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1. Introduction
The main objective of the presented executive
summary is to give a critical overview of the
thesis covering the topic of the development of
the real-time algorithm for deformed shape re-
construction of a beam with particular atten-
tion paid to the application in helicopter blades.
The inspiration for the thesis was a helicopter
blade model that has been developed in the lab-
oratory of Dipartamento di Scienze e Tecnologie
Aerospaziali at Politecnico di Milano. The thesis
also covers the numerical modal shape functions
determination using a finite element model of a
helicopter blade model that has been developed
in the laboratory.
A shape reconstruction problem in recent years
gained more attention from many industries. It
may be particularly interesting for aerospace,
space, automotive, and wind turbines sectors.
Information about the state of an object may
be useful for the monitoring of its structural
integrity and applied to the Structural Health
Monitoring (SHM) systems and Health and Us-
age Monitoring Systems (HUMS). Both can be
used to increase the safety of a machine by early
malfunction detection of a structural compo-
nent. Those systems may be also used to apply
predictive maintenance which drives down main-

tenance costs for machine operators, which can
increase the attractiveness of the product for the
potential client [5]. In the space and aerospace
industry, the knowledge about the state of an
object may be used for control optimization.
In helicopter rotors, which are the focus of
this thesis, the knowledge about the structural
condition of the blade can be used for both;
SHM/HUMS systems as well as optimization of
control. In helicopters, the flight control system
can be improved by the application of the Rotor
State Feedback (RSF) system, which improves
turbulence alleviation and handling of the ma-
chine.
A shape of an object can be reconstructed us-
ing strain measurements but there are also other
methods such as photogrammetry or direct fi-
bre optic shape sensing (DFOSS). In the thesis,
only reconstruction using strain sensors is con-
sidered, due to the fact that it is the cheapest
and the most available method. The modelled
measurement system is based on the one used
in the blade from the laboratory, there are used
two types of sensors: strain gauges and optical
fibres. A strain gauge rosette is used to measure
an axial strain and a shear strain, while optical
fibre is used to measure only axial strain [2].
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2. Methodology
The global reference system of the beam is
shown in fig. 1, while fig. 2 presents the refer-
ence system of the cross-section. The Y −Z ref-
erence system of the cross-section is the global
one, while the η− ζ is the local reference system
that is rotated by the built-in twist angle. Both
reference systems of the cross-section have origin
in the position of the elastic axis of the beam.

Figure 1: Global reference system

Figure 2: Cross-section’s reference system

A modal shape sensing approach is proposed
for the real-time shape reconstruction algorithm.
It is capable to reconstruct the shape of a
beam-like structure subjected to general defor-
mations including torsion, in-plane, and out-of-
plane bending and handles nonlinear terms up to
2nd order. The relation between strain and dis-
placement of the beam comes from the nonlinear
model of motion for the elastic bending and tor-
sion of twisted nonuniform rotor blades [3]. The
formula of eq. (1a) presents the relation between
the axial strain and displacement of the beam,
while eq. (1b) and eq. (1c) show the relation be-
tween shear strain and derivative of twist angle.

εξξ = u′ +
1

2
(v′2 + w′2)

+(η2 + ζ2)

(
θ′ϕ′ +

ϕ′2

2

)
−v′′[η cos(θ + ϕ)− ζ sin(θ + ϕ)]

−w′′[η sin(θ + ϕ) + ζ cos(θ + ϕ)]

εξη = −ζϕ′

2

εξζ =
ηϕ′

2

(1a)

(1b)

(1c)

In the proposed algorithm torsion and bending
problems are decoupled; the order of solution is
strictly defined, and the torsional problem must
be solved as the first one.
The complete, overdetermined problem must be
solved in a least-squares sense [4]. The final for-
mulation of the torsional and bending problem
is shown respectively in eq. (2) and eq. (3).

q = A+
t εξtk (2)

r = A+
b (εξξ − T (q)) (3)

where A+
t and A+

b are pseudo inverted matrices
related to the sensors’ position and shape func-
tions, while q and r are generalised coordinates
related respectively to the torsion and bending
problem. The final chordwise, flapwise and twist
is computed using respectively eq. (4), eq. (5),
and eq. (6), the shape functions are multiplied
by generalised coordinates.

v(ξ, t) = nv(ξ)r(t)

w(ξ, t) = nw(ξ)r(t)

ϕ(ξ, t) = nϕ(ξ)q(t)

(4)
(5)
(6)

3. Shape functions
In the thesis there were obtained two types of
shape functions, analytical shape functions were
obtained by pencil&paper method, while nu-
merical shape functions were obtained by post-
processing of the modal analysis results in a
Matlab script.

3.1. Analytical shape functions
The analytical shape functions have been used in
the Matlab script and the Simulink model. The
latter has been used for co-simulation with the
MBDyn models. The bending and torsion shape
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functions are presented in fig. 3 and fig. 4. The
bending functions are the same for flapwise and
chordwise deformation. Those shape functions
are valid under the assumption that the beam
has a uniform structure.
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Figure 3: Analytical bending shape functions
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Figure 4: Analytical torsion shape functions

3.2. Numerical shape functions
The numerical shape functions have been ob-
tained using the least-squares algorithm applied
to the data obtained from the finite element
method modal analysis. The model of the blade
used in the analysis corresponds to the blade
from the laboratory including its highly non-
uniform structure. The bending shape functions
in flapwise and chordwise directions are differ-
ent. The shape functions are shown in fig. 5,
fig. 6, and fig. 7.
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Figure 5: Numerical chordwise bending shape
functions
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Figure 6: Numerical flapwise bending shape
functions
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Figure 7: Numerical torsion shape functions

4. Validation using the beam
with circular cross-section

The main validation of the algorithm has been
performed using a beam with a circular cross-
section. The beam has similar dimensions as the
blade from the laboratory. Along the spanwise
axis of the beam there are located 5 measuring
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stations, with 3 sensors on each station; 2 strain
gauges and 1 optical fibre sensor.
The beam has been validated using small and
large deformation. For each deformation 2 load
cases have been used. In the summary, only
plots for large deformation and complex load
cases are shown. In this load case, two trans-
verse forces are applied together with a torque.
The results are shown in fig. 8, fig. 9, and fig. 10.
The algorithm has been validated by comparison
of the results obtained by the shape reconstruc-
tion with the analytical results and the deforma-
tion of the nodes from the MBDyn simulation.
In the algorithm, there were used strains from
the analytical formulas, as well as strains from
the MBDyn simulation
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Figure 8: Chordwise deformation
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Figure 9: Flapwise deformation
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Figure 10: Twist

The algorithm has been also analysed from the
linearity point of view, by applying different
loads and increasing the order of load it was
checked at which point the solution from the al-
gorithm becomes nonlinear. It was also checked
how the quality of the results are influenced
by: the number of modes used in the shape re-
construction, the number of measuring stations
along the blade, and the number of sensors on
the stations.

5. Validation using the Prince-
ton beam

The algorithm has been also verified reproducing
the Princeton beam experiment from the paper
that was written by Bauchal et al. [1].
In the experiment, the beam with the rectangu-
lar cross-section has been loaded with 3 differ-
ent loads under different loading angles from the
range < 0o, 90o >.
The results of the flapwise, chordwise and tor-
sion reconstruction obtained through the algo-
rithm correspond to the results of the MBDyn
model of the beam that was already validated
with experimental results. This proves that the
algorithm correctly reproduces beam shape even
if more complex load cases are applied. The re-
sults of the shape reconstruction are shown in
fig. 11, fig. 12, and fig. 13.
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Figure 11: Chordwise deformation of the Prince-
ton beam
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Figure 12: Flapwise deformation of the Prince-
ton beam
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Figure 13: Twist angle of the Princeton beam

6. Application of the algorithm
to the helicopter rotor model

The algorithm has been applied to the multi-
body helicopter model, prepared in the MBDyn
software. To apply the algorithm, it was neces-
sary to simplify the model of the rotor, as well as
apply some assumptions. The main assumptions
are presented below.
• The analytical shape functions are used, so

the blade is assumed to be uniform, and it
is assumed that the flapwise and chordwise
bending shape functions are the same.

• The cross-section of the blade is assumed
to be rectangular, the 4 sensors are in the
middle of the sides of the cross-section.

Having those assumptions, the results are not
expected to be exact but at least realistic. The
results of the shape reconstruction in the flap-
wise and chordwise bending are presented in
fig. 14 and fig. 15, while the twist is shown in
fig. 16.

Figure 14: The real-time chordwise bending dis-
placement of the blade

Figure 15: The real-time flapwise bending dis-
placement of the blade
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Figure 16: The real-time twist angle of the blade

7. Conclusions
The methodology proposed for the development
of the real-time algorithm proved to be valid.
Moreover, the procedure for the computations
of the numerical shape functions from the modal
FEM analysis has been proved to be correct.
The algorithm has been successfully validated
using the beam with the circular cross-section,
as well as using the Princeton beam with a rect-
angular cross-section. The results from the al-
gorithm have been verified using the analytical
results and the deformation of the nodes from
the MBDyn simulation.
The real-time Simulink model has been applied
to both aforementioned beams, as well as the
helicopter rotor model. In the case of the lat-
ter, the MBDyn of the rotor has been simplified
and the co-simulation has been performed under
some assumptions. However, the obtained re-
sults are realistic, and after some improvements
should be also exact.
The thesis also covered a deeper analysis of
the implemented modal approach and nonlinear
equations. The linearity of the solution provided
by the algorithm depends on the load case and
the source of strains used in the computations.
The number of modes that can be used in the
simulation is strictly related to the number of
measuring stations along the blade. The maxi-
mum number of modes that can be used is equal
to the number of the measuring stations. The
best quality of the results is provided by the
maximum number of modes.
The analysis of the model also covered the addi-
tion of sensors on the cross-section of the beam.
If the measurements from the sensors are af-
fected by any kind of random error, then its in-
fluence on the final results might be decreased
by additional sensors placed on the measuring
stations. This has been proven for bending and

torsion shape reconstruction.
To sum up, the considered model applied to the
real-time algorithm can be successfully used in
the shape reconstruction of a beam-like struc-
ture. It is robust and gives a broad field for ad-
justments to balance the quality of the results
with the computational effort and complexity of
the equipment used for the measurements.
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Abstract

The aim of the presented Master thesis was to develop a real-time algorithm for shape
reconstruction of a beam-like structure based on the measurements from strain sensors
applied to helicopter blades. This report is written in order to elaborate on the achieved
results as well as describe in detail the verification of the algorithm. The first part of the
report is devoted to the description of the available shape reconstruction methods and
applications of the aforementioned algorithms with special emphasis on applications in
the aerospace industry, especially in helicopter rotor-state determination. The following
part consists of the description of the formulas used to develop the algorithm, and beam
models used for the verification of the algorithm. In addition, this section presents also
an algorithm developed for numerical shape determination based on modal analysis of the
helicopter blade. The report presents also in a graphical way the implementation of the
algorithm into the Matlab script and later into the real-time Simulink model, which has
been used in co-simulation with MBDyn software, using which multibody models of the
beams has been prepared. Validation of the applied model has been performed using a
circular beam model to which various load cases have been applied to check the behavior
of the algorithm in different load conditions. In addition, the report consists of the analy-
sis of the algorithm and considerations concerning the number of the sensors per section,
the number of the measuring stations, and the number of modal shapes used in the al-
gorithm. The algorithm was also verified using experimental results from the Princeton
beam experiment. Lastly, the real-time Simulink model has been applied to a helicopter
rotor model developed in MBDyn to present its application to the shape reconstruction
of a helicopter blade.

Keywords: shape reconstruction; numerical modes determination; strain measurements;
helicopter blade
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Abstract in lingua italiana

L’obiettivo di questa tesi di Laurea Magistrale è sviluppare un algoritmo in tempo reale
per la ricostruzione della forma di una struttura a trave basata sulle misurazioni dei sen-
sori di deformazione applicati alle pale di elicottero. Questo documento elabora i risultati
raggiunti e descrive in dettaglio la verifica dell’algoritmo. La prima parte del documento
è dedicata alla descrizione dei metodi esistenti per la ricostruzione della forma e alle
applicazioni dei suddetti algoritmi, con particolare attenzione ad applicazioni in ambito
aerospaziale, in particolare alla ricostruzione dello stato di un rotore di elicottero. La parte
successiva descrive le formule utilizzate per sviluppare l’algoritmo e i modelli di trave uti-
lizzati per la verifica dell’algoritmo. Questa sezione presenta inoltre l’algoritmo sviluppato
per la determinazione numerica della forma basata sull’analisi modale di una pala di elicot-
tero. Il documento presenta anche in forma grafica l’implementazione dell’algoritmo sotto
forma di script Matlab e successivamente di modello Simulink in grado di funzionare in
tempo reale, che è stato utilizzato in co-simulazione con il software MBDyn, quest’ultimo
utilizzato per simulare modelli multibody di travi. Il modello è stato validato utilizzando
un modello di trave a sezione circolare, a cui sono state applicate varie condizioni di
carico per verificare il comportamento dell’algoritmo in diverse condizioni di funziona-
mento. L’analisi dell’algoritmo ha richiesto anche considerazioni sul numero di sensori
per sezione, di stazioni di misura e di forme modali necessarie per la ricostruzione della
forma della trave. L’algoritmo è stato verificato anche utilizzando i risultati sperimentali
della cosiddetta trave di Princeton. Il modello Simulink operante in tempo reale è stato
infine applicato a un modello di rotore di elicottero sviluppato in MBDyn per illustrarne
l’applicazione alla ricostruzione della forma di una pala di elicottero in condizioni opera-
tive.

Parole chiave: ricostruzione della forma; determinazione dei modi numerici; misura
della deformazione; pale di elicottero
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1

Introduction

The main objective of the presented thesis is to develop a real-time algorithm for the
purpose of a shape reconstruction of helicopter blades using a modal shape sensing ap-
proach. The algorithm exploits the nonlinear equations for a beam-like structure shape
reconstruction that relates the flapwise and chordwise deformation with measurements
of the axial strains and twist of the beam with shear strains [11]. The inspiration for
the thesis was a helicopter blade model that has been developed in the laboratory of the
Aerospace Science and Technology Department of Politecnico di Milano. The thesis also
covers the topic of numerical modal shape functions determination using a finite element
model of the aforementioned helicopter blade model.

In recent years, the shape reconstruction problem gained more attention from many in-
dustrial fields. It may be particularly interesting for the aerospace, space, automotive,
and wind turbines sectors. Information about the state of an object may be useful for
the monitoring of its structural integrity and applied to the Structural Health Monitoring
(SHM) systems and Health and Usage Monitoring Systems (HUMS). Both can be used to
increase the safety of a machine by early detection of a structural component malfunction.
Those systems may also be used to implement predictive maintenance, which drives down
maintenance costs for machine operators, increasing the attractiveness of the product for
the potential clients. In the space and aerospace industry, the knowledge about the state
of an object may be used for control optimization. In helicopter rotors, which are the
focus of this thesis, the knowledge about the structural condition of the blade can be
used for both; SHM/HUMS systems as well as optimization of control, through Rotor
State Feedback (RSF) applied to the Flight Control System (FCS). More details about
the application of shape reconstruction are given in section 1.1.

The shape of an object can be reconstructed using strain measurements but there are also
other methods such as photogrammetry or direct fibre optic shape sensing (DFOSS). The
shape reconstruction techniques are described in detail in section 1.2. In the thesis, only
reconstruction using strain sensors is considered, due to the fact that it is the cheapest
and the most available method. The modelled measurement system is based on the one
used in the blade from the laboratory, there are used two types of sensors: strain gauges
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and optical fibres. A strain gauge rosette is used to measure an axial strain and a shear
strain, while optical fibre is used to measure only axial strain.

The details of the formulas used in the thesis are presented in chapter 2. This section
describes the used reference system and gives insight into models used in the development
of the work. The main algorithm exploits aforementioned nonlinear equations for a shape
reconstruction of a beam-like structure. Analytical beam models (that are presented
in section 2.3) and multibody beam models have been used for the verification of the
developed algorithm. The multibody beam models exploit the finite volume beam model,
that is shown in section 2.4. The models prepared using MBDyn have been also used in
co-simulation between MBDyn and the Simulink model.

The modal shape sensing approach requires the determination of the modal shape func-
tions of an object. In the thesis, there were considered analytical and numerical shape
functions. The former has been obtained by direct application of the commonly known
formulas described in section 3.1, while the latter was obtained by modal analysis of the
finite element model of the blade from the laboratory and post-processing of the harvested
data. The analytical shape functions can be used under the assumption that the beam is
uniform, they are the same for bending in flapwise and chordwise directions. The numer-
ical shape functions have been obtained separately for chordwise, flapwise, and torsional
modes. They are presented in section 3.2, while the algorithm applied to a Matlab script
used for their determination is shown in section 2.5.

The application of the algorithm to the Matlab scrip and the Simulink model is briefly
presented in chapter 4. This chapter also presents the Simulink model that was used in a
co-simulation with the MBDyn beam models. Only analytical functions were applied to
the Matlab script and the Simulink model.

Chapter 5 presents validation of the algorithm implemented into the software using a
beam with a circular cross-section, together with some analysis of the applied mathemat-
ical model relating displacement to strains. The verification of the algorithm has been
performed by a comparison of the obtained results with the results from analytical for-
mulas and the nodal deformation being the output of the MBDyn simulations performed
on the beam models. The algorithm was validated for small and large displacements,
presented respectively in section 5.2 and section 5.3, using strains coming from analytical
formulas, as well as strains harvested from the MBDyn model. In section 5.4 there is
presented an analysis of the applied algorithm taking into account the linearity of the
solution. This chapter of the thesis also contains the analysis of the relation between the
number of the measuring stations located along the spanwise axis of the blade, as well
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as the influence of the number of mode shapes, used for the reconstruction of the beam
deformation, on the quality of the results. Section 5.6 presents the influence of the addi-
tional sensors placed on the cross-section on the computed displacement at the measuring
stations. In this case, it was assumed that the measurements are affected by some random
noise. The chapter is concluded with the results of the real-time co-simulation between
the Simulink model and the MBDyn model of the beam with a circular cross-section, with
time varying load applied to the tip of the beam.

Another verification of the algorithm has been performed using the Princeton beam ex-
periment. It is described in chapter 6. In this chapter, the algorithm has been applied
to a beam with a rectangular cross-section subjected to tip loads placed under different
loading angles. The results obtained from the algorithm have been compared with the
results of the MBDyn model and experimental results from the scientific paper written by
Bauchau et al [6]. This chapter is concluded with the results of the real-time co-simulation
of the rectangular beam.

Chapter 7 presents the application of the developed real-time Simulink model to a he-
licopter blade from a multibody helicopter model of the Bölkow BO-105 machine. The
model of the helicopter has been developed at the Politecnico di Milano. The real-time
Simulink model has been applied using some simplifications and making assumptions that
are presented in detail in section 7.1. The results that are shown in section 7.2, are the
proof that the developed algorithm can be successfully used in a real-time determination
of helicopter blade state.

The thesis is concluded in chapter 8 that presents the achieved objectives, together with
possible future developments of the work. The thesis shows the potential of the real-time
shape reconstruction algorithm with particular emphasis put on the application of this
method to helicopter blades.
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Nowadays, the shape reconstruction of an object gains more attention in many engineer-
ing fields but the industry that is particularly interested in this problem is the aerospace
one. Shape reconstruction methods might help to reduce the cost of aircraft maintenance,
increase safety, and optimize the control system of an aircraft. In the aerospace sector, the
shape reconstruction technique can be applied especially to the helicopter blades and air-
craft wings, which are crucial for the operational safety of a vehicle. In modern structures,
blades and wings are made of composite materials with a very complex internal structure
to allow significant deformation of the structure for the purpose of flight optimization
and stress reduction. Due to that, the industry is also interested in a real-time technique
to obtain the state of the object, which might be later used for the optimization of the
control laws of the vehicle, as well as validation of the fully aeroelastic models in-flight.
The real-time system can be also integrated with the already used health and usage mon-
itoring on-board systems to enable predictive maintenance, fatigue logging, and damage
detection [24]. This chapter presents the main application of the shape reconstruction
techniques as well as the different methods used to fulfil this objective.

1.1. Application of shape reconstruction

In this paragraph, special attention is paid to the application of shape reconstruction in
aerospace structures, mainly helicopter blades.
Blades are among the most important elements of rotary-wing aircraft because they pro-
vide the lift to counteract the weight of the vehicle and the control moments to enable
execution of the mission manoeuvres; they must perform well over a very broad flight
envelope. They operate in very severe conditions because they are subjected to high
dynamic loads that depend on flight conditions as well as the azimuthal angle of the
blade. Blades are constantly interacting with the airflow what is a source of significant
and unpredictable vibrations [24]. They are flexible to reduce the vibrations passed from
the blades to the airframe, but also to reduce the aerodynamic asymmetry between the
advancing and retreating sides of the rotor. The variability of the aerodynamic loads
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and flow interaction are very complex, making it impossible to be modelled for the rotor-
craft in different flight conditions [22]. Another purpose for which the flexibility of the
blade is required is the control of the aircraft, flapping deformation is used to direct rotor
thrust (which is normal to the tip path plane), thus generating the control moments of
the aircraft [7].

Figure 1.1 presents the forces acting on an infinitesimal small blade element, where Ω

is the angular velocity of the blade, dq is the contribution of the aerodynamic forces,
dfc is the centrifugal force, and dfi is the force due to the inertia of the element. The
inertia and aerodynamic loads cause deflection in flapwise and lagwise directions, while
the centrifugal force causes a deformation in the spanwise direction.

Figure 1.1: Forces acting on an infinitesimal blade element

Figure 1.2 presents the tip-path plane (TPP) of the aircraft together with a thrust vector,
which is always normal to the TPP. The tip path plane in the articulated rotors is usually
simplified to the plane created by the tips of the blade inclined by a flapping angle,
however in other type of rotors the tip path plane depends only on the flexibility of the
blades. More accurate knowledge of this plane may lead to the optimization of the control
laws, especially in more difficult flight conditions [21].

Modern blades have usually very complex, non-uniform internal structure, and this also
affects the process of the blade shape reconstruction making it much more complex.

Figure 1.3 presents the internal structure of a helicopter blade, the leading edge is made of
titanium and steel, to make the blade strong and able to withstand the loads to which the
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Figure 1.2: Tip-path plane in the case of articulated rotor [21]

leading part is subjected. The internal spar that provides the shape is made of fibreglass,
which is stiff and lightweight material, and the trailing edge is made of fibreglass skin
and core that is usually some kind of foam to provide the stiffness, shape, and reduce the
mass of the entire structure [17].

In helicopters, the shape reconstruction of a blade can be used for various purposes.
First, it can be used for a structural health monitoring system (SHM), which is still in
development in contrary to a simple health and usage monitoring systems (HUMS) that
are already implemented in some machines. The former aims to monitor the real-time
condition of the structural elements, such as blades, while the latter are based on data
such as number of take-offs and landings, G-force during a landing (to determine if the
landing was normal or hard), or vibrations of engines and gearboxes. Based on those data,
the operator can apply predictive maintenance procedures and reduce the operational
costs of the machine. SHM may drive the maintenance costs even lower, adjusting the
maintenance of the blades to their real structural conditions by improving the failure
detection. Any kind of blade damage may decrease the performance of the device as well
as have fatal consequences (3% of the helicopter accidents were caused by a failure of a
helicopter blade). Due to this fact, knowledge about the blade health condition is crucial
for safety as well as predictive and optimized maintenance management [22].
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Figure 1.3: Internal structure of a helicopter blade [17]

The most severe threats for blades are the fatigue caused by time-varying stresses; in
addition, very dangerous are low-velocity impacts, and progressive damage accumulation.
At present, any kind of incident related to rotor blades must be reported by pilots in
the documentation of the vehicle and directed to the CAMO (Continuing Airworthiness
Management Organisation) of the operator. Subsequently, the office takes a decision,
based on the type of incident, to reduce the operational life of the blade, or whether it
is necessary to ground the machine and immediately verify the damage. In both cases,
the maintenance costs increase significantly, because the verification of the blade can
only be performed after disassembly of the blade from the rotor. Later, the blade must
undergo non-destructive structural inspection, which can be performed by tapping, ul-
trasonic methods, radiography, X-ray, or thermal field methods. All of them are usually
very costly because they are performed in an external facility by experienced staff and
require at least an approximate location of the damage. Application of SHM may allow
for predictive maintenance of blades, reduce the downtime of a machine, and simulta-
neously increase the safety of operations extending the life of the component which will
be inspected, repaired, or exchanged only if necessary. Such a design approach may
significantly drive down the costs of the operator, making the product more attractive
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in the market; at present, 25% of the operational costs of the machine are related to
maintenance [22].

Early warning about structural issues of the blade can be also useful to slow down crack
propagation with a proper control strategy of the pilot (reduction of flight speed by 20%
may reduce the crack propagation by 50% increasing the lifetime of the component) [22].

Nowadays special care is paid to extend the lifetime of machines; for example, the CH-47
Chinook is expected to reach around 100 years of machine life cycle (it is already in use
since 1960s). SHM in the future will be also used for this purpose, increasing safety of
operations of ageing machines. Current issues related to the SHM are caused by many
false positives and negatives, also problematic is the reconstruction of the blade shape
based on the limited number of sensors.

Another aim for which shape reconstruction might be used is to optimize the perfor-
mance of the Flight Control System (FCS) of a helicopter, through a detailed knowledge
of the rotor states [7]. The main advantage of a Rotor State Feedback application in the
control system is that turbulence alleviation is improved in both high and low-frequency
ranges [14, 20]. It can also improve performance of the vehicle and handling of the he-
licopter in precise manoeuvres [12]. For the first time, RSF system was implemented
into FCS in a CH-53 and the test data showed significant improvement of gust distur-
bances [14]. The use of the rotor state information thus might be especially useful for
helicopters operating in very difficult conditions such as SAR missions and military heli-
copters which must be able to perform rapid manoeuvres. The ability of RSF to improve
handling of an aircraft has been proved by studies performed on real helicopters [5].

Nowadays, particular emphasis is placed on the reduction of the acoustic impact of heli-
copters, since those vehicles are irreplaceable in operations like SAR, Air Rescue, police
operations, and noise is a factor that limits the public acceptance of rotorcraft in highly
populated areas. Noise is a complex effect generated mechanically due to aerodynamic
interaction between the vehicle and the air. It was discovered that it is related to three
main factors which are: advance ratio, thrust coefficient, and tip path plane angle of
attack. The idea is to implement a Rotor State Feedback into the control system and
in this way estimate the acoustic impact on the environment and reduce it by a correct
manoeuvre sequence. Deep investigation of this problem was one of the main objectives
of the CleanSky MANOEUVRES project [23].
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1.2. Methods of shape reconstruction

Different methods might be used in the shape reconstruction of a helicopter blade. One
of the commonly used object shape reconstruction techniques is photogrammetry. This is
an optical method in which a camera is used to record or take photos of an object from
different angles. Markers are attached to an object at the reference points, the position of
which is evaluated in the post-processing. This method gives good results and is usually
cheap; however, its implementation in the shape reconstruction of a helicopter blade is
very problematic, except perhaps in laboratory or wind tunnel. The main problem is that
only objects that are in sight of the camera can be monitored, so the camera must be
appropriately placed on the rotor hub, taking into account the fact that the markers plane
must be placed at a sufficiently high angle with respect to the camera to give accurate
results [7]. This method is also useless at night or in low visibility conditions such as fog.
Another drawback is that, although in general this method is cheap, when applied to a
helicopter blade it might be very expensive because of the cost of high-speed cameras that
can withstand an environment with high vibrations. Currently, photogrammetry can be
conveniently used only in the case of ground tests [9]. Figure 1.4 presents the test bench
for an optical rotor blade shape reconstruction performed during ground tests.

Figure 1.4: Test bench for a photogrammetry shape reconstruction [19]

Strain-based methods are a reasonable alternative to optical techniques. They usually
exploit strain gauges as well as optical fibre sensors, also known as Fibre Bragg Grating
(FBG). The strain method is based on a differential strain that is measured by different
sensors being placed in offset to each other. They must be mounted on the opposite
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surface of an object to determine its curvature. Despite being a very simple solution,
strain sensors face some common issues, which are still under research [24].

The first problem is related to the number of sensors and their positioning. The more
sensors are being used the resolution of the results improves, however, on the other side,
they require more electrical power to be delivered and computational power to be post-
processed. This brings another issue because the power and the data must be transmitted
between a fixed reference frame of the vehicle and a rotating reference frame of the rotor.
Conventionally, it is done by a slip ring; however, it generates a lot of noise in the mea-
surements. The measurements may also fail due to the thermal gradient within the object.
In the case of the shape reconstruction using strain measurements, it is also necessary to
create a detailed structural FEM model of the object and perform its preliminary analysis
to relate the strain to the deformation of a blade. The model must be detailed enough;
otherwise, the final results will be corrupted [22]. On the other hand, the strain-based
methods are the most developed and the cheapest, giving the best trade-off between the
price and quality of the results, assuming that their application has been performed with
sufficient care paid to the details described above.

The most common and the cheapest sensors are strain gauges. Figure 1.5 presents a
simple arrangement of the strain gauge with its main components [1].

Figure 1.5: Strain gauge [4]

It is a type of electrical sensor that is glued to the measured component. When the gauge
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is elongated, its electric resistance changes, giving different electric output, which is later
post-processed. Those sensors are small and highly sensitive, so they can measure the
contraction or expansion even if it is very small. There are a lot of strain gauge types and
orientations for different purposes. In blade shape reconstruction, their main advantage
is that they are cheap and mounted in a way that allows for their replacement with ease.

The main disadvantage of this type of sensor is that either it affects the aerodynamic
profile of a blade because of the wires that must be routed on its surface, or it is invasive
if the wires are to be embedded in the structure. Also, installation and wiring takes a lot
of time and is complex, error prone, and may be irreparable if wires are embedded in the
structure. They are also sensitive to the environment; temperature gradients and water
may affect their readings, increasing the risk of sensor’s failure during the test campaign.
On the other hand, if they are mounted correctly, they provide a very good quality of
measurements. Strain sensors are usually organized in rosettes of 3 sensors to measure
(nearly) co-located axial and shear strains [24].

Another type of sensor that measures the strain is Fibre Bragg Grating (FBG). This kind
of sensor is more modern and exploits the optical fibre properties to accurately measure
strains. Its principle of work is presented in Figure 1.6.

Figure 1.6: FBG sensor [2]



1| State-of-the-Art 13

In this device, the core of the fibre is exposed to a periodic pattern of intense laser light
with some known incidence spectrum, creating a grating in the fibre core. At the periodic
refractions light is reflected and the signals combine into a large reflection at a particular
wavelength. This refers to a Bragg condition and Bragg wavelength. Light signals at
other wavelengths are transparent. When the sensor is strained, the reflected wavelength
changes due to the changed periodicity in the sensor caused by applied elongation or
contraction of the sensor [3].

FBG has a lot of advantages. The sensor itself is very flexible, small, and has low mass.
Thanks to this it does not significantly affect the structural component. It may also be
laminated in the structure or glued to the surface, depending on the needs. It requires
also much smaller power than the conventional strain gauge. It has been already imple-
mented in some helicopters to determine the wear of rotor head components. Due to the
properties of the optical fibre, the measurements are not affected by the environment and
electromagnetic interference, which increases the reliability of the results [24].

The most modern shape reconstruction technique directly exploits the measurement of
the optical fibre displacement. This method is called Direct Fibre Optic Shape Sensing
(DFOSS) and exploits long optical fibres that can be laminated in a structure or glued
to it. The shape of an object is determined directly from the path of the deformed fibre
in three dimensions, there is no dependency on strain, which simplifies post-processing
of the signal and increases the reliability of the final, reconstructed shape. However, the
application of this method is still under investigation and, at present, it is expensive in
comparison to the strain-based techniques for shape reconstruction [24].
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The following chapter presents the formulas and reference systems that have been used
in the development of the presented thesis.

2.1. Reference system

The global reference system convention is shown in Figure 2.1. The ξ, Y , and Z axes
are respectively in the spanwise, chordwise, and flapwise direction of the blade in the
undeformed configuration and considering null built-in twist.

Figure 2.1: Global reference system
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Figure 2.2 presents the cross-section of the blade with two reference systems, the Y − Z

reference system is the global one, while the η − ζ reference system is the local reference
system of the section, that is rotated by the built-in twist angle. Both reference systems
have their origin in the position of the elastic axis of the beam.

Figure 2.2: Cross-section’s reference system

2.2. Nonlinear equations for a beam shape recon-

struction

The main aim of this thesis is to develop a real-time algorithm for the reconstruction of
the deformed beam shape using strain measurements from strain gauges and optical fiber
sensors. In the considered case, the strain gauges are used to measure axial and shear
strain, while optical fiber sensors are used to measure axial strain only. Those assumptions
are based on the model of the blade, which is available in the laboratory of the Aerospace
Science and Technology Department of Politecnico di Milano, and was an inspiration for
the presented thesis.

A modal shape sensing approach is proposed in the algorithm. It is capable to reconstruct
the shape of a beam-like structure subjected to general deformations including torsion, in-
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plane, and out-of-plane bending, and handles nonlinear terms up to 2nd order. The latter
property is important for flight dynamics and aeroelastic control applications because
limited knowledge about rotor kinematics may lead to incorrect results [7].

The relation between strain and displacement of the beam comes from the nonlinear model
of motion for the elastic bending and torsion of twisted nonuniform rotor blades [11]. The
formula of Equation (2.1) presents the relation between the axial strain and displacement
of the beam, while Equation (2.2) and Equation (2.3) show the relation between shear
strain and derivative of twist angle.

εξξ = u′ +
1

2
(v′2 + w′2) + (η2 + ζ2)

(
θ′ϕ′ +

ϕ′2

2

)
− v′′[η cos(θ + ϕ)− ζ sin(θ + ϕ)]− w′′[η sin(θ + ϕ) + ζ cos(θ + ϕ)]

εξη = −ζϕ′

2

εξζ =
ηϕ′

2

(2.1)

(2.2)

(2.3)

where v and w are the in-plane and out-of-plane displacements, ϕ is the torsional rotation,
and the “prime” (′) indicates derivation with respect to ξ.

In the modal approach, space and time coordinates separation is exploited; the equations
are presented below.

v(ξ, t) = nv(ξ)rv(t)

w(ξ, t) = nw(ξ)rw(t)

ϕ(ξ, t) = nϕ(ξ)q(t)

(2.4)

(2.5)

(2.6)

In the proposed algorithm, the torsion and bending problems are decoupled; the order of
solution is strictly defined: the torsional problem must be considered and solved as the
first one. If the chordwise and flapwise bending functions are coupled, then the chordwise
and flapwise displacements are computed using the same set of generalized coordinates r.

2.2.1. Torsion problem

Equation (2.7) and Equation (2.8) present the relation between the twist and shear strain
along the local axes η and ζ.
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εξηk = −ζk
2
n′

ϕ(ξs)q(t)

εξζk =
ηk
2
n′

ϕ(ξs)q(t)

(2.7)

(2.8)

In the considered case, the measurements come from a surface strain gauge εξtk that gives
shear strain tangent to the surface of the beam. It can be considered as a scalar product
of vector [εξη; εξζ ] and a unit vector that is tangent to the surface of the beam at the
position of the strain gauge. Taking this into account, Equation (2.7) and Equation (2.8)
reduce to Equation (2.9).

εξηktηk + εξζktζk =
−ζktηk + ηktζk

2
n′

ϕ(ξs)q(t) (2.9)

The left-hand side of the equation can be denoted as a shear strain measured by the strain
gauge εξtk . Equation (2.10) presents the final expression:

εξtk =
−ζktηk + ηktζk

2
n′

ϕ(ξs)q(t) (2.10)

Collecting all the shear strain measurements into a vector and all the left hand side
expressions related to the sensor position and torsional shape functions, Equation (2.11)
is obtained.

εξtk = Atq(t) (2.11)

2.2.2. Bending problem

To compute the displacements v and w, it is convenient to exploit the difference between
pairs of axial strains measured at one spanwise measuring station. The axial strain is
measured by both, strain gauges and optical fibres. Equation (2.12) shows that the
contribution of the axial displacement derivative and the quadratic contributions in the
transverse displacement derivatives simplify; the problem becomes linear in w′′ and v′′.
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εξξk1 − εξξk2 =((((((((
u′
2(ξs)− u′

1(ξs) +
�����������1

2
(v′22 (ξs) + w′2

2 (ξs))−
�����������1

2
(v′21 (ξs) + w′2

1 (ξs))

+ [(η2k1 + ζ2k1)− (η2k2 + ζ2k2)]

(
θ′(ξs)ϕ

′(ξs) +
ϕ′2(ξs)

2

)
− v′′(ξs)[(ηk2 − ηk1) cos(θ(ξs) + ϕ(ξs))− (ζk2 − ζk1) sin(θ(ξs) + ϕ(ξs))]

− w′′(ξs)[(ηk2 − ηk1) sin(θ(ξs) + ϕ(ξs)) + (ζk2 − ζk1) cos(θ(ξs) + ϕ(ξs))]

(2.12)

The equation can be further simplified by exploiting the matrices multiplication and
by denoting the distance between the position of sensor k and the elastic axis as Rk.
Equation (2.13) presents the formula of the single measuring section in a matrix form.

{
∆εξξk1k2 − (R2

k1 −R2
k2)

(
θ′sϕ

′
s +

ϕ′
s
2

2

)}
︸ ︷︷ ︸

∆εs

= −

[
∆ηk1k2 ∆ζk1k2

. . . . . .

]
︸ ︷︷ ︸

Ds

[
cos(θs + ϕs) sin(θs + ϕs)

− sin(θs + ϕs) cos(θs + ϕs)

]
︸ ︷︷ ︸

Rs

{
n′′

v(ξs)

n′′
w(ξs)

}
︸ ︷︷ ︸

Ns

r(t) (2.13)

In the case of a limited number of sensors, it is important to make sure that matrix Ds is
not ill-conditioned; for this purpose, a minimum of three sensors per section are needed.
Matrix Rs is square and expresses a rigid rotation of the section about the axis of the
blade by an angle that varies along the spanwise axis. Matrix Ns contains the chordwise
and flapwise bending shape functions evaluated at the section. The shape functions and
matrix Ds are computed once and for all, while other matrices change at every iteration.

According to theory, when the number of measurements per section exceeds a minimum
number which is three, the problem becomes overdetermined. However, considering that
measurements are affected by noise, and the other errors that may affect them, more mea-
surements should guarantee a least-squares compensation of random errors and improve
the quality of the final result.

Considering s spanwise stations, the equation above can be written as in the form that is
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presented in Equation (2.14).


∆ε1

...
∆εs

 =


D1R1N1

...
DsRsNs

 r(t) =


D1 . . . 0
... . . . ...
0 . . . Ds



R1 . . . 0
... . . . ...
0 . . . Rs



N1

...
Ns

 r(t) (2.14)

The problem can be reformulated as it is shown in Equation (2.15). Matrix N contains
the shape functions of all stations.


RT

1 . . . 0
... . . . ...
0 . . . RT

s



D+

1 . . . 0
... . . . ...
0 . . . D+

s



∆ε1

...
∆εs

 =


N1

...
Ns

 r(t) = Nr(t) (2.15)

The final solution of the problem is shown in Equation (2.16).

r(t) = N+


RT

1D
+
1 ∆ε1
...

RT
s D

+
s ∆εs

 (2.16)

2.2.3. Minimization algorithm

The complete, overdetermined problem must be solved in a least-squares sense [15]. Equa-
tion (2.17) presents the complete formulation of the torsion problem with all shear strain
measurements collected into a single vector εξtk .

et = Atq − εξtk (2.17)

Equation (2.18) shows the complete bending problem with all strain measurements at all
sections. Vector T (q) is quadratic in q.

eb = Abr − εξξ + T (q) (2.18)

The problem is solved by minimizing the convex form that is presented in Equation (2.19).
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J =
1

2
(eT

t Wte
T
t + eT

b Wbe
T
b ) (2.19)

where Wt and Wb are symmetric, positive definite weight matrices. In the proposed
approach, the sequence of the solution is strictly defined. The torsional problem is solved
first; for this purpose, matrix Wt is set to I and matrix Wb is set to 0. The result is
presented in Equation (2.20):

q = A+
t εξtk (2.20)

where A+
t is the Moore-Penrose pseudoinverse of matrix At.

Then the bending problem is solved by setting Wb to I, and Wt to 0. Equation (2.21)
presents the result of this manipulation:

r = A+
b (εξξ − T (q)) (2.21)

with q calculated in the previous step of Equation (2.20).

2.3. Analytical beam models

The algorithm for the shape reconstruction of the beam has been validated using an
analytical model presented in this section. The analytical validation of the beam has
been performed using two types of beam section, a circular and a rectangular one, to
which a flapwise and a chordwise load has been applied together with a torque. The
axial stresses along the Y and Z axes are presented respectively in Equation (2.22) and
Equation (2.23), while the shear stress is shown in Equation (2.24).

σy =
Fy(L− ξk)ηk

Iz

σz =
Fz(L− ξk)ζk

Iy

τyz =
MtRk

J

(2.22)

(2.23)

(2.24)

The analytical axial and shear strains are used to simulate the measurements of the
strain sensors located at the measuring stations. They are computed using respectively
Equation (2.25) and Equation (2.26).
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εξξ =
σz − σy

E

εξtk =
τyz
G

(2.25)

(2.26)

The transverse displacement of the beam can be computed using two models: the Euler-
Bernoulli and the Timoshenko beam models. For loads applied at a free end, the former
is presented in Equation (2.27) and Equation (2.28), and the latter in Equation (2.29)
and Equation (2.30).

v =
Fyξ

2
k

6EIz
(3L− ξk)

w =
Fzξ

2
k

6EIy
(3L− ξk)

(2.27)

(2.28)

v =

(
ξ2k

6EIz
(3L− ξk) +

ξk
GAy

)
Fy

w =

(
ξ2k

6EIy
(3L− ξk) +

ξk
GAz

)
Fz

(2.29)

(2.30)

The twist of the beam has been computed using Equation (2.31).

ϕ =
Mtξk
GJ

(2.31)

2.4. Finite volume beam model

In the thesis, a numerical beam model has been prepared in the MBDyn software to
validate the real-time algorithm using strains from the simulated sensors. MBDyn is free
and open-source general-purpose Multibody Dynamics analysis software developed at the
Aerospace Science and Technology Department of Politecnico di Milano [8].

The software exploits a finite volume beam model [6, 10] called beam3 element in the
syntax. The model of the beam element is presented in Figure 2.3. The beam element
is composed of three nodes and two evaluation points. Considering a non-dimensional
abscissa s that maps ξ along the beam element between two ends for −1 ≤ s ≤ 1, the
nodes are located at points s = −1, 0, 1, and two (Gaussian) evaluation points are located
at s = ±1/

√
3. In the considered model, the beam is split into three parts, each associated

with one of the three nodes, with two cuts performed at the locations of the evaluation
points. The distributed loads acting on each segment are integrated and applied to the
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corresponding node, as well as internal forces and moments at the cuts [18].

Figure 2.3: Finite volume beam model [10]

Internal forces at the boundaries of the element f(0),f(l),m(0), and m(l) cancel if the
beam is connected with another element or are 0 in case of free end. Internal forces at the
evaluation points are expressed as functions of the generalized linear and angular strains
through appropriate constitutive properties. The strains are obtained by a parabolic
interpolation, based on the kinematics of the nodes. It is worth mentioning that the
forces and moments originating from the elements are truly energetically conjugated with
the virtual displacement and rotation of the nodes to which they are applied; as a result,
they have clear physical meaning [18].

In the models of the tested beams, the measuring stations are located at the position of
the node that connects two adjacent beam elements. The strains measured by the sensors
are computed using the algorithm that is presented below.

Initially the strains computed by the software at the evaluation point must be recomputed
to simulate the axial strains and shear strains measured by a sensor k at the surface of the
beam. Equation (2.32) is used to recompute the axial strain from the evaluation point
to the axial strain at the sensor, while Equation (2.33) to recompute the shear strain
from the evaluation point to the shear strain at the sensor. It is worth mentioning that
coefficients that multiply axial strain, shear strains and curvatures have been validated
only for the case of uniform beam with circular or rectangular cross-section; in the case of
nonuniform beam with more complicated geometry of the cross-section they are different.
This part of the algorithm is performed inside the MBDyn models; the recomputed strains
are subsequently sent using an output stream connector to the Simulink model and to
a text file. Each strain value is associated to a different output channel of the output
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stream.

εξξkI = εx + κyζk − κzηk

εξtkI = κxRk + γz
ηk
Rk

− γy
ζk
Rk

(2.32)

(2.33)

In the next step, the axial strain and shear strain at the position of the node that coincides
with the measuring station, are linearly extrapolated using the strains calculated at the
two evaluation points for sensor k. This operation is performed for the two adjacent
beams n and n+ 1 separately. It is performed entirely by the Matlab script.

In the last step, the axial strain and shear strain of sensor k are computed using respec-
tively Equation (2.34) and Equation (2.35).

εξξk =
εξξnEX

+ εξξn+1EX

2

εξtk =
εξtnEX

+ εξtn+1EX

2

(2.34)

(2.35)

Figure 2.4 presents in a graphical way the computation of the axial strain at sensor k

placed on a measuring station that is located between beams n and n+ 1.

Figure 2.4: Axial strain computation scheme
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2.5. Numerical modal shape function determination

algorithm

This thesis also covers the calculation of the shape functions of a blade basied on the results
of a modal analysis of a detailed 3D finite element model. The following section presents
the algorithm used for the determination of the modal displacement at the location of
the measuring stations. The algorithm exploits the least-squares method just like the
algorithm used for the shape reconstruction of a beam shown in 2.2.3 [15].

Figure 2.5 presents a measuring station s. For each station, three sections are defined.
Section j is located in the position of the sensor; section j − 1 and j + 1 are respectively
located slightly before and after station j. Each station has its predefined reference point
located more or less at the position of the elastic axis of the blade and in the middle of
the section. Each section also is associated to a set of i nodes that belong to the FEM
model. They do not need to be exactly at the same spanwise station as the reference
point; they must be in the vicinity of this point in some slice of the blade.

For each section, the following computations are performed. In the beginning, the differ-
ence in position between the reference point Pjref and node position Pij is defined as it is
shown in Equation (2.36).

δij = Pij − Pjref (2.36)

Pij =


xi

yi

zi


j

δij =


δxi

δyi

δzi


j

(2.37)

(2.38)

In the next step, the Z matrix is computed. Every three rows of the Z matrix have the
form that is presented in Equation (2.39). The matrix Z is composed of 3i rows and is
computed for each section in the measuring station.

Zj =
[
I3×3,−δij×

]
j

(2.39)
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Figure 2.5: Measuring station

where δij× is a vector recomputed into the matrix form presented in Equation (2.40), to
perform the vector cross-product.

δij× =

 0 −δzi δyi

δzi 0 −δxi

−δyi δxi 0


j

(2.40)

The matrix Z is computed once for all sections, as it only depends on the geometry of the
model. In the next step, that is presented in Equation (2.41), the modal displacement of
the reference point is computed using the mth vector of modal displacements of all the
nodes, Φm

j .

dm
j = Z+

j Φ
m
j (2.41)
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Vector Φm
j has the form presented in Equation (2.42).

Φm
j =



...
∆xi

∆yi

∆zi

∆xi+1

∆yi+1

∆zi+1

...



m

j

(2.42)

The modal displacement and rotation of the reference point are computed for all three
sections in the measuring station.

In the next step, the modal displacement of the sections j − 1 and j + 1 are used to
compute the first- and second-order space derivatives of the modal displacement at the
reference point located at the section j, which are required in the definitions of the strains.
For this purpose, the formulas of Equation (2.43) and Equation (2.44) are used.

d
′m
j =

∆L2
1d

m
j+1 + (∆L2

2 −∆L2
1)d

m
j −∆L2

2d
m
j−1

∆L1∆L2(∆L1 +∆L2)

d
′′m
j =

2∆L1d
m
j+1 − 2(∆L2

2 +∆L2
1)d

m
j + 2∆L2d

m
j−1

∆L1∆L2(∆L1 +∆L2)

(2.43)

(2.44)
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3| Shape functions

This chapter of the thesis presents the shape functions obtained for the purpose of this
thesis’ activities. The analytical shape functions that are presented in section 3.1 have
been used in the Simulink real-time model as well as in the Matlab script. The numerical
shape functions that are shown in section 3.2 have been obtained using the finite element
model of the blade from the laboratory.

3.1. Analytical shape functions

The analytical shape functions result from the analytical solution of the continuum dy-
namics of a uniform beam. They can be obtained using pencil & paper (see for exam-
ple [16]). They are derived under the assumption that the beam is uniform and clamped
at the root.

3.1.1. Analytical torsional shape functions

For the purpose of the shape reconstruction algorithm, it was necessary to derive the
torsional shape functions and their first derivatives. The analytical formulas of the shape
functions and their first derivative are presented respectively in Equation (3.1) and Equa-
tion (3.2).

nt = At sin

(
(2n− 1)

π

2

ξ

l

)
n′
t = At(2n− 1)

π

2l
cos

(
(2n− 1)

π

2

ξ

l

) (3.1)

(3.2)

The coefficients of the shape function At and n depend directly on the shape function
and on the desired normalization criterion; for shape function of mode number 1, the
coefficients are equal to: At = 1, n = 1 for unit max rotation.

Figure 3.1 and Figure 3.2 present respectively the torsional shape functions and their
derivatives, for the modes from 1 to 5 assuming that the length of the beam is equal
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to the length of the blade from the laboratory. The markers on the plot indicate the
position of the measuring stations along the blade. Shape functions shown in Figure 3.1
are normalized for unit rotation at the blade tip.
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Figure 3.1: Torsional shape functions
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Figure 3.2: First derivatives of the torsional shape functions
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3.1.2. Bending shape functions

In the case of the bending shape functions, the algorithm requires the first and second
space derivatives. The analytical formulas of the shape functions and their derivatives are
shown in Equation (3.3), Equation (3.4), and Equation (3.5).

nb = A1b cos

(
k
ξ

l

)
+ A2b sin

(
k
ξ

l

)
+ A3b sinh

(
k
ξ

l

)
+ A4b cosh

(
k
ξ

l

)
(3.3)

n′
b =

k

l

(
− A1b sin

(
k
ξ

l

)
+ A2b cos

(
k
ξ

l

)
+ A3b cosh

(
k
ξ

l

)
+ A4b sinh

(
k
ξ

l

))
(3.4)

n′′
b =

(
k

l

)2(
− A1b cos

(
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ξ
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)
− A2b sin

(
k
ξ

l

)
+ A3b sinh

(
k
ξ

l

)
+ A4b cosh

(
k
ξ

l

))
(3.5)

The coefficients A1b, A2b, A3b, and A4b are computed by finding the eigenvector of the
matrix that corresponds to the null eigenvalue of the eigenproblem resulting from the
“cantilever” boundary conditions; they are later normalized with respect to the largest
coefficient. The values of the coefficients k are determined by finding the roots of the
determinant of the characteristic matrix of the problem, which is a transcendental function
of k.

The values of all the coefficients for the modes from 1 to 5 are shown in Table 3.1.

Mode no. k A1b A2b A3b A4b

1 1.875 1.000 -0.734 0.734 -1.000

2 4.694 0.981 -1.000 -1.000 -0.981

3 7.855 1.000 -1.000 1.000 -1.000

4 10.995 -1.000 1.000 -1.000 1.000

5 14.137 1.000 -1.000 1.000 -1.000

Table 3.1: Coefficients of the bending shape functions for modes 1-5

Figure 3.3, Figure 3.4, and Figure 3.5 present respectively the shape functions, and their
first and second derivatives. The bending shape functions are presented along the spanwise
length of the blade and the markers indicates the location of the measuring stations along
the blade.
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Figure 3.3: Bending shape functions
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Figure 3.4: First derivatives of the bending shape functions
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Figure 3.5: Second derivatives of the bending shape functions

3.2. Numerical shape functions

Numerical shape functions have been obtained by post-processing the results of the modal
analysis, performed using the FEMAP software, using the finite element model of the
blade. The model of the blade has been developed by Roberta Cumbo and shared by
courtesy of Siemens Digital Industries Software, Leuven, Belgium.

3.2.1. FEM model of the blade

The blade FEM model reflects directly the structure of the real blade model from the
laboratory taking into account its highly nonuniform structure. The NACA23012 airfoil
is used, which is typical of many helicopter blades. The airfoil is characterized by a high
maximum lift and a low profile drag, which results in a high value of the speed-range
index. In addition, it has low pitching moment coefficient [13]. The airfoil is presented
in Figure 3.6. The chord of the blade is 72.5 mm, while the length of the blade is 910
mm. Five measuring stations are located along the blade span; their position is reported
in Table 3.2.
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Measuring station no. Position along spanwise axis ξ[m]

1 0.045

2 0.090

3 0.135

4 0.270

5 0.540

Table 3.2: Measuring stations along the blade

The blade is made of different composite materials. The skin of the blade is made of a
glass fibre in an epoxy matrix, two plies are laminated under an angle of 45o between each
other. Two stringers are placed along the spanwise axis of the blade, both are made of the
unidirectional glass fiber in the epoxy matrix. They are laminated from 4 plies under an
angle of 0o, the fibres are oriented along the spanwise axis of the blade. The last element
of the blade is a foam that is placed inside the blade, it is made of Rohacell 51 WF. All
of those elements have been modelled to obtain the best possible results.
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Figure 3.6: NACA 23012 profile

The model of the blade is shown in Figure 3.7. The cross-section varies with the spanwise
position along the axis; at the root it is rectangular, and after the transition region it takes
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the shape of the airfoil. For the purpose of modal analysis, the blade is constrained at the
root using a clamp that fixes the translation along all axes and rotation about all axes.
The skin and stringers of the blade have been modelled using shell elements (quad4), while
the foam has been modelled using solid elements (brick8). The connection between the
different parts of the blade is done using rigid elements which connect the skin, the foam,
and the stringers.

Figure 3.7: Blade FEM model

3.2.2. Matlab script for the numerical shape functions calcula-

tions

The modal shapes have been reconstructed using the algorithm presented in section 2.5,
applied to the results of the modal analysis. Initially, the data of the model in the reference
configuration has been loaded into the script. Using those data, 20 stations have been
defined along the blade, each station consisting of 3 sections to which a subset of the
nodes around the reference points have been assigned. In the next step, a simulation was
performed using Nastran solver built into FEMAP. The modal method has been set to
Lanczos, and it was decided that the simulation returns the first 40 modes of the blade.
The output has been set to the deformation of all the nodes and directed to a .f06 file,
which has been later cleaned from the unnecessary data and loaded into the Matlab script.
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In the next step, the data has been divided into the displacements assigned to particular
modes and for each mode only the data related to the nodes that belongs to the sections
on the measuring stations have been saved. At this point, the modal displacements of
the reference points for all 40 modes have been computed using the algorithm that is
presented in the section 2.5. In the last step, the shape functions in the flapwise and
the chordwise directions, as well as the torsional shape functions, have been identified by
inspection of the modal deformation vector. Later the results have been also validated
with the visual representation of the modes given in the FEMAP post-processor.

Figure 3.8 visually presents the algorithm. The blue blocks contain the data that comes
from the FEM model and FEM analysis, while the data in the yellow block is stated by
the user. The green blocks contain the actions executed by the script.
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Figure 3.8: Algorithm of the numerical shape functions calculations

3.2.3. Results of the numerical shape functions calculations

This section presents the plots of the numerical shape functions obtained from the modal
analysis of the blade’s FEM model. The shape functions have been plotted for 20 points
located along the spanwise axis of the blade. The markers on the plots indicate the
approximate position of the measuring stations.

Table 3.3 presents the chordwise, the flapwise, and the torsion shape functions for modes
1-5 together with their frequency. The flapwise modes have in general low frequency, espe-
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cially in comparison to the torsional modes. The chordwise modes start at low frequency
but higher modes have a very high frequency. For the implementation of the modes in
the shape reconstruction algorithm, the modes with very high frequency do not have to
be included.

Mode type and number Frequency [Hz]

Chordwise 1 19.91

Chordwise 2 141.38

Chordwise 3 404.81

Chordwise 4 786.24

Chordwise 5 1244.38

Flapwise 1 4.67

Flapwise 2 29.38

Flapwise 3 81.48

Flapwise 4 158.69

Flapwise 5 255.99

Torsion 1 115.03

Torsion 2 351.09

Torsion 3 576.61

Torsion 4 600.84

Torsion 5 814.21

Table 3.3: Numerical shape functions for modes 1-5

Figure 3.9, Figure 3.10, and Figure 3.11 present respectively the chordwise, flapwise and
torsional shape functions for the modes 1 to 5, together with their first derivatives. The
bending shape functions are reconstructed with a very good quality, while the torsional
shape functions are not very well reconstructed in the area close to the root of the blade,
where the cross-section changes from rectangular to that of the airfoil. This issue will
be explained in the further part of this subsection. A better quality of the reconstructed
shapes would be provided if more stations along the blade would be considered; however,
it was decided that 20 points is sufficient and reasonable from the computational efficiency
point of view. It is worth mentioning that due to the fact that each measuring station
must have 3 sections, the last measuring station is not located at the tip of the blade, but
slightly before.
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(b) First derivatives of the chordwise shape func-
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Figure 3.9: Chordwise shape functions and their first derivatives
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Figure 3.10: Flapwise shape functions and their first derivatives
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(b) First derivatives of the torsion shape functions

Figure 3.11: Torsion shape functions and their first derivatives

The second derivatives of the shape functions are necessary only in the case of bending
shape functions, when the Euler-Bernoulli model is considered; they are presented in
Figure 3.12.
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(a) Second derivatives of the chordwise shape func-
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Figure 3.12: Second derivatives of the bending shape functions

Figure 3.13 presents the root area of the blade in the case of torsion mode no. 1. The
blade is shown in an undeformed and a deformed state (the scale of the deformation is
increased to 2 for better visualization) respectively in Figure 3.13a and Figure 3.13b. In
the area of the shape transition from rectangular to that of the airfoil, the elements are
additionally distorted due to the change in shape of the cross-section; their deformation
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is not as regular as expected. This is the possible explanation of the irregularity of the
torsional shape functions close to the root, that is presented in Figure 3.12a.

(a) Undeformed state

(b) Deformed state

Figure 3.13: Deformation of the root area in the case of torsion mode no. 1
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4| Matlab script and Simulink

model

This chapter presents the implementation of the shape reconstruction algorithm into the
Matlab & Simulink environment.

The algorithm presented in section 2.2 has been implemented initially into the Matlab
script, then it was validated using strains from the analytical beam model, and strains
from the MBDyn model. The results given by the algorithm have been compared for
validation with the analytical results and nodal deformation results given by the MBDyn
models of the beams.

The structure of the algorithm is shown in Figure 4.1. It is divided into 4 main blocks.
The data block contains all the information about beam, sensors, and measuring stations.
This block also includes the script that computes the position of the sensors on the beam
cross-section. It is not connected to any blocks in Figure 4.1 because the information that
it stores is available for all the blocks of the code. The algorithm works in such a way
that if the data of the reconstructed beam is changed (cross-section, measuring stations,
etc.), only the data block must be changed, and the simulation must be restarted. The
measurements block receives input strains from the MBDyn models, recomputes them as
it was presented in section 2.4, and divides them into axial and shear strains. The torsion
problem is solved first; its main output is the twist angle, which is used in the bending
problem, and is also plotted at the end. In the last step, the bending problem is solved
with two outputs, the chordwise and flapwise displacement components. In the presented
scheme the calculation operations that are inside yellow blocks are performed only once,
while the other blocks are recomputed at every iteration.

The Matlab script and the Simulink model have a very similar structure, the only differ-
ence is in the input and output to the function. The Matlab script operates on a single set
of strains that are analytical and come from a text file generated by the MBDyn model;
the output from the Matlab script is sent to the text file that is later used for plotting the
results. The Simulink model works in co-simulation with the MBDyn models; the input
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are the strains from MBDyn and the output are the plots of the deformation in time. In
the Simulink model, additional input contains the deformation of the nodes at the measur-
ing stations and the displacement of the end node of the beam, which is used in the plots
to present the results of the beam shape reconstruction. Figure 4.2 presents the Simulink
model. The block sfun_mbdyn_start is used to set up a co-simulation between MB-
Dyn and Simulink. The strains are delivered through the sfun_mbdyn_com_read block
that has as many outputs as channels (in the presented case 103 outputs are used, 100
related to the strains, and 3 related to the end node displacement). Later, the strains
are connected to the Mux element that combines them into a single vector that is sent to
the Main_script block which contains the whole shape reconstruction algorithm. The
block has 3 main outputs: the twist angle and the chordwise and flapwise displacement
components. In the presented case there are also 2 additional outputs that show the axial
and shear strains used for the calculations. The output is sent to the displays that show
the final values and the scopes that generate the plots of displacement as a function of
time. The scopes plot the values reconstructed using the algorithm together with the
displacement of the nodes.
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Figure 4.1: Scheme of the algorithm
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Figure 4.2: Real-time Simulink model



47

5| Algorithm verification using a
beam with circular
cross-section

This chapter presents the verification of the algorithm shown in section 2.2, which has
been implemented in a Matlab script and in a Simulink model. The validation has been
performed using a beam with a circular cross-section.

5.1. Circular beam model

The beam used for verification is uniform and has a circular cross-section with a diameter
equal to the chord of the blade from the laboratory, d = 72.5 mm, and the same length,
L = 0.91 m. The beam used for validation does not have any built-in twist. The material
is assumed to be aluminium alloy (T 7075). Five measuring stations are located along
the blade, in the same locations as in the case of the original blade. The position of the
measuring stations is presented in Table 3.2.

Figure 5.1 presents the plot of the beam cross-section. In the initial configuration there
are three sensors placed on each measuring station; 2 strain gauges that measure the axial
and shear strain, and 1 optical fibre sensor that measures only the axial strain. In the
figure below two vectors are shown as well, tangent to the surface, that are required for
the reconstruction of twist.

The algorithm has been validated using the analytical results as well as the deformation
of the nodes taken from the MBDyn model. In the algorithm, there were used analytical
strains as well as strains taken from the MBDyn models. Two MBDyn models of the beam
have been created, one static and one dynamic. The former is used for the validation
of the Matlab script, and the latter in the real-time co-simulation together with the
Simulink model. All the models are composed of 20 beam3 elements, whose length is
adjusted such that the measuring station is always at one of the nodes. The models also
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Figure 5.1: Cross-section of the circular beam with strain sensors

exploit the generation file that is created in Matlab and significantly simplifies the model
development. In the Matlab script all the numerical parameters of the model, as well as
references, nodes, and beam3 elements are defined. The script generates ASCII text files
which are later loaded into the main code of the model. In the main code of the model
only loads and the parameters of the simulation are specified. The simulations have been
performed using the bdf integration method with time step equal to 10−3 and the max
iterations parameter set to 10, with the derivatives tolerance set to 10−5.

In the verification process, forces in chordwise and flapwise direction, as well as torque,
have been applied. All loads have been applied at the end of the beam.

5.2. Verification of the algorithm using small defor-

mation

Small deformation of the beam is assumed to be in the range of 1%–3% of the spanwise
length of the beam, whereas small rotation is in the range of 10−3–10−2 rad. Two load
cases have been defined; they are shown in Table 5.1. Load case no. 1 contains only forces
along the global Z and Y axes, while load case no. 2 consists of forces and a torque. The
strains have been generated using the analytical formulas presented in section 2.3 using
the Euler-Bernoulli beam model. In the presented results 5 analytical modes have been
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used for both bending and torsional shape reconstruction.

Load case no. Fz[N] Fy[N] Mt[Nm]

1 -15000 -10000 0

2 -10000 -10000 1000

Table 5.1: Load cases for verification using small deformation

5.2.1. Small deformation load case no. 1

Figure 5.2, Figure 5.3, and Figure 5.4 present the deformation of the beam subjected
to load case no. 1. In the plots, there are shown: the initial (undeformed) shape of
the beam and three deformed beam shapes composed of the points that are located at
the measuring stations. The deformed shapes have been obtained using the analytical
formulas, the nodal deformation from the MBDyn model, and the deformation computed
using the algorithm.

All the methods give very similar results for the bending deformation; the plots of the
deformed beam are coincident. The difference in the results is present only in the case of
torsion, which is shown in Figure 5.4. The twist resulting from the MBDyn model is not
null, but negligibly small. The torsion from MBDyn is most probably affected by some
numerical issues that can be safely neglected.
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Figure 5.2: Chordwise displacement of the beam for small deformation, load case no. 1
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Figure 5.3: Flapwise displacement of the beam for small deformation, load case no. 1
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Figure 5.4: Twist of the beam for small deformation, load case no. 1

Figure 5.5 and Figure 5.5 present the difference between the shape reconstruction algo-
rithm and the analytical results, and between the MBDyn model results and the analytical
results for the chordwise and flapwise bending. The difference in flapwise and chordwise
directions are the same for the algorithm and the MDByn model.

The algorithm in which analytical strains are used gives very small difference to analytical
results, the largest discrepancy is given by the measuring station that is the closest to
the tip of the beam. The difference between the MBDyn model and the analytical results
is larger, however it does not exceed 2% and its distribution is reversed with respect
to the difference between the algorithm and the results from the Euler-Bernoulli model.
The largest error is given by the station that is close to the root of the blade. This
effect is caused by the fact that in the analytical formulas the Euler-Bernoulli beam
model is used, while MBDyn exploits Timoshenko beam model which accounts also for
the shear contribution in the transverse displacement. The shear contribution increases
linearly with the spanwise location (measured from the tip), whereas bending contribution
increases with the third power of the spanwise location. In the Timoshenko beam model,
both contributions are present, while in the Euler-Bernoulli beam model only bending
contribution is used. This difference between both models is the reason of the discrepancy
that is present in the figures, this conclusion is proved in section 5.2.3. Formulas of both
models are presented in section 2.3.
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Figure 5.5: Difference in chordwise displacement results, Euler-Bernoulli beam model,
small deformation, load case no. 1
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Figure 5.6: Difference in flapwise displacement results, Euler-Bernoulli beam model, small
deformation, load case no. 1

5.2.2. Small deformation load case no. 2

Figure 5.7, Figure 5.8, and Figure 5.9 present the deformation of the beam for load case
no. 2, thus the two forces have the same magnitude and, in addition, there is also torque
applied to the end of the beam. The deformation of the beam at the measuring points
obtained using all the methods are coincident also in this load case.
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Figure 5.7: Chordwise displacement of the beam for small deformation, load case no. 2
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Figure 5.8: Flapwise displacement of the beam for small deformation, load case no. 2
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Figure 5.9: Twist of the beam for small deformation load case no. 2

Figure 5.10 and Figure 5.11 present the difference between the reconstructed displacement
and the analytical results. As shown, they are different in chordwise and flapwise direction,
what is in contradiction to the results from the load case no. 1 presented in Figure 5.5
and Figure 5.6. The difference in flapwise displacement is greater than in the chordwise
direction, moreover, both are larger than in the case when only forces were applied to
the beam. A conclusion can be drawn that this additional difference in the results is
caused by torque applied to the beam. From the shape reconstruction algorithm, which is
presented in Figure 4.1, it is clear that bending is computed using also twist angle and its
first derivative. The same conclusions apply also to the difference between the analytical
results and the MBDyn simulation results.
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Figure 5.10: Difference in chordwise displacement results, Euler-Bernoulli beam model,
small deformation, load case no. 2
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Figure 5.11: Difference in flapwise displacement results, Euler-Bernoulli beam model,
small deformation, load case no. 2

Figure 5.12 show the difference in twist. The discrepancy between the twist reconstructed
using the algorithm and the analytical twist is very small, and can be considered as
negligible, it is the largest in the case of the station that is the closest to the root of the
blade, the other stations show a much smaller error. The error between twist from the
MBDyn simulation and the analytical results is larger but still small, not exceeding 0.2%;
the error is the same for all the stations.
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Figure 5.12: Difference in twist angle, small deformation, load case no. 2

5.2.3. Small deformation with analytical results from Timoshenko
beam model

This subsection of the report presents the difference between the analytical results and
respectively those from the algorithm and MBDyn simulations. However, in this case the
transverse displacement has been computed using the Timoshenko beam model. In the
presented results, load case no. 1 for small deformation has been used; the details of the
applied forces are available in Table 5.1. Only results of difference in chordwise displace-
ment are presented in the following, due to the fact that, as shown in section 5.2.1, in this
load case the differences in displacement along both axes are the same. Moreover, the
results from the algorithm used to generate Figure 5.13a and Figure 5.14a were computed
respectively using the analytically computed strains and those from MBDyn.

Figure 5.13 and Figure 5.14 present the difference in chordwise displacement of the points
located at the measuring stations. When the Timoshenko beam model is used, the differ-
ence between the algorithm and analytical formulas is much greater than in the case of
analytical results from the Euler-Bernoulli model. In the case of analytical strains used
in the algorithm (Figure 5.13a) the difference exceeds 2%, while previously it was around
0.018%. The distribution of the difference is also reversed, the highest discrepancy occur-
ring at the station close to the root. In the case of MBDyn simulation results compared
to the analytical results, the situation is reversed: the discrepancy decreased significantly,
from 2% to 0.19%. The distribution is also reversed, the largest difference occurring at the
point closest to the tip of the blade. Those results prove that the distribution of discrep-
ancy between MBDyn and analytical results present in section 5.2.1 and section 5.2.2 is
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caused by different models used for the transverse displacement calculations. In the pre-
sented thesis, the Euler-Bernoulli model is used for analytical computations of transverse
displacement, unless otherwise stated.

Interesting is a comparison of the difference between the analytical results and the algo-
rithm in which strains from different sources have been used. Figure 5.13a presents the
results obtained using analytical strains, whereas Figure 5.14a using MBDyn strains. The
distribution of discrepancy in both figures is the same, so the greatest difference is present
in the case of the measuring station at the root. This difference is slightly larger for the
MBDyn strains used in the algorithm.
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Figure 5.13: Difference in chordwise displacement, Timoshenko beam model, small defor-
mation, load case no. 1
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Figure 5.14: Difference in chordwise displacement, Timoshenko beam model, small defor-
mation, load case no. 1

5.3. Validation of the algorithm using large deforma-

tion

Large deformation is assumed to be in the range of 10%–30% of the beam spanwise
length, while the rotation is in the range of 0.02–0.06 rad. There two load cases, shown
in Table 5.2, were simulated. One of the load cases is without the torque and with the
loads applied in positive and negative direction, while in the other load case two forces
are positive with negative torque. Five modes have been used for the reconstruction of
the displacement of the beam at the measuring stations.

Load case no. Fz[N] Fy[N] Mt[Nm]

1 120000 -200000 0

2 150000 150000 -10000

Table 5.2: Load cases for verification using large deformation

5.3.1. Large deformation load case no. 1

Figure 5.15, Figure 5.16, and Figure 5.17 present the deformations of the beam subjected
to load case no. 1 for large deformation. The algorithm uses analytical strains to recon-
struct the shape of the beam. In Figure 5.15 and Figure 5.16 it is shown that chordwise
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and flapwise deformation of the beam given by MBDyn are significantly smaller than the
analytical results. Moreover, the reconstructed shape noticeably deviates from the de-
formation given by analytical formulas; in the case of chordwise deformation it is larger,
while in the flapwise case it is smaller. The twist that is presented in Figure 5.17 is null
from analytical results and the algorithm while the MBDyn simulation returns some twist,
but it is negligibly small.
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Figure 5.15: Chordwise displacement of the beam for large deformation, load case no. 1
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Figure 5.16: Flapwise displacement of the beam for large deformation, load case no. 1
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Figure 5.17: Twist of the beam for large deformation, load case no. 1

Figure 5.18 and Figure 5.19 present differences in the results from the algorithm and
the MBDyn simulation with respect to the analytical results. The algorithm gives the
same, negligible difference in both directions; the largest discrepancy is obtained for the
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station that is the closest to the tip of the blade. A much larger difference is obtained
using the MBDyn results, it exceeds 20% and is the same in both directions. It is worth
noticing that the distribution of discrepancy given by MBDyn in large deformation case
is opposite to the discrepancy given for small deformation that is shown in Figure 5.5 and
Figure 5.6. The presented difference must be driven by other factors than the difference
in the Euler-Bernoulli and the Timoshenko beam model (discussed in section 5.2.3) and
might be caused by the fact that if the load exceeds some magnitude, the problem becomes
nonlinear. This topic is discussed in detail in section 5.4.
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Figure 5.18: Difference in chordwise displacement, Euler-Bernoulli beam model, large
deformation, load case no. 1
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Figure 5.19: Difference in flapwise displacement, Euler-Bernoulli beam model, large de-
formation, load case no. 1

5.3.2. Large deformation load case no. 2

Figure 5.15, Figure 5.16, and Figure 5.17 present the deformation of the beam subjected
to load case no. 2 for large deformation. The behaviour of the MBDyn results is the same
as in the previous case, while the shape reconstructed using the algorithm deviates in a
much stronger manner from the analytical results, but only in the case of bending results;
the twist is coincident with that of the analytical beam model. The twist that is given by
MBDyn significantly deviates from the other results, and is much smaller.
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Figure 5.20: Chordwise displacement of the beam for large deformation, load case no. 2
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Figure 5.21: Flapwise displacement of the beam for large deformation, load case no. 2
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Figure 5.22: Twist of the beam for large deformation, load case no. 2

Figure 5.23 and Figure 5.24 show the deviation of the chordwise and flapwise results
obtained using the algorithm and the MBDyn simulation with respect to the analytical
results. The difference in chordwise and flapwise directions are not the same, the flapwise
discrepancy is larger than the chordwise one. The difference is smaller in the case of the
shape reconstruction algorithm than in the case of the MBDyn simulation. The algorithm
gives a result that is not exceeding 2.5%; this difference is much larger than in the case of
load case no. 1, without applied torque, where it was 0.018%. This confirms the conclusion
that torque increases the discrepancy between the reconstructed shape and the analytical
results.
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Figure 5.23: Difference in chordwise displacement, Euler-Bernoulli beam model, large
deformation, load case no. 2
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Figure 5.24: Difference in flapwise direction Euler-Bernoulli beam model, large deforma-
tion, load case no. 2

Figure 5.25 presents the discrepancy in twist. The algorithm gives a very small deviation,
which is the largest for the measuring station close to the tip, while MBDyn gives a
significant difference that exceeds 25% and is more or less constant for all the stations.
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Figure 5.25: Difference in twist angle, large deformation, load case no. 2

5.3.3. Large deformation with strains from MBDyn simulation

The algorithm has also been validated using strains obtained from the simulations with
MBDyn. For this purpose, load case no. 2 for the large deformation has been exploited,
so the results presented in this section can be compared with the ones from section 5.3.2.

Figure 5.26 and Figure 5.27 present bending deformation of the beam. When the strains
from MBDyn are used in the algorithm, the reconstructed shape is much closer to the
results from the MBDyn simulation; however, the reconstructed values give a slightly
larger deformation that is closer to that of the analytical results.
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Figure 5.26: Chordwise displacement of the beam for large deformation, load case no. 2,
MBDyn strains
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Figure 5.27: Flapwise displacement of the beam for large deformation, load case no. 2,
MBDyn strains

Figure 5.28 presents the twist of the beam. The reconstructed angle is coincident with
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the MBDyn simulation results, it seems to be slightly smaller than what is shown by the
analysis of the difference between the algorithm results and the analytical results that are
shown in the further part of this subsection.
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Figure 5.28: Twist of the beam for large deformation, load case no. 2, MBDyn strains

The plots below report only the difference between the analytical results and those from
the algorithm in which the strains computed with MBDyn have been used, because the
discrepancy between results from MBDyn and the analytical ones is already reported in
section 5.3.2.

Figure 5.29 and Figure 5.30 present the difference in bending for flapwise and chordwise
direction. The discrepancies in bending are much larger when strains obtained with
MBDyn are used in the algorithm; they exceed 14% in both directions. The distribution
of the difference is much more uniform than that resulting from the analytical strains;
however, the largest discrepancy is given by the sensor that is closest to the tip of the
beam.
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Figure 5.29: Difference in chordwise deformation, load case no. 2, MBDyn strains
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Figure 5.30: Difference in flapwise deformation, load case no. 2, MBDyn strains

Figure 5.31 presents the differences in twist angle. They are also much larger than in the
case of the analytical strains used in the algorithm and exceed 26%. The distribution of
the differences is more or less the same for all the measuring stations.
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Figure 5.31: Difference in twist angle, load case no. 2, MBDyn strains
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5.4. Linearity of the methods

In this section, the verification of the linearity of the problem is performed. The strains
used for this purpose have been generated using the analytical method and the MBDyn
simulation, to check the influence of the strains on the results. The linearity has been
verified for 3 load cases, that are shown in Table 5.3. The load on the beam has been
increase by 1 order of magnitude at a time, up to when MBDyn solver was no longer able
to converge. In load case no. 3, all the loads have been increased simultaneously. The
plots that are shown in this section use a logarithmic scale on both axes.

Load case no. Fz Fy Mt

1 ✓ × ×
2 × × ✓

3 ✓ ✓ ✓

Table 5.3: Load cases for linearity verification

5.4.1. Linearity, load case no. 1

Figure 5.32 presents the results of the linearity verification when only flapwise force is ap-
plied to the beam. The highest achieved load reaches 107 N. When the force magnitude is
around 104 N, the solution departs from linearity; this becomes more and more noticeable
for larger forces. When strains from MBDyn are used in the algorithm, its results follow
MBDyn’s solution, losing linearity for the same load values. When the analytical strains
are used, instead, the algorithm is linear as the analytical model.
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Figure 5.32: Linearity plots for the load case no. 1

5.4.2. Linearity, load case no. 2

Figure 5.33 shows the results for the load case with a torque applied. The solution obtained
with MBDyn becomes nonlinear above 104 N m. The shape reconstruction algorithm is
always linear, even if the strains from MBDyn are used. Clearly, rotations greater than
one radian are not physical for this problem, so departure from linearity for exaggerated
values of torsional moment are not considered critical.
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Figure 5.33: Linearity plots for the load case no. 2

5.4.3. Linearity, load case no. 3

This section presents the results of the linearity verification for load case no. 3, which is
the most complex. The load is applied in the chordwise and flapwise axes together with
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torque. All loads are simultaneously increased; in this case the highest load that lead to
convergence with MBDyn was of magnitude 105 N.

Figure 5.34 and Figure 5.35 show the linearity of the chordwise and flapwise reconstruc-
tion. The MBDyn simulation and the shape reconstruction algorithm deviate from lin-
earity for forces higher than 104 N. If the analytical strains are used in the algorithm,
it shows a smaller departure from linearity than MBDyn, whereas if the strains from
the simulation are used, then it becomes highly nonlinear, even more than the solution
obtained with MBDyn.
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Figure 5.34: Linearity plots for chordwise displacement, load case no. 3
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Figure 5.35: Linearity plots for flapwise displacement, load case no. 3

Figure 5.36 presents the results of linearity verification for twist reconstruction. Results
from MBDyn become slightly nonlinear when the torque exceeds 104 N m. If analytical
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strains are used in the algorithm, it is linear irrespective of the load magnitude, while
if strains from MBDyn are used it becomes highly nonlinear above 104 N m. Deviation
from linearity is greater than that of MBDyn’s solution.

The conclusion is that the linear behaviour of the algorithm depends on the magnitude of
the load and the source of the strains. The algorithm is always linear if only the torque
is applied, while in the bending deformation it loses linearity if it uses nonlinear strains
or if the torque is applied to the beam together with the transverse load.
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Figure 5.36: Linearity plots for twist angle, load case no. 3

5.5. Relation between number of modes and number

of measuring stations

In the previously presented results, the number of bending and torsion shape functions
has been set to 5. Also the number of measuring stations has been always set to 5. This
section of the report presents how the reconstruction results are affected by changes in
the number of modes or measuring stations. The small deformation load case no. 2 has
been used to obtain the results presented in the subsequent part of this section. Details
of the load case are shown in Table 5.1.

The difference between the analytical results and the shape reconstructed by the algo-
rithm are reported in the next subsections. In the case of bending, only results in flapwise
direction are reported, owing to the fact that the number of modes used in the recon-
struction of flapwise and chordwise bending is always the same; so, the same conclusions
apply. In the presented results, the same number of modes have been used to reconstruct
bending and torsion.
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5.5.1. Five measuring stations

This subsection presents the results obtained for 5 measuring stations. The modes in the
shape reconstruction algorithm have been increased from 1 to 6 and simulated. The figures
in this section present the difference between results given by the shape reconstruction
algorithm and analytical formulas for flapwise bending and twist angle.

The quality of the results increases with the number of modes used for the reconstruc-
tion, something somewhat was expected. Figure 5.37 shows the results obtained using
the first mode. In bending and torsion the quality of the results is poor, the difference
is respectively around 7% and 9%. The discrepancy decreases significantly when 2 and 3
modes used. The best result for the shape reconstruction in both bending and torsion,
is achieved with 5 modes. The results are shown in Figure 5.41. Figure 5.42 shows the
results with 6 modes. It is clearly noticeable that the difference between analytical re-
sults and reconstructed shape increases significantly in both bending and torsion, reaching
respectively around 21% and 18%. An explanation is that the problem becomes ill con-
ditioned (potentially underdetermined) when the number of modes exceeds that of the
measuring station.
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Figure 5.37: Difference between analytical results and results of the shape reconstruction
algorithm for 1 mode shape used
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Figure 5.38: Difference between analytical results and results of the shape reconstruction
algorithm for 2 mode shapes used
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Figure 5.39: Difference between analytical results and results of the shape reconstruction
algorithm for 3 mode shapes used
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Figure 5.40: Difference between analytical results and results of the shape reconstruction
algorithm for 4 mode shapes used
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Figure 5.41: Difference between analytical results and results of the shape reconstruction
algorithm for 5 mode shapes used
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Figure 5.42: Difference between analytical results and results of the shape reconstruction
algorithm for 6 mode shapes used

5.5.2. Four measuring stations

This subsection presents the results obtained with 4 measuring stations. The number of
modes, in this case, is varied from 1 to 5. The measuring station that was removed from
the results is the intermediate station no. 3, which is located in ξ = 0.135 m from the
root of the blade.

Also with 4 measuring stations, the quality of the results increases with the number of
mode shapes used for the reconstruction. Figure 5.43 shows the results with 1 mode, which
once again provides the worst results. The differences are greater than with 5 measuring
stations, as presented in Figure 5.37. With 4 measuring stations, the best quality of the
results is obtained with 4 modes. The results are presented in Figure 5.46. However, in
this case, the quality is not as good as when 5 modes were used with 5 measuring stations,
as presented in Figure 5.41. This is explained by considering that the fifth mode adds a
further degree of freedom for better fitting the measured strains.

When the number of modes increases to 5, i.e. exceeding the number of measuring stations,
the quality of results deteriorates significantly, as presented in Figure 5.47.

Very interesting is the fact that the results for 2 and 3 modes used for the reconstruction
using 4 measuring stations (respectively Figure 5.44 and Figure 5.45) are better than
in the case of 5 measuring stations (respectively Figure 5.38 and Figure 5.39). This
conclusion applies to both bending and torsion. It can be explained by the fact that
when 4 measuring stations are used instead of 5, 2 and 3 modes only need to fit 4 sets of
measurements instead of 5, thus yielding better results.



78 5| Algorithm verification using a beam with circular cross-section

0 0.1 0.2 0.3 0.4 0.5

0

1

2

3

4

5

6

7

8

(a) Flapwise bending

0 0.1 0.2 0.3 0.4 0.5

0

2

4

6

8

10

12

(b) Twist angle

Figure 5.43: Difference between analytical results and results of the shape reconstruction
algorithm for 1 mode shape used, 4 measuring stations
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Figure 5.44: Difference between analytical results and results of the shape reconstruction
algorithm for 2 mode shapes used, 4 measuring stations
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Figure 5.45: Difference between analytical results and results of the shape reconstruction
algorithm for 3 mode shapes used, 4 measuring stations
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Figure 5.46: Difference between analytical results and results of the shape reconstruction
algorithm for 4 mode shapes used, 4 measuring stations
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Figure 5.47: Difference between analytical results and results of the shape reconstruction
algorithm for 5 mode shapes used, 4 measuring stations

5.6. Increased number of sensors per section

According to the theory, an increased number of the sensors should cause that the least-
squares method applied to the algorithm will better alleviate potential random measuring
error. To verify this assumption, a script was created that generates noise, which is added
to the analytical strain measurements, assumed to be ideal. The load case used for the
purpose of these simulations is load case no. 2 from a large deformation case. Details of
this load case are presented in Table 5.2.

The noisy measurements are generated using the formula presented in Equation (5.1).
The measurements are generated by adding to the original measurements their value
multiplied by a random number drawn from a range < −0.05, 0.05 >. This formula is
applied to all the sensors on the measuring station.

εnoise = εclean + εclean

(
rand(−0.05, 0.05)

)
(5.1)

To verify the influence of the number of sensors on the quality of the results given by the
shape reconstruction algorithm, two additional sensors have been added: a strain gauge
and an optical fibre sensor. In this way, one additional sensor has been used to compute
the twist, and two additional sensors have been applied to the calculations of the bending
deformation. The beam cross-section with additional sensors is shown in Figure 5.48.
This cross-section has been used to generate the results for 5 sensors. The results for 3
sensors have been generated using the initial cross-section that is presented in Figure 5.1.
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Figure 5.48: Beam cross-section with additional sensors

Figure 5.49 presents the difference in chordwise deformation between the analytical results
and the results obtained using the algorithm for the 2 configurations, with 3 and 5 sensors
per section. The discrepancy between the results is significantly decreased when five
sensors are used on the cross-section. The distribution of the difference is random, as
expected, because the noise is also a random signal.
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Figure 5.49: Difference in chordwise bending for different number of sensors

Figure 5.50 shows the difference in the case of flapwise direction. Also in this case the
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discrepancy significantly decreases when 5 sensors per section are used. The difference is
randomly distributed.
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Figure 5.50: Difference in flapwise bending for different number of sensors

Figure 5.51 presents the discrepancy in twist. As in the other cases, the difference in twist
also decreases if more sensors per section are used.
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Figure 5.51: Difference in twist angle for different number of sensors

These results show that when random error is present in the measurements, an increased
number of sensors may be considered as a method to alleviate its influence on the results.
The improvement in the case of 5 sensors with respect to 3 sensors per section was
noticeable for all the measuring stations and all the deformations.
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5.7. Results of the real-time co-simulation

This section presents the results of the algorithm applied to the Simulink model, which
has been run in co-simulation with the MBDyn dynamic model of the circular beam. The
beam has been subjected to a dynamic sinusoidal load, whose amplitude has been set to
the large deformation load case no. 2, presented in Table 5.2. The simulation has been
run for 40 seconds. During this time the load performed two periods.

Figure 5.52, Figure 5.53, and Figure 5.54 present the real-time plots of the displacements
and twist reconstructed from the deformations received from the Simulink scopes and
compared with the actual displacements of the MBDyn nodes. the Figures respectively
show the trajectories of chordwise and flapwise displacement, and twist angle. The pre-
sented trajectories correspond to the reconstructed deformation at the location of the
measuring stations. The displacement of the end node of the beam is also displayed. The
displacement of the nodes at the measuring stations and the reconstructed displacements
using algorithm are nearly coincident for all the stations. This shows that the algorithm
works well also in its real-time implementation.

Comparing the presented results at t = 5 s clearly indicates that the results given by
the algorithm applied to the real-time Simulink model and Matlab script (shown in sec-
tion 5.3.3) are coincident.

Figure 5.52: Chordwise displacement real-time results, circular beam
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Figure 5.53: Flapwise displacement real-time results, circular beam

Figure 5.54: Twist angle real-time results, circular beam
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6| Algorithm validation using the

Princeton beam experiment

This chapter shows the validation of the algorithm using the Princeton beam experiment
described in [6]. The validation has been performed using the algorithm applied to the
Matlab script and the real-time Simulink model. Two MBDyn models of the beam, a
static and a dynamic one, have been also prepared and used later in co-simulation.

6.1. Description of the experiment

The Princeton beam experiment is a study of the large displacement and rotation be-
haviour of a simple cantilevered beam under a gravity tip load. In the prepared model,
the gravity tip load has been replaced with a force applied to the tip of the blade which
was changing its orientation around the spanwise axis of the beam. In the experiment,
a straight beam made of aluminium alloy (T 7075) with a length L = 0.508 m and a
rectangular cross-section with dimensions 3.175 mm × 12.7 mm was clamped at the root
and subjected to three different loads applied to the tip. The loads were P1 = 4.448
N, P2 = 8.894 N, and P3 = 13.345 N. They were applied to the beam under different
loading angles in the range from 0◦ to 90◦, the data was acquired for the loading angles
θload = 0◦, 15◦, 30◦, 45◦, 60◦, 75◦, and 90◦. In the experiment, the tip end deflection along
the chordwise and flapwise axes have been measured together with the twist of the tip [6].

In the presented verification model of the Princeton beam, the algorithm computes the
deflection of the beam using 5 measuring stations with 3 sensors on each station; 2 strain
gauges and 1 optical fibre sensor. Figure 6.1 presents the cross-section of the beam,
together with sensors and tangent vectors used for the computations of the twist angle.
In the results presented in this chapter, the strain from the MBDyn model have been
applied to the algorithm. The MBDyn model of the beam consists 20 beam3 elements,
the measuring stations were located at the nodes located between two adjacent beam
elements. Due to that, the algorithm does not reconstruct the deformation of the beam
at the tip, the last station is located at the 88% of the beam spanwise length.
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Figure 6.1: Cross-section of the Princeton beam

Along the beam a total of five measuring stations were chosen to improve the results of
the shape reconstruction. The positions of the stations are shown in Table 6.1. In the
results presented in section 6.2, the results from the algorithm are compared with the
displacement of the nodes from the MBDyn simulation that are located at the measuring
stations. The results from the MBDyn model have been validated using the Timoshenko
beam model analytical formulas, for the loading angles θload = 0◦ and 90◦.

Measuring station no. Position along spanwise axis ξ[m]

1 0.05

2 0.15

3 0.25

4 0.35

5 0.45

Table 6.1: Measuring stations along the Princeton beam
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6.2. Shape reconstruction results

The comparison of the results from the algorithm, the MBDyn model, and the results
from the paper are shown in this section. In the plots, there are shown results from the
algorithm computed for the measuring station no. 5, together with the deformation of the
node located at the same measuring station. For completeness, there is also shown the
deformation of the end node of the beam.

Figure 6.2 presents the results of the chordwise deformation. Comparing the results of
the end node deformation shown in Figure 6.2a with the results from the paper shown
in Figure 6.2b, the MBDyn model correctly reproduces the experiment. Also, the defor-
mation at the measuring station no. 5 reconstructed using the algorithm sufficiently good
reproduces the deformation of the node given by the MBDyn simulation. The algorithm
for all of the loading angles gives result slightly larger than the deformation of the node.
The greatest error is given by the load P3 and loading angle 90◦. The similar conclusions
apply for the flapwise deformation that is presented in Figure 6.3a, however, in this case
the largest discrepancy occurs for the loading angle of 45◦. Nevertheless, the flapwise
deformation is also correctly reproduced when compared to the results from the paper
that are shown in Figure 6.3b.

Figure 6.4 presents the results of the twist angle. Also, the comparison between the end
node twist, that is shown in Figure 6.4a, with the experimental results from Figure 6.4b
proves that the multibody model correctly reproduces the results of the experiment. Com-
parison of the nodal twist at station no. 5, with twist that is reconstructed using algorithm
proves that the algorithm correctly reproduces also the twist of the beam from the MB-
Dyn model. In the case of twist angle, the results given by node twist are larger than the
results from the algorithm, the greatest difference is present for load P3 and loading angle
of 45◦.

The general conclusion is that having the strains from MBDyn simulation, the algorithm
correctly reproduces the results of the Princeton beam experiment.
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Figure 6.2: Chordwise deformation of the Princeton beam
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Figure 6.3: Flapwise deformation of the Princeton beam
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Figure 6.4: Twist angle of the Princeton beam

The load P3 applied under the angle of 45◦ has been identified as the one that generates
the largest discrepancy in results, the figures below present the beam deformation results
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for this case together with the difference between the MBDyn nodal deformation and
the results given by the shape reconstruction algorithm. As it is shown in Figure 6.5a
and Figure 6.6a, the algorithm results are slightly larger than the nodal displacement for
all of the measuring stations. The discrepancies that are presented in Figure 6.5b and
Figure 6.6b show that the greatest difference in results is given by the station that is close
to the root of the blade, in the case of flapwise displacement it exceeds 10%, however, the
discrepancy given by the station no. 5, that is close to the tip, is much smaller and does
not exceed 3%.
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Figure 6.5: Chordwise deformation of the beam
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Figure 6.6: Flapwise deformation of the beam

Figure 6.7 presents the twist reconstruction of the beam. As shown in Figure 6.7a the
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twist is not linearly distributed along the beam, also the twist given by the algorithm is
smaller than the one taken directly from the node. Figure 6.7b presents the difference
in the results from the algorithm and the MBDyn simulation, the smallest discrepancy is
obtained for the station close to the tip (as in the case of bending) and the error at the
station no. 5 does not exceed 1%.
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Figure 6.7: Twist angle of the beam

6.3. Results of the real-time co-simulation

The real-time co-simulation of the Simulink model with the MBDyn dynamic model of
the Princeton beam has been performed for load P3 applied under the angle of 45◦. The
time duration of the simulation has been set to 10 seconds.

Figure 6.8, Figure 6.9, and Figure 6.10 show the reconstructed deformation of the beam
from the measuring stations 1-5, the displacement of the nodes at the measuring stations,
and end node displacement. As shown, the algorithm applied to the Simulink model cor-
rectly computes the deformation of the beam at the measuring stations, the reconstructed
shape of the beam is nearly coincident with the displacement of the nodes. There is an
difference between both, however, as it was discussed in section 6.2 it is not significant.
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Figure 6.8: Chordwise displacement real-time result, Princeton beam

Figure 6.9: Flapwise displacement real-time result, Princeton beam
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Figure 6.10: Twist angle real-time result, Princeton beam
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7| Application of the algorithm to

the helicopter rotor model

This chapter presents an application of the real-time Simulink model for the shape re-
construction to a multibody model of the Messerschmitt-Bölkow-Blohm BO105. The
algorithm is used to reconstruct the shape of one of the main rotor blades.

7.1. Description of the model

The multibody model of the helicopter is based on the data of the MBB BO105, which is
a very interesting machine. When it was released in 1967 it was one of the most innovative
helicopters. It was the first light twin-engine helicopter in the world. It also features a
revolutionary hingeless design of the rotor system. In this rotor, the lead-lag motion is
allowed through a friction component. Because this system generates a lot of heat, this
solution has been used only in light helicopters, but it was later improved and applied
to larger machines. Thanks to its innovative design, the BO105 is the first aerobatic
helicopter in the world [25]. The helicopter is presented in Figure 7.1.

The multibody model used in this section has been developed for research in the field of
rotorcraft-pilot coupling. It contains the multibody model of the main rotor, tail rotor,
pilot, airframe, and control system. The chord of the blade is set to c = 0.27 m, and
the length of the blade is L = 4.67 m. The radius of the rotor is R = 4.9 m, but the
model accounts also for the radius of the rotor head. The blade is connected to the rotor
head through a flex-beam; in the model, the flex-beam is considered part of the blade,
just with different aerodynamic and structural properties. The rotor angular speed is Ω

= 44.4 rad/s.

The model is based on data from the real helicopter, which makes it over-complicated for
the purpose of the verification of the algorithm in application to a simple rotor model.
Due to that, some simplifications have been applied, as listed below.

1. Twist is removed from the blades.
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Figure 7.1: Messerschmitt-Bölkow-Blohm BO105 [25]

2. Gravity is removed from the model.

3. The helicopter is hovering, approximate thrust is equal to 2.2–2.4 kN.

4. The controls are simplified, and only collective control is applied.

Because till now the algorithm has been verified only using a uniform beam with a simple
cross-section it was necessary to make some assumptions and simplifications also for the
application of the algorithm, they are listed below.

1. The shape functions for the uniform beam are used in the algorithm. Thus, the
shape functions from section 3.1 for bending and torsion are applied. In reality,
the model of the helicopter blade contains a highly non-uniform model of the blade
structure, with a complicated cross-section consisting of the NACA23012 airfoil.

2. The same bending shape functions are used for the chordwise and flapwise bending
directions. This assumption is a significant simplification because as it is shown in
section 3.2, where the numerical shape functions of the blade model were computed,
the shape functions of a blade in chordwise and flapwise directions are different.

3. In the algorithm and the MBDyn model that computes strains, the cross-section
of the blade is assumed to be rectangular, with dimensions t = 0.1c, h = 0.5c.
The rectangle is centered at the elastic axis of the blade, located at 25% of the
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chord from the blade leading edge. The real blade cross-section, together with the
simplified one, is presented in Figure 7.2. The figure also shows the position of
the strain gauges and the optical fibres. This assumption has been made for the
reason that the algorithm has been already verified for a rectangular beam. The
coefficients for re-computation of strains from the evaluation points to the location
of the sensors at the cross-section are proved to be correct. In the airfoil-shaped
beam, the coefficients for the formula Equation (2.32) and Equation (2.33) are not
known and should be determined numerically, which is outside the scope of this
thesis. This assumption affects the results of the strains from the MBDyn model
and, in the algorithm, it influences the position of the sensors and tangent vectors
used for the reconstruction of twist.
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Figure 7.2: The cross-section of the modelled blade with the simplified, rectangular, cross-
section

Taking into account all the simplifications and assumptions described above, the algorithm
is not expected to obtain an exact reconstruction of the blade’s shape. However, it is
expected to obtain results that will be realistic and prove that the algorithm can be used
in a real-time simulation of a sufficiently realistic rotor blade, and after removal of the
assumptions will give much more accurate results.

To check that no other sources of error are present, a multibody model of the beam was
created, with the same cross-section as the simplified blade and the same length as the
helicopter blade. The beam was assumed to be uniform and it was simulated in real-time
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with an applied dynamic load. The results of the nodal displacements at the measuring
stations were compared with the reconstructed displacements, proving in this way that
if the assumptions are valid the algorithm correctly reproduces the bending and twist of
the beam. Based on the results described in section 5.5, the number of mode shapes used
in the reconstruction of the bending and torsion has been decreased to 3. This number of
modes used in the reconstruction provided a sufficiently small error. The validated script
was applied to the Simulink model used in the co-simulation with the BO105 multibody
model.

Five measuring stations are placed along the spanwise direction of the blade. They are
located on the nodes that are between two adjacent beam3 elements. The exact locations
of the measuring stations are shown in Table 7.1. At each station 4 sensors are placed; 2
strain gauges and 2 optical fibres.

Measuring station no. Position along spanwise axis ξ[m]

1 0.93

2 1.91

3 2.50

4 3.49

5 4.27

Table 7.1: Measuring stations along the helicopter blade

7.2. Results of the real-time co-simulation

This section presents the results of the co-simulation between the MBDyn model of the
rotor and the Simulink model of the algorithm for shape reconstruction of the blade.
The algorithm has been applied to one blade; however, it can be easily extended to all
4 blades by adding additional channels to the stream output of the model. The figures
below present the trajectory in time of the displacements reconstructed at the measuring
stations (solid lines), as well as the displacement of the end node and of the nodes located
at the stations (dashed lines).

Figure 7.3 presents the chordwise displacement results of the real-time simulation. The
periodicity and the shape of the deformation are reconstructed very well; however, the
magnitude of the displacements does not match; for all the stations, the computed dis-
placement is smaller than the one from the nodes. The oscillations are as expected. After
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the initial phase of starting the rotor, the oscillations present at the beginning of the
simulation disappear and the plots become steady.

Figure 7.3: Real-time chordwise bending displacement of the blade

Figure 7.4 shows the flapwise displacement results of the real-time simulation. The pe-
riodicity of the oscillations and the shape of the displacements also in this case match.
However, the displacement reconstructed for all the stations is much greater than that of
the nodes. Also in this case, the oscillations present at the beginning disappear when the
rotor reaches a steady condition.

Figure 7.4: Real-time flapwise bending displacement of the blade
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Figure 7.5 presents the reconstruction of the twist angle. In this case, the oscillations and
the trajectory are also reconstructed with very good quality; however, the magnitudes
do not match. The reconstructed twist is much greater than the twist from the nodes.
This makes perfect sense because the sensors used for the reconstruction of the flapwise
bending are the strain gauges, which are also used for the reconstruction of the twist. In
both cases, the magnitudes of the reconstructed deformations are too large.

Figure 7.5: Real-time twist angle of the blade

The results show that the shape of the beam is reconstructed realistically but it is affected
by a significant error, that is caused by the assumptions and simplifications described in
detail in section 7.1. Especially important seems to be the simplification of the cross-
section shape that affects the computations of the strains at the sensors, as well as the
assumed shape functions. To mitigate those issues some coefficients have been introduced
to the MBDyn model. The coefficients scale the strains computed by the software which
are later sent to the Simulink model. The measurements of the optical fibers have been
multiplied by a coefficient 1.3, while the measurements from the strain gauges have been
multiplied by 0.48. The coefficients have been obtained by the trial and error method, and
are not a solution to the problem. To get the best quality of the results, real coefficients
for the re-computation of strains should be used together with proper shape functions.

Figure 7.6 presents the results of the chordwise deformation reconstruction with strain
multiplied by the correction coefficient. The oscillations and shape of the trajectory are
still correctly reconstructed from the strain measurements. Moreover, the magnitude of
the displacements computed at the stations and nodal displacements match much better,
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they are nearly identical for all the stations.

Figure 7.6: The real-time chordwise bending displacement of the blade with the correction
coefficient

Figure 7.7 shows the results of the flapwise displacement reconstruction. The shape of
the oscillations and periodicity are correctly reproduced. However, the magnitude of
the reconstructed displacement and nodal deformation match only for the 5th measuring
station. In the case of the other stations the deformations from the algorithm is larger
than the one taken directly from the node.
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Figure 7.7: The real-time flapwise bending displacement of the blade with the correction
coefficient

Figure 7.8 shows the reconstructed twist, the plot is split into subplots to make it more
readable. The shape and the oscillations still match between the results from the algorithm
and the nodal deformation. However, the magnitude of the reconstructed twist is lower
than the twist taken directly from the simulation. This conclusion applies to all the
stations.
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Figure 7.8: The real-time twist angle of the blade with the correction coefficient

Application of the correction coefficients to the strains taken from MBDyn has improved
the matching between the reconstructed results and the nodal deformation taken from
the MBDyn simulation. However, this solution is not sufficient especially in the case of
the flapwise bending and twist computations. This is caused by the fact, that there are
many assumptions and simplifications that result in the error, also the relation between
the strains at the evaluation point and the surface of the blade is not straightforward. It
involves three coefficients that multiply the strains and curvatures of the beam, all of the
coefficients should be determined to obtain the best quality of the results.
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8| Conclusions and future

developments

The main conclusion of the thesis is that the methodology proposed for the development
of the real-time algorithm for shape reconstruction of a beam-like structure has been
proved to be valid. Moreover, also the procedure for the computations of the numerical
shape functions based on the results of the finite element method modal analysis proved
its correctness.

The algorithm has been successfully validated using the beam with the circular-cross
section. It has generated results that were similar to the reference results obtained using
either the analytical formulas or simulation of the MBDyn model of the beam. The
developed model has worked well irrespective of the source of strains, it has been tested
using the analytical strains and the strains computed by the MBDyn software.

The algorithm has performed also very well in the case of the validation using the rectan-
gular cross-section beam. It has correctly reproduced the results of the Princeton beam
experiment using strains from the MBDyn simulation.

The real-time Simulink model, which has been used in co-simulation with the MBDyn
beam models, has been also successfully validated. It has generated correct results which
were compared with the nodal displacement from the MBDyn simulations.

Finally, the real-time algorithm has been applied to the multibody model of the BO-105
helicopter rotor. In this case, it has worked under significant simplifications and assump-
tions. Even though the obtained results have not perfectly reproduced the deformation
of the blade, they can be considered as a realistic reconstruction of the blade shape. To
make them more exact it is necessary to precisely determine the coefficients for strains
computation, shape functions of the nonuniform blade, and use airfoil shape as a cross-
section of the beam in the algorithm. The algorithm can be also easily extended to all 4
blades of the helicopter rotor model.

The thesis covered also a deeper analysis of the implemented modal approach and non-
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linear equations for the reconstruction of a shape from strain measurements.

The solution provided by the algorithm has shown that its linearity depends on the source
of strains and load case. The solution of the algorithm is always linear only if torque is
applied to the beam, whereas in the case of application of transverse load the solution is
linear only if analytical strains are used, in the case of MBDyn strains the linearity is lost
at the same point as linearity of the MBDyn solution. The solution from the algorithm is
linear up to the same point as the MBDyn simulation in the case of a complex load case
with transverse forces and torque applied simultaneously.

Another interesting conclusion can be drawn from the relation between the quality of the
results, the number of the mode shapes used in the reconstruction, and the number of
the measuring stations along the blade. The best quality of the results is provided when
the number of modes used in the reconstruction matches the number of the measuring
stations. Moreover, the maximum number of the modes that can be used in the algorithm
is equal to the number of measuring stations, more modes significantly decrease the quality
of the results, making them not reliable. The more measuring stations, the more modes
can be used, and better quality of the results is achieved. It is worth mentioning that
in the considered results, idealised analytical strains have been used, measurement noise
would additionally affect the quality of the shape reconstruction.

Considering the conclusions that are presented above and the results of the numerical
shape functions determination it is possible to state that the reasonable number of modes
used for the shape reconstruction should be around 3 modes. In this way, the high-
frequency modes are neglected, and the quality of the results is sufficient, at the same
time the computational effort is decreased.

In the thesis, it is also shown that if the measurements are affected by noise or any kind
of error with a random origin, additional sensors on a cross-section might be considered
as a method to alleviate the error and improve the quality of the results. This property
has been proven for twist, as well as bending reconstruction.

In general, there were identified three ways to improve the quality of the results. The
number of modes can be increased up to the number of the measuring stations, the number
of measuring stations can be increased, or more sensors per section can be applied.

To sum up, the considered model applied to the real-time algorithm can be successfully
used in the shape reconstruction of a beam-like structure. It is robust and gives a broad
field for adjustments to balance the quality of the results with the computational effort
and complexity of the equipment used for the measurements.
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The work performed on the thesis leaves also a huge field for possible future developments.

At first, there can be developed a multibody model of the blade from the laboratory and
used in a co-simulation with the Simulink real-time model of the algorithm. For this
purpose, it is necessary to develop a stiffness matrix of the blade, which has a highly
non-uniform structure. Exact coefficients should be found to simulate measurements of
the sensors located at the surface of the blade from the axial and shear strains computed
at the evaluation points of the beam element. Moreover, the numerical shape functions
developed in the thesis should be used in the algorithm working in the co-simulation with
the MBDyn model of the blade.

Another future work can be devoted to the improvements of the co-simulation of the
Simulink model with the BO-105 rotor model. The numerical shape functions of the
blade from the rotor should be developed, as well as coefficients for strains simulation at
the location of the sensors. The model can be also easily extended to all 4 blades of the
rotor and used for verification of how the algorithm behaves in the case of blade failure,
thus in the SHM/HUMS applications.

The last possible future development that can be done based on the thesis, is related to
the application of the real-time algorithm to the blade in the laboratory of Politecnico di
Milano, which was the inspiration for this thesis. Many of the work is already covered,
script for the determination of the sensors’ position on the surface of the blade and tangent
vectors is already written. As well as the numerical shape functions are already determined
and presented in this thesis. The tasks that must be done are related to the optimization
of the algorithm and implementation of the Simulink model to the C language so it can
be used on the laboratory equipment, this can be done using the Simulink Coder package.

Summing everything up, the thesis has been successfully concluded, the algorithm has
been developed and verified. The performed study also gives some insight into the be-
haviour of the algorithm using different parameters and settings. Moreover, there are
many ways in which the job presented in this thesis can be used and developed in the
future.
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