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Abstract

Serverless Computing is an up and coming Platform as a Service(PaaS) of-
fering where the cloud provider manages and allocates resources needed to
keep the application running. This lets the developer focus on the appli-
cation development and not on server maintenance. Alongside off loading
the provisioning and maintenance of the server, Serverless computing also
reduces resource waste by scaling up and down the allocation depending on
the load and the configurations. The users only pay for the resources that
were used by the application thereby saving huge operational cost on their
infrastructure hosting.

Although Serverless might sound like the holy grail of application hosting,
the current state of art technology fall short in several places to meet the
industrial requirements. Data intensive applications, streaming applications,
and distributed computing are some of the fields that could be benefited
heavily by implementation on Serverless platforms in terms of ease of devel-
opment, efficiency and cost. But all the existing platforms offer very poor
performance in these fields and works mostly via workarounds and numerous
third party tools.

This thesis analyses the Serverless paradigm in depth, pointing out the
reasons for this reduced adaptability. To solve these issues, we propose
a lightweight extension to OpenFaaS, an Open Source Serverless platform,
that provides flexibility, scalability and adaptability, while making sure not
to violate the notion of functions. Our implementation tries to reduce the
operational gap between the industrial applications and theoretical ideas put
forward by researches in the past few years. This thesis also offers a deep
study of the full potential and limitations of Serverless thereby making it
clear to the reader why more innovation is necessary in this field.



Sommario

Le piattaforme di Serverless Computing sono soluzioni emergenti Platform
as a Server (PaaS) dove il fornitore di servizi cloud gestisce e alloca le risorse
necessarie per mantenere in esecuzione l’applicazione. Ciò consente allo
sviluppatore di concentrarsi sullo sviluppo del software e non sulla manuten-
zione del server. Oltre a diminuire il carico di lavoro per il provisioning e la
manutenzione del server, questa tecnologia riduce anche lo spreco di risorse
aumentando o diminuendo l’allocazione a seconda del traffico e delle con-
figurazioni. In questo modo l’utente paga solo per le risorse che sono state
utilizzate dall’applicazione risparmiando così enormi costi operativi sulla loro
infrastruttura ospitante.

Sebbene il Serverless Computing possa sembrare il santo Graal dell’hosting di
applicazioni, attualmente le tecnologie all’avanguardia non sono all’altezza in
molti casi di soddisfare i requisiti industriali. Applicazioni con uso intensivo
di dati, applicazioni di streaming e di elaborazione distribuita sono alcuni
dei campi che potrebbero trarre grandi vantaggi da un’implementazione su
piattaforme Serverless in termini di facilità di sviluppo, efficienza e costo.
Tuttavia tutte le piattaforme esistenti offrono soluzioni alternative combi-
nando strumenti di terze parti, con scarse prestazioni.

La presente tesi analizza in profondità il paradigma Serverless, sottolineando
le ragioni della sua ridotta adattabilità. Per risolvere questi problemi, pro-
poniamo una leggera estensione di OpenFaaS, una piattaforma Serverless
open source che fornisce flessibilità, scalabilità e adattabilità assicurandosi
nel contempo di non violare la nozione di funzioni. La nostra implemen-
tazione cerca di ridurre il divario operativo tra le applicazioni industriali e
le idee teoriche prodotte dalle ricerche negli ultimi anni. Questa tesi offre
anche uno studio approfondito del pieno potenziale e dei limiti del Server-
less Computing, rendendo così chiaro al lettore la necessità di innovazione in
questo campo.
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1 Introduction
Serverless can easily be considered as the new generation of Platform as
a Service(PaaS). It is a deployment solution where instead of having con-
tinuously running servers, application instances come up and execute on
predefined events. While the developers worry about the logic of handling
the requests/events, the infrastructure provider takes care of receiving the
request, responding to them, capacity planning, task scheduling, and opera-
tional monitoring [1] This has huge economical and architectural implications
that is still waiting to be explored in its full potential.

In the current industrial workloads, Applications are increasingly becoming
data intensive day by day paving way to adopt several resource heavy tools to
do stream processing, distributed processing, etc. More than often CPU and
memory loads in these machines tent to vary a lot and rather than having a
dedicated server to accommodate the whole range of requirements, it makes
perfect sense to convert it into a Serverless workload thereby saving up on
operational cost, resource waste, and ease of development. However, the
current commercial offerings of Serverless do not work very well with such
workloads.

This is mostly due to the sheer nature of the Serverless paradigm of being
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completely stateless, thereby forcing the developers to use external block
storages for data store and communication. By the design of it, Serverless
applications are deployed as isolated entities which are hard to address di-
rectly via the network. This makes the composition of functions a tad bit
complicated. The most commercial Cloud Service Providers currently offer
wrapper solutions to workaround the composition problem. A very notable
commercial solution here is AWS stepfunction. AWS stepfunction provide an
API to define function compositions, which eventually get executed in AWS
Lambda, the pioneer in serverless platforms. Other than enforcing vendor
lock in to AWS, stepfunction comes with numerous limitations like 20s time-
out on the API gateway, 5 minutes limit to lambda execution, a limit of 2
executions per second etc.

Another major requirement usually for heavy multi-staged processing pipelines
is fault tolerance. If at all a stage fails, the system should be able to restart
from where it failed with the correct intermediate data and complete the
workflow. In orchestrations like stepfunction where data is passed over the
gateway among each other, if a failure occur the processed data till the fail-
ure function is gone for good. This makes the system unreliable for certain
heavy load applications.

In this thesis, we propose an approach to improve the performance of big data
workloads on the Serverless platform by introducing the provision to provide
a computational graph to the Serverless platform which defines the control
flow and data flow in the orchestration. The intermediate data transfer
between the functions will be taken care with the help of maintaining a
scalable in memory distributed cache and storing the intermediate data in
them as ephemeral data. Our system also provides fine grained control over
resource allocation and scaling rules for each individual function. Alongside,
it provides extensive monitoring, function level tracing and visualization, and
out of box setup and deployment. Because of the usage of the intermediate
ephemeral storage and fine grained monitoring the system provides automatic
fail overs. Meaning, if at any step the operation fails, the pipeline will be
able to restart from the point of failure without redoing the whole process
till then. The system will offer an at-least-once guarantee in the request
handling. This is mostly because of the message queue that is being used by
the FaaS system we built on called NATS streaming [47].

It is worth mentioning that our implementation focuses on reducing the gap
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that currently exists with a lot of research ideas and the industry level ap-
plications, making it an easily adaptable solution. We propose a very secure
and multi-tenant implementation of a state-ful Serverless setup which can be
easily used for production quality applications. The possibility to efficiently
do application performance and usage monitoring makes fine grained billing
an out of the box functionality.

Managing intermediate data via additional infrastructure instead of altering
the stateless nature of the function was a conscious choice. The serverless
computing abstraction, despite its many advantages, exposes several low-
level operational details that make it hard for programmers to write and
reason about their code [4]. This is related to misusing/misunderstanding
state in serverless environment. Since the same function is reused again and
again to avoid latency, the cache or state persists across invocations leading
to faulty results. If the state store is handled by an external party mapping
to the invocation id, a lot of this faulty management can be handled.

As for the implementation, we proceed by extending an existing, widely used
Serverless platform called OpenFaaS so as to make it readily adaptable as a
FaaS infrastructure for production quality applications. As for the function
composition, we use an existing library faas-flow to support event driven
workflow based function composition pattern. We make sure that the notion
of a function or serverless platform will not be violated in this process since
with the current state of art of infrastructure deployment, autoscaling and
concurrency happen by leveraging the notions of statelessness and functional
coding. The proof of concept of our solution was successfully implemented
[59] and has been Open Sourced.

There has been several academic researches on ephemeral autoscaling stor-
ages in the past couple of years. Pocket project is one that has received
appreciation and we will be analyzing this platform in depth. Our thesis
implementation adapts an existing ephemeral storage platform.

Using our proposed Serverless setup, we try to efficiently run an Extract-
Transfer-Load(ETL) workload on streaming data. ETL basically is a pipelined
workflow that involves receiving data from source, cleaning and transforming
it, and loading it to a sink. We will split the whole operation into multiple
functions as per the Serverless notion and have them communicate data inter-
nally via the ephemeral data store to complete the pipeline thereby reducing
the latency and external bottlenecks.
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This document describes more on Serverless paradigm, the shortcomings of
it, the ones we are trying to solve, our solution and evaluation. It is split
into several sections as follows:

In Section 2, we go a bit in depth to understand the history of cloud infras-
tructure and the technological innovations that led to Serverless paradigm.
We also look in detail at the characteristics and nature of Serverless. We
look at some commercial Serverless offerings and understand how in the pro-
gramming world Serverless has affected even the way of coding. We will
also see what limitations it holds at its current state of art and the problem
statement of the thesis.

In Section 3, We elaborate on the proposed solution for our Serverless setup
going into detail about how certain crippling limitations can be overcome.

In Section 4, we present the implementation of the system including the
architecture and the tools used.

In Section 5, we go on with the evaluation of our system.

In Section 6, we look at the current state of research in the field of Serverless
technologies and the related works.

In Section 7, we lay down the future works that the system has got planned
moving forward.

We conclude by pointing out what went well and what did not with our
solution in Section 8.

2 Background and Motivation
The term Serverless has been vaguely thrown around the domain of cloud
infrastructure in the past decade as the breakthrough resource(and hence
money) saving tool that lets the developers focus on application logic rather
than the deployment and server maintenance. However, it is often hard to
define what exactly serverless is since the service offering tend to change
based on the cloud provider and the interpretations of the users. It is fair
to say that serverless is a huge leap in the direction of using computational
power as a resource which is paid for, according to the usage. Although the
terminology is irrelevant, we will be focusing on the serverless offering called
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Function-as-a-Service(FaaS) where the cloud providers offer a platform to
which we can upload our application code to(complying to the API rules)
and get uninterrupted service of the same at an endpoint no matter how the
traffic or data load might be. Paying only for what resources has been used
adds to the attraction of the domain. In this section, we will understand more
about this technology, the popular commercial offerings of the same, and its
limitations and the current state of research. We will also analyze the popular
data processing and streaming pipelines in the industry these days and why
Serverless computing fall short in being the right tool of development and
deployment in some cases.

2.1 Evolution of cloud resource management

In the past three decades, software deployment and infrastructure manage-
ment has seen a lot of innovation and evolution. Before diving into the
current industrial standards, it is important to understand the evolution in
this field to get a better grasp on the technological innovations that brought
about this change.

2.1.1 Dedicated servers

Even as recent as fifteen years ago, using dedicated servers was the industry
standard for deployments. Dedicated servers are physical machines. The
general practice was to have server racks on the premise of the company which
are maintained by system administrators and all your software is hosted
there. Although this method offers advanced security and high availability,
it is often common that a lot of physical resources were underutilized and
each resource was for single client. Not to mention the environmental impact
of the reserved heavy hardware which leaves a heavy carbon footprint and
e-wastes.

2.1.2 Dedicated virtual machines(BaaS)

Virtualization technology changed the face of software infrastructure by de-
coupling applications from the underlying hardware. Virtualized servers are
not physical machines, they are a software construct. Virtual servers run on
dedicated servers, the resources of which are divided between several virtual
servers. To get slightly technical, virtualization usually involves installing
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a virtualization software(Hypervisor) on an existing operating system and
then having multiple operating systems on it, sharing all the resources of the
host operating system, yet providing great security and isolation.

Figure 1: Virtualization through hupervisors

Although applications hosted on the virtual machine suffer from a heavy in-
put/output and network overload because of the added layer of indirection,
this technology reduces the resource waste to a great extend. The enterprises
could partition their hardware into multiple virtual machines and have dif-
ferent hosting and computation in each of the them. System administrators
started splitting up their bare metal resources among multiple Virtual Pri-
vate Servers(VPS) by the help of virtualization software. Each VPS would
give you the feeling of having a real system although it is a virtualized sys-
tem which is sharing the resources with other VPSs. This reduced a lot the
amount of work and energy spent on maintaining server racks along with the
terrible underutilization of resources.

More and more companies started adapting this technology and in early
2006 Amazon Web Services(AWS) re-launched themselves as a platform that
offers computing and storage space to developers and enterprises on an on-
demand basis revolutionizing how companies were designing their system
architecture. Soon after Google and Microsoft followed suit with their cloud
infrastructure platforms offering similar services. All these providers function
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by maintaining huge, dedicated server farms across the globe to provide the
necessary resources to the customers.

These kind of services, generally called as Infrastructure as a Service(IaaS) or
Platform as a Service(PaaS), went through a series of changes during the past
decade. On-demand compute instances to completely managed deployment
services(eg: Google App Engine), Pay per use block storages(AWS S3) to
fully managed dedicated relational databases(Google Cloud SQL, AWS RDS,
etc.) a lot of really efficient and interesting services started to be available for
the developers disposition. The billing scheme of these services also started
to be quite flexible even allowing a per second billing plan in the past couple
of years by Google.

It is also worth noting that with the advent of virtualization, the job pro-
files in several companies shifted from having a system administrator role
to having profiles called DevOps(development and operations) who are ap-
plication developers focusing on the provisioning of the virtual machines to
deploy their applications. Although IaaS solved a lot of hassle around infras-
tructure provisioning, the systems and load of the applications still remained
independent. Applications always had dedicated virtual machines even if the
load/traffic to and fro the application is not constant. This meant that a lot
of resources were still being wasted.

Linux Containers A game changer in the world of virtualization was con-
tainerization. Containers are yet another packaged computing environment
that combine various IT components and isolate them from the rest of the
system just like a virtual machine would. It was developed to solve a lot
of problems with virtual machines. The purpose of the containers is to en-
capsulate an application and its dependencies within its own environment.
This allows them to run in isolation while they are using the same system
resources and the same operating system. Since the resources are not wasted
on running separate operating systems tasks, containerization allows for a
much quicker, lightweight deployment of applications. Each container image
could be only a few megabytes in size, making it easier to share, migrate, and
move. Figure 2 shows the difference in the isolation levels of containers and
virtual machines. Even though Linux Containers [5] have existed for a very
long time, in the past decade, containers were made a lot more approachable
and adaptable as a technology by the advent of communities like Docker and
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rkt.

Figure 2: Virtual Machines Vs Containers

The light weight of the containers made it the ideal candidate for running
applications. What makes container based deployments special as opposed to
the ones deployed directly on the host is the consistency of the environment.
The application execution environment can be recreated and ported from one
system to another without affecting the functionality of the application or
having to reinstall the whole binary dependencies on the new machine. Re-
producability of the production environment even in the local exactly, meant
that the development/testing cycle became much more efficient. The iso-
lated package of the application, enveloped as a container image, is agnostic
of the operating system it runs on opening new possibilities for the deploy-
ment. One could also limit and fine tune the resources used by a running
containers giving a lot more control over the application.

Autoscaling The ease in which one can limit the resources and tweak
the runtime parameters externally contributed heavily to the service offering
called autoscaling which basically meant resources for an application runtime
were added or removed as per the usage. All the commercial cloud providers
started offering the aforementioned service in different flavors. Autoscaling
on EC2 or Google Compute, AWS Fargate, etc. are some examples.

In the past two years, innovations have taken a leap in the field of isolation en-
vironments, introducing solutions like AWS Firecracker, Cloudflare workers,
etc. to the community. These solutions aim at mitigating the shortcomings
of Containers which we will discuss in Section 2.2.4
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2.1.3 Serverless

Like mentioned earlier, in the past two years the terms Serverless and Function-
as-a-Service are quite often used interchangeably. In terms of the resource
reservation, Serverless can be considered as a platform as a service solution
that scales. Your application will always have enough and only enough re-
sources dedicated to it. It will scale up and down based on the load and
traffic and the developer only pays for the usage. This paradigm of autoscal-
ing has been hence applied even to database storage solutions by major cloud
providers such that even the block storage is allocated based on usage and
there will be a burst of reservation as soon as a certain limit is reached.
The pioneers of this technology can be considered as the proprietary service
Lambda by Amazon Web Services[6]. Several other cloud providers followed
suit with similar platforms specific to their infrastructure. The nature of
serverless makes it attractive for both developers and the cloud providers
since in the case of former, it means paying much less and in case of the
latter, it means they can easily provide shared tenant resource allocation
units.

We will dive more into the properties and nature of the solution Function-
as-a-Service(FaaS) in the following session.

2.2 FaaS

So far, we have covered the infrastructure management style of FaaS or
Serverless in general. Let us discuss in detail the specifics of the hosting
platform that provides the FaaS functionality.

Most FaaS platforms being closed source, provides the client API for devel-
opers to supply a package including their code and dependencies to. Most
platforms supports a limited set of programming language runtime although
it is usually possible to do workarounds to deploy custom runtime. Behind the
screen, the platform containerizes the application and deploy it so as to get
triggered via pre-defined hooks specified by the developer. The infrastructure
also provides endpoints or interfaces to specify the maximum and minimum
CPU and memory allocated for the application, the maximum timeout for
the application(although there is a hard bound on this imposed by the in-
frastructure provider usually). To understand the flow of FaaS workloads, it
is important to be aware of the following properties of the platform.
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2.2.1 Properties of FaaS

Statelessness Statelessness in deployments is a conscious decision that
was taken during the conception of the Serverless infrastructure model to
make the management of the platform straight forward and less cumbersome.
Statelessness simply means that the applications that are to be deployed on
the said platform exists as independent functions that are pure in nature.
As in, the same data input given to the function always produces the same
output at any point in time. This is what is termed as the lack of side effects.
The data source and sink of the function can be any supported platform or
tool as per the requirement, but there will not be any intermediate state or
cache for the function. This means that the function at any execution will
have no information about the previous execution unless explicitly specified.

The main advantage with this method for the infrastructure manager is
pretty obvious. The fact that there are no volumes necessary to store any
internal state means that the function can be scaled up and down indepen-
dently and the whole infrastructure can stay elastic. Along with this, the
provider can schedule the function in any node in the cluster that they use
to host the application, move it around as per the usage burst, have multi-
tenant deployments in a single machine ensuring the proper isolation for
maximum profitability, and the list goes on.

In short, the notion of function is of prime importance in a Function-as-a-
Service workload like the name suggests.

Triggers The functions that are hosted on a FaaS solution need to get
triggered on a timely basis or based on an event. Usually most cloud providers
provide more than a few ways to trigger the functions which the developer
can choose from. Some of the most common triggers for FaaS applications
are

• HTTP requests: An endpoint will be provided by the platform for the
function that was deployed.

This endpoint can be called as an REST API endpoint and the event handler
of the function will get the payload from the call.

• Data arrival in a storage or data broker system: This is the most pop-
ular and heavily used triggering mechanism in FaaS. The idea
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is that the function gets triggered as soon as a new data arrives in whatever
format at a particular storage setup. This can be arrival of a file object
in the S3 block storage, arrival of streamed data in Kafka message broker
system, etc. This method is the most suited for big data and streaming data
applications since the function can be activated as soon as the new data
is detected in the source. Usually the FaaS infrastructure provide supports
more than a bunch of source storage to be used as the sources for the trigger.

• Cron: Another very common way to trigger function is based on a
schedule. The

programmer can choose how often the function should be triggered on what
days of the week, month, year, etc.

Billing One of the most attractive features of the FaaS service is the
’pay for what you use’ policy. Billing model is an important constituent
in the equation. Generally the commercial cloud providers charge you on the
amount of memory that was reserved for the function, the execution time
of the function in relation to the number of invocations that the function
incurred. In most of the platforms, the developer can configure a maximum
amount of memory that need to be dedicated to a function during its invoca-
tion. To save on the billing, if the user reserve less memory for the function,
at the end of the day the execution time ends up being longer and there will
not be much notable difference in the money spent [7] Figure 3 shows more
on how billing varies as a function of execution time [8].

Figure 3: Lambda cost by fucntion execution time for 100,000 executions

When looking at the price per function invocation, currently at $0.0000002
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for AWS Lambda and Azure Functions, it’s very easy to get the impression
that FaaS is incredibly cheap (20 cents for 1 million invocations). However,
the price based on the number of invocations alone does not truly reflect
the cost of providing this sort of service like mentioned earlier. With the
current AWS Lambda price at $0.00001667 for every GB-second used (Azure
Functions cost $0.000016 for every GB-second), you can see how the cost
mounts quickly.

Since the amount of allocated memory is configurable between 128 MB and
1.5 GB, the total cost of function execution will vary depending on the config-
uration, and the cost per 100ms of the execution time for the most powerful
specification will be roughly 12 times more expensive than the basic 128 MB
option. Even with this it is easy to see that FaaS is a pretty cheap option.

If we compare this to an IaaS solution we can realize the fact that FaaS is
not the right tool for all kind of applications. In the past couple of years,
cloud prices has fallen that keeping up a small cloud instances all the time
would cost comparable amounts. For example, the micro instance of EC2
costs $4.25 in average to keep it on for the entire month. In fact, simple
math shows that running a tiny EC2 instance would be cheaper than having
a function running continuously for the entire month. The saving comes up
in the case of heavy yet variable load applications. In this case, if we reserve
the memory needed at the peak load time, it is going to stay up with that
capacity even during zero load which is very expensive and a huge waste of
resources. And this is where FaaS shines.

2.2.2 How programming models are getting affected by this

Faas + Microservices In Software Systems Design, a widely discussed
discussed topic is if to design the application in a monolithic fashion or a
micro-services fashion. Monolith is the kind of design pattern where you
have one big application doing multiple functions and maintained as one
solid stack. On the contrary, when one designs their app in a microservices
pattern, they will have to split up their application into multiple smaller parts
which can be independently built and deployed, and yet working together
with inter app communications. Both of these methods has its advantages
and challenges. When monoliths are easier to develop and maintain, it can be
very hard to test and manage due to the size, and usually if one part is buggy,
it tends to break the whole system. On the other hand, microservices, since
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they work as independent units do not usually affect each others working and
can be very easily tested and maintained. It is although often a very tedious
task developing a system that fragmented and maintaining it that way.

With the advent of FaaS, a very interesting pattern has been adapted in the
industry. The pattern pushed microservices one step further. The idea is
that instead of having microservices that are available and on at all time, the
huge applications are split up into functions that can be deployed to a FaaS
infrastructure and triggered with the help of HTTP endpoints to act as a part
of web application setup. This method is very effective resource usage wise
and much easier to deploy and manage compared to vanilla microservices
which have to be built and deployed independently. A very notable reason
for mixing up FaaS and Microservice is that, Microservices usually embeds a
local state alongside the application. This is usually one or more provisioned
volume in the local file system. This is not possible in a purely FaaS based
infrastructure. Deploying it alongside microservices offer a lot functionalities.

Statelessness or Functional programming model Like mentioned ear-
lier, the notion of function is very important for the serverless platforms. It
is intrinsically linked with functional programming. It is very interesting to
note that Amazon named their FaaS solution Lambda which is a very basic
concept of functional programming. Stateless clean functions that produce
no side effect was objectively the perfect choice for an infrastructure solution
of this scale.

What this change bought about is a thriving interest in functional program-
ming languages. A lot of the functional programming languages belonging to
the LISP family and some purely functional ones have seen a very increasing
adaptation in the past few years in Serverless platforms. Since these lan-
guages are perfectly suited for stateless program it is only natural that they
can be efficiently used to code for this environment.

2.2.3 Popular commercial offerings

Now that we have seen what makes FaaS an attractive field for cloud providers,
developers, and researchers alike, it is interesting to understand the popular
FaaS services out there.

AWS was the first big player in the field of Serverless introducing their plat-
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form AWS Lambda in 2014 [9]. Soon Google followed suite with their cloud
functions and then Microsoft and IBM entered the game with Azure Func-
tions and cloud functions respectively. In the past couple of years, Cloudflare
[11] , Edge [12], etc. has started providing similar services but the former
offerings still continue to lead the industry.

Although all the aforementioned commercial offerings contribute in strength-
ening the vendor locked in nature of the FaaS paradigm, it is worth under-
standing to see what kind of services a developer gets to have from each of
these platforms.

The leading giants like AWS, Azure and Google tend to focus on configura-
bility and ease of use. Their FaaS platforms are easily triggerable from their
other cloud services, making it a very convenient yet monopolizing way of
development. To understand the nature of the leading commercial service
providers, in this section we go into looking at their characteristics.

AWS Lambda AWS lambda became publicly available in 2015 and cur-
rently dominates the landscape of AWS lambda. AWS Lambda has a free-
tier under which it covers first 1M function requests and 400,000 GB-secs
per month. AWS Lambda functions can be written in a handful of popu-
lar languages including Python, Javascript, Golang, C++, etc. The code
is supposed to be bundled as a zip file and uploaded using API operations
provided by AWS. One of the key issues that were noted often about AWS
lambda at this point is the dependency management. The dependencies are
expected to be bundled inside this zip file and there is a size limit to the zip.
This is not a very great way to manage dependent libraries especially for
data processing algorithms which deals with mathematical toolkits. Lambda
provides guidelines for the way code and dependencies are to be organized
in the zip file.

The idea of statelessness takes an interesting approach in AWS Lambda.
We already saw how statelessness is a key aspect in FaaS platforms. To
ensure that the corrupted caches are lying around, AWS do not have any
extra garbage collecting processing. Instead it relies on the user not using
any variables while writing the function. This is a very functional way of
programming indeed but can be rather crippling when dealing with a lot
of data. The way they suggest the developers take care of this is by using
an external block storage like s3 to store these variables. The idea of AWS
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stepfunction was introduced briefly in the introduction section. For enabling
state in a stateless architecture and orchestrate functions, AWS created Step
Functions. This module logs the state of each function so it can be used by
subsequent functions or for root-cause analysis.

Access management is managed by the IAM policies that are inherently used
by AWS to manage access to any cloud service. AWS Lambda provides you
with the facility to create your own custom IAM policies and attach them
with your Lambda functions. This allows permissions for AWS Lambda API
actions, users, groups, roles and resources.

Aws Lambda provides an API gateway and an HTTP endpoint to trigger the
function in standard way. Other than this AWS support a huge list of AWS
services that the developer can configure as the event source. Lambdas can
also be invoked using the AWS SDK.

Another aspect worth noting is concurrency support and the execution sup-
port. AWS Lambda currently supports 1000 parallel executions of function
instances and each function has a maximum runtime of 15 minutes. It is
worth noting that concurrency often depends on the dependent resources
that are used in the lambda function which may not be scalable by nature.
AWS Lambda generally increases the number of concurrent functions run-
ning as soon as there is a rise in traffic. If there is no predefined limit they
keep increasing it by 500 per minute until the demand is met.

Google cloud functions Google Cloud Providers entire the FaaS race
very recently, in July 2018. Currently Google cloud functions do not support
a lot of language runtimes. This includes NodeJS, Python3, Go and Java
11. The functions written can be uploaded to the service via the CLI, zip
upload, inline editore, and cloud storages. So far Google cloud provides
the most flexible workflow in dependency management. The developer just
have to specify the dependent libraries in a package.json file and the cloud
provider installs them for you avoiding the heavy package that needs to be
uploaded like we saw in AWS lambda’s case. This is really good because if
the developer is building the package with libraries included in a Windows
machine there will be huge incompatibilities for the package in the AWS
lambda.

For state or for sharing data between functions google cloud recommends sim-
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ilar approach as of AWS Lambda, that is to use a cloud storage. The events
for the trigger can be triggered by HTTP requests, and a bunch of google
storage services like cloud storage, cloud pub/sub, cloud firebase, strackdriver
logging, etc. Access control is managed in a similar fashion to AWS, by using
IAM roles.

Google cloud functions really lags a bit behind when it comes to function
orchestration. It does not offer any kind of orchestration mechanism that for
the user to programatically chain functions via HTTP gateway.

When coming to the execution time, GCF have maximum hard limit of 9
minutes on this. The concurrency of functions in GCF is measured at a per
function level that at an account level as opposed to AWS Lambda.

Fine grained scalability is not at its best yet on Google Cloud Functions.
The functions are known to be scaled pretty slow depending on their size. It
is seen to have a maximum cold start of around 500ms [10], which is in fact
quite significant.

All in all Google Cloud Functions has to go a longer way to be a more flexible
solution.

Azure functions Joining the world of Faas in 2016, Azure shines in a lot
of places with its Functions where Google Cloud Function falls short. To
start with Azure functions have a rich runtime almost comparable to AWS
Lambda. They support a lot of very popular languages. Contrary to AWS
Lambda, Azure Functions provides you with multiple options for deploying
your function, such as GitHub, DropBox, Visual Studio, Kudu Console, Zip
deployment and One Drive.

The dependency management in Azure is very similar to AWS in that, the
system expects you to bundle all the dependencies together and upload it to
the system.

In Azure, there is a tricky way to handle state by keeping static variables as
cache data. Although if someone needs persistent storage they will have to
use block storages.

While Azure Functions lets you control your function policies through Re-
source Based Access Control. It is supported at Subscription and Resource-
Group. Though at the moment, you can give permission to read/write access
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both to your functions as read-only access disables some of the app’s features.

As for the function triggers, Azure too supports a bunch of Microsoft services.
But along with this, Azure lets you trigger the function using webhooks
from Github, external HTTP, APIM, function proxy and bindings. For the
orchestration, Azure functions provide Durable functions which basically is
a bloated queueing service to pass event triggers between functions. It is a
weaker form of AWS stepfunction.

The execution time is usually capped at 10 minutes. The number of concur-
rent activity is apparently 10x the number of cores in the machine. Azure
Functions’ free tier covers 1M requests and 400,000 GB-secs on the monthly
basis. Afterwards, you will pay $0.000016/GB-secs and $0.20 per 1M execu-
tions. Azure functions have an embarrassingly long cold start period which
is in the range of 3640ms on median.

2.2.4 Where Serverless computing fall short

Although serverless computing might sound like the silver bullet of the de-
ployment solutions, it is a field that is still being rapidly grown and researched
on. There are several staggering shortcomings for this technology that makes
it unsuitable for certain applications. The current offering have the following
noticeable limitations.

Lack of state As mentioned earlier, statelessness is a primary nature for
serverless workloads making it easy to deploy and port agnostic of the envi-
ronment and server. Hence serverless/auto-scaling paradigm generally push
for a development style involving no state to make the infrastructure simple,
encouraging a functional style of development. Although this can contribute
to easily scalable and parallelisable applications, it often limits the technol-
ogy from being adapted in applications that are data intensive. The fact that
serverless functions do not store any intermediate state requires the applica-
tion developers to use a block storage to store the data and state after the
execution. This basically means communication via slow storage and adds
a lot to the latency. This discourages the use of serverless in distributed
computing which is actually a domain that needs very fine grained commu-
nication between the functions and usually a lot of resources are wastefully
dedicated to ensure high availability.
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A function during execution has no clue of the previous executions and its
results. Which is something that is usually very basic for data analysis
operations. The developers in this case are forced to send the data after each
execution to a block store and retrieve the data from the block store before
the next execution. Other than the input output overhead and the network
latency this adds, it is a violation of the elastic nature of the Serverless
paradigm.

I/O Latency Like was mentioned earlier, FaaS have had a lot of influences
in the system architecture and programming paradigms like would with any
new infrastructure management system. It is quite unfortunate though that,
even with a paradigm with such huge potential, FaaS is very conventional
when it comes to its data engineering architecture. Functions are run in
isolated units separate from the data or data store. This is actually a very
huge system design anti-pattern because Input/Output have and will remain
to be a bottle neck even with heavy memory and huge number of dedicated
cores to a function. The pattern where the data is taken to code as opposed
to code to data adds to the latency, cost, and inconvenience. For the clarity
of the reader, an example of a code shipping architecture is procedures that
you run in databases. The code is moved to the data than the other way
around in this.

Coordination issues among functions FaaS workloads are usually con-
tainerized by the cloud provider to deploy it easily in their node pool or
cluster. By nature, docker containers are indiscoverable units that need to
be opened up explicitly to the network of the host machine. Meaning that,
we cannot explicitly address the docker container directly using an IP ad-
dress or an endpoint. Cloud providers do not open up the container to the
network consider the potential security issues this can cause and the necessity
of state in this case. They provide handles to communicate with the function
or trigger-able entry points, but no direct network addressability.

What this implies is that, if the developer has multiple functions that has to
be composed together to form a pipeline, rather than triggering each other
internally and directly, the developer will have to hack around by either
triggering it via an HTTP endpoint if the provider allows that, or like was
mentioned in the previous point via an external block storage, or other ex-
ternal queueing systems they provide, etc. In either of these scenarios, it is
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hard to avoid added latencies.

This makes FaaS particularly inefficient for applications like distributed com-
puting when it depends on very fine grained communication between the
functions. With FaaS we can only ensure very weak consistency across func-
tion storages making it a pretty bad candidate. What this also means is that
there is no way we can actually have efficient parallelism even if we have
many powerful cores installed over the current state of FaaS since the block
storage will always be a bottleneck.

It goes without saying that most big data applications that need ephemeral
storages between function executions suffers from the very similar kind of
latencies as well. This includes function compositions like ETL on streaming
and batch data alike [13]

Vendor lock-in It is no secret that the most widely used FaaS/server-
less offerings are the ones by proprietary cloud providers where they hand
twist the developers into complying to their programming environment and
runtime thereby forcing devs to use their technologies. What such practices
contribute to is limited innovations and development around the paradigm
of Function as a service itself and people re-inventing the wheel by creating
custom made code and hack to fit each of these provider runtime.

In a system like FaaS, where you are basically out-sourcing the whole setup
of your application to a vendor, the fact that the whole ecosystem is closed
source and uses the tools developed by the vendor only means that the user
has near to zero control over the infrastructure and the pipeline is not trans-
parent at all for any kind of performance optimization or fine tuning.

Fixed timeouts This is the one of the other bigger reasons that hinder
the usage of FaaS in big data applications. In applications that involve heavy
number crunching algorithms, there are chances that often the function needs
to run for a longer period of time. Current commercial FaaS offerings has
a fixed timeout, exceeding which the function execution is automatically
terminated irrespective of the stage of the execution. The fact that the
platform offer little to no control over this discourages the developers to use
the tool.

Currently the maximum timeout for function execution in AWS and GCP
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platforms for the FaaS setups are 15 minutes and for Azure functions it
is 10 minutes. These are all extremely bounding as conditions especially
for functions that are composed and a function should wait for the other
functions to finish executing.

Cold Start Cold start it the delay that the function incurs after the in-
vocation or triggering of the function till the execution of the function. In
the background, FaaS uses containers to encapsulate and execute the func-
tions. When an user invokes a function, FaaS keeps the container running
for a certain time period after the execution of the function (warm) and if
another request comes in before the shutdown, the request is served instan-
taneously. Cold start is about the time it takes to bring up a new container
instance when there are no warm containers available for the request [14]. In
most platforms serverless latency on average is measure to as 1-3 second [15],
which can have very dramatic impacts when it comes to certain workloads.
According a 2018 survey, this is the third biggest concern developers have
regarding the serverless platform [16].

The cold start time in-fact is overblown by several factors in the infrastruc-
ture. All the popular commercial FaaS offerings suffer from a cold start time.
It can referred that irrespective of the language runtime used, the start time
tend to be almost the same on a platform. The main deciding factor is the
dependencies that were packaged for the application which obviously makes
the container slower to start because of the heaviness. Figure 4 shows the
cold start time differences across different commercial cloud providers under
different runtime and different dependencies.

Figure 4: Cold start across cloud providers

A solution for this problem, other than keeping the dependencies small, is
to have a warm function up at all times so it can handle the request right
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away for time sensitive applications. The problem here though is that most
commercial offerings do not offer this option. Instead the developers are
forced to keep pinging the function to keep it warm for the next trigger.
This is a very hacky solution and reduces the whole efficiency of the platform
in general. Most of the cloud providers are although aware of this problem
and are trying to be innovative and introduce lighter alternatives to Linux
containers in the FaaS platform these days.

Parallelism Current FaaS offerings are not known to have the right sup-
port for heavily parallel computations. In the most popular commercial
platforms, the presence of cold starts delays some invocations and increases
the runtime. This impedes the parallelism. In case of multiple simultaneous
requests, maximum parallelism that was achieved in handling them on aver-
age was less than 50% [17] in Google Cloud Functions. The reason for this
can be further elaborated as follows:

• Virtualization technology: If a FaaS system has to run multiple func-
tions in parallel when triggered, the most import thing that comes up
is the ability of the platform to boot up more instances of the function
instantaneously. The quickness of the creation of the instances depends
on the virtualization technology that is being used. This is basically
the cold start latency that is affecting the parallelization. For example,
if Docker is used as the virtualization technology the system is seen to
have a bit more latency, but if a virtual machine is used the latency goes
up exponentially. This calls for the need for more lightweight isolation
solutions. AWS firecracker is a step in this direction.

• Reactive scheduling: In FaaS systems the kind of scheduling that hap-
pens is extremely reactive. Reactive model s seen to be too slow to
scale. Achieving high levels of parallelism requires being able to pro-
vide resources rapidly. So how the system deals with the incoming
invocation is very important. It is seen that the current event based
triggers are less that optimal for such applications. This calls for a
proactive approach in dealing with invocations. It could be a more
push based approach as opposed to the former.

Security issues in a multi-tenant environment Like was previously
mentioned, the whole FaaS infrastructure offering is economical for the cloud
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provider because they get to share their node pool among all their standard
customers making the resource cost for them very low. The problem with
this practice though is that this introduces safety issues for the data that
is executed in the machines. Linux containers are not particularly secure as
an isolation mechanism since they share a Kernel with the host operating
system. This means that any bug or back door introduced to the Kernel get
affected to all the containers as well exposing the customer data at a very
high risk. This is an issue that is actively being worked on by companies.
Till a while ago, the solution for this was to encapsulate the containers in
a light weight VM which unfortunately contributed to the heavy cold start
time. But recently the innovative new alternatives for Linux containers are
also aimed at to fix these issues.

Function caches Along with the above mentioned issue with multi-tenancy
across customers, a similar issue can occur under the same customer who runs
an application across multiple of their client. The problem is that each func-
tion has an inaccessible cache that get cleaned up at an arbitrary time hidden
from the user. There is a chance that somehow cache from the previous ex-
ecution of the function somehow lingered and the data from one client got
leaked on to another or got corrupted by the other. If the developers are not
cautious enough while coding and usage of variables, there is a high chance
for data corruption and leakage on the platform.

Developer friendliness In a recent survey [16], developers were asked
about the challenges they face when using Serverless platforms. This is a
very significant data to look into since at the end of the day the gap of the
research and the end user experience is something we are trying to mitigate
with this project. The following were some key takeaways from the study.

• Debugging and testing: Even though FaaS setup modularizes the code
a lot, when we consider most commercial offerings of FaaS, there is low
to zero possibility to actually follow the conventional testing and de-
bugging methodology. It is mostly because of the fact that the runtime
of the FaaS environment is not known to the developer at the time
of the development. Along with this, by the sheer nature of FaaS, it
is often hard to mock exactly the events like would in the production
setup locally. So a full functional testing of the platform is often pretty
difficult to make happen.
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More than often the developers have to depend on deployed setup of the
FaaS function and try debugging on production. This costs resources
and on issues involves re-deploying it and testing again. This has a
huge impact on the productivity and slows down the whole development
workflow.

• Logging and monitoring: Most of the current commercial platforms
asks the developer to user an external tool like AWS cloudwatch which
costs more for this service. Considering logging is the only way to debug
the function, it becomes a bit of an inconvenience if the developer is
expected to pay for it. As for the monitoring the same story applies.
For each metric that is being tracked extra is expected to be paid. If
one is composing the functions, it gets even more difficult to understand
the cumulated runtime monitoring along with the transfer details on
the block storage, if any.

• Standardizing development practices The problem basically boils down
to this one tag. The idea is that each of the FaaS operator has a different
kind of interface or way of dealing with the events hence introducing
a lack of standard dev practices. The problems are more so prevalent
when it comes to the building and deployment of the function since the
user management and the CLI access to do deployment are all delegated
to external tools.

2.3 Extract-Transform-Load(ETL) pipelines

In the previous sections, we talked about how serverless is the most suited
but inefficient(with the current state of art) tool for ETL pipelines and that
it is a standard practice when dealing with today’s data driven workloads.
In this section, we look in detail into the characteristics of ETL workloads
and their applications.

ETL is the type of data integration process that is used to process data from
multiple sources to build a Data Warehouse or similar sinks. It integrates
three distinct but interrelated steps namely Extract, Transform and Load.

The main advantage of having ETL pipelines in the splitting of functionalities
in the data processing programs that would have otherwise been a single huge
monolith - hard to manage and extremely bloated.
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Extract In the present day production workloads, data can be arriving
from numerous sources of very varied nature and behavior. Depending on
their origin source, this data can have different formats or organizational
structure. Some examples for this are relational databases, XML, JSON,
flat text files, etc. To allow scalability in a software solution it is always
necessary to have the tool working for multitude of data types. This is where
having a dedicated extract process shine. Extract process accepts data from
any of the data source and format it to a unified data type. In general,
in extraction phase developers try to convert the data into a single format
that is understandable by the transformation phase. Another import thing
the extract step take care of is the validation of the data. The data that is
coming from the source can be of the wrong format as expected, even missing
some columns or corrupted somehow. In the extract step, these bad data are
reported and the process is aborted.

Transform This step can be considered as the brain of the whole workflow.
This is the stage where we convert the data that was received into meaningful
information. Transform operation often happen in multiple stages where in
each stage a certain transformation logic is applied to the data. These logic
can be simple text formatting steps like splitting the data, cleaning the data,
deduplication, replacing codewords with meaningful entities etc. or more
complex arithmetic or logic operations like machine learning models. This
step often ends up being the bottleneck in a lot of ETL pipelines since data
processing can be a very resource heavy task and if the code is written with no
optimization, the whole pipeline will end up eating up the all the resources.

Load Like the name suggests this is the step where the data coming after
the extraction and transformation processed get loaded into the target data
store. This is a rather interesting process because the nature of the target
store and the communication API need to be analyzed efficiently to write
the code. The code often contains certain validation parameters to see if the
current data is suitable for insertion into the target. Common problems that
occur might be format difference from the target, duplication of primary or
foreign keys, other integrity violation issues, etc. Monitoring is critical in
this step since there is a chance that the target endpoint can go unavailable
and the developers have to make sure the data after the entire processing is
not lost. More than often the data output overwrites the existing data in
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the source, in other cases the new data gets appended to the older ones or
aggregated with the existing data.

2.3.1 How Serverless can make a difference in ETL

Let us now look at some of the characteristics of the ETL processes that can
be derived from the definition.

• Atomicity of functions: In the pipeline, if a failure occurs in any of
the above stage, it should stop from proceeding to the next stage for
that data without disrupting the pipeline that is dealing with any other
batch of data.

• Each stage can have different loads depending on the operations and
these stages should be able to independently scale without scaling the
other stages. This helps in saving resources. Along with that it also
saves from making any one step a bottleneck because of low resource
availability by scaling the resources up as per necessity.

• Intermediate data transfer need to handled properly by the system.
We need to have temporary data between each of the processes stored
temporarily. This is to make sure that if one of the stages fails, the
data the came out of the previous step is still available which can be
processed again after the developer fixes the issue with the current
stage. This means that at any stage you can restart the system and
the pipeline can continue without issues.

• There should be proper monitoring support make sure that we can
easily see when the errors are happening in the system. Along with
that, the performance of the pipeline should be quantifiable. We should
be able to tell which stage in the whole pipeline uses more resources,
etc. and the overall performance of the ETL workload.

It is clear from the above description why Serverless might be a good fit for
ETLs considering its elastic architecture and functional style of coding. Each
stage in ETL can be separate functions than can be independently scaled and
monitored. Although the aforementioned issues with the Serverless makes the
function composition and data transfer quite inefficient making it an ill suited
candidate for ETL applications. Also in the current Serverless solutions, it
is hard to achieve the atomicity of functions.
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2.4 Problem statement

From the above set of evaluations, there is no doubt that Serverless Com-
puting is a solution with great potential as a tool for deployment and in-
frastructure provisioning. Even with the current state of art FaaS offerings,
21% of the entire workload is Data processing applications that include heavy
batch and streaming Extract, Transform and Load operations [16]. However,
the implementation usually involves numerous hacks in this setup, even after
which the latency of the I/O, network and the platform itself slows from
leveraging the full potential of the idea. All the existing commercial offerings
being closed source and vendor locked in, implies that the limitations are set
for you by the cloud provider and is often very difficult to fiddle with it or to
extend the system so as to support an extra runtime, increase the running
time, etc. Along with this, the way current FaaS offerings deal with func-
tion compositions and parallelism are extremely clumsy and almost always
explicit. While this lets the providers have a very generic way of dealing with
the platform and holds to the one way to code them all paradigm, the gate-
ways often tend to be a bottleneck. Also the data transfer between functions
always depend on a storage based off of Block IO which contribute to the
latency immensely.

When we look at the academic research in and around this area, in the
past couple of years a handful of ideas has been thrown into introducing
state in serverless. A very interesting proposal was Cloudburst [2] which
introduces a consistent cache storage between functions to store and retrieve
intermediate data in wire speed. Although the project succeeds in proposing
a very elastic system architecture that co-locates data alongside functions
across the cluster, it is seen that the system does not scale really well along
with the requirement making it a bad adaptation for streaming and big data
workloads. Alongside, it lacks provisioning to define branches or conditionals
in the function composition making it less flexible from the point of view of
the orchestration.

A similar idea was SAND [3], where a hierarchical message bus is used to
allow function composition and inter process calls. Other than being a closed
source project and pretty abandoned in the past couple of years, the resource
allocation is not tracked or controlled by the system breaking the per usage
billing notion of Serverless paradigm. The system also does not offer a proper
isolation mechanism.
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The focus of the thesis is mostly to propose a solution for the aforementioned
issues. We are proposing a Open Source infrastructure, infrastructure that
can be maintained by the companies which can offer a multi-tenant and com-
pletely elastic platform to deploy their data intensive and high throughput
applications on. By nature, these data intensive applications can be a com-
position of multiple functions, that would pass along data between them.
The setup would user ephemeral in memory storage to keep intermediate
data. This infrastructure would comply perfectly with the notion of Server-
less in the sense that, each element in the system would be independently
elastic and scalable. Function composition based on conditionals and branch-
ing should be supported by the system along with independent scaling of the
functions based on the load, so there would not be any bottlenecks. An easily
adaptable programmable API is required for defining this composition.

According to the aforementioned survey, the developer community is con-
cerned about the monitoring and debugging of the functions during the de-
velopment stage due to the lack of reproducability of the runtime. Our
system should give a lot more flexibility and traceability when it comes to
the development process. Along with that, we should aim at building a sys-
tem that is easily adaptable and stable enough for production workloads, and
easily integratable with the common development tools like Github, CI/CD
pipelines etc.

3 Proposed Solution
In this section we dig in deeper into the specifications of our proposal to build
a production ready FaaS infrastructure stack that is completely elastic and
not locked into any vendor. The idea is that, any party or enterprise should
be able to reproduce this stack easily and developers should be able to deploy
their application code from any git hosting service or command line to this
platform without worrying about the server management. The platform we
build also should be provider agnostic, in the sense that it should work with
constant efficiency on any cloud provider the user may choose. The developer
should be able to monitor the usage and performance of the application easily.

In the light of the above discussion we propose the following extensions to
the existing Serverless platforms:
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• Provision to compose functions by defining a computational graph

• Ephemeral in-memory storage to store intermediate data

• Multi-tenancy support by separating function instances using names-
paces

• Fine grained tracing and monitoring of the functions and the composi-
tions

To clarify how the above mentioned steps will help solve major limitations
of Serverless paradigm, we will have a platform agnostic look at how the
above steps change the current state of art FaaS systems. In the section 5,
we will get into platform specific study by implementing these suggestions
on a flexible open source FaaS solution for our proof of concept.

3.1 Function composition

Big data processing is pretty inevitable as an application scenario. The
nature of these data can be very varied including streaming, semi-regular
burst streams, etc. making it a very good space to apply Serverless paradigm
to, to save up resources and have fine grained scaling of the resources based
on requirement. The aforementioned complexity in the application logic
suggests that it make a lot of sense to split the application into multiple
functions and compose them efficiently. If applied to the Serverless logic,
this means that each function can be scaled independently based on the load
in that logic.

The above requirement exposes some issues that were discussed in the section
2.2.4 of FaaS. Function composition is not something that has been cleanly
supported by popular commercial FaaS offerings. The popular infrastructure
today do not have any information about the dependencies between multiple
functions. It is up to the developer to programatically call functions from
each other which are packaged and deployed separately. If there are any
heavy data to be transferred among these functions, which we can refer to
as intermediate data, the developers are expected to use a block storage of
some sort(eg: S3, google data store, etc.) adding heavily to the Input/Output
latency of the service, not to mention the network latency if the infrastructure
is in a different VPC.

In a recent case study [18], Autodesk claims their FaaS-ification of their
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whole platform. Unfortunately, their account creation platform, which was
implemented as a composition of multiple small functions on AWS lambda
incurred a round trip time of 10 minutes. This is horrendous especially
considering the vitality of the task in discussion. Overhead of Lambda in
task management and the state management is explained as the causes.

More products has been introduced by cloud providers, like AWS step func-
tions [19] , instead of fixing the inherent architecture of FaaS solutions to help
create data intensive workflows in FaaS. These systems work by introducing
an event queue like AWS SQS to the equation. The problem with such so-
lutions is that they violate the notion of Serverless in a way by introducing
an element that is practically non scalable and cannot be debugged easily. It
becomes extremely difficult to develop and test the system locally. Not the
mention, the fact that this introduces more lock in to the vendor.

Another approach can be found here [20], where the function composition is
done by triggering the other functions by pushing intermediate data to s3,
which the following function considers as the trigger. The example in ques-
tion is a very simple map reduce which is not very intensive computationally
even with a heavy load of data. Even with that the setup takes around 2
minutes to complete the task for a dataset of size 25GB. It can be seen that
the majority of the running time was spent on pushing and pulling data and
not on the compute.

It is quite clear that the ability of functions to call each other are rather
important. There should be a way to define programatically the relationship
between the functions in a FaaS infrastructure along with the data flow de-
pendencies. If cloud provider exposes an API that would let the developer
feed a computational graph for this function composition, this would not
just improve the performance, but also would be useful for better function
and data placement so the latency for data and control transfer would be
minimum. This can be a very tricky thing conceptually since, containers are
not directly addressable network wise.

Before getting into the technicalities of the platform itself, let us look at differ-
ent approaches in which functions can be composed in a serverless workload.
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Figure 5: Merged in the source code

3.1.1 Manual Compilation

This the most basic and inefficient way of compiling the functions. This
basically involves merging all the functions together to form a huge function.
From FaaS executor’s point of view, it is one big function.

def funcA():
doStuff()

def funcB():
doStuff()

def main():
funcA()
funcB()

The above code block and Figure 5 explains how the control flow works in
this kind of compilation scheme. As is pretty obvious, with this method one
cannot scale individual functions independently and function can get really
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Figure 6: Direct function chaining

big. There is no necessity to store intermediate data or serialize and deserial-
ize data between functions. But the problem is that this kind of violates the
notion of serverless since each application is not an atomic functional unit.
If the compute is complex, function might not even completely run because
of the hardbound limit to the running time set on most FaaS platforms.

3.1.2 Direct function chaining

Like can be seen from Figure 6, here each task is a separate function. Each
function directly call the succeeding function in a chain. Meaning the code
is written so that the current knows the details of the next function, but
not any further. Even here like before, there is no need for any serialization
deserialization overhead since functions can directly send each other data.
No external components are used either. Although the problem arises when
the data load increases. The load on the network to transfer data via HTTP
rises. Along with that each function will have to wait for the next function.
If a function fails then the logic to retry/fallback etc. will have to be coded
into each function. The following pseudo code shows how the function design
would be.

def funcA():
doStuff()
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Figure 7: Coordination functions

def funcB():
doStuff()

3.1.3 Composition via coordinator functions

In this method, a coordinator function will be used which manage the exe-
cution of all the functions by calling them directly. The individual functions
will be unaware of each other.

The win over the previous method here is that, the house keeping code need
not be present in each individual task. Also it is very flexible in the sense
that, each function can be tested independently and then the user can prop-
erly write the control flow in one place, that being the coordinator function.
This comes at a cost of adding an extra function which is the coordinator
function. This function will continue running the whole time, costing more
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Figure 8: Event driven function composition

and violating the FaaS paradigm a bit. An example of this kind of coordi-
nation can be found here [21].

3.1.4 Event driven composition

This is a powerful design pattern that supports a lot more fault tolerance
and involves changing or extending the infrastructure of the FaaS platform.
In this method, one introduces message queues in the architecture as can
be referred from Figure 8. Functions emit events to these message queues.
Alongside, all the functions listen to the same queues. So on receiving certain
events, they react in the programmed ways. Contrary to all the previous
methods, it is very interesting to note that in this method, the stress is
given to the data flow instead of the control flow among functions. The
intermediate data between the functions has to be managed separately by
using a storage.

This is a very commonly used and popular architecture. Message queues
like Kafka or MQTT brokers like rabitMQ offer a lot of functionalities and
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features like fault tolerance, error handling, alerting, backup, etc. Functions
can be completely decoupled. This is a very good solution for big data and
streaming data applications.

The problem with this method is though the very heavy dependencies which
are very hard to manage. The fact that message queues are not inherently
serverless makes the platform less elastic and thereby billing and usage track-
ing can be troublesome of the infrastructure manager. Alongside, message
queues usually only supports limited control flow structures. Probably just
conditional and on-error handles. It will be terribly complicated to do dy-
namic branching, iterations, etc. Along with this, since functions are so
tightly dependent on the message queues, it will be slightly challenging to
upgrade or version them.

3.1.5 Workflows

Workflows are a very interesting architectures pattern where the system sup-
ports the creation of a sort of flowchart of the functional interaction. Work-
flows are a very widely used pattern these days in a lot of big data processing
tools.

An workflow is designed as a directed acyclic graph (DAG). This means that a
new runtime has to be introduced in the FaaS system to manage the execution
of the functions. When authoring a workflow, one should think how it could
be divided into tasks which can be executed independently. The workflow
runtime would let one to merge these tasks into a logical whole by combining
them into a graph.

This definitely adds the overhead of writing a runtime for the FaaS platform,
providing an API to define the DAG to the runtime and then managing and
executing the workflow based on the DAGs. But once the platform is in
place, it provides numerous flexibility. One can get done dynamic branching,
iteration, etc. very easily on this platform along with individual upgrade
of the functions. The fact that no external infrastructure tool has to be
managed to work as a triggering mechanism maintains the elastic nature of
the tool. The only thing is that there has to be a storage unit to manage the
state of the DAG for the workflow framework. Similarly just the event driven
composition, the intermediate data store has to be handled separately.

Logically, this method resembles the coordinate function setup, just that
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Figure 9: Workflows

instead of a simple coordinator function, in this case we have a month more
powerful framework that is added permanently to the infrastructure. This
can be referred from Figure 9.

The shape of the graph decides the overall logic of the workflow. A DAG can
include multiple branches and you can decide which of them to follow and
which to skip at the time of workflow execution. This creates a very resilient
design, because each task can be retried multiple times if an error occurs.
To give the reader clarity on what a DAG looks like, the Figure 10 from the
Airflow’s operator might shed some light.

With this setup, we can get a lot more centralization to the compositional
logic, making logging and visualization lot more easier. With this method
the function scheduling and placement can also be improved. Meaning, func-
tions that have compositions with each other can be scheduled in the same
node, if we have a cluster or the intermediate data can be placed nearer, etc.
One downside to this method is that the user will have to use the workflow
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Figure 10: Branching example with DAGs

specific language or DSL and not just the programming language used for
the function implementation.

It is arguably clear that workflows offer the most flexible and application
independent solution as a composition pattern. Of course the concern of
having a storage for the running state of the workflow framework remains
along with the storage of the intermediate data. We will look into the solution
to this in section 4.2.

3.2 Ephemeral Storage

In the previous section, we saw that flexible function composition can be
achieved via workflow pattern. However, efficient state storage is necessary
to make this efficient. The problem is that we have to not violate the notion
of elasticity when it comes to Serverless. The resources involved in Serverless
should be scalable up and down, only when we can have a per usage payment
and resource conservation. Scaling up also affects the availability of the
tool since one should be able to have all the requested served without much
latency. Along with storing the state of the workflow or DAG, if function has
to pass around data from one function to another, we should introduce some
sort of intermediate storage since there is no direct communication between
functions. The workflow framework take care of triggering each function
based on its state and the data transferred between the functions will be via
this intermediate storage as well.

In traditional analytics framework, long running process in nodes takes care
of managing the intermediate data in local storages. On contrary to this
conventional approach, Serverless workloads do not have any long running
processes. Because of the network addressing problem of containers, direct
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transfer of data is also pretty impossible between functions.

In all the commercial service offerings of FaaS this intermediate storage is
done via a block storage like S3. This is a very inefficient approach since
a block storage adds a lot of I/O latency to the system. Along with that,
it adds a non scalable entity to the equation. Conventional storage systems
are not designed to meet the demands of serverless applications in terms of
elasticity, performance, and cost. We are talking about data that has limited
life span, which we can refer to as ephemeral data [22].

Traditional storages like RDBMS, NoSQL, block storage, etc. are not made
for short lived data because of the latency involved in writing to the disk.
An in-memory key value store seem like the most obvious choice. But un-
fortunately the industry standard key value stores like Redis does not scale
very easily. One has to take care of the scale of the storage cluster, network
configuration, maintenance, etc. Per use billing can also be very tricky in
this case.

We should be looking into innovative new ideas to use for serverless platforms
when it comes to data storage because of the ephemeral and scalable nature
of it. Since Serverless functions are deployed on clusters that exist across
multiple nodes, a distributed key value cache that is scalable is the desirable
option we are looking for.

In our preferred storage medium, we should have automatic scaling, fine
grained usage tracking & billing, low latency, high throughput, low cost,
and unlimited availability. Key value stores like Redis and memcache offer
low latency and high throughput but at the higher cost of DRAM. They
also require users to manage their own storage instances and manually scale
resources [22]. We look into two different storage solutions for the adaption
to our FaaS extension: Pocket and Orlic

3.2.1 Pocket

Pocket [22] is an ephemeral storage build for the Serverless workflows. It is a
key value store suited for storing and exchanging data between hundreds of
fine-grained, short-lived tasks. Pocket is an elastic distributed storage service
for ephemeral data that automatically and dynamically right sizes storage
cluster resource allocations to provide high I/O performance while minimiz-
ing cost. Pocket is not completely an in-memory storage infrastructure like
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expected. Instead, pocket has a smart data allocation system that leverages
different storage media(DRAM, Flash, Disk) to store the data depending on
the requirement of the application while minimizing the cost.

Pocket has a tiered architecture. It has three planes - A control plane, a meta
data plane and the data plane. Like the name suggests data plane stores the
data ultimately. Meta data plane tracks the presence of the data distributed
across this data plane. Finally the control plane manages cluster scaling and
data placement. This layer keeps the platform elastic, in that it scales the
storage resources based on the usage. Each of the aforementioned layers can
scale independently. The project claims to have a sub-millisecond latency for
I/O operations.

Figure 11: Pocket system architecture

Architecture Like Figure 11 represents, Pocket system has one centralized
controller server, one or more meta data servers, and multiple data plane
storage servers. The meta data plane according to us is the most interesting
in the architecture, since it enforces coarse-grain data placement policies
generated by the controller. It manages data at the granularity of blocks
whose size is configurable, defaulted to 64KB. Objects larger than this size
is divided into blocks and are distributed across storage servers by the meta
data server. Client access data blocks directly from storage servers.

Client API Pocket provides an API to communicate with the system.
There are system calls to each of the three planes. First of all it lets the
client register and un-register of the jobs(control plane). The client gets to
communicate with the meta data server multiple times during its lifetime.
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Figure 12: Pocket Client API

The data in pocket is stored as objects that goes in buckets. They are
identified using names. Meta data plane provides system calls to create and
delete these buckets, look up objects and delete these objects.

Client put and get data directly to/from the object at a byte granularity.
The put and get operations invoke the meta data layer with the Job ID of
the client. This is to do the meta data look up operation to get the data
placement of the object that is being looked up. When a put call is invoked,
with a PERSIST flag to be true, the object will remain in the data even after
the job terminates despite the ephemeral nature of the storage. It will remain
until it is explicitly deleted or after a configurable timeout period. The get
call with a DELETE flag set will get deleted right away after returning the
value of the object. The nature of the ephemeral storage in discussion is
assumed to be write and read once only. Figure 12, describes the system
calls in detail.

Implementation

1. Controller: Pocket is run on Kubernetes with each layer as separate
docker containers. A resource monitoring daemon is run on each node
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in the cluster sending resource utilization info to the controller. The
controller right sizes the cluster by launching new nodes and sending the
info of the existing meta data servers to it. The load is balanced using
data steering new active job data to the newer server than balancing
out existing data since this can add a heavy overhead especially since
the data is short lived. The container also keeps the meta data server
resource usage under the target limit by precalculating the load a job
would put on the meta data server from its throughput and capacity
allocation. Based on this estimate the controller select the meta data
server.

2. Meta data and Storage tier: These are implemented on top of Apache
Crail distributed data store [23]. Crail is designed for low latency, high
throughput storage of arbitrarily sized data with low durability require-
ments. Crail provides a unified namespace across a set of heterogeneous
storage resources distributed in a cluster. Its modular architecture sep-
arates the data and meta data plane and supports pluggable storage
tier and RPC library implementations. As of the storage tier, Pocket
project implements it on DRAM, NVMe on top of ReFlex and then on
generic block storage.

3. Client library: The API is written in Python to provide better adapt-
ability of the tool. The core library although is in C++

Figure 13: Pocket Performance for get and put requests
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Analysis Pocket is seen to have pretty good performance almost compara-
ble to Redis but much better economically when set up on DRAM. It is seen
to be almost 300% faster than S3 storage for the GET requests. It can be
seen from Figure 13. So considering that DRAM will be used as the storage
tier, it can be the right tool for the ephemeral storage in Serverless platforms.

3.2.2 Olric

Olric [24] is a distributed in-memory key/value data store. The idea is that
we can create a shared pool of RAM across a cluster of computers to store
the data in, in a scalable manner. The design motives for Olric is to share
between servers fast-changing transient data. At the time of writing, Olric
supports multiple serialization formats including JSON, MessagePack, etc.
By utilizing the heuristics of Kubernetes, Olric provides horizontal scalability
to the RAM pool available. Olric uses a consistent hashing algorithm [25]
to distribute the load fairly among the cluster members. Olric best-effort
consistency guarantees without being a complete CP (indeed PA/EC) solu-
tion. This thread safe in-memory cache comes with replica support and a
command line interface.

The data is stored inside distributed maps which can be thought of as a
bucket. Inside each distributed map, there can be numerous key - value pairs.
As for the operations, currently Olric support atomic operations and the
lookup has a complexity of O(1). Olric uses SETNX algorithm to implement
locking primitives inspired from Redis protocol [26]. Olric can be used either
as a Go library or as a language independent service.

The architecture of Olric is rather sophisticated. Olric distributes data
among partitions that are distributed across the cluster using the consis-
tent hash algorithm. Every partition is being owned by a cluster member
and may have one or more backups for redundancy. When a distributed map
entry is being written, the communication is to the partition owner. In a
stable cluster, the query hits the most up-to-date version of that data entry.
In order to find the partition which the key belongs to, Olric hashes the key
and mod it with the number of partitions.

There is an elected coordinator in each cluster. The coordinator election is
done via a very simple heuristics. All the machines share their birthdate in
the cluster. The oldest machine gets elected as the coordinator. When the
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coordinator leaves, the second oldest gets elected. It manages the partition
table. This can involve registering new partitions if a new machine joins,
removes outdated data, pushes new partition table to all the members and
to the cluster.

There is a rebalancer binary running in each node that takes care of relocating
the partition from the backup to the new host when one of the hosts leaves.
Along with this it merges fragmented partitions.

The idea of fragmented partitions are rather curious. Each partition has an
owner. There can be multiple owners in which case the partition is called a
fragmented partition. The last added owner is called a primary owner. Write
operation is only done by the primary owner. The previous owners are only
used for read and delete. When you read a key, the primary owner tries to
find the key on itself, first. Then, queries the previous owners and backups,
respectively. The delete operation works the same way. The data(distributed
map objects) in the fragmented partition is moved slowly to the primary
owner by the rebalancer. Until the move is done, the data remains available
on the previous owners. The distributed map methods use this list to query
data on the cluster.

3.3 Multi-tenant security and isolation

A multi-tenant cluster is shared by multiple user and/or workloads which
are referred to as tenants [27]. It is very crucial to make sure that data is
completely segregated between the tenants and in no circumstances can data
of one tenant be visible to the other. This is considered one of the biggest
security risks [28] of the cloud multi-tenancy. Along with this it is critical to
make sure that the resource is distributed equally among the tenants and in
no way a starvation occur in the cluster. It is very important to keep in mind
the security implications of sharing certain kind of resources among tenants.

In the case of FaaS, we already saw that how the same function instance can
be reused for different tenants and the cache can be lying around corrupting
the data or worse, exposing it. Along with this if there are functions that
deal with very sensitive information of a client, it is often very unsafe to
schedule other tenants’ operations in the same node.

In this thesis, we leverage Kubernetes to guarantee isolation of data in a
multitenant setup. We separate each tenant and their resources into their
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own namespace [29]. Along with this we leverage policies [30] by Kubernetes
to enforce resource limits to each client and manage access. By default, com-
pute resources on a Kubernetes cluster are unbound. With Policies we can
set quotas or restrict completely any or all kind of resources available to a
pod. A LimitRange is a policy to constrain resource allocations (to Pods or
Containers) in a namespace. A resource quota, defined by a ResourceQuota
object, provides constraints that limit aggregate resource consumption per
namespace. Then we have Pod Security Policies [31]. This is used to make
sure that each pod that runs comply by certain security policies and per-
missions. This is what will be used in our system to ensure that extremely
sensitive pods will be scheduled separately from the rest of the pods. Fig-
ure 14 shows how a multitenant system looks like controlled by Kubernetes
policies.

Figure 14: Multi-tenant infrastructure

3.4 Monitoring and tracing

According to a survey of 2018 done by Serverless(the company) [16], the
second most thing the devs are worried about the development process of a
FaaS application is monitoring and logging. Monitoring, logging and tracing
are all ways to ensure correctness in your system. Monitoring serverless
application is very complex. In a traditional application, we usually focus
on monitoring the execution of code, while in serverless, we also need to
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monitor the integrations between the different services and make sure that
we can follow a request end to end in our distributed system.

The demonstrate the issue a bit better, we consider a real AWS Lambda
workload and look at the logs [32]. We deploy a function with a clear bug as
a zip file with the CLI of AWS. We get a HTTP endpoint for the function.
This endpoint can be tried hitting with an API client like postman to get a
200 OK result as seen in Figure 15.

Figure 15: Trying to hit the AWS Lambda function endpoint via REST API
client

Figure 16: AWS Cloudwatch log of the same function

AWS Lambda provides the logs via AWS Cloudwatch. We now look at the
logs produced by AWS Cloudwatch upon invocation. This can be found in
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Figure 16. As you can see the logs are very fine grained, but the problem is
that the logs make no sense or helm the developer in the debugging process.
Error messages for failing functions are not verbose enough, so they often go
unnoticed. We also are having a hard time finding functions that timed out.
This basically clears up why we need more innovations in the monitoring of
Serverless functions.

Let us understand first what monitoring, logging and tracing entails as func-
tionalities.

3.4.1 Logging

Logging is used to track errors that were encountered in an app and other
debugging information of the running app. Even if the application is dis-
tributed or otherwise, a good logging system will accumulate the logs and
provide it in a centralized way for the ease of the developer. Log files can
show any discrete event within an application or system, such as a failure,
and error, or a state transformation. When something inevitably goes wrong,
such transformations in state help indicate which change actually caused an
error.

Since log files can grow exponentially, it is very important to analyze before
setting the logging framework in place what are the things that need logging.
We only need to know the crucial information but be mindful not to omit
the ones that might contribute to the debugging of the system. Even with
this logging system often tend to eat up all the storage in the systems. There
are several strategies that can be adopted to evict this problem. One way to
deal with this is to set a retention period to logs and clear up the log entries
that are older than this date. In most cases this would work really well since
there is seldom need for looking into significantly older logs. Another way
to deal with bloated logs is to rotate the log files. This is the practice where
you write to a different log file in a time window. This time window can be a
day or a week or a month and so on. The older log files are compressed and
backed up someplace if need arises to use them. The most recent logs will
be available in the current log files. This is a heavily adopted log handling
mechanism.

A very good logging system will have a clean and standardized structure
that lets the developer read through it and debug easily. keep in mind that
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logging should be precise and on point. It is also important to keep in mind
whom is the log for [33].

3.4.2 Tracing

Traces are intentionally a noisier set of data that logs. When logs document
discrete events happening in the application, traces document a much wider
continuous control flow in the application. The idea is to track the data
flow and the control flow in the application completely. There is a lot more
information available in the traces as opposed to the logs.

The goal of tracing is not debugging but optimization. Traces often track the
whole lifecycle of one single request. This makes it easier for the developers to
understand the bottlenecks and other performance issues in the application.
It can often be used along with the logs when a problem occur. Traces can
tell you what has lead to that problem and how the previous functions have
contributed to the issue.

Traces need not be very reactive as opposed to the logs. Considering the
amount of data involved, it is easy to see that how resource intensive can
tracing be. It is often very hard to manage and it involves writing a lot
more code to make sure the framework catches everything we need to. But
in microservice or FaaS architectures, traces can be crucial since there are
a lot of connected separate parts involved in the pipeline and traces let you
have a complete overview of your workflow in action.

3.4.3 Monitoring

Monitoring is a wider term that can be applied for both tracing and logging.
But in this context we talk about more complex monitoring systems. Mon-
itoring here helps the developer understand how their overall system works.
It involves instrumenting an application and then collecting, aggregating and
analyzing the metrics involved in the system. The main purpose of the mon-
itoring system can be considered as alerting the developers issues going on
in the platform before the users find out. These issues can be more system
specific like out of memory, out of storage, or other system failures.

There are various metrics from the system or the application that you can
feed to your monitoring platform. Recently systems developers have started
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feeding application logs as well to monitoring platform so that they can get
alerts as soon as an error appears in the application log.

3.4.4 Adaptation in FaaS

Logs While working with an OpenSource FaaS platforms where the isola-
tion is managed by Docker, we can use the inbuilt logging system by Docker
which are standard systemd logs [34]. We will not get into details of that
here.

With the kind of distributed system that we have in our hands, in this thesis
we propose adapting distributed tracing to trace and monitor the function
instances.

Tracing Distributed tracing is a method used to profile and monitor appli-
cations, especially those built using a microservices architecture. Distributed
tracing helps pinpoint where failures occur and what causes poor performance
[35]. Opentracing [36] is a standard specification for the definition of trac-
ing information. Systems that are written following this specification can be
ported from one tracing framework to another without having to change the
implementation. There are some fundamental attributes of Opentracing API
that are worth understanding. Refer Figure 17.

• Span It represents the most atomic unit of logic in a pipeline. This
unit will have a name, a start time, and the duration

• Trace A trace is basically a collection of spans. It represents the work-
flow of the entire pipeline. Each distributed component in the pipeline
contribute their own spans to form the trace from the aggregation.

As the definition goes from the documentation, OpenTracing is a way for
services to “describe and propagate distributed traces without knowledge
of the underlying OpenTracing implementation.”. The idea of tracing was
well covered before. What Opentracing adds to it is the capability to make
tracing infrastructure independent and standard across platforms. With the
span and trace form of specification, OpenTracing makes it easier to:

• Spans of services

• Time taken by each service
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Figure 17: Spans and traces

• Latency between the services

• Hierarchy of services

• Errors or exceptions during execution of each service.

Monitoring Monitoring of distributed systems can be heavily challenging
but yet highly necessary. The best industry recommended way is to do Time
series monitoring suggested by Google via the proprietary tool Borgman [37].
It is basically an in-memory database that scrape different kind of metric
from the system and applications. Then it does a rule based extraction from
the data and provides a queryable time-series database. Borgmon relies on
a common data exposition format; this enables mass data collection with
low overheads and avoids the costs of subprocess execution and network
connection setup. The data is used both for rendering charts and creating
alerts, which are accomplished using simple arithmetic. Because collection
is no longer in a short-lived process, the history of the collected data can be
used for that alert computation as well.

In our FaaS application, such a system basically can scrape the system infor-
mation from the Kubernetes cluster since each function is a pod. Then we
can specify appropriate rules for the kind of data aggregation we want to see,
visualize it and setup alerts. We will be using an Open Source alternative
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which we discuss in the next section.

4 Implementation
For implementing the aforementioned strategies and verifying its effectiveness
in making the Serverless workflows efficient, it is important to trial it on a

are closed in its source and vendor locked is practically impossible and stalling
the growth of Serverless as a paradigm. Instead several Open Source FaaS
infrastructure were analyzed for this thesis for the implementation of our
ideas. Along with the platform, choosing the right orchestration and clus-
tering tools, the workflow implementation tool, the right monitoring tools,
etc. are also vital in the implementation. So before going in detail about the
architectural specifics of the implementation, let us analyze the tools used in
the process and the reasoning behind their choosing.

4.1 Tools

4.1.1 Container Orchestration

We are going to work with a containerized setup like was hinted at the be-
ginning of the thesis description. Each function that is being written will
be containerized and brought up and down, scaled up and down based on
the configurations and usage requirement. We have to go with the right con-
tainerization platform and an clustering tool that would take care of man-
aging, scheduling, scaling up and down, etc. of these containers across a
cluster of nodes agnostic of the application specifics or the underlying sys-
tems specifics. We of course go with the industry standard here which are
Docker and Kubernetes especially because all of the leading FaaS solutions
these days work on both of these technologies. A gentle introduction to both
tools before proceeding to FaaS specific solutions.

Docker Docker [38] is one of the leading Linux Containers solution that is
being adopted very widely across all kinds of software infrastructure main-
tenance environments. According to the Docker Inc., over 3.5 million ap-
plications have been placed in containers using Docker technology and over
37 billion containerized apps have been downloads [39]. Advantages of using
containers for application shipping was already seen in Section 2.1.2. Docker
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made the whole Linux Containerization landscape a lot more approachable
as a packaging technology by the introduction of namespaces.

Without delving too much into the technicalities of containerization, we
would like to quickly explain the life of a containerized application with
Docker. Some terminologies that would help with understanding the con-
cept:

• Docker image: Like in any virtual machine environment, images can
be thought of somewhat a snapshot of the current state of an execution
environment(which is basically a stripped down operating system with
applications installed on it, ready to run). What makes Docker images
unique is its immutability. You cannot modify a docker container.
You can create copies or delete and recreate but not change the state.
This helps in guaranteeing that once your Docker image has reached a
working stage, it will always continue working no matter what. You can
try an add changing to the running instance of this image, but none of
these changes are persistent from the point of view of the image. You
can shut it down and start from the same image state as was created.

Sharing these images is an extremely easy process. There are container
registries which are hosting services for docker images like Github is
for git tracked code. Popular publicly available container registry is
DockerHub [40]. Developers can push their docker image to docker
with a simple ‘docker push‘ command from their command like and
share or make it publicly available for other developers or software
tools.

To create a docker image, the most straightforward way is via a con-
figuration file called Dockerfile. According to the reference from [41],

"Docker can build images automatically by reading the in-
structions from a Dockerfile. A Dockerfile is a text document
that contains all the commands a user could call on the com-
mand line to assemble an image. Using docker build users can
create an automated build that executes several command-
line instructions in succession."

For example, the following code block shows a Dockerfile written to
dockerize a simple Python app, that runs a simple flask HTTP server.
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FROM python:3.6.1-alpine
WORKDIR /project
ADD . /project
RUN pip install -r requirements.txt
CMD ["python","app.py"]

• Docker Container: If Docker image is a digital photograph, a docker
container is like a printout of the photograph [42]. Containers can
be thought of as a running instance of the image. Each container
is run separately and unlike the images, you can change the running
container. If you want to persist these changes though, you will have to
commit the running container it its running state by committing it as a
new image. Your host operating system isolated the running container
from the others in the computer. Each container instance will have
its process namespace, limits on the resource usage, allowed system
calls, etc. Communication across containers can be setup explicitly.
Most production applications, usually have multiple containers running
together with communication internally so as to isolate each process
environment, to avoid cascaded application damage, etc. A container
is inherently not addressable directly from external network, although
one can open it up by exposing corresponding service port to that of
the host system, provided necessary security precautions are taken.

• Orchestration tools: Docker by default ship a couple of orchestra-
tion tools that are specific to Docker. An significant one among this
is a docker-compose. Docker-compose lets one tie up multiple docker
containers, expose certain ports in each docker containers, pass envi-
ronment variables, define the communication and storage usage rules,
etc with the help of a configuration file by default to be name docker-
compose.yml. This is a very simple tool to use that helps in most
basic usages of the application deployment. One can connect multiple
nodes together and deploy the containers across these nodes via docker-
compose using a library called docker-swarm. Docker swarm takes care
of very basic scaling up and down of containers etc.

Kubernetes Now that we have seen a popular containerization solution
called Docker, it is time to see the most popular orchestration solution.
Docker swarm was already mentioned but when it comes to modern appli-
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cations, the requirement goes far beyond this. The application needs better
scaling heuristics, version rollout policies, cluster management, better net-
working and application discoverability, better monitoring and alerting sys-
tems, etc. This takes up to a much more advanced container orchestration
platform called Kubernetes. It is worth noting that Kubernetes is not just
built for Docker but for multiple flavors of Linux Container technologies.

Kubernetes is an Open Source platform for managing containerized work-
loads and services, that facilitates both declarative configuration and automa-
tion [43]. Contrary to the traditional deployment setups where applications
ran on physical servers, we have moved to an era where we deploy packaged
applications and are deployed across clusters of virtual nodes provided by
cloud providers. We require smarter tools for this to manage complexities in
different levels starting from application packaging to cluster management.
Kubernetes can be considered as the most popular solution that deals with
these complexities.

Kubernetes provides the framework to run these applications along with the
tools for the following purposes [43]:

• Service discovery and load balancing

• Storage orchestration

• Automated rollouts and rollbacks

• Automatic bin packing to make sure optimal resource usage

• Secret and configuration management

• Monitoring the usage and load to the cluster and applications

A great thing about Kubernetes as project these days, is the community
support. It has a very large and widely adopted community. Along with that
most cloud providers now support out of the box kubernetes engines making
the development of infrastructure agnostic applications very easy. This is the
way to go to be away from a deployment cycle that is not completely vendor
locked in.

Kubernetes is an immensely complex piece of software with numeral tools
and add-ons. Figure 18 depicts the architecture of Kubernetes. The control
plane is the core component of the setup. It consists of the API server to
the platform, etcd to store the state of the cluster, scheduler to deploy the
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Figure 18: Kubernetes infrastructure

Pods(collections of containers that makes up an application) to the corre-
sponding node in the cluster evaluating the usage requirements and avail-
ability, cloud controller manager that links the logic of the cluster to the API
of the cloud provider, etc. At the risk of getting out of this scope of the
thesis, we do not analyze more of the technicalities of kubernetes.

In our implementation, we will use the heuristics of scaling provided by ku-
bernetes in multiple cases. Alongside, the web UI kubernetes provides lets
us visualize the resource usage by the platform and applications to a great
extending helping with the monitoring of the setup.

• Namespaces: It is very useful to understand the concept of Names-
paces in Kubernetes though. We can logically divide each cluster into
multiple virtual clusters called namespaces. It is a way to divide the
existing cluster into separate logical partitions. The implications of
this provision is huge. We will be utilizing this feature of kubernetes
to logically partition the function executors to support multi tenancy.
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Namespaces provide a scope for names. Names of resources need to be
unique within a namespace, but not across namespaces. Namespaces
cannot be nested inside one another and each Kubernetes resource can
only be in one namespace [29].

4.1.2 OpenFaaS

Now that we have seen an overview of the packaging and clustering manage-
ment systems, it is time to look at the right platform to test out our state-ful
FaaS idea on. Considering that one main aim of the thesis is to move away
from vendor locked platforms, it all makes sense that we investigate the avail-
able open source FaaS solutions to extend on.

A survey was done comparing multiple open source FaaS offerings as ex-
plained in the section 2.2.3. From [43] , it is quite clear that one of the most
simplistic approach to architecture and flexibility belongs to OpenFaaS. The
ease of setup and the community support also is a huge add on for the Open-
FaaS to be chosen as out tool of preference.

OpenFaaS was a one person project that was initially developed just to test
out the power of vanilla docker orchestration tools to deploy event driven
functions on demand and scale. The clean and scalable architecture soon
put the project in spotlight. The best thing about OpenFaaS is that, the
core modules of OpenFaaS are very light weight and all the other units can
be added on to this core as necessary. The tool soon got to using Kubernetes
as the default deployment platform due to the increased popularity and to
make the best of Kubernetes heuristics for scaling.

Figure 19: OpenFaaS workflow

The following are the main components on an OpenFaaS setup to give the
user a bit more intuition on how functions are scheduled, executed and scaled
in the platform. Figure 19 goes along with the following description.
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OpenFaaS Gateway The gateway is the entrypoint to the FaaS infras-
tructure. It provides an API which opens an external route into the functions.
The gateway does a lot of the main functions in the infrastructure. The gate-
way is basically responsible for collecting the metric information and scaling
the functions accordingly. It has a built in UI portal for ease of deployment
and invocations of functions for the user. When kubernetes is used as the
orchestration platform, the conceptual design of OpenFaaS can be visualized
as Figure 20.

Figure 20: OpenFaaS conceptual design with Kubernetes

As can be noted in the image, Prometheus and Alertmanager are connected
to the OpenFaaS Gateway API.

• Prometheus is a monitoring system and time series database. Prometheus
is now the de-facto monitoring solution for Cloud Native projects. It
combines a simple interface with a powerful query language to monitor
and observe microservices and functions, which are the two primitives
of any FaaS. Prometheus basically does two functions. It gets metrics
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from machines in your cluster. These machines can be actual nodes or
virtual machines or containers. One can define custom rules to check on
these metrics and if any of the rules are triggered, Prometheus will fire
off alerts via AlertManager. OpenFaaS Gateway exposes a lot of these
collected metrics via Prometheus for visualization and monitoring. We
will be using these metrics for our monitoring.

faas-provider faas-provider is a very flexible interface that provides CRUD(create,
read, update, delete) to functions and the invoke capability. The information
about the function that need to be created/updated/invoked gets fed directly
from the OpenFaaS gateway which is the endpoint to which external world
communicates to.

The design of faas-provider makes OpenFaaS a unique platform. One can
their own faas-provider and hence change the backend of the OpenFaaS in-
frastructure very easily. There are design guidelines available to develop your
own faas-provider backend [44] , which basically is defining how CRUD and
invoke operations are handled by the backend. The most stable and popu-
larly used faas-provider that is maintained by the community is faas-netes,
which is the Kubernetes backend for OpenFaaS.

faas-provider takes care of scheduling the functions in the right node based
on the availability and requirement. It also does the scaling up and down
of the function instances based on the information from the gateway that
it gathered via Prometheus. Figure 21 shows the conceptual view of just
faas-provider stripping away the rest of the complexities.

OpenFaaS watchdog The OpenFaaS watchdog [45] is responsible for
starting and monitoring functions in OpenFaaS. Any binary can become a
function through the use of watchdog.

The watchdog becomes an "init process" with an embedded HTTP server
written in Golang, it can support concurrent requests, timeouts and healthchecks.
The newer of-watchdog mentioned below is similar, but ideal for streaming
use-cases or when an expensive resource needs to be maintained between
requests such as a database connection, ML model or other data.

Auto-scaling OpenFaaS ships with a single auto-scaling rule defined in
the mounted configuration file for AlertManager. AlertManager reads usage
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Figure 21: faas-provider

(requests per second) metrics from Prometheus in order to know when to fire
an alert to the API Gateway.

The API Gateway handles AlertManager alerts through its /system/alert
route.

The auto-scaling provided by this method can be disabled by either deleting
the AlertManager deployment or by scaling the deployment to zero replicas.

One can specify the minimum number of replicas and the maximum replicas
to be available. If minimum replicas is defined to be >0 then a warm copy
of the function will always be idle-ing there by avoiding the cold start issue.
Although this comes with an added cost of a docket container always up in
the memory although the resource usage during the idle time is super low.
We can also fine tune several other parameters like the factor by which the
function should be scaled up or down when there is a burst or decline of the
traffic, etc. This makes OpenFaaS extremely powerful and yet in the most
simplistic way possible.

When Kubernetes is used as the backend, instead of AlertManager the built-
in Horizontal Pod Autoscaler [46]. This is a lot more matured as a scaler
scheduler and we will be using that for the thesis implementation.
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NATS streaming A curiously lightweight application that has been adapted
into OpenFaaS is NATS. NATS provides simple and secure messaging func-
tionality to the setup. It does event and data streaming in the cluster.
OpenFaaS uses NATS Streaming which builds on top of the base NATS pro-
tocol to offer data streaming or a queue [47] . NATS streaming provides
Queue worker in which the function invocation requests can be queued up
by the API Gateway, and processed in parallel when the capacity becomes
available. Asyncronous invocations can be very easily done since it is built
in without making any changes to the gateway. Each function will have a
separate endpoint that can be used to invoke it asynchronously.

NATS streaming is a Pub Sub protocol implementation like Kafka but with
very high throughput compared to the latter. Publish-subscribe pattern
corresponds to a mechanism where in producers publish messages that are
grouped into categories and consumers subscribe to categories which they
are interested [48]. NATS is extremely lightweight as a technology making
it the right candidate for an elastic Serverless infrastructure, compared to
a full blown message broker system like Kafka. Along side, considering the
ephemeral nature of state in FaaS setup, an in-memory message delivery
protocol like NAT could be extremely useful.

Triggers OpenFaaS functions can be triggered easily by any kind of event.
A small piece of code will convert from the event-source and trigger the
function using the OpenFaaS Gateway API. Some of the most used triggers
are:

• HTTP: One can send POST requests to the function endpoint which
follows the patter ‘https://<gateway URL>:<port>/function/<function
name>‘

• Cron

• NATS streaming/Async: You can execute a function or microservice
asynchronously by replacing function with async-function when access-
ing the endpoint via the OpenFaaS gateway.

• CLI: we can trigger user faas-cli which is a command line application
to communicate with faas gateway

• Apache Kafka
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• AWS SQS

• Redis

• Minio/S3

• RabbitMQ

Runtime supports and templates OpenFaaS is one of the unique en-
gines that supports any and all programming languages to write functions
in because of its architecture. The way OpenFaaS works, it dockerize the
application by adding an of-watchdog to the application container and de-
ploy it to the kubernetes cluster. To make the process easier, OpenFaaS does
not expect you to write the Dockerfile. Instead, it provides already packaged
versions of language bundles called templates. The developer can just pull
the right template from the template store and just edit the entrypoint script
to add their application logic.

Like was briefly hinted earlier, OpenFaaS provides a command line tool called
faas-cli. This tool can be used to build, push and deploy the docker images
from the code. With build, it build an image into the local Docker library.
With push, it pushes that image to a remote container registry. With deploy,
it deploys your function into a cluster.

As an example, to build a simple python function, the developer will follow
the proceeding commands:

faas-cli template store pull python3
faas-cli new funcname --lang python3

faas-cli build -f funcname.yml
faas-cli push funcname
faas-cli deploy -f funcname.yml

4.1.3 FaaS-flow

In Section 3.1, we analyzed different possible ways to do function composi-
tion. We saw that workflow pattern is the most efficient and flexible design
for a FaaS application to composite functions. What this means is, the best
way to go about it is by keeping a Distributed Acyclic Graph in memory

63



that is logically sort of a flowchart defining the conditionals, branches and
the loops in a function composition.

FaaS-flow [60] is a library written in Golang that lets the developers fiddle
with the runtime of OpenFaaS via an SDK. We will use it to orchestrate
a pipeline with long running and short running ETL jobs without having
to orchestrate them manually or maintain a separate application. Faas-flow
ensures the execution order of several functions running in parallel or dynam-
ically and provides rich construct to aggregate results while maintaining the
intermediate data [60]. Using Faas-flow you can combine multiple OpenFaaS
functions with little codes while your workflow will scale up/down automat-
ically to handle the load.

The main motivation behind the development of faas-flow is building a pipeline
that is very loosely coupled. We adapt faas-flow in this thesis considering
its extremely stateless nature. This means that the fundamental notions of
FaaS architecture is not violated here. Faas flow provides the possibility to
reuse the same function in multiple workflows which will execute in parallel
agnostic of each others execution. Along with this, in the DAG generation,
faas-flow supports multiple operations to orchestrate pipelines with condi-
tionals, branching, iterations, etc.

Faas flow only supports Go as a programming language for the development
at the moment which is a hard constraint. In any case this can help us build
the workflow DAGs for our proof of concept in this thesis. Now we will see
some codeblocks [60] written using faasflow library in Go that forms certain
pipeline orchestrations.

func Define(flow *faasflow.Workflow, context *faasflow.Context)
(err error) \{
flow.SyncNode()

.Apply("func1")

.Apply("func2")

.Modify(func(data []byte) ([]byte, error) \{
// do something
return data, nil

\})
return nil

\}
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The above code block defines a composition that begins by applying a func-
tion called func1 to the start node. Then it goes ahead and apply func2.
After this we call a modify operator on the pipeline to get the data from the
last pipeline and do something with the data and return it as the end result
of the whole pipeline to the invoker. A workflow diagram of the dag can be
referred from the Figure 22 In the above codebase though, like one could in-

Figure 22: Simple chaining orchestration with openfaas

fer, the functions are in a blocking stage. Meaning, the whole pipeline waits
until each of the function that is executing to finish before moving further
down the DAG with the execution. If there is no intermediate data to be
passed along, this can actually slow down the whole cycle. To avoid this,
faas-flow supports asynchronous chaining. The codeblock below implements
an asynchronous cycle and Figure ?? represents the DAG structure of the
same.

func Define(flow *faasflow.Workflow, context *faasflow.Context)
(err error) \{
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dag := flow.Dag()
dag.Node("n1").Apply("func1")
dag.Node("n2")

.Apply("func2")

.Modify(func(data []byte) ([]byte, error) \{
// do something
return data, nil

\})
dag.Node("n3").Apply("func4")
dag.Edge("n1", "n2")
dag.Edge("n2", "n3")
return nil

\}

Figure 23: Asynchronous function chaining

Aside from these basic chaining operations, with faas-flow we can even design
orchestration that are a lot more complex like parallel branching and dynamic
branching. The following codeblock creates a parallel branching orchestration
and Figure 24 represents the DAG that is created.

66



Figure 24: Parallel execution function chaining

func Define(flow *faasflow.Workflow, context *faasflow.Context)
(err error) \{
dag := flow.Dag()
dag.Node("n1").Modify(func(data []byte) ([]byte, error) \{

// do something
return data, nil

\})
dag.Node("n2").Apply("func1")
dag.Node("n3").Apply("func2").Modify(func(data []byte) ([]byte,

error) \{
// do something
return data, nil

\})
dag.Node("n4", faasflow.Aggregator(func(data map[string][]byte)

([]byte, error) \{
// aggregate branch result data["n2"] and data["n3"]
return []byte(""), nil

\}))

dag.Edge("n1", "n2")

67



dag.Edge("n1", "n3")
dag.Edge("n2", "n4")
dag.Edge("n3", "n4")
return nil

\}

Faas flow does not use a complete workflow based approach for the orches-
tration. Instead it mixes it with an event based workflow. Meaning that,
internally faasflow keeps a DAG, but the completion of each node in the
DAG is broadcasted with the help of an event queue. faas-flow uses NAT
streaming [47] as the event bus. Node execution in Faas-flow starts by a
completion event of one or more previous nodes. A completion event denotes
that all the previous dependent nodes have completed. The event carries the
execution state and identifies the next node to execute. With events Faas-
flow asynchronously carry-on execution of nodes by iterating itself over and
over till all nodes are executed. Figure 25 logically represents how function
orchestration happen via event propagation.

Figure 25: Event based workflows

The most notable thing about faasflow is its flexibility and extensibility as a
tool. We can extend faas flow to add different kind of storage infrastructures
to the workflow. Faas flow basically has two kind of data. First is the state
of the DAG that is being processed by faas flow and then is the intermediate
data that need to be transferred between two functions. The former is called
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the state store and the latter is called the data store. We can write our own
libraries to define our own data store and state store logic and how we want
to deal with data in the pipeline. Figure 26 and Figure 27 represents the
logical workflow when we add external storage suits.

Figure 26: State store logical view

Figure 27: Data Store logical view

Another important thing about faas flow is that faas flow at the end of the
works as yet another function in the FaaS infrastructure letting it leverage
the autoscaling policies of the system than handling it itself. There rich
features make us adapt faas-flow as the choice of orchestration engine for our
proof of concept.
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4.1.4 Prometheus

In the previous section, we discussed briefly about the time-series monitor-
ing approach adapted by Google. Prometheus is an Open Source monitor-
ing and alerting toolkit that works exactly the way Google Borgman works.
The working of Prometheus is rather curious. We can statically configure
Prometheus to detect certain metric sources. For example, the CPU usage
of the nodes in the Kuberenetes cluster. Prometheus pulls these metric as
a time-series over HTTP. Prometheus need not be setup in the same clus-
ter as the applications. Prometheus does not even expect to be run as a
distributed system. At this stage, Prometheus parses the data and keep a a
multi-dimensional data model with time series data identified by metric name
and key/value pairs. There are streams of timestamped values belonging to
the same metric and the same set of labeled dimensions [49] . Prometheus
also comes with a query language called PromQL that can query over stream-
ing, multi-dimensional time series data.

Prometheus is a tool that is written in Go programming language. The
main component of Prometheus is a server that scrapes the time series data.
Prometheus packs several client libraries that need to be used in application
code if data has to be pushed to Prometheus. For ephemeral jobs that are
shortlived, as is the case with most FaaS functions, Prometheus provides
a push gateway. The Prometheus Pushgateway exists to allow ephemeral
and batch jobs to expose their metrics to Prometheus. Since these kinds of
jobs may not exist long enough to be scraped, they can instead push their
metrics to a Pushgateway. The Pushgateway then exposes these metrics
to Prometheus [50]. There are several other exporters for various services.
Along with various other support tools, Prometheus also has an inbuilt alert
manager to handle alerts. Figure 28 shows the overall system architecture of
Prometheus.

There are numerous tools that can be used to connect to Prometheus like
Grafana that lets us visualize the data with more meaning in a dashboard.
Prometheus can be used with any kind of numeric data. May it be machine-
centric monitoring or monitoring of highly dynamic service-oriented architec-
tures. We can track the usage of the system resources via Prometheus in a
very fine grained manner. Memory, CPU, and execution time of the applica-
tion, all can be accounted for as a function of time. The person maintaining
our system can do fine grained billing using these usage metric.
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Figure 28: Prometheus Architecture

OpenFaaS Gateway component exposes several metrics to help you monitor
the health and behavior of the functions. We will leveraging that to have
clean usage tracking for our system. For example, to get the total number
of successful function invocations from the gateway, we can run the PromQL
query sum( gatewayfunctioninvocationtotal { code=\"200\"}

4.1.5 Jaeger

We discussed how OpenTracing API helps identify the bottlenecks and allows
easy debugging in a distributed setup. One of the most popular implementa-
tions of OpenTracing API is Jaegar [51]. Jaeger identifies that the difficulty
in dealing with debugging in microservices or FaaS setups are an order of
magnitude away from simple monoliths. The majority of operational prob-
lems happen in such platforms either as an issue of networking or that of
observability.

We already mentioned Spans and Traces as a part of OpenTracking API in the
previous section. One think special about Jaeger is that, it handle trace as a
directed acyclic graph of spans. This basically visualizes the data/execution
path through the system.
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Figure 29: Jaeger Architecture

Figure 29 shows the architecture of Jaeger. Jaegar has code facing client
libraries that are compliant with OpenTracing API. It can be integrated
very easily with any tool that is integrated with OpenTracing. This includes
frameworks like Flask, gRPC, and many more. Basically an instrumented
service creates spans when receiving new requests and attaches context infor-
mation (trace id, span id, and baggage) to outgoing requests [52]. Sampled
spans are propagated out of the process asynchronously to Jaeger Agents.
This process has very little overhead. The Jaeger agent is a network dae-
mon that listens for spans sent over UDP, which it batches and sends to
the collector. It is designed to be deployed to all hosts as an infrastructure
component. Collective receive these traces and process it to validate, index,
transform and store them. Like Prometheus, Jaeger also supports a Query
language via a Query component and visualizes the output in a UI. Figure
30 shows what the UI looks like for a web app on an HTTP request to the
endpoint.

4.2 Architecture Overview

In this section, we will see how the tools mentioned above were efficiently
used to build an orchestration system for pipelined FaaS workloads that
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Figure 30: Jaeger UI

work much better than the out of the box solutions. Great care was given
into building a system that is very easy to deploy and maintain for the
infrastructure providers. We believe that the practicality, adaptability and
the accordance with the core philosophies of serverless architecture make our
system unique.

We can separate our system logically into 3 parts. The FaaS runtime, the
workflow framework and the workflow defining client API. The functions that
are (written in any language of preference) that does the computations exist
outside the logic.

Figure 31 depicts the overall architecture of the setup. To begin with, we
have the OpenFaaS runtime which takes care of the execution of the function
instances upon triggers using Kubernetes and packaging the functions as
Docker containers. We configure the setup to not scale down to zero to avoid
the cold start time during the initial start. We might still incur a bit of cold
start when the number of instances is scaling up upon heavy load.

By default in OpenFaaS, functions are coupled with a tiny Go based server
and a function watchdog [45]. The watchdog takes care of parsing the in-
coming requests and forwards it to the function via standard IO. There is no
latency between this call transfer since it happens internally and the watch-
dog process is co-located with the function instance. In our implementation

73



though we remove the watchdog component from the function runtime since
our added framework for the workflows take care of handling the requests
and passing it between the functions. We try to avoid the added latency by
the watchdog process since we already serializes and de-serializes the data as
a part of data store library. This also means that we can test the efficiency
of the orchestration setup without the added latency by the platform. Open-
FaaS’ runtime driver for Kubernetes is faas-netes, which deploys functions as
Kubernetes pods, and then delegates scheduling decisions to the Kubernetes
scheduler.

We keep the NATS streaming message queue that is used by faas-netes for
queuing of requests. The interesting thing about the NATS streaming here is
that, the storage is in-memory only of the queued requests. This is rather in-
teresting because it means that the message queue is completely autoscalable
as well since we have the RAM pool controlled by the Kubernetes autoscaling
logic. This helps in keeping our platform completely elastic.

The requests received by the gateway are queued in the NATS streaming.
The workflow function orchestrated using faas-flow will receive these mes-
sages from the queue. The workflow framework takes care of handling the
request arriving, formatting it in the way needed. Then the DAG is pro-
cessed with the input data by the framework. The DAG or the workflow is
a part of the state that the OpenFaaS runtime need to process. The whole
workflow is basically stored in the state store along with the current state of
the workflow which can be retrieved by the workflow framework from time
to time to trigger the next function that needs to be executed. Whenever a
function finishes its execution a FINISH event is sent to the message queue
which is the NATS streaming, which triggers the workflow framework to fetch
the next node to be executed from the state store and trigger it over HTTP
via the OpenFaaS gateway. At the end of each function, a call is made to the
OpenTracing setup to register the span of each function invocation which can
be used for evaluation and optimizations. Once the execution of a particular
node is over, the information about that node in the flow is removed from
the state store and there by automatically freeing up memory.

The data returned from any of the function invocations are stored in an
intermediate data store provided by us. This data is ephemeral in nature and
exists in memory only until the workflow has successfully finished execution.
There is a request id parameter associated with the particular invocation of
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Figure 31: Architecture

a node or instance. The data stored will use this request ID to identify it
uniquely and is fetched by the following function accordingly.

4.2.1 Workflow framework

The workflow framework is the most important part of our orchestration
platform. We discussed in section 3.1 different theoretical solutions for com-
posing functions. From the analysis it was quite clear that the workflow
based orchestration provides the most amount of flexibility and scalability
to the system. The problem of introducing something like that directly to
Serverless platform is the complication in maintaining the state. Since we
have multiple functions getting triggered(asynchronously at times), it gets
really hard to realize if a function has terminated and might even lead us to
a polling sort of methodology which is kind of inefficient. Instead we choose
to mix event based orchestration to workflow orchestrations.

The user communicates with the system via the client library. This is a form
of domain specific format to specify the structure of the Directed Acyclic
Graph. We use the faas-flow interface language to provide the client library.
This was explained in detail in section 4.1.3. By default, OpenFaas runtime
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takes caring handling events from function like function termination, function
error, etc. We cannot use this inherent ability since we want our workflow to
proceed differently that the conventional way. Hence we tweak the function
runtime to override the default event handler and the function executor in
the OpenFaas platform. We make each functions sent out events to the
event queue after the execution completion, on errors, etc. Upon receiving
these events, our workflow runtime will look inside the state store for the
next node/function to be executed according to the DAG specified via the
client library and the respective function is triggered. The workflow library
globally keeps a context map for each invocation. The context map contains
the current node which is the current node/function of execution, state which
represents the orchestration structure and the requestID which is a unique
identification for the current request invocation. Like was mentioned earlier,
this is used while storing the function intermediate data of each invocation.

Along with the orchestration, workflow framework takes care of the trace
handling. Each function can take three states during their lifetime - Running,
Paused, Stopped. On each of this state update via the events, the framework
sends logs a corresponding entry on the OpenTracing platform. This is how
the spans and traces are logged in the system.

Using the standard visual interface of OpenTracing, we can visualize these
tracing information which would look similar to Figure 32. Like is visible,
there is a request ID representing the trace of the entire orchestration. Then
you can see the spans of each node in the graph(function in composition). It
is easy to measure the latency of each step via this interface.

Along with this interface, we use a D3 based library setup to visualize the
DAG structure that represents our function orchestration. Figure 33 shows
how the DAG looks like in our setup for a sample code that modify data
based on a conditional "odd or even". The blocks composing the modify
nodes are the ones that change the data or have side effects if we talk in a
functional language paradigm.

There are certain configurable parameters in the system. We can enable or
disable the tracing, we can set the whole system to scale from 0 than from
1, we can set an upper limit to the amount of memory and CPU used by the
system, etc. The standard OpenFaaS config [63] support is used for this but
we found it quite flexible and easy to use.
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Figure 32: Trace of a sample workload

Figure 33: DAG of a sample workload

4.2.2 Data store library

To store the ephemeral data between the functions like was mentioned earlier
we propose the usage of distributed in-memory cache which can be easily
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scaled up and down. Our consideration was both Pocket and Olric. For the
implementation though, due to technical difficulties we opted the usage of
Olric.

Olric was deployed as Kubernetes pods one per each node in the cluster to
ensure that the data transfer time among the storage and the functions are
minimum. To communicate to this library, we added a data store manage-
ment library for Orlic extending the faas-flow library [64].

The library integrates effortlessly with the DataStore object of faas-flow li-
brary. The DataStore interface of faas-flow first looks for a Init endpoints
that initializes the connection with the deployed Olric setup, configures the
timeouts and maximum number of connections. The Olric Go library is used
to build the interface. During this initialization step we also specify the se-
rialization library that needs to be used. We use Go’s NewMsgPack as the
serialization library. MessagePack [65] is a binary serialization format that
functions a bit like JSON. Small integers are encoded into a single byte, and
typical short strings require only one extra byte in addition to the strings
themselves. This makes it a bit better than JSON in the performance.

For each new request that is created on the faas-flow pipeline, our library cre-
ates a new distributed map to store the key value pairs. On the termination
of the request, this distributed map is deleted. Alongside we take of the logic
to set and get values to and from the distributed map during the FINISH
and RUNNING event changes on the workflow framework. The handling of
the events are done inherently by faas-flow as was explained earlier.

4.2.3 Monitoring & usage tracking

We looked in detail at Prometheus as a monitoring tool in the previous
section. As a part of the thesis implementation, we deployed Prometheus
and Grafana to monitor the usage of the resources and scaling of the plat-
form. The data needs to be appropriately exposed and formatted so that
Prometheus can collect it. Prometheus can access data directly from the
app’s client libraries or by using exporters. An exporter is a piece of soft-
ware sitting next to the application that sends data to prometheus to scrape.
Exporter basically accepts HTTP request from Prometheus and provide the
data to Prometheus. For Prometheus to know what data to pull, it uses a Ser-
vice Discovery. For example, In the case of Kubernetes cluster, this Service

78



Discovery is done via Kubernetes API since it already has labels, names, etc.
for all the applications in it. Figure 34 shows the way Prometheus connects
with applications and process the data.

Figure 34: Prometheus workflow

Along with the application information, we should get information about the
nodes such as disk usage, CPU usage, etc. We use node exporter [66] for this.
Along with this, we also have to export the information about the cgroups
that make up Docker containers. For this we use Google’s cadvisor project
[67]. Once this connection is made, we can use the PromQL language to
query from the scraped time series data.

Prometheus can be easily installed on Kubernetes with the help of YAML
configurations. Then in the configuration to specify the scraper called scapeconfig,
provide the Kubernetes API, kubectl. The output of the PromQL queries
can be used to track the usage by the applications in the infrastructure along
with the responsiveness of the system with respect to the scaling, etc. Figure
35 represents a monitoring visualization setup for a serverless infrastructure.

5 Evaluation
To analyze the efficiency of our system, we thought of the right kind of metrics
that would quantitatively measure the improvement in the issues we were
trying to resolve. We wanted to understand how the composition technique
and the ephemeral storage affects the following aspects of the system:

• Overall pipeline execution

• Individual function execution

• Scaling of individual functions
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Figure 35: Grafana Visualization of Prometheus data

• Resource usage

We are not measuring the cold start latencies of the system since the mecha-
nism we proposed would not alter anything in this scenario. Also our system
maintain a warm pool of instances to avoid the initial cold start latency.

To empirically evaluate the above mentioned aspects, we track several metrics
via the monitoring and tracing systems we have setup for the infrastructure.
For each workload we test, we record the following details:

• Trace of the whole function orchestra (Overall execution time):
Overall execution of a function orchestra comprises usually comprises
the cold start time, the time to store and retrieve intermediate data
and the function execution of the whole pipeline. We are hoping to
find a reduction in the execution time on our proposed solution.

• Span of individual function (Single function execution time):
Our tracing platform effectively records the span of each function. We
expect a reduction here as well.

• The percentage of requests that were handled by the system:
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We measure the number of requests that hit the OpenFaaS gateway
the number of successful requests. This measures if our system ever
drops a request during heavy load situation. A successful execution is
considered as the ones that return 200 status code. We can measure
this value for each second and calculate the throughput of the system.
We will set a 30s timeout on open requests which will be marked as
failed.

• Memory and CPU usage: We measure the Memory and CPU usage
by each pipeline. This is to learn if our method produced any unex-
pected spikes in CPU usage and memory and also to test our theory
on having a easily billable infrastructure.

• Scaled parameter: We define a scaling logic for our setup. We will
measure the responsiveness of the platform to heavy load, how easily
it scales up and down.

For measuring the improvement our thesis has made to the platform, we
compare the platform with the standard practices used for function orches-
trations using OpenFaaS. We choose to stick to testing workload on the same
platform since certain latencies are very much platform dependent. It would
not be very enlightening if we compare a setup of our thesis on OpenFaaS to a
commercial setup like AWS Lambda. We design our workloads on OpenFaaS
in three different ways:

• Manual orchestration: We compose the functions by issuing an
HTTP request from each other which is the suggested way of doing
it by AWS in the absence of step functions [21].

• Orchestration with faas-flow and object store: We compose the
functions using faas-flow but use an object store for storing the inter-
mediate data that needs to transferred between the functions

• Orchestration with faas-flow and state store: Here we compose
the functions with faas-flow but use the in-memory data store for the
intermediate storage

5.1 Setup and tools

For the proof of concept, We setup OpenFaaS on single node Kubernetes
cluster setup on AWS. Each machine has 2 vCPUs and 8GB of dedicated
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memory. We used the helm charts [68] of OpenFaaS to setup the FaaS
platform. We extended or removed memory limits / quotas for each service
and function. For the test setup we turn off the debug flag so that the logs
for the function are kept sparse. Like was mentioned in the Implementation
section, we connect Prometheus, Grafana and Jaeger tracing with the setup
to get fine grained usage and runtime data from the environment. It is worth
noting that we use minikube [72] to setup the cluster which technically runs
over KVM hypervisor. This introduces some latency to the setup.

In the same cluster we setup Olric, the in-memory distributed cache of our
choice, with one pod in each of the nod in the cluster. We connect Olric
to Prometheus to get the usage of the memory by the state store. To test
our second type of orchestration, the one with the object store, we chose an
Open Source object store called Minio [69]. Minio has the functionalities very
similar to AWS s3 with an almost similar CLI library. We use the pre-built
helm charts of Minio as well for the setup.

One we had the whole setup ready, we configured the platform to have no
limits over scaling factor of the function. Along with this we define the rule
for scaling the function instances. We make this a function of the number of
invocations to have a load based scaling strategy. Like was discussed during
the description of OpenFaaS, AlertManager is responsible for firing requests
for scaling up and down to the OpenFaaS gateway as per the metrics tracked
by Prometheus. So we write the custom AlertManager rule on Prometheus
with PromQL. The logic we specify is as follows:

alert: APIHighInvocationRate
expr: sum(rate(gateway-function-invocation-total\{code=

"200"\}[10s])) BY (functionName) > 5
for: 5s

The above query groups the invocation by the function name. If the sum of
successful invocations is above 5 within 5 seconds, the gateway scales up the
function instances running by a certain factor. We define this factor to be
20% in the OpenFaaS configuration file for our functions later.

For load testing we use the HTTP load mocking library called hey [71]. hey
is a lightweight replacement for ApacheBench. hey runs provided number of
requests in the provided concurrency level and prints stats. It can be used
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as a command as follows:

hey -q 1 -c 1 -z 15m ’http://<server-ip>/function/nodeinfo’

The above command sends 1 request per second for a total of 15 minutes to
the function called nodeinfo in the local OpenFaaS setup.

5.2 Workload

We use a very simple workload to do the function composition with. We
implement the famous Fizz buzz children’s puzzle [70]. It is a simple function
that checks if a number is divisible by 5, in which case it replaces the number
with buzz and if it is divisible by 3, the number is replaces by fizz. We
split this into multiple functions. The first function checks if the number is
divisible by 3 or by 5 and conditionally it chooses the next function which
either is: the function that return fizz, the function that returns buzz, or the
function that returns the same number. This function is great because we
can test the conditional branching in the composition. It is not particularly
CPU intensive or memory intensive. We do not want such workloads since
our scaling heuristics depend on the number of requests.

Figure 36 shows the DAG generated from the composition. Like one can
notice, based on the conditional(divide by3, divide by 5, or neither) the flow
can take one of three branches. At the end, the end node returns the value
in a unified format.

To further understand how the variable number of functions can affect the
performance of our proposed system, we tried next to increase the number
of functions that are chained together. We wrote a composition that would
get passed in a number, and the system will create a DAG with that many
nodes(functions) in it. To compare the performance to standard setups, we
wrote a manual composition where the the function is pass in a number,
which in turn calls another instance of itself with a number one less that
what it got. If the number it got is zero, it just returns the number and
do nothing. This dynamically creates a chain of the number of functions we
want. This workload is much less CPU and memory intensive. We are only
trying to see how well it perform for long function compositions.
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Figure 36: Fizz buzz workload

5.3 Results and Analysis

To begin the experiment with we used hey command line tool to produce
three different kind of load for the above three different workloads. We
tried a load of 1 request every 1 second for 1 minute, a load of 50 requests
concurrently for 40 seconds. We noted the metrics on hey, average spans on
the tracing framework, scaling frequency and the CPU and memory usage
for all the mentioned workloads as follows:

5.3.1 faas-flow with ephemeral storage

In the first setup we try emulate an HTTP load of one request per second
for a whole minute using the testing tool hey like mentioned earlier. The
command would be as follows:

hey -q 1 -c 1 -z 1m ’http://<server-ip>/function/fizz-buzz-olric’

We notice that all 60 requests that were sent were successfully handled by
the platform. We get the benchmark information from hey like is shown in
Figure 37.
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Figure 37: Benchmark summary from hey for composition with ephemeral
storage

It is seen that on average the pipeline took 0.0168 seconds.

Further looking at the function span, it can be seen that the starting node
in the composition is the one that takes up the most time in the execution.
On average this is seen as 0.013s.

We try increasing the load on the function so we can see how well it scales.
We invoke an HTTP mock load of around 200 requests per second for a
period of 1 minute. All of the requests were handled by the platform. The
hey benchmarking details are as in Figure 38
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Figure 38: Benchmark summary from hey for composition with ephemeral
storage with higher load

We can see that there is a bit of heavy variance in the response times of
the requests. On average the response time is about 0.1895 seconds which
is more than the previous case. This latency can be attributed to the cold
start delay during the scaling.

We now try and increase the number of functions in the chain dynamically.
We write a script that will pass a number into the flow function, and the flow
function dynamically creates a DAG of echo functions that serially chains
the that many number of functions. The DAG that was dynamically created
looks like Figures 39 and 40 for 2 and 6 nodes respectively. In each of these
compositions, we will load test by variable load of input messages and see how
well they perform in comparison to the manual compositions. We present
the benchmark found on this comparison in the Analysis section.
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Figure 39: Dynamically created composition with 2 nodes

Figure 40: Dynamically created composition with 6 nodes

We can find an interesting corelation here between the scaling and the func-
tion execution time. We start the system by maintaining a warm pool of 30
nodes for higher number of requests. When we send out 50 requests at once,
the system scale up according to the alermanager rule that we defined. It can
be seen from the charts of the function rates and the execution duration how
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when the function is scaling up the execution time starts increasing steadily.
This can be referred from Figure 41 and Figure 42. These are charts from
Grafana monitoring taken directly. In the former you can see two plots under
the execution time. The yellow one belongs to the time spent on the start
node and the lower one is of the function that tracks the trace metrics of the
same function. Although this adds some latency, this was necessary to easy
tracking of data. In the latter you can see the scaling rate of the same node.

Figure 41: Execution time - Composition with ephemeral storage

Figure 42: Scaling - Composition with ephemeral storage

5.3.2 faas-flow with block storage

The first scenario as was done with the previous workload, we use one request
per second for a minute HTTP request load as follows.

hey -q 1 -c 1 -z 1m ’http://<server-ip>/function/fizz-buzz-minio’

In this case as well all the requests were successfully handled by the platform
(200OK response). The benchmark details from hey CLI is as in Figure 43
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Figure 43: Benchmark summary from hey for composition with block storage
On an average the requests took 0.0184 seconds to complete the whole
pipeline. When we look at the function spans of each function, it can be
seen that on average the modifier node which represents the data modifier
takes up quite a bit of time along with the start node. This was shown as
0.00716s and 0.00932s respectively.

Similar to the above section, we repeat the experiment with a heavier load
to see how well the scaling is managed by the system. We get an average
response time of 0.3646 seconds. But in this experiment we had 3 timeouts.
According to the trace, there timeouts happened during the writing phase to
the Minio. Figure 44 represents the benchmark information. The 3 requests
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that exceeded 1 minute in execution are the ones that timed out.

Figure 44: Benchmark summary from hey for composition with block storage
- higher load
We do notice in this case as well a general spike in execution time when the
functions are getting scaled up after the warm pods we have kept on.

5.3.3 Manual composition with block storage

For the manual composition, basically we wrote simple python functions of
the same functionality that would call each other via simple HTTP REST
calls using requests [73] module. This is quite comparable with the recom-
mended setup recommended by some of the commercial FaaS offerings [20].
The very same HTTP request load was applied first on manual composition
to yield a result as in Figure 45
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hey -q 1 -c 1 -z 1m ’http://<server-ip>/function/fizz-buzz-manual’

Figure 45: Benchmark summary from hey for manual composition with block
storage

We can see that on average the function takes 0.33 seconds to complete a
request. Even in this case, we could see that all the requests were handled by
the system successfully. We could not measure spans of individual functions
exactly in this case because of the missing tracing infrastructure for this.

In the second phase of the test on this setup, as with the previous two
cases, we mock above 200 requests per second on the manual composition
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pipeline. There was a serious slowness in the scaling of the function in this
scenario. The function that is being called from another function did not
scale well since it is not being called simultaneously and would not trigger
the Alertmanager rule. Hence there were quite a few timeouts.

Figure 46: Benchmark summary from hey for manual composition with block
storage and heavy load

Figure 46 shows the staggering slowness and network clogging that happened
during this test. On an average a request took around 8 seconds to complete
a round trip. We could not notice clean scaling either in this setup since only
the coordinator functions kept scaling and not the individual functions.

Like with the faas-flow composition with ephemeral storage, we tried to dy-
namically compose variable number of functions and see how the chaining
factor increases or decreases the composition efficiency. We found that the
manual composition fall short in independently scaling the functions and the
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Table 1: Execution times of the compositions
Composition Workload Average Fastest Slowest Timeouts

response response response
time(s) time(s) time(s)

Manual ~1 request 0.3540 0.3007 0.7717 1
Composition per second
Manual ~230 request 4
Composition per second 8.7822 7.0268 10.6321
Faas-flow ~1 request
with Object per second 0.0184 0.0125 0.0912 0
Store
Faas-flow ~230 request
with Object per second 0.3646 0.0047 1.0821 0
Store
Faas-flow ~1 request
with in-memory per second 0.0168 0.0129 0.0628 0
cache store
Faas-flow ~230 request
with in-memory per second 0.1895 0.0142 0.6185 0
cache store

error handling and network latency affects the efficiency a lot in the system.
We present the values we found in the next section.

5.3.4 Analysis

Consolidating the above collection data, we create the Table 1

The initial analysis is driven from the first scenario of our testing setup.
When we look at the scenario with one request per second, we can understand
that on average each function takes an average of 0.0168 seconds in a setup
with faas-flow + ephemeral storage, 0.0184 seconds for faas-flow + block
storages and a staggering 0.3540s for the manual composition. These patterns
were repeated even when we increased the load to have heavy concurrent
requests.

The problem that was noticed mainly with our proposed solution is the cold
start during the scaling up scenario. The reasons of this can be attributed
to the slow virtualization mechanism we are using. Although we did see that
we had an almost immediate scaling down when the load goes down. This is
actually really great for resource preservation.
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With the setup using block storage, the modifier functions seem to be taking
longer which is the added latency of accessing the block storage. We could
not really achieve clean scaling up with the manual composition setup of the
same.

To see the effects of increasing the number of functions in the chain has on
the overall efficiency, we created a script that dynamically creates DAGs on
our platform. We present results we got from using 1 function, 2 function and
6 function chains on simple load and heavy load in the faas-flow and manual
composition setups. We got results that we were actually expecting. We saw
that in manual composition, the longer the chain the longer the chances for
timeouts and broken pipes. We saw that our compositional method works
exceptionally well with longer chains, especially in regards to scaling up each
layer independently. We present the results we got in Table 2.

We consolidate the data from the tables by plotting it using a bar chart. We
used Apache Superset to plot the chart as a function of execution time with
respect to composition type, requests per second and the number of functions
in the composition chain. The plot can be referred in Figure 47 We found
that the compositions worked especially when irrespective of the number of
chains in it. The functions were independently scaling. There was always
a slight latency that we encountered on node 1 which can be attributed to
the cold start latency. The warm pools of functions kept ready improved
the performance of our system quite a lot especially in the compositions
that has larger number of chains. We could see that in the case of manual
compositions, as the chains got longer, the functions started having a very
high average response time. This is because the functions are technically
waiting until the last of the functions returns to terminate. In the case of
the faas-flow compositions, once the functions have passed on the SUCCESS
event to the NATstreaming event bus, they can basically idle or be killed and
hence saving resources. It is to be noted that although efficient, our system
had about 3 timeouts when the number of requests became too many on a
longer composition. This is because of the openfaas gateway did not handle
certain requests in the case where more requests were being passed around
between functions.
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Table 2: Different composition lengths - Execution times of the compositions
Composition Number Workload Average Fastest Slowest Timeouts

of response response response
Functions time(s) time(s) time(s)

Manual 1 ~1 request 0.6516 0.6394 0.6851 1
Composition per second
Manual 1 ~100 request 7.3540 5.9746 9.1473 1
Composition per second
Manual 2 ~1 request 0
Composition per second 0.8195 0.7920 0.8783
Manual 2 ~100 request 19
Composition per second 12.3560 2.4926 19.8284
Manual 6 ~1 request 5
Composition per second 1.5463 1.4946 1.6452
Manual 6 ~100 request 25
Composition per second 11.7822 8.0268 19.6878
Faas-flow 1 ~1 request
with in-memory per second 0.0172 0.0121 0.0498 0
cache store
Faas-flow 1 ~100 request
with in-memory per second 0.3463 0.0431 0.7810 0
cache store
Faas-flow 2 ~1 request
with in-memory per second 0.0162 0.0141 0.0323 0
cache store
Faas-flow 2 ~100 request
with in-memory per second 0.3882 0.0605 1.1607 0
cache store
Faas-flow 6 ~1 request
with in-memory per second 0.0189 0.0140 0.0647 0
cache store
Faas-flow 6 ~100 request
with in-memory per second 0.4117 0.0927 0.8759 3
cache store
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Figure 47: Execution time of different compositional strategies under differ-
ent conditions

6 Related work
Serverless has gained a lot of attention and traction from the scientific com-
munity in the past few years because of its massive implications in resource
conservation and innovative programming when one does not have to worry
about compute management anymore. The issues that were discussed in
sessions above are being studied by various studies and the most significant
ones are worth noting.

Before getting into the studies that focus on the issues that was covered
in this paper, it is interesting to have a look at a very recent literature
review [53] . In the paper the authors analyze 112 different academic papers
and grey journals in and around the paradigm of FaaS were analyzed. The
researchers found a staggering lack in the practicability of the work that were
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proposed by the scientific community. Along with the lack of reusability and
reproducability, it was found that 88% of these proposals were worked in and
around AWS lambda, which is not very universal as FaaS solution especially
considering its vendor locked in and closed source attributes. The study also
mentions how most of these works being done focus on unrealistic workloads
that are not very common in the production setups in the industry. The
paper also says how the current research lacks methods to chain and branch
functions in a meaningful way.

In [54], the authors interestingly look at the issues that the state of art iso-
lation mechanisms in FaaS infrastructure bring forward as was mentioned
earlier. These include the lack of security and the heavy cold start time.
It introduces faaslets, an alternate isolation policy to be used instead of
containers. With this, faaslets can share data across instances there by re-
ducing data transfer costs. In a contemporary study [55], an orchestration
mechanism called TriggerFlow is introduced. It is a really interesting tool
to manage the lifecycle of a cloud function. In this smart triggering system,
function composition is allowed using Distributed Acyclic Graphs(DAG) to
define control flow and data flow in the pipeline. This has huge potential
as an idea, although currently the usability of the platform is terrible and it
can be quite bloated as a entry point to a FaaS system especially since it is
not a very elastic platform. In an older research, and idea was proposed to
schedule events based on tags which was quite similar. But in a comparison,
it is stated that the solution has a heavier memory footprint than the former.

Cloudburst [2] and SAND [3] are projects that were mentioned in the pre-
vious section. In the former, they suggest adding a key value cache along
with a limited DAG based language to specify the composition was specified
before. Although a very interesting idea, the issues with this systems were
discussed previously. SAND is a very interesting idea as well where they use
a different kind of isolation scheme to allow function composition as opposed
to containers.

In yet another recent paper [4], a theoretical model for a composition lan-
guage called serverless composition language(SPL) which lets the program-
mer define function compositions(even can be higher order functions). This
paper has some very interesting formal foundations for serverless as a tech-
nology which was used as a reference.

A very intriguing idea that has been proposed in the research community
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is to change the programming model of serverless paradigms completely and
introduce a function shipping architecture for serverless. The idea is that it is
suggested that the way FaaS functions are designed is actually a architectural
anti-patterns that system designers make [13]. Currently the pattern can be
referred as data shipping. Meaning that data is shipped to the function
as opposed to a function shipping architecture. An example for a function
shipping architecture would be procedures in databases where data is not
moved from its storage location. The reason why the data shipping pattern
is bad is because of the fact that across different storage layers and network
layers, there is a vast spectrum in the memory hierarchy which adds heavy
latencies. Shredder [56] was a work towards adopting a function coding
pattern by adopting v8 isolation mechanism to boot up light weight instances
of the function near to the storage layer of the system. The problem with this
method is the fact that the current data loads are extremely heterogeneous
and it is hard to support this system on all the storage platforms. But it is
a very ambitious idea that has a lot of potential.

Coming to the domain of ephemeral scalable storage, Pocket is a very sig-
nificant project which was described in detail earlier. Anna KVS [57], is a
similar idea which was adopted in the Cloudburst project. The tool was not
adopted in this project mostly because of the low elasticity the tool offers.

In InfiniCache [58], a memory object cache is used to store the ephemeral
state in the system. It uses erasure coding and data backup to ensure high
availability. They try to get this system working on AWS lambda by con-
necting the runtime to a priority based queue. In a very recent paper [61], a
shared filesystem is being introduced that can be shared among the functions
to transfer intermediate data among themselves. Currently a very theoretical
suggestion, FaasFS has the potential to be an interesting mode of handling
the intermediate data issue.

7 Future work
The idea we presented here has a lot of potential for innovation mostly due
to its ease of adaptability and simplistic design. A very obvious improvement
to the platform would be the adaptation of a different isolation mechanism
instead of Docker containers. Since Docker containers are rather heavy as an
isolation mechanism, the cold start penalty in case of no warm nodes is still
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high. The log during the scale up and down is due to this latency. A much
lighter isolation mechanism like v8 isolates [62] might help in making the
system faster. The direction taken by FaaSM [54] project is very applicable
in this scenario. This only tightens the security of the infrastructure since
Docker containers can inherits issues of the host operating system.

Furthermore, we plan on extending the project to provide better fault tol-
erance. Since the workflow inherently supports conditional branching, we
can extend the API to accept callback functions in case of a function failure.
With this the developer can define the retry logic or the failure logic, thereby
avoiding an entire restart of the pipeline or worst - data corruption. We could
also improve the message queuing system to get an exactly one guarantee on
the event handling.

Another improvement that we would like to make to our system is to in-
troduce intelligent data locality for the intermediate data. In the present
architecture, the data is being stored in the distributed cache which might
store it in any of the partition across the cluster. But we can introduce logic
that would place the data in the same machine as that of the function. This
is a very simplistic adaptation of the "porting function to the data logic".
This would reduce the latency spent of data transfer before the function
invocation.

For developer friendliness, we can support multiple client libraries for the
application that would allow development of the workflow code in different
languages.

8 Conclusion
In this paper, we analyzed a function composition solution and extended it
to use in-memory cache to store intermediate data between the functions.
Our initial thesis was that this would be a much better solution for big data
function pipelines, in which the developer would be bound to use a third party
block storage or pass via network both of which costs quite a bit on latency.
The proposed solution provides a very neat at efficient way to compose the
functions, reducing the latency of the manual orchestrations which has a
higher rate of gateway timeouts or the latency of block storages that adds
the I/O bottleneck. The system is very flexible allowing numerous operations
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while composing the function like branching, looping, etc. This adds the
possibility of extending the platform for to support automatic roll-backs,
error correction, etc. Having said that, the system has limitations like slow
scaling up at certain instances due to the cold start latency. The system uses
NATS streaming for message queuing which is extremely simple and elastic
but does not guarantee exactly once semantics for the message delivery. Like
was mentioned in the section above, we believe that the improvements in the
virtualization technology can improve the latencies further.
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