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Abstract

Spaced repetition systems (SRS) allow students to learn more in less time by reviewing
cards. A card is a test, usually a question-answer pair, that is reviewed over multiple
intervals of time. In each review, the card is marked as remembered or forgotten. SRS
schedule reviews to minimize forgetting while being parsimonious with the student’s time.
In order to do that effectively, they rely on memory models. Memory models are compu-
tational models that predict the probability that the student will recall each card. The
effectiveness of SRS has been repeatedly proven over the past three decades, but fur-
ther improvement would be beneficial for scaling SRS to a larger number of students.
Improving the accuracy of memory model predictions is certainly an important step in
this direction. In this work, we present a framework for developing adaptive memory
models for SRS and introduce two novel models, DASH[RNN] and R-17. We compare
several adaptive memory models from a predictive perspective on two real-world spaced
repetition datasets, one of which has been collected as part of this work. DASH[RNN]
outperforms the state of the art, R-17 performs comparably well. The latter result hints
at the performance of the proprietary SuperMemo Algorithm SM-17 as an adaptive mem-
ory model, of which R-17 is a neural network approximation.

Keywords: spaced repetition, human learning, adaptive spacing, recurrent neural net-
works





Abstract in lingua italiana

Gli Spaced Repetition System (SRS) permettono agli studenti di imparare di più in meno
tempo rivedendo delle carte. Una carta è un test, di solito una coppia domanda-risposta,
che viene rivista a più intervalli di tempo. Ad ogni revisione la scheda è segnata come
ricordata o dimenticata. Gli SRS programmano le revisioni in modo da minimizzare le
dimenticanze, cercando allo stesso tempo di essere parsimoniosi con il tempo dello stu-
dente. Per fare questo in modo efficace, utilizzano dei memory model. I memory model
sono modelli computazionali che prevedono la probabilità che lo studente si ricordi cias-
cuna carta. L’efficacia degli SRS è stata ripetutamente dimostrata negli ultimi tre decenni,
ma migliorarla ulteriormente sarebbe utile per avvicinare un numero maggiore di studenti.
Migliorare l’accuratezza delle previsioni dei memory model è certamente un passo impor-
tante in questa direzione. In questo lavoro presentiamo una struttura per lo sviluppo di
memory model adattivi per SRS e introduciamo due nuovi modelli, DASH[RNN] e R-
17. Confrontiamo diversi memory model adattivi da un punto di vista predittivo su due
dataset di spaced repetition, uno dei quali è stato ottenuto in vista dell’eleborazione di
questo lavoro. DASH[RNN] ottiene prestazioni migliori dello stato dell’arte. R-17 ottiene
prestazioni comparabili allo stato dell’arte, quest’ultimo risultato suggerisce quali potreb-
bero essere le prestazioni dell’algoritmo proprietario SuperMemo Algorithm SM-17 come
memory model adattivo, di cui R-17 è un’approssimazione sotto forma di rete neurale.

Parole chiave: spaced repetition, human learning, adaptive spacing, recurrent neural
networks
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1

Introduction

Spaced repetition systems allow students to effortlessly review the knowledge they care
about over time. They allow students to learn more in less time. Their effectiveness
has been repeatedly proven over the past three decades and many implementations have
become popular, serving millions of students [46].

In spaced repetition systems, knowledge is encoded in cards: tests that elicit a binary
recall-forgotten response, often in the form of question-answer pairs. Cards are actively
reviewed, students try to answer each test before checking the corresponding answer and
letting the system know whether they recalled it or not. Every day the system suggests
to review some cards according to a schedule. Ideally, students would always remember
the knowledge they care about, but forgetting happens. The tension at the hearth of a
spaced repetition system lies in adjusting the schedule to minimize forgetting, while being
parsimonious with the student’s time.

To solve that tension, it is fundamental to estimate how likely the student is to remember
or forget each card. This role is played by memory models. As formalized in this thesis,
memory models are probabilistic binary classifiers that predict the student’s knowledge
state for each card. The focus of this thesis is on developing adaptive memory models that
adjust their predictions for each student and each card by learning from data collected
from spaced repetition systems deployed in the real world, and that therefore can scale
with the systems in a positively reinforcing feedback loop.

The primary contribution of this thesis is twofold: we present a framework for developing
adaptive memory models specifically for spaced repetition systems and introduce two
novel adaptive memory models, DASH[RNN] and R-17. We compare the models to the
state of the art from a predictive perspective. The DASH[RNN] model outperforms the
state of the art, R-17 performs comparably well. The significance of the latter result is in
filling the gap between industry and academia, R-17 is a neural network approximation
of SuperMemo Algorithm SM-17 by the popular spaced repetition system SuperMemo,
for which a description detailed enough to replicate it is not publicly available.

In Chapter 1 we introduce spaced repetition systems, detailing their fundamental compo-
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nents, and discussing important results from psychology on the nature of memory.

In Chapter 2 we formalize adaptive memory models for spaced repetition systems, discuss
their inherent limitations, and review the state of the art.

In Chapter 3 we introduce two novel memory models: DASH[RNN] and R-17. The goal of
the former is to obtain accurate predictions, outperforming the state of the art. The goal
of the latter is to get a hint about the predictive performance of SuperMemo Algorithm
SM-17.

In Chapter 4 we compare the newly introduced memory models to the state of the art
from a predictive perspective. In doing so, we will introduce and justify sensible metrics
for evaluating and comparing adaptive memory models. We employ two different datasets
in the comparison; one of them has been collected as part of this thesis: we provided a
spaced repetition system, along with pre-written cards to students of the 2020/2021 IEIM
course at Politecnico di Milano by Prof. Santambrogio.
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1| Introduction to spaced

repetition systems

The central problem is that of forgetting. As people, we forget what we want to remember.

It is common experience that memories naturally decay, we forget over time. Informally,
if we learn about a topic made up of 10 concepts, the next day we might remember 7 of
those and, after a week, just a couple of the most important ones. Imagine remembering
8-9 of the 10 concepts after a week. The first-order effect is the memorization itself: we
can remember more. But there is also an important second-order effect that should not
be underestimated: knowledge compounds, if we have more concepts readily available to
us, we have a much easier time learning new, related, material. We pay less in terms of
time to learn it and the pool of concepts we can learn expands. This is one way in which
memorization is fundamental to learning.

As humans, we have been tackling the problem of forgetting for millennia. We came up
with many solutions to this problem. A remarkable example is the memory palace tech-
nique described by Cicero in ancient Rome [11]. Only recently, psychology has identified
key insights into the dynamics of memory: testing effect and spacing effect.

The testing effect suggests that actively testing our knowledge has a stronger effect on
memory consolidation compared to restudying the topic of interest [28, 34].

The spacing effect suggests that cramming should be avoided, information is better re-
tained if repeatedly reviewed over spaced intervals of time [6, 7].

Spaced repetition is the practice of reviewing one or more items over time according to
a schedule. In particular, it can be understood as a combination of the testing effect
(reviews are usually tests) and the spacing effect (reviews are spaced over time). In the
present thesis, we only focus on time in a scale of days, weeks, months, and years. In
particular, we focus on long-term memory. The effectiveness of spaced repetition has also
been studied in shorter time spans [6].

Spaced repetition systems (SRS) allow us to practice spaced repetition and are generally
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implemented as software applications. They allow students to aggregate material of in-
terest and review it according to an optimized schedule. It would be exceedingly hard
to keep an index of the large number of concepts and ideas that we want to remember,
managing the reviews by ourselves would be daunting. We rely on an SRS.

The goal of this chapter is to introduce some concepts that we believe are important for
understanding and developing spaced repetition systems.

1.1. Spaced repetition systems

We now describe the components shared by many spaced repetition systems. In particular,
we refer to the web-app employed in the IEIM experiment described in Section 4.4.

The basic unit is the card (we also use the more general term item), which represents a
piece of knowledge. A card is a test, usually very precise and narrow. An instance of a
card is depicted in Figure 1.1. The front of the card represents a prompt for the user and
the back of the card represents the corresponding answer.

(a) The front of a card. (b) The back of a card.

Figure 1.1: A simple card asking a question about the C programming language instruc-
tion printf.



1| Introduction to spaced repetition systems 5

Figure 1.2: A deck is a group of cards, usually about the same topic.

Cards are grouped in decks, Figure 1.2. The cards in the same deck should be about the
same topic. For example, if a university course is divided into three modules, one could
have three decks, one per module. An alternative is to have one deck for each week of the
course. The former strategy is the one employed in Section 4.4.

Figure 1.3: A list of decks in the web-app dashboard of the IEIM experiment described
in Section 4.4.
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When students log into their account, they are presented with a list of decks on a dash-
board, as in Figure 1.3. For each deck, they review a sequence of cards.

The review of each card proceeds as follows. First, the review is presented as a test, usually
a question or fill-in-the-blanks, Figure 1.1a. The student actively recalls the answer, which
is then revealed, Figure 1.1b. The student indicates to the system whether the recall was
successful or not through a binary rating, Figure 1.1b. The test is usually self-rated. The
next card is then presented, if any is available.

On the dashboard, along each deck, two counters are shown: the number of due cards
and the number of new cards. See Figure 1.3. A card is due if the student studied or
reviewed it before and should review it again today. The new cards are those the student
has never seen before; they are presented for the first time today. Every day the student
is asked to review a set of cards, therefore the due and new counts change every day. It
is the responsibility of a reviews scheduler to decide which cards are new and due on any
day.

1.1.1. Review schedulers and memory models

In this section, we first introduce the idea of a review scheduler and then the idea of a
memory model, highlighting the differences between the two.

Students review cards over time, in order to improve the overall retention of the underlying
material. After the material has been imported, the system prompts the student to review
some of the cards. It is the task of a review scheduler to decide which cards the student
should review each and every day. It solves the tension between the introduction of new
material and the review of old material. It decides which cards to study and how often to
maximize both learning and retention. The review scheduler is a core component of any
spaced repetition system.

Many students are deeply concerned with the management of their study time. In the
amount allocated to spaced repetition, they completely trust the system in managing it,
in scheduling the reviews of the material in an optimal way. That is why the review
scheduler is of crucial importance. The goal of the review scheduler is to help the student
learn more in less time [14]. In building a spaced repetition system, we don’t want it
to overwhelm the student with reviews. If you review something every day, you will
remember it, of course, but you want to make space for free time and other material. The
goal of SRS should be to get the problem memorization out of the way for the students.

Note that review schedulers should not only be reliable, but also be flexible. The problem
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of scheduling reviews requires considerations about the UX (User Experience) of the sys-
tem. Here are some example scenarios for which a scheduler might want to accommodate.

• We can’t expect students to study exactly at the scheduled times, as argued in
[41]. We schedule reviews every day, but, for example, the student might access the
system only once a week. Students might also take breaks from studying with the
systems, for instance on vacation.

• Student might want to limit the amount of time they spend reviewing the cards on
any given day.

• We don’t want to overwhelm the student. It is common experience and complain of
existing SRS like Anki (https://apps.ankiweb.net/) to come back to the system
after a few weeks of inactivity to find a lot of due cards, all the cards that were due
in that period. This might discourage students and, in the worst case, they could
leave the system. Solutions include balancing the load of reviews, avoiding huge
spikes in the number of reviews [41].

• We want to help the student be consistent in reviewing the material, and we might
want to embed habit formation best practices in the scheduler. Assuming that we
have some estimate of the difficulty for each card, we might also take that into
account.

• If a student uses the SRS to study for an exam, we might have the option to prioritize
cards about the exam material.

There are different possible review schedulers with varying degrees of effectiveness for
different purposes. Fixed uniform, expanding and contracting schedules have been studied
traditionally; more recently, the focus has shifted to adaptive schedulers [14]. In several
of those, a fundamental role is played by the memory model. The memory model predicts
how likely the student is to remember a card, given the review history and the elapsed
time since the last review. Memory models are the central topic of this thesis, we discuss
them in more detail in Chapter 2.

Given a memory model, every day the review scheduler can access the review history of
the student and use a memory model to get an estimate of his current knowledge state.
Based on the estimated knowledge state, the scheduler can decide which cards should be
due or new. To do that, we can either resort to heuristics, for instance [9, 46], or we
can design an optimization problem over all possible future review histories with some
predefined target. A common target is to achieve the largest possible retention across
all cards in a finite and fixed amount of time [19]. [31] optimizes the rate of study and
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of introduction of new material. [32, 37, 40, 52] apply Deep Reinforcement Learning
to the problem. [39, 41] resort to the theory of stochastic optimal control of SDEs with
jumps. The optimization problem is often based on predictions from a memory model, the
accuracy of the latter is of fundamental importance. The degree to which the estimated
schedules can be improved is constrained by the performance of the memory model.

Finally, we would like to spend a few more words on the distinction between review
scheduler and memory model. A review scheduler employing a memory model queries the
latter, asking for present or future probability of recalling each of the student’s cards. This
information is then used to schedule reviews. The memory model allows the scheduler, for
example, to prioritize cards that are more likely to be forgotten. In thinking and designing
spaced repetition systems, the two are often reasoned about as one and the same. We
want to show a couple of examples where distinguishing between them can be very useful.
Imagine the following scenario, a student studies along a university course with spaced
repetition cards. A deck of cards is available for each week of the course, just as in our
IEIM experiment in Section 4.4. The exam is coming up; it would be nice for the student
to assess the state of his knowledge of the course. We can help by showing how likely the
student is to remember any card about the course. We could even aggregate the data at
the level of decks or even output a summary for the entire course. To compute these data,
all we need is a memory model. The scheduler does not play any role in this task. What
we have just shown is a plausible real-world situation in which a memory model is useful
independently of the review scheduler. Likewise, we now show a similar situation where
the opposite is true: the scheduler is useful independently of the memory model. Thanks
to the aforementioned feature, the student realizes that his knowledge of the material
from the second week of the course is weak. He would like to quickly go over the material
to increase his confidence of passing the test. Many popular spaced repetition systems,
including SuperMemo (https://www.supermemo.com/) and Anki, support a cramming
feature: they allow students to review immediately all the cards in one or more decks,
independently of when they are scheduled. Going back to our topic, the implementation
of the cramming feature by the review scheduler does not need a memory model (although
it might be employed to sort the cards).

1.2. Some results from the study of memory

In this section, after an introduction to the importance of memorization as enabled by a
spaced repetition system, we turn our attention to some results of the psychological liter-
ature of the past two centuries. Results that are foundational for, and in some cases have
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developed along spaced repetition systems. In Section 1.2.1 we introduce a description of
memory strength based on two components: retrievability and stability. In Section 1.2.2
we introduce the notion of forgetting curve.

As people, when we think of memorization, we might imagine repeating poetry or geogra-
phy labels ad nauseam in order to recite them back when requested, without a meaningful
personal connection to the material. This is commonly referred as rote memorization. It
is an expensive and time-consuming task.

The reputation of memorization seems to be declining. Awareness of its role, power, and
goals seems to be obscured by the rote chanting of names and labels. Memory palaces are
being filled with digits of π. The acceleration of access to information might be a reason for
this cultural image of memorization: it might seem pointless to memorize information that
can be easily found online, but the purpose of memorization is not just to quickly access
information, it plays a fundamental role in learning and understanding. A firmer hold on
our attention and the process of forgetting leads to more robust internal representations,
to more efficient, wise, and enduring learning. Enhanced access to our internal library of
ideas, notions, vocabulary, and experiences leads to more ideas, connections, and insight,
to finer sensibility and wit. Cicero described the memory palace technique in his De
Oratore, where it is described as a useful tool for orators. At the same time, they need
to learn and access vast amounts of knowledge and be able to recite the arguments and
counterarguments they developed [11].

The current thesis is motivated by a view of memory as underlying any form of learn-
ing. Not only targeted to theory but also to practice, not only for explicit and ordered
knowledge but also for tacit and embodied knowledge. Memory is much more than rote
memorization.

A quick note on the distinction between spaced repetition and memory palaces or other
memory techniques. The latter are techniques for representing knowledge. These repre-
sentations follow the dynamics of memory as any other kind of knowledge. Therefore,
a memory palace could be used to encode information that can be reviewed according
to a spaced repetition schedule to greatly increase the chance of recall of the underlying
knowledge. The trade-off is the risk of learning useless representations, a mathematical
formula in a memory palace is remembered by its looks and by how it is written. We
might miss out on improving our understanding of the formula over time, which is more
likely to happen if we write several cards asking, for instance, about the significance and
importance of the formula, it’s components, the reason the components are put together
in a particular way or how it relates with other formulas and concepts.
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1.2.1. The two components of long term memory

As people, memory allows us to carry information in the future. Human memory is a
complex phenomenon, with implications and interrelations with other cognitive tasks,
such as creativity [15]. It is fundamental and ubiquitous for our functioning.

Human memory storage capacity is pretty much unlimited, what is limited is our ability
to access the stored information [3]. We perceive lost access as forgetting. Forgetting is
closely related to adaptation to the environment. We forget so that we are able to quickly
access what the environment requires from us, what is salient, without having to search
a vast library of information. In addition, forgetting serves generalization, the reason we
forget might be that it is beneficial to make better decisions [33].

Both Wozniak et al. [49–51] and Bjork [3] describe two different components of memory
strength; in particular, they both argue against single measures of memory strength.
Wozniak et al. [50] write:

We may say that "after a review, memory is strong". On the other hand, after
years of keeping a piece of information in memory, we say that "memory of the
fact is strong" even though, at times, we may hesitate while trying to recall
the fact. In the two said cases, we speak of two different phenomena that are
both labeled as memory strength. Disentangling the two is vital if we are to
avoid contradictory findings in memory research.

The first phenomenon is captured by retrievability : how easily one can access the item in
memory at a certain point in time.
The second phenomenon is captured by stability : how long a memory trace can last in
memory.

We have followed the nomenclature and descriptions of Wozniak et al. [49–51]. The
respective concepts in Bjork [3] are retrieval strength and storage strength, there are
nuanced differences between the definitions, some of which we review at the end of the
section.

Ideally, for an item we care to memorize, we would like both retrievability and stability
to be large: we want the item to be easily accessible for a long time. How can we achieve
this goal? A possible answer is spaced repetition systems, and we describe the reason in
the following paragraphs.

Both theories agree on the effect of retrieval or re-study of the item. Retrievability is
brought back to a large level, but stability is also increased. What this means is that
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after we review an item we have a large change of being able to recall it right away, but
that is not the only benefit, the item is accessible for longer. An explanation for this
phenomenon is that since we have found the item in the environment again, there is a
greater chance that it is a feature of the environment, that it is important. Therefore, we
adapt and remember the item for a longer time.

The testing effect and the spacing effect can be expressed in terms of retrievability and
stability. Retrieval has a larger effect on stability for active retrieval compared to restudy
(testing effect), this is linked to the idea of desirable difficulties [2]. If retrievability is high,
stability is less affected by repetition (spacing effect). Both effects can be understood as
helping us better adapt to the environment.

However large the stability, if an item is not reviewed periodically, access to it will be lost.
We will forget. Spaced repetition is a tool that leverages the spacing and testing effect
that we can use to review and memorize the items we, as people, specially care about,
in as little time as possible. We are able to somehow control stability to make the item
accessible as long as we can; in particular, we can review the item according to a certain
schedule. In an illustrative way, we wait some time as to let retrievability drop, we then
review the item in order to gain in stability and reset retrievability to a large level. Then
we can wait a longer amount of time before retrievability drops to the previous level,
thanks to the increased stability. We can repeat this process as long as we need. We need
a decrease in retrievability because of the spacing effect. This is the basic mechanism that
underlies spaced repetition. Quoting Michael Nielsen in [25] on the popular Anki spaced
repetition system: "Anki makes memory a choice". If we anticipate that we might forget
something we care about, we can decide to increase the likelihood of remembering it by
employing spaced repetition.

Another important variable to consider to describe the dynamics of forgetting is item
complexity, it is important when we compare different items. An item can be simple
(e.g. first three digits of π) or composed of many interlinked but not reducible items (e.g.
Maxwell equations). It can be well connected or not. An idea that repeatedly comes up
to surprise us in terms of explaining other unrelated ideas is well connected, a formula
memorized for a university exam and then forgotten is not well connected. Emotional
connection to the item likely also plays a role. Other factors could also be taken into
account. The complexity of a particular item could also change over time for a student,
for instance, a composed item might be understood in a novel way. Making it much easier
to remember. In addition, different people have different predispositions to memory. One
might have a harder time remembering a symphony compared to a painting, or vice versa.
Age might also be taken into account
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Memory behaves differently for items of different complexity. Whether the difference is in
kind or just in degree, whether some items have completely different dynamics compared
to simpler ones, is a question that, to our knowledge, has not been answered. Solving
the problem is not straightforward. The literature on spaced repetition has often focused
on simple items, such as vocabulary in language learning. It is not clear whether the
above-stated results hold in the same way for items of different complexity. Moreover,
given the subjective nature of item complexity, it is not obvious how to estimate it from
data coming, for instance, from a spaced repetition system. It certainly is an interesting
possible avenue for future studies.

Finally, we want to consider the ways in which the theories of Wozniak et al. [49–51]
and Bjork [3] disagree, which are nevertheless outnumbered by those in which they agree.
Retrievability and retrieval strength are defined in the same way. Storage strength is
defined more broadly than stability as the degree to which an item has been learned.
The view presented by Bjork [3] is broader and more nuanced, especially in terms of
the retrievability dynamics. The latter not only decreases with time (with disuse) as
in Wozniak [51], but also takes into account competition between different items. In
particular, retrieval capacity is limited, unlike storage capacity; therefore, access to some
items might be reduced by retrieval of others. An interesting direction for future work
could certainly be to develop a memory model that accounts for not only time, but also
other effects on retrievability, such as interference between items. It is worth noting
that the two theories apparently arose independently from two different contexts. [3]
was developed in academia while [49–51] mutually developed along with the SuperMemo
spaced repetition system.

1.2.2. The forgetting curve

We now turn our attention to the forgetting curve, it describes how the probability of
remembering an item changes in time, assuming the item is not retrieved or restudied. The
definition has been chosen among many possible alternatives; we have partially followed
Wozniak et al. [50]. We resume the discussion about forgetting curve varieties at the end
of the section. Many models we study in Chapter 2,3 are based on this concept. Some
memory models include forgetting curves; in particular, they output a forgetting curve
for each different combination of card, student, and review history.

Given an item studied at the initial time t = 0, define retrievability p(t) as the probability
of recalling the item at time t > 0. We usually expect p(t) to be regular, monotonically
decreasing (i.e. the item is subject to forgetting) and starting at p(0) = 1, we cannot state
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those as strict assumptions because in Chapter 2 we will see instances of forgetting curves
that do not satisfy them. Define stability s such that s = min{t ≥ 0 : p(t) ≤ 0.9}, it is
the interval of time such that retrievability drops to 90% [50]. We consider the day as the
unit of time. Note that the two definitions given here are consistent with the descriptions
of retrievability and stability of Section 1.2.1.

The function t 7→ p(t), t > 0 is the forgetting curve. The name can be confusing, as
1− p(t) is the probability of having forgotten the item at time t > 0.

We can say a little more about the forgetting curve, in particular about its shape. Wozniak
et al. [50] assume a negatively exponential shape for the forgetting curve. We depart from
their report to compare their exponential forgetting curve with the Wickelgren power law
[45], both of which are shown in Figure 1.4.

Figure 1.4: A plot of the exponential forgetting curve (in blue) and the Wickelgren power
law forgetting curve (in red), both with stability s = 7 days. Notice that after 60 days,
the Wickelgren power law predicts a value of retrievability that is approximately twice
the one predicted by the exponential forgetting curve.

The exponential forgetting curve is at the foundation of the review schedulers developed
at SuperMemo [46], of which the memory models are described in Section 2.3.4.

pexp(t; s) = e−k
t
s (1.1)

the constant k = − ln(0.9), given our definition of stability s.
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Here is the Wickelgren power law [45].

ppl(t;λ, β, ψ) = λ(1 + βt)−ψ (1.2)

where λ is the initial retrievability, β is a time scaling factor and ψ is the rate of forgetting.
For simplicity, we assume that the retrievability starts at 100%, therefore λ = 1. We also
assume β = 1, time is expressed in days. We also express ψ as a function of stability s.
Finally:

ppl(t; s) = (1 + t)−ψ(s), ψ(s) = − ln(0.9)

ln(1 + s)
> 0 (1.3)

As in Equation 1.1 the only variable other than time that appears in the expression is
stability s. The main difference between the two equations is that in Equation 1.1 the
rate of decrease is constant, whereas in Equation 1.3 it is not, it slows down with time.
Therefore in the exponential forgetting curve we are assuming a constant forgetting rate.
In the Wickelgren power law model the forgetting decreases over time. This might seem
like a small difference, but it has far-reaching implications when building theories for the
inner workings of memories; for example, see [44].

Note that the Wickelgren power law is presented in a slightly different context in [45].
A fixed homogeneous collection of items is studied at an initial time, and we record how
many of them are remembered at different time lags. Equivalently we might divide the
count of remembered items by the count of items initially studied, we refer to this quantity
as retention rate. The retention rate is an empirical attempt to approximate retrievability,
which is not observed directly.

Empirically, it appears that power laws better fit the data; see [44, 45]. Wozniak in
[46] argues that power laws forgetting curves arise from the aggregation of multiple ex-
ponentially decaying memory traces. Wixted in [44] reviews this hypothesis along with
several others favoring the exponential forgetting curve as the best model to capture the
forgetting dynamics. He concludes that the Wickelgren power law is a better model of for-
getting both from a predictive and explanatory perspective. Coarsely, for what concerns
Wozniak’s hypothesis, he reports that you need a large variability in forgetting rate of
the different memory traces to produce a credible power law in the aggregate, a condition
that is rarely satisfied.

The definition of the forgetting curve presented above has been chosen among many
possible alternatives; the idea has a long history. It actually predates the concepts of



1| Introduction to spaced repetition systems 15

retrievability and stability. To be as general as possible, we can say that the forgetting
curve relates forgetting to time. The phenomenon has been studied many times in the
literature, and forgetting has been measured in different ways, leading to different inter-
pretations of the curve. A notable example is the Ebbinghaus forgetting curve, which
sparked the empirical study of memory. We now attempt to highlight the differences be-
tween the Ebbinghaus forgetting curve and the definition of forgetting curve given above;
the latter is closer to the needs of many recently developed memory models (see Chapter
2).

In 1885 Hermann Ebbinghaus reported [13] a years-long series of experiments over which
he memorized lists of nonsense syllables to study the dynamics of memory. The setting
in which the Ebbinghaus forgetting curve arises is different from the typical setting of a
spaced repetition system. He learns a series of nonsense syllables, recording the duration
of the initial study. Then he let some time pass. Finally, he restudies the same list and
notes the saving in terms of duration to get back to proficiency. For example, assume that
initially it takes 10 seconds to study a specific list of syllables until it can be recollected
in its entirety at least once. After 24 hours, re-studying up to the same proficiency level
takes 8 seconds, the saving is 2 seconds or 20%. The experiment can be opportunely
repeated at different time lags, and finally the re-study duration can be plotted for each
time lag. He fits a power law relationship between the restudy duration and the log of the
time lag. This is typically called Ebbinghaus forgetting curve. By the time Ebbinghaus
restudied the series of syllables he had mostly lost retrieval access to them, they were
unfamiliar. Therefore, the focus of the experiment was on the effects of relearning items
to which we have lost access. The purpose of spaced repetition is to maintain access to
memorized knowledge, a related but different problem.
In another noteworthy experiment, he noticed the spacing effect in the memorization of
nonsense syllables. Loosely, he observes that no amount of initial overlearning saves as
much restudying time as a repetition after 24 hours. Ebbinghaus performed the exper-
iments only on himself; therefore, as he also warns, the quantitative conclusions have
only individual significance despite his meticulous attention. Subsequently, part of the
experiments have been replicated, for example, in [24].

Retrievability concerns cued recall, conscious access to information, whereas the Ebbing-
haus forgetting curve concerns time savings in relearning. Although the different meanings
of the forgetting curve should not be confused, they all try to capture the dynamics of
the same phenomenon: forgetting.
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the art

In this chapter, we first introduce a framework for defining a developing memory models
in Section 2.1, then we discuss some of their limitations in Section 2.2 and finally we
explore the state of the art in Section 2.3.

2.1. Memory models

In the context of spaced repetition systems, a memory model predicts how likely the
student is to remember a card given the review history and the time elapsed since the
last review.

Let Y be a binary random variable representing a review rating, Y = 1 in the case of recall,
and Y = 0 in the case of forgetting. We want to predict Y given additional information:

• card and student Let C be a set of cards and S a set of students. Let C ∈ C and
S ∈ S be categorical random variables that represent, respectively, the card under
review and the student reviewing it.

• review history We define as review history of length K an ordered sequence of
reviews R(1), . . . , R(K) where R(i) = (∆(i), Y (i)) ∈ R+ × {0, 1} for all i. Here ∆(i)

is a random variable representing the time elapsed between reviews i and i− 1 for
i > 1, or the time since the card was introduced to the student for i = 1 (time is
expressed in days). Y (i) is a binary random variable for the review rating.

• time elapsed Let ∆ ∈ R+ be a random variable expressing in days the time elapsed
since the last review of the history, or, if the history is empty, since the student was
introduced the card. We observe ∆ before making a prediction for the target rating
Y , therefore we include it as a predictor.

For convenience, we denote the random input vector by X = (C, S, (R(1), . . . , R(K)),∆).
We seek a memory model, a function pθ(X) with parameters θ such that
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P(Y = 1|X = x) = pθ(x) (2.1)

We call retrievability the output probability of recall pθ(x). We can highlight the de-
pendence of retrievability on the elapsed time δ > 0. For fixed card c, student s and
review history (r(1), . . . , r(k)), pθ(δ) = pθ(c, s, (r

(1), . . . , r(k)), δ) is a forgetting curve. The
now presented framework is similar to the one in Section 1.2.2, the main addition is that
the forgetting curve now accounts for the review history.

Our goal is to find an approximation p̂ = pθ̂ given a previously collected review dataset
D = {(r(1)cs , . . . , r(kcs)cs )}c∈C,s∈S with r

(i)
cs = (δ

(i)
cs , y

(i)
cs ). Each card-student pair identifies an

independent review history of length kcs: all reviews on the same card c by the student s.
Given a loss function ℓ : {0, 1} × {0, 1} → R+ to penalize prediction errors, we compute
θ̂ as

θ̂ = argmin
θ

∑
c,s

kcs∑
k=1

ℓ
(
y(k)cs , pθ

(
c, s, (r(1)cs , . . . , r

(k−1)
cs

)
, δ(k)cs )

)
(2.2)

The outer sum is over review histories. The inner sum is over review steps of a single
review history; for each step, we consider only information available up to that point in
time. In the inner sum, for k = 1 the review history is empty.

A memory model is a probabilistic binary classifier. We are not only interested in clas-
sifying the next review as success or failure, we are also concerned about predicting the
probability of the outcome. It is a regression task. We are performing a retrievability
regression. What we care about is modeling how retrievability changes over time, so that
we can pick a specific date at which the student should review a certain card. The task
would be much more difficult with just a set of binary predictions. As we will see in
Section 4.1 this framing leads to sensible metrics for comparing memory models.

We close the section with a few final remarks. In this thesis, we consider point predictions
about retrievability; future work could explore prediction intervals and their implications
for review schedulers. Moreover, future work might account for card interference. We
have implicitly assumed local independence: the cards are not related to each other. The
dependency between review histories of two or more cards covering the same concepts
might be explored since reviewing one of them might influence the retrievability of the
others. In the literature, memory models are sometimes referred to as student models. We
prefer the former nomenclature because it is more specific. Student models are employed,
for instance, in knowledge tracing, where binary events for correctness of an answer are
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also studied, but memory and forgetting are not necessarily taken into account. For
example, see [30].

2.2. Limitations in modeling student’s knowledge

Memory models for spaced repetition systems suffer from three main limitations due to
the nature of the data available to us as developers of a spaced repetition system: the
data we collect is sparse, fragile, and biased.

The data is sparse. The memory model tries to capture the internal state of memory of
the students. The state of memory is dynamic and very complex, each memory depends
on other memories, new ideas and understanding are constantly generated, destroyed, and
recreated in new forms. With the currently available tools, we cannot directly observe this
state. What we can do is approximate a useful representation, limited to material covered
by the cards that the student reviews. For each card and for each student, we observe
a time-stamped binary sequence of review ratings: after reviewing a card, the student
indicates whether the recall was successful or not. We know when a card was introduced
to the student and whether he recalled it or not at certain points in time. This is a faint
but useful signal into the complex and intertwined state of our memory. It is all we have.
Mastery of a subject is dynamic, it is affected by learning and forgetting. We ask students
questions and collect binary responses. We cannot expect to fully reconstruct the state
of mastery from this little information.

The data is fragile. The measurement itself messes with the memory state [3]. As a simple
illustrative example, if the student successfully reviews a card, it is very likely that he
also recalls it a few seconds later, independently of the initial uncertainty. Each review
is fundamental to the memory model to predict future retrievability. If a single review
data point went missing, we could be underestimating the retrievability for that item (or
overestimating, depending on the time and rating of the review). This is what always
happens though. Students do not live inside a crystal ball only interacting with the spaced
repetition system. They live in a rich environment. Our hope is that the material they
review plays an important role in their lives and that they interact with it outside the
context of spaced repetition. Each and every time they do that it is an interaction we
cannot capture with our system, but that possibly plays an important role in shaping
the student’s internal memory state. The real-world performance of a memory model is
severely constrained by the information we can extract from the environment, which is
limited just to the student’s interactions with the spaced repetition system.

The data is biased. Another important limitation is that spaced repetition systems suffer
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from a chicken or the egg problem: the memory model is fitted to the data, but the data
collected is biased by the memory model. We want to fit an accurate memory model to
the data collected from the system and then use this model to schedule reviews. The
schedule will bias the future collected data, possibly impairing further optimization of the
memory model. Some of the implications have been explored in [27].

However, not everything is lost; we will see how we can make good use of the available
information. As we will see in Chapter 4 the memory models presented in the following and
in Chapter 3 are able to make retrievability predictions that are better than chance and
are often accurate. Not only that, many of those memory models have fairly interpretable
dynamics that might allow us to glimpse the inner workings of memory. We do not
only seek accurate prediction, a good memory model should also be a source of good
explanations.

2.3. State of the art

This section provides a detailed report on the state of the art in the development of
memory models. Since we are exploring memory models with the goal of employing them
in a spaced repetition system, we only focus on adaptive memory models; we leave out
of the discussion many important memory models that were not designed to account for
interactions between students and cards.

2.3.1. 1PL-IRT

Our dataset contains reviews for different students and different cards. We can think of
reviews as tests and employ the Item Response Theory (IRT) statistical framework to
predict test responses for student-card pairs. The role of items in IRT is played by cards.

The drawback of this approach is that we are discarding time information, that is we are
not accounting for forgetting. If the student does not review any card, the retrievability
predicted from the model described below does not change over time.

We employ the simplest IRT model: 1PL-IRT. We cast the model in the Generalized
Linear Mixed Models (GLMM) framework, following [4]. We have a linear component:

ηθ(s, c) = as − dc (2.3)

where θ = {as}s∈S ∪ {dc}c∈C. as ∼ N (0, σ2
s) are random effect parameters that represent

student ability and dc are fixed effect parameters for card difficulty. Student ability
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does not necessarily capture the student’s skills in the domain being studied. Student
ability might capture other factors such as attitude towards the domain or towards spaced
repetition in general.

The linear component ηθ and pθ are related through the logit link function:

ηθ = ln

(
pθ

1− pθ

)
(2.4)

Finally, with σ(x) = (1 + exp(−x))−1 indicating the logistic function, we have:

pθ(c, s) = σ(as − dc) (2.5)

By considering the student ability as a random effect, we assume that the students have
been randomly and independently sampled from a larger population of students with
probability distribution empirically approximated by our observed sample of students
[43, Section 2.2.2]. In particular, we do not focus our attention on estimating the ability
of every individual student in S. The same cannot be said for the difficulty of the card,
as it is regarded as a fixed effect.

The model assumes local independence: independence between reviews by the same stu-
dent. We note that our data does not satisfy this assumption. In particular, dependencies
are induced by both the hierarchical structure (decks are made of cards) and the repeated
reviews on the same card over time. In the present thesis, we ignore this problem. The
problem can be tackled in future work, for instance, by introducing additional random
effects representing the structure.

We do not consider 2PL-IRT or 3PL-IRT, since [21] found a negligible gain in predictive
performance compared to 1PL-IRT when they are employed to model student memory.

2.3.2. DASH and variants

Lindsey et al. [21, 23] set out to build a model for personalized review that tracks the
state of knowledge of each student and adapts to them. They did that by integrating
psychological theory with big-data methods in a spirit that is very precious for the present
thesis.

They present the DASH (Difficulty, Ability and Study History) model that, as in the
framework of Section 2.1, relates retrievability to three factors: card difficulty, student
ability, and review history for a card-student pair. The elapsed times between reviews
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in the card history enter the model through several time windows W . We pick W =

{1, 7, 30,∞} days; we follow the choice in [21] but drop the hour time window, since we
use a day resolution. The model predicts retrievability as

pθ(c, s, (r
(1), . . . , r(k)), δ) = σ

as − dc +

|W |∑
w=1

θ2w−1 ln(1 + cw) + θ2w ln(1 + nw)

 (2.6)

where as and dc are parameters for, respectively, the ability of the student s ∈ S and
the difficulty of the card c ∈ C, as for the 1PL-IRT model of Section 2.3.1. cw is the
number of times the student s correctly recalled card c in window Ww out of nw attempts.
{θ1, . . . , θ2|W |} are window-specific parameters. The parameters are θ = {as}s∈S∪{dc}c∈C∪
{θ1, . . . , θ2|W |}. Using the notation δ(i:j) =

∑j
h=i δ

(h):

cw
(
(r(1), . . . , r(k)), δ

)
=

k∑
i=1

I[0,Ww]

(
δ + δ(i+1:k)

)
y(i)

nw
(
(r(1), . . . , r(k)), δ

)
=

k∑
i=1

I[0,Ww]

(
δ + δ(i+1:k)

)
(2.7)

(2.8)

δ+δ(i+1:k) represents the time that elapsed between now and the i-th review of the history
(assuming δ represents the elapsed time between now and the last review of the history).

The forgetting curve after one or more reviews is a step-function. As time elapses, fewer
and fewer reviews of the history are included in the time windows, retrievability eventually
reaches a constant positive level that depends on as, dc (and eventually window parameters
if a time window of infinite length is included, as happens in [21] and as we replicate for
the comparison of Chapter 4). Examples of DASH forgetting curves are reported in
Figure 2.1.

DASH was originally presented as part of a more general framework:

pθ(c, s, (r
(1), . . . , r(k)), δ) = σ

(
as − dc + hθ

(
(r(1), . . . , r(k)), δ

))
(2.9)

The dependence of retrievability on the review history is isolated by the function hθ.
Notice how 1PL-IRT is an example of this general framework with hθ = 0.
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Figure 2.1: Examples of DASH forgetting curves. We sampled a student and a card
from the first train-test sample of Section 4.3 and simulated three review histories of two
reviews each, the details are reported in the figure’s legend. For each review history, we
fit a DASH memory model p̂θ and plot the predicted retrievability as a function of the
time δ elapsed since the last of the two reviews.

They present two more instances of this framework, inspired by psychological theory:
DASH[MCM] inspired by the Multiscale Context Model (MCM) [29] and DASH[ACT-R]
inspired by the memory module in the ACT-R cognitive architecture.

In DASH[MCM] the counts cw and nw decay over time at a window-specific rate τw (fixed
a priori). As in the choice of W , we fix the decay rates similarly to the original paper, as
τ1:W = {0.2434, 1.9739, 16.0090, 129.8426} [21]. In Equation 2.6 cw and nw are replaced
with

cw
(
(r(1), . . . , r(k)), δ

)
=

k∑
i=1

I[0,Ww]

(
δ + δ(i+1:k)

)
e−(δ+δ

(i+1:k))/τwy(i)

nw
(
(r(1), . . . , r(k)), δ

)
=

k∑
i=1

I[0,Ww]

(
δ + δ(i+1:k)

)
e−(δ+δ

(i+1:k))/τw

(2.10)

(2.11)

In DASH[ACT-R] we have:

hθ
(
(r(1), . . . , r(k)), δ

)
= θ1 ln

(
1 +

k∑
i=1

θ3+y(i)
(
δ + δ(i+1:k)

)−θ2) (2.12)
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Only in DASH[ACT-R] hθ is not linear in θ. Information on how we fit the models for the
experiment in Chapter 4 is provided in Section 4.2. In Figures 2.2, 2.4, we show examples
of DASH[MCM] and DASH[ACT-R] forgetting curves.

Figure 2.2: Examples of DASH[MCM] forgetting curves. We proceed as in Figure 2.1,
with the same student and card.

Figure 2.3: Examples of DASH[ACT-R] forgetting curves. We proceed as in Figure 2.1,
with the same student and card.

Choffin et al. [8] introduce a new model: DAS3H. DAS3H extends DASH by introducing
multiple-skills tagging. Each card is tagged with one or more skills required to answer
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correctly. The memory dynamics are then allowed to differ between skills. In our expe-
rience skills data is hard to come by in spaced repetition systems, in particular, in the
datasets considered in Chapter 4 we do not have that kind of data and so we exclude
DAS3H from the comparison.

2.3.3. Half-Life Regression

Half-life regression (HLR) is a memory model designed for learning language vocabulary
with spaced repetition [36], we adapt it to a more general setting. In the original model
each card regards a word. Words are tagged by lexeme, these lexeme tags are taken into
account when predicting the retrievability of words.

HLR assumes an exponential forgetting curve of the form:

pθ(δ) = 2
− δ

hθ (2.13)

where hθ is called half-life. Compared to Equation 1.1 the base of the exponential changes
and hθ is stability up to a constant factor, so the discussion in Section 1.2.2 applies.

The half-life depends on the scalar product of the weights θ and a feature vector. Here,
we report the shape of the feature vector employed in the comparison of Chapter 4 which
tries to be as faithful as possible to the original paper, but is inevitably constrained by
the lack of word-specific information:

hθ(c, s, (r
(1), . . . , r(k))) = 2θ1

√
1+

∑k
i=1 yi+θ2

√
1+

∑k
i=1(1−yi)+θc+θs (2.14)

In the original model the predictors are enhanced with additional indicator variables, one
for each lexeme tag considered. The set of weights θ is empirically fit to review data by
minimizing the following loss function.

ℓ(y, pθ(δ)) = (y − pθ(δ))
2 + λ∥θ∥22 (2.15)

where λ is a hyperparameter. In the original paper the loss contains an additional term
for the squared deviation of hθ to the observed half-life −t

log2 pθ
, the computation of the

latter is possible because they consider review ratings in the interval [0, 1], instead of
binary review ratings.
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Figure 2.4: Examples of HLR forgetting curves. We proceed as in Figure 2.1, with the
same student and card.

They fit the model on a large dataset (containing more than 12 million observations)
consisting of two weeks of log data from the popular Duolingo language learning app.
They employ gradient descend.

In this thesis, we are not assuming any specific learning domain; HLR can still be applied
by dropping the word features. The fairness of the comparison of Chapter 4 might be
compromised; we argue that it is not the case since other models could similarly be
enhanced with lexeme tags if available.

2.3.4. SuperMemo Algorithm SM-17 and SM-18

Piotr Wozniak, along with the SuperMemo World company, has been developing the Su-
perMemo software (https://www.supermemo.com) for three decades. SuperMemo is the
first spaced repetition system and one that still serves millions of students. SuperMemo
and the literature on review schedulers developed in parallel, as far as we know the recent
SuperMemo algorithms have not been considered in the literature. One of the goals of
this thesis is to fill this gap; the SuperMemo algorithms are potential sources of invaluable
insights for the development of memory models and on the inner workings of memory. An
account of the history of the SuperMemo algorithms can be found in [46].

SuperMemo Algorithm SM-18 (SM-18) [48] is the review scheduler used in SuperMemo
since 2019. In this section, we focus mainly on its predecessor SuperMemo Algorithm



2| Memory models and state of the art 27

SM-17 (SM-17) [47], which has been a great improvement over previous versions of the
algorithm, and is of significant importance for the developments of Chapter 3. The im-
provement of SM-18 over SM-17 is not as large; we briefly discuss the differences between
the two at the end of the section. Previous versions of the SuperMemo Algorithm were
largely heuristic in nature, the significance of SM-17 is that, in contrast, the algorithm is
based on psychology results and can now learn and adapt to any review history, much in
the spirit of [23].

SM-17 is described on the web page [47], but many important details are missing that
prevent a faithful reproduction of the algorithm. That is why we do not include SM-17 in
the comparison of Chapter 4. SM-17 is a review scheduler, but we can isolate the memory
model component. Here we try to summarize some of its aspects that are important for
the development of Chapter 3.

SM-17 is based on the two components description of memory of Section 1.2.1, besides
retrievability SM-17 explicitly models stability and its dynamics as the student reviews a
card. Moreover, card difficulty is taken into account. The core idea is to model memory
with forgetting curves, which we described in Section 1.2.2. They employ an exponential
forgetting curve (Equation 1.1) to describe the decline in retrievability over time at a rate
determined by stability.

We need a few definitions. For the remainder of the section we focus on a single review
history, therefore fix a card c ∈ C and a student s ∈ S. Let r(1), . . . , r(K) be the review
history of length K of c by s. Denote by p(i) the retrievability estimate before the i-th
review, p(i)(δ) = pθ(c, s, (r

(1), . . . , r(i−1)), δ) is the retrievability δ days after the i − 1-th
review. Note that the review history can be empty. Below we recursively define s(i), the
stability before the i-th review. It represents the interval of time after which a theoretical
retrievability estimate obtained with the exponential forgetting curve falls below 90%. In
addition to retrievability and stability, a third variable is introduced: difficulty dc ∈ [0, 1]

for the card c ∈ C. It is defined as the maximum possible increase in stability for the card
c linearly mapped to the interval [0, 1]. We omit the computation of card difficulty from
the discussion, since it is not relevant to the developments of Chapter 3. Since earlier we
fixed the card c ∈ C, we dropped the related index, d = dc. Finally, let l(i) =

∑i
j=1(1−y(j))

be the number of lapses up to and including review i, lapse is just another name for an
incorrect review. Notice that before the instant of time in which the student rates the
i-th review δ(i), s(i), and p(i) are known (as well as all previous reviews in the history);
y(i) and l(i) are not known, they will be available only after the student rates the card;
our goal is to compute p(i) before observing y(i), before the student rates the card.
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To model the dynamics of memory, SM-17 uses three functions: stability increase function,
first post-lapse stability function, and recall function. We discuss each of them below:

• The stability increase function SInc(p, s, d) depends on retrievability p, stability s,
and difficulty d, it determines how stability changes after a successful review. If the
review i− 1 is successful (y(i−1) = 1), then s(i) = s(i−1)SInc

(
p(i−1)(δ(i−1)), s(i−1), d

)
.

p(i−1)(δ(i−1)) is the retrievability estimate right before the review i− 1 is rated.

• The first post-lapse stability function PLS(l, p) depends on the number of lapses l
and retrievability p, it determines the stability after a lapse. If the review i − 1 is
unsuccessful (y(i−1) = 0), then s(i) = PLS(l(i−1), p(i−1)(δ(i−1))).

• The recall function Recall(p, s, d) depends on an estimate of retrievability p, sta-
bility s, and difficulty d, and is used to correct a theoretical estimate of retriev-
ability. Given the stability s(i), a theoretical estimate of retrievability is com-
puted based on the exponential forgetting curve formula of Equation 1.1: p(i)fc(δ) =
exp(ln(0.9)δ/s(i)). Retrievability δ days after review i − 1 is finally computed as
p(i)(δ) = Recall(p

(i)
fc(δ), s

(i), d).

The memory model pθ is built iteratively, at each review step we compute stability using
the functions SInc and PLS, then the exponential forgetting curve gives us an estimate
of retrievability that we correct with the function Recall. Information about the shape
of the three functions or about how they are fitted is not provided by SuperMemo. We
remark that the retrievability and stability estimates in SM-17 are more refined compared
to the present description; what we have reported is a summary of the information we
consider important for the developments of Chapter 3, more information is available in
[47].

To model retrievability at any point in time, we miss a final ingredient: the startup
stability s(1), which determines the stability for newly introduced cards, before they are
reviewed by the student. Finally, we can put everything together. Let us start from
the first review step. As a card of difficulty d is introduced to the student, we assign
stability s(1). The student reviews the card at time δ(1). Before observing the rating
y(1) we can compute the retrievability estimate p(1)(δ(1)) = Recall(p

(1)
fc (δ

(1)), s(1), d). We
then observe y(1) and compute the stability s(2) = y(1)s(1)SInc(p

(1)(δ(1)), s(1), d) + (1 −
y(1))PLS(l(1), p(1)(δ(1))). Now, again, thanks to the Recall function we obtain p(2)(δ) and
we can iterate the whole process for any future review.

We left out the discussion on how difficulty is computed; we only remark that the main
difference between SM-18 and SM-17 lies here. The card difficulty is estimated from the
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data; in the older version, it is assumed constant, while in the newer version, it is allowed
to change in the course of learning.
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memory models

In this chapter, we develop two novel memory models. Both models are developed within
the framework of recurrent neural networks (RNNs) [16], the R-17 model is described in
Section 3.1 and the DASH[RNN] model in Section 3.2. We use the notation of Chapter 2.

3.1. R-17

We now introduce R-17. It is a neural network approximation of SuperMemo Algorithm
SM-17, which has been described in Section 2.3.4. We use the notation of the latter
section. Our aim with R-17 is to get a hint about the performance of SM-17 as a memory
model.

Here is the general idea. Since we do not know the shapes of the functions SInc, PLS,
and Recall, we approximate them with neural networks. Together, the neural networks
form a single RNN that is trained end-to-end.

In order to compute the retrievability estimate p(k) = pθ(c, s, (r
(1), . . . , r(k−1)), δ(k)) in the

k-th review step we proceed iteratively as in SM-17. First, we calculate an estimate of
the ease (or equivalent difficulty) of the card c for the student s. Then, for each review
step i = 1 to i = k, iteratively we obtain a stability estimate for the forgetting curve
and incorporate time information to obtain a retrievability estimate. Let us unpack the
modules that make up R-17:

• We compute the ease σe(c, s) ∈ [0, 1] of the card c for student s as in Equation 3.1.
σe(c, s) can be viewed as the output of a single dense layer with a logistic (sigmoid)
activation function. This choice was inspired by the 1PL-IRT model described in
Section 2.3.1. With respect to Section 2.3.4 the ease is to be interpreted as one
minus difficulty dc.

• A hidden state h(i) is updated at each review step i of the review history, we need
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it to compute stability ψ(i) (we will see below how) and to propagate information
between review steps in the RNN. In particular, for each review step i ≥ 2, h(i) is
the output of a neural network H: h(i) = H(ψ(i−1), p(i−1)(δ(i−1)), y(i−1), l(i−1)), where
ψ(i−1) is the previous estimate of stability, p(i−1)(δ(i−1)) is the previous estimate of
retrievability, y(i−1) is the previous rating and l(i−1) the previous number of lapses
(a lapse is a review with rating 0). H is composed of 3 dense layers, the first and
second of 8 units each and ReLU activation function, the third of 5 units with ReLU
activation function, therefore h(i) ∈ R5 for all i. We need to pay special attention to
the first hidden state h(1), we cannot compute it with H since we lack the required
inputs. We set h(1) = H0 ∈ R5 as a vector with trainable components.

• At each review step i ≥ 1, we calculate ψ(i) = Ψ(h(i), σe(c, s)) ∈ R where Ψ is a
dense layer with univariate output and ReLU activation. Notice how, in the review
steps i ≥ 2, a new stability estimate is obtained from the composition of Ψ and H

given estimates and data available before the i-th review is rated. Together, Ψ and
H replace the functions SInc and PLS in SM-17.

• Given stability ψ(i) we can compute pfc(δ;ψ(i)) = (1+δ)−ψ
(i) the theoretical retriev-

ability estimate δ days after review i − 1. Notice that we replaced the exponential
forgetting curve of SM-17 with a Wickelgren power law, the choice is motivated by
the discussion of Section 1.2.2. Moreover, notice that for numerical stability rea-
sons, we changed the interpretation of stability (compare pfc with Equation 1.2) the
result is unchanged given that there exists a bijection between ψ and s in the latter
equation. For each review step i ≥ 1, we plug δ(i) to obtain p(i)fc = pfc(δ

(i);ψ(i)).

• We don’t use p(i)fc directly as a prediction for retrievability, but correct the estimate
with the neural network P which replaces the Recall function of SM-17. We compute
the retrievability prediction before the i-th review step p(i) = P (p

(i)
fc , ψ

(i), σe(c, s)) ∈
R. Where P is a neural network with 3 dense layers, the first and second layers of 8
units each, and the ReLU activation function; the last layer with univariate output
and the logistic (sigmoid) activation function.

The modules are composed in Figure 3.1, which shows the computation of a couple of
review steps for R-17. For what concerns the first review step i = 1, note that p(i) depends
on the information of previous review steps only through h(i), h(1) as defined above resolves
the issue of the empty review history.
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Figure 3.1: The R-17 memory model computing retrievability p(i) =

pθ(c, s, (r
(1), . . . , r(i−1)), δ(i)) for review i ≥ 2. At each review step the inputs are

δ(i), y(i−1) and l(i−1). First we compute a new hidden state h(i) from previous stability
and retrievability estimates ψ(i−1) and p(i−1) along with the inputs y(i−1) and l(i−1). We
update the stability estimate ψ(i) from h(i) and ease σe(c, s). We then use ψ(i) and the
remaining input δ(i) to obtain a first theoretical retrievability estimate p(i)fc through the
Wickelgren power law forgetting curve. Finally we correct the estimate to obtain p(i),
in the correction we also account for stability ψ(i) and ease σe(c, s). The calculation is
reported in detail in Equations 3.1 to 3.10.

In Figure 3.2 we show examples of forgetting curves obtained with R-17 and in Figure 3.3
the approximations of the SM-17 functions SInc, PLS, and Recall. The latter figure also
displays the interpretability of R-17. The neural networks composing it all have a small
number of interpretable inputs, therefore we can inspect the behavior of R-17 by plotting
them.
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Figure 3.2: Examples of R-17 forgetting curves. We proceed as in Figure 2.1, with the
same student and card.

The equations to obtain p(k) = pθ(c, s, (r
(1), . . . , r(k−1)), δ(k)) are reported below. First, we

compute σe(c, s) as

σe(c, s) = σ(be + as − dc) (3.1)

Equation 3.1 is the calculation of a dense layer with a single output and a logistic (sigmoid)
activation function σ(x) = (1 + exp(−x))−1. be ∈ R is a trainable bias and as, dc ∈ R are
trainable weights, one for each card plus one for each student, which are one-hot encoded
to be fed into the dense layer.

After computing σe(c, s), for each time step from i = 1 to i = k, we computed

h0,(i) = H(ψ(i−1), p(i−1)(δ(i−1)), y(i−1), l(i−1)) =

= max(0, bh0 +Wh0 [ψ
(i−1), p(i−1)(δ(i−1)), y(i−1), l(i−1)]T ) if i ≥ 2

h1,(i) = max(0, bh1 +Wh1h
0,(i)) if i ≥ 2

h(i) =

H0 if i = 1

max(0, bh +Whh
1,(i)) if i ≥ 2

ψ(i) = Ψ(h(i), σe(c, s)) = max(0, bψ +Wψ[h
(i)
1 , . . . , h

(i)
5 , σe(c, s)]

T )

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)
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p
(i)
fc = pfc(δ

(i);ψ(i)) = (1 + δ(i))−ψ
(i)

p0,(i) = max(0, bp0 +Wp0 [p
(i)
fc , ψ

(i), σe(c, s)]
T )

p1,(i) = max(0, bp1 +Wp1p
0,(i))

p(i) = σ(bp +Wpp
1,(i))

(3.7)

(3.8)

(3.9)

(3.10)

The 282 + |C|+ |S| trainable parameters are

• be ∈ R, as, dc ∈ R for all c ∈ C, s ∈ S for a total of 1 + |C|+ |S| parameters;

• H0 ∈ R5, bh0 , bh1 ∈ R8, bh ∈ R5, Wh0 ∈ R8×4, Wh1 ∈ R8×8, Wh ∈ R5×8 for a total
of 162 parameters;

• bψ ∈ R, Wψ ∈ R1×6 for a total of 7 parameters;

• bp0 , bp1 ∈ R8, bp ∈ R, Wp0 ∈ R8×3, Wp1 ∈ R8×8, Wp ∈ R1×8 for a total of 113

parameters.

We train the RNN end-to-end with gradient descend. The total loss is minimized as in
Equation 2.2, with single review step loss

ℓ(y, p) = (y − p)2 + λ∥θσe∥22 (3.11)

for the target rating y and the corresponding retrievability prediction p. We penalize
large ease weights θσe = {as : s ∈ S} ∪ {dc : c ∈ D}, λ is a hyperparameter that controls
the penalization. The gradients are computed with the back-propagation through time
(BPTT) algorithm, for the optimization we employ the Adam optimizer [16]. We need
a retrievability prediction for each review step of the histories in our dataset. Here we
presented R-17 as making a retrievability prediction after k steps, but notice that we do
not have to recompute the whole sequence of hidden states for each review step, it is clear
how we can obtain a retrievability prediction after each subsequent step.

Note that memory model R-17 adapts to a student or to a card only through the ease
σe, which induces a dependency structure between cards reviewed by the same student
and students of the same card. This is a limitation of R-17 compared to SuperMemo
Algorithm SM-17. The latter is able to tune the functions SInc, PLS, and Recall after
each review step to adapt to the student. Another limitation of R-17, this time with
respect to SuperMemo Algorithm SM-18, is that the ease of a card for a student cannot
change as new reviews arrive in the system. An possible advantage of R-17 over SM-17 is
that information is shared between review steps through a hidden state vector of 5 real
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components. In SM-17 the same happens only through the univariate stability estimate.

(a) Ψ(H(ψ, p, 1, 0), σe)) (b) Ψ(H(5, p, 0, l), σe))

(c) P (pfc, ψ, σe))

Figure 3.3: We show the approximations of the SM-17 functions SInc, PLS, and Recall.
The SInc function (multiplied by previous stability) is approximated by the composition
Ψ ◦ H for the inputs ψ, p and σe while fixing y = 1. In the plot we fix σe to the value
computed for the same student and card as in Figure 3.2, and the additional input l = 0.
The PLS function is approximated by the same composition Ψ◦H but with inputs p and
l while fixing y = 1. In the plot we fix the additional inputs ψ = 5 and σe, the latter as
before. Note that in both approximations we need to fix additional inputs that are not
part of the corresponding SM-17 functions. Finally, the Recall function is approximated
by P for the inputs ψ, p, and σe; in the plot the latter is fixed as before.
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3.2. DASH[RNN]

The DASH[RNN] memory model is an instance of the DASH framework where hθ is the
output of a RNN (see Equation 2.9 in Section 2.3.2). The idea is hinted at in [35]. Our
aim with DASH[RNN] is to obtain accurate retrievability predictions.

The model is presented in Figure 3.5 and the equations are reported in detail below.

Let r(1), . . . , r(k−1) be a review history of length k − 1, where r(i) = (δ(i), y(i)). δ(1) is the
time elapsed between the first review and the introduction of the card to the student,
since we need a previous review rating but we don’t have one, we set the dummy rating
y(0) = 1. Moreover, to simplify the notation, we set δ(k) = δ (our goal is to predict the
retrievability for the k-th review). Let h(0) = 0 ∈ R5 be the initial hidden state. For each
time step from i = 1 to i = k, we compute

d0,(i) = max(0, bd0 +Wd0 [δ
(i), y(i−1)]T )

d(i) = max(0, bd +Wdd
0,(i))

h(i) = max(0, bh +Wh,dd
(i) +Wh,hh

(i−1))

(3.12)

(3.13)

(3.14)

Equation 3.12 is the computation of a dense layer of 12 units and with the ReLU activation
function; with trainable bias bd0 ∈ R12 and weights Wd0 ∈ R12×2, the output is d0,(i) ∈ R12.
Equation 3.13 is the computation of a dense layer of 12 units and with the ReLU activation
function; with trainable bias bd ∈ R12 and weights Wd ∈ R12×12, the output is d(i) ∈ R12.
Equation 3.14 is the computation of a simple RNN layer of 5 hidden units and with
the ReLU activation function; with trainable bias bh ∈ R5, weights for dense-to-hidden
connections Wh,d ∈ R5×12 and weights for hidden-to-hidden connections Wh,h ∈ R5×5,
the output is h(i) ∈ R5. Finally, setting hθ = bσ +Wσh

(k) in Equation 2.9 we obtain the
retrievability prediction

pθ(c, s, (r
(1), . . . , r(k−1)), δ) = σ

(
as − dc + bσ +Wσh

(k)
)

(3.15)

Equation 3.15 can be seen as the computation of a dense layer with a single output and
logistic (sigmoid) activation function with trainable bias bσ ∈ R and weights Wσ ∈ R1×5,
where c ∈ C and s ∈ S are one-hot encoded. Casting the DASH model as a neural network
allows us to train DASH[RNN] end-to-end as a RNN.

The total number of parameters is Nd0 +Nd +Nh +Nσ + |C|+ |S| = 288+ |C|+ |S| with
Nd0 = 36 parameters for the first dense layer, Nd = 156 parameters for the second dense
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layer, Nh = 90 for the simple RNN layer, and Nσ = 6 plus |C|+ |S| for the final layer.

We train the RNN end-to-end with gradient descend. The total loss is minimized as in
Equation 2.2, with single review step loss

ℓ(y, p) = (y − p)2 (3.16)

for the target rating y and the corresponding retrievability prediction p. The gradients are
computed with the back-propagation through time (BPTT) algorithm, for the optimization
we employ the Adam optimizer [16].

In Figure 4.1 we show examples of forgetting curves obtained with DASH[RNN].

Compared to R-17, the DASH[RNN] memory model has a less convoluted structure, but a
similar number of parameters. Our aim with this model is to obtain accurate retrievability
predictions; in order to do that, we sacrifice the model interpretability of R-17. In the
model comparison of Chapter 4, DASH[RNN] often outperforms other models, including
R-17, in some carefully chosen metrics for the evaluation of the predictive performance of
memory models.

Figure 3.4: Examples of DASH[RNN] forgetting curves. We proceed as in Figure 2.1,
with the same student and card.
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Figure 3.5: The time-unfolded computational graph of the DASH[RNN] memory model
that computes retrievability pθ(c, s, (r(1), . . . , r(k−1)), δ) for the k-th review in the history.
At each review step i the inputs are δ(i) and y(i−1), δ(i) is the time elapsed between the
i-th review and the i−1-th review, the latter with rating y(i−1). The inputs are processed
through two dense layers of 12 units each, obtaining the output result d(i). d(i) is fed
to a simple RNN layer of 5 hidden units to obtain the current hidden state h(i). Here
is where the dependence on the previous review step i − 1 is accounted for. Finally, at
review step k, from h(k) and the additional inputs card c and student s we obtain pθ as
in Equation 3.15. The calculation is reported in detail in Equations 3.12 to 3.15.
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In this section we compare the memory models introduced in Chapter 3 of this thesis with
the state of the art reported in Chapter 2.

The models we compare are DASH[RNN], R-17, DASH, DASH[MCM], DASH[ACT-R],
HLR and IRT. We exclude DAS3H since it requires cards to be tagged by skill, we don’t
have that information in the datasets we consider. We exclude SuperMemo Algorithm
SM-17 since a description accurate enough to replicate it is not publicly available. In
Figure 4.1 we show a comparison of the forgetting curves obtained from the memory
models.

Figure 4.1: Examples of forgetting curves for the memory models compared in this section.
We set the same card and student as in Figure 2.1, then consider a review history r(1), r(2)

with δ(1) = 1, δ(2) = 5, and y(1) = y(2) = 1. Finally we plot retrievability prediction p̂θ

from each of the models as a function of time δ elapsed since the last of the two reviews
in the history.

In Sections 4.3, 4.4 we perform the comparison on two different datasets. They provide
valuable variety: in the nature of the knowledge tested by the cards and in the schedules
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the students followed. The comparison is predictive in nature. The results depend on the
data we use for the evaluation of the models. The Swift dataset from Section 4.3 was
collected in the context of learning how to drive a car and the IEIM experiment from
Section 4.4 in the context of an undergraduate computer science classroom. The cards
of the Swift dataset are not publicly available, but we can posit that they mostly test
descriptive knowledge. The knowledge taught in the IEIM course is mostly procedural.
Moreover, as mentioned in Section 2.2, spaced repetition systems suffer from a chicken or
the egg problem: the memory model is fitted to the data, but the collected data is biased
by the memory model. The schedule used in the IEIM experiment follows a variation
of the SuperMemo Algorithm SM-2 [46], Swift data was collected from an experiment in
which different schedules were compared. The heterogeneity of the considered schedules
alleviates the bias to some extent. Finally, we want to remark how both dataset were
collected in real-world practical deployments of spaced repetition systems. The results
can therefore be referenced in the development of future systems.

We start by introducing the metrics for the comparison in Section 4.1, we describe how
each of the models was fitted in Section 4.2, we report the results on the Swift dataset
in Section 4.3, we present the IEIM dataset and report the corresponding results in Sec-
tion 4.4 and finally we briefly discuss the results in Section 4.5.

4.1. Metrics for evaluating and comparing memory

models

We compare predictions of the memory models based on three metrics that are described
below: area under the ROC (AUC), integrated calibration index (ICI) and Emax. The
state of the art for memory models lacks consensus in the choice of metrics [30], after
considering possible options we settled on a choice of metrics that we now justify.

We are interested in making predictions. As discussed in Section 2.1, for the practical
purposes of a spaced repetition system, the goal of the memory model is to estimate how
likely the student is to successfully remember a card at a present or future point in time.
We need to predict the outcome of a review that is not part of our historical set of data.
For this reason, we decided to compare the models in terms of their predictive power,
based on how accurately they can predict the retrievability of new reviews.

We employ three metrics: AUC, ICI and Emax [1]. AUC is a measure of discrimination,
ICI and Emax of calibration of the probabilistic binary classifier. Good discrimination
means that successful reviews have higher predicted probability compared to unsuccessful
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reviews. Good calibration means that the predicted probabilities match the observed
frequency [1, 5, 18, 20, 26, 42], e.g. if the classifier predicts a 40% chance of recall for 10

reviews, about 4 out of 10 should be successful. AUC alone does not suffice. If you all
predicted probabilities are halved the AUC value does not change [30].

Both ICI and Emax are based on the concept of a calibration curve. A calibration curve
is a regression of the observed binary outcome yi on the probability pi predicted by a
probabilistic binary classifier, in our case the memory model. Following [18], we employ
loess regression; in particular, we resort to the R function loess with the number of
iterations set to 1 to disable outlier detection. See Figure 4.3 for examples of calibration
curves. The plot of the calibration curve allows us to graphically examine the calibration
of a memory model. In a perfectly calibrated classifier, the curve would match the identity
line, deviations from it indicate lack of calibration. ICI and Emax are point estimates that
summarize the calibration curve. Let p ∈ (0, 1) be a predicted probability, c(p) the value
of the calibration curve at p and ϕ(p) the density function of the distribution of predicted
probabilities. ICI and Emax are defined as [1]:

ICI =
∫ 1

0

|c(p)− p|ϕ(p)dp

Emax = max
p∈(0,1)

|c(p)− p|,

(4.1)

(4.2)

ICI is the mean distance of the calibration curve from the identity line weighted by the
distribution of the predicted probabilities; denser areas of the unit interval are given
greater weight. Emax is the largest deviation of the calibration curve from the identity
line.

In the memory models comparison we report, for each model, the score in the three metrics
and, if applicable, a plot of the calibration curve (accompanied by the smoothed estimated
density of the predicted probabilities, see Figure 4.3, obtained with the geom_density

function of the ggplot2 R package).

Other metrics could be considered, for instance, the Brier score or the log-likelihood. We
decided to focus on just three to keep things simple and because together they capture
different but important aspects of memory models as probabilistic binary classifiers [5, 30].

4.2. Model fitting

The compared memory models are fitted either using the Keras framework [10] in the
Python programming language or using the R programming language.
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We train the HLR model (Section 2.3.3) with gradient descent, as in the original paper
[36]. In order to do that we cast the model as a custom layer in the Keras framework [10].
We employ the Adam [16] optimizer with a learning rate of 10−3, we train for 100 epochs
with batch size 128. In Equation 2.15 we set the weights penalization hyperparameter
λ = 0.1.

We follow [4] to fit the 1PL-IRT model (Section 2.3.1) using the R programming language.
For the comparison of Section 4.3, given the large amount of data and following [12], we
use the function bam of the package mgcv, replacing lmer in [4]. Predictions account
for random effects. Validation or test data might include cards and students that are
not present in the training data. In the case of a new card, we predict with the overall
retention rate of the training data; in the case of a new student, we set the random effect
to 0.

The same considerations are valid for the DASH and DASH[MCM] models (Section 2.3.2),
in case of a card not present in the training data, we set the corresponding fixed effect to
0. We cannot employ the same strategy for DASH[ACT-R], given the non-linearity in hθ.
We cast hθ as a custom layer in the Keras framework and the DASH Equation 2.9 as a
dense layer with logistic (sigmoid) activation and univariate output (as for DASH[RNN]
in Section 3.2). We obtain an implementation of the model that we can train end-to-end
with gradient descent, computing the gradient with the back-propagation algorithm [16].
In particular we estimate the parameters by maximizing the log-likelihood, to the loss we
add a L2 regularization for the parameters of the final dense layer with hyperparameter
λ = 10−4. We employ the Adam [16] optimizer with a learning rate of 10−3, we train for
50 epochs with batch size 128.

We implement the R-17 model (Section 3.1) in the Keras framework as a custom RNN
cell, along with a dense layer for σe and a custom layer for the Wickelgren power law.
We train for 1000 epochs in the comparison of Section 4.3, 100 epochs in the comparison
of Section 4.4.1. In Adam optimizer, we clip the gradient norm at 1 and use a cyclical
learning rate [38] with an initial learning rate 3 · 10−3; a maximum learning rate 10−2; a
scheduling function 1/2x−1, where x is the cycle index; and a cycle step size of 8 times the
number of batches in each epoch. We initialize the output bias bp of the neural network
P to σ−1(p∗) where p∗ is the proportion of successful reviews in the training set.

We similarly train the DASH[RNN] model (Section 3.2), the differences are in the number
of epochs, 50 epochs in the comparison of Section 4.3 and 100 epochs in the comparison
of Section 4.4.1; in the gradient norm clip of 0.5 and in the initial learning rate of 3 · 10−4

for the cyclical learning rate of the Adam optimizer.
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4.3. Results on Swift data

We run the comparison on a large open source dataset [41] collected from a popular
German smart driving-learning app by Swift (swift.ch). We refer to such dataset as
Swift dataset. The data consists in review histories for learners studying for the written
portion of the driver’s permit in Germany, collected as part of an experiment to compare
different spaced repetition review schedulers [41]. After preprocessing, we retrained and
evaluated the models on 4 different sub-samples of the data and obtained the results
reported in Table 4.3 and Figure 4.3. We now describe the process.

First, we preprocessed the data:

1. Following [41] we removed students who where assigned to different spaced repeti-
tion schedules upon re-installation of the app. We also removed incomplete review
histories.

2. We discretized the elapsed time between reviews in days. The boundary between a
day and the next was set at 4 a.m. as an attempt to capture the sleeping pat-
terns of students, to prevent late night reviews to be incorrectly placed in the
next day. The setting is inspired by Anki, a popular spaced repetition system
(https://docs.ankiweb.net/preferences.html).

3. Focusing a single review history (a student-card pair), for each day we kept a single
review. We kept the first review of the day but we changed its rating: if any of the
reviews of that day was unsuccessful we placed a rating of 0, otherwise of 1. That’s
because we are focusing on long-term memory.

4. The first review in a review history is the point at which the student is introduced
the card, memory does not play a role, and so we get rid of it.

Finally each review history (identified by a student-card pair) contains at most one review
per day, moreover it starts at the first true review, when the card has been already been
introduced to the student. An example of the data might look like Table 4.1.

After preprocessing we end up with 1, 403, 022 review histories containing a total of
2, 423, 803 unique reviews, with a proportion of successful reviews of 78.9%. Most re-
view histories contain a single review, we plot the review history length distribution in
Figure 4.2.
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Table 4.1: Example of what the data looks like after preprocessing. As discussed in
Section 2.1, each student-card pair identifies a review history, y is the rating and δ is the
time interval discretized time interval elapsed since the last review or since the student
was introduced the card.

y δ student ID card ID

1 1 student1 card1

0 5 student1 card1

1 1 student1 card1

1 1 student1 card2

1 4 student1 card2

Figure 4.2: Distribution of review histories length in the full Swift dataset.

For time and computational constraints we could not work with such a large number of
observations. We decided to sample 5 different train-test splits, created in the following
way:

• Randomly sample 15, 000 review histories from the complete dataset, with proba-
bilities proportional to the cube of the length of the history. Therefore, we favor
longer review histories, which are generally harder to collect than shorter ones;

• Out of the 15, 000 review histories, randomly sample a test set of 5, 000 review
histories, following a uniform distribution. The remaining 10, 000 review histories
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are the training set.

Note that the splitting is performed by review history instead of by unique review [31],
since for each retrievability prediction the memory models need access to the entire review
history of the card. The first train-test sample was used for tuning the models. At a later
point in time, the models were fitted to each of the 4 remaining training sets, and evaluated
on the corresponding 4 held out test sets. The samples contain an heterogeneous number
of reviews since the review histories might be of different length. We report the figures in
Table 4.2.

Table 4.2: Review count for each of the 4 train-test samples employed in the comparison.

Sample 1 Sample 2 Sample 3 Sample 4

Review count in train set 80,416 80,072 80,646 80,606

Review count in test set 40,510 40,433 39,820 40,052

For each of the test review histories, we proceed chronologically: for each review step k

with the fitted model we generate a prediction p̂(k) for the retrievability of the card right
before review k, then compare it to the observed rating y(k). The end result is a set of
(p, y) pairs, where p is a retrievability prediction and y the corresponding observed binary
rating. From it we can compute all the metrics discussed in Section 4.1. In Table 4.3 we
report the AUC, ICI and Emax for each memory model, along with the calibration curves
in Figure 4.3.
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Table 4.3: AUC, ICI and Emax for different memory models, scored on 4 different train-
test samples from the Swift dataset. Arrows indicate whether lower (↓) or higher (↑)
scores are better, for each metric the model that achieved the best score is shown in bold.
DASH[RNN] and R-17 are the models that have been introduced in Chapter 3 of this
thesis.

(a) Sample 1

AUC↑ ICI↓ Emax↓

DASH[RNN] 0.853 0.013 0.029

R-17 0.844 0.008 0.020

DASH 0.835 0.018 0.067

DASH[MCM] 0.836 0.018 0.068

DASH[ACT-R] 0.849 0.012 0.203

HLR 0.608 0.146 0.565

IRT 0.785 0.028 0.083

(b) Sample 2

AUC↑ ICI↓ Emax↓

DASH[RNN] 0.857 0.004 0.050

R-17 0.840 0.021 0.061

DASH 0.826 0.023 0.217

DASH[MCM] 0.826 0.023 0.223

DASH[ACT-R] 0.833 0.009 0.211

HLR 0.610 0.146 0.499
IRT 0.776 0.038 0.283

(c) Sample 3

AUC↑ ICI↓ Emax↓

DASH[RNN] 0.861 0.004 0.027

R-17 0.842 0.005 0.012

DASH 0.831 0.016 0.074

DASH[MCM] 0.831 0.017 0.076

DASH[ACT-R] 0.817 0.011 0.240

HLR 0.610 0.144 0.476
IRT 0.777 0.033 0.096

(d) Sample 4

AUC↑ ICI↓ Emax↓

DASH[RNN] 0.861 0.008 0.071

R-17 0.839 0.022 0.055

DASH 0.822 0.026 0.175

DASH[MCM] 0.822 0.026 0.176

DASH[ACT-R] 0.834 0.014 0.152

HLR 0.612 0.144 0.495
IRT 0.772 0.036 0.210
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(a) Sample 1 (b) Sample 2

(c) Sample 3 (d) Sample 4

Figure 4.3: Calibration curves (above) and density of the distribution of the predicted
probabilities (below) for different memory models, scored on 4 different train-test samples
from the Swift dataset. In a perfectly calibrated memory model the curve would match
the identity line. DASH[RNN] and R-17 are the models that have been introduced in
Chapter 3 of this thesis. Out of DASH, DASH[MCM] and DASH[ACT-R], we included
only the latter variant in the plots, in order not to clutter them with too many lines.
The choice is motivated by the better performance compared to the other two variants in
Table 4.3.
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4.4. IEIM experiment and results on the collected

data

In 2021 we conducted an experiment at the informatica e elementi di informatica medica
(IEIM) course by Prof. Santambrogio at Politecnico di Milano. After each week of
the course, we created cards on the topics covered, and the students could opt in to
review those cards following a spaced repetition practice in a web application described in
Section 1.1. The data collected has then been used to compare several memory models;
the results are reported in Section 4.4.1.

In the experiment we created 8 decks, one for each week of the course, for a total of 146
cards (average of 18 cards per deck). 74 students signed up, 58 reviewed at least one card,
24 reviewed at least one card in each of the 8 decks. In Figure 4.4 we display the count
of students per number of decks studied.

Figure 4.4: On the y-axis we find the total number of students that reviewed at least one
card in x decks.

The review scheduler we employed is a variation of SuperMemo Algorithm SM-2 [46]
inspired by Anki’s implementation (https://docs.ankiweb.net). We registered a total
of 16,189 unique reviews by the date of the last exam of the 2021 summer session. A
couple of students reviewed their cards more than 800 times. In Figure 4.5 we display the
review count distribution between students.
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Figure 4.5: Review count per student, each bar corresponds to a student, students have
been sorted in descending order by their review count.

Figure 4.6: Total number of unique reviews for each day between the start of the experi-
ment and the last exam of the summer session. The green vertical line denotes the date
of the last lecture of the part of the course covered by the cards. The red vertical lines
denote the dates of the exams.

In Figure 4.6 we report the amount of reviews over time, highlighting the dates of the
exams. The cards cover material presented from February 22nd to April 16th 2021. There
have been exams in June 7th, July 2nd, and July 20th 2021. The students had to choose
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one of the three dates in which to be tested. Upon failure, they could retry once again at a
future date. We notice spikes in activity right before each exam. It suggests that students
used the tool at their disposal also to check their knowledge of the course material, not
only as a review tool. The spikes decrease in volume; we posit that the effect is due to
the decreasing number of students left to be tested in subsequent exams.

In the remaining part of the section we analyze the retention rate. In particular we try to
answer the following questions: are there students with a better retention rate than others?
Were there decks/notes that were harder than others? In other words, can we identify the
easier/harder concepts? We restrict the analysis to students with more than 100 unique
reviews. In Figure 4.7 we plot the average retention rate for each student, notice that
the values lie between 0.7 and 1. Identifying students that display better retention can
be beneficial for their experience with the system. In particular, in designing a review
scheduler we might increase the length of the intervals between reviews for students with
a large average retention rate and shorten it for students that fail to recall more cards on
average.

Figure 4.7: Retention rate per student. Each bar corresponds to a unique student that
performed more than 100 reviews. The retention rate is computed as the average rating
across all cards.

We now focus on how the retention rate varies between decks. The average retention rate
for a deck is calculated by averaging the rating of the reviews of the cards within the
deck across all students. We performed a statistical test to determine the significance of
the difference in retention rate between decks. Similarly to the IRT model presented in
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Section 2.3.1 we employ a Linear Mixed Model with the deck indicator variable as fixed
effect and the student indicator variable as random effect. The reason the student has
been considered a random effect is that we care about the decks under study, but not
about the specific students that participated in the experiment. We consider the students
as a random sample from a wider population of students. This allows us to account for
the dependency between decks induced by students studying different decks. After fitting
the complete model, we performed a statistical test for the significance of the covariate of
the fixed effect using a parametric bootstrap approach, as illustrated in [17]. We fit the
model on 10,000 bootstrap samples and obtain a p-value of 0.0001. This suggests that we
can reject the null hypothesis, suggesting a significant difference in retention rate between
decks.

Figure 4.8: Retention rate per deck.

We repeat for cards a retention rate analysis similar to the one for decks. More precisely
we consider two fixed effects: decks and cards; students are still considered random effects.
Basically we are checking the significance of the card effect, while keeping into account
the dependency induced by decks and students. We test the significance of the card
fixed effect by the same parametric bootstrap discussed above. We are comparing the
full model to the model without the card random effect. We run the test with 10,000
bootstrap samples and obtain a p-value of 0.0001. We sort the cards by retention rate.
The result we obtain might be interesting for the professor designing a course, we can
interpret the ranking of cards as a ranking by difficulty of the concepts presented in the
course. The interpretation should be taken with a grain of salt: if students have a hard
time recalling a concept it doesn’t necessarily mean that it’s a difficult one, moreover
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quality in the way the card was written is an important confounding factor. The way
a card is written can make it easier or harder to recall, in the experiment we tried to
follow the guidelines of [22, 25]. The top-5 easiest and top-5 hardest cards are displayed
in Table 4.4.

Figure 4.9: Retention rate per card.
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Table 4.4: Easiest and hardest cards created in the IEIM experiment, ranked by retention
rate. Instead of displaying the full question and answer for each of the cards, we instead
opted for displaying a brief label for the tested concept of the course under the tested
concept column.

(a) Top-5 hardest cards.

card id tested concept retention rate review count

VUOFvO6zZ2a3790HFovZ General notions on algorithms
and programming languages

0.764 161

mTBm7W5rHU3VCOijOVHq Kilo, Mega, Giga as powers of
2

0.779 145

IMBTylkxsFVm7FLX7Inv scanf and printf 0.780 159

xt0gyigZ30NbXZ2N2mVW Declaration and definition of
functions

0.803 137

jCj7VyrajcdCCt40xMz8 scanf and printf 0.812 149

(b) Top-5 easiest cards.

card id tested concept retention rate review count

brhF4rpIQ1Eo4gHMMQIA Definition of pointer in C 1.000 80

J7To4cbfF1HdPpbu8hWE Matrices in C 1.000 64

KJ4mt9zu5R2c7EDV4KRi Iterative constructs 1.000 108

oP2AIioY4aN94RPQpv0S Definition of array in C 1.000 79
SAjrvWoolvijcWNkW8nX Definition of string in C 1.000 148

At the end of the semester, we sent a survey to the students who signed up for the
experiment. Students were asked some questions to answer with a grade on the Likert
scale. In Figure 4.10 we report the results.
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(a) Do you think Rember helped you study in less time?

(b) Do you think Rember helped you get a better grade?

(c) Without studying every time, it can become difficult to follow the new
lessons. Do you think that Rember has helped you to keep up, allowing to
follow the new lessons more easily?

(d) If it were available, would you use Rember for other classes?

Figure 4.10: Results of student questionnaire at the end of the semester. Each plot reports
a summary of the Likert scale responses to the question in the caption under it.

4.4.1. Results on IEIM data

We compare different memory models on the data collected in the IEIM experiment. After
preprocessing, we performed a 10-fold cross-validation repeated 50 times and obtained the
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results reported in Table 4.5. Here is the process we followed.

Preprocessing proceeds as described in Section 4.3, we skip the first step, as it is specific
to the Swift dataset. Table 4.1 shows an example of what the data looks like after
preprocessing. After preprocessing we end up with 3, 700 review histories containing a
total of 9, 283 unique reviews, with a proportion of successful reviews of 97.0%. Given that
we are interested in binary ratings, the latter figure means that the dataset is effectively
smaller than it appears. A dummy memory model always predicting a large retrievability
would do quite a good job; we need to focus on the few (274, out of 16,189) unsuccessful
reviews in order to make better and sensible predictions.

To compensate for the small data problem, we employ a 10-fold cross-validation scheme
repeated 50 times, for a total of 500 folds, following the recommendations in [18]. Each
fold consists of the full dataset divided into a training set and a test set, containing,
respectively, 90% and 10% of the review histories. The evaluation proceeds as described
in Section 4.3.

In Table 4.5 for each memory model we are comparing we report aggregated scores for
AUC, ICI and Emax across the 500 folds, in particular we report the sample mean and
sample standard deviation across all folds.

Table 4.5: Sample mean and sample standard deviations (in parentheses) of AUC, ICI
and Emax for different memory models, across a 10-fold cross-validation repeated 50 times.
Arrows indicate whether lower (↓) or higher (↑) scores are better, for each metric the model
that achieved the best sample mean score is shown in bold. DASH[RNN] and R-17 are
the models that have been introduced in Chapter 3 of this thesis.

AUC↑ ICI↓ Emax↓

DASH[RNN] 0.842 (0.040) 0.012 (0.004) 0.267 (0.168)

R-17 0.665 (0.064) 0.011 (0.004) 0.082 (0.092)

DASH 0.770 (0.067) 0.018 (0.006) 0.338 (0.186)

DASH[MCM] 0.771 (0.067) 0.019 (0.006) 0.357 (0.195)

DASH[ACT-R] 0.768 (0.136) 0.010 (0.013) 0.070 (0.067)

HLR 0.548 (0.063) 0.125 (0.006) 0.600 (0.042)

IRT 0.765 (0.068) 0.018 (0.005) 0.273 (0.148)
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4.5. Discussion of the results

Overall DASH[RNN] and R-17, the two novel models introduced in this thesis in Chapter 3
fare well against the state of the art. DASH[RNN] outperforms the state of the art on the
large Swift dataset, a significant result for the development of spaced repetition systems
at scale. R-17 performs comparatively well, this result hints that SM-17 deserves to
be studied with more care. The goals we had in mind for the two memory models are
achieved. The results are not as clear in the very small IEIM dataset.

On the larger Swift dataset, the DASH[RNN] model outperforms the state of the art
in all three metrics (Table 4.3). The only exception is the ICI score in Sample 1, where
DASH[ACT-R] obtains a slightly lower score. In all other samples, the smallest ICI score of
the state of the art is reduced by almost 50% by DASH[RNN]. In all samples, the smallest
Emax score of the state of the art is reduced by more than 50% by DASH[RNN]. In the IEIM
data set, it is less clear which model performs best (Table 4.5). The DASH[RNN] model
obtains by far the largest AUC score, but the one with better scores on the calibration
metrics is DASH[ACT-R]. This is probably due to the smaller number of parameters in
DASH[ACT-R] compared to the other models. The small sample size, combined with the
large (97%) proportion of correct responses, makes it difficult to train larger models on
the IEIM data. Each training sample from the Swift dataset contains about an order of
magnitude more reviews compared to one of the IEIM dataset. We argue that, for what
concerns the development of spaced repetition systems at scale, the results on the larger
Swift dataset are more significant, unless one is bootstrapping a new spaced repetition
system from a small number of students and cards in a short time. In that case, there are
valid alternatives to training a memory model on a small dataset, such as using tried-and-
tested heuristics as a review scheduler. The SuperMemo Algorithm SM-2 variant used
by Anki schedules reviews for millions of students every day, and a complete description
is available in Anki’s documentation (https://docs.ankiweb.net/), a similar review
scheduler was used for the IEIM experiment described in Section 4.4.

R-17 does not always outperform the state of the art in the Swift dataset. It obtains
a larger AUC score in samples 2 to 4 compared to the state of the art (it comes very
close in sample 1). Reduces ICI by less than 2/3 in samples 1 and 3, but increases it in
samples 2 and 4. It reduced Emax almost by less than 1/3 in all samples. The calibration
curves (Figure 4.3) of DASH[RNN] and R-17 are visually more convincing than those of
the state of the art, for small retrievability values DASH[ACT-R] starkly deviates from
the identity line, this is reflected in the large Emax scores. On the IEIM dataset, R-17
scores are comparable to those of DASH[ACT-R] but it suffers in the AUC metric.
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The primary contribution of this work is two-fold. We introduce two novel adaptive
memory models, DASH[RNN] and R-17, the former outperforms the state of the art from
a predictive perspective, the latter performs comparably well; in building and comparing
the models we construct a framework for developing memory models specifically for spaced
repetition systems, that can scale and adapt as the system grows.

R-17 is an attempt to approximate with neural networks the memory model component
of SuperMemo Algorithm SM-17. SM-17 is the review scheduler employed by the popular
spaced repetition system SuperMemo (https://www.supermemo.com/). There exists a
public description for SM-17 but it lacks sufficient details to faithfully reimplement the
algorithm. That might be the reason why the literature has never (to the best of our
knowledge) considered SM-17. We attempt to fill this gap. The significance of the pre-
dictive result of R-17, in addition to standing on their own, is that they hint at SM-17
performance.

The thesis has the ambitious goal of serving as a reference framework for thinking about
and developing adaptive memory models for spaced repetition systems. In Chapter 1 we
introduced spaced repetition systems, breaking them down into fundamental components.
We described the distinction between review schedulers and memory models and how both
are employed by the latter systems. We introduced some results from psychology that
memory models are often based on. In Chapter 2 we introduced a general formalization
of adaptive memory models and discussed their inherent and unavoidable limitations.
Finally, in Chapter 4 we introduced and justified sensible metrics to evaluate and compare
adaptive memory models from a predictive perspective. The framework is far from being
complete, our hope is that future work will build on it to enable the development of
better adaptive memory models that will expand the horizon of possibilities of spaced
repetition systems. Future work could introduce a way to reason about interference when
the student reviews several related cards. It could introduce better tools for inspecting
and interpreting the behavior of memory models, which might be useful for improving
their performance but potentially also for generating insights about the inner workings
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of human memory. Future work could deepen our understanding of how memory models
should behave for knowledge of different nature, complexity, or domain.

Spaced repetition systems have been around for three decades and their effectiveness has
been proved over and over. Modern education has not caught up with them yet; our hope
is that with better tools and systems this gap can be filled in order to let students learn
more effectively and efficiently than what is currently possible. This thesis aims to be a
step in this direction.
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