.74 - integrated with the constitutive and gradient equations
derived before - can be used as the starting point for deriving a suitable model in
the (x, y) plane of the multilayered structure. Indeed, once a specific plate theory is
postulated through the thickness, different methods can be used to compute a solution
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for the reduced 2-D problem in the (x, y) plane. In the S-GUF formulation this task is
performed though the discretization using the Ritz approach. The Ritz approximation
of the 2-D kinematic variables can be written as follows


up,k

xαux
(x, y, t) = Nux j(x, y)up,k

xαux j(t)

up,k
yαuy

(x, y, t) = Nuy j(x, y)up,k
yαuy j(t)

up,k
zαuz

(x, y, t) = Nuz j(x, y)up,k
zαuz j(t)

j = 1, 2, . . . , M (2.75)

Where Nuri is the i-th admissible function related to ur (r = x, y, z). Note that in Eq.
2.75 the summation over the repeated index i is implied.
Eq. 2.75 shows that the assumed solutions are in the form of a linear combination of
undetermined parameters with appropriate chosen functions. The number of terms of
the combination is given by M, which is called the Ritz order. The generic admissible
function can be expressed - mapping the physical (x, y) domain into the computational
(ξ, η) domain defined in the interval [−1, 1]× [−1, 1] - as follows

Nuri(ξ, η) = ϕurm(ξ)ψurn(η) (m = 1, . . . , R; n = 1, . . . , S)

Where R · S = M, i = S(m − 1) + n and

ϕurm(ξ) = fur(ξ)pm(ξ) (2.76)
ψurn(η) = gur(η)pn(η)

The completeness of the Ritz functions is guaranteed by pm and pn, taken as Legendre
orthogonal polynomials. The compliance with the geometric boundary conditions is
achieved thanks to the boundary functions fu−r and gu−r, expressed in the following
form.

fur(ξ) = (1 + ξ)e1r(1 − ξ)e2r

gur(η) = (1 + η)e1r(1 − η)e2r

Where the value of the exponents e1r and e2r are selected according to the boundary
conditions.

The following compact notation for the integrals of the Ritz functions can be intro-
duced.

Ide f g
urusij =

∫
Ω

∂d+eNuri

∂xd∂ye

∂ f+gNus j

∂x f ∂yg dΩ (d, e, f , g = 0, 1) (2.77)
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The Ritz approximate form of the PVD derived before can now be expressed as in Eq.
2.78, where many elastic terms are omitted for the sake of brevity.

Nk

∑
k=1

Nk
p

∑
p=1

[
δup,k

xαux iρ
p,kZpαux βux

uxux I0000
uxuxijü

p,k
xβux j + δup,k

yαuy iρ
p,kZ

pαuy βuy
uyuy I0000

uyuyijü
p,k
yβuy j (2.78)

+ δup,k
zαuz iρ

p,kZpαuz βuz
uzuz I0000

uzuzijü
p,k
zβuz j

]
+

Nk

∑
k=1

Nk
p

∑
p=1

[
δup,k

xαux iC̃
p,k
11 Zpαux βux

uxux I1010
uxuxiju

p,k
xβux j + δup,k

xαux iC̃
p,k
12 Z

pαux βuy
uxuy I1001

uxuyiju
p,k
yβuy j

+ δup,k
xαux iC̃

p,k
16 Zpαux βux

uxux I1001
uxuxiju

p,k
xβux j + δup,k

xαux iC̃
p,k
16 Z

pαux βuy
uxuy I1010

uxuyiju
p,k
yβuy j + . . .

+ · · ·+ δup,k
zαuz iC̃

p,k
33 Zpαuz βuz

∂uz∂uz
I0000

uzuziju
p,k
zβuz j

]
=

δu
Nk

p,Nk
z0i

∫
Ω

Nuzi f top
z dΩ + δu1,1

z1i

∫
Ω

Nuzi f bot
z dΩ

2.5.5 Expansion and assembly

From the indicial form shown in Eq. 2.78, can be constructed the matrices and the load
vectors o a virtually infinite number of plate models, trough a procedure consisting
in successive expansion and assembly steps of elementary blocks of the formulation
called kernels end defined as follows.

C̃p,k
RS Zpαur βus

(∂)ur(∂)us
Ide f g

urusij (elastic terms) (2.79)

ρp,kZpαur βus
urus Ide f g

urusij (inertial terms) (2.80)

In the following are schematized the four cycles from the fundamental kernels to the
mass and stiffness matrices of the plate model.

1. Summation over the repeated indexes αur and βus , arising from the order of the
kinematic description assumed in each sublaminate. Symbolically it can be ex-
pressed as

Zpαur βus
(∂)ur(∂)us

theory expansion−−−−−−−−−−→
(αur ,βus ) cycling

Zp,k
(∂)ur(∂)us

(r, s = x, y, z)

2. Summation of the contribution of each ply inside a specified sublaminate, cycling
over p. Symbolically it can be expressed as

C̃p,k
RSZp,k

(∂)ur(∂)us

ply assembly−−−−−−−−→
p cycling

Zk
(∂)ur(∂)usRS
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ρp,kZp,k
urus

ply assembly−−−−−−−−→
p cycling

Zk
urusρ

3. Summation over all the sublaminates - index k - imposing the continuity of the
displacements at the interfaces of adjacent sublaminates. Symbolically it can be
expressed as

Zk
(∂)ur(∂)usRS

sublaminate assembly−−−−−−−−−−−−−→
k cycling

Z(∂)ur(∂)usRS

Zk
urusρ

sublaminate assembly−−−−−−−−−−−−−→
k cycling

Zurusρ

Finally the following matrices for each i and j are obtained.

Mij =

 Muxuxij 0 0
0 Muyuyij 0
0 0 Muzuzij

 (2.81)

Kij =

 Kuxuxij Kuxuyij Kuxuzij
Kuyuxij Kuyuyij Kuyuzij
Kuzuxij Kuzuyij Kuzuzij

 (2.82)

Where

Muxuxij = ZuxuxρI0000
uxuxij

Muyuyij = ZuyuyρI0000
uyuyij

Muzuzij = ZuzuzρI0000
uzuzij

Kuxuxij = Zuxux11I1010
uxuxij + Zuxux16(I1001

uxuxij + I0110
uxuxij) + Zuxux66I0101

uxuxij

+ Z∂ux∂ux55I0000
uxuxij

Kuxuyij = Zuxuy12I1001
uxuyij + Zuxuy16I1010

uxuyij + Zuxuy26I0101
uxuyij + Zuxuy66I0110

uxuyij

+ Z∂ux∂uy45I0000
uxuyij

Kuxuzij = Z∂uxuz55I0010
uxuzij + Z∂uxuz45I0001

uxuzij + Zux∂uz13I1000
uxuzij + Zux∂uz36I0100

uxuzij

Kuyuxij = Zuyux12I0110
uyuxij + Zuyux26I0101

uyuxij + Zuyux16I1010
uyuxij + Zuyux66I1001

uyuxij

+ Z∂uy∂ux45I0000
uyuxij

Kuyuyij = Zuyuy22I0101
uyuyij + Zuyuy26(I0110

uyuyij + I1001
uyuyij) + Zuyuy66I1010

uyuyij
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+ Z∂uy∂uy44I0000
uyuyij

Kuyuzij = Z∂uyuz45I0010
uyuzij + Z∂uyuz44I0001

uyuzij + Zuy∂uz23I0100
uyuzij + Zuy∂uz36I1000

uyuzij

Kuzuxij = Zuz∂ux55I1000
uzuxij + Zuz∂ux45I0100

uzuxij + Z∂uzux13I0010
uzuxij + Z∂uzux36I0001

uzuxij

Kuzuyij = Zuz∂uy45I1000
uzuyij + Zuz∂uy44I0100

uzuyij + Z∂uzuy23I0001
uzuyij + Z∂uzuy36I0010

uzuyij

Kuzuzij = Zuzuz55I1010
uzuzij + Zuzuz45(I1001

uzuzij + I0110
uzuzij) + Zuzuz44I0101

uzuzij

+ Z∂uz∂uz33I0000
uzuzij

4. Summation over the i and j indices related to the Ritz series approximation of the
kinematic quantities, obtaining the final mass and stiffness matrices of the plate.
Symbolically it can be expressed as

Mij
Ritz expansion−−−−−−−−−→
(i,j) cycling

M

Kij
Ritz expansion−−−−−−−−−→
(i,j) cycling

K

Finally - after applying a similar procedure to compute the load vector - the gov-
erning equations in the classical form are obtained.

Mü + Ku = Ltop f top
0 + Lbot f bot

0 (2.83)

2.5.6 Equivalent single degree of freedom model

The S-GUF model described above can be used to simulate the dynamic response of
a wide class of plates with different boundary conditions. However, for some specific
purposes, it could be enough to use a much simpler model, in order to gain insight
on the problem without being confused by the complete complex dynamics well de-
scribed by the S-GUF model.
As a matter of fact, in Chapter 4 some considerations will be drawn looking firstly at a
simple equivalent single degree of freedom (SDOF) plate model.

The adopted mathematical description is the same derived by Di Girolamo in [11],
where only the first natural mode of the plate is described with a simple mass-spring-
dashpot model.

2.6 SDOF plate model with one inertial actuator

The SDOF model of the plate consist in a simple mass ms, connected to the ground by
mean of a spring of elastic constant ks and a dashpot of damping coefficient cs. It’s
immediate to notice the similarity with the mechanical part of the lumped parameter
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model of the actuator described at the beginning of this chapter. Thanks to this similar-
ity the dynamics equations governing the coupled system can be derived in the same
way described before, just modifying the system as show in Figure 2.7.

ks cs

ms

ka ca

ma

fc(t)

fc(t)

kem

i(t) R L

v(t)
w(t)

z(t)

fd(t)

Figure 2.7: Schematic of the SDOF plate model with an installed inertial actuator.

2.6.1 Dynamics equations

The coupled model is composed by a single degree of freedom mass-spring-dashpot
system representing the plate, on top of which is mounted the inertial actuator, mod-
eled as described before.
The dynamics equations can be derived again through the Lagrange formalism, taking
care to add the terms due to the new plate degree of freedom. The energetic quantities
are modified as follows.

T∗ =
1
2

maż2 +
1
2

msẇ2 Complementary kinetic energy (2.84)

V =
1
2

ka(z − w)2 +
1
2

ksw2 Potential energy (2.85)

W∗
m =

1
2

Lq̇2 + kem(z − w)q̇ Complementary magnetic energy (2.86)
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D =
1
2

ca(ż − ẇ)2 +
1
2

csẇ2 +
1
2

Rq̇2 Dissipation function (2.87)

δWnc = δw fd + δqv Virtual work by non-conservative forces (2.88)

Where

ms Equivalent mass of the plate [kg]

cs Equivalent damping of the plate [Ns m−1]

ks Equivalent suspension stiffness of the plate [N m−1]

ma Proof mass of the actuator [kg]

ca Damping of the actuator [Ns m−1]

ka Suspension stiffness of the actuator [N m−1]

R Coil resistance [Ω]

L Coil inductance [H]

kem Electromagnetic coupling factor [NA−1]

q(t) Electric charge in the coil [F]

i(t) Electric current flowing in the coil [A]

v(t) Electric voltage source [V]

fd(t) Disturbance acting on the plate [N]

z(t) Absolute displacement of the proof mass [m]

w(t) Absolute displacement of plate degree of freedom [m]

The Lagrangian of the system is defined as:

L = T∗ − V + W∗
m =

1
2

maż2 +
1
2

msẇ2 − 1
2

ka(z − w)2 − 1
2

ks(w)2 +
1
2

Lq̇2 + kem(z − w)q̇
(2.89)

The Lagrange’s equations read:



d
dt

(
∂L
∂ẇ

)
− ∂L

∂w
+

∂D
∂ẇ

= Qw

d
dt

(
∂L
∂ż

)
− ∂L

∂z
+

∂D
∂ż

= Qz

d
dt

(
∂L
∂q̇

)
− ∂L

∂q
+

∂D
∂q̇

= Qq

(2.90)
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Leading to the following dynamics equations.



msẅ(t) + (cs + ca)ẇ(t) + (ks + ka)w(t)− caż(t)− kaz(t) + kemq̇(t) = fd

maz̈(t) + ca[ż(t)− ẇ(t)] + ka[z(t)− w(t)]− kemq̇(t) = 0

Lq̈(t) + Rq̇(t) + kem[ż(t)− ẇ(t)] = v(t)

(2.91)

That can be rewritten considering q̇(t) = i(t) as:



msẅ(t) + (cs + ca)ẇ(t) + (ks + ka)w(t)− caż(t)− kaz(t) + kemi(t) = fd

maz̈(t) + ca[ż(t)− ẇ(t)] + ka[z(t)− w(t)]− kemi(t) = 0

Li̇(t) + Ri(t) + kem[ż(t)− ẇ(t)] = v(t)

(2.92)

The first equation describes the mechanical behavior of the SDOF plate, the second
describes the dynamic of the actuator and the third is referred to the dynamics of the
electrical part.

2.6.2 State space realization

Defining:



x1 = w

x2 = z

x3 = ẇ

x4 = ż

x5 = i


u = va

ud = fd

(2.93)

The previous set of equation (Eq. 2.92) can be written in state space, obtaining five first
order differential equations, as follows:
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ẋ1 = x3

ẋ2 = x4

ẋ3 = −ks + ka

ms
x1 +

ka

ms
x2 −

cs + ca

ms
x3 +

ca

ms
x4 −

kem

ms
x5 +

1
ms

ud

ẋ4 =
ka

ma
x1 −

ka

ma
x2 +

ca

ma
x3 −

ca

ma
x4 +

kem

ma
x5

ẋ5 =
kem

L
x3 −

kem

L
x4 −

R
L

x5 +
1
L

u

(2.94)



ẋ1

ẋ2

ẋ3

ẋ4

ẋ5


=



0 0 1 0 0

0 0 0 1 0

−ks + ka

ms

ka

ms
− cs + ca

ms

ca

ms
−kem

ms
ka

ma
− ka

ma

ca

ma
− ca

ma

kem

ma

0 0
kem

L
−kem

L
− 1

L





x1

x2

x3

x4

x5


+



0

0

0

0

1
L


u +



0

0

1
ms

0

0


ud

(2.95)

That can be written in the form:

ẋ = Ax + Buu + Bdud (2.96)

Where

A =



0 0 1 0 0

0 0 0 1 0

−ks + ka

ms

ka

ms
− cs + ca

ms

ca

ms
−kem

ms
ka

ma
− ka

ma

ca

ma
− ca

ma

kem

ma

0 0
kem

L
−kem

L
− 1

L


Bu =



0

0

0

0

1
L


Bd =



0

0

1
ms

0

0


(2.97)





Chapter 3

Experimental Characterization

In this chapter the generic mathematical models derived previously, are completed
with the computation of all the involved parameters and validated comparing exper-
imental and numerical results. Some experiments are therefore carried out on each
single component, firstly with the aim of computing the characteristic parameters, sec-
ondly to assess the validity of the mathematical models.

3.1 Inertial actuators: Dayton DAEX25VT-4 exciters

(a) Front view (b) Side view

Figure 3.1: Dayton DAEX25VT-4.

In this work the Dayton DAEX25VT-4 electrodynamic exciters (Figure 3.1) are em-
ployed as low cost proof-mass actuators. They are small vibration speakers, with high

35
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sensibility and low power requirements if compared to similar size exciters. Their
efficiency is due to the neodymium magnets used to create maximum magnetic flux
around the voice coil, allowing the speakers to be driven also by small and cheep au-
dio amplifiers, as done in this thesis. The transducer are provided with pre-applied 3M
VHB (Very High Bond), but here some Loctite SuperAttak has been added to ensure
maximum energy transfer between the speaker and the plate surface.

The characterization of the inertial actuators consists in the estimation of the free pa-
rameters described in Chapter 2, reported here for the sake of clarity:

• ma: proof mass of the actuator

• ca: damping coefficient of the suspension of the proof-mass

• ka: suspension stiffness of the proof-mass

• R: total equivalent internal resistance of the electrical system of the actuator

• L: total equivalent internal inductance of the electrical system of the actuator

• kem: electromagnetic coupling factor

Figure 3.2: Dayton DAEX25VT-4 electrodynamic exciters: manufacturer specifications.
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The characterization is carried out following the same procedure as in [11], measuring
some physical quantities strictly dependent on the above parameters. The main differ-
ence here is that instead of considering only the proof mass acceleration response in the
voltage driven case, also the acceleration response in the current driven case and the
electrical input impedance will be computed. The aim of such a redundant approach
is firstly to asses how much the values obtained are dependent on the method used to
compute them, secondly - in the case slightly different results are obtained - to average
the values.

The three approaches are similar in the procedure, but due to the different transfer
function by which they are described, they allow to estimate a different number of pa-
rameters. In particular, the proof-mass acceleration response in the current driven case
allows to retrieve the three mechanical parameters: ma, ca and ka, while in the voltage
driven case also the inductance L is computable. The electrical impedance gives the re-
sistance R in addition to all the previous, but in any case the electromagnetic coupling
factor kem has to be obtained from the datasheet in Figure 3.2. How the parameters are
computed and why their number change will be cleared in the following.

The experimental setup is kept the same for any of the three analysis performed. It is
composed as in Figure 3.3: a desktop PC generates a digital signal and converts it to
analog through the PCI-6213 digital-to-analog converter. The PCI-MIO-16E-1 board,
instead, is responsible for the analog-to-digital conversion of all the quantities that the
PC shall acquire. All PC performed operations are done with a 20kHz sampling fre-
quency. BNC-2110 and BNC-2090 are adapters that allow to connect BNC cables to
the PC boards and do not modify in any way the signal coming across them. The
analog signal produced by the PC is first filtered with the KEMO BENCH-MASTER
21M filter to limit it’s bandwidth to 10kHz, and then fed to the audio amplifier (LEPAI
LP-2020A+) that, dependingly on the setting of the volume knob, amplifies it’s input
voltage.
The output tension of the audio amplifier is directly applied to the terminals of the
inertial actuators, this voltage is also measured and sent to the acquisition board by
the PICO TA043 differential probe. In this chapter, whenever input voltage is named
without other clarifications, reference is always made to the tension provided as input
to the speaker by the audio amplifier. In theory the direct measure of such a tension
would not be required in this phase, because it could have been reconstructed know-
ing the output from the PC board and the transfer function that describes the amplifier
behaviour; in practice it has been chosen to acquire it, in order to eliminate as much as
possible any source of errors.
One of the cables that connect the amplifier to the speaker is severed by the LPRS 6-NP
current transducer; it maps the current to be measured in a tension at it’s exit pins,
proportional to the current as Vout(t) = 2.5+ 0.417 i(t). Such tension is acquired by the
data acquisition system.
The acceleration of the proof-mass is measured by means of a small PCB 333B32 ac-
celerometer of mass 4g, glued on top of the actuator.
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Figure 3.3: Scheme of the experimental setup adopted for the actuators characterization.

3.1.1 Proof-mass acceleration response

The proof-mass acceleration response describes the relationship between the acceler-
ation of the suspended mass of the inertial actuator and the electrical input, that can
be both current or tension. For the sake of clarity it must be pointed out that the sys-
tem under analysis can be strictly considered as voltage driven, since the controllable
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quantity is the voltage and no method to achieve direct control of the current has been
applied. However, since both voltage and current are measured, it’s possible to seek
the relationship between current and acceleration of the proof-mass, as it would have
been done if the actuator was current driven.

Voltage driven

In this section the voltage driven case is presented while the current driven will be
briefly discussed later, mainly for comparative purposes. Note that the procedure out-
lined in the following is rather general: it has been applied also to the current driven
acceleration response and to the electrical impedance, with only minor modifications.

The frequency response function is computed using as input a random white noise,
filtered by the KEMO BENCH-MASTER to limit it’s bandwidth to 0 − 10kHz. It can be
computed as:

HaV(jw) =
SaV(ω)

SVV(ω)

where SaV(ω) is the cross spectral density of the voltage V and acceleration of the proof
mass a, and SVV(ω) is the power spectral density of V.
Such elaboration of the acquired data has been performed using the MATLAB function
tfestimate. It takes as inputs the time series of two quantities and reconstruct the
input-output relation in the frequency domain. The results for the two Dayton devices
used in this work are reported in Figure 3.4.

The acceleration response obtained above still lacks a clear link with the parameters
needed for the complete characterization of the inertial actuator. What has to be done
is to find the coefficients of a transfer function that gives a frequency response such
as the one obtained with tfestimate. Once it is done, the transfer function can be
compared with the analytical acceleration response H̃aV - derived in Chapter 2 and
reported in Eq. 3.1 with the addition of the accelerometer mass ms - and the speakers’
lumped model’s parameters can be computed.

H̃aV(s) =
s2kem

(R + sL)(s2(ma + ms) + sca + ka) + skem
(3.1)

Eq. 3.1 can be rewritten highlighting the coefficients of the complex variable, keeping
in mind that for the next passages is needed to have the highest order coefficient of the
denominator equal to one.
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(a) Dayton A (b) Dayton B

Figure 3.4: Proof-mass acceleration response computed from experimental data for Dayton A
and B.

H̃aV(s) =

(
kem

L(ma + ms)

)
s2

s3 +

(
R(ma + ms) + Lca

L(ma + ms)

)
s2 +

(
Lka + Rca + k2

em
L(ma + ms)

)
s +

(
Rka

L(ma + ms)

)
(3.2)

If HaV(jω) is truly represented by the lumped parameter model H̃aV(s), it should be
possible to find ĤaV(s) in Eq. 3.3, such that the coefficients bi and ai can be determined
minimizing a suitable measure of the difference between HaV(jω) and ĤaV(s).

ĤaV(s) =
b2s2

a3s3 + a2s2 + a1s + a0
(3.3)

This can be done, for example, with a least-square fitting algorithm, that tries to deter-
mine the coefficients ai and bi of a generic transfer function Ĥ(s) with m zeros and n
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poles.

Ĥ(s) =
bmsm + bm−1sm−1 + · · ·+ b1s + b0

ansn + an−1sn−1 + · · ·+ a1s + a0
(3.4)

A possible scheme for such an algorithm is reported in Eq. 3.5:

min
b,a

n

∑
k=1

ωk

∣∣∣∣∣HaV(jωk)−
B(jωk)

A(jωk)

∣∣∣∣∣ (3.5)

This task has been performed with the MATLAB invfreqs function, specifying the as
desired order of the numerator and denominator respectively m = 2 and n = 3.
Eq. 3.6 reports the results for the two actuators employed:

ĤaV(s) =


1.9579e5s2

s3 + 2.1191e4s2 + 1.0892e6s + 7.9675e8
(DaytonA)

2.5573e5s2

s3 + 2.4291e4s2 + 1.2993e6s + 8.1890e8
(DaytonB)

(3.6)

Comparing Eq. 3.2 and Eq. 3.6 it’s evident that four coefficients allow to compute
only four parameters, while total number is six. This means that two of them shall
be obtained in another way. The easiest choice is to take kem and R from the actuator
datasheet while computing the other four. Results are reported in Table 3.1 and in
Figure 3.5 HaV(jω) and ĤaV(s) are superimposed.

Device ma [g] ca [Ns/m] ka [N/m] L [H] R [Ω] kem [N/A]

Dayton A 0.0830 1.2152 3272.6 0.000192 4.2000 3.8600

Dayton B 0.0723 0.8758 2575.1 0.000218 4.2000 3.8600

Table 3.1: Parameters computed through the voltage driven proof-mass acceleration response
approach, for both the Dayton exciters. Those on the right end of the table are assumed from the
datasheet.
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(a) Dayton A (b) Dayton A

Figure 3.5: Comparison of the proof-mass acceleration response computed from experimental
data (HaV(jω)) and the lumped parameters model (ĤaV(s)), for Dayton A and B.

Current driven

The current driven proof-mass acceleration response is defined as:

Hai(jw) =
Sai(ω)

Sii(ω)

It allows to compute only three of the six parameters of the actuator’s model. This can
be understood looking at its expression derived in Chapter 2 and reported for the sake
of clarity in Eq. 3.7.

H̃ai(s) =
s2kem

(ma + ms)s2 + cas + ka
(3.7)

Eq. 3.7 can be rewritten highlighting the coefficients of the frequency variable, keeping
in mind that invfreqs gives back a transfer function with the highest order coefficient
of the denominator equal to one.
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H̃ai(s) =

(
kem

ma + ms

)
s2

s2 +

(
ca

ma + ms

)
s +

(
ka

ma + ms

) (3.8)

If Hai(jω) is truly represented by the lumped parameter model H̃ai(s), it should be
possible to find Ĥai(s) in Eq. 3.9, such that the coefficients bi and ai can be determined
minimizing a suitable measure of the difference between Hai(jω) and Ĥai(s).

Ĥai(s) =
b2s2

a2s2 + a1s + a0
(3.9)

The computation of ai and bi and the derivation of the model parameters is straight-
forward and leads to the result reported in Table 3.2.

(a) Dayton A (b) Dayton A

Figure 3.6: Comparison of the proof-mass acceleration response computed from experimental
data (Hai(jω)) and the lumped parameters model (Ĥai(s)), for Dayton A and B.
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Device ma [g] ca [Ns/m] ka [N/m] R [Ω] L [H] kem [N/A]

Dayton A 0.0816 1.3417 3195.3 4.2000 0.00024 3.8600

Dayton B 0.0725 0.8085 2581.4 4.2000 0.00024 3.8600

Table 3.2: Parameters computed through the current driven proof-mass acceleration response
approach, for both the Dayton exciters. Those on the right end of the table are assumed from the
datasheet.

3.1.2 Electrical input impedance

The electrical input impedance is defined as:

HVi(jw) =
SVi(ω)

Sii(ω)

Its expression has been derived in Chapter 2 and is reported for the sake of clarity in
Eq. 3.10.

H̃Vi(s) =
(R + sL)((ma + ms)s2 + cas + ka)− k2

ems
(ma + ms)s2 + cas + ka

(3.10)

Eq. 3.10 can be rewritten highlighting the coefficients of the frequency variable, keep-
ing in mind that invfreqs gives back a transfer function with the highest order coeffi-
cient of the denominator equal to one.

H̃Vi(s) =

(L) s3 +

(
R(ma + ms) + Lca

ma + ms

)
s2 +

(
Rca + Lka − k2

em
ma + ms

)
s +

(
Rka

ma + ms

)
s2 +

(
ca

ma + ms

)
s +

(
ka

ma + ms

)
(3.11)

If HVi(jω) is truly represented by the lumped parameter model H̃Vi(s), it should be
possible to find ĤVi(s) in Eq. 3.12, such that the coefficients bi and ai can be determined
minimizing a suitable measure of the difference between HVi(jω) and ĤVi(s).

ĤVi(s) =
b3s3 + b2s2 + b1s + b0

a2s2 + a1s + a0
(3.12)

Proceeding in the same way as done for the voltage driven proof-mass acceleration
response the values reported in Table 3.3 are obtained.
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Device ma [g] ca [Ns/m] ka [N/m] R [Ω] L [H] kem [N/A]

Dayton A 0.0859 1.4040 3353.7 4.8206 0.00026 3.8600

Dayton B 0.0745 0.8262 2645.9 4.8094 0.00023 3.8600

Table 3.3: Parameters computed through the electrical input impedance approach, for both the
Dayton exciters. Those on the right end of the table are assumed from the datasheet.

(a) Dayton A (b) Dayton A

Figure 3.7: Comparison of the electrical input impedance computed from experimental data
(HVi(jω)) and the lumped parameters model (ĤVi(s)), for Dayton A and B.

The superposition of each experimental frequency responses to the related analytical
lumped parameters model, shows that the model gives a good description of the un-
derlying physics. The magnitude approximation is very good in a wide range span-
ning at least from 20 to 2000Hz. The frequency description is a little less satisfactory at
higher frequencies.
Looking at the parameters obtained with the three methods and reported in Tables 3.1,
3.2 and 3.3, it can be noticed that the results slightly differ from one method to another.
If the purpose was only to build a numerical model to simulate the dynamics of the ex-
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perimental prototype, such a small uncertainty on the parameters would not be a big
concern. This could be verified computing each of the three transfer functions using
all the three sets of parameters and checking that - indeed - only minor differences are
obtained. This is not the only purpose though, as shown in Chapter 4 these six param-
eters are used to reconstruct the plate velocity through a transfer function that is highly
prone to errors, if the parameters are even only a bit wrong. Thus has been necessary
to average them - and also to tune them through trial and error - to achieve the best
possible performances. The final values used in the real-time laboratory simulation are
reported in Table 3.4.

Device ma [g] ca [Ns/m] ka [N/m] R [Ω] L [H] kem [N/A]

Dayton A 0.0819 1.6620 3218.0 4.7000 0.00022 3.8600

Dayton B 0.0745 0.8262 2645.9 4.8094 0.00023 3.8600

Table 3.4: Parameters used for the real-time simulation.

3.2 Current sensor

Figure 3.8: Current sensor.

While the voltage acquisition has been done thanks to the differential probe PICO
TA043, already present in laboratory and used in [11, 32], for the current acquisition no
probes were available. Since active current probes, such the PICO TA189, have prices
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of hundreds of euros, it has been chosen to buy a simple and cheap electronic current
transducer to be soldered on a breadboard (Figure 3.9).

Figure 3.9: Current transducer installed on the breadboard, front and rear.

Figure 3.10: Hall effect current sensor generic scheme.

The chosen current transducer is the LEM LPSR 6-NP, (Figure 3.8) a closed loop Hall
effect current transducer. Hall effect is created by Lorentz force, FL = q · (V × B), which
acts on charges moving through a magnetic field. The current to be measured - IP in
Figure 3.10 - passes inside the transducer and generates a magnetic field that is ampli-
fied by the annular magnetic core. Such core has a small gap, inside which is placed
a Hall generator: a small sheet of conducting material traversed by a control current
- IC in Figure 3.10, parallel to IP - provided by the power supply of the sensor. When
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the charge carriers of a such a constant current cross the gap in the magnetic core, they
interact with the magnetic field being deviated by the Lorentz force and generating
a voltage difference proportional to the magnetic field in the core. Within the linear
region of the hysteresis loop (Figure 3.11) of the material used for the magnetic circuit,
the magnetic flux density, B, is proportional to the primary current, IP. Therefore the
output of the Hall generator is proportional to the primary current.

Figure 3.11: Hysteresis curve.

Figure 3.12: Current sensor connection scheme.

The transducer works with a DC power supply of 5V and the output voltage is offset
by 2.5V in order to have a symmetric AC field of measure with a simple DC power
supply. An electrical scheme of the transducer is reported in Figure 3.12.



3.2. Current sensor 49

Pins 2 and 6 are respectively input and output of the primary circuit in which the
current to be measured shall flow. Pins from 2 to 9 can be connected among them in
four different ways in order to change the transducer sensitivity, as summarized in
Figure 3.13.

Figure 3.13: Current sensor sensitivity connection scheme.

The remaining pins, from 15 to 11, are respectively:

• +5V - Power input.

• GND - Reference voltage for all other pins.

• Vout - Output voltage, proportional to the current to be measured through the
following formula

Vout = Vre f + 0.625
Np · I
IPN

Where IPN = 6A and Np can takes values from 1 to 4 depending on the connec-
tion scheme of pins from 2 to 9. The configuration that will be used is the one for
the maximum sensitivity with Np = 4.

• Vre f - Measure offset, equal to 2.5V.

• OCD - OverCurrent Detection, normally placed to 0V, apart from when the flow-
ing current in the primary is greater than 4.1 · IPN. The aim is to signal that the
sensor is in saturation and therefore the measure is no more reliable. Considering
that the limit current is 24A there will be no need for this pin.

The reading of the sensor could be made acquiring only Vout and subtracting 2.5V.
However, as recommended by the manufacture and confirmed experimentally, by ac-
quiring also Vre f the accuracy is increased.
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3.3 Power amplifiers

The amplifiers used in this thesis to drive the Dayton speakers are the Lepai LP-
2020A+, Figure 3.14. They are ultracheap mini amplifiers that can provide up to 20W
per channel. They have one 3.5mm minijack input and a volume control knob.

Figure 3.14: Lepai LP-2020A+.

The amplifiers used in this work are the same of Ref. [11], namely number 1 and 2.
Although the parameters of the amplifiers were available in the reference, the char-
acterization has been performed again, since the required experimental setup (Figure
3.15) is much similar to that used to characterize the actuators. The only significant
difference is that also the disturbance has to be acquired in order to compute, with
tfestimate, the amplifier’s transfer function.

Hamp(jω) =
SVd(ω)

Sdd(ω)

SVd(ω) is the cross spectral density of the output voltage V and the input voltage - the
disturbance - d, whereas Sdd(ω) is the power spectral density of the disturbance.
The parameter of the amplifier can now be obtained exactly as before, comparing the
experimental transfer function with the assumed model derived in Chapter 2 and re-
ported in Eq. 3.13 for the sake of clarity:
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Figure 3.15: Scheme of the experimental setup adopted for the amplifiers characterization.
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H̃(s) = gamp
s

s + a
(3.13)

It must be pointed out that while the low frequency pole of the amplifier is fixed, the
gain depends on the setting of the volume knob. During the experimental charac-
terization, the volume has been set approximately to 3/4 of the maximum, to avoid
saturation. The results are reported in Table 3.5 and are in good agreement with those
of Ref. [11]. The fact that the numerical model of the amplifier must be changed when-
ever the volume knob is moved is the main reason for which it has been chosen to
actively measure the voltage. Indeed it could have been possible, knowing the distur-
bance that is generated by the PC, to compute the voltage after the amplifier, but for
doing so, one should have been absolutely sure to do not move the volume knob.

Device gamp[−] a[Hz]

Lepai 1 −4.5 45

Lepai 2 −4.42 45

Table 3.5: Parameters computed for the two power amplifiers.

Figure 3.16: Lepai LP-2020A+.
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It has to be noticed that the voltage gain is negative, meaning that the Lepai is an
inverting amplifier. It can be seen also in Figure 3.16, where the phase tends to −180°
at high frequencies. It has to be kept in mind when using it in a control logic. Another
interesting fact is that the low frequency pole is placed around 45Hz, a little bit higher
than the lower threshold of the human hearing.

3.4 Plate

The vibrating surface used in this thesis is the thin aluminum plate in [11, 32], depicted
in Figure 3.17. It has thickness of 2mm and a size of 700 by 500mm. However, the pres-
ence of a steel rigid frame reduces the vibrating area to approximately 600 by 400mm.
Although the plate will be considered as clamped to the frame, it must be pointed out
that this could be a rough approximation of the real bolted connection. The complete
physical properties are reported in Table 3.6.

Figure 3.17: Reference plate.

The validation of the model has been performed in Ref. [11] comparing the results of
an experimental modal analysis with the first eight modes predicted by the numerical
model. The results are here reported for clarity in Figures 3.18 and 3.19.
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Parameter Value Units
Length 600 [mm]

Width 400 [mm]

Thickness 2 [mm]

Density 2700 [kg m−3]

Young’s Modulus 70 [GPa]

Poisson’s Ratio 0.33 [−]

Table 3.6: Test plate properties.

The identification of the modes has been carried out impacting the panel with an in-
strumented hammer, carrying a load cell to measure the input force. The measure of
the structural response has been done using an array of microphones, positioned nor-
mally to the panel, very close to the surface, such that the near-field sound pressure
can be considered as an equivalent map of the transverse vibration of the plate.

The agreement of the numerical model is quite good. The shapes of the modes present
some distortion, probably due to non uniform shape and boundary conditions of the
plate, but still will allow to make considerations on the position of nodal lines and on
the controllability of modes from a specific position. The accuracy in the estimation of
the natural frequency is less satisfactory.

Figure 3.18: Experimental plate mode shapes.

As said in Chapter 2, a large use of a single degree of freedom model of the plate
will be made. The parameters of the model, as obtained by Di Girolamo in Ref. [11],
are reported in Table 3.7. It will be seen in the next chapters, despite the extreme
simplicity of this model, that it could be useful to easily evaluate the effects of some
design choices.
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Figure 3.19: Numerical plate mode shapes.

ms[kg] cs[Ns m−1] ks[N m−1]

0.2171 4.4158 5.6125 × 104

Table 3.7: 1-DOF parameters.





Chapter 4

Sensor-actuator model: Numerical
Testing

In this chapter the sensor-actuator formulation derived in Chapter 2 is tested numer-
ically. Firstly over the simple SDOF plate model, then on the complete flexible model
of the structure, both in frequency and time domain. Some modification to the self-
sensing actuator equation will be needed in order to achieve stability in real operating
conditions.

4.1 Transverse plate velocity

The sensor-actuator equation for the reconstruction of the plate transverse velocity dis-
cussed in the previous chapters is reported in Eq. 4.1.

ẇ(s) =

 (R + sL)
(

s2ma + sca + ka

)
+ sk2

em

s2makem

 i(s)−
[

s2ma + sca + ka

s2makem

]
v(s) (4.1)

= Hi(s)i(s)− Hv(s)v(s) = ẇi(s)− ẇv(s) (4.2)

Two terms can be recognised: the first - current related - Hi(s), and the second - volt-
age related - Hv(s). It has to be noticed that after each term is multiplied by it’s related
electrical variable, the two resulting quantities - ẇi(s) and ẇv(s) - are subtracted. High-
lighting this will prove to be of the utmost importance later. As a matter of fact the ve-
locity reconstruction equation cannot be used as is, for reasons that will be explained
later. It has to be modified, but due to the subtraction operation, the reconstruction
becomes very sensitive to changes affecting only one of the two terms.
A qualitative understanding of this behaviour can be achieved by looking at Figure
4.1, where ẇi(s) and ẇv(s) are depicted, as obtained in laboratory (Chapter 5). It can
be noticed that the two terms - ẇi(s) and ẇv(s) - differs only by a small fraction of their
value. Since the plate velocity ẇ is in fact the difference between such two terms, it’s

57
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easy to understand that if one, for any reason, is modified, the reconstructed velocity
would be heavily affected.

Figure 4.1: Comparison of the ẇi(s) and ẇv(s) terms.

As anticipated the aim of this chapter is to modify Eq. 4.1 in order to obtain a formula-
tion that can be implemented in real-time laboratory testing. In fact, implementing Eq.
4.1 would give good results only in numerical simulations, while the performances in
laboratory would be completely unsatisfying. This asymmetry between numerical and
experimental analysis is due to different phenomena that affect only the experimental
setup, that have to be included in the numerical simulation if significant results are to
be drawn. The main problems and uncertainties taken into account in the following
are:

• Offset in the current and voltage measures.

• High frequency noise in the measurements.

• Low frequency components due to unmodelled dynamics.

• Uncertainties on the actuator parameters computed in Chapter 3.
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As a first step, the velocity reconstruction equation, so as derived from the dynamics
system, is analyzed and the response to the uncertainties is explored.

4.1.1 High frequency behaviour

The first issue arises from the Hi(s) term. The transfer function has a numerator of
order 3, while the denominator is of order 2, therefore is improper. This means that the
amplification introduced by the transfer function goes to infinite as the frequency goes
to infinite, causing an unbounded and detrimental amplification of the high frequency
noise. Performing only a numerical simulation this phenomenon may go unnoticed
at first, because in the ideal case it is exactly compensated by the actuator dynamics
present in the current signal by which Hi(s) has to be multiplied. This is true only in
ideal conditions though: if, for example, an uncertainty is introduced in the actuator
parameters, it translates in an incorrect compensation that leads to huge errors in the
reconstruction of the velocity.

Figure 4.2: Plate velocity reconstruction with different errors in the actuator parameters.

Figure 4.2 shows that when small errors in the determination of the actuator’s param-
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eters performed in Chapter 3 are made, any high frequency component is amplified in
the same way, while instead a decreasing magnitude is required.
Possible solutions are to add a pole to the denominator or to drop a zero from the
numerator.

Static residualization of the electrical dynamics

Since a way to reduce the order of the numerator is sought, the static residualization
of the electrical dynamics could appear to be a good solution. Indeed - as shown in
Chapter 2 and reported in Eq. 4.3 for the sake of clarity - the term Hi(s) becomes strictly
proper if the statically residualized case is considered, while Hv(s) is not affected.

ẇ(s) =

R
(

s2ma + sca + ka

)
+ sk2

em

s2makem

 i(s)−
[

s2ma + sca + ka

s2makem

]
v(s) (4.3)

(a) Hi(s) (b) Hv(s)

Figure 4.3: Bode plot of the two transfer functions for the transverse plate velocity reconstruc-
tion, both in the complete and statically residualized formulation.

In Figure 4.3 are depicted both the complete and the statically residualized electrical
case for both the transfer functions Hi(s) and Hv(s). It can be noticed that removing
the electrical zero, the current related term approaches an horizontal asymptote for
high frequencies, while the voltage related term is not modified. As has been said in
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the previous chapters, the goodness of the statically residualized model has to be as-
sessed for the specific application under analysis. Assuming that the frequency range
of interest of this work is upper bounded at about 1kHz, it could seem that the static
residualization should not alter significantly the performances in the range of inter-
est, being Hi(s) ≈ Hi res(s) below 1kHz. Unfortunately this is not the case, and what
before has been only anticipated qualitatively - that any modification introduced on
only one of Hi(s) or Hv(s) could heavily compromise the velocity reconstruction - it’s
demonstrated in the following.

Eq. 4.2 can be rewritten as:

ẇ(s) = Hi(s)i(s)− Hv(s)v(s)

=

(
Hi(s)

i(s)
v(s)

− Hv(s)

)
v(s)

=
(

Hi(s)Y(s)− Hv(s)
)

v(s)

Where has been introduced the electrical admittance Y(s), defined as the inverse of the
electrical impedance and depicted in Figure 4.4.

Figure 4.4: Electrical admittance simulated for the simple SDOF plate coupled with the lumped
parameters model of the inertial actuator.

The plate model employed in these simulations is the simple single-degree-of-freedom,
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it can be noted from the presence of only two resonance frequencies: the first around
30Hz due to the actuator, and the second slightly above 80Hz representing the first
mode of the plate. The reduction in the magnitude at high frequency, instead, is due to
the electrical dynamics of the actuator, i.e. to the action of the inductance. Keep also in
mind that - although the velocity reconstruction equation can be statically residualized
- the inductance contribute will always be present in the real dynamics of the actua-
tor, therefore the electrical admittance shall remains the one depicted in Figure 4.4, no
matter the approximation adopted in the reconstruction of the velocity. Even if the last
clarification could seems obvious, it becomes of the utmost importance in Figure 4.5,
where the two transfer functions Hi(s)Y(s) and Hv(s) are plotted for the complete and
residualized case.

(a) ẇi(s) (b) ẇv(s)

Figure 4.5: Frequency response to the input voltage of the two terms for the transverse plate
velocity reconstruction, both in the complete and statically residualized formulation.

As expected, the difference at the high frequencies between Hi(s) and Hi res(s) is still
present also after the multiplication by the electrical admittance. Note that in the com-
plete - not residualized - case, Hi(s)Y(s) has an horizontal asymptote at high frequency,
meaning that the electrical zero of Hi(s) is exactly compensated by a pole in the admit-
tance - reason for which, despite Hi(s) not being proper, the velocity reconstruction
formula appears to be stable, at least in numerical ideal conditions - while in the stati-
cally residualized case the electrical zero is dropped, therefore it can’t compensate the
pole in the admittance, resulting in a pole in the Hi res(s)Y(s) term. If, by a careless
design, the static residualization of the electrical dynamics were implemented not only
in the velocity reconstruction formula, but also in the dynamic model of the actuator,
the electrical admittance would loose it’s high frequency pole too, causing the term
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Hi res(s)Yres(s) to be equal to the unresidualized one (Hi(s)Y(s)). This could seem a
great result, while instead is just a poor representation of the reality, because the be-
haviour of the real prototype actuator always shows the inductance contribute. Indeed
this error would lead to believe that the residualized model could be a valid solution,
while in practice it gives wrong result.
In Figure 4.6 the reconstructed velocity is compared with the real velocity of the plate.
When the complete formulation of Eq. 4.1 is used, the results are perfectly superim-
posed to the real velocity, while if the residualized equation is used, the reconstruction
completely fails to catch the real behaviour far from the two resonance peaks. The rea-
son for that can be found by looking at Figure 4.5. The velocity is obtained subtracting
4.5b from 4.5a. When the complete case is considered, both figures have a flat high
frequency behaviour, while in the residualized case the current term has a decreasing
magnitude, that translates in an increasing difference between the two terms, as can be
seen in Figure 4.6.

Figure 4.6: Reconstructed velocity frequency response, obtained both with the complete and
statically residualized formulation, compared with the real velocity of the plate.

The result just obtained could seem counterintuitive: it was sought a way to solve the
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problem of Hi(s) being improper, but it results that the velocity is better reconstructed
using the improper Hi(s) than using the proper but statically residualized Hi res(s).
Indeed Hi res(s) seemed nearly superimposed to Hi(s) at frequencies below 1kHz, but
that is only thanks to implicit logarithmic scale of decibels in Figure 4.3. If the error is
evaluated as the ratio of Hi(s) to Hi res(s) in a linear scale, more significant results are
obtained, as reported in Table 4.1. Having assumed the frequency range of interest of
this thesis to reach 1kHz, and remembering that the transverse velocity of the plate is
obtained subtracting two terms that only slightly differ from each other (Figure 4.1),
it’s evident that a 40% error is too much. Therefore another mean to obtain a proper
transfer function has to be sought, with a particular attention to modifying in the same
way both Hi(s) and Hv(s).

Frequency [Hz] Error [%] Error [dB]

10 0.4 0.03
30 1.2 0.10
60 2.4 0.21

100 4.0 0.34
300 12.0 0.98
600 24.0 1.86
1000 40.0 2.92
3000 119.8 6.84

Table 4.1: Approximation error of Hi res(s) with respect to Hi(s).

High frequency pole

Another way to make Hi(s) proper is to add a pole. In principle there’s no much differ-
ence between adding a pole and removing a zero, as done in the statically residualized
case just presented. The difference lays in the fact that the zero to be removed is at
a fixed frequency, while the pole to be added can be put at any arbitrarily high fre-
quency ωh in order to keep the required distance from the frequency range of interest.
Moreover a pole can be added to both Hi(s) and Hv(s) mitigating the effect described
above. A possible representation of the new expression for the reconstruction of the
transverse plate velocity, with the addition of an high frequency pole is reported in Eq.
4.4.

ẇ(s) =

 (R + sL)
(

s2ma + sca + ka

)
+ sk2

em

s2makem

(
1 +

s
ωh

)
 i(s)−

 s2ma + sca + ka

s2makem

(
1 +

s
ωh

)
 v(s) (4.4)

Where to place the new pole is not trivial. Of course it should be placed at a frequency
high enough to not have influence in the frequency range of interest, but at the same



4.1. Transverse plate velocity 65

time it is reasonable to keep it as low as possible in order to better reject high frequency
noise. The latter requirement is not easily analysable in the frequency domain, and will
be shortly addressed later in a time simulation. However, it can be anticipated that it
will not be found to be much constraining.

Note that if it is imposed
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(
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it can be obtained again the static residualization of the Hi(s) term
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with an additional compensation of Hv(s) so as not to run into the problem described
above.



66 Chapter 4. Sensor-actuator model: Numerical Testing

Note, in Figure 4.7, that this peculiar case does not offer better performances than the
others, therefore there’s no reason to implement it.

Figure 4.7: Reconstructed velocity frequency response, obtained with different high frequency
poles, compared with the real velocity of the plate.

Comparing Figure 4.7 with Figure 4.6 it is evident that modifying both Hi(s) and Hv(s)
dramatically improves the performance of the reconstruction of the velocity. With any
ωh higher than about 2kHz a proper transfer function is obtained with no detrimental
effects in the frequency range of interest.

It has been demonstrated so far that the pole addition does not have detrimental ef-
fects on the reconstruction of the transverse plate velocity in ideal numerical condi-
tions. However, it should be checked if its behaviour remains satisfactory even when
an error in the actuator’s parameters is introduced. Figure 4.8 depicts a comparison
when the error is fixed at 1%. As anticipated, the lower the value of ωh, the better
the reconstruction of the velocity in case of error in the parameters. As said before,
the frequency analysis is not the best tool to understand how low the new pole has to
be placed to reject the high frequency noise. Indeed it could appear from Figure 4.8
that also 1kHz is too high to obtain a perfect reconstruction of the velocity. Although
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the reason is not much straightforward, this is not true. The desired effect introducing
the high frequency pole is not to achieve a perfect superposition with the true veloc-
ity - superposition that would be in any case impossible to achieve in laboratory due
to noise and resolution problems - but to reproduce the decaying in the magnitude at
high frequency of the real velocity plot, mainly for noise rejection purposes. As proof
of this, it will be seen later that ωh = 2kHz is enough to achieve a good reconstruction
of the velocity in time domain. Before showing this, the response at low frequency has
to be analyzed.

Figure 4.8: Reconstructed velocity frequency response, obtained with different high frequency
poles, compared with the real velocity of the plate, when a 1% error in the actuator’s parameters
is introduced.

4.1.2 Low frequency behaviour

Up to now the focus has been on the high frequency behaviour. It has to be noticed
though that, when the uncertainty about the actuator’s parameters is introduced, also
frequencies below 20Hz are affected. It is visible both in Figure 4.6 and 4.8.
The reason lies in the expression for the reconstruction of the plate velocity, Eq. 4.1.
Both terms have two poles in the origin, making the two transfer functions unstable.
As before, if the ideal case is analyzed, the pure integration action at low frequency is
exactly cancelled subtracting the two terms in Figure 4.5. This is no longer true in a real
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application, due to the inaccuracy of the model. Moreover, as shown in Chapter 5, the
experimental setup is affected by some offset in the acquisition of current and voltage,
thus introducing low frequency components that requires the electrical quantities to be
filtered before being used for the reconstruction of the velocity. To avoid any problem,
the two poles in the origin can be substituted with two generic complex conjugate poles
with negative real part, as in Eq. 4.5.

ẇ(s) =

 (R + sL)
(

s2ma + sca + ka

)
+ sk2

em

makem

(
s2 + 2ξlωls + ω2

l

)(
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)
 i(s) (4.5)

−
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(
s2 + 2ξlωls + ω2

l

)(
1 +

s
ωh

)
 v(s)

There are two parameters to be selected: the damping coefficient and the cutting fre-
quency. Figure 4.9 shows a comparison of Hi(s) and Hv(s) with different cutting fre-
quencies and a damping coefficient ξl = 1.

(a) Hi(s) (b) Hv(s)

Figure 4.9: Bode plot of the two transfer functions for the transverse plate velocity reconstruc-
tion, for different frequencies of the low frequency poles.
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Since the aim is to obtain stable transfer functions, the cutting frequency could be taken
arbitrarily low. However, as explained in the next chapter, it could be useful to set the
poles to the highest possible frequency in order to reduce the amplification of some un-
desired low frequency dynamics, that can arise filtering the electrical signals. Having
in mind that the the aim of this thesis is to suppress acoustic vibrations, the frequency
range of interest is limited at 20Hz, therefore placing the low frequency poles at 10Hz
can be considered an acceptable compromise. In Figure 4.10 it can be seen that this
only induces minor modification of the reconstructed velocity in the frequency range
of interest, when the simulation is performed in ideal conditions.

Figure 4.10: Reconstructed velocity frequency response, obtained with different low frequency
poles, compared with the real velocity of the plate.

If 1% uncertainty is introduced on the actuator’s parameters the results in Figure 4.11
are obtained. As for the high frequency behaviour is not sought a perfect superposition
with the real velocity outside the range of interest, it is enough to obtain an horizontal
asymptote for low frequencies. The higher the frequency at which the two poles are
placed, the lower the magnitude of the asymptote, the lower the amplification of an
undesired low frequency noise.
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Figure 4.11: Reconstructed velocity frequency response, obtained with different low frequency
poles, compared with the real velocity of the plate, when a 1% error in the actuator’s parameters
is introduced.

4.1.3 Discrete realization

The last numerical simulations presented in this chapter want to reproduce the testing
conditions of the prototype plate. Up to now all simulations has been performed in
continuous time, but since the real-time control shall be realized in discrete time, a
discrete realization of the transverse plate velocity expression has to be derived. To
bring the continuous Eq. 4.6 in a discrete time formulation, the Tustin’s method can
be applied, firstly on the current related transfer function Hi(s), then on the voltage
related Hv(s).
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= Hi(s)i(s)− Hv(s)v(s)

= ẇs(s)− ẇv(s)

Current term
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Where Dt is the sampling time and:
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From Eq. 4.8 it can be obtained the linear difference equation that allows to compute
ẇi(k).

(b3z3 + b2z2 + b1z + b0) i(z) = (a2z3 + a2z2 + a1z + a0) ẇi(z) (4.9)
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Voltage term
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Where Dt is the sampling time and:
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From Eq. 4.12 can be obtained the linear difference equation that allows to compute
ẇv(k).

(d3z3 + d2z2 + d1z + d0) v(z) = (c3z3 + c2z2 + c1z + c0) ẇv(z) (4.13)
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4.1.4 S-GUF plate simulation

In this section the expression for the reconstruction of the plate transverse velocity in
Eq. 4.5 is tested numerically on the S-GUF plate model, both in frequency and time
domain. The discrete formulation derived above is implemented, with a sampling fre-
quency of 20kHz.

In Figure 4.12 are compared the velocity frequency response obtained with the origi-
nal expression - Eq. 4.1 - with the modified expression - Eq. 4.5 - and that of the real
velocity of the plate. Comparing it with all the plots obtained with the SDOF plate
model can be recognized two peaks: at 30Hz the actuator resonance and at 85Hz the
first mode of the plate. All the following peaks are higher order natural modes of the
plate, note that since the actuator is placed at the center of the plate, not all the modes
are excitable. As a matter of fact, comparing it with the modes of Figure 3.19, it can be
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seen that only the first - 85Hz - the forth - 209Hz - and the eighth - 370Hz - are present,
all others having nodal lines passing through the center of the plate are not excited.

Figure 4.12: Comparison of the reconstructed velocity frequency response, obtained both with
the modified and the original expression, with the real velocity of the plate.

The poor performances of the original expression for the reconstruction of the plate ve-
locity, are confirmed by the diverging magnitude of the frequency response at both low
and high frequency. The modified equation instead still gives a good reconstruction of
the velocity in the frequency range of interest, while keeping bounded the magnitude
outside.

Considering only the frequency domain response, it is not straightforward to under-
stand if the modification introduced so far are enough to achieve a stable reconstruc-
tion. Looking directly at the time history of the velocity can give a much more direct
understanding of what Figure 4.12 means.
In Figure 4.13 is depicted the time evolution of the velocity obtained in a 10 seconds
simulation. The velocity obtained with the original formulation diverges from the real
one. This is the effect of the very low frequency components in Figure 4.12.
From figure 4.14, instead, can be seen that the modified version gives much better
results. Therefore the low and high frequency tails of Figure 4.12, although not super-
imposed to the real velocity, have a magnitude low enough not to affect the velocity in
the time domain.
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Figure 4.13: Comparison of the velocity reconstructed with the original expression and the real
transverse velocity of the plate at the actuator location.

Figure 4.14: Comparison of the velocity reconstructed with the modified expression and the real
transverse velocity of the plate at the actuator location.
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4.2 Inertial mass velocity

In this section the reconstruction of the inertial mass velocity is briefly tested. The
expression has been derived in Chapter 2 and is reported in Eq. 4.15 for the sake of
clarity.
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It can be modified in a similar way to what has been done for the transverse plate
velocity. The poles in the origin shall be substituted with negative real part complex
conjugate poles, but being Hi(s) already proper, the addition of the high frequency
pole is not required.

ẇ(s) =

 (R + sL) (sca + ka) + sk2
em

makem

(
s2 + 2ξlωls + ω2

l

)
 i(s)−

 sca + ka

makem

(
s2 + 2ξlωls + ω2

l

)
 v(s) (4.16)

In Figure 4.15 and 4.16 are depicted the performances of the reconstruction expression
respectively in frequency and time domain, compared to the real velocity of the inertial
mass of the control actuator. Also in this case the reconstruction is satisfying. It can be
noticed that the response is dominated by the slow mode of the actuator 30Hz, while
the modes of the plate are present with lower amplitude.

Figure 4.15: Comparison of the reconstructed inertial mass velocity frequency response, with
the real velocity.
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Figure 4.16: Comparison of the velocity reconstructed with the modified expression and the real
velocity of the inertial mass of the control actuator.



Chapter 5

Sensor-actuator model: Experimental
Testing

In this section the reconstruction of the velocity derived in Chapter 4 is implemented
in a real-time skyhook control logic in laboratory. Filters are added and the basis for
future developments are layed.

5.1 Control scheme

In Figure 5.1 the experimental setup is depicted. Two inertial actuators are mounted on
the thin aluminum plate, one in the center (A) used for the control, and one in a corner
(B) used to introduce the disturbance. The disturbance signal generated by the desktop
computer is a white noise filtered by an anti-aliasing filter (KEMO filter). Between the
control actuator and the power amplifier (LEPAI 2), the current sensor - LPRS 6-NP -
and the differential scope - PICO TA043 - are placed, so that current and tension can be
acquired for the reconstruction of the transverse plate velocity at the control location.
Two accelerometers are also used, one glued on top of the inertial mass, and the second
on the lower face of the plate, exactly in correspondence of the actuator A. Indeed, it
can be useful to compute the velocity also by pseudo-integration of the acceleration for
comparison purposes.

Once tension and current are available, the control action is computed trough the dis-
crete realization of the plate velocity equation derived in Chapter 4. Ahead of doing
so, it has been necessary to filter both tension and current signals, both at low and high
frequencies.
The low frequency filtering - roughly below 1Hz - is mandatory to remove acquisition
offset from current and voltage measures.
The high frequency filtering is a crucial aspect of the project, indeed the most critical
problem and - as thoroughly explained later - still not completely solved.
Both filters are realized as digital elliptic second order filters, but for sure other solution
could be considered in future evolution of the design.

79
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Figure 5.1: Scheme of the experimental setup used for the testing of the skyhook control logic
with the reconstruction of the plate velocity.
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5.2 Data acquisition system and real-time control

Before discussing the results of the digital skyhook control strategy, some clarification
about the way current and voltage are acquired are needed.
As can be seen in Figure 5.1 and explained above, the desktop PC runs a real-time rou-
tine that is responsible for multi-channel acquisition. The acquired data of the present
time instant are used to compute the control action to be provided to the actuator at
the next time instant. Therefore the PC - at any discrete time instant - has to acquire
all channels, carry out the required computations, and send out the results. Of course
there is a limitation on the frequency at which the PC can repeat the cycle just de-
scribed. As a matter of fact, it has been checked that with the configuration in Figure
5.1, the maximum sampling rate is about 15kHz.

The data acquisition system (DAQ) - namely the analog to digital converter (ADC) and the
digital to analog converter (DAC) in Figure 5.1 - works on 212 levels. This means that in-
put and outputs can assume only 4096 well defined values, any signal falling between
two level is approximated to the nearest. What just described holds for both ADC and
DAC, meaning that the signal to be acquired is mapped on one of the 4096 fixed input
levels. In the same way the control action computed from current and voltage is sent
out with the nearest value among the 4096 fixed output levels. The only difference
between input and output boards is the range on which the 212 levels are distributed.
The output range is fixed at ±10V while the input range can be selected among seven
settings from ±10V to ±0.1V, with the aim of having the best resolution in the specific
operating condition.

As seen in Chapter 3 the current sensor maps the current to be measured in a voltage,
that can be directly acquired with the ADC. Such voltage, proportional to the original
current, is given as:

Vout = Vre f + 0.625
Np · I
IPN

where IPN = 6A and Np = 4. Vre f is about 2.5V, although it can have small fluctu-
ations in time and has to be acquired to increase the accuracy. From what has been
said it’s evident that the data acquisition system shall have at least a range including
+2.5V, the nearest being ±5V.
The accelerometers can be acquired too with a ±5V range - as a matter of fact their
output falls exactly between this values.
Such range is surely more than enough to perform the measure of the voltage. The
maximum voltage that the power amplifier is able to provide to the speaker is about
±12V at saturation - condition from which it has to be kept away. Having in mind
that the differential probe PICO TA043 reduces the voltage by a factor of ten, a limit of
±1.2V is obtained, falling well inside the acquisition range.
Unfortunately, as will be seen later, in operating conditions the voltage value - depen-
dent on the control gain - is much smaller than ±12V: with g = 10 it does not exceed
±1V, becoming ±0.1V after the differential probe - meaning that only the 2% of the
12 bits resolution is used. The same is true for the current. Although Vout oscillates
around 2.5V, the amplitude of such an oscillation is only about one fifth of the voltage
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since the electrical resistance is about 5Ω - meaning ±0.2A - that the current sensor
maps to ±0.08V, again only the 1.6% of the resolution is used.

About the resolution of the output signal, similar conclusions can be drawn. In the pre-
vious example where a control gain of 10 was supposed, the control action happens to
be about ±0.2V. Considering that the output range is fixed and equal to ±10V, again
only the 2% of the range is exploited.

Such a poor resolution causes a bad signal to noise ratio. As will be explained later,
very little can be done to improve the situation without a proper preconditioning of the
signal to be acquired. Therefore all experiments are performed in the aforementioned
situation, and some guidelines for future development are drawn at the end.

5.3 Filters

This section addresses the need of filtering current and voltage signals, as anticipated
at the beginning of this chapter. The filters described in the following are elliptic filters,
chosen for their steep transition band and for the nearly linear phase.

All filters are digitally implemented in the real-time software running on the labora-
tory PC and their coefficients are obtained through the MATLAB function ellip, that
receives as inputs the desired order, the cutting frequency, the required attenuation
and the pass-band maximum ripples.

5.3.1 Low frequency filtering

Figure 5.2 shows the velocity frequency response, computed with and without the
high-pass filter. Comparing the latter with the one obtained by pseudo-integration
of the plate acceleration, the need of an high-pass filter is rather evident. The excess in
low frequencies components is due to different phenomena:

• A poor signal to noise ratio in the current and voltage signals at low frequen-
cies, that is worsened due to the characteristics of the velocity reconstruction de-
scribed in Chapter 4.

• The offset in the acquisition of the signals that introduces a DC component, af-
fecting the very low frequency range.

• The low frequency oscillation of the baseline for the current measurement. Al-
though both Vout and Vre f are acquired to improve precision, it cannot be ex-
cluded that some oscillation may survive.
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Figure 5.2: Velocity frequency response: comparison filtered and unfiltered, with the one ob-
tained by pseudo-integration of the acceleration.

In Figure 5.2 it is also depicted the velocity frequency response when filtered current
and voltage are used in the reconstruction. In the low frequencies range the plot is
much more similar to that of the pseudo-integrated acceleration, while high frequen-
cies are not affected. The difference is even more striking looking at the reconstructed
transverse plate velocity in time domain, Figure 5.3.

Figure 5.3: Effect of the filter cutting frequency on the transient of the velocity.

Without filters, the velocity diverges due to the acquisition offsets of current and volt-
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age. The effect of the filter is indeed to bring to zero the offset in current and voltage
signals, in a time that depends on the cutting frequency of the filter (the higher the
cutting frequency, the faster the filtering action, see Figure 5.4). During the transient of
the filter, an offset is still present in the filtered voltage and current signals, still causing
the error to build up in the reconstructed velocity. But since the offset is now going to
zero in few seconds, the filtering action built-in in the velocity reconstruction formula
discussed in Chapter 4, is able to promptly bring the error to zero. Figure 5.2 shows the
different transient time for the reconstructed velocity, the higher the cutting frequency
of the filter the lesser the maximum error reached, the lesser the settling time.

Figure 5.4: Effect of the filter cutting frequency on the transient of the voltage.

The choice of the filter cutting frequency shall be a compromise between velocity of the
response - that would require the highest possible cutting frequency - and the preser-
vation of a good reconstruction of the velocity - that requires a cutting frequency lower
than the frequency range of interest. The filter implemented in the following is de-
picted in Figure 5.5 and has a cutting frequency around 5Hz.

The non infinitesimal response time of the filter would impose to wait the end of the
transient in the filtered current and voltage, before starting to compute the velocity in
order to avoid the error to build up. But thanks to the filtering action supplemented by
the negative real part poles in the velocity reconstruction transfer functions, it’s pos-
sible to avoid this step, simplifying the implementation. The abovementioned poles
does not influence the response once the transient is ended, but they simplify switch-
ing on the system, avoiding having to wait for the filter’s transient to end.
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Figure 5.5: High-pass filter for current and tension.

5.3.2 High frequency filtering

The low resolution achievable in the measures of current and voltage described above
leads to a poor signal to noise ratio at all frequencies. This problem is particularly evi-
dent in the high frequency range because - as it will be explained below - it’s worsened
by some interaction between ADC and DAC. To catch this last phenomenon, although
the following consideration are made about the open loop case, the system will al-
ways be connected in closed loop, with a control gain equal to zero. Indeed in theory
the two conditions are equivalent, but since in the closed loop a new source of noise
arises, it would be misleading to make an analysis of the pure open loop case, because
this additional error would be missed and it would become more difficult to catch it
analyzing directly the closed loop control performances. Figure 5.6 shows the poor cor-
respondence at high frequency of the transverse plate velocity obtained from current
and voltage, with that obtained by pseudo-integration of the acceleration. Both are
obtained in open-loop, without a low-pass filter. Looking at Figure 5.6 can be seen that
the approximation is good at least up to 2kHz, after that the noise in the reconstructed
velocity gets more and more evident. Moreover there are two peaks - at 3750Hz and
7500Hz - quite difficult to comprehend.
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Figure 5.6: Comparison of the velocity frequency response for the reconstructed plate velocity
and the one obtained by pseudo-integration of the acceleration.

While the noise is easily explained by the considerations made above about the low
resolution of the measures, to understand where the two peaks come from, additional
discussion is needed.
The velocity is computed acquiring the voltage applied to the control actuator and the
current flowing into it. But the control action - simply a multiple of the computed
velocity - is then applied as a driving voltage to the control actuator. Both operations
- acquisition and sending the control action to the actuator - are performed with the
same sampling frequency, in this case 15kHz. It will be now taken in exam a peculiar
case that makes the meaning of the peaks rather evident. Figure 5.7 reports a short
time history of the acquired voltage, when the system has a control gain equal to zero
(equivalent to open loop). In this conditions the voltage applied to the actuator is zero,
and so it should be the voltage acquired. It is not so for different reasons:

• There’s an offset of about 150mV. Although it could seems huge, it has to be
remembered that the voltage is acquired after his amplitude being reduced by a
factor of ten with the differential probe PICO TA043. Therefore the offset right
after acquisition is ten times smaller, 15mV. Probably, it could be reduced cali-
brating the probe, but in any case it does not represent a problem thanks to the
high-pass filter introduced in the previous section.

• The value of the voltage should be constant but it is not acquired on a fixed level.
It oscillates taking at least the first two levels - and looking at longer time scales
it reaches also the forth - on both side of the mean value, introducing some high
frequency oscillations. In Figure 5.7 are highlighted two patterns that frequently
repeat on the whole time history, having period of two and four sampling times,
meaning frequencies of 7500Hz and 3750Hz.
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Figure 5.7: Voltage to the control actuator acquired when the control gain is zero.

This explains the presence of the two peaks at those frequencies, but with some ad-
ditional consideration also the relative magnitude of the peaks above the underlying
noise can be justified. Remembering that the ADC uses 12 bits, 4096 levels, and that
the acquisition range is overall 10V wide, the between-level amplitude is 2.44mV. The
signal, after being acquired, has to be multiplied by a factor of ten to give the voltage,
so a distance between two levels of 24.4mV is obtained, in good agreement with the
steps of Figure 5.7. As said above the noise encompasses four levels on both sides of
the average value. This means that it has an amplitude 8 times larger than the resolu-
tion of the ADC, therefore shall be 8 times larger than the noise floor. A factor of 8 is
equivalent to 18dB, which is more or less the amount by which the peaks in Figure 5.6
stand out from the base noise.

The case just analysed is peculiar, but the conclusions drawn are general. In fact the
noise at 3750 and 7500Hz is due to the fact that those frequencies are constantly fed
back from the control to the acquisition, and then are used to compute the new control
action, entering in a loop that amplifies them about eight times. In fact it will be seen
that such peaks are present also with higher control gains, and will also be the cause of
control spillover.

Having understood that the high frequency noise comes form the poor acquisition of
current and tension, it’s straightforward to suppose that filtering the signals after ac-
quisition could improve the signal to noise ratio at high frequency. In Figure 5.8 a
second order elliptic filter has been added, with cutting frequency of about 1kHz (Fig-
ure 5.9). The reconstructed velocity remains good in the range of interest, the high
frequency noise is reduced at a level even lower than in the reference curve and the
two peaks are largely reduced too.
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Figure 5.8: Comparison of the velocity frequency response for the reconstructed plate velocity
when voltage and current are filtered, with the velocity obtained by pseudo-integration of the
acceleration.

Figure 5.9: Band-pass filter for current and tension.
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One could think to use a filter having an arbitrarily high order, but has to be kept in
mind that the phase lag introduced by the filter translates in a delay of the computed
velocity with respect to the real one, therefore in a delay of the control action.

Up to now the disturbance applied to the plate has been a white noise, without any
limitation in frequency. One could be brought to think that filtering the disturbance at
high frequency could bring some improvements to the situation just described. Figure
5.10 shows the effect of filtering the disturbance at 800Hz. The velocity obtained by
pseudo-integration of the acceleration is indeed filtered, in fact if the disturbance has
no components at high frequency, the same should apply to the acceleration of the
plate, therefore also to the velocity. On the contrary, there are no effects on the velocity
obtained from current and voltage, as an additional proof that in this case the noise
is due only to the poor acquisition of the electrical quantities. Nevertheless in the
following the disturbance filtering will be used sometimes, to avoid high frequency
modes of the structure to be excited.

Figure 5.10: Comparison of the velocity frequency response for the reconstructed plate velocity
and the pseudo-integration acceleration, when the disturbance is filtered.

5.4 Closed loop control

In this section the performances of the skyhook control, when the transverse plate
velocity reconstructed from current and voltage is used, are analyzed.
Figure 5.11 reports, for comparative purposes, the performances of the control system
- in terms of the plate acceleration frequency response at the control point - when the
feedback action is determined from the velocity obtained by pseudo-integration of the
transverse plate acceleration.
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Figure 5.11: Acceleration frequency response at different control gains, when the pseudo-
integration method is used.

Figure 5.12: Acceleration frequency response at different gains, if no filtering of current and
voltage is introduced.
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All the following plots represent the response of the system in terms of the transverse
plate acceleration, when the control gain is computed from the velocity reconstructed
by current and voltage.

Figure 5.12 shows what happens if the unfiltered current and voltage are used. A
control gain of 4 is enough to make the plate ringing at 3750Hz due to the amplification
of the noise.

Figure 5.13: Acceleration frequency response at different gains, if band-pass filtering of current
and voltage is introduced.

If the band-pass filter described in the previous section is introduced, the control per-
formance are improved. Figure 5.13 shows the acceleration frequency response for
different control gains, until instability arises. Note that at frequencies lower than
800Hz (filter’s cutting frequency), the skyhook control, with low gains, has perfor-
mances comparable to those in Fig. 5.11. However when the gain reaches 8, there’s
an amplification of some natural frequencies of the plate in the range from 1000 and
1500Hz. This range coincides with the initial portion of the transition band of the filter,
Figure 5.14.
The reason is that the filter introduces a phase lag in current and voltage, causing the
reconstructed velocity to be delayed with respect to the real one, causing, in turn, the
control action to be applied too late. If the filter introduces a phase lag larger than 90°
at high frequencies, the system becomes unstable. This can be understood imagining a
control force acting on the plate more and more delayed with respect to the plate veloc-
ity. With 0° delay the force always opposes the instantaneous velocity, with the effect
of reducing it. If the delay is increased there will be some instants - after the velocity
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of the plate has changed sign, but before the control force has changed its - when the
force pushes the plate in the same direction it is already moving. If the fraction of time
in which the control force works to increase the speed of the plate is small, than the
control performance are reduced but the system remains stable. When such a fraction
exceeds 50%, than the control action passes the most of the time working in the wrong
direction. As it is easy to imagine, this condition is verified if the control is delayed
more than 90° with respect to the plate velocity.
The instability in Figure 5.13 arises in a frequency range where the filter phase lag is
larger than 90° but the filtering action has not yet occurred - note that indeed the filter’s
gain is less than −10dB.

Figure 5.14: Band-pass filter transfer function.

The logical conclusion would be to use a first order filter, so to limit the maximum
phase lag to 90°, but unfortunately there’s not enough separation between the noise to
be filtered and the band of interest. Therefore a second order filter has to be used, al-
though with an higher sampling frequency the first order filter could be reconsidered.

In Figure 5.15 a second filter, again elliptic but with two separate high frequency poles,
is proposed. Note that the −90° phase are reached at higher frequencies. Figure 5.16
shows the acceleration response obtained with this new filter at different gains. Al-
though it has been possible to increase only slightly the maximum gain, it’s evident
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that the instability has moved to higher frequency, supporting the explanation given
above. With gain equal to 10, three peaks arise form 1500Hz to 2000Hz. Please note
that the first two peaks were present also at lower gains, meaning they are modes of
the structure excited by the control action due to the high phase lag, while the third
peak - around 2000Hz - is present only at gain equal 10. It has been verified with an
oscilloscope that the last peak is an alias frequency of some noise at 13kHz, mirrored
about the Nyquist frequency 7500Hz, whose origins are not clear.

Figure 5.15: Comparison of the two band-pass filter transfer function.

In Figure 5.17 the disturbance is filtered to reduce the control spillover. The effect on
the modes of the plate is good, but no effect on the peak due to the aliasing is obtained.
Indeed the 13kHz signal is probably due to some dynamics of the acquisition system,
therefore filtering the disturbance can’t have any effect on it.

Any further attempt with slightly different filters have brought to similar results.
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Figure 5.16: Acceleration frequency response at different gains, if the second band-pass filter
for current and voltage is used.

Figure 5.17: Acceleration frequency response at different gains, if the second band-pass filter
for current and voltage is used and if the disturbance is filtered.
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Figure 5.18 shows a comparison between the real and the reconstructed transverse
plate velocity. Note that the latter its highly noisy and slightly delayed with respect to
the former.

Figure 5.18: Comparison between the real and the reconstructed transverse plate velocity in
time domain.

5.5 Double loop control logic

The tests presented in this chapter made clear that the first instability to manifests
when the control gain is increased, happens at high frequency. This is a different result
with respect to that obtained basing the feedback loop on the plate velocity computed
by pseudo-integration of the acceleration - Figure 5.11 - where the instability arises,
at higher gains, due to interaction of the first mode of the structure with the actuator
dynamics.
In the work by Di Girolamo [11] two ways to reduce the low frequency instability
are presented, one of them consisting on a local feedback on the inertial device, to
modify the actuator dynamics in the range of frequency where the instability arises.
This control loop is based on feeding back to the actuator a quantity proportional -
through a local gain gl - to the inertial mass velocity, in order to artificially increase the
damping of the actuator itself.
Such additional control logic usually would add complexity to the implementation,
since another accelerometer would be required to be placed on the inertial mass of the
actuator. Thanks to the self-sensing approach instead, no hardware has to be added,
and the inertial mass velocity can be computed from the very same current and voltage
measurements used to compute the transverse plate velocity.
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Figure 5.19: Experimental setup used to test the inertial mass velocity reconstruction.



5.5. Double loop control logic 97

In this section the reconstruction of the inertial mass velocity is tested in the control
logic just described. It would be futile to test it on a control logic where the plate veloc-
ity is obtained through reconstruction too, because, for the problems described before,
it would be impossible to reach gains high enough to require the local feedback loop.
Therefore, in the following, only the inertial mass velocity is computed from current
and tension, while the transverse plate velocity is obtained by pseudo-integration of
the acceleration, as in Figure 5.19.

As it can be expected also the reconstruction of the inertial mass velocity suffers the
same issues described before, making it impossible to use high local gains. Indeed it
has been seen that gl = 10 give rise to control spillover at high frequency, therefore the
local gain is limited to 5 in the following.
In Figure 5.20 it is shown the acceleration frequency response of the plate at the control
location, for the double loop control system with different control gains.

Figure 5.20: Acceleration frequency response for different control gains and a local gain of 5.

Comparing it with Figure 5.11 it can be seen that has been possible to increase the gain.
With g = 40 - the previous limit for the onset of instability - the control still works well,
at 60 high frequency noise starts to be amplified and at 80 instability is reached simul-
taneously at high and low frequency. Since the control spillover at high frequency is
due to the issues of the velocity reconstruction, it could have been expected that lim-
iting the local gain on the reconstructed inertial mass velocity, and increasing only the
control gain on the plate velocity obtained by pseudo-integration, it would not have
led to high frequency spillover. This is not true because, even if the disturbance is fil-
tered and does not have much power in the high frequency band, when the control -
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carrying a signal proportional to the reconstructed inertial mass velocity - is applied,
the plate receives some of the high frequency noise due to the velocity reconstruction.
Such a noise is picked up by the accelerometer entering in the transverse plate velocity
after the pseudo-integration. The result is that the high frequency noise is amplified
also by the control gain, causing instability to be reached simultaneously at low and
high frequency, inducing quite unpredictable vibrations to the plate.

5.6 First order low-pass filter

As previously said, one way to improve the control performances without having to
change dramatically the experimental setup, could be to use a first order filter for filter-
ing current and voltage, in order to keep the control action delay below 90°. To do so,
there must be enough distance between the frequency range of interest and the high
frequency noise to be canceled. In the setup discussed above such condition is far to
be true, since the upper limit of the range of interest has been fixed to 1kHz and the
first noise peak is 3750Hz. In this section a test using a first order filter is presented, to
demonstrate the above hypothesis under restricted conditions, in order to draw some
guidelines for future developments.

Removing from the real-time software all not essential functions, it has been possible
to increase the sampling frequency to 20kHz, moving toward higher frequency also the
acquisition noise. Since the frequency separation is still limited, the low-pass filter is
designed with a lower cutting frequency, reducing the working bandwidth of the con-
trol system. In Figure 5.21 is depicted the bode plot of the designed filter, composed of
the usual second order elliptic high-pass filter with 5Hz cutting frequency, in addition
to the new first order elliptic low-pass filter with a 300Hz cutting frequency.

Figure 5.22 shows the performance of the closed loop control system in terms of ac-
celeration frequency response, when the transverse plate velocity used in the feedback
loop is reconstructed from current and voltage filtered as described above. Comparing
it with Figure 5.17 it can be noticed a substantial improvement. While before g = 10
was enough to reach instability, now the control remains stable even with g = 20,
achieving good performances at least on the first two structural modes - 86Hz and
205Hz, while on higher order modes the magnitude reduction is slightly compromised
since the reconstructed velocity is filtered at 300Hz. The instability is reached with
g = 30, simultaneously at low and high frequency. Indeed the high frequency noise
is still present, although reduced. Moreover it has to be considered that in addition to
the delay due to the filter, it is also present a fixed delay due to the fact that the control
action provided to the plate is computed with the plate velocity of the previous time
instant, therefore the control spillover is still possible even with a first order filter if the
sampling frequency is too low.
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Figure 5.21: Bode plot of the band-pass filter, composed by a first order low-pass in addition to
a second order high-pass.

Figure 5.22: Acceleration frequency response with a first order filtering of current and voltage.
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Given the awful resolution with which current and voltage are acquired, this can be
considered a good result, and for sure gives clear indications on the direction that
future works should take. In this last test the frequency separation between the filter’s
cutting frequency and the noise frequency was little more than a decade, if the noise
were reduced by preconditioning of current and voltage it is straightforward that such
separation could be reduced.



Chapter 6

Conclusions

The work presented in this thesis is intended as a preliminary study for the develop-
ment of active devices based on the self-sensing inertial actuator concept, to be used to
achieve vibroacoustic control of generic vibrating panels. The basic concept is to damp
the vibration of a generic structure installing a device providing a control action pro-
portional to the transverse structural velocity, obtaining a skyhook control system. The
innovative idea is to derive an expression to reconstruct the transverse plate velocity
and the inertial mass velocity adopting electrical measures only, without any need for
accelerometers. The system is digitally implemented, looking toward future evolution
in the direction of a multi-actuator decentralized control system that would greatly
benefit from a digital implementation.
The first part of this work, described in Chapters 2 and 3, concerned the development
of a mathematical model of the experimental setup, having a dual function. Firstly
to allow the analytical derivation of an expression for the velocities, depending only
on the voltage applied to the inertial device and on the current flowing in it, secondly
to build models of the physical components - plate, power amplifier and vibration
speaker - to be used to numerically simulate the experimental setup. The configu-
ration under analysis is composed by a rectangular thin aluminum plate and a low
cost vibration speaker used as inertial actuator, driven by a cheap power amplifier.
The actuator is modelled as a simple mass-spring-damper system, whose parameters
have been obtained through experiments on each device. Similarly a simple high-pass
filter-like model, describing the power amplifier, has been obtained. The plate has been
modelled at two levels of detail, firstly using a single degree of freedom model to gain
some insight into the dynamic system under analysis, keeping as simple as possible
the numerical simulation, secondly with a complete flexible description based on the
S-GUF formulation, to analyze the system behaviour reproducing the real operating
conditions.
The sensor-actuator expression for the velocity is based on the lumped parameter
model of the inertial actuator, therefore suffers for any uncertainty of the model. In
Chapter 4 the velocity reconstruction is tested numerically and some modifications
are introduced, to solve stability related issues. The first problem is about one of the
transfer functions not being proper. A static residualization of the actuator’s electric
dynamic is first proposed to reduce the order of the numerator, but this has led to even
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worst results because of the high sensitivity of the reconstruction expression to non
symmetric modifications of the transfer functions. Therefore the expression has been
made proper by adding a pole at high frequency to both transfer functions. The second
issue is the presence of two poles in the origin, solved moving the poles to the negative
half of the complex plane. The final formulation gives a good reconstruction of the
velocities - both transverse plate and inertial mass - in the frequency range of interest -
20Hz to 1kHz - keeping a good noise rejection outside.
The last part of this work was about the experimental testing of the sensor-actuator
model. In Chapter 5 are discussed the results obtained digitally implementing the
reconstruction of the velocity on a real-time skyhook control. The main problem con-
cerned the resolution of the acquisition system, since the electrical quantities to be ac-
quired oscillate with small amplitude around different baselines, the acquisition range
has to be kept wide enough to acquire both, leading to a poor signal to noise ratio. Dif-
ferent filters has been introduced and tested to remove the noise at both low and high
frequency. Good performances are obtained at low frequency, while high frequency
filtering proved to be a challenging task. If the filtering action is too weak, the noise
is not rejected and is amplified through the control gain. If it is too strong, the phase
lag exceeded the phase margin, causing control spillover instability. If a first order
low-pass filter is used, the stability of the control system is granted. Unfortunately
the distance of the noise to be filtered from the frequency range of interest is not high
enough to use a first order filter. A test has been presented where the working band of
the control system has been limited to 300Hz, demonstrating that the first order filter
gives indeed far better performances.

6.1 Future work

A lot of work has yet to be done on the self-sensing model of the actuator, before
achieving the same performances that can be obtained with a sensor/actuator collo-
cated pair. The numerical analysis demonstrated that, with the proposed modification
to the reconstruction’s transfer functions, stability can be theoretically achieved even
in non ideal conditions. However, the real-time testing performed with a partially in-
adequate acquisition method showed how any segment of the control system, and not
only the reconstruction equation, is vital to achieve good performances. In particular,
the signal to noise ratio in the acquired quantities plays a primary role in the good
reconstruction of the velocity. Therefore in future works more efforts shall be made in
its improvement. In almost all reference works about sensor-actuators, a fully analog-
ical control system was used. Of course moving to a similar architecture could greatly
improve the signal to noise ratio, since it would remove its main source, the digital
conversion. However, for the premises on the device that is being designed, a fully
analogical approach could introduce great hardware complexity if a multi actuator de-
centralized architecture or more complex control logic were to be considered for future
developments. A compromise solution could be to keep a digital implementation for
the velocity reconstruction and for the feedback loops, while introducing an analog
preconditioning of the signals to be acquired. In this way the acquisition of current
and voltage could be made with a far better resolution while keeping the hardware
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complexity independent on the control logic adopted. An example of a precondition-
ing circuit for current and voltage can be find in [33], where the current and voltage
channels are preamplified in order to better exploit the resolution of the acquisition
system. If a good enough signal to noise ratio were obtained, it might not even be nec-
essary anymore the high frequency filtering presented in Chapter 5, or at least should
be enough to use a first order filter as proposed in the last test.
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