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Abstract

Starting from the aim to reduce the polluting emmisions deriving from the
construction processes, in addition to the research on new materials and
the improvement of the existing ones, the structural optimization is becom-
ing more significant and used. In this compound the usage of "Reciprocal
Frame" was analyzed, for this type of structure it is fundamental the way in
which the elements are arranged in order to provide the equilibrium at the
frame. The thesis has the aims to understand the structural behaviour of
this type of structure and to find the best configuration that is able to reduce
the amount of material. The structural behaviour of nexorades was studied
for both planar and curved elements in order to understand how these struc-
tures behave in their plane and out of it. On the contrary, the optimization
was done varying two parameters that are always recalled along the thesis:
the engagement length and the macrocell size. In the case of planar recip-
rocal frame it was used for the optimization a MatLab script, which is able
to find the best configuration varying the above variables. While for spatial
nexorades it has been studied also the variation of the cross-section along
the elements with a parametric software called Grasshopper and its plug-in
Karamba. At the end it has been demonstrated that the optimal configu-
ration recall the regular grid which have complete different proprieties and
strengths with respect to the already used structural techniques.



Sommario

Partendo dallo scopo di ridurre le emissioni inquinanti dovute al mondo delle
costruzioni, oltre alla ricerca di nuovi materiali e al miglioramento di quel-
li esistenti, l’ottimizzazione strutturale sta prendendo sempre più spazio e
visibilità. In questo ambito si è voluto analizzare l’utilizzo dei "Reciprocal
Frame", la peculiarità di queste strutture sta nella configurazione con la qua-
le sono realizzate, dalla quale dipende il loro stato di equilibrio. La tesi ha
lo scopo di approfondire e studiare il comportamento strutturale di questo
tipo di strutture e di ottimizzarne la configurazione in modo da ridurre il
quantitativo di materiale utilizzato. Il comportamento da un punto di vista
strutturale è stato studiato sia per elementi piani, sia per elementi curvi, ana-
lizzando le azioni derivanti dalla componente assiale e da quella flessionale.
Mentre l’ottimizzazione è stata effettuata variando i due parametri principali
richiamati spesso lungo lo studio: la grandezza delle macrocelle e il rapporto
di sovrapposizione. Per i "Reciprocal Frame" piani l’ottimizzazione è stata
eseguita con un codice MatLab il quale è in grado di trovare la soluzione mi-
gliore facendo variare le due variabili sopra citate. Invece gli elementi curvi
sono stati ottimizzati anche considerando la variazione della sezione lungo
gli elementi grazie ad un software parametrico chiamato Grasshopper e il
suo derivato Karamba. Infine è stato possibile dimostrare, eccezion fatta per
qualche caso particolare, che la soluzione ottimale riporta sempre al caso di
griglia, la quale però ha caratteristiche e potenzialità diverse da quelle delle
classiche maglie usate fino ad oggi.
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Chapter 1

Introduction

In this first chapter it has been described the main characteristics on which
the thesis will be developed adding a quick overview on the existing and
ancient reciprocal frames. The aims of the study are the analysis of the
structural behaviour and the optimization of the planar and curved reciprocal
frames. More in detail it has been tried to cover all the possible aspects
and difficulties in the design of these type of structures. The first step was
the analysis of planar elements with an approach that was as theoretical
as possible in order to understand deeply the critical points and the benefits
related to nexorades. The further developments on curved elements are made
with a parametric structural software which helps in the calculations, but
thanks to the easy variability of the parameters involved allows a complete
overview on the problem. In all these steps it has been tried to arrive to
an optimal solution which minimize the final cost of the construction, and
at the end it has been stated that the optimal configuration has always the
same characteristics.

1.1 Concept of Reciprocal Frame
The adjective "reciprocal" means literally "an action involving two people
or groups of people who behave in the same way or agree to help each other
and give each other advantages". But what does "reciprocal" signify from
a structural point of view and what kind of quality does it add to frame
structures? As a definition of Reciprocal Frame (or nexorade [2]) it can be
used the one given by Popovic Larsen [13]: "structures consisting of linear,
curved, flat or inclined elements which support each other and are arranged
in a way to form a closed circuit or unit". The main aspect from a structural
point of view is that the configuration in the space and the assemble of these
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Figure 1.1: Simple example of reciprocal frame

structures is crucial for their equilibrium. Every single element composing
the structure is supported by its adjacent element that always acts as sup-
port (Figure 1.1).
The biggest advantage of reciprocal structures is that the elements are quite
short with respect to the overall span of the structure, this aspect can be
very helpful in the construction phase in which the workers can deal with
lighter elements that should be hold on manually. Moreover, using a specific
configuration of straight elements it is possible to match any possible surface
introducing a certain eccentricity between elements; the more the elements
composing the structure are short and thin, the more the reciprocal frame is
able to fit the base surface. Alternatively, if eccentricities are to be avoided,
it is always possible to use curved elements as it is done in the Chapter 4. In
that case the elements are all coplanar where the plane is the fitted surface.
Concerning the planar reciprocal frames, the geometry is easier with respect
to the space structure; it is in fact strictly necessary to define the geometry
of one singular macrocell and reproduce it until all the given area is covered.
Furthermore reciprocal frames are commonly made by wood, which in light of
the environmental challenges currently faced also by the construction indus-
try, and its enhanced production and structural performances (eg. Glulam),
it is no longer considered as a poor and ancient material, but it is increasingly
recognized as one of the most promising building material for the future. One
example of timber structure used also as inspiration in the following discus-
sion is the France Pavilion of Expo 2015 (Figure 1.2), which reflects and also
predict the final conclusion on the harmony and functionality of the regular
grid; in the project they were used also the same type of concealed connectors
described in the subsection 2.3.3.
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Figure 1.2: France Pavilion Expo Milano 2015

There are two main aspects that must be studied and understood to develop
a reciprocal frame design:

• The form finding

• The structural behaviour

1.1.1 Form Finding

While for planar reciprocal frames there are not big problems in the defini-
tion of the geometry thanks to the modular definition of the problem, the
same cannot be said for spatial reciprocal frame. Indeed, for planar nexorade
it is feasible to start from a regular polygon and reproduce it creating a basic
grid which will be the starting point of the nexorade.
Once the starting grid is known it is possible to construct inside it the form
of reciprocal frame, this process is briefly reported in the Figure 1.3. This
procedure creates a continuous structure without discontinuity in the incli-
nation of the elements if the grid is regular, otherwise bent elements will be
obtained (Figure 1.3(c)).
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(a) (b)

(c)

Figure 1.3: form finding procedure of planar RF

The solution with bent element can be rearranged changing the method on
which is based on the construction of the RF in order to obtain straight
element as in the case of regular grid. However even if from a theoretical
point of view it could be a viable path, from an engineering point of view
a modular solution whose purpose is to simplify and speed up the erection
process, it cannot be done with elements with different length and a chaotic
configuration.
For what concerns the 3D reciprocal frame, the problem becomes more com-
plex due to the fact that it is impossible to create a regular grid on a given
random surface, and in the case in which a quasi-regular mesh is created,
the structure works only if eccentricities between elements are introduced.
The eccentricities are needed due to the fact that the cells of the grid are no
longer coplanar, so the nexor are now not only bent in the plane of the grid
as in the Figure 1.3(c) but also in the space. As it is possible to see in the
Chapter 4, one solution can be the use of curved nexor in order to create a
smooth surface for the roof. However the problem of elements with different
lengths remains.
Just to understand the complexity of the geometry of nexorades, here below
is reported an example of the Leonardo’s Bridge concept. Even though the
structure is not totally three-dimensional, it can be studied considering only
the vertical plane; the problem shows the main critical points of the form
finding. Indeed it is possible to observe the non-linearity between the ge-
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ometry, governed by the thickness of the elements which in turn is strictly
related to the structural behaviour.

Figure 1.4: Leonardo’s bridge geometry

Looking at the Figure1.4, providing as data the length of the elements and
the engagement ratio η, and assuming that the shape of the cross-section is
circular with a diameter d, it is possible to write the angle α from which the
slopes of the elements are obtained.

tanα =
2 d

ηL
(1.1)

tanα =
L (1− η)

2R
(1.2)

Writing in two different ways the angle and equating the two expressions it
has been found the radius R of the circle inscribed into the nexorade.

2 d

ηL
=
L (1− η)

2R
(1.3)

R =
η L2 (1− η)

4 d
(1.4)

Figure 1.4 reports the geometry of 2D reciprocal frame also called Leonardo’s
Bridge, but this planar configuration can be projected out of the plane cre-
ating a Barrel Vault Nexorade.
Another interesting example of form finding that can be found in the litera-
ture, more specifically on the website www.albertopugnale.com[15], is a simple
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benchmark on a reciprocal frame configuration made with three elongated
elements. He used an optimization algorithm for the form finding of this
simple configuration reported in the Figure 1.5 taken from the cited website.

Figure 1.5: Plan and elevation view of reciprocal system with eccentricity

The boundary conditions of the problem are the three support points, the
values of the engagement length and the eccentricity which is equal for the
three bars. While the design variables are the X,Y and Z coordinates of
the three bar ends. The fitness function is defined as a distance between
elements, when such a distance becomes zero, the bars will reciprocally lie
on one another. The technique used is based on the work done by Bavarel [2]
in his doctoral thesis, but the big advantage is that in this case Pugnale has
used the package software of McNeel which is better described and used in
the Chapter 4. In these software are implemented the "Genetic Algorithms"
used in this case to minimize the fitness function. More specifically it has
been used the "Galapagos" algorithm which does not seem to work optimally
even if the problem is quite simple. Anyway it can be noticed how the
thickness (or eccentricity) and the engagement ratio of the elements change
the configuration increasing the distance from the floor, highlighting the non-
linearity in the design process.

1.1.2 Structural Behaviour

The first aspect that stands out is that despite the complex geometry of
the reciprocal frames, if the elements belonging to the edges of the surface
are simply supported and the connections between elements are designed as
hinges, the structure is statically determined. Otherwise, if internal columns
or clamped restrains on the edges are introduced the structure becomes stat-
ically redundant. However, as it is possible to see in the following chapters,
the implementation of an algorithm only based on the equilibrium equa-
tions becomes quite complex due to the number of unknowns in the problem
also for planar nexorades. Indeed, the theoretical procedure in the world of
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Figure 1.6: Planar geometry of the problem

reciprocal frame is usually avoided, probably because of the complexity of
geometrical models and due to the performance and simplicity of modern
parametric tools for modelling and analysis.
In order to understand the structural behaviuor of a more complex arrange-
ment of reciprocal frame, here under it is showed a very simple example of
only one squared macrocell, with a length element of 4 m, an engagement ra-
tio η of 0.4 (see Section 2.1) and an applied distributed load on each element
of 2 kN/m.

η =
Len

L
=

1.6m

4m
= 0.4 (1.5)

To simplify the physics it can be noticed that the geometry and loads have
a central symmetry (Figure1.6) such that all the elements have equal gener-
alized actions. In other terms, the vertical force transmitted by one element
to its adjacent is equal to the received concentrated load. Writing the equi-
librium equation of one element (that can be seen in the Figure 1.7) it is
possible to compute the reaction R at the support and the force X that each
element passes to its adjacent.

R− qL+X −X = 0 (1.6)

RL−XηL− 1

2
qL2 = 0 (1.7)

R = qL = 8 kN (1.8)

X =
qL

2η
= 10 kN (1.9)
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Since all the applied forces on the beam are known, the shear force and
bending moment diagrams can be drawn. The maximum bending moment
value can be computed as:

Mmax = XηL− q (ηL)2

2
= 13.44 kNm (1.10)

Figure 1.7: Visualization and diagrams of the studied structure

From this simple example it is possible to understand some basics on the
structural behaviour of reciprocal frames. The most important is that look-
ing at the Equation 1.9 is possible to derive that the only case in which the
structure results statically undetermined is the one in which the engagement
ratio is equal to zero, in fact in this case the transmitted force between el-
ements X will increase until infinite. Moreover, looking at the diagrams, it
can be noticed that the maximum shear force is in correspondence of the end
of the element, while the maximum bending moment is in correspondence
of the adjacent element if the applied load is sufficiently smaller than the
transferred load from the other element. Otherwise the parabolic diagram
becomes preponderant and the maximum moment will approach the midspan
of the beam.
For what concerns horizontal loads and more widely the structural behaviour
of shell-nexorade hybrids, which is not studied in this thesis, it can be in-
teresting to consider the work done by Mesnil in 2018 [11], who compared a
pavilion with or without plates used as bracing system. The result of that
study shows that the planar plates stiffen significantly the structure against
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horizontal actions reducing up to 8 times the bending moment in the con-
nections.
As a final remark on the structural analysis, in this thesis only linear elastic
analysis will be performed. However, in literature it is possible to find stud-
ies as the one performed by Garavaglia [5]; studying fibre-reinforced-concrete
reciprocal frames, performing a non-linear analysis and considering collapse
loads and mechanism, the author derived that reciprocal frames match the
collapse behaviour of traditional structures.

1.2 History of Reciprocal Frame
For many reasons it is almost impossible to determine which culture was
the first inventor of this structural scheme, or in which century these frames
were firstly used. The main reason is that these structures were built with
timber and in time deteriorated or were lost due to fire. However, there are
evidences all over the world (mainly in the middle east) from thousands of
years ago that these structures were known and used.
The pit dwelling, whose origin dates back to the Neolithic age, can be consid-
ered as the first example of reciprocal frame in history. However, probably
the most famous reciprocal frame is the Eskimo tent belonging to Native
American civilization, which is reported in the Figure 1.8 from the book of
Popovic Larsen 2008 [12]. The Indian tepee was largely used by the Native
American, because it perfectly matched their nomadic lifestyle thank to the
fact that the tee can be easily and quickly built.

(a) Neolithic pit dwelling (b) Indian tepee

Figure 1.8: First historical examples of reciprocal frame
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Figure 1.9: Rainbow Bridge

Going through the Middle Ages, around the 12th century the Chinese civi-
lization started to use the concept of reciprocal structure for different types
of structures, i.e. the bridges. In the Figure 1.9 it is shown a Chinese scroll
painting where is represented the "Rainbow Bridge", one of the first recip-
rocal bridge made of timber.
During the Renaissance Leonardo Da Vinci proposed its own design of a
bridge, most probably without influences from the eastern world. The bridge
was designed as a temporary structure with a military purpose; its aim was
to quickly allow troops to cross rivers. The straight elements are arranged
in a way to fit an arch, the shape of the arch depends on the slenderness of
every single element and on the engagement ratio. Furthermore Leonardo
was the first that developed a planar grillage for floors or roofs. The sketches
in the Figure 1.10 are taken from the "Codex Atlanticus".

(a) Leonardo’s bridge (b) Planar grillage

Figure 1.10: Codex Atlanticus

Near the sketches, Leonardo briefly introduced the structural behaviour of re-
ciprocal frames. However only in the 17th century, thanks to the mathemati-
cian John Wallis, it was described a method based on equilibrium between
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Figure 1.11: The extended structure by John Wallis

elements that computes the forces acting on each element. He presented a
clear drawing of the structure in which joints are labelled [10] (Figure 1.11).

In the early 20th century, the German engineer Friedrich Zollinger developed
a system of lamella roofing system. This type of structure made with timber
was developed and used after the first world war to serve his country in a
fast and easy construction for housing.
Until now all the structures showed were composed by timber. This is not
surprising. Considering the structural behaviour of reciprocal frame, the el-
ements work in bending and shear and before the advent of steel the wood
was the only material possible (even if there were some technique and trials
with stones). As it involves the usage of small elements, the reciprocal frame
technique was used mainly in the past due to the scarcity of long logs. As
time passed the technology has evolved with reinforced concrete and steel to
fulfill the aesthetic request. Two main examples are reported in the Figure
1.12, where the Coca-Cola beatbox pavilion in London and the Rokko Moun-
tain Observatory in Kobe, Japan [8] are shown.
The most characteristic example of nexorade is the one used to cover an ar-
chaeological site in Burgundy, France, developed by Gelez [6]. The project,
being a temporary structure, fulfills the main positives of reciprocal frame,
i.e. systematic and simpler erection process, the elements are modular, short
and light (they were made by aluminum) and the structure has very low
sensibility to settlements. Moreover it can already be seen in this example
how the regular grid is a very powerful solution, which simplify a lot also the
construction phase.

11



(a) Coca-Cola beatbox pavilion

(b) Rokko observatory

(c) Burgundy archaeological site

Figure 1.12: 21th century reciprocal frame
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Chapter 2

Quadrilateral Reciprocal Frames

In this chapter a structural analysis model is studied and developed, it is
based on the displacement method and it is used for the analysis and the
optimization of quadrilateral reciprocal frames in the 2D plane.

2.1 Geometry of Quadrilateral Reciprocal Frames
The geometry of the square quadrilateral reciprocal frame is governed by two
main parameters: the width of the square macrocell d, and η that is the ratio
between the engagement part of the element and the length of the beam.

(a) (b)

Figure 2.1: Geometry of quadrilateral macrocell
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η =
Len

L
(2.1)

Knowing these two parameters that should be the data of the problem it
can be derived the total length of the beam and the inclination angle with
respect to the sides of the covered area. From these information every point
in the macrocell can be reconstructed .

L =
d√

2η2 − 2η + 1
(2.2)

θ = arctan
η

1− η
(2.3)

2.2 Finite Element Method for Quad-RF
In order to solve rapidly the structural analysis of the reciprocal frames
varying the η parameter and the number of macrocells for each side, it has
been written in MatLab a simple script that can compute the maximum
generalized actions and displacements, providing as an inputs the Young
modulus of the material and the geometrical parameters of the structure and
section. The code works only for square macrocells and square covered area,
because it assumes the same number of macrocells on each side.
The code is based on the Euler-Bernoulli hypothesis, so it doesn’t take into
account the shear deformations. Moreover, as it is usually done, also the
axial deformation of the elements has been neglected. The finite element is
composed by a macrocell; this is different from the usual finite element code,
where the finite element is the usual E-B beam. The macrocell, even if it is a
planar element in the xy plane, has been idealized for a pratical point of view
as a planar element in xz plane, adding 4 fictitious rigid links between the
supporting points. The connection between different elements is modelled as
a hinge, that can provide also torsional restrain. However the transformation
of the planar element in a vertical one, do not consider the torsional degree of
freedom of each element, this approximation as it is possible to understand
in the followings examples doesn’t create big errors in the internal forces for
planar reciprocal frames, but it cannot be neglected when spatial structures
will be analyzed.
This element has 8 degrees of freedom, but in order to write more easily the
stiffness matrix and the nodal force vector using tabulated coefficients, 16
dofs have been used, that later have been cancelled by the static condensation
method. The directions of the rotational degrees of freedom are defined in
such a way that during the assembling procedure the dofs of two adjacent
cells have the same direction. Figure 2.2(a) shows the macrocell element
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with its 16 dofs, while in the Figure 2.2(b) only the primary dofs used in the
assembling phase are reported.

(a) Primary and Secondary dofs (b) Primary dofs

Figure 2.2: Degrees of Freedom of the Macrocell

Considering these elements loaded by a general uniform distributed load,
applying the displacement method the stiffness matrix and the nodal force
vector can be derived (Appendix A).

2.2.1 Static Condensation Method

This technique firstly proposed by Guyan (1965) is used for the deletion of
unwanted degrees of freedom. It is called static since it doesn’t take into
account the dynamic effect given by the inertial forces in the equilibrium
equations.
Starting from these 16 dofs, the aim is to return to the real degrees of free-
dom of the cell. This method works if we arrange the degrees of freedom in
a proper way. In this case those secondary coordinates are arranged in the
first 8 rows, while the remaining 8 primary coordinates are in the last 8 rows.
Secondary dofs are those that are intended to be deleted.{

{F}s
{F}p

}
=

[
[K]ss [K]sp
[K]ps [K]pp

]{
{u}s
{u}p

}
(2.4)

The vector {u}s lists the displacements corresponding to the secondary de-
grees of freedom and {u}p is the vector containing the remaining primary
degrees of freedom. The system can be solved finding the new stiffness ma-
trix and load vector corresponding to the primary coordinates.
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[K̄] = [K]pp − [K]ps[K]−1
ss [K]sp (2.5)

{F̄} = {F}p − [K]ps[K]−1
ss {F}s (2.6)

2.2.2 Assembling and Constraints

The assembling procedure is based on the numbering of the nodes that is
done for each cell in clockwise direction starting from the top node, while
cells are numbered following the traditional convention, going from the left
to the right and from the top to the bottom.
For what concerns the constraints, the in-plane displacements are considered
fixed. Accordingly, the membrane behaviour of the Reciprocal Frame in this
script is not considered. The vertical and rotational displacements can be
fixed in any requested node. Assuming supports all along the covered area,
the code fixes the vertical displacements on the nodes along the sides of the
square.

Figure 2.3: Example of numeration of nodes and cells

There are many ways to create constraints in finite element programs. In
this case it has been chosen to put zeros all over the columns and rows
of the stiffness matrix and in the nodal force vector in correspondence of
the constrained degree of freedom except for the jj element of the stiffness
matrix. This method works only for fixed restraints. Moreover, the stiffness
matrix loses the information to compute the reaction forces. This problem
can be overcome assembling in a different way the equations necessary for
the calculation of the nodal forces.
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2.2.3 Solution of the Linear System and Post-Processing

The solution of the linear system of the equilibrium equations is performed
inverting the stiffness matrix by the MatLab command backslash which au-
tomatically solve the linear system in the most efficient way.
For the calculation of the internal forces it is used a standard post-processing
where the stiffness matrix [K̄] and the right hand side vector {F̄} of the
macrocell only is recalled. The formulation implemented is the following:

{F}el = [K̄] {u}el − {F̄} (2.7)

Where {u}el is the vector listing the nodal displacement of the related macro-
cell. Starting from the nodal forces of the macrocell, knowing the external
force distribution, it is possible to find the maximum values of bending mo-
ment and shear force of the macrocell. Since all the maximums of the macro-
cells are known, it is easy to extract the global maximum that later will be
used for designing the reciprocal frame cross-section.

2.3 Design Procedure
The optimal configuration of the reciprocal frame has been carried out con-
sidering the following factor:

• The cost of the Timber used for Reciprocal Frame

• The cost associated to the Cross Laminated Timber used to cover the
Reciprocal Frame

• The cost of the connections between elements

The material used for the reciprocal frame is the glulam (Glued Laminated
Timber), a type of structural engineered wood which consists of several layers
of spruce wood glued together in the direction of the grain. More specifically,
it is used "glulam GL24h", whose properties are reported in the Table 2.1.

GL24h Parameters Strength Values [MPa]

Bending strength (fm,g,k) 24
Shear strength (fv,g,k) 3.5
Modulus of elasticity (E0,g,mean) 11000
Shear modulus (Gg,mean) 4300

Table 2.1: Material parameters
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2.3.1 Cross Laminated Timber Design

Cross Laminated Timber (CLT) is a wood panel product made from glu-
ing together layers of solid-sawn lumber. Each layer is placed and bonded
crosswise on top of each other. This type of assembling reduces swelling and
shrinking to an insignificant minimum level from the point of view of con-
struction technology. Moreover, the finished panel has exceptional thermal
insulation propeties and can also dissipate loads in several directions.
The CLT is used to create a plane surface that can be used as floor or roof.
The length of the CLT is a function of the parameter η; increasing η the
maximum length of the CLT will decrease.

LCLT = L (1− η) (2.8)

The design is made considering a unitary width and a minimum height given
by the commercial profiles that is 60 mm. The CLT must be designed con-
sidering the resistance at ultimate limit state and the deformations in the
mid-span. The maximum bending moment and maximum deflection can be
computed as follow.

Mmax =
1

8
qd L

2
CLT (2.9)

fmax =
5

384

qd L
4
CLT

EI
(2.10)

Hence, the height of the CLT is designed as the maximum between the min-
imum value such that the allowable stress σb is not overcome, the minimum
value such that the allowable deflection flim is not reached and the minimum
value given by the market.

hCLT,M =

√
6Mmax

b σb
(2.11)

hCLT,f = 3

√
5

384

qd L4
CLT

Eflim b/12
(2.12)

hCLT = max{hCLT,M ; hCLT,f ; 60mm} (2.13)

Knowing the geometrical quantities it is possible to compute the total volume
used for the CLT and therefore the associated cost.

VCLT = Atot hCLT (2.14)

eCLT = VCLT eT (2.15)

where the cost of the timber per unit volume eT is assumed as 1000e/m3.
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2.3.2 Principal Element Design

The first passage to design is the definition of applied loads. In this case it is
necessary to pass from the loads per unitary area to loads per unitary length.
This passage can be done assuming that the loads are equally distributed on
the 4 elements that compose the macrocell as it can be seen in the Figure
2.4. The loads that are taken into account are the self-weight of the CLT
and the reciprocal frame structure plus a live load that changes depending
on the case studied.

(a) (b)

Figure 2.4: Simplified influence area and distributed load

For what concerns the cross-section of the element it is considered a rectan-
gular shape with a ratio h over b equal to 5. The ratio was chosen because
the maximum width for a Glued Laminated Timber is more or less 30 cm and
with this ratio it is possible to reach height up to 1.50 m, which can cover
quite large spans. Knowing the applied load and the geometry, it is possible
to pass at the FEM for quadrilateral reciprocal frame all the parameters that
it needs. Once the generalized actionMmax and Tmax are known it is possible
to compute the minimum height that can resist those actions.

hM = 3

√
6Mmax h/b

σmax

(2.16)

hT =

√
3

2

h/b Tmax

τmax

(2.17)

h = max{hM ; hT} (2.18)

Since all the geometrical data are now known it is possible to calculate the
total volume of timber corresponding to the reciprocal frame and the cost of
this part of the structure.

VRF = L b hn◦
el (2.19)

eRF = VRF eT (2.20)
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2.3.3 Connection Design

The connection must respect what it is assumed in the model. In this case
with hinged elements, the connection must have an adequate rotational ca-
pacity and extremely reduced flexural load-bearing capacity. Moreover, when
it is possible, the contact between the elements should be avoided.
In this case in order to certify a certain equivalence between the real cost and
the optimization, it is used a type of connection produced by the "KNAPP"
company called "Rincon" shown in the Figure 2.6. This type of connector
allows for simple and fast joining of the beams, it can be fully concealed and,
if needed, a locking clip can be installed to latch the connector.

Figure 2.5: Rincon connectors

To identify the cost varying the load-bearing capacity, the pricelist has been
consulted and the prices in the Table 2.2 have been identified.

Article F2,d [kN ] eRincon n◦ screws e for 50 screws etot

S 140/60 32.26 31.50 7 28 35.42
S 200/60 49.30 33.50 16 28 42.46
S 200/80 68.78 37.80 16 49 53.48
S 290/80 102.78 42.00 25 49 66.50
2x S 200/80 137.57 75.60 32 49 106.96
2x S 290/80 205.57 84.00 50 49 133.00

Table 2.2: Cost of connectors varying the shear capacity

Starting from those values in the Table 2.2 a linear interpolation of the costs
can be found. So the linearized formula for the cost is the Equation 2.21,
where it is visible a constant part that represents the fixed cost of the con-
nector and a second part of the cost associated to the load bearing capacity.

eConnectors = 14 (1 +
3

70
V [kN ]) (2.21)
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Figure 2.6: Cost of connectors

2.3.4 Design Script

All the previous information are collected in a script that is able to design
the sections of CLT and the primary grid computing the total cost of the
structure varying the eta parameter and the number of cells at each side
of the covered area (n). In the code it is recalled the FEM that is able to
calculate the maximum actions on the structure. Moreover the script does
not take into account the characteristic values fm,g,k fv,g,k of the bending and
shear strength, but the design values fm,g,d fm,g,d computed in accordance
with the equation number 4.4.1 of the chapter 4.4 of the italian building
code (NTC2018), which is reported here below.

Xd =
kmodXk

γM
(2.22)

Where the coefficient kmod depends on the duration of the load and on the
humidity of the structure, while γM is the usual material coefficient. A value
of kmod = 0.9 is used, which considers a small time as a duration of the load,
that can be corrected for ultimate limit state, in which it is usually assumed
that the structure resists very rarely and shortly to this type of load and an
ambient temperature of 20 ◦C. For γM is taken a value of 1.45. With these
coefficients it is possible to compute the two design strength:

fm,g,d
∼= 15MPa (2.23)

fv,g,d =
kmod fv,g,k

γM
=

0.9 · 3.5MPa

1.45
= 2.17MPa (2.24)
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The symbol approximately equal for the bending strength is used since that
value depends also on the height of the beam and it is assumed a sort of
average value. Here below are reported two main examples in which the
script described is used.

Example 1:

This first example considers a quite small covered area with a side length
equal to 8 m. It is taken into account an applied load equal to 5 [kN/m2]
which is totally live load plus the self-weight of the structure where the spe-
cific weight of the timber is 4 [kN/m3]. First of all varying the number of
macrocells per side, even if the two curves are very attached and for some
values of η the cost associated to 3 macrocells is lower than the orange curve,
it is possible to see that the cheapest solution is the one related to 2 macro-
cells for each side.

Figure 2.7: Cost of the structure varying n for span length equal to 9 m

Then, analyzing better the case in which n=2, it is possible to understand
the optimal η that minimizes the parameter cost. As it is shown in the Figure
2.8(b), even if the curve of the total costs is quite flat starting from η equal
to 0.24 until 0.5 (the differences are in the order of 10%) the optimal solution
is found for η equal to 0.5.
In the Figure 2.8(b) it can be also appreciated that the cost of the connectors
decreases with η. This is due to the fact that the shear force that determines
the cost also decreases with η, because with η it is increasing the distance
between the support and the applied load of each element and this increases
the bending moment, but decreases the shear force. In this case for the
optimal η, the reciprocal frame degenerates in a trellis reported in the Figure
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2.9. For the optimal solution the principal elements are subjected to a design
load qd = 11.82 kN/m and the resisting cross-section of the reciprocal frame
has a base of 14.5 cm and a height of 72.3 cm, while the height of CLT is 8.6
cm.

(a) Timber volume used (b) Cost of the structural parts

Figure 2.8: Volume and Costs curves of the example 1

(a) 2D view with hinges (b) 3D view

Figure 2.9: Optimal configuration for the example 1

In order to verify the results carried out from the MatLab script it is also
performed with the same data a finite element analysis with the software
SAP2000. The main advantage of SAP2000 is that it automatically con-
structs the bending moment and shear force diagram which the script does
not do, but it finds only the maximum values. In the diagram plotted in
Figure 2.10 are reported the bending moment and shear force diagrams, in
which blue means positive bending moment and clockwise direction of the
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shear force, while in red are plotted negative bending moment and counter-
clockwise shear force. The maximum generalized actions of the two methods
are written in the Table 2.3, where it can be seen that the differences are
very small.

MatLab [kN] SAP2000 [kN]

Mmax 189.10 189.12
Tmax 83.69 83.58

Table 2.3: Results example 1

(a) bending moment diagram

(b) shear force diagram

Figure 2.10: Results example 1 by SAP2000
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Example 2:

In this second example it is considered a roof with a span equal to 16 m;
the applied load (1kN/m2) is quite small with respect to the previous case,
because as a roof the live loads are usually lower and strictly correlated with
the snow loads.
As it is shown in the Figure 2.11 the optimal number of marcrocells for each
side is 4, even if as in the previous case two curves are really close.

Figure 2.11: Cost of the structure varying n for span length equal to 16 m

Then, analyzing better the case in which n=4, it is possible to understand
the optimal η that minimize the parameter cost.

(a) Timber volume used (b) Cost of the structural parts

Figure 2.12: Volume and Costs curves of the example 2
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In the Figure 2.12(a) the curve of the reciprocal frame has two shapes. The
first part has an hyperbolic shape and reflects the shear force that in this
case governs the design, while in the second part, for larger values of η, the
curve becomes a straight line where the problem is governed by the bending
moment. For what concerns the CLT, there is a first section until η = 0.424
where their span can be covered with height larger than the smaller one given
by the market, while for the second part the curve becomes flat because the
height of the CLT remains constant to h = 60mm. Looking at the curve
of the total costs in the Figure 2.12(b) the optimal solution is reached for
η = 0.424. In the Figure 2.13 it is shown the optimal configuration.
For the optimal solution the principal elements are subjected to a design load
qd = 3.19 kN/m and the resisting cross-section of the reciprocal frame has a
base of 14.7 cm and a height of 73.4 cm, while the height of CLT is 6 cm.

(a) 2D view (b) 3D view

Figure 2.13: Optimal configuration for the example 2

Also in this case the results of the optimal solutions are verified with SAP2000.
The relative diagram that follows the same convention of the example 1 are
plotted in the Figure 2.14, while the maximum values are reported in the
following table.

MatLab [kN] SAP2000 [kN]

Mmax 197.9 196.68
Tmax 87.24 86.72

Table 2.4: Results example 2
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(a) bending moment diagram

(b) shear force diagram

Figure 2.14: Results example 2 by SAP2000

In order to have a complete view on the results varying all the parameters
involved, in the Appendix B are reported tables in which there are the optimal
configurations of the slabs and the main geometrical data of the elements.
Moreover it is also reported the total cost of the structural part considering
the cost of the timber as 1000e/m3 and the cost of the connectors equal to
the one computed in the Section 2.3.3.
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Chapter 3

Triangular Reciprocal Frames

In this chapter it is analyzed the optimization of triangular reciprocal frames
in the 2D plane. The approach used is very similar to the one used for the
quadrilateral reciprocal frames.

3.1 Geometry of Triangular Reciprocal Frames
The geometry is no more based on the square’s macrocells but on triangular
equilateral macrocells composed by three elements with equal length. They
can be described starting from two main parameters: the engagement ratio
η and the base b of the triangle.

(a) (b)

Figure 3.1: Geometry of triangular macrocell
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η =
Len

L
(3.1)

Knowing these two parameters that can be the data of the problem it can
be derived the total length of the beam and the inclination angles α and θ
from which it is possible to reconstruct the planar coordinates of any point.

L =
b

2
√
η2 − 3

2
η + 3

4

(3.2)

α = arccos

(
2η2 − 5

2
η + 3

4

(1− 2 η)
√
η2 − 3

2
η + 3

4

)
(3.3)

θ = α− 30◦ (3.4)

Figure 3.2: Definition of angles

3.2 Finite Element Method for Trian-RF
As in the case of quadrilateral reciprocal frame it is developed a finite element
method in order to solve rapidly the structural analysis of the triangular
reciprocal frames varying η and the number of macrocells. The code is based
on the macrocell showed in the Figure 3.1 so it works only for equilateral
triangle. Moreover it is built on the same hypotheses of the Section 2.2, it
is able to compute the maximum shear force and bending moment acting on
the structure.
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(a) Primary and Secondary dofs (b) Primary dofs

Figure 3.3: Degrees of Freedom of the Macrocell

The macrocell is idealized as a combination of E-B beams elements connected
by 3 fictitious rigid links between supporting points as we can see in the
Figure 3.3, the connections between beams are modelled as hinges which
can provide also torsional restraint. This macroelement has 6 degrees of
freedom but in order to write the stiffness matrix and the nodal force vector
easily six additional degrees of freedom have been introduced, which were
later deleted with the static condensation method described in the Section
2.2.1. In the Figure 3.3(a) is reported the macrocell with both primary and
secondary dofs and in the Figure 3.3(b) are reported only the primary degrees
of freedom later used in the assembling procedure. Moreover considering a
uniform distributed load applied on all the elements, it is possible to write
the stiffness matrix and the nodal force vector (Appendix A).

3.2.1 Assembling and Constraints

The assembling procedure is based on the numbering of the macrocell within
the overall slab. In order to simplify the procedure and to create semi-squared
elements it has been assembled two macrocell as it is shown in the Figure3.4.
Using this element as reference, it is used n to identify the number of cell of
this type for each side.
Differently from what it is done for the quadrilateral RF in this case it is not
possible to choose a configuration of the rotational degrees of freedom such
that they are in the same direction in two adjacent macrocells. So it is take
into account during the assembling procedure this fact, changing opportunely
in the global stiffness matrix and in the global nodal force vector the signs of
those mixed coefficients. The numbering of the macrocell is done using as a
reference, the direction in which is oriented the macrocell shown in the Figure
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Figure 3.4: Cell type for assembling with numbering of nodes

3.4 with an arrow, from that direction, the numbering is done in clockwise
direction.
Taking into account that the in-plane displacements are considered fixed, the
others displacements can be fixed wherever is necessary. The code fix the
vertical displacement of the nodes on the edges of the slab considering those
edges as a simple supports. The procedure that is used in the script for apply
those constraints is the same of the one reported in the Section 2.2.2, as well
as for the system solution and the post-processing the procedure used in the
Section 2.2.3 is reproduced for this case.

3.3 Design Script
The optimal configuration of the slab has been carried out considering the
same factors, materials, connections and procedures used in the Section 2.3.
One little difference is the length of the cross laminated timber used to create
a floor area. In this case the equation is the following:

LCLT =
√

3L (1− η) (3.5)

The second difference is that, due to the configuration of the macrocell from
which is build the script, the covered area cannot be squared but rectangular
with a ratio between the two edges equal to:

L2

L1

=

√
3

2
(3.6)
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b =
L1

n
(3.7)

Where the L1 is the largest length from which is obtained the width "b" of
the triangle and n is the number of cells type for each side. In the case in
which it is given a square area it is possible to elongate only those elements
near the edges in the shortest direction and verify if they can resist at that
additional loads that for sure are present due to the larger values of the
lengths. Luckly those elements are the ones less loaded (see Figure 3.8).
Here below are reported two main examples: the first one considers a small
covered area with maximum span of 8 m but quite high loaded (5kN/m2),
while the second example considers an higher covered area with a maximum
length of 16 m but less loaded (1kN/m2).

Example 3:

In this example of triangular reciprocal frame it is considered a covered area
of 8x6.93 m and an applied live load of 5kN/m2, while the self weight of the
structure is intrinsically computed by the code.
The first optimization is done varying the number of cell type and the result
plotted in the Figure 3.5 shown that the cheapest solution is reached for n=2.

Figure 3.5: Cost of the structure varying n for L1 equal to 8 m

Then analyzing better the case in which n=2, it is possible to see how the
cost of secondary elements i.e. the cross laminated timber is governing the
problem while the cost of the connectors is low since the number of macro-
cell is really small (only 8). As in the case of quadrilateral reciprocal frames
the design of principal elements is governed by the shear force for η small
while for η larger than a certain value the shape of the curve change and the
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bending moment becomes preponderant. In this specific case the optimal
solution is reached for η = 0.5 where the reciprocal frame degenerates in a
trellis reported in the Figure 3.7.
The cross-section of primary elements subjected to a design load qd = 9.83 kN/m
has a base of 13.6 cm and an height of 68.2 cm while the CLT height is 10.6
cm.

(a) Timber volume used (b) Cost of the structural parts

Figure 3.6: Volume and Costs curves of the example 3

(a) 2D view with hinges (b) 3D view

Figure 3.7: Optimal configuration for the example 3

As in the case of quadrilateral reciprocal frame the results for the optimal
solution, in which η = 0.5, have been verified with a finite element program.
The diagram and the maximum applied actions are reported respectively in
the Figure 3.8 and in the Table 3.1.
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MatLab [kN] SAP2000 [kN]

Mmax 158.76 159.15
Tmax 89.42 89.41

Table 3.1: Results example 3

(a) bending moment diagram

(b) shear force diagram

Figure 3.8: Results example 3 by SAP2000
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Example 4:

This example considers a covered area of 16x13.86 m with an applied live
load of 1kN/m2. Given this great span and low load, this example can be
correlated with a roof of a pavilion. Analyzing the optimal number of cell
type it has been found an nopt equal to 4 (see Figure 3.9.

Figure 3.9: Cost of the structure varying n for L1 equal to 8 m

Focusing on the case n=4 it is possible to find the value of ηopt that in this case
is 0.418, differently from the previous example here the principal elements
are preponderant in the definition of the total volume, in fact it has been
obtained a value of η different from 0.5. The cross-section that resists at
the maximum bending moment and shear force generated by a design load
qd = 2.86 kN/m with a ratio height over base equal at 5 has a base of 13.6
cm and an height of 68.1 cm, while the CLT has a thickness of 7 cm.

(a) Timber volume used (b) Cost of the structural parts

Figure 3.10: Volume and Costs curves of the example 4

35



(a) 2D view

(b) 3D view

Figure 3.11: Optimal configuration for the example 4

Even for this last example of planar nexorade, they are verified the results
carried out from the MatLab script. The diagram of the bending moment and
the shear force are reported in the Figure 3.12, while in the Table 3.2 it is
possible to find the maximum values coming from the two different methods,
in this case the differences are always less than 5%, but are larger with respect
to the other cases, this fact can be blamed to the hypotheses made in the
MatLab script, i.e. it was neglected the torsional effect on the slab, that in
this case affects in a small amount the results. Moreover it can be noticed
that these errors are on the safe side of the problem.
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MatLab [kN] SAP2000 [kN]

Mmax 158.25 153.54
Tmax 105.48 101.89

Table 3.2: Results example 4

(a) bending moment diagram

(b) shear force diagram

Figure 3.12: Results example 4 by SAP2000

37



As a general remark, on the basis of these examples can be asserted that
the costs related to the triangular reciprocal frames are slightly higher with
respect to the ones connected to the quadrilateral reciprocal frames even if
the covered area of the triangular RF is smaller than the other one. This
rule is always satisfied in the results reported in the Appendix B. However
with the triangular RF is more frequent the situation in which it is obtained
a ηopt different from 0.5, which should be more esthetics.
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Chapter 4

Spherical Reciprocal Frames

In this chapter three-dimensional reciprocal frames have been studied and
optimized, more precisely: semi-spherical domes. Since the complex problem
related to the form finding of spatial nexorade, the usage of normal finite
element program, or MatLab, is not more easy and sensible, so it has been
decided to use the Rhinoceros CAD environment strictly connected to the
plug-inGrasshopper in order to control parametrically the design of reciprocal
frames in three dimensions. For what concern the structural analysis of
nexorades it has been used a parametric structural engineering tool which
provides accurate analysis of spatial trusses, frames and shells, that works in
the environment of Grasshopper, called Karamba3D [14].

4.1 Geometry of 3D Reciprocal Frames
As it was said previously in the Section 1.1.1 the definition of three-dimensional
reciprocal frames should be quite complex, and it is even more complicated if
the geometry is defined parametrically as it is done. In order to simplify a bit
the problem, focusing more on the structural part, it is introduced the usage
of curved element, this design option it is done mainly to avoid eccentricities
between elements, but also to create a smooth surface for ceiling.
The Grasshopper environment for structural problems works in a way in
which, before it is defined with lines and curves the basic geometry, and then
this lines become a beam elements with the tools of Karamba. So first of
all it was defined a planar reciprocal frame geometry in a slightly different
way with respect to what was done in the Chapter 2 and 3, however also in
this case the planar geometry has been parameterized varying the size of the
macrocell and the engagement ratio eta. Moreover the algorithm constructed
in Grasshopper (Figure 4.1) for the definition of reciprocal frame can work
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with any type of polygon in input.

Figure 4.1: Grasshopper algorithm for constructing planar reciprocal frame

Then it was defined the surface on which the planar nexorade was projected,
in this case as a three-dimensional surface was chosen the lowered dome, also
the dome is parameterized varying the radius and the height. The power of
Grasshopper is that all these variable can be changed easily such that the
geometry change automatically without any redrawing or further definitions.

Figure 4.2: Base geometries

When the two base geometries are defined the lines of the reciprocal frame
were projected on the lowered dome, the projection rule can be changed in
order to minimize the distortions connected to it, in this case a vertical pro-
jection was chosen. Before passing the curves to the structural tool Karamba,
it is necessary to make a comment on it, in fact the analysis component made
by Karamba works only with straight lines, so the actual curves belonging
to the lowered dome have been split at their intersection and then divided
in a number of segments such as the differences between the real curve and
the piecewise line are negligible. This type of projection used to construct
the nexorade on the lowered dome can be done with any type of surface that
could be studied, obviously it must be taken into account that with this type
of projection more the surface is vertically, more the distortion will increase.
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Figure 4.3: Projected reciprocal frame

4.2 Structural Analysis with Karamba3D
Once the geometry to analyze is defined, it can be passed to the component
"Line To Beam" of Karamba, this component finds out how the input (lines)
connect between each other and outputs beams as well as a set of unique
points which are their end-points.
Since Grasshopper works without physical quantities, but thinks in units, it
is important to highlight that each unit corresponds in Karamba as a meter.
Moreover even if it is not crucial in the assembling procedure as in other
finite element programs, it is important to mention the orientation and the
reference system of the beams, also because it is useful in the post-processing
phase. In Karamba the default orientation, that can be also changed with
specific components, of the local coordinate system of a beam follows these
conventions:

• The x-axis starts from the starting-point and finishes to end point fol-
lowing the beam axis

• The y-axis of the beam is at right angle with respect to the x-axis and
parallel to the global xy-plane, in the case in which the local x-axis is
perpendicular to the xy-plane the y-axis of the beam is chosen parallel
to the global y-axis

• The local z-axis is defined starting from the other two axes following
the right-handed coordinate system

Before the assembling procedure must be defined supports, joints, materials,
cross-sections and loads. For each of these quantities there is a specific com-
ponent that generates it in Karamba. For example the joint component is
used to release some degrees of freedom at the connection, because the default
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settings impose a rigid connection between two or more intersected elements.
The assemble component collects all the necessary information and creates a
statical model from the inputs. Once the statical model is defined it can be
used the component "Analyze" in which the first order finite element analysis
is performed, this component of Karamba computes the displacements and
the internal forces of the structure neglecting the influence of the axial force
in the stiffness of the elements. Alternatively it can be performed, always
with a tool of Karamba, a second order analysis of the reciprocal frame, the
component compute the second order axial force with an iterative procedure
with repeated updates of N II

x . In order to make the post-processing and
visualize the results there is another component called "Beam View" which
allows to visualize in Rhino the diagram of internal forces, the deformed
shape and the normal stresses of the cross-section.

4.2.1 Structural Behaviour of Spatial Reciprocal Frames

Here below, starting from a general example, it has been wanted to emphatize
the main key features of the structural response of spatial reciprocal frame.
So it is studied as a general example a quadrilateral base geometry with a
size of macrocell equal to 4.5m and an engagement ratio η = 0.375, projected
on a lowered dome with a radius of 10m and an height of 5m. The applied
load for unitary area is 2 kN/m2 plus the self-weight of the structure, the
load is assumed distributed constantly all along the structure, in this case as
for planar RF it is used "Glulam GL24h". The points belonging to the base
circle are assumed constrained in the three spatial displacements x, y and
z, while the rotations are free. With these data it is analyzed the nexorade
taking into account the second order effects, that cannot be neglected due
to the high increment of internal actions and displacements (about 29%).
The diagram of the internal forces, and the stress state of the elements are
reported in the Figure 4.5 and in Figure 4.4, while the maximum values are
listed in the Table 4.1.

As a first remark it can be immediately visualized that the in-plane and
out-of plane behaviour of the structure is fully coupled, so differently from
the planar nexorade in which there weren’t axial forces in the frame, here
all the elements are in compression. The most interesting part can be seen
thanks to the analyzing component "Optimize Cross Section" of Karamba
that subsequently will be explained in the Section 4.3. In fact using this tool
it is possible to visualize where the elements are mostly loaded, i.e. the part
in which the element cross-section is bigger, in this particular case but holds
for each spatial reciprocal frame, quadrilateral and triangular, the critical
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Figure 4.4: Stress state and cross-section visualization

(a) axial force diagram (b) bending moment in y-direction diagram

(c) bending moment in z-direction diagram (d) shear force in z-direction diagram

Figure 4.5: Internal Forces Diagram
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Internal Force Max Min

Nx [kN ] 1.99 -105.77
Mx [kNm] 4.16 -3.66
My [kNm] 43.75 -14.72
Mz [kNm] 42.83 -42.83
Vy [kN ] 44.63 -65.67
Vz [kN ] 34.77 -34.77

Table 4.1: Maximum and minimum values of internal forces

Figure 4.6: Deformed shape

part is the one closer to the connections primarily for two reasons: the axial
force (the biggest action) transmitted by the connected element creates a
maximum value in the secondary moment Mz, while the shear force com-
ing from always the same element creates a maximum value in the primary
bending moment My.
For what concern the displacements, in the Figure 4.6 it is reported the de-
formed shape of the reciprocal frame, the scale of the deformations is higher
with respect to the real one in order to highlight the behaviour, with the val-
ues reported in the legend is intended the displacement in the space, while the
maximum vertical displacement is 3.76cm and the maximum horizontal dis-
placement is 3.51cm. In the Figure 4.6 it can be seen the deflection s-shaped
of most of the elements due to the punctual forces transmitted by the con-
nections. In the case in which a glass cover or other fragile type of panels are
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choose as a ceiling, the study of the displacement of the frame becomes cru-
cial. In that case the analysis of the deflections must be investigated deeply
considering not only the absolute values, but also the relative displacements
between the points in which the panels are attached. Although it is not a
significant contribution, in that case, the self-weight of the structure doesn’t
enter in the calculation, because it is an action already present when the ceil-
ing is constructed. A solution to reduce the horizontal displacement of the
elements can be the introduction of steel wires between two parallel nexors,
such that the two displacements in the opposite directions compensate each
other.
The behaviour of triangular macrocell applied to spatial nexorade is quite
similar, the biggest differences are in the transmission of axial force in the
connection, that due to the inclination between the two elements creates a
jump in the axial load diagram of the element, but reduce the horizontal
displacement of the element because only a component of the axial force acts
in the secondary bending moment Mz.

4.3 Optimization Methods
Differently from what it is done in the Chapter 2 and 3 in which the opti-
mization of the number of cells, so the size of the cells, and the engagement
ratio η was performed with a purely practical procedure finding in the global
population of the possibilities the less expensive, for the spatial reciprocal
frame it has been adopted a model-based optimization tool for Grasshopper.
This tool called Opossum [17] is the first publicly available, model-based op-
timization tool aimed at architectural design optimization, or more widely
aimed to problems that involve time-intensive simulations.
This optimization method was not yet used for nexorades also because look-
ing at the literature the structural optimization was not totally taken into
account, the main purpose in the existing literature is the geometrical defini-
tion starting from a generic surface. For example the topological optimization
done by Godthelp [7] in his thesis is based on the possibility to control manu-
ally the eccentricity between elements, similar to the one used by Anastas [1]
who impose, using a dynamic interactive physical solver, all the eccentricities
equal. While the procedure used by Arup [8] in the design of Rokko Mountain
Observatory is the one that closer gets to optimized the total cost, in fact
creating the shift base geometry starting from a tridimensional surface the
algorithm finds a single combination that would result in the shortest total
element length, in other words fixing all the other geometrical parameters the
solution obtained results in the flattest shift frame. However Arup didn’t do
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a sectional modification, imposing a diameter of the elements which remains
fixed during the optimization. It can be very interesting also the procedure
used by Bavarel[2] in his doctoral thesis where he used a type of black-box
optimization population-based that draws its inspiration from natural pro-
cess and it is called "Genetic Algorithms", however due to the lack of rigor
and poor performance the mathematical optimization community regards
metaheuristics as "method of last resort"[3]. The procedure used by Bavarel
it has been recalled also in the work of Pugnale[15] who has created a simple
benchmark in which explains that even if the problem is quite simple the
genetic algorithm does not seem to work optimally.
Also the plug-in Opossum uses one type of black-box optimization, where
with this definition it is intended those optimization problems in which the
relationship between variables and performance objective are not explicit by
mathematical functions, but by evaluating a parametric model with numeri-
cal simulations. In fact Opossum is a model-based method, i.e. the algorithm
employs surrogate models to guide the search for good solutions, these surro-
gate models in Opossum are "Radial Basis Function" originally proposed by
Gutmann(2001)[9] and then developed by Costa & Nannicini(2014)[4] who
propose an assessment of model quality using a cross validation scheme, in
order to dynamically choose the surrogate model that appears to be the most
accurate for the problem. However in order to avoid time consuming pro-
cesses, also with Opossum, it is preferable to use a low number of variables.
In the model used for spherical dome in Grasshopper, Opossum is used to
optimize the size of each macrocell and the engagement ratio η, while for
the structural optimization of the cross-section of the reciprocal frame it is
used the Karamba’s algorithm "Optimize Cross Section". This component
takes into account the cross sections load bearing capacity and optionally
limits the maximum deflection of the structure. The optimization is done on
a finite number of cross-section that is defined by the user, moreover the user
passes at the algorithm a first cross-section at which the optimization starts.
The procedure followed by Karamba is the following:

• Determination of section forces in at least three points along all beams
using the initial cross-section

• For each element or given set of elements: selection of the first sufficient
entry from cross section

• If no changes were necessary in step two or the maximum number of
design iterations is reached, the algorithm stops. Otherwise it returns
to step one using the cross sections selected in step two
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4.4 Optimized Configuration for 3DRF
Starting from the parameterized geometry constructed above in the Section
4.1 it has been studied the optimized configuration varying η and the size of
the macrocell. As for planar nexorades, for optimal configuration is intended
the one that minimize the parameter cost that is the only way to weight the
reciprocal frame, the connectors and the CLT used as cover.
After a several number of tests and reasoning it has been concluded that the
optimal configuration for both quadrilateral and triangular based reciprocal
frame is reached for the engagement ratio η equal to 0.5. This result could
be expected, because the maximum internal forces are reached due to the
transmitted concentrated forces at the connections, but for η = 0.5 the "sec-
ondary" elements intersect the "primary" element in the same position in
such a way that the two axial forces are counterbalanced and the secondary
moment is generated only by the difference between the two actions (Figure
4.7).

(a) Mx bending moment for η 6= 0.5

(b) Mx bending moment for η = 0.5

Figure 4.7: Mx bending moment diagrams varying eta

So asserted the optimal engagement length they have been developed in
details two examples using both the base geometries.
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4.4.1 Quadrilateral Based 3D Reciprocal Frame

The optimal configuration in the case of quadrilateral based reciprocal frame
is obtained as described in the Section 4.3 with Opossum and the "Optimize
Cross Section" tool of Karamba. As three-dimensional surface it was selected
a lowered spherical dome with a radius of 10m and an height of 5m, with an
applied live load of 3 kN/m2. Moreover the tool "Optimize Cross Section"
needs a family of cross-section as a input, in this case it was chosen a fixed
base of 20cm and a variable height, this solution has been made in order to
have a cross-section with a varying height, because it is not feasible to have
both width and height varying along the element.
With these data it was performed the numerical optimization considering also
the second order effect, the results are reported in the Figure 4.8. From these
results it can be seen that the surface interpolating the cost of the structure
is negatively sloped towards η = 0.5 and in the perpendicular direction the
surface has a shape of a parabola with a minimum around 2.3m, moreover it
is evident that the biggest variation derives from the macrocell size. Anyway
the minimum is reached for η equal to 0.5, a macrocell size equal to 2.28m,
and with a constant cross-section all over the elements with an height of
10cm. Considering these quantities the cost of the structure is 36421e.

Figure 4.8: Total cost function for quadrilateral based 3DRF

The diagrams of the internal action are reported in the Figure 4.10, while
the maximum values are listed in the Table 4.2.
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(a) axial force diagram (b) bending moment in y-direction diagram

(c) bending moment in z-direction diagram (d) shear force in z-direction diagram

Figure 4.10: Internal Forces Diagram

Figure 4.9: Stress state and cross-section visualization
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Figure 4.11: Deformed Shape

Internal Force Max Min

Nx [kN ] 9.34 -87.80
Mx [kNm] 0.53 -0.51
My [kNm] 1.87 -1.62
Mz [kNm] 2.57 -2.53
Vy [kN ] 3.53 -3.28
Vz [kN ] 3.59 -4.76

Table 4.2: Maximum and minimum values of internal forces

Looking at the results coming from Karamba it can be derived that in the
optimal solution for η equal to 0.5 the preponderant action is the axial one,
differently from what it is described for a random eta in the subsection 4.2.1
in which the axial force was still the greatest contribution, but was in the
same order of magnitude as the moments and shear forces. It can been also
noticed that the last row of elements before the supports are subjected to
tension forces, this is due to the axial force in the "vertical" element which
tends to open the dome. So at the end the coupled behaviour between flexural
and axial is governed by the axial component. Moreover doing a comparison
between the results obtained for the planar reciprocal frame and this opti-
mal configuration it can be seen how the bending moments and the shear
force are one/two order of magnitude smaller in the case of spatial RF. This
observation leads to the conclusion that in this case the cost of the joints is
less important in the overall optimization problem.
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Focusing instead on the Figure 4.11 it is possible to observe that the de-
flections are concentrated mainly in the central part of the dome where the
elements are more planar and the external load is perpendicular to their.
Also the elements at the base, subjected to an high level of axial load and
negative bending moment, are experiencing a non-negligible amount of de-
formation.
As a little remark on the shape of the elements, since all the quantities in-
volved in the design problem are symmetrical, then the final geometry will
be symmetrical somehow. In fact the geometry has a central symmetry, this
means that not all the elements have different length and shape, but at least
an element is repeated equal four time in the overall structure. This should
facilitate the production and the construction operations.

4.4.2 Triangular Based 3D Reciprocal Frame

Considering the same quantities used in the previous subsection, it was op-
timized the usage of triangular based reciprocal frame.
As for the quadrilateral it was performed an optimization with Opossum
considering also the second order effect. With the values obtained it was
constructed the cost surface varying η and the macrocell size. Also for this
case in the Figure 4.12 it can be appreciated the slope of the surface in the
direction of eta equal to 0.5, and even if it is not accentuated in the plot it
exists in the direction of the macrocell size a minimum value around 2.10.

Figure 4.12: Total cost function for triangular based 3DRF
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Figure 4.13: Stress state and cross-section visualization

Anyway the global minimum is found for η = 0.5, macrocell size equal to 2.10
and a constant cross-section for all the elements with an height of 10cm and a
base of 20cm. In the optimal case the total cost of the structure is 45228.25e.
The remarks that was found for planar nexorades can be repeated also for
spatial reciprocal frame, i.e. also for domes the most light configuration and
so also the less expensive is the one related to quadrilateral based reciprocal
grids, this consideration is probably based on the fact that even if triangles
are more rigid to resist at horizontal actions, they have an higher ratio total
length on the covered surface.
The relative diagrams of the axial stress state of the sections and the internal
forces are respectively reported in the Figure 4.13 and in the Figure 4.14.

Internal Force Max Min

Nx [kN ] 1.09 77.90
Mx [kNm] 0.31 -0.17
My [kNm] 0.87 -1.73
Mz [kNm] 2.54 -2.54
Vy [kN ] 2.03 -1.70
Vz [kN ] 1.97 -2.55

Table 4.3: Maximum and minimum values of internal forces

As always happens for domes also in this case the preponderant action in
coupled behaviour is the axial force that has its maximum in the lowered
part of the frame.
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(a) axial force diagram (b) bending moment in y-direction diagram

(c) bending moment in z-direction diagram (d) shear force in z-direction diagram

Figure 4.14: Internal Forces Diagram

Figure 4.15: Deformed Shape
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For what concern the deformed shape plotted in the Figure 4.15 it can been
highlighted the lowering of the upper part and the horizontal outward move-
ment due to the push arriving from the axial force. However it has been done
a comparison with the quadrilateral based dome, and it has been noticed that
the maximum displacements are lower in this case, this thanks to the higher
rigidity of the triangular shape in plane.

4.5 Paraboloidal Reciprocal Grids
Even if in this thesis the focus was made in the optimization of the structure
giving as data a base surface on which the reciprocal frame was constructed,
it is perfectly known from previous literature[16] that considering a uni-
form distributed vertical load the funicular curve is a parabola. The case of
paraboloid surface was therefore studied in order to give another example of
an application for reciprocal frames. Keeping the same covered area of the
case studied in the Section 4.4 and the same height, it was defined the base
parabola.

z = −x
2

20
+ 5 (4.1)

Making the revolution around the vertical axis z of this curve it was con-
structed the paraboloid. Once the surface is defined it can be projected the
reciprocal geometry on it. In order to not go too far in the topic of form find-
ing of the surface, the example is focused on the quadrilateral grid, which
was the optimal solution until now. Also for this case was made an opti-
mization with Opossum varying only the macrocell size, the optimal solution
was reached for a macrocll size equal to 2.59m and a constant rectangular
cross-section 20x10 cm. The results of this case study are reported in the
following figures and table.

Internal Force Max Min

Nx [kN ] -52.05 -76.85
Mx [kNm] 0.09 -0.09
My [kNm] 0.66 -0.37
Mz [kNm] 0.50 -0.54
Vy [kN ] 0.25 -0.39
Vz [kN ] 1.76 -1.41

Table 4.4: Maximum and minimum values of internal forces
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Figure 4.16: Stress state and cross-section visualization for paraboloidal sur-
face

Figure 4.17: Deformed Shape for paraboloidal surface
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The most important remark follows what it was said on the funicular curve
of the structure, in fact even if funicular behaviour is temporary and an
ideal one, because shape and loads inevitably change during the structure
life-time, in this specific load case all the points of the cross-sections are
only in compression. Moreover, even if they are present, the moments and
shear force are very small, almost negligible. This distribution of the stresses
helps a lot to reduce the displacements, in fact as it is possible to visualize
in the Figure 4.17 the maximum displacements doesn’t reach 1cm value.
Furthermore, even if it is not accentuated in the deformed shape, differently
from the spherical surface, in this case the elements in "vertical" near the
supports are subjected to positive bending moment preventing the horizontal
outwards displacements.
For what concern the total cost, thanks to the the new shape of the surface
the cost is reduced about 5% (total cost 34745e). So at the end considering
elements with a minimum base of 20cm used to avoid lateral buckling due to
the transmission of axial force, minimum height of 10cm, a circular covered
area with a diameter of 20m, an highest point at 5m, and an applied live
load of 3kN/m2, the optimized solution is reached for quadrilateral based
reciprocal frame with an engagement ratio η equal to 0.5 a macrocell size of
2.59m and a paraboloidal surface.
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Chapter 5

Conclusions

After a long study on reciprocal frames, which has tried to cover the most
notable features of these type of structures, it has been observed that, if
the optimal configuration is constrained to comply with the classical shape
of the nexorades, a non-optimal solution from structural point of view will
be obtained. In fact, except for some special case, the optimal reciprocal
configuration degenerates in a regular grid. Considering the reciprocal grid,
a comparison can be performed between the already existing techniques, such
as the grid composed by primary and secondary beams, and the one in which
all the elements are connected by a rigid joint which takes the highest value
of loads. In the Figure 5.1 these three configuration are reported.
Assuming that the material used for the three different configuration is more
or less the same, the two main cost variables are:

• the cost of the connections

• the cost related to the transportation and installation of the elements

The first variable, the connection’s cost, is for sure higher in the third con-
figuration in which the connectors have to sustain the full load, because they
are creating a monolithic grid. While the less expensive arrangement is the
one with primary and secondary beams, in which the actions transmitted by
secondary elements to the primary elements are very small because related to
their influence area. Instead for what concern the transportation and instal-
lation of the elements, the costs, which are strictly connected to the length
of the elements, are exactly the opposite, because in the case with primary
beams the maximum length of the elements is equal to the lower span, while
for the fixed connections the elements have a length equal to the one of the
cell. Moreover if the area to be covered is larger than 13m the transportation
of full spanning elements become expensive and expensive, to be then impos-
sible for lengths over 30 meters. So, on the base on these considerations, the
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(a) Reciprocal Grid (b) Primary and secondary beams

(c) Fixed connections

Figure 5.1: Grid Configurations
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reciprocal grid always fits in as a solution in the middle, indeed the elements
are long twice the cell length and the connections (hinges) transmit a shear
force that sometimes become significant. At the end it can be said that the
reciprocal frame, with their philosophy of collaboration in order to achieve
bigger aims (in the case of structure span lengths), is a valid alternative to
the current and largely used systems.
As a conclusion, based on the results highlighted in this thesis, one can infer
that: the best way to design a reciprocal frame is to follow the simplicity and
the natural energy balance provided by nature’s laws. Indeed the structural
optimization always reflects these two characteristic in order to achieve the
most aesthetic and functional solution.

"La semplicità è la massima raffinatezza"
Leonardo Da Vinci
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Appendix A

Stiffness Matrices and Nodal
Force Vectors

Figure A.1: Stiffness matrix and nodal force vector of the quadrilateral
macrocell
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Figure A.2: Stiffness matrix and nodal force vector of the triangular macrocell
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Appendix B

Tables

B.1 Quadrilateral Reciprocal Frame Solutions

q = 1[kN/m2]
Ltot [m] nopt ηopt hRF [cm] hCLT [mm] etot

8 2 0.425 43.6 60 5962
10 2 0.5 56.6 67 10803
12 3 0.425 58.7 60 17078
14 3 0.5 71.3 62 26005
16 4 0.424 73.4 61 38913
18 4 0.494 86.5 61 55026
20 4 0.5 97.9 67 76278

q = 2[kN/m2]
Ltot [m] nopt ηopt hRF [cm] hCLT [mm] etot

8 2 0.5 54.8 65 7394
10 3 0.437 59.1 60 13581
12 3 0.5 73.5 65 22493
14 3 0.5 86.8 76 35651
16 3 0.5 100.4 87 53433
18 3 0.5 114.0 99 76654
20 4 0.5 118.1 82 106190
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q = 3[kN/m2]
Ltot [m] nopt ηopt hRF [cm] hCLT [mm] etot

8 2 0.5 61.7 73 8863
10 3 0.5 68.5 61 16179
12 3 0.5 83.0 73 27528
14 3 0.5 97.8 86 43507
16 3 0.5 112.9 99 65010
18 3 0.5 128.3 112 92976
20 3 0.5 144.1 125 128390

q = 4[kN/m2]
Ltot [m] nopt ηopt hRF [cm] hCLT [mm] etot

8 2 0.5 67.4 80 10137
10 3 0.5 74.9 67 18821
12 3 0.5 90.6 80 31968
14 3 0.5 106.7 94 50420
16 3 0.5 123.0 108 75179
18 3 0.5 139.6 122 107290
20 3 0.5 156.5 136 147860

q = 5[kN/m2]
Ltot [m] nopt ηopt hRF [cm] hCLT [mm] etot

8 2 0.5 72.3 86 11288
10 3 0.5 80.3 72 21242
12 3 0.5 97.1 86 36026
14 3 0.5 114.2 101 56723
16 3 0.5 131.6 116 84437
18 3 0.5 149.2 131 120310
20 3 0.5 167.2 146 165540
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B.2 Triangular Reciprocal Frame Solutions

q = 1[kN/m2]
Ltot [m] nopt ηopt hRF [cm] hCLT [mm] etot

8 2 0.5 42.2 65 5951
10 3 0.36 45 60 10551
12 3 0.5 56.7 65 17368
14 4 0.425 58.7 60 26580
16 4 0.418 68.1 70 39173
18 4 0.398 77.6 80 55583
20 4 0.381 87.3 90 76393

q = 2[kN/m2]
Ltot [m] nopt ηopt hRF [cm] hCLT [mm] etot

8 2 0.5 51.6 80 7868
10 3 0.496 56.7 66 14138
12 3 0.459 68.3 83 23783
14 3 0.428 80.1 100 37320
16 4 0.432 82.9 84 55033
18 4 0.414 93.9 97 77603
20 4 0.410 105.5 108 105990

q = 3[kN/m2]
Ltot [m] nopt ηopt hRF [cm] hCLT [mm] etot

8 2 0.5 58.3 90 9407
10 3 0.5 64.1 75 17841
12 3 0.477 77.3 92 29811
14 3 0.451 90.6 111 46494
16 3 0.428 104.1 129 68739
18 3 0.408 117.9 148 97425
20 3 0.395 132.0 167 133470

64



q = 4[kN/m2]
Ltot [m] nopt ηopt hRF [cm] hCLT [mm] etot

8 2 0.5 63.7 99 10948
10 3 0.5 70.0 82 20826
12 3 0.477 84.3 101 34720
14 3 0.453 98.7 121 53999
16 3 0.432 113.3 141 79603
18 3 0.418 128.4 161 112510
20 3 0.421 144.1 179 153840

q = 5[kN/m2]
Ltot [m] nopt ηopt hRF [cm] hCLT [mm] etot

8 2 0.5 68.2 106 12201
10 2 0.5 86.2 133 23214
12 3 0.479 90.3 108 39255
14 3 0.456 105.7 129 60913
16 3 0.437 121.3 150 89594
18 3 0.440 137.7 170 126450
20 3 0.443 154.5 189 172730
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Appendix C

Grasshopper Results for Planar
Nexorades

Once I got used to the Grasshopper environment we wanted to take a step
back and analyze briefly also the planar reciprocal frame with this software.

C.1 Quadrilateral 2DRF
Starting from the example two studied in the subsection 2.3.4, which con-
sider a squared covered area with a span of 16m and an applied live load of
1kN/m2, it has been used the "Optimize Cross-Section" tool and as could
be expected the elements have a parabola shape, which follows the bending
moment diagram, with the biggest rectangle in the correspondence of the
connections.

Figure C.1: Cross-section visualization of example 2

Anyway the biggest cross-section has the same parameter of the one founded
with MatLab, i.e. a base of 15cm and an height of 73cm, but the total cost
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is obviously reduced (27673e) thanks to the less amount of timber used and
the possibility to correlate at each connection its real shear force.
Moreover it was performed an optimization with Opossum and it was found
that the best configuration for the software which is probably more accurate
with respect to the one obtained with the script. The optimal configuration
is different from the one with 4 macrocells for each side found by the script,
going back to the Figure 2.11 it can be seen that the minimum is reached
by n equal to 4, but it is very close to the one reached by n equal to 3 for
η = 0.5. So probably the material cut from this type of solution by the tool
of Karamba is more than the one cut from the solution with n equal to 4.

Figure C.2: Cross-section visualization of the optimal planar configiration

The structure reported in the Figure C.2 has a maximum cross-section with a
base of 15cm and an height of 87cm, the related total cost amount at 27551e
which is very close to the one obtained with η = 0.424 and 4 macrocells for
each side.

C.2 Triangular 2DRF
Also for the triangular planar reciprocal frame it was repeated an example
studied in the subsection 2.3.4, the example 4. Here below for the configu-
ration obtained previously, it is reported in the Figure C.4 the variation of
the cross-section along the elements obtained with Karamba. With the para-
metric software it is found a cross-section with a base of 14cm and an height
of 67cm very similar to the ones of the script, the total cost it is reduced of
28.7% reaching the value of 27940e.
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Figure C.3: Cross-section visualization of the example 4

Moreover it was performed the optimization with Opossum and it is found a
configuration with 4 macrocell along each side as for the example 4, and an
engagement ratio equal to 0.5. The biggest cross-section has a base of 14cm
and an height of 69cm, and the total cost is equal to 26407e.

Figure C.4: Cross-section visualization of the optimal planar configuration

Also in this case the two solutions obtained with different method do not
match. The missmatch is due to the fact that for eta different from 0.5 there
is a length in which the maximum bending moment remains more or less
constant, while for the grid solution this length becomes zero and only one
section has to sustain the maximum action. So even if the moment related to
η = 0.5 is higher with respect the other solutions, and this fact can be seen
in the height of the used section, this effect is more localized and globally the
total mass will decrease, while the Matlab script consider only the maximum
actions whom are higher for the grid arrangement found with the parametric
software.
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