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1. Introduction
The urgency of facing climate change has had a
positive impact on the electric vehicle market,
which, combined with the pandemic situation of
the last few years, is leading customers to move
on a new way of sustainable mobility, choosing
low range electric vehicles such as scooters and
e-bikes. This trend importantly reflects in hol-
iday resorts where the e-bike is becoming the
most requested activities for tourists of every
kind, promoting a way of enjoying the natural
attractions and appreciating the landscapes of
the resorts. In this scenario the range of the
battery mounted on e-bikes could be a limit to
this activity, especially in resorts characterized
by steep climbs and long trails. This thesis pro-
poses two main optimization models that are
able to properly find a solution for the problem
of locating charger facilities. A first formulation
provides a solution to a scenario where a set of
predefined itineraries is devoted to the specific
cultural journey and hence a Location Problem
is derived to cover the charge demand on the
network. Then the methodology exposed by the
Tourist Trip Design Problem is exploited to for-
mulate a Location Routing Problem in case of
a network where the set of trails is not devoted
to specific experiences. The derived models are

applied to three randomly generated instances.
Finally we validate the programs on a real test
case scenario, evaluating their performances and
deriving some conclusions.

2. Methodologies
Analyzing how many charging stations are
needed on a specific topological area and which
is their best position is a quite complex aspect
for administration executives. It follows that
a proper analysis and evaluation of the possi-
ble infrastructure is mandatory to ensure an e-
charger network able to face the needs of the cos-
tumers and ensure a certain level of reliability.
In the literature the charger location problem
for Electric Vehicles has been extensively stud-
ied. Many papers propose a way to solve this
problem taking into account complicated factors
such as people driving behaviors or the amount
of charging request. A fundamental aspect of
these formulations is the knowledge of the flow
location along the network. When the itineraries
followed by the vehicles are not known, papers
such as [1] exploit a routing algorithm to iden-
tify the itineraries on the network. This kind
of problems appertains to the family of the so
called Location Routing Problems (LRP), which
aim at finding the optimal location of some fa-
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cilities and the routes of the vehicles to serve
the customers demand under facilities and ve-
hicles constraints. However, the existing works
mainly develop models for long range electric ve-
hicles such as cars and buses, which are then
applied to urban areas. Hence, the literature
presents a lack of knowledge for what concern
the charger location problem for electric bicycle
on touristic destinations, requiring a quite differ-
ent formulation from the standard EV charging
location problem. Speaking of touristic destina-
tions, the Tourist Trip Design Problem (TTDP)
perfectly fits this scenario: exploiting territory
and cultural information, this kind of models
proposes different techniques to design an opti-
mal set of itineraries which aims at maximizing
the competitiveness of the entire infrastructure.
It follows that by combining a LRP with the
methodology of the TTDP, it is possible to de-
sign a network of paths that exploits the attrac-
tion points of the territory to optimally locate
charging facilities, minimizing the implementa-
tion costs and maximizing the resort attractive-
ness. To do so, we based our routing model on
a paper proposed in [2], where an attractiveness
function ruled the reward along the itineraries
for different classes of cyclists. Hence, this the-
sis proposes two promising models, respectively
classified as a Location Problem and a Location
Routing Problem for E-bike charging facilities
on a touristic network. In particular the formu-
lations are modeled as Mixed Integer Linear Pro-
grams (MILP) applied to direct graphs G(N,A),
faithful representation of the grid of trails, mule-
teer and roads present in cyclist resorts. More-
over the complexity of the second formulation
results in an exponential number of constraints
that require the implementation of a Branch &
Cut to be resolved.

2.1. Notations
To facilitate reading, before introducing the
models formulations, this section is devoted to a
brief introduction of the notation used:
• yi Binary decision variable corresponding

to charger location at node i;
• bpi Continuous decision variable corre-

sponding to the remaining battery capacity
at node i for path p;

• xupij Routing binary decision variable asso-
ciated to arc (i, j) for user u on path p;

• γupi Routing binary decision variable asso-
ciated to node i for user u on path p.

3. Location Problem
For this model we assume to have an infrastruc-
ture where a set of paths P followed by the e-bike
users are constrained by conformations of the
territory or by cultural objectives, resulting in
a grid of isolated itineraries that shares possible
common sites. Hence we can model the territory
as direct graph G(N,A) where nodes correspond
to points of interest and arcs to trails. Then it is
possible to associate an energy consumption eij
to each traveled arc (i, j) and a charger imple-
mentation cost ci to the nodes i ∈ N ′. Where
N ′ ⊂ N collects the sites provided with a con-
nection to the electric grid and hence possible
hosts for charger facilities. On this data we mod-
eled an optimization program that aims at mini-
mizing the total implementation costs, installing
charger facilities that satisfy the energy require-
ments along the network. The formulation is a
MILP of the following form:

min
b y

g(yi) (1)

s.t.

l1(b
p
i , yi) = 0 ∀ p ∈ P,

l2(b
p
i , yi) < 0 ∀ p ∈ P,

(2)
(3)

Stated in this way the object function (Eq. 1)
minimizes the total costs finding the best values
for the binary variable yi. The constraints from
Eq. (2) to Eq. (3) define the remaining battery
at each node i for each path p, hence variable bpi .
This value is bounded to be grater than zero, do-
ing so we ensure that, placing a charger stations
on the right positions, the remaining battery ca-
pacity at each node, is always greater or equal
to zero. Allowing the cyclist to reach the next
station without recharging.

4. Location Routing Problem
Matching the formulation stated by the Tourist
Trip Design Problem with the Location Prob-
lem exposed in Section 3, a Location Routing
Model is here formulated to provide a solution
to the E-bike Charger Location Problem. Start-
ing from a pool of origin-destination pairs previ-
ously defined, a routing model exploits a mod-
ified version of the attractiveness function de-
scribed by Malucelli et al. [2] to properly collect
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the rewards over the network nodes and arcs,
reflecting the preferences of different classes of
users u. In particular we suggest three differ-
ent category of cycle tourists, namely the classic
tourist, the gastronomic and the sporty, how-
ever different kind of profiles can be considered
without loss of generality. Hence the formula-
tion here proposed, exploits the binary variables
xupij and γupi , correspondingly associated to the
arcs and nodes chosen by the routing routine,
to activate the constraints of the charger lo-
cation model, ensuring a routing solution that
matches the charge demand of the electric bi-
cycle. Indeed, bounding the routing problem
to satisfy the never empty battery requirement,
collocates a certain number of charger facilities
along the tracks. Then the objective function
states the maximization of the attractiveness re-
ward collected by the routing problem, while it
minimizes the total implementation costs of the
charger facilities. It follows that the derived so-
lution exploits the attraction points of the net-
work to design a set of tracks with different per-
spective that match the users behaviors. At the
same time the program allocates possible com-
mon sites to the installation of charging facili-
ties, satisfying the energy needs and minimizing
the chargers implementation investments. The
LRP can be stated as a MILP of the following
form:

max
b y x γ

f(xupij , γ
up
i )−Wg(yi) (4)

s.t.

r1(x
up
ij , γ

up
i ) = 0 ∀p ∈ P,∀u ∈ U

r2(x
up
ij , γ

up
i ) < 0 ∀p ∈ P,∀u ∈ U

l1(x
up
ij , b

up
i , yi) = 0 ∀p ∈ P,∀u ∈ U

l2(x
up
ij , b

up
i , yi) < 0 ∀p ∈ P,∀u ∈ U

(5)

(6)

(7)

(8)

The objective function (4) maximizes a value
that corresponds to a trade off between the to-
tal attractiveness collected by each user on each
path f(x, γ) and the total costs related to the
e-charger implementations g(y). It is important
to underline that this last term is scaled by a
weight W that must be properly tune in accor-
dance with the objectives of the resort. The eq.s
(5) and (6) are linear constraints defining the
routing variables xupij and γupi for each user u
and path p. These variables are then used to ac-
tivate the next constraints (7-8) derived by the

covering equations (2- 3) defined in section 3.
The routing decisions variables give hence a per-
fect knowledge of what are the tracks followed
by the cycle tourists, defining visited arcs and
nodes; allowing to properly populate the posi-
tional variables yi, locating the charger facilities
which cover the energy demand along the paths.

4.1. Branch & Cut
The strong formulation of the Location Rout-
ing Program exposed above includes an expo-
nential number of constraints that could limit
the performance of the algorithm when applied
to big scenarios. Models of this kind can be
directly handled by the solver available on the
market only for small instances. Indeed, adding
all these constraints at once is usually not prac-
tical, asking for a strong computational effort by
the machine that can lead to a not convergence
of the algorithm. This kind of problems can be
solved by a method of combinatorial optimiza-
tion called Branch & Cut, in which cut genera-
tion is combined with branching. To implement
this methodology we implemented the model us-
ing a Python package called MIP [3]. This pro-
gram could be useful also to produce lazy con-
straints: cutting planes applicable to integer so-
lutions. In our model, this approach is used to
avoid sub-tours elimination constraints, which
are stated for every subset of nodes, leading to
have an exponential number of constraints. To
do so a Separation Routine is solved thanks to
a Minimum Cut Problem able to automatically
identify when and which are the missing vio-
lated sub-tour elimination constraints, allowing
the program to activate the relatives lazy con-
straints.

4.2. Multiple Level Extension
The LRP formulation obtained above allows to
find the best charger facilities positions along the
network to cover the energy demand of the cycle
tourists travelling on a strategically designed of-
fer of trails. However following the Tourist Trip
Design methodology, the routing problem should
allow the cyclists to visit multiple times an arc
or node encountered on the path. Indeed, since
the cycle tourist rides for pleasure, it could hap-
pen that riding for more than one time along
the same track increases the satisfaction of the
cyclist even though it is not a new experience.
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It follows that the LRP model exposed above
limit the possibility to obtain a bigger reward
from a routing problem with multiple visits as
in [2]. However the mathematical formulation
exposed in this model cannot be used here be-
cause, although if it is able to keep track of the
number of traversal, it does not allow to know
the right sequence of arcs from origin to des-
tination. Moreover, the LRP formulation here
proposed already presents many variables and
constraints, hence adding other terms could lead
to have a not easy solvable problem. Hence we
propose suitable modified data to allow multiple
visits of the same arc or node. By duplicating
the nodes of the graph in two levels, we can as-
sociate a first level to the first visit of the net-
work and the second one to the revisit. In gen-
eral it is possible to use this technique to create
more than two levels, allowing the cyclists to do
more traversals. However after the third ride
along the same track the pleasure of the tourist
start, is likely to reasonably to decrease. Hence
here we propose only two levels leading to have a
maximum number of three traversal of the same
arc and only two of the same node. The graph
G(N,A) is now composed by two levels, between
them, a pair of arcs are stated for each connected
node in the original grid, one to go up and one
to go down as shown in Figure 1.

Figure 1: Multi-Level Network Example

The two levels are defined by a shift in the nodes
enumeration (n0), equal to the cardinally of the
original nodes set N0. The data used for the
original LRP model, such as the energy con-
sumption, the time and the installation costs as-
sociated to each candidate sites, are the same for
both the levels and for the arcs moving between
them. The only difference is the attractiveness
function that associates different values on each
level. In particular considering that the plea-

sure at the second and third traversal should be
smaller than the one obtained at the first one,
the attractiveness value associated to each arc of
the upper level are half with respect to the orig-
inal one; the same is done for the arcs which rise
between the first and the second level, leaving to
a full attractiveness value the fallen arcs. In this
way the routing problem is allowed to obtain a
bigger reward, designing paths on the first level
and only in case of high attractiveness choose to
route on the second one.
To enforce the routing of the cyclists on the
first level before going to the second one, some
additional constraints on variables xupij are de-
fined. Moreover to remain consistent with the
e-charger implementation, a constraint on the
binary decision variables yi, is stated for both
the levels:

yi = yi+n0 ∀i ∈ N0 (9)

In this way we ensure that if a node is chosen
to hold a charger facility, the charger is present
on both levels. Finally, in the object function,
the term associated to the total implementation
cost g(y) is calculated only for the nodes of the
first level. The final formulation is identical to
the one stated for the LRP (4) with the mod-
ifications proposed above and it will take the
name of Location Routing Problem with Multi-
ple Level Extension LRP-ML.

5. Results
To test and analyze the performance of the mod-
els proposed in this thesis, a first approach was
the implementation of the different formulations
on a data set that simulates the characteristic of
a real resort. Then the models were applied to
the Asiago Test Case scenario, where a realistic
network of trails and muleteers were retrieved
to create the graph G(N,A). Here the methods
used to generate the data for both the scenar-
ios are in brief summarized, to finally show the
main results of this work.

5.1. Data Generation
The generation of the data-set used for the sim-
ulations is a crucial aspect of this section, re-
sulting than in a less or more realistic output of
the program. In particular the data-set required
from the models comprehend a directed graph
G(N,A), main representation of the resort un-
der analysis, a proper energy consumption and
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timing associated to the arcs of the graph, the
subset of nodes chosen to possibly implement
the charger facilities and the associated costs;
finally the values of attractiveness of the entire
network. To properly generate all this data more
than 3000 lines of code were written in Python,
exploiting different Python packages and scripts.

5.1.1 Virtual Graph Generation

Speaking about e-bikes the high differences in
altitude make the mountain territories the best
scenario to implement the e-bike charger loca-
tion problem, indeed e-bikes are used by tourists
of every kind to face the steep mountain trails,
leading to a fast and frequent discharge of the
battery. Hence in this work we developed a pro-
gram able to design three-dimensional directed
graphs with uncross arcs (Figure 2), simulating
a real network of trails, beaten roads and mule-
teers, normally present on a mountain resort.

Figure 2: 3-D Network Example

The arcs slopes are properly generated ranging
from a minimum value of 3% to a maximum of
12%. This choice was made considering reason-
able limitations of achievable human power, fric-
tion and the center of mass of the system.

5.1.2 E-bike Model

A proper characterization of the battery con-
sumption along the trails is mandatory to end
up with a realistic solution that reflect the needs

of the cyclists. However understanding the en-
ergy consumed by the e-bike is a quite challeng-
ing task that must consider heterogeneous fac-
tors such as the e-bicycle dynamic, the terrain
type, the weight and physical preparation of the
cyclist under analysis. In the literature many
papers try to find an accurate modelization of
this system, however they proposed complicated
mathematical formulations far form the scope of
this thesis. The optimization problems here for-
mulated aims at finding the best chargers loca-
tions to ensure a full charged battery along the
traveled itinerary, hence a simple model that de-
scribes the battery consumption in the biggest
effort scenario is enough to create the required
data. In particular a balance of powers for a
fixed speed of travel is done over the bicycle
model (Figure 3).

α

Figure 3: Power Balance E-bike

Then the consumed energy is retrieved as a
product between the required power and the
traveled time. In this way we end up with a
proper data set describing the energy consump-
tion along each arc of the network.

5.1.3 Attractiveness Values and Imple-
mentation Costs

For the LRP and LRP-ML the attractiveness
values associated to the arcs and nodes of the
network were generated taking into account dif-
ferent users behaviors. Finally the implementa-
tion costs were associated to the various nodes
considering data of position and accessibility to
the electric grids.

5.2. Computational results
The program was coded in Python and solved
on a two-core machine with an Intel i7 proces-
sor and 2.50GHz of clock. The used solver was
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GUROBI, one of the fastest and most power-
ful solver available on the market. The models
were firstly tested on 3 different realistic graphs
with random generated itineraries for the Loca-
tion Problem and a selected set of origin desti-
nations for the LRP and the LRP-ML. The re-
sults shows that the models are perfectly able to
find the best locations for the charger facilities,
privileging the nodes which are shared by mul-
tiple itineraries. Better results can be obtained
by the Location Routing Model with Multiple
Level Extension that is able to strategically de-
sign the offers of trails to limit the number of
charging stations required on the network. In-
deed it ends up with a smaller number of in-
stalled facilities that can be further decreased
by playing with the weigh of the object function
(4). Instead the result of the Location Prob-
lem strongly depends on the set of predefined
itineraries, statistically leading to higher imple-
mentation costs. The performance of the Branch
& Cut are clearly visible in the LRP-ML, when
it is applied to huge instances as the one shown
in figure 2. Here the number of arcs and nodes
brings the model to have 20692 variables and
92166 constraints, however the program is able
to find the optimal solution only after 484 sec-
onds.

5.2.1 Asiago Test Case

The last task of this work was the implemen-
tation of the models on a real test case. To
do so the Asiago Plateau represent a perfect in-
stance to test our models, where a grid of trails,
muleteer, and roads creates a paradise for cycle
tourist, connecting farm holidays, typical munic-
ipalities and mountain peaks. After modelling
this territory as a directed graph, a set of maps
have been combined to generate the attraction
scores of trails and point of interests. The pro-
posed models gives different interpretation of the
charger demand, ending up with a number of fa-
cilities that decreases to a minimum value of two
stations with the LRP-ML model. As done for
the realistic graph, these stations are positioned
to face the needs of three class of cyclists along
six different itineraries. Here for brevity only the
graphic solution of LRP-ML for the sporty path
from Primolano to Asiago is shown:

Figure 4: Asiago LRP-ML Solution

Where the green nodes are the charger imple-
mentation points, the red lines show the path
on the first level of the graph and the orange
ones highlight the arcs moving between the two
levels.

6. Conclusions and Future De-
velopments

The developed models are able to find an op-
timal solution to the Charger Location Prob-
lem for E-bikes, providing flexible formulations
that reflects the needs of the resorts. Further
implementation should consider possible partial
charges taking into consideration the time spent
on each charging point.
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