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Abstract 
   Structural health monitoring (SHM) is an important topic of research in the civil, 
mechanical, and aerospace engineering fields. Vibration-based methods utilizing 
machine learning have become increasingly popular in the field of structural health 
monitoring due to their ability to perform pattern matching and their potential for 
online monitoring. These methods have proven to be effective in assessing the health 
of structures and detecting any potential damage through vibration data. In this 
research, we aim to develop a vibration-based structural health monitoring system 
using machine learning that can accurately and efficiently detect and diagnose damage 
in structures. For this purpose, the Autoencoder method used to remove the noise and 
environmental effect from the vibration data will be employed. The distance-based 
clustering was implemented and optimized by the Gaussian mixture model (GMM). 
This system will leverage the capabilities of machine learning algorithms to analyze 
vibration data collected from structures and determine if any anomalies or damage are 
present. Also, localization of the damage was performed on the I-40 bridge by using a 
hybrid machine learning approach. Using the calibrated Finite element calibrated by 
Particle swarm optimization (PSO) successfully detects and localizes the damage. 

Keywords: Structural health monitoring, Gaussian mixture model, Particle swarm 
optimization, machine learning, Autoencoder 
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Abstract in lingua italiana 
Il monitoraggio strutturale è un argomento di ricerca importante nei campi 
dell'ingegneria civile, meccanica e aerospaziale. I metodi basati sulle vibrazioni 
che utilizzano l'apprendimento automatico sono diventati sempre più popolari nel 
campo del monitoraggio strutturale grazie al loro potenziale per il monitoraggio 
online. Questi metodi si sono dimostrati efficaci nella valutazione della salute delle 
strutture e nel rilevamento di eventuali danni attraverso i dati di vibrazione. In 
questa ricerca, miriamo a sviluppare un sistema di monitoraggio strutturale basato 
su vibrazioni utilizzando l'apprendimento automatico, in grado di rilevare e 
diagnosticare con precisione ed efficienza i danni nelle strutture. A questo scopo, 
verrà utilizzato il metodo Autoencoder per rimuovere il rumore e l'effetto 
ambientale dai dati di vibrazione. Il raggruppamento basato sulla distanza è stato 
implementato e ottimizzato dal modello di miscela Gaussiana (GMM). Questo 
sistema sfrutterà le capacità degli algoritmi di apprendimento automatico per 
analizzare i dati di vibrazione raccolti dalle strutture e determinare se sono 
presenti anomalie o danni. Inoltre, la localizzazione del danno effettuata sul ponte 
I-40 utilizzando un approccio ibrido di apprendimento automatico. Utilizzando 
l'elemento finito calibrato dal Particle swarm optimization (PSO) rileva e localizza 
con successo il danno. 

Key-words: Structural health monitoring, Gaussian mixture model, Particle swarm 
optimization , machine learning , Autoencoder 
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Introduction 1 

I. Introduction
   Structural health monitoring has emerged as an important field in civil, mechanical, 
and aerospace engineering.[1] It focuses on assessing the health of structures and 
systems by detecting any potential damage through vibration data. This approach has 
gained significant attention due to its ability to provide real-time monitoring, early 
detection of structural anomalies, and prediction of possible failures. Structural health 
monitoring systems offer the possibility to detect damage in large civil infrastructures 
accurately and immediately, ensuring structural integrity and safety. Damage in a 
structure can occur due to various factors such as changes in geometrical configuration 
or boundary conditions, as well as material degradation caused by cracks in concrete 
or loose bolts.[2] To address this challenge, vibration-based structural damage 
detection has received considerable attention in the past two decades. Vibration-based 
structural damage detection involves analyzing the dynamic response of a structure to 
identify any changes or anomalies that could indicate damage. Vibration data collected 
from structural health monitoring systems provide valuable information about the 
behavior of structures under different conditions. Structural health monitoring 
systems allow engineers to monitor structural behavior and detect damage at an early 
stage in order to prevent catastrophic failures. 
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II. Aim and scope
   The overall aim of this research is to develop a vibration-based structural health 
monitoring system that utilizes machine learning algorithms for accurate damage 
detection and classification. For this purpose, vibration data from structures will be 
collected and analyzed to identify patterns and anomalies that indicate the presence of 
damage. in this research bridge damage detection on two case studies, Z24 bridge and 
KW51 performed. Different machine learning techniques were performed to remove 
the effect of the environmental variability change on the sampled data. The specific 
scope of this research includes: 

• Collecting vibration data from structures and extracting relevant features using
signal processing techniques.

• Applying machine learning algorithms, such as neural networks or support
vector machines, to train and classify the collected vibration data based on their
patterns and anomalies. Using these trained models, the vibration data from a
structure can be analyzed in real-time to detect and classify any damage that
may have occurred. - Comparing the performance of different machine learning
algorithms in terms of their accuracy and efficiency in detecting and classifying
structural damage.[3]

   In the end, a hybrid approach was performed on I-40 bridge as a case study, 
combining both data-driven and model-driven techniques for more accurate and 
reliable damage detection. By using the experimental data, a baseline for the healthy 
condition of the structure was created. By using this valuable data, the calibration of 
the finite element model became feasible. The damage introduced to the model, 
evaluation of the damage presence and location of the damage obtained. The results 
of this research demonstrate the potential of machine learning algorithms in the field 
of vibration-based structural health monitoring for accurate damage detection and 
classification. 
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However, with the increasing amount of vibration data collected from these systems, 
it has become challenging to develop more efficient and robust detection algorithms. 
The use of machine learning techniques in vibration-based structural health 
monitoring has shown promise in addressing these challenges. Machine learning 
refers to the field of study that focuses on developing algorithms and statistical models 
that allow computers to learn from data without being explicitly programmed. By 
leveraging the power of machine learning, engineers can analyze large amounts of 
vibration data and extract meaningful patterns or features that can be used to detect 
and diagnose structural damage.[4] Machine learning algorithms can be trained on a 
dataset of vibration data from both healthy and damaged structures, allowing them to 
learn the characteristics and patterns associated with structural damage. 

   These algorithms can then be applied to real-time data from a structural health 
monitoring system to detect anomalies and predict possible failures. By continuously 
monitoring the vibrations of a structure, machine learning algorithms can identify any 
deviations from normal behavior and alert engineers to potential issues.[5] This allows 
for early detection of structural anomalies, enabling timely intervention and 
maintenance. Furthermore, the integration of machine learning algorithms with 
structural health monitoring systems provides a more accurate and efficient approach 
to damage detection. 
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Chapter one 

1.Structural Health Monitoring

1.1 Introduction to Structural Health Monitoring 

   Structural Health Monitoring is an essential system that integrates engineering 
structures with information technology. 

  This integration allows for the continuous monitoring of structural integrity, thereby 
potentially preventing financial and non-financial losses. In recent years, SHM systems 
have been widely deployed in various engineering structures, including bridges and 
airplanes [6]. Structural Health Monitoring is a system that combines advanced sensor 
technology and intelligent algorithms to monitor the health condition of structures. It 
enables the detection and monitoring of structures in a dynamic and real-time manner, 
providing relevant information about their health status. With the rapid development 
of information technology, advanced detection and monitoring methods have been 
continuously studied and updated to ensure accurate and real-time assessment of 
structural health. Structural Health Monitoring plays a vital role in today's world, 
where the integrity of engineering structures is crucial. The primary goal of Structural 
Health Monitoring is to ensure the continuous monitoring and assessment of the 
structural integrity of engineering structures. [7] By continuously monitoring 
structures, Structural Health Monitoring systems can detect any damage or anomalies 
in real time. This enables prompt action to be taken to mitigate potential risks and 
prevent catastrophic failures. Structural Health Monitoring is an emerging technology 
that aims to continuously monitor the structural integrity of engineering structures [3]. 
The ultrasonic pulse-echo technique is a cost-effective strategy commonly used in 
Structural Health Monitoring [8]. Furthermore, Structural Health Monitoring systems 
utilize advanced detection and monitoring methods that have been rapidly evolving 
as a result of advancements in information technology. These methods allow for the 
dynamic and real-time assessment of structural health, providing immediate warnings 
when significant changes occur. Overall, Structural Health Monitoring is a crucial tool 
in ensuring the safety and reliability of critical structures [9]. By continuously 
monitoring the health state and structural integrity of engineering structures, 
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Structural Health Monitoring systems play a significant role in minimizing potential 
risks and increasing the lifespan of structures [10]. 

1.2  Fundamental Concepts of Structural Health Monitoring 

   Fundamental concepts of Structural Health Monitoring include the integration of 
engineering structures with information technology, continuous monitoring of 
structural integrity, and the use of advanced sensor technology and intelligent 
algorithms. The integration of engineering structures with information technology 
allows for the collection and analysis of data in real time. This integration enables the 
continuous monitoring of the structural health, allowing for early detection of any 
damage or anomalies. Continuous monitoring of structural integrity is a key aspect of 
Structural Health Monitoring [11]. This involves the implementation of sensors and 
monitoring systems that are capable of continuously collecting data on structural 
behavior, performance, and condition. These sensors can be embedded within the 
structure or placed externally to monitor various parameters such as strain, 
displacement, temperature, and vibration. The use of advanced sensor technology and 
intelligent algorithms is another fundamental concept of Structural Health 
Monitoring. This involves the development and implementation of sensors that are 
capable of accurately measuring and capturing data on structural behavior. These 
sensors are equipped with advanced algorithms that enable the analysis and 
interpretation of the collected data, providing valuable insights into structural health. 
Structural health monitoring in civil engineering has traditionally relied on the 
measurement of physical parameters such as strain, acceleration, speed, displacement, 
and torsion. Recently, there has been a growing interest in utilizing machine learning 
techniques for structural health monitoring [12]. SHM systems that utilize machine 
learning techniques can effectively analyze large amounts of data, identify patterns, 
and make accurate predictions about the health state of structures. 
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1.3  Level of SHM 

There are different levels of structural health monitoring depending on the extent and 
complexity of the monitoring system. At the basic level, structural health monitoring 
involves installing sensors on a structure to collect vibration data. This data can be 
used to monitor the overall structural behavior and identify any abnormalities. 

At a more advanced level, machine learning techniques can be utilized to analyze the 
collected vibration data and identify specific patterns or features that are indicative of 
structural damage. 

structural health monitoring can be classified into three different levels:[13] 

Level 1: Early damage detection 

Level 2: Damage localization 

Level 3: Damage quantification 

Level 1 of structural health monitoring focuses on early damage detection. Machine 
learning algorithms can analyze vibration data to identify any deviations from normal 
behavior and detect the presence of damage. By comparing current vibration patterns 
to those in a healthy state, machine learning models can recognize changes that may 
indicate structural issues. Level 2 involves damage localization, where the goal is to 
determine the exact location of the damage within a structure. Machine learning 
techniques can be applied to identify specific patterns or features in the vibration data 
that are associated with damage at different locations. By analyzing these patterns, 
machine learning models can accurately pinpoint the areas where damage has 
occurred. Finally, level 3 of structural health monitoring deals with damage 
quantification.  

1.4 Benefits of Structural Health Monitoring 

Structural Health Monitoring offers a range of benefits in various fields, particularly 
in civil engineering and aerospace. In civil engineering, Structural Health Monitoring 
plays a crucial role in ensuring the safety and reliability of critical structures such as 
bridges, dams, and buildings [1]. By continuously monitoring the structural health, 
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any potential damage or anomalies can be detected early on. This enables proactive 
maintenance and repair, reducing the risk of catastrophic failures and ensuring the 
longevity of these structures.[14] Moreover, Structural Health Monitoring also helps 
in optimizing maintenance and repair activities by identifying specific areas that 
require attention, thus reducing operating and maintenance costs. 

In the aerospace industry, structural health monitoring is equally important. It allows 
for the continuous monitoring of aircraft structures, detecting any damage or 
degradation that may occur during flight. By detecting these issues early on, necessary 
repairs or replacements can be made to ensure the safety of passengers and crew. 
Machine learning techniques, such as artificial neural networks and support vector 
machines, have been widely applied in structural health monitoring to analyze the 
complex data collected from sensors and accurately detect structural anomalies or 
potential failures [15]. Through the use of machine learning algorithms, structural 
health monitoring systems can process and analyze the vast amount of vibration data 
collected from sensors in real time, allowing for quick and accurate detection of any 
structural anomalies [16]. The use of machine learning techniques in vibration-based 
structural health monitoring has shown promise in addressing the challenges 
associated with developing more efficient and robust detection algorithms [17]. 
Machine learning algorithms can analyze the patterns and trends in vibration data, 
allowing for early detection of structural damage. Furthermore, machine learning 
algorithms can also be used to predict the remaining useful life of a structure, allowing 
for better planning of maintenance and repair activities. By leveraging machine 
learning techniques, structural health monitoring systems can become more intelligent 
and adaptive. They can learn from the historical data collected, identify patterns and 
trends, and make predictions about future structural behavior. 

Overall, the use of machine learning in vibration-based structural health monitoring 
holds great potential for accurately and efficiently detecting and diagnosing damage 
in civil structures [4]. 

This can greatly contribute to ensuring the safety and longevity of structures, reducing 
risks of catastrophic failures, and optimizing maintenance and repair strategies. 
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1.5 Definition of damage in the field of the SHM 

In the field of Structural Health Monitoring, damage refers to any alteration or 
degradation in the structural integrity, performance, or behavior of a structure that 
compromises its safety, functionality, or durability.[12] 

This can include but is not limited to cracks, corrosion, deformations, fatigue, material 
degradation, and any other changes that may impair the structural capacity or pose a 
risk to the structure's stability and functionality. By monitoring and detecting such 
damage at an early stage, engineers can assess the severity of the issue and take 
appropriate measures to prevent catastrophic failures. Stiffness reduction, changes in 
natural frequencies, and variations in modal parameters are often indicators of 
damage and can be monitored using vibration-based structural health monitoring 
systems. 

Therefore, structural health monitoring systems aim to detect and quantify these 
changes by collecting vibration data from sensors installed on the structure [5]. 

1.6 Motivation for Developing SHM Technology 

The development of structural health monitoring technology is primarily motivated 
by the need to ensure the safety and reliability of civil structures. Civil structures such 
as bridges, buildings, and dams are subject to various external factors such as 
environmental conditions, aging, and fatigue. These factors can lead to structural 
deterioration and potential failure if not properly monitored and addressed. [18] 
Structural health monitoring technology aims to provide continuous and real-time 
information about the condition of a structure, allowing for early detection of any 
damage or anomalies [19]. This early detection enables engineers to take proactive 
measures to prevent catastrophic failures and extend the life of the structure. 

In addition to safety, the economic implications of structural damage and failure are 
also significant. The costs associated with repairing or replacing a damaged structure, 
as well as the potential loss of life and economic disruption caused by structural 
failures, can be substantial.[10] By implementing structural health monitoring 
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technology, the costs associated with maintenance and repair can be optimized 
through the early detection of damage. 

1.7  Data acquisition 

To implement machine learning techniques in structural health monitoring, a 
substantial amount of data is required.[19] This data typically includes vibration 
measurements from sensors placed on or near the structure of interest. These sensors 
capture the dynamic response of the structure, allowing for the analysis and detection 
of any anomalies.[20] The data acquisition process should be carefully designed and 
implemented to ensure the accuracy and reliability of the collected data. Additionally, 
the sensors used for data acquisition should be properly calibrated and positioned to 
capture the most relevant information about the structural behavior. Feature extraction 
and selection are also important steps in the data acquisition process. 

Data preprocessing is an essential step in structural health monitoring using machine 
learning algorithms. 

1.7.1 Data Acquisition for Bridge Structures 

For bridge structures, the data acquisition process involves placing multiple sensors 
strategically to capture vibrations from different locations of the structure. These 
sensors are typically placed on the bridge deck, piers, and abutments.[21] The 
placement of these sensors is crucial, as it ensures that the collected data represents the 
structural behavior accurately. Furthermore, the sensors used in data acquisition for 
bridge structures must be able to accurately measure vibrations under various 
conditions. This includes monitoring vibrations caused by traffic load, wind, 
earthquakes, and possible damage or deterioration of the structure over time.[22] Data 
acquisition for bridge structures requires careful consideration of sensor placement 
and the ability to measure vibrations under various conditions. 
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1.7.2 Data normalization 

Before feeding the data into machine learning algorithms, it is important to normalize 
the data. Environmental and operational conditions can vary, leading to variations in 
the recorded vibration data.[23] Normalizing the data involves scaling and 
standardizing the values to a common range or distribution. 

This ensures that the data from different sensors or different periods can be compared 
and analyzed effectively. 

Normalization also allows for better comparison and analysis of different features 
within the data. 

1.7.3 Data Cleansing 

Another important aspect of data preprocessing in structural health monitoring using 
machine learning algorithms is data cleansing. Data cleansing involves the 
identification and removal of any errors or outliers within the dataset.[24] These errors 
or outliers may arise due to sensor malfunctions, human errors in data collection, or 
other factors. Data cleansing is crucial as these errors or outliers can have a significant 
impact on the accuracy and reliability of the subsequent analysis. 

1.7.4 Feature extraction 

Feature extraction is a critical step in structural health monitoring using machine 
learning algorithms.[25] Feature extraction involves selecting and transforming the 
raw vibration data into a set of relevant features that capture the essential information 
about the structural behavior. 
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1.8 Structural Health Monitoring by machine learning 

   Machine learning techniques offer great potential in improving the efficiency and 
accuracy of structural health monitoring systems.[26] By utilizing machine learning 
algorithms, these systems can analyze large amounts of vibration data and identify 
patterns or anomalies that may indicate damage or structural deterioration. These 
algorithms can learn from historical data and adapt to new information, allowing for 
real-time monitoring and early detection of potential issues.[27] Machine learning 
algorithms have shown significant promise in pattern recognition and classification 
tasks, making them well-suited for analyzing complex vibration data.[28] While 
traditional structural health monitoring methods primarily rely on manual analysis 
and interpretation of vibration data, machine learning algorithms can automate the 
process and provide more accurate and efficient results. 

Machine learning techniques have shown promise in addressing the challenges posed 
by the increasing amount of vibration data collected from structural health monitoring 
systems [29]. Machine learning algorithms can effectively analyze large volumes of 
vibration data and identify patterns or anomalies that may indicate structural damage. 
In addition to the traditional physical parameter measurements, machine learning 
techniques can also utilize data from other sources such as temperature sensors, 
moisture sensors, and even visual data from cameras or drones. The use of machine 
learning in structural health monitoring offers several advantages [30]. Firstly, 
machine learning algorithms can handle large amounts of data efficiently and 
effectively. They have the ability to analyze complex patterns and detect subtle 
changes in the data that may indicate damage or anomalies.[31] This allows for early 
detection of structural issues and timely intervention, mitigating the risk of 
catastrophic failures. Additionally, machine learning algorithms can continuously 
learn and improve their performance over time. By continuously analyzing and 
learning from new data, machine learning algorithms can adapt and refine their 
detection capabilities, improving the accuracy and efficiency of structural health 
monitoring systems in the long run [32].  



Chapter One 12 

1.9 Applications of Machine Learning Techniques in 
Structural Health Monitoring 

One specific application of machine learning techniques in structural health 
monitoring is the detection and prediction of bridge failures. 

Bridges play a crucial role in transportation infrastructure, and their failure can lead 
to significant economic losses and potentially endanger human lives.[33] Traditional 
methods of bridge inspection and monitoring rely on visual inspections, manual 
measurements, and periodic assessments. These methods are often time-consuming, 
and expensive, and may not provide real-time information on the structural integrity 
of the bridge. Machine learning techniques offer a more efficient and accurate 
approach to bridge health monitoring. 

By analyzing sensor data from various sources such as strain gauges, accelerometers, 
and temperature sensors, machine learning algorithms can identify patterns and 
anomalies that may indicate structural damage or deterioration in a bridge.[34] For 
example, changes in strain patterns or abnormal vibration levels can be indicative of 
cracks, corrosion, or other forms of damage. Machine learning algorithms can learn 
from historical data and observations to develop models that can accurately detect 
these patterns and anomalies in real-time. 

This enables engineers to take corrective actions promptly, such as performing 
targeted inspections, repairs, or load restrictions, before any catastrophic failures 
occur. Machine learning algorithms can also aid in the assessment of bridge 
performance and remaining service life. By continuously monitoring the vibrations 
and stresses on a bridge, machine learning algorithms can track the deterioration 
process and predict when maintenance or repairs are needed. Moreover, machine 
learning techniques can also be applied to other types of structures such as buildings, 
dams, and tunnels. Machine learning algorithms can analyze the data generated by 
sensors installed on these structures to identify patterns and anomalies that may 
indicate structural damage or deterioration [35]. 

This information can then be used to make informed decisions regarding maintenance, 
repairs, or even the need for structural upgrades. The use of machine learning in 
structural health monitoring offers several advantages over traditional methods [22]. 
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Firstly, machine learning algorithms can process large amounts of data quickly and 
accurately, allowing for real-time monitoring of structural health. This enables early 
detection of anomalies and potential failures, leading to timely intervention and 
maintenance [22]. Secondly, machine learning algorithms can adapt and improve over 
time. As more data is collected and analyzed, machine learning algorithms can 
continuously update their models to improve accuracy and reliability. Furthermore, 
machine learning algorithms can also handle complex and non-linear relationships 
between variables, which may be difficult for traditional analysis methods to capture. 
In addition, machine learning algorithms have the potential to integrate with other 
systems, such as flood early-warning systems. 

This integration can enhance the effectiveness of both structural health monitoring and 
flood early-warning systems by providing a comprehensive understanding of 
potential risks to infrastructure during flood events. Structural health monitoring in 
civil engineering using machine learning algorithms has the potential to revolutionize 
the field. It allows for more accurate and efficient monitoring of structural behavior, 
enabling early detection of anomalies and timely intervention [36]. 

1.10  Advancements in Structural Health Monitoring 
Technology 

Advancements in Structural Health Monitoring technology have been driven by the 
need for more accurate and reliable methods of monitoring structural behavior and 
detecting damage at an early stage. [18] 

One of the major advancements in recent years has been the incorporation of machine 
learning techniques into vibration-based structural health monitoring systems [21]. 
Machine learning algorithms, such as artificial neural networks and support vector 
machines, have shown great potential in analyzing large volumes of vibration data to 
detect and classify damage patterns accurately and efficiently. 

These algorithms are capable of learning from the data collected from sensors and can 
identify subtle changes in structural behavior that may indicate the presence of 
damage. By training these algorithms on a large dataset of vibration data from healthy 
and damaged structures, they can learn to recognize patterns associated with different 
types and severities of structural damage. 
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The use of machine learning algorithms in structural health monitoring allows for real-
time monitoring and early detection of structural anomalies, enabling engineers to 
take proactive measures to address potential issues before they escalate into major 
failures [22]. With the increasing amount of vibration data collected from structural 
health monitoring systems, traditional manual analysis methods have become time-
consuming and prone to error. Machine learning techniques offer a more efficient and 
robust approach to analyzing this data by automating the detection and classification 
process. By utilizing machine learning algorithms, structural health monitoring 
systems can effectively analyze large volumes of vibration data and identify specific 
patterns or features that are indicative of structural damage at different levels of 
severity [28]. 

Sensors development has also played a vital role in the advancements of structural 
health monitoring technology. Sensors used in structural health monitoring systems 
have become more sophisticated and reliable over the years. Advanced sensors are 
now capable of capturing high-resolution data with more accuracy and precision, 
allowing for more detailed analysis of structural behavior. 

Nondestructive evaluation (NDE) techniques have also been incorporated into 
structural health monitoring systems to complement the vibration-based approach. 
These techniques, such as ultrasonic testing and infrared thermography, provide 
additional information about the internal conditions of a structure and can help verify 
the presence and extent of structural damage detected through vibration analysis. [30] 

However, despite the benefits and advancements of using machine learning in 
vibration-based structural health monitoring systems, there are some opposing 
arguments to consider. 

Firstly, there is a concern regarding the accuracy and reliability of machine learning 
algorithms in detecting structural damage. While these algorithms are capable of 
learning from data and identifying patterns, their effectiveness largely depends on the 
quality and representativeness of the training dataset. If the dataset used to train the 
algorithm does not adequately capture all possible scenarios or types of damage, it 
may result in false positives or negatives when applied to real-time data. Additionally, 
machine learning algorithms can be sensitive to outliers or anomalies in the input data, 
which can also impact their accuracy in detecting structural damage. 
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1.11 Challenges and Solutions in Structural Health Monitoring 

One of the key challenges in implementing vibration-based structural health 
monitoring with machine learning algorithms is the availability of labeled data [1]. 
Labeled data, which is essential for supervised machine learning algorithms, can be 
limited and time-consuming to collect. To overcome this limitation, unsupervised 
machine learning techniques have been utilized. These techniques focus on outlier 
analysis to detect the presence of damage [25]. 

Another challenge in vibration-based structural health monitoring is the feature 
extraction process. The feature extraction process in vibration-based structural health 
monitoring often requires manual intervention and expertise prior to damage 
classification. This manual intervention can be time-consuming and may introduce 
human error, limiting the efficiency and accuracy of the monitoring system. In order 
to address these challenges, researchers have been exploring various solutions. One 
approach is the use of advanced signal processing techniques to automate the feature 
extraction process. These techniques involve using algorithms to analyze the vibration 
data and extract relevant features automatically, reducing the need for manual 
intervention. Another solution is the use of machine learning algorithms that are 
specifically designed for feature extraction. These algorithms can learn to recognize 
patterns and extract relevant features directly from the raw vibration data, eliminating 
the need for human intervention in the feature extraction process. Overall, machine 
learning algorithms have revolutionized the field of structural health monitoring in 
civil engineering. 

1.12 Conclusion: The Importance of Structural Health 
Monitoring 

In conclusion, structural health monitoring is crucial in civil engineering to ensure the 
safety and integrity of structures. The implementation of machine learning algorithms 
in vibration-based structural health monitoring has shown great potential in 
addressing challenges such as limited labeled data and manual intervention in the 
feature extraction process. Unsupervised machine learning techniques and advanced 
signal processing algorithms have been used to overcome these limitations, allowing 
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for more efficient and accurate detection of structural damage. While there are still 
obstacles to be overcome, machine learning has significantly enhanced the field of 
structural health monitoring and has paved the way for further advancements in 
ensuring the safety of our infrastructure. Continuous research and development in this 
area will lead to even more sophisticated and reliable techniques for structural health 
monitoring, ultimately contributing to the longevity and resilience of our civil 
infrastructure. In today's rapidly changing world, the significance of accurate and 
timely weather forecasts cannot be overstated.  
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Chapter 2 

Machine learning approach 

2.1  Introduction to Machine Learning in Structural Health 
Monitoring 

Structural health monitoring is a crucial process in civil, aerospace, and mechanical 
engineering industries aimed at detecting damage in structures using sensing data 
[21]. Recently, there has been a growing interest in utilizing machine learning 
techniques for damage detection in structural health monitoring. Machine learning, a 
subfield of artificial intelligence, has shown great potential in various applications due 
to its ability to make accurate predictions and identify patterns from large datasets. 
With advancements in sensing technology, it has become more feasible to develop an 
approach for damage detection based on the information gathered from sensor 
networks mounted on structures. The integration of machine learning algorithms with 
structural health monitoring systems offers the potential for more accurate and 
efficient damage detection [37]. Machine learning algorithms can analyze and interpret 
the vast amount of data collected by sensors in real-time, allowing for continuous 
monitoring and early detection of damage. By leveraging machine learning 
techniques, structural health monitoring systems can not only identify damage but 
also provide valuable insights into the type, extent, and prognosis of the damage. 
Machine learning algorithms can be trained on historical data that includes both 
normal and damaged structural behavior. These algorithms learn the patterns and 
characteristics associated with different types of damage, allowing them to make 
accurate predictions when new data is received. Machine learning algorithms have the 
potential to outperform traditional approaches in damage detection due to their ability 
to handle complex data and adapt to changing conditions. Machine learning 
algorithms can effectively handle the increasing amount of vibration data collected 
from structural health monitoring systems, providing a more efficient and robust 
approach to damage detection [28]. The integration of machine learning algorithms 
with structural health monitoring systems enhances the accuracy and effectiveness of 
damage detection [38]. Furthermore, machine learning algorithms can also assist in 
classifying and categorizing the detected damage, enabling engineers to prioritize and 
plan for appropriate repairs or maintenance activities based on the severity and 
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urgency of the detected issues. However, there are several challenges in implementing 
machine learning algorithms for vibration-based structural health monitoring [2]. One 
challenge is the need for labeled data, which can be difficult to obtain in the field of 
structural health monitoring. 

Another challenge is the need for continuous model updating and adaptation to 
account for changing structural conditions.[21] Additionally, there may be limitations 
in the availability and quality of sensor data, as well as challenges in selecting 
appropriate machine learning algorithms and parameters that are suitable for the 
specific context of structural health monitoring. 

These challenges highlight the need for further research and development to overcome 
these obstacles and fully harness the potential of machine learning in vibration-based 
structural health monitoring [39]. Overall, the use of machine learning techniques in 
vibration-based structural health monitoring holds great promise for improving 
damage detection and prediction . 

2.2  Understanding Damage Detection Techniques 

In vibration-based structural health monitoring, machine learning algorithms play a 
crucial role in detecting and predicting damage. These algorithms utilize labeled data 
to learn patterns and characteristics associated with structural damage. 

However, the availability of labeled data is often limited in the field of structural health 
monitoring [30]. This presents a challenge for machine learning algorithms, as they 
heavily rely on labeled data to accurately detect and classify damage. To overcome the 
scarcity of labeled data, unsupervised machine learning techniques can be employed. 
These techniques utilize outlier analysis to identify anomalies in the vibration data that 
may indicate the presence of damage, without needing prior knowledge or labeled 
data. This approach allows for the detection of damage without relying on pre-labeled 
data, making it more adaptable to various structural conditions and scenarios. Another 
challenge in vibration-based structural health monitoring is the feature extraction 
process.[39] The feature extraction process in vibration-based structural health 
monitoring typically requires manual intervention to identify relevant features that 
can be used for damage classification. This manual intervention can be time-
consuming and subjective, as different experts may have varying opinions on which 
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features are most indicative of damage. To address this challenge, researchers have 
been exploring automated feature extraction methods using machine learning 
algorithms. These methods aim to automatically identify relevant features from raw 
vibration data, reducing the need for manual intervention and increasing the efficiency 
of the damage detection process. Machine learning algorithms have shown promise in 
overcoming challenges in vibration-based structural health monitoring. For example, 
these algorithms are capable of analyzing patterns in vibration data that are associated 
with damage at different locations [29]. By analyzing these patterns, machine learning 
models can accurately pinpoint the areas where damage has occurred [40]. 
Furthermore, machine learning algorithms can adapt to varying structural conditions 
and scenarios, making them more robust and efficient in detecting damage. Moreover, 
machine learning algorithms have the ability to continuously monitor the vibrations 
of a structure in real-time [41]. This allows for early detection of damage and 
immediate response, minimizing the risk of structural failures and potential hazards. 
In summary, machine learning algorithms have the potential to overcome challenges 
in vibration-based structural health monitoring. These algorithms can utilize 
unsupervised techniques such as outlier analysis to detect anomalies in vibration data, 
even without prior knowledge or labeled data. 

2.3 Application of Machine Learning in Damage Detection 

   Machine learning algorithms have been widely used in damage detection and 
structural health monitoring, particularly in the field of vibration-based analysis. 
These algorithms offer several advantages over traditional methods, such as manual 
feature extraction and subjective interpretation. Firstly, machine learning algorithms 
can automate the feature extraction process in structural health monitoring. 

This automation eliminates the need for manual intervention and reduces the potential 
for human error, leading to more accurate damage classification. Secondly, machine 
learning algorithms can learn from the raw vibration data and extract relevant features 
directly. This eliminates the need for handcrafted intervention and allows for a more 
objective and data-driven approach to damage detection. Additionally, machine 
learning algorithms have the ability to continuously learn and adapt to changing 
structural conditions. 



Chapter Two
 

21 

This adaptability makes them suitable for long-term monitoring and enables the 
detection of gradual or progressive damage that may not be apparent through 
traditional methods. Furthermore, machine learning algorithms can analyze large 
amounts of data in real time, allowing for early detection and prediction of possible 
failures. By continuously monitoring the vibrations of a structure in real-time, machine 
learning algorithms can identify any deviations from normal behavior and alert 
engineers to potential issues [42]. Moreover, machine learning algorithms have the 
capability to learn the characteristics and patterns associated with structural damage. 
These algorithms can then be applied to real-time data from a structural health 
monitoring system to detect anomalies and predict possible failures [22]. 

This capability of machine learning algorithms allows for the early detection of 
structural anomalies, enabling timely intervention and maintenance [30]. Despite the 
advantages of machine learning in damage detection and structural health monitoring, 
there are still several challenges that need to be addressed. One major challenge is the 
availability of training data. 

As an example, The integration of structural health monitoring with flood early-
warning systems is a promising field; however, it requires sufficient training data 
specific to flood conditions. Furthermore, although machine learning algorithms have 
shown great potential in automating the damage detection process, they are not yet 
fully automated. Human perception is difficult to replicate through vibration or 
vision-based machine learning algorithms, and there is still a need for human 
intervention and expertise in interpreting the results and making decisions based on 
the detected damage. Overall, machine learning algorithms have revolutionized the 
field of damage detection in structural health monitoring. 

2.4 Different types of Machine learning 

Several types of machine learning algorithms can be used for damage detection in 
structural health monitoring. One of the most commonly used types is supervised 
learning, where the algorithm is trained on labeled data to recognize patterns and 
make predictions. Another type is unsupervised learning, where the algorithm learns 
to identify patterns and anomalies in the data without any prior labeling. In addition 
to these, reinforcement learning can also be employed in structural health monitoring 
for damage detection. 
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2.4.1 Supervised learning 

Supervised learning algorithms have been widely used for damage detection in 
structural health monitoring. These algorithms learn from labeled data, where each 
data point is associated with a specific class or label indicating the presence or absence 
of damage. By training on this labeled data, the algorithm learns to recognize patterns 
and make accurate predictions on unseen data. Supervised learning in structural 
health monitoring typically involves collecting sensor data from various structural 
components, such as bridges or dikes, and labeling the data based on whether the 
damage is present or not. The labeled data is then used to train the supervised learning 
algorithm, which can then be applied to new sensor data to detect damage 
patterns.[11] 

Some common supervised learning algorithms used for damage detection in structural 
health monitoring include support vector machines, decision trees, random forests, 
and neural networks. 

2.4.2 Unsupervised learning 

Unsupervised learning algorithms are also utilized in the field of damage detection for 
structural health monitoring. 

These algorithms do not require labeled data for training, but instead, they learn to 
identify patterns and anomalies in the data without any prior knowledge of the 
damage labels. By analyzing the sensor data, unsupervised learning algorithms can 
identify patterns that may indicate structural damage. For example, outlier analysis is 
a common method used in unsupervised learning for damage detection. The 
unsupervised learning algorithms can detect data points that deviate significantly 
from the majority of the data, indicating potential damage or anomalies in the 
structural health monitoring system.[11] 

One advantage of unsupervised learning in structural health monitoring is that it does 
not require labeled data, making it more practical and cost-effective for large-scale 
monitoring of structures. In addition, unsupervised learning techniques can be used 
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for low-level damage detection, where the damage may not be easily observable or 
distinguishable. However, unsupervised learning algorithms may have a lower 
accuracy compared to supervised learning in terms of damage detection. In some 
cases, supervised machine learning is more advantageous in structural health 
monitoring for damage detection. Supervised machine learning algorithms have the 
advantage of higher accuracy in detecting damage and more potential for identifying 
specific types of damage.[12] In contrast, unsupervised machine learning algorithms 
may be more favorable in practical monitoring scenarios of large structures. Machine 
learning techniques, such as supervised and unsupervised learning algorithms, have 
been extensively utilized in the field of structural health monitoring for damage 
detection. 

2.4.3 reinforcement learning 

Reinforcement learning is another machine learning technique that has the potential 
to be used in structural health monitoring for damage detection. Reinforcement 
learning is a type of machine learning that involves an agent interacting with an 
environment and making sequential decisions in order to maximize a reward.[11] In 
the context of structural health monitoring, reinforcement learning can be used to train 
an agent to make decisions based on sensor data in order to maximize the overall 
health and safety of a structure. Reinforcement learning has the advantage of being 
able to learn from experience and adapt its decision-making strategy over time. 
Furthermore, reinforcement learning algorithms can handle complex and dynamic 
environments, making them suitable for the unpredictable nature of structural health 
monitoring. Machine learning is an effective tool in structural health monitoring for 
damage detection, as it allows the system to learn patterns and detect anomalies based 
on available data.  

2.5 machine learning methods 

Supervised and unsupervised machine learning algorithms are commonly employed 
in structural health monitoring for damage detection. Supervised learning algorithms 
are used when training data is available from both undamaged and damaged 
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structures. These algorithms, such as statistical process control or MLP neural 
networks, are trained using labeled data to learn the patterns associated with damage 
and identify specific types of damage. 

On the other hand, unsupervised learning algorithms are utilized when data from 
damaged structures is rare or nonexistent. These algorithms, which include clustering 
and anomaly detection techniques, do not require labeled data for training. Instead, 
they analyze the patterns and similarities within the data to detect any anomalies or 
deviations from normal behavior. The choice between supervised and unsupervised 
machine learning algorithms depends on the availability of labeled data and the 
specific requirements of the structural health monitoring system. 

decision tree classification algorithms, support vector machines, and neural networks 
are commonly used in damage detection for structural health monitoring. Clustering 
algorithms can be used for unsupervised learning in the absence of labeled data. 

2.5.1 K-means Clustering 

One example of an unsupervised machine learning algorithm that has been used for 
damage detection in structural health monitoring is K-means clustering. K-means 
clustering is a popular method for grouping data points into clusters based on 
similarity. 

This method has been applied to detect damage in structures by analyzing sensor data 
and identifying clusters that deviate from the normal behavior of the structure. These 
deviating clusters are indicative of potential damage or anomalies within the structure. 

2.5.2 Hierarchical Clustering 

Hierarchical clustering is another unsupervised machine-learning algorithm that has 
been utilized in structural health monitoring for damage detection. Hierarchical 
clustering is a method that creates a hierarchy of clusters in a dataset. 
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This algorithm has been used to analyze sensor data and find clusters that exhibit 
similar patterns or behaviors. These clusters can help identify regions of the structure 
that may be experiencing damage or degradation. 

2.5.3 Fuzzy clustering 

Another unsupervised learning algorithm that has been employed for damage 
detection in structural health monitoring is fuzzy clustering. Fuzzy clustering is a 
method that allows for the assignment of data points to multiple clusters with varying 
degrees of membership. 

This algorithm has been used to analyze sensor data and assign them to different 
clusters based on their similarity. The utilization of fuzzy clustering in structural 
health monitoring allows for a more flexible and nuanced analysis of the data, 
considering the possibility that a data point may belong to multiple clusters 
simultaneously. 

2.5.4 Principal Component Analysis (PCA) unsupervised learning 

Principal Component Analysis is a dimensionality reduction technique that can also 
be used for damage detection in structural health monitoring. PCA is a method that 
aims to find the directions (principal components) in which the data varies the most. 
These principal components can be interpreted as new variables that capture the most 
important information from the original data. 

In the context of structural health monitoring, PCA can be applied to sensor data to 
reduce dimensionality and identify the most significant features that are indicative of 
damage or anomalies in the structure. 
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2.5.5 Hierarchical Clustering unsupervised learning 

Hierarchical clustering is a method that creates a hierarchy of clusters in a dataset. 

It is a popular unsupervised learning algorithm that has been utilized in structural 
health monitoring for damage detection. The hierarchical clustering algorithm works 
by iteratively merging or splitting clusters to form a hierarchy. At each step, the 
algorithm determines the similarity between clusters based on a specified distance 
metric. Hierarchical clustering has the advantage of requiring fewer monitoring 
stations and fewer samples compared to other clustering approaches [12]. Hierarchical 
clustering can be used in structural health monitoring to establish a correlation 
between damages and structural states. Hierarchical clustering can be particularly 
useful when dealing with structural health monitoring data, as it allows for the 
detection of patterns and similarities within the data without prior supervision or 
labeling of the data. 
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Chapter 3 

3.Vibration-based damage detection

3.1 Understanding Time Series Acceleration Data 
   Time series acceleration data refers to a collection of measurements taken over time 
that captures the rate at which an object's velocity is changing. These measurements 
are crucial in structural health monitoring as they provide valuable information about 
the dynamic behavior of a structure.[12] By analyzing time series acceleration data, 
researchers and engineers can gain insights into the structural integrity of buildings, 
bridges, and other infrastructure. This information can then be used to detect and 
evaluate any damage or abnormalities that may be present in the structure. One of the 
main advantages of using time series acceleration data in structural health monitoring 
is its ability to capture high-frequency dynamic responses. This is particularly 
important as high-frequency responses can indicate the presence of damage or 
potential structural issues that may not be apparent through other types of 
measurements. 

Time series acceleration data is typically obtained using accelerometers, which are 
sensors that directly measure the acceleration response of structures. Accelerometers 
are widely used in structural health monitoring practices due to their ability to provide 
accurate and reliable measurements. However, it's worth noting that accelerometers 
are less effective in capturing low-frequency responses. While accelerometers are 
excellent for capturing high-frequency dynamic responses, they may not be as 
sensitive to low-frequency responses. The use of displacement sensors, on the other 
hand, can obtain more sensitive low-frequency dynamic measurements [43]. However, 
displacement sensors have relatively few applications in structural health monitoring 
due to the inconvenience of installation and monitoring. To overcome the limitations 
of accelerometers in capturing low-frequency responses and to make use of 
displacement sensors for their sensitivity, researchers have explored different 
techniques to extract low-frequency information from time series acceleration data. 

One technique commonly used is frequency domain analysis. Frequency domain 
analysis involves transforming the time series acceleration data into frequency 
components. This process allows researchers to identify the dominant frequencies 
present in the data, which can provide valuable information about structural behavior. 
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By analyzing the dominant frequencies in the time series acceleration data, researchers 
can detect any shifts or changes in these frequencies, which could indicate damage or 
abnormalities in the structure. 

Another technique that has gained attention in the field of structural health monitoring 
is time-frequency analysis. Time-frequency analysis involves analyzing the time-
varying characteristics of the frequency components in a signal. 

This technique allows researchers to explore changes in the frequency content of the 
time series acceleration data over different time intervals. By performing time-
frequency analysis on the time series acceleration data, researchers can identify 
frequency variations that may indicate damage or structural changes. Time series 
analysis is another powerful tool used to obtain frequency information in structural 
health monitoring. 

Time series analysis involves decomposing the vibration signals from structures into 
fundamental basis functions, which are then used to characterize the vibration 
response [2]. These basis functions can be transformed into the frequency domain to 
obtain information about the dominant frequencies present in the data. Furthermore, 
time series analysis allows for the detection of trends and patterns in the data that can 
help identify changes or anomalies in structural behavior. By utilizing time series 
acceleration data and applying techniques such as frequency domain analysis, time-
frequency analysis, and time series analysis, researchers can effectively obtain 
frequency information in structural health monitoring. 

3.2 Time series data analysis methods 

Time series analysis methods involve the statistical modeling of the measured 
response signals in the time domain.[15], [16] Time series analysis is ideally suited for 
Structural Health Monitoring (SHM) as it is possible to model the entire time history 
of a structure and update models with incoming real-time data. Additionally, time 
series analysis allows for the detection of anomalies or deviations from normal 
behavior, which can be indicative of structural damage. Vibration-based structural 
health monitoring is a widely studied and applied technique for detecting damage in 
structures.[17] 
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Vibration-based structural health monitoring utilizes the information extracted from 
the vibrations of a structure to make assessments about its health condition, including 
the presence, location, and severity of the damage. 

3.3 Different types of the time series data 

There are different types of time series data that can be collected for vibration-based 
structural health monitoring. These include stationary time series data, which have 
constant statistical properties over time, and non-stationary time series data, which 
exhibit changing statistical properties. Stationary time series data is often obtained 
from structures under ambient excitation, where the excitation source does not change 
significantly over time.[18] Non-stationary time series data, on the other hand, is 
usually obtained from structures subjected to varying load conditions or external 
disturbances. [19] 

3.4 Acquisition of time-Frequency data from acceleration data 

To acquire time-frequency data from acceleration data to obtain frequency information 
from time series acceleration data, researchers employ various techniques such as 
frequency domain analysis, time-frequency analysis, and time series analysis. 
Frequency domain analysis involves transforming the time series acceleration data 
into the frequency domain using techniques like Fourier analysis. Fast Fourier 
Transform (FFT) is commonly used to calculate the power spectral density energy, 
which provides information about the frequency composition of the signals [11]. FFT 
equation is given by: 

(1) 

where X(k) represents the frequency domain representation of the time series 
acceleration data, x(n), is the time-domain signal, f is the frequency component, and j 
is the imaginary unit. 
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3.5 Role of Frequency in Structural Damage Detection 

   The analysis of frequency information in structural health monitoring plays a crucial 
role in detecting and identifying possible damage or changes in the integrity of 
structures. By monitoring the frequency content of vibrations, engineers can detect any 
shifts or anomalies in the structural behavior that may indicate damage. These 
frequency shifts can be indicative of structural defects such as cracks, looseness in 
joints, corrosion, or other forms of damage.[11] By comparing the frequency profiles 
of the monitored structure to a reference or baseline frequency profile, engineers can 
identify any deviations that may indicate damage. Furthermore, the frequency 
information obtained from time series acceleration data can also help in assessing 
structural performance and detecting early signs of deterioration. In the case of time-
varying processes, such as in offshore structures, it is crucial to understand the 
variation of frequencies over time. Time-frequency analysis methods, which describe 
the frequency and energy intensity of a signal at different times, are commonly used 
in structural health monitoring to capture the dynamic behavior of structures and 
mechanical systems.[25] By utilizing time series acceleration data and employing 
frequency domain analysis techniques, engineers can extract valuable information 
about the structural health of a system. At present, the commonly used data processing 
methods of structural health monitoring mainly include time-domain analysis, 
frequency-domain analysis, and wavelet packet-based energy methods. Among these 
methods, frequency-domain analysis plays a significant role in detecting damage 
within structures. 

3.6 Using Frequency for Damage Identification in Structures 

   The frequency content of a structure's vibrations can provide crucial information for 
identifying and detecting damage. Traditional time-domain and frequency-domain 
analysis methods may not be directly applicable to non-stationary or nonlinear 
vibrations caused by external loads such as earthquakes and hurricanes.[11] However, 
advancements in time-frequency analysis techniques have facilitated the extraction of 
frequency information from non-stationary signals, enabling a more accurate 
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assessment of the structural condition and damage detection. By utilizing time series 
acceleration data, engineers can analyze the frequency content of the structural 
vibrations and track any changes that may indicate damage. Moreover, time-frequency 
analysis allows for the characterization of frequency components that vary over time, 
providing insights into the dynamic behavior of structures. By examining the 
frequency components present in the time series acceleration data, engineers can 
identify deviations from the expected behavior of a structure and determine if these 
deviations are indicative of damage or deterioration. 

In conclusion, the use of time series acceleration data in conjunction with frequency 
domain analysis techniques is crucial for effective structural health monitoring and 
damage detection. 
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Chapter 4 

4.Vibration based damage detection on

bridge Z24 and KW51 

4.1 Z24 bridge properties 

To illustrate the application of vibration-based structural health monitoring, we will 
consider the case study of the Z24 bridge. The Z24 bridge is a large-scale civil structure 
that experiences regular vehicular loads. Vibration data from the bridge can be used 
to monitor its health condition and detect any potential damage.[44] 

The Z24 bridge was in the canton Bern near Solothurn, Switzerland. It was part of the 
road connection between the villages of Koppigen and Utzenstorf, overpassing the A1 
highway between Bern and Zürich. It was a classical post-tensioned concrete two-cell 
box-girder bridge with a main span of 30 m and two side spans of 14 meters. The 
bridge was built as a freestanding frame with the approaches backfilled later. Both 
abutments consisted of triple concrete columns connected with concrete hinges to the 
girder. Both intermediate supports were concrete piers clamped into the girder. An 
extension of the bridge girder at the approaches provided a sliding slab. All supports 
were rotated with respect to the longitudinal axis, which yielded a skew bridge. The 
bridge, which dated from 1963, was demolished at the end of 1998 because a new 
railway adjacent to the highway required a new bridge with a larger side 
span.[44,45,46] 

In figure 4.1 the cross section of the bridge is illustrated. In addition, the location of the 
sensors is depicted in figure 4.2. 
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Figure 4.1: Front view (top) and top view (bottom) of the Z24 Bridge. 

Figure 4.2:  Cross section of the girder, showing the locations where the temperature 
Was measured 
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4.2 Temperature's Impact on Bridge Stiffness 

   Z24 bridge monitored the dynamic response of the structure and environmental 
conditions for a period of 12 months. During this monitoring period, one of the key 
environmental conditions that were measured was temperature. The measurements 
included air temperature and deck temperature, which provided valuable insights into 
the effect of temperature on the bridge's stiffness. 

Young’s modulus decreases rapidly up to a temperature of around 400 K, and then 
decreases more slowly or becomes constant at higher temperatures.[44] 

The study conducted on the Z24 bridge revealed that temperature variations have a 
significant impact on the stiffness of the structure. The temperature measured during 
the monitoring period ranged from -10°C to 35°C, covering a wide range of seasonal 
temperatures. [45] The results showed that as the temperature decreased below 0°C, 
there was a noticeable change in the natural frequency of the bridge. This change in 
natural frequency indicates a variation in the stiffness of the bridge due to temperature 
fluctuations. 

4.3 long-term progressive damage test 

   Monitoring the bridge took almost one year. Over a month, and just before the total 
dismantling of the bridge, a series of progressive damage tests were conducted. The 
procedure of the damage test is described in table 4.1. The practical importance of these 
assessments was validated by ensuring their relevance to the bridge's safety and by 
simulating common forms of damage. Table 4.1 provides a comprehensive catalog of 
all the progressive damage tests executed. The bridge was exposed to both a forced 
and ambient operational vibration test before and after each damage scenario was 
applied. 
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Table 4.1: Test procedure on Z24 bridge 

 

4.4 Time-series frequency of Z24 bridge 
 signals were generated using an inverse fast Fourier transform (FFT) algorithm, 
resulting in a fairly flat force spectrum between 3 and 30 Hz. The results of the 
frequency are shown in figure 4.3. 

 

Date (1998) Scenario
4-Aug Undamaged condition
9-Aug Installation of pier settlement system
10-Aug Lowering of pier, 20 mm
12-Aug Lowering of pier, 40 mm
17-Aug Lowering of pier, 80 mm
18-Aug Lowering of pier, 95 mm
19-Aug Lifting of pier, tilt of foundation
20-Aug New reference condition
25-Aug Spalling of concrete at soffit, 12 m2
26-Aug Spalling of concrete at soffit, 24 m2
27-Aug Landslide of 1 m at abutment
31-Aug Failure of concrete hinge
2-Sep Failure of 2 anchor heads
3-Sep Failure of 4 anchor heads
7-Sep Rupture of 2 out of 16 tendons
8-Sep Rupture of 4 out of 16 tendons
9-Sep Rupture of 6 out of 16 tendons
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Figure 4.3: time-series frequency of the Z24 bridge 

As mentioned before, temperature change can affect the frequency of the bridge based 
on the stiffness change of the material. In this case, changing in the Asphalt layer 
stiffness caused a fluctuation on time-series frequency. Figure 4.4 shows the highly 
affected frequencies by the temperature changes for one year monitoring. Area 
highlighted by yellow color is where the temperature effect is high on stiffness. 
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Figure 4.4: Effect of the temperature on time-series frequency 

 

Similarly, the comparison between the different modes of the bridge frequency are 
shown in figures 4.5-4.8. 

The initial four frequency modes are accessible, with each mode comprising 3932 
observations. As is evident from the frequency mode graphs, there is a clear 
relationship between temperature and the bridge's natural frequencies. Fluctuation in 
the sample range of 400 to 600 and also 1200 to 1400 is evident. To remove the effect of 
the environment two possible methods are suggested that describe in detail. 
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4.5 Data preparation 

   The dataset of the Z24 bridge consists of a total of 3932 samples, which include four 
different modes. The first 3475 samples represent the normal condition of the Z24 
bridge, while the remaining 457 samples correspond to the damaged state. The data 
set is divided into training and testing parts. First 80 % of the undamaged state of the 
structure was allocated to the training dataset 𝑋𝑋 ∈  ℝ (2780∗4) and the rest of the data 
was used as the testing in dataset 𝑍𝑍 ∈  ℝ (1152,∗4). 
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   Once the training and testing data sets were established, a methodology was 
implemented to detect early damage in the Z24 bridge. 

   The methodology used for early damage detection in the Z24 bridge involved several 
steps. First, to remove the temperature effect from the data, a preprocessing procedure 
was applied. Two methods were used for preprocessing the data to remove the noise 
and temperature effect on the bridge, DBSCAN and Autoencoder. The results of the 
damage detection then compared.  

Figure 4.9: Training and Testing data division 

Table 4.2: specific statistic of the frequency-time series 
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4.6 Outlier detection by using DBSCAN 

   Density-Based Spatial Clustering of Applications with Noise is a popular and 
effective clustering algorithm used in data mining and machine learning. It was first 
introduced in 1996 by Martin Ester.[46] DBSCAN is particularly useful for discovering 
clusters in spatial datasets, where the proximity between data points plays a crucial 
role. DBSCAN differs from traditional clustering algorithms, such as k-means or 
hierarchical clustering, in that it does not require the number of clusters to be specified 
prior to running the algorithm.[47] Instead, DBSCAN identifies clusters based on the 
density of data points in the dataset. The algorithm operates by defining a 
neighborhood around each data point and determining whether the density within 
that neighborhood meets certain criteria.[32] Specifically, DBSCAN requires two 
parameters to be specified: epsilon (ε) and minPts. Epsilon (ε) defines the radius within 
which a data point is considered a neighbor of another data point. In Appendix B the 
implementation of DBSCAN in python environment is available. 

This parameter determines the distance threshold for clustering and plays a crucial 
role in identifying clusters. The minPts parameter specifies the minimum number of 
data points that must be within a neighborhood in order for a point to be considered 
a core point. DBSCAN proceeds by iteratively expanding clusters starting from core 
points.[48] During the algorithm, a core point is defined as a data point that has at least 
minPts neighbors within its ε neighborhood. Once a core point is identified, DBSCAN 
recursively expands the cluster by adding all reachable points within ε distance. The 
DBSCAN algorithm can detect clusters of arbitrary shapes and sizes in the dataset.[49] 

One of the advantages of DBSCAN is its ability to handle datasets with noise or 
outliers. These are data points that do not belong to any cluster and may be scattered 
throughout the dataset. DBSCAN can classify these noisy points as outliers and 
exclude them from the identified clusters, effectively improving the quality of 
clustering results by focusing on the essential patterns in the data.[34,50] 

The algorithm of the DBSCAN was implemented on the Z24 bridge frequency data. 
The result shows in figure 4.10. The outlier data detected in the frequency data were 
successfully classified as noise points by the DBSCAN algorithm. 
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Figure 4.10: outlier data detection by using DBSCAN method 

  Upon examination of the timeline of severe environmental effects, it is evident that 
the outlier data has been correctly identified. Therefore, to obtain more reliable data, 
it would be prudent to remove the aforementioned outlier data. To be more specific, 
we can observe that the number of samples with an outlier value of -1 is 438. These 
outlier samples, which are clearly distinct from The DBSCAN algorithm considers 
these points as noise or outliers due to their dissimilarity with the majority of the data 
points by applying the DBSCAN algorithm, we can accurately identify and classify 
these outlier points as noise by removing these noise points, we can ensure that the 
subsequent analysis and interpretation of the data are not biased by outliers. 
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Figure 4.11: Remove the outlier data 

4.7 Autoencoder outlier detection 

  To further enhance the detection and removal the effect of outliers in the dataset, an 
autoencoder outlier detection method can be applied. Autoencoder outlier detection 
is a technique that uses an autoencoder neural network to identify and remove outliers 
from a dataset.[51] 

   The autoencoder model is trained to reconstruct the input data, and during this 
process, it learns to effectively capture the underlying patterns and structures of the 
data while disregarding the outliers.[52] After training the autoencoder model, the 
reconstruction error is calculated for each data point. Points with high reconstruction 
errors are likely to be outliers, as they cannot be accurately reconstructed by the model. 
By setting a threshold for the reconstruction error, we can classify these points as 
outliers and exclude them from further analysis. 
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   Another advantage of using the autoencoder outlier detection method is that it can 
handle datasets with complex and non-linear relationships. This is particularly useful 
for time series data, as it can capture the temporal dependencies and identify outliers 
that may arise from unexplained phenomena.[53] 

   The process of applying the autoencoder outlier detection method involves several 
steps. First, the dataset is divided into a training set and a test set. The autoencoder 
model is then trained on the training set, where it learns to reconstruct the input data 
accurately.[54] Next, the trained autoencoder is used to reconstruct the data from the 
test set. The reconstruction errors for each data point in the test set are computed by 
comparing the original data with its reconstructed counterpart. Based on the premise 
that an autoencoder trained on normal data will yield low reconstruction error for 
similar distribution, points with high reconstruction errors can be identified as 
potential outliers. 

 Figure 4.12: Autoencoder architecture 

 

  The mathematical equations that describe the autoencoder can be written as follows: 

1.Encoder: ø: X → F      (2) 

  where x is the input data, f is the encoder function, and z is the compressed latent 
representation of x. 

2.Decoder: y: F → X          (3) 

where g is the decoder function, and x' is the reconstructed output 

3.Loss function: 𝜄𝜄(𝑥𝑥, 𝑥𝑥′) = ||𝑥𝑥 − 𝑥𝑥′||2 = ||𝑥𝑥 − 𝜎𝜎′(𝑊𝑊′(𝜎𝜎(𝑊𝑊𝑥𝑥 + 𝑏𝑏))2 + 𝑏𝑏′||2     (4) 

𝑧𝑧 = 𝜎𝜎(𝑊𝑊𝑥𝑥 + ℎ)     (5) 

     𝑥𝑥′ = 𝜎𝜎′(𝑊𝑊′𝑧𝑧 + 𝑏𝑏′)         (6) 
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The process of applying the autoencoder outlier detection method involves several 
steps. First, the dataset is divided into a training set and a test set. The autoencoder 
model is then trained on the training set, where it learns to reconstruct the input data 
accurately. Next, the trained autoencoder is used to reconstruct the data from the test 
set. The reconstruction errors for each data point in the test set are computed by 
comparing the original data with its reconstructed counterpart. Based on the premise 
that an autoencoder trained on normal data will yield low reconstruction error for 
similar distribution, points with high reconstruction errors can be identified as 
potential outliers.  

   ReLU (Rectified Linear Unit) activation function is commonly used in autoencoder 
models for outlier detection. This function helps in preserving the linearity of the 
autoencoder model while also providing non-linearity to capture complex patterns in 
the data.[55] 

   The ReLU activation function, given by f(x) = max(0, x), is commonly used in 
autoencoder models for outlier detection tasks. 

Figure 4.13: (a) mode 1 and mode 2 relation (b) mode 3 and 4 relation 
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4.8 Clustering data  
 

   The K-means clustering method was executed on the Z24 bridge data, by using the 
results of the autoencoder. The optimal cluster count was determined by 
implementing the gap statistic method. Gap statistics were used to determine the 
number of clusters in the data set. By this approach, the optimal number of clusters 
was determined. Figure (4.14) shows the gap statistics results of the Z24 bridge dataset, 
indicating the optimal number of clusters. 

 

  Compute Clustering for Different Values of K: Perform a k-means clustering for 
different values of k and for each k, calculate the sum of the squared distances 
between each data point and its cluster centroid. This sum of squared distances is 
often denoted as Wk. 

 Compute Clustering for Reference Datasets: For each reference dataset, perform k-
means clustering and calculate Wk for each one (Wkb).[56] 

After obtaining the values of Wk for different values of k, compute the gap statistic 
for each value of k. The gap statistic is calculated as follows : 

Gap(k) = average (log(Wkb)) - log(Wk)    (7) 

 

 

Figure 4.14:  Gap statistic value for different number of cluster 
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   GMM clustering is another method that can be used to determine the appropriate 
number of clusters. GMM, or Gaussian Mixture Model, clustering is a probabilistic 
model that assumes the data points are generated from a mixture of multiple Gaussian 
distributions. 

Gaussian Mixture Models are a type of machine-learning method that is widely used 
for clustering and probabilistic modeling tasks. These models assume that the data 
points are generated from a mixture of Gaussian distributions. The main idea behind 
Gaussian Mixture Models is to represent the distribution of data points as a 
combination of multiple normal distributions[57]. This allows for capturing the 
complex underlying structure of the data by representing it as a combination of 
simpler components. 

Gaussian Mixture Models have a simple formulation and are widely used in various 
applications such as databases, computer vision, and machine learning. The simple 
formulation and the widespread use of Gaussian Mixture Models make them an 
attractive choice for various applications. Gaussian Mixture Models have deep 
connections with clustering algorithms. Clustering refers to the process of grouping 
similar data points together based on their characteristics. Gaussian Mixture Models 
can be used to perform soft clustering, where data points are assigned probabilities 
indicating their membership in each cluster. 

This ability to perform soft clustering is beneficial when dealing with complex data 
that may not necessarily belong to a single cluster. Such models have been particularly 
successful in applications where the underlying data distribution is multimodal or has 
overlapping clusters.[58] 

The use of Gaussian Mixture Models in machine learning has greatly contributed to 
the field's ability to model and analyze complex data. Gaussian Mixture Models have 
applications in signal estimation, denoising, and image processing. The GMM 
equation represents the sum of weighted Gaussian components, where each 
component is represented by a mean vector and covariance matrix. These means and 
covariance matrices determine the shape, size, and orientation of each Gaussian 
component. 

Bayesian Information Criterion (BIC) is commonly used to estimate the number of 
components, or clusters, in a Gaussian Mixture Model.[22] 

The Bayesian Information Criterion is a commonly used method for estimating the 
number of components or clusters in a Gaussian Mixture Model. 
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It is a measure of the trade-off between model complexity and goodness-of-fit to the 
data. By evaluating the BIC for different numbers of components, one can determine 
the optimal number of clusters that best balance model complexity and data fit. The 
BIC is calculated using the log-likelihood of the data, penalized by a term that accounts 
for the number of parameters in the model. The availability of such an estimation 
method is crucial in practice, as it helps machine learning practitioners select the 
appropriate number of clusters for a given dataset without relying on subjective 
judgments or trial and error. 

The BIC's solid theoretical support is one of its strongest points, as it provides a 
principled way to determine the optimal number of clusters. The BIC equation for 
evaluating the number of clusters in a Gaussian Mixture Model is: 

BIC = -2 * log-likelihood + k * log(n)          (8) 

where log-likelihood is the logarithm of the likelihood of the data given the model, k 
is the number of parameters in the model, and n is the number of data points. 

AIC is another criterion that can be used to estimate the number of clusters in a 
Gaussian Mixture Model. 

In addition to the BIC, another criterion that can be used to estimate the number of 
clusters in a Gaussian Mixture Model is the Akaike Information Criterion. AIC, similar 
to BIC, is a measure that incorporates both the goodness-of-fit of the model and its 
complexity. However, AIC places less penalty on model complexity compared to BIC. 

The Akaike Information Criterion is calculated using the log-likelihood of the data, 
also penalized by a term that accounts for the number of parameters in the model. The 
AIC equation for evaluating the number of clusters in a Gaussian Mixture Model is: 

AIC = -2 * log-likelihood + 2 * k    (9) 

where log-likelihood is the logarithm of the likelihood of the data given the model and 
k is the number of parameters in the model. Both AIC and BIC provide valuable 
insights into the trade-off between model complexity and data fit when estimating the 
number of clusters in a Gaussian Mixture Model.[59] 

MDL is another criterion that can be used to estimate the number of clusters in a 
Gaussian Mixture Model. MDL, or Minimum Description Length, is a criterion that 
balances the complexity of the model with its ability to explain the data. The MDL 
criterion aims to find the model that provides the most concise description of the data. 
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It achieves this by minimizing the sum of two terms: the code length required to 
describe the data using the model, and the code length required to describe the model 
itself. 

By minimizing this combined code length, MDL selects the number of clusters that 
achieves the most efficient and accurate representation of the data. The equation 
describes MDL is : 

MDL = log-likelihood - (0.5 * k * log(n)) (10) 

where log-likelihood is the logarithm of the likelihood of the data given the model, k 
is the number of parameters in the model, and n is the number of data points. 

CV is another approach that can be used to estimate the number of clusters in a 
Gaussian Mixture Model. CV, or Cross-Validation, is a technique that assesses the 
performance of a model by splitting the dataset into training and validation subsets. 
The model is then trained on the training subset and evaluated using the validation 
subset. This process is repeated multiple times, with different subsets used for training 
and validation. The performance of the model is then averaged over these iterations to 
obtain an estimate of its generalization capability.[60] 

Cross-Validation can be used to estimate the number of clusters in a Gaussian Mixture 
Model by evaluating the model's performance on different subsets of the data and 
selecting the number of clusters that consistently yield the best performance. 

The CV equation for evaluating the number of clusters in a Gaussian Mixture Model 
is as follows: 

CV = 1/n * Σ(log-likelihood) (11) 

where n is the number of data points and log-likelihood is the logarithm of the 
likelihood of the data given the model. In conclusion, the determination of the number 
of clusters in a Gaussian Mixture Model can be achieved using various methods such 
as the Minimum Description Length criterion and Cross-Validation. These approaches 
aim to strike a balance between model complexity and data explanation, ensuring that 
the chosen number of clusters provides an accurate representation of the data using a 
Gaussian Mixture Model. 

  Table 4.3: Optimal number of component 
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4.9 proposed damage index 

   The proposed damage index is distance based and relies on the concept of Density-
Based Spatial Clustering. K-means clustering is a popular clustering algorithm that 
aims to partition data points into clusters by minimizing the within-cluster sum of 
squares. 

K-means clustering aims to partition n observations into k clusters in which each
observation belongs to the cluster with the nearest mean (cluster centers or cluster 
centroid). Distance-based damage index calculated by the Euclidean distance between 
each data point and the centroid of its cluster can provide insights into the outliers. 
The equation of the proposed damage index can be written as: 

   Distance = �∑(𝑥𝑥𝑥𝑥 − 𝑐𝑐𝑥𝑥)2   (12) 

  Damage index is defined based on the assumption that damage will lead to a 
reduction in local density and an increase in the minimum distance between samples. 
This is because damage may cause the structure to become more rigid, resulting in a 
larger separation between adjacent nodes and a reduction in the number of nodes in 
the vicinity of the damaged area. 

The damage index can be calculated using the following equation: 

Damage Index = Local Density * Minimum Distance 

Figure (4.15) shows the damage Index by different criteria for the Z24 bridge dataset. 

by applying the GEV distribution modeling, a threshold boundary for decision making 
was determined. 
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Figure 4.15: damage Index by different criteria 
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4.10 Setting the threshold value 

  

  Setting the threshold value for the damage index is crucial for decision-making. One 
approach to setting the threshold value is by utilizing a statistical method such as 
Extreme Value Theory, Generalized Extreme Value, and Gaussian Mixture Model. 

. 

   Generalized Extreme Value (GEV) distribution and threshold estimation can be used 
to determine a reliable threshold limit.[41] The threshold value can be set by fitting the 
Generalized Extreme Value distribution to the data above a certain threshold. 

   The GEV distribution is defined by three parameters: location parameter μ, scale 
parameter σ, and shape parameter ξ. The location parameter shifts the distribution to 
the left or right, the scale parameter controls the spread of the distribution, and the 
shape parameter controls the tail behavior of the distribution. 

The probability density function (PDF) of the GEV distribution is given by: 

𝑓𝑓 = (𝑥𝑥, 𝜇𝜇,𝜎𝜎, 𝜀𝜀) = �1
𝜎𝜎
� ((1 + 𝜀𝜀 �𝑥𝑥−𝜇𝜇

𝜎𝜎
�)(−�1𝜀𝜀+1�))𝑒𝑒

(−�1 + ξ�x − μ
σ ��

−1ξ))

    (13) 

 

by applying the GEV distribution modeling, a threshold boundary for decision-
making was determined. 
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Figure 4.16: unsupervised damage detection results on Z24 bridge 

Figure (4.17) shows the best unsupervised damage detection results by MDL criteria 
bridge on Z24. Table 4.4 summarized the efficiency of the proposed method to deal 
environmental effect on structure. 

Table 4.4: summarized the efficiency of the proposed method 
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4.11 Verification of the proposed method on KW51 bridge 

In this section, the best efficient method regarding vibration-based damage detection 
in the previous section will be applied to a case study involving the KW51 Bridge. 

4.11.1   KW51 bridge details 

   The KW51 bridge is a railway bridge located on railway line L36N between Leuven 
and Brussels, Belgium. It enables the crossing of the canal Leuven-Mechelen. The 
bridge is of the bowstring type and has a length of 115 m and a width of 12.4 m.[62] 

   A 15-month monitoring campaign was conducted on the KW51 bridge between 2018 
and 2019 to collect data for vibration-based damage detection. 

   During this monitoring campaign, various parameters were recorded, including the 
acceleration response, strains in the deck and gauges of the rails, displacement at the 
bearings, and environmental data. The acceleration responses were processed using 
Operational Modal Analysis to obtain the first 14 natural frequencies of the structure. 
This comprehensive data collection allowed for a detailed analysis of the bridge's 
dynamic behavior and provided valuable insights into its structural health. 

Figure 4.17: KW51 Bridge 

4.11.2   Available Data 

   The frequency of the KW51 bridge is available as a result of the 15-month monitoring 
campaign conducted between 2018 and 2019. In addition to the frequency data, other 
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parameters such as acceleration response, strains in the deck and gauges of the rails, 
and displacement at the bearings were also recorded.[62] With this rich dataset, the 
vibration-based damage detection method can be applied to identify potential 
damages in the KW51 bridge. 

4.11.3   Damage detection approach 

A total of 3130 natural frequency data points are available for the KW51 bridge in four 
modes. The time series frequency is shown in Figure (4.18) The highlighted part in the 
plot denotes the temperature effect on the frequency data. As it is considerable, the 
effect of the weather condition on the KW51 bridge is lower than on the Z24 bridge.  

Figure 4.18: time-series frequency of the KW51 bridge in mode1, mode2,mode3,mode 4 
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In order to detect potential damages in the KW51 bridge, the vibration-based damage 
detection approach will be applied. The outlier data was detected as described in 
section 4.7 by using the Autoencoder method. the results of the outlier detection are 
shown in Figure 4.19 by comparing the two modes of frequency for better illustration. 

Figure 4.19: Autoencoder result by comparing mode1 and mode 3 

The results show that the vibration-based damage detection approach successfully 
identified outliers in the natural frequency data of the KW51 bridge. 

The clustering machine learning algorithm was then applied to further analyze the 
data. The data set is divided into training and testing parts. First 80 % of the 
undamaged state of the structure was allocated to the training dataset 
 𝑋𝑋 ∈ ℝ (2150∗4) and the rest of the data was used as the testing in dataset 𝑍𝑍 ∈ ℝ (978∗4). 

using the same methodology as performed to detect damage in the Z24 Bridge, a GMM 
approach was developed to optimally cluster the data of the KW51 bridge. 

The damage index is proposed as the multiplication of the density and Euclidean 
distance from the closest cluster centroid. 

Figure(4.20) shows the damage index plot for the KW51 bridge. The damage index plot 
for the KW51 bridge clearly indicates areas of potential damage. 



Chapter Four 58 

Figure 4.20: Damage index of KW51 bridge samples   

Figure 4.21: vibration-based damage detection result on KW51 bridge



59 



Chapter Five 60 

Chapter 5 

Damage Detection using hybrid approach 

Hybrid approaches are gaining popularity in the field of damage detection due to their 
ability to combine multiple techniques and algorithms, resulting in more accurate and 
reliable results.[63] 

These hybrid approaches leverage both signal processing methods and artificial 
intelligence techniques to effectively identify and locate structural damage. 

By integrating advanced signal processing methods, such as wavelet transforms or 
Fourier analysis, with artificial intelligence techniques like neural networks or genetic 
algorithms, hybrid approaches can extract meaningful information from sensor 
measurements and effectively detect damage. Moreover, hybrid approaches also have 
the advantage of combining the best aspects of model-based and data-driven 
techniques . For example, one study proposed a hybrid approach for damage state 
prediction by combining a crack growth model with regression techniques.[64] This 
approach not only predicted damage states accurately but also allowed the model to 
be updated as new measurements became available. This demonstrated the 
superiority of the hybrid approach compared to solely relying on either data-driven or 
model-based methods . Furthermore, the use of hybrid sensing approaches, which 
combine experimental data with results from physics-based multiscale models, has 
proven to be highly effective in damage detection.[65] By incorporating both data-
driven and model-based techniques, hybrid approaches address the limitations of 
individual methods used in damage detection. 

Hybrid approaches in damage detection also utilize machine learning algorithms to 
improve the accuracy of classification. In large-scale civil engineering structures, 
where the data provided by structural health monitoring systems may be limited, 
hybrid approaches can provide more robust and reliable results.[66] One approach 
involves using a finite element model to simulate scenarios that were not recorded 
during monitoring sessions, such as the response of an undamaged structure under 
operational and environmental variability. This simulated data is then combined with 
actual sensor measurements and fed into an MLA for improved damage classification. 
By integrating both the FE model and machine learning algorithms, the hybrid 



Chapter Five 61 

approach can overcome the limitations of individual methods and enhance the 
performance of damage detection in structural health monitoring. Additionally, it has 
been observed that training data should cover the full range of operational and 
environmental variability for successful damage detection using machine learning 
algorithms [66]. By considering both the physical behavior of structures and the data-
driven capabilities of machine learning algorithms, hybrid approaches in damage 
detection offer a comprehensive solution for structural health monitoring. 

In conclusion, the use of hybrid approaches in structural health monitoring for damage 
detection offers a more accurate and reliable solution compared to relying solely on 
either data-driven or model-based methods. These approaches combine the strengths 
of both techniques to overcome their individual limitations.[67] Hybrid approaches 
have been shown to be superior in predicting damage states by incorporating crack 
growth models with regression techniques, allowing for continuous updating as new 
measurements become available. Furthermore, the integration of machine learning 
algorithms into hybrid approaches improves classification accuracy by utilizing finite 
element models to simulate scenarios that were not recorded during monitoring 
sessions. By considering both physical behavior and data-driven capabilities, hybrid 
approaches provide a comprehensive solution for damage detection in structural 
health monitoring.  

5.1 Finite element calibration 

   Finite element calibration is an essential step in the hybrid approach for damage 
detection. It involves adjusting the parameters of a finite element model to accurately 
represent the behavior of a structure under different loading conditions. This 
calibration ensures that the simulated data generated by the finite element model 
closely matches the actual response of the structure, improving the accuracy of 
damage detection algorithms. The hybrid approach for damage detection also utilizes 
machine learning algorithms to improve classification accuracy. These algorithms, 
such as supervised learning or unsupervised learning techniques, can analyze the 
enriched data obtained from the finite element model and identify patterns or 
anomalies that indicate the presence of damage. Additionally, the hybrid approach 
incorporates advanced signal processing techniques to analyze the sensor 
measurements and extract relevant information. 
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These techniques, such as wavelet transforms or Fourier analysis, can effectively 
identify damage-induced signals from the measured data, even in the presence of 
noise or other environmental variability. By combining the strengths of both model-
based and data-driven techniques, hybrid approaches in damage detection can 
overcome some of the limitations associated with individual methods. 

The calibration of a finite element model is crucial in accurately representing the 
behavior of a structure and improving the accuracy of damage detection algorithms. 
Calibrating the finite element model involves adjusting its parameters, such as stiffness 
and mass distribution properties, to ensure that it accurately reflects the response of 
the structure under different loading conditions.[66] Calibration is typically performed 
by comparing the simulated response of the finite element model to measured data 
from the structure, such as modal parameters obtained through vibration testing or 
structural deformations measured through point cloud modeling. Through a process 
of iterative adjustments to the model's parameters, the calibration aims to minimize 
the discrepancies between the simulated response and the measured data. This 
calibration process allows for more accurate predictions of the structure's behavior and 
improves the reliability of damage detection algorithms. Finite element model 
calibration is a crucial step in accurately representing the behavior of a structure and 
enhancing the precision of damage detection algorithms. Proper calibration of the 
finite element model ensures that it accurately captures the dynamic behavior and 
response of a structure under different loading conditions. Additionally, the 
calibration process helps in reducing uncertainties associated with material properties 
and boundary conditions.[65] By calibrating the finite element model, the accuracy of 
damage detection algorithms can be significantly improved. The calibration of a finite 
element model is an important and necessary step in accurately representing the 
behavior of a structure and improving the precision of damage detection algorithms. 

It ensures that the simulated response of the model aligns closely with the measured 
data from the structure, such as modal parameters or structural deformations. 

This alignment allows for more accurate predictions of the structure's behavior and 
enhances the reliability of damage detection algorithms. Moreover, finite element 
model calibration helps in reducing uncertainties associated with material properties 
and boundary conditions, which further improves the accuracy of the model. The 
process of calibrating a finite element model involves iteratively adjusting its 
parameters to minimize discrepancies between simulated and measured responses. 
This iterative process ensures that the model accurately represents the dynamic 
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behavior of the structure under different loading conditions. Overall, finite element 
model calibration plays a crucial role in enhancing our understanding of structural 
behavior and improving our ability to detect and assess damage in civil structures. 

5.2 I-40 Bridge 

One notable application of the hybrid approach in damage detection and finite element 
calibration is the I-40 Bridge. 

The I-40 bridge is located along Interstate Highway 40 across the Rio Grande River in 
Albuquerque, New Mexico, USA. It features twin spans with separate highways for 
each traffic direction. This structure was constructed from a concrete deck which is 
13.3 meters wide and 0.178 meters thick. The deck is supported by two steel plate 
girders and three steel stringers.[65] 

A section of the bridge that was used in the experimental study consists of three spans 
with a total length of 129.5 meters. The first and third spans are of equal lengths, 39.9 
meters each, and the middle span is 49.7 meters long.[66] 

External loads caused by traffic from the stringers are transmitted to the steel plate 
girders by the floor beams, with cross bracing also provided between the floor beams. 

The numerical model of the I40 bridge was constructed in the MATLAB environment 
using shell and 3D beam elements. The materials used for the I40 bridge were concrete 
and steel with the modulus of elasticity, density, and the Poisson's ratio needed for the 
numerical modeling being identical to 24.8 GPa, 2322.6 kg/m^3, and 0.2 for concrete 
and 210 GPa, 7850 kg/m^3, and 0.3 for steel, respectively. The model of the concrete 
deck is simplified using a constant thickness of 0.2209 m, neglecting the steel 
rebars.[66] 

The finite element model of the I40 bridge was used to simulate forced vibration tests, 
similar to the ones conducted on the actual bridge. 

Figure (5.1) shows the reduced finite element model of the portion of the I40 bridge on 
which experimental modal analyses were performed. 
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Figure 5.1: Experimental setup of the I-40 Bridge 

Figure 5.2: FE model built in Matlab 

A total of 26 DOF of freedom in vertical directions was considered in the numerical 
model. Mode shapes of the structure obtained from experimental modal analysis were 
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used as a reference for the calibration of the numerical model. The mode shapes of the 
I40 bridge were obtained by using the accelerometers. The mode shapes obtained from 
the experimental data may not be scaled due to the variability in the accuracy of the 
sensor readings.[65] 

The introduced damage intends to simulate fatigue cracking that has been observed in 
plate girder bridges.[65] Four levels of damage are introduced to the middle span of 
the north plate girder. These different levels of damage are introduced by making 
various torch cuts in the web and flange of the girder, which is illustrated in Figure 
(5.3). 

The first level consists of a 0.61m long, 10mm wide cut through the web; in the second 
level, this cut was extended to the bottom of the web. For the third level, the flange is 
cut halfway from both sides. At last, the bottom flange is completely cut to produce 
the fourth damage level. After each damage case, the structure is subjected to an 
experimental modal analysis. 

Figure 5.3: Damage scenarios introduced to the I-40 Bridge. 
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5.3 Damage identification method 

Damage index based on the Modal stain energy: for the first damage identification 
algorithm, a damage index based on the modal strain energy is utilized. The damage 
index method evaluates the difference in modal strain energy between the undamaged 
and damaged structures based on the experimental data. for considering 6 modes 
obtained from experimental data the damage index is the sum of all 6 modes. The total 
length of the north girder is 420ft which is divided into 210 (2ft) segments of equal 
length.[66] Each segment is assigned a damage index value, calculated by summing 
the modal strain energy differences for each mode. 

𝛽𝛽𝑥𝑥𝛽𝛽 =
(∫ [Φi′′∗(x)]2𝑑𝑑𝑥𝑥+∫ [Φi′′∗(x)]2𝑑𝑑𝑥𝑥𝐿𝐿

𝑎𝑎
𝑏𝑏
𝑎𝑎 )

(∫ [Φi′′(x)]2𝑑𝑑𝑥𝑥+∫ [Φi′′(x)]2𝑑𝑑𝑥𝑥𝐿𝐿
𝑎𝑎

𝑏𝑏
𝑎𝑎 )

∫ [Φi′′(x)]2𝑑𝑑𝑥𝑥𝐿𝐿
𝑎𝑎

∫ [Φi′′∗(x)]2𝑑𝑑𝑥𝑥𝐿𝐿
𝑎𝑎

 (4.1) 

   Where Φi is the mode shape of the structure, L is the length of the beam, a and b are 
the starting and ending point of the segment respectively. 

Figure 5.4: Damage index based on the modal strain energy 
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Change in Flexibility matrix: show that for the undamaged and damaged structure, 
the flexibility matrix, [F], can be approximated from the unit-mass-normalized modal 
data as follows: [66] 

 [F] ≈ ∑ 1
ωi2

n
i=1 {ϕi}{ϕi}T  (14) 

                [F]∗ ≈ ∑ 1
ωi∗2

n
i=1 {ϕi}∗{ϕi}∗T  (15) 

[∆𝐹𝐹] = [𝐹𝐹] − [𝐹𝐹]∗  (16) 

Where Φi is the unit mass normalized and the ωi is the natural frequency of the 
structure in i-th mode shape. 

Figure 5.5: Damage index based on the flexibility change 

5.4 comparing the mode shapes from experimental data and 
the FE model 

   To ensure the accuracy of the numerical model, mode shapes obtained from 
experimental modal analysis were used as a reference for the calibration process. 
Figure (5.6) shows the comparison between the mode shapes obtained from the 
experimental data and those predicted by the finite element model. The scaling must 
be done on the experimental data.[67] The scaling of the experimental data is necessary 
to ensure that the mode shapes obtained from both the experimental data and finite 
element model are comparable. To scale the experimental mode shapes the equation 
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below used 
 Φ𝑚𝑚 = 𝜈𝜈 ∗ 𝜓𝜓            (17) 

Where y is the experimental mode shape,  Φ is the analytical mode shape and n is the 
factor obtains from the equations below 

𝜐𝜐 = Φ𝑚𝑚𝑇𝑇
∗𝜓𝜓

𝜓𝜓𝑇𝑇∗𝜓𝜓
(18) 

Where ϕ is the normalized mode shape, Y mode shape from experimental data 
.Click or tap here to enter text. 
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Figure 5.6: experimental mode shape comparison to analytical 
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The experimental mode shapes were compared to the mode shapes calculated by the 
finite element analysis using the Modal Assurance Criterion. 

The Modal Assurance Criterion is a measure of similarity between mode shapes and 
is often used to compare the experimental mode shapes with the numerical mode 
shapes predicted by the finite element model. 

This criterion quantifies the correlation between two sets of mode shapes through a 
scalar value ranging from 0 to 1, with higher values indicating greater similarity 
between the experimental and numerical mode shapes. Figure (5.7) shows the MAC 
value for the analytical and experimental mode shapes. 

The MAC value can obtain by using the following equation: [65] 

   𝑀𝑀𝑀𝑀𝑀𝑀�(𝜑𝜑1), (𝜑𝜑2)� = |(𝜑𝜑1∗)(𝜑𝜑2)|2

(|(𝜑𝜑1∗)(𝜑𝜑1)|)|(𝜑𝜑2∗)(𝜑𝜑2)|
(19) 

Figure 5.7: modal assurance criterion 
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5.5 Particle swarm optimization (PSO) 

Particle Swarm Optimization is a metaheuristic optimization algorithm that was 
inspired by the flocking behavior of birds. It was first introduced by Kennedy and 
Eberhart in 1995 as a population-based optimization algorithm. The algorithm is based 
on the concept of a swarm, where individuals (or particles) move through the solution 
space in search of optimal solutions . 

The algorithm works by initializing a population of particles, each representing a 
potential solution. These particles are then updated iteratively based on their own 
best-known position and the global best-known position of the swarm. During each 
iteration, the particles adjust their position based on two components: personal best 
and global best.[69] The personal best component refers to the particle's own historical 
best position, which represents the best solution it has found so far. 

On the other hand, the global best component refers to the best position found by any 
particle in the swarm. In each iteration, particles adjust their velocity and position 
based on these two components, aiming to converge toward the optimal solution. The 
PSO algorithm uses a set of mathematical equations to update the velocity and position 
of each particle. These equations take into account factors such as the particle's current 
position, velocity, personal best position, and global best position. The pseudo-code 
for the PSO algorithm can be summarized as follows:[70] 

1. Initialize a swarm of particles with random positions and velocities.

2. Evaluate the fitness of each particle's position.

3. Update the personal best position for each particle based on its fitness.

4. Update the global best position based on the personal best positions of all
particles.

5. Update the velocity and position of each particle based on the personal best and
global best positions.

6. Repeat steps 2-5 until a stopping criterion is met (e.g., a maximum number of
iterations or convergence criteria).
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One potential application of the PSO algorithm is calibrating finite element models. 
The PSO algorithm can be used to calibrate finite element models, which are 
mathematical representations of physical systems that allow engineers and scientists 
to simulate and analyze the behavior of these systems. By adjusting the parameters 
within the finite element model, such as material properties or boundary conditions, 
the PSO algorithm can optimize these parameters to match experimental data more 
accurately.[71] In the context of calibrating finite element models, the PSO algorithm 
can be used to find the optimal set of parameters that minimize the discrepancy 
between the model predictions and the actual data. 

The experimental mode shapes set as the target for calibration are obtained through 
modal analysis techniques, such as vibration testing. The PSO algorithm can iteratively 
adjust the parameters of the finite element model, such as stiffness and damping 
coefficients, to minimize the difference between the predicted and measured mode 
shapes. The PSO algorithm achieves this by iteratively updating the velocity and 
position of each particle based on its personal best experience and the global best 
experience of all particles in order to find the optimal set of parameters that minimize 
the objective function, which measures the discrepancy between the model predictions 
and the target experimental data. Once the optimal set of parameters is found, the 
calibrated finite element model can be used for various purposes such as structural 
analysis and design optimization. The use of the PSO algorithm in calibrating finite 
element models offers several advantages. Firstly, the PSO algorithm is a powerful 
optimization technique that can handle complex and multidimensional parameter 
spaces. Secondly, the PSO algorithm is easy to implement and computationally 
efficient, making it suitable for solving large-scale calibration problems[71]. Thirdly, 
the PSO algorithm requires fewer parameter settings compared to other optimization 
algorithms, reducing the burden of fine-tuning and making it more user-friendly for 
engineers and researchers [72]. Furthermore, the PSO algorithm does not require an 
initial guess of the optimal parameter values, making it particularly useful in cases 
where prior knowledge about the system is limited. Overall, the PSO algorithm is a 
useful tool for calibrating finite element models. 

PSO algorithm is defined as below : 

Update the particle's velocity: 

𝑉𝑉𝑥𝑥(𝑡𝑡+1) = 𝑤𝑤 ∗ 𝑉𝑉𝑥𝑥𝑡𝑡 + 𝑐𝑐1 ∗ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟() ∗ (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑥𝑥 − 𝑋𝑋𝑥𝑥𝑡𝑡) +𝑐𝑐2 ∗ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟() ∗ (𝐺𝐺𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑋𝑋𝑥𝑥𝑡𝑡)  

Where: 

𝑉𝑉𝑥𝑥(𝑡𝑡+1)is the velocity of the particle i at the next time step, w is the inertia weight, 
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𝑉𝑉𝑥𝑥𝑡𝑡 is the current velocity of the particle i, c1 and c2 are cognitive and social scaling 
parameters, respectively, rand() is a random number between 0 and 1, PBest_i is the 
personal best position achieved by the particle i, X_i^(t) is the current position of the 
particle i, and GBest is the best position found by any particle in the swarm. 

Update the particle's position: 

 𝑋𝑋𝑥𝑥(𝑡𝑡+1) = 𝑋𝑋𝑥𝑥(𝑡𝑡) + 𝑉𝑉𝑥𝑥(𝑡𝑡+1) 

 Where: 

 𝑋𝑋𝑥𝑥(𝑡𝑡+1) is the new position of the particle i, 

𝑋𝑋𝑥𝑥(𝑡𝑡) is the current position of the particle i, and 

𝑉𝑉𝑥𝑥(𝑡𝑡+1) is the new velocity of the particle i. 

The Particle Swarm Optimization algorithm is widely used as a parameter calibration 
method in the field of finite element modeling. Parameter alpha is defined as a factor 
to mass distribution and stiffness, and beta is a factor to determine the fitness of the 
model. 

the final optimized parameter applied to the MATLAB code to obtain new mode shape 
for comparison. 

The result of the PSO optimization shows that the calibrated finite element model 
accurately captures the desired behavior of the system. the MAC value of the system 
is in Figure 5.9, indicating a high level of modal assurance criteria between the 
measured and simulated mode shapes. 
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Figure 5.8: PSO algorithm flowchart 

Figure 5.9: modal assurance criterion 
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5.6 FE model damage detection 

by considering the two introduced damage indexes in the previous section, the 
damage detection on the north girder is performed. The damage on the bridge was 
introduced by reducing the stiffness of the element in the FE model. The more accurate 
result of the damage detection can be achieved by calibrated FE model. 

The analysis of the damage detection using the calibrated finite element model 
demonstrates the effectiveness of the PSO algorithm in accurately identifying and 
localizing structural damage. 

Damage introduce to the 12th element of the north girder base on the experimental 
data obtained. The damage index is calculated based on the modal strain energy 
introduce in previous section. 

The damage index is shown in Figure 5.10 

as it is visible the damage index increases significantly at the location of the introduced 
damage, indicating successful detection. 

Overall, the particle swarm optimization algorithm has proven to be an effective 
method for calibrating finite element models and detecting structural damage. It has 
been widely utilized in various studies to update finite element models and accurately 
estimate damages in structures.  

Figure 5.10: damage detection on calibrated FE model 
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Chapter 6 

Conclusion 

The overall objective of this research was to develop a vibration-based structural 
health monitoring system that incorporates machine learning algorithms for accurate 
damage detection and classification. Through the analysis of vibration data collected 
from structures, patterns and anomalies were identified that indicate the presence of 
damage. By utilizing machine learning techniques, the areas where the damage 
occurred could be pinpointed accurately. Furthermore, machine learning algorithms 
were able to assess the severity and extent of structural damage by analyzing 
vibration data. This research addressed several challenges in implementing 
vibration-based structural health monitoring with machine learning algorithms. 
Overall, this research has demonstrated the potential of machine learning algorithms 
in the field of vibration-based structural health monitoring for accurate damage 
detection and classification.  

The research conducted on the Z24 and KW51 bridges served as validation for the 
effectiveness of the developed vibration-based structural health monitoring system. 
Time series analysis methods were also employed to analyze the measured response 
signals in the time domain. By utilizing machine learning algorithms, environmental 
variability changes in the sampled data were mitigated, allowing for more accurate 
damage detection and classification. Autoencoder methods were used to remove 
noise and environmental effects from the vibration data, while distance-based 
clustering optimized by the Gaussian mixture model was utilized for efficient 
analysis. Also, the research addressed the challenges associated with the hybrid 
method and FE model updating and proposed solutions to overcome these 
challenges. 

The PSO algorithm was employed to optimize the parameters of the FE model. The 
MAC values were used to evaluate the accuracy of the calibrated FE model. Some 
factors are considered to optimize the mass distribution matrix and stiffness. 
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On the other hand, it is important to consider some opposing arguments to this 
research. One potential criticism is the reliance on machine learning algorithms for 
damage detection and classification. While these algorithms have shown great 
promise in various fields, including image recognition and natural language 
processing, there may be limitations when it comes to structural health monitoring. 
Machine learning algorithms require a large amount of data for training in order to 
accurately detect patterns and anomalies. However, obtaining sufficient high-quality 
vibration data from structures can be challenging. Factors such as limited access to 
structures, difficulty in collecting real-time data, and variations in environmental 
conditions can all affect the quality and quantity of data collected for training 
machine learning algorithms. 

To overcome shortage of the data to train machine learning algorithms, researchers 
could explore the use of synthetic or simulated data to augment their training 
datasets. Additionally, it would be beneficial to conduct further research and 
investigation into the applicability of machine learning algorithms in sensor-
optimized position. 
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A. Appendix A
Experimental data of I-40 bridge. 

Location
Mode 1             

F=2.48 Hz,
x=1.06 %

Mode 2          
F=2.96 Hz,
x=1.29 %

Mode3             
F=3.50 Hz,
x=1.52 %

Mode 4             
F=4.08 Hz,
x=1.10 %

Mode 5              
F=4.17 Hz,
x=0.86 %

Mode 6             
F=4.63 Hz,
x=0.92 %

S1 M=257u
P=184

173u
353

472u
12.9

702u
358

513u
176

414u
5.63

S2 M=6.90m         
P=174

5.55m
360

0.014
1.72

0.013
6.25

0.011
172

9.88m
2.90

S3 M=0.010          
P=174

8.38m
1.39

0.019
1.99

0.017
6.99

0.015
173

0.013
2.99

S4 M=8.01m
P=178

6.98m
4.00

0.013
3.08

994m
8.91

0.010
175

7.67m
4.04

S5 M=16.6u          
P=70.3

137u
165

716u
3.55

1.17m
2.70

609u
172

1.03m
1.59

S6 M=0.014          
P=358

0.014
180

4.48m
172

7.72m
355

3.44m
10.8

7.49m
357

S7 M=0.023          
P=3.33

0.024
183

1.04m
139

0.015
0.626

1.89m
58.4

0.014
0.09

S8 M=0.015          
P=2.84

0.016
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3.87m
5.74

9.44m
2.45

2.71m
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8.43m
360
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164

1.06m
352
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1.08m
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8.87m
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0.014
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0.012
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2.15

S11 M=0.010          
P=177

0.011
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0.013
349

0.017
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0.014
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0.016
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0.011
352

0.013
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0.012
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9.33
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697u
355
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6.95

827u
5.18
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P=202
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478u
10.0

610u
351

735u
2.03

552u
193

N2
M=7.46m          

P=183
7.62n,

185
0.014
0.555

0.010
348

0.015
2.33

0.015
H.1

N3 M=0.010          
P=183

0.011
186

0.018
0.954

0.012
347

0.019
2.57

0.018
184

N4 M=8.12m         
P=184

8.42m
184

0.011
360

6.58m
343

0.012
1.32

9.92m
184

NS M=201u           
P=205

111u
136

652u
0.569

900u
349

869U
1.38

1.26m
181

N6 M=0.014          
P=2.66

0.016
2.61

4.28m
179

7.71m
2.75

4.25m
177

9.68m
181

N7 M=0.021          
P=4.04

0.024
2.32

464u
202

0.013
360

879u
143

0.017
182

N8 M=0.014          
P=3.34

0.017
2.28

3.39m
0.195

6.85m
355

3.38m
5.00

0.010
182

N9 M=367u           
P=325

783u
347

427u
160

942u
1.73

605u
176

1.50m
179

N10 M=7.52m          
P=185

9.97m
182

0.012
180

0.010
10.4

0.013
182

0.011
186

N11 M=0.010          
P=179

0.014
178

0.019
177

0.017
6.54

0.020
179

0.019
183

N12 M=6.99m         
P=178

9.54m
178

0.015
176

0.014
5.73

0.016
178

0.015
183

N13 M=434u           
P=188

561u
183

981u
170

1.04m
5.53

1.18m
179

1.23m
185

Test t16tr Undamaged Forced Vibration
Global Polynomial Curve-Fit  Results

I-40 Bridge
Damaged and Undamaged Forced Vibration Data

M is the magnitude P is the phase in degree  m= 10e-3  u=10e-6
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B. Appendix B
GMM optimization algorithm 

 import numpy as np 

from sklearn.mixture import GaussianMixture 
from sklearn.model_selection import GridSearchCV 

# Define the range of n_components to try 
n_components_range = range(1, 50) 

# Method 1: BIC 
bic_scores = [] 
for n_components in n_components_range: 

 gmm = GaussianMixture(n_components=n_components) 
 gmm.fit(X) 
 bic_scores.append(gmm.bic(X)) 

# Method 2: MDL 
mdl_scores = [] 
for n_components in n_components_range: 

 gmm = GaussianMixture(n_components=n_components) 
 gmm.fit(X) 
 mdl_scores.append(gmm.score(X)) 

# Method 3: Cross-validation 
param_grid = {"n_components": n_components_range} 
gmm_cv = GridSearchCV(GaussianMixture(), param_grid, cv=5) 
gmm_cv.fit(X) 
cv_scores = gmm_cv.cv_results_["mean_test_score"] 

# Method 4: AIC 
aic_scores = [] 
for n_components in n_components_range: 

 gmm = GaussianMixture(n_components=n_components) 
 gmm.fit(X) 
 aic_scores.append(gmm.aic(X)) 

# Find the optimal number of components based on different methods 
optimal_bic = np.argmin(bic_scores) + 1 
optimal_mdl = np.argmax(mdl_scores) + 1 
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optimal_cv = gmm_cv.best_params_["n_components"] 
optimal_aic = np.argmin(aic_scores) + 1 

print(f"Optimal number of components (BIC): {optimal_bic}") 
print(f"Optimal number of components (MDL): {optimal_mdl}") 
print(f"Optimal number of components (CV): {optimal_cv}") 
print(f"Optimal number of components (AIC): {optimal_aic}") 

Autoencoder Algorithm 

from keras.layers import Input, Dense 
from keras.models import Model 
from sklearn.model_selection import train_test_split 

# Split the data into train and validation sets 
X_train, X_val = train_test_split(X, test_size=0.2, random_state=42) 

# Define the input shape 
input_shape = (X_train.shape[1],) 
# Define the number of hidden layers and units 
encoding_dim = 2 
hidden_dim = 10 

# Define the input layer 
input_layer = Input(shape=input_shape) 

# Define the encoder layers 
encoded = Dense(hidden_dim, activation='relu')(input_layer) 
encoded = Dense(encoding_dim, activation='relu')(encoded) 

# Define the decoder layers 
decoded = Dense(hidden_dim, activation='relu')(encoded) 
decoded = Dense(input_shape[0], activation='linear')(decoded) 
# Define the Autoencoder model 
autoencoder = Model(inputs=input_layer, outputs=decoded) 

# Compile the model 
autoencoder.compile(optimizer='adam', loss='mse') 

# Fit the model on the train set 
autoencoder.fit(X_train, X_train, epochs=100, batch_size=16, verbose=0) 

# Predict the reconstruction errors of the validation set 
y_val_pred = autoencoder.predict(X_val) 
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reconstruction_errors_val = np.mean(np.power(X_val - y_val_pred, 2), axis=1) 

# Find the optimal threshold value on the validation set 
#percentile = 95 
# Define the range of percentile values to test 

percentiles = range(90, 100) 

# Initialize variables to store the best F1 score and its corresponding 
percentile value 
best_f1 = 0 
best_percentile = 0 

# Iterate over the percentile values 
for percentile in percentiles: 

 # Find the threshold value on the validation set 
 threshold = np.percentile(reconstruction_errors_val, percentile) 
 # Detect the outliers in the whole dataset 
 outliers = [i for i in range(len(X)) if reconstruction_errors[i] > 

threshold] 

 # Compute the precision and recall of the outlier detection 
 true_positives = len(outliers) 
 false_positives = len(X) - len(outliers) 
 false_negatives = 0 
 precision = true_positives / (true_positives + false_positives) 
 recall = 1.0 

 # Compute the F1 score 
 f1 = 2 * precision * recall / (precision + recall) 

 # Update the best F1 score and its corresponding percentile value 
 if f1 > best_f1: 

 best_f1 = f1 
 best_percentile = percentile 

# Print the most proper percentile value 
print(f'Most proper percentile value: {best_percentile}, F1 score: {best_f1}') 

# Predict the reconstruction errors of the whole dataset 
y_pred = autoencoder.predict(X) 
reconstruction_errors = np.mean(np.power(X - y_pred, 2), axis=1) 

# Store the indices of the outlier data points 
indices = [i for i in range(len(X)) if reconstruction_errors[i] > threshold] 
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GEV distribution algorithm 

import numpy as np 
from scipy.stats import genextreme 
# Fit the GEV distribution to the input vector 
fit_GEV = genextreme.fit(Damage_index) 
# Extract the parameters of the GEV distribution 
mu, sigma, k = fit_GEV 
# Significance level (α) 
alpha = 0.05 
# Calculate the alarming threshold 
x_alpha = (mu - sigma / k) * (1 - (-np.log(1 - alpha)) ** (-k)) 
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