
Evaluating Convex Solvers for

Onboard Minimum-Fuel Trajectory

Optimisation

Tesi di Laurea Magistrale in

Space Engineering - Ingegneria Spaziale

Author: Leoluca Grilli

Student ID: 10800769
Advisor: Dr. Alessandro Morselli
Co-advisors: Alessandra Mannocchi, Andrea Carlo Morelli
Academic Year: 2022-23

i

Abstract

In recent years, convex optimisation has emerged as a versatile and e�cient method to

obtain fast and reliable solutions in time-critical applications. This study focused on

evaluating the behaviour of di�erent convex solvers for minimum-fuel low-thrust inter-

planetary problems within the context of onboard applications. Three distinct test cases

of increasing complexity were explored to evaluate the e�ectiveness of convex methods,

covering the Earth-to-Mars, SEL2-to-NEA, and Earth-to-Venus transfer problems.

Two solvers, ECOS (interior-point method, IPM) and SCS (�rst-order method, FOM),

were chosen for their prominence in their respective solver family. To ensure fair testing,

parameters like the trust region factor and the maximum number of allowable operations

were carefully considered.

The Monte Carlo simulation results revealed signi�cant di�erences between the two meth-

ods, with ECOS displaying superior and consistent performance in key criteria such as

memory usage and computational burden. SCS, instead, exhibited a greater inconsistency,

with values that showed a more prominent variation for the simpler cases. While the ac-

curacy and optimality of solutions were comparable between the two methods, ECOS

displayed higher and constant reliability (with a success rate always above 96%) com-

pared to the lower and deteriorating rate of SCS (reaching as low as 82%). Analysing the

thrust pro�les highlighted a greater consistency for the IPM solver for simpler cases, while

for the Earth�Venus trajectory the FOM solver exhibited a more coherent behaviour.

The study also considered the computational aspect, highlighting the advantages of using

compiled code over a non-compiled one. CVXPY and CVXPYgen were compared, show-

ing signi�cantly faster results for ECOS.

Keywords: Guidance, Convex, Optimisation, Fuel-optimal, Deep-space

iii

Sommario

Negli ultimi anni, l'ottimizzazione convessa è emersa come un metodo versatile ed e�ciente

per ottenere soluzioni rapide ed a�dabili in applicazioni che richiedono tempi critici.

Questo studio si è concentrato sulla valutazione del comportamento di diversi risolutori

convessi per problemi di minimo consumo di carburante nel contesto delle applicazioni

di bordo per missioni interplanetarie con bassa spinta. Sono stati esplorati tre casi di

crescente complessità al �ne di valutare l'e�cacia dei metodi convessi tra cui i trasferimenti

Terra�Marte, SEL2�NEA e Terra�Venere.

Sono stati scelti due risolutori, ECOS (metodo a punto interno, IPM) e SCS (metodo

del primo ordine, FOM), per la loro notorietà nelle rispettive famiglie di metodi. Per

garantire test equi, sono stati attentamente considerati parametri come il trust region e

il numero massimo di operazioni consentite.

I risultati delle simulazioni Monte Carlo hanno rivelato signi�cative di�erenze tra i due

metodi, con ECOS che ha dimostrato una prestazione superiore e costante in criteri chi-

ave come la memoria utilizzata e il carico computazionale. SCS, invece, ha mostrato

una maggiore incostanza, con valori che presentavano una variazione più accentuata per

i problemi più semplici. Sebbene l'accuratezza e l'ottimalità delle soluzioni fossero con-

frontabili, ECOS ha esibito una maggiore a�dabilità, con un tasso di successo migliore e

costante (sempre superiore al 96%) rispetto all'inferiore e deteriorante tasso di SCS (rag-

giungendo l'82%). Analizzando i pro�li di spinta, è emersa una maggiore coerenza per il

risolutore IPM nei casi più semplici, mentre per la traiettoria Terra�Venere il risolutore

FOM ha mostrato un comportamento più coerente.

Lo studio ha anche considerato il tempo computazionale, evidenziando i vantaggi dell'uso

di codice compilato rispetto a quello non compilato. CVXPY e CVXPYgen sono stati

confrontati, mostrando risultati signi�cativamente più rapidi per ECOS.

Parole chiave: Guida, Convessa, Ottimizzazione, Propellente-ottimale, Spazio profondo

v

Ringraziamenti

Ringrazio il dottor Morselli per avermi concesso l'opportunità di sviluppare questa tesi,

dandomi la possibilità di approfondire un aspetto molto attuale ed importante soprattutto

nel prossimo futuro. Ringrazio il professor Topputo per avermi innanzitutto trasmesso

attraverso i suoi insegnamenti, la sua passione e conoscenza. In particolare, ringrazio

Alessandra ed Andrea per avermi aiutato, soprattutto nelle prime fasi di lavoro dove ho

fatto tesoro dei loro consigli per a�rontare un argomento nuovo.

Ringrazio poi i miei genitori Marco e Manuela che sono sempre stati al mio �anco. Da

quando ho lasciato casa per intraprendere una carriera universitaria a Leeds ho sempre

fatto tesoro dei vostri consigli, sia lavorativi ma soprattutto personali. Ringrazio i miei

fratelli Leonardo e Leonora, su cui so di poter contare sempre ed i miei nonni e mio zio

per la vicinanza che mi hanno sempre dimostrato. Ringrazio i miei nipotini, che con il

loro a�etto e la loro spensieratezza mi ricordano ogni giorno quali siano le cose veramente

importanti nella vita.

Un ringraziamento speciale va a Bianca, una ragazza che ho la fortuna di poter veder

crescere e maturare a �anco a me. La prima volta che ti ho visto è stato come essere

travolto da una brezza d'aria fresca, e riesci a trasmettermi questa sensazione ogni giorno.

Grazie per tutte le domande del giorno, le avventure e gli scherzi che abbiamo condiviso e

per tutte le volte che sei stata accanto a me, sapendomi ascoltare e consigliare, ma senza

mai giudicare. In questo periodo pieno di cambiamenti sei la mia certezza. Conoscerti è

stata la cosa più bella che io abbia fatto.

Grazie ai miei amici del "Cage" Francesco, Kaan, Michele, Susy, Teresa e Vittoria che con

serate passate insieme a mangiare, vedere �lm e fare giochi da tavolo hanno reso Milano

casa. Grazie a Marco, con cui ho avuto l'onore di condividere la casa per più di due anni.

Non tutti i coinquilini diventano amici, ma in te ho scoperto una persona con cui mi posso

aprire e con�dare.

Grazie agli amici che ho potuto conoscere attraverso il politecnico, e che sono diventati

dei punti �ssi nella mia vita nonostante le distanze o il lavoro. Grazie ad Elisa e Francesco

per esserci sempre stati nei momenti più belli ed in quelli più buoi. Grazie al Trio Medusa,

André e Gonçalo, con cui ho avuto l'onore di lavorare insieme su alcuni progetti e con cui

ho condiviso diverse memorie che mi porterò sempre dentro.

vii

Contents

Abstract i

Sommario iii

Ringraziamenti v

Contents vii

1 Introduction 1

1.1 Objectives of the Thesis . 3

1.2 Research Question . 3

1.3 Limitations . 4

1.4 Thesis Outline . 4

2 Theoretical Background 7

2.1 Convex Optimisation Methods . 7

2.1.1 Interior-Point Methods . 9

2.1.2 First-Order Methods . 14

2.1.3 Active-Set Methods . 15

2.1.4 Method Comparison . 16

2.2 Convex Optimisation in Space Guidance 18

2.2.1 Sequential Convex Programming 20

2.3 Survey of Available Software . 21

2.3.1 Tools . 21

2.3.2 Solvers . 23

2.4 Trade-o� Criteria Selection . 27

3 Methodology 31

3.1 Dynamical Model . 31

3.1.1 Equations of Motion in Spherical Coordinates 33

viii | Contents

3.1.2 Normalisation . 33

3.2 Optimal Control Problem . 34

3.3 Successive Convexi�cation Method . 36

3.3.1 Change of Variables . 36

3.3.2 Convexi�cation . 39

3.3.3 Discretisation . 41

3.4 Sequential Convex Programming Algorithm 43

3.4.1 Arti�cial Infeasibility . 43

3.4.2 Trust Region . 44

3.4.3 Convergence Criteria . 45

3.4.4 Initial Guess Generation . 46

3.4.5 Algorithm . 47

4 Numerical Results 51

4.1 Experimental Setup . 52

4.2 Parametric Analysis . 55

4.3 Results Validation . 59

4.4 Trade-o� Criteria Analysis . 64

4.4.1 Memory . 64

4.4.2 Complexity . 65

4.4.3 Computational Burden and E�ciency 66

4.4.4 Accuracy . 67

4.4.5 Optimality . 69

4.4.6 Reliability . 70

4.4.7 E�ectiveness . 71

4.5 CVXPY Analysis . 74

5 Conclusions and Future Work 77

5.1 Conclusion . 77

5.2 Future Work . 79

List of Figures 81

List of Tables 83

Nomenclature 85

Bibliography 91

A Parametric Investigation 99

A.1 Trust Region Factor . 99

A.2 SCS Operations . 102

B Veri�cation and Validation 105

B.1 Accuracy Veri�cation . 105

B.2 Control Validation . 107

C GitLab Repository 109

1

1| Introduction

Throughout history, the mystery of space has captured the human imagination, fostering

a relentless desire to explore the cosmos. Concurrently, the �eld of optimisation has

progressed in tandem with the pursuit of space exploration. Within this domain, the

challenges presented by space missions carry the complex task of generating trajectories

to achieve predetermined positions and velocities, while optimising variables such as fuel

consumption and travel time.

As we stand on the cusp of a new era in space exploration, characterised by the auda-

cious prospect of interplanetary journeys undertaken by small yet promising CubeSats,

new challenges and opportunities emerge. The canvas of exploration for small spacecraft

broadens, transcending the boundaries of our immediate celestial vicinity comprised by

our planet and its moon. In the midst of these dynamic developments, a crucial necessity

emerges: the ability to navigate the complexities of interplanetary space with precision

and autonomy, ensuring not only the attainment of desired states but also their attainment

through optimal solutions. As computational capacities have undergone a high develop-

ment in recent years, the reality of performing the guidance and control of a spacecraft

onboard instead of on ground is becoming more tangent [1, 2]. On one hand, autonomy

is essential for the spacecraft to make real-time decisions in the dynamic environment of

space, without the need to wait for signi�cant communication delays due to the consider-

able distance from Earth. On the other, the need for onboard guidance is a result of the

limitations of ground stations which may have limited visibility, availability, and capacity.

In this context, two types of methodologies emerge to obtain an optimal solution: direct

and indirect methods [3, 4]. The latter is formulated to satisfy the �rst-order necessary

conditions and indirectly solve for the optimal control law through the unknown co-

states (Lagrange multipliers), obtaining a continuous-time solution. A bene�t of these

methods over the direct methods is that they allow for higher �exibility and resolution

with respect to changes in the states or co-states [5]. That being said, the information of

the co-states does not have a clear physical meaning, and these methods also su�er from

poor convergence, long computational times, and high sensitivity to the initial guess [4].

2 1| Introduction

Direct optimisation methods, on the other hand, solve the optimisation problem through

the minimisation of a cost function and the disctretisation of the states and controls across

a given time-horizon, with a set of constraints imposed at every discretisation point [6].

In the realm of direct methods, the e�ectiveness of convex optimisation has quickly taken

centre stage, becoming one of the preferred techniques for swift and accurate trajectory

optimisation problems [7, 8]. These techniques compensate for the computational ine�-

ciencies typically associated with direct methods by reformulating the problem in a convex

form. Leveraging the e�ectiveness of cutting-edge interior-point methods (IPMs), convex

optimisation problems can be rapidly solved. Their ability to guarantee convergence in

polynomial time makes these methods extremely attractive and suitable for onboard au-

tonomous operations like the minimum-fuel low-thrust trajectory optimisation problem

[9, 10]. These types of problems, however, are naturally non-convex due to the strong

coupling of the states in the dynamics and the high non-linearities present in the dynam-

ics of the problem [11]. Therefore, di�erent discretisation and convexi�cation techniques

have to be applied to the original optimisation problem to reformulate it in a convex form

[1]. The linearisation of the dynamics around a reference trajectory forms a subproblem,

which has to be solved iteratively through the use of a Sequential Convex Program (SCP)

and a convex solver in order to obtain a solution with a prede�ned level of accuracy. The

two main alternatives to the IPMs are represented by the �rst-order methods (FOMs)

and the active-set methods (ASMs).

This thesis embarks on a comprehensive exploration of the capabilities of convex opti-

misation solvers, scrutinising their performance in the unique landscape of deep space.

By means of meticulous analysis and empirical evaluation, this study aims to outline the

strengths and limitations of these methods, shedding light on their potential to aid the

trajectory optimisation of interplanetary missions, whether conducted by conventional

spacecraft or cutting-edge CubeSats.

As humanity's aspirations extend beyond the boundaries of our home planet, the pursuit

of autonomous guidance systems assumes an urgency that is both trivial and imperative.

The computational e�ciency and reliability proven by convex optimisation have made the

algorithms particularly popular and attractive in industries where speed and accuracy are

required, so much so that important companies like NASA and SpaceX have adopted

them in their projects with vast success [8, 12, 13]. Having scratched only the surface of

their capabilities the future for these methods remains bright and promising.

1| Introduction 3

1.1. Objectives of the Thesis

The advances made in the optimisation realm have seen an increased use of the application

in which SCP and model predictive control (MPC) processes have been used [4]. In

order to allow a solution to be generated there is a necessity to exploit solvers which

implement an optimisation method until convergence is reached. Convex optimisation

represents the family in which state-of-the-art solvers are available. This is because the

solution obtained from these methods is proven to be a global solution while allowing for

competitive convergence results at small computational costs [14, 15]. The solvers used

within the convex framework can be divided into three main methods: ASMs, FOMs, and

IPMs. Although comparative studies of di�erent types of convex methods exist for some

types of problems, like the Tennessee Eastman reactor and the Control of Isothermal

CSTRs in Series [16�18], these problems remain far from the deep-space application.

Moreover, these studies focus on the comparison of only ASMs and IPMs, ignoring the

very promising and used FOMs. It is therefore clear that there is a gap to be �lled in

the literature. This thesis aims to do so by providing a basis to compare and evaluate

solvers for deep-space fuel-optimal problems and in doing so unraveling the performance

of convex optimisation solvers in this context.

1.2. Research Question

The aim of this thesis is to contribute to the �eld of autonomous guidance in deep-space

through a comprehensive examination of the performance of convex methods. In pursuit

of this goal, the main research question that this study seeks to address is as follows:

How does the overall performance of convex solvers compare when applied to fuel-optimal

trajectory optimisation?

In order to allow for su�cient data to be gathered, and to mitigate the potential for any

bias, it becomes imperative to thoroughly evaluate a range of scenarios of varying di�-

culty that can e�ectively address this inquiry. Three minimum-fuel problems of increasing

di�culty (i.e., Earth to Mars, Sun-Earth Lagrange point L2 to near-Earth asteroid 2000

SG344, and Earth to Venus) are solved in spherical coordinates using an SCP and di�er-

ent convex solvers. The �ndings of this study are expected to serve as an initial reference

for selecting an appropriate convex optimisation solver, taking into account the speci�c

requirements of the mission and the desired level of performance of the solver. Further-

more, as this study aims to assess the feasibility of implementing the proposed algorithm

and solvers onboard, it is crucial to address the constraints and challenges unique to this

4 1| Introduction

application. In fact, the evaluation of the performance of the solvers should include key

criteria essential for space applications, such as code size and memory consumption during

the optimisation process.

1.3. Limitations

In order to facilitate a comparison of di�erent types of methods used in convex optimi-

sation, the scope of this study is to investigate how the performance criteria of ECOS

(an interior-point solver) and SCS (a �rst-order solver) vary with an increase in problem

complexity. These two solvers have been selected after a careful evaluation of the available

software and tools on the market which is reported in Section 2.3.

It can be noticed how the solvers investigated do not include ASMs, with this choice

being made after selecting the CVXPYgen software as the ideal candidate for this study.

CVXPYgen provides a way to generate a compiled custom solver in C code, which can

signi�cantly enhance computational speed compared to non-compiled code [19]. However,

this software is relatively new and still in the development phase, and hence it does not

currently support all the solvers which are instead available in CVXPY. Furthermore,

after a careful evaluation of ASMs (seen in Subsection 2.1.3) it was found that the solvers

corresponding to this family are less developed and unsuitable for problems with a large

number of variables and constraints [7, 20, 21], justifying their absence from this study.

No further e�ort was made to incorporate external ASM solvers into CVXPYgen.

Another limitation of this study is the number of solvers investigated for each method.

This limitation has been deemed acceptable because both ECOS and SCS are state-of-

the-art solvers for their respective method family, at the time of writing. Having been

used with great success over the years, their results would therefore represent the acme

of their respective solver families. Moreover, an e�ort was made to exploit the remaining

IPM solvers available in CVXPY and investigate the results obtained for ECOS in terms

of performance, where possible (see Section 4.5).

1.4. Thesis Outline

The work of the thesis is organised into three main chapters. In Chapter 2 an extensive

overview of convex optimisation applied to guidance in space is given, while also pre-

senting the three predominant methodologies used within this optimisation domain and

highlighting the array of available tools and solvers. Moreover, the chapter expands upon

the criteria used to properly undergo a comparative analysis among the solvers.

1| Introduction 5

Chapter 3 subsequently dives into greater detail, describing the selected reference frame

and the dynamics model adopted. The successive convexi�cation method of the original

non-convex problem is presented through a series of change of variables, convexi�cation,

and discretisation techniques. The chapter concludes by providing insight in the building

of the SCP along with an overall view of the algorithm.

The scenarios analysed are then presented in Chapter 4, along with an in-depth account

of the parameters chosen for the SCP and solvers, supported by thorough reasoning and

appropriate investigations. The results obtained from the simulations are then reported

and extensively discussed. Chapter 5 concludes the study with a summary of the problem

analysed and the outcomes, o�ering prospects for potential future works in this �eld.

7

2| Theoretical Background

Space engineering challenges are inherently tied to optimisation. This fundamental con-

cept serves as a cornerstone in solving a diverse range of problems within the �eld. Op-

timisation underpins the very essence of space exploration and engineering, allowing to

solve problems that span from the optimisation of fuel consumption required to reach a

speci�c target to the generation of the trajectory necessary to precisely land a rocket or

spacecraft [7]. For onboard applications, this has to be done while ensuring that two fun-

damental attributes remain at a minimum: computational time and memory usage. The

former is particularly pertinent in real-time scenarios, where the ability to swiftly adapt a

planned trajectory or course in response to unforeseen variations can result in signi�cant

savings. Conversely, the second attribute is a direct result of the limitations associated

with space-proven boards, which do not typically possess ample memory. Among opti-

misation methods, convex optimisation includes solvers that grant high reliability, with a

large number of converged solutions, while allowing for small computational cost [14, 15].

An introduction to the convex optimisation problem and a description of the main meth-

ods used to solve it is provided in Section 2.1. Then, Section 2.2 reports the use of convex

optimisation in space guidance applications, with the taxonomy of optimisation problems

and a background on SCPs. Section 2.3 dives into the available software, providing a

survey of the tools and solvers on the market at the time of writing. Section 2.4 then

concludes the literature review by analysing the necessary criteria needed for a correct

and fair comparison of the performance of the solvers.

2.1. Convex Optimisation Methods

Before diving into the technical di�erences between the methods used, it is important to

state the convex optimisation problem [22]:

8 2| Theoretical Background

minimise
x

f(x) ,

s.t. Ax = b ,

g(x) ≤ 0 ,

(2.1)

where x represents the variables, b the equality constraints, and the optimisation function

f(x) and the inequality constraint function g(x) are both de�ned in a convex form [22].

A function is deemed convex if the line segment connecting any two points on the graph

of the function lies above the graph between the two points. This problem is known

in convex optimisation as the primal problem. The feasible set, Q, refers to the set of

all possible solutions that satisfy the constraints of the optimisation problem and takes

a value of 0 when the problem is primal infeasible. If instead a solution exists where

x ∈ Q, the problem is feasible, whereas if the values of the inequality constraints lie on

the interior (i.e. g(x) < 0) the solution is said to be strictly feasible. When an optimal

solution is instead obtained, the solution xopt ∈ Q is called the minimiser as it generates

the minimal value of the objective function. The function d, called the Lagrange dual

function, associated to Equation 2.1 is de�ned as

d(y, z) = f(x) + yT (Ax− b) + zTg(x) , (2.2)

where y and z are the Lagrange multipliers for the equality and inequality constraints

respectively. In convex optimisation, a problem associated with Equation 2.1, called the

dual problem, exists, which involves a maximisation of the form [22]:

maximise
y, z

d(y, z) ,

s.t. z ≥ 0 .
(2.3)

A measure which is of extreme importance for convex optimisation methods is the duality

gap, which represents the di�erence between the optimal solutions of the primal and dual

problems (f opt − dopt > 0) [22]. What drives the convergence of the optimisation process

is the tolerance imposed (both absolute and relative) on the duality gap, below which a

solution is deemed optimal for the problem. Optimality of the primal-dual pair is granted

by the Karush-Kuhn-Tucker (KKT) optimality conditions [21, 22], summarised below.

2| Theoretical Background 9

∇f(x) +ATy +G(x)Tz = 0

Ax = b

g(x) + s = h

sizi = 0 for i = 1, ..., p

(s, z) ≥ 0 ,

(2.4a)

(2.4b)

(2.4c)

(2.4d)

(2.4e)

where the inequality constraint g(x) ≤ 0 is transformed into an equality constraint

through the positive slack variable s, p represents the dimensions of the problem, and

G(x) represents the Jacobian of g(x) evaluated at x. The theory behind the KKT con-

ditions is that an optimal solution to the problem exists when the derivatives of the

Lagrangian function with respect to x and the Lagrange multipliers, are both zero [23].

Several state-of-the-art optimisation methods are based on the KKT conditions, making

them a trivial requirement for optimisation algorithms [24].

2.1.1. Interior-Point Methods

Within the realm of optimisation techniques, interior-point methods stand out as the

most widely used approaches for tackling convex optimisation problems, providing e�-

ciency and accuracy [18]. The �rst application of IPMs dates back to the Karmarkar

algorithm, developed by Narendra Karmarkar in 1984, which gained signi�cant interest

within the optimisation community itself [25]. This method arrives at the optimal solution

by navigating the interior of the feasible region, from which originates its name [22, 26].

IPMs have emerged as a solution to the challenge of non-linear problems which revolu-

tionised the optimisation world, o�ering an e�cient alternative to traditional methods,

such as the simplex algorithm, while granting a polynomial run time. In fact, Karmarkar

himself claimed that the algorithm was 50-100 times more e�cient than the simplex

method [27]. In this section, the two most popular methods are presented, with the

barrier method which represents the �rst polynomial time algorithm developed, and the

primal-dual method which is the most e�cient and majorly used method nowadays.

Barrier method

Considering the convex problem of the form of Equation 2.1, the idea behind this method

is to convert the constrained optimisation problem into an unconstrained one in regards to

the inequality constraints [22]. This is done with the use of a barrier function, φ(x), and

a barrier parameter, ζ>0, which are added to the objective function and act to remove

10 2| Theoretical Background

the inequality constraint. The problem therefore becomes [22]

minimise
x

f(x) + ζφ(x) ,

s.t. Ax = b .
(2.5)

The solution of the problem xopt(ζ) will therefore di�er from the solution of the original

problem as the objective function has been perturbed by φ(x).

The logic behind the method is as follows, and can be seen in Algorithm 2.1. Start-

ing from an initial value of ζ0, the solution to Problem 2.5 is obtained using Newton's

method, and the value of the barrier parameter is updated by scaling it by a factor κ > 1.

Newton's method approximates f as a quadratic function using a second-order Taylor

series expansion, from which a search direction is found to minimise said function [22].

The new solution to the problem is calculated, and the process continues until the barrier

parameter is below a prede�ned value, ε. Solving Equation 2.5 is called centring as the

solutions to the problem form the so-called central path [22].

Algorithm 2.1 Barrier interior point method [22].

1: for i in imax do

2: solve Problem 2.5 to �nd xopt(ζi)

3: xi = xopt(ζi)

4: if ζi < ε, then

5: break

6: else

7: ζi+1 = ζi/κ

8: end if

9: end for

The parameter i indicates the iteration of the optimisation process. Moreover, in order

to solve the problem, the initial guess x0 needs to be strictly feasible, respecting the

constraint g(x) < 0. The barrier function can take many forms and has a direct in�uence

on various parameters of the algorithm, such as e�ciency and convergence. The most

widely used function in barrier methods is the logarithmic function [22]:

φ(x) = −
p∑

i=1

ln(−gi(x)). (2.6)

2| Theoretical Background 11

In order to obtain smooth convex optimisation methods, the barrier function needs to be

convex and continuously di�erentiable, with the gradient and Hessian of the logarithmic

barrier function de�ned as [22]:

∇φ(x) = −
p∑

i=1

∇gi(x)

gi(x)
, (2.7)

∇2φ(x) =

p∑
i=1

∇gi(x)∇gi(x)
T

gi(x)2
− ∇2gi(x)

gi(x)
. (2.8)

The main computational burden of this method is concentrated in the evaluation of the

Newton direction required to solve the problem [22]. In order to speed up the process,

most methods use direct methods like matrix factorisation to exploit the sparsity of the

matrices and make the whole computation more time-e�cient.

Primal-dual method

Primal-dual methods stand out as a more e�cient alternative when compared to barrier

methods. The root of their e�ciency is their unique capability to accept initial iterates

that might be infeasible, as the equality and inequality constraints must only be satis�ed at

the �nal solution. This characteristic is extremely signi�cant as it mitigates the necessity

for additional computations, and consequently, time, to transform an initially infeasible

guess into a feasible one [22].

The concept behind primal-dual interior point methods is to solve the KKT conditions

(Equation 2.4) by applying a modi�ed Newton's method. Relaxed KKT conditions for

primal-dual methods are imposed in order to follow the central path, de�ned by the points

(x, y, z, s):

∇f(x) +ATy +G(x)Tz = 0

Ax− b = 0

g(x) + s = 0

sizi = ι for i = 1, ..., p

(s, z) > 0 .

(2.9a)

(2.9b)

(2.9c)

(2.9d)

(2.9e)

The main di�erence between the relaxed and nominal KKT conditions lies in the fact that

s and z need to be positive instead of non-negative, and that in Equation 2.9d a scalar

12 2| Theoretical Background

path parameter ι > 0 is introduced.

Similar to the barrier method, the problem is solved iteratively, progressively decreasing

the value of the parameter (in this case ι, whereas in the barrier method, ζ was reduced)

to arrive at the optimal solution as the parameter tends to zero. In this circumstance,

however, as previously mentioned the Newton step is applied using a di�erent approach.

Algorithm 2.2 shows the key principles behind the primal-dual methods, where h indicates

the step length that is executed between one iterate to another [22]:

xi+1 = xi + hi∆xi , (2.10)

and is determined through a merit function which is chosen to ensure convergence. The

progress of the algorithm, instead, is measured with the duality measure χ, which repre-

sents the average value of the relaxed condition (Equation 2.9d) [22]:

χ =
sTz

p
. (2.11)

In order to reduce the value of the duality measure substantially, and hence allow for

faster convergence, the search direction needs to be composed of a centring part from the

classical Newton direction along with the introduction of a new variable ν [22]:

H(x, z) AT g(x)T 0

A 0 0 0

G(x) 0 0 I

0 0 S Z

∆x

∆y

∆z

∆s

 =

∇f(x) +ATy +G(x)Tz

Ax− b

g(x) + s

Sz − ν

 , (2.12)

where solving the linear system gives the search direction (∆x,∆y,∆z,∆s), and the

Hessian is obtained with

H(x, z) = ∇2f(x) +

p∑
i=1

zi∇2gi(x). (2.13)

S and Z, instead, represent the diagonal matrices of s and z.

2| Theoretical Background 13

Algorithm 2.2 Primal-dual interior point method [22].

1: generate initial guesses x0, y0, z0, s0 > 0

2: set σ ∈ (0, 1)

3: for i in imax do

4: compute duality measure χi = sTi zi/p

5: solve Equation 2.12 to compute a search direction

6: select hi such that (si+1, zi+1) > 0

7: (xi+1,yi+1, zi+1, si+1) = (xi,yi, zi, si) + hi∆[xi,yi, zi, si](σχi)

8: end for

The value of the parameter ν has a direct e�ect on the type of search direction executed

at the current iteration. In fact, a value of zero would indicate a pure Newton step that

solves the nominal KKT conditions. A value of χ, instead, would represent a step primarily

focused on centring the solution towards the central path. A compromise between the

two extremes is required to build an e�ective algorithm, which results in the evaluation

of the search parameter using:

ν = σχ1 , (2.14)

where σ ∈ (0, 1) represents the centring parameter.

As with the barrier method, there exist various variants of the primal-dual method, with

the Mehrotra predictor-corrector method representing the most widely used in current

commercial and open-source software [22]. The Mehrotra method, as the name states,

takes the step using a combination of a predictor and a corrector [28]. The predictor step

is taken using an a�ne-scaling direction, while the corrector accounts for the linearisation

error of Equation 2.9d. The combination forms a unique step, which is determined by the

value of the centring parameter:

σ = (χa�/χ)
3 , (2.15)

where the subscript "a�" indicates the a�ne-scaling direction. As it can be deduced, in

the cases where poor progress is made towards the solution, the value of σ would increase

to guarantee a step which is closer to a pure centring direction. If, instead, the progress

made towards the solution is adequate, the value of the centring parameter falls, resulting

in a more Newton-like step.

14 2| Theoretical Background

2.1.2. First-Order Methods

The evolution of �rst-order methods went parallel to the rise of data science and machine

learning, where the need for a fast solution is prioritised over high accuracy. In these

optimisation problems, the quantity of input data is extremely high, with a large number

of decision variables which causes a signi�cant correlation between the computational

burden and e�ciency of a simulation and the level of accuracy required. Moreover, the

randomness of the data supplied makes it illogical to try and optimise the problem below

a certain threshold of the accuracy [29].

FOMs reach the optimal solution by using information of only �rst-order, which is gen-

erally focused on sub-gradients or gradients. The fact that they do not use second-order

information has a direct e�ect on the performance of the solvers, which are avoided when

a high level of accuracy is required. They are in fact used primarily in large-scale op-

timisation problems where low accuracy is needed, having the potential to necessitate a

low computational complexity. Compared to IPMs and ASMs, these methods are simpler

to implement in terms of the amount of source code needed to build a solver [30]. The

drawback of these methods, however, is extremely signi�cant as the behaviour of a solver

is highly dependent on the problem in question [29]. This means that at times FOMs can

be orders of magnitude faster compared to ASMs or IPMs, whereas, in other cases, they

can take signi�cantly longer or even result in infeasibilities. The two major methods used

in modern FOM solvers are the gradient method and the splitting method.

Splitting Method

The splitting method is the underlying concept of the most widely used FOMs, like the

Alternating Direction Method of Multipliers (ADMM). The idea behind this optimisation

technique is that the objective function to minimise can be split into two functions, with

the objective function of Equation 2.1 being transformed into [30]:

minimise
x,v

m(x) + n(v) ,

s.t. x = v ,
(2.16)

where

m(x) = f(x) + δ(Ax | b) ,

n(x) = δ(x |Ω) .
(2.17)

2| Theoretical Background 15

The term δ is an indicator function which takes a value of 0 in the instances in which the

variable is in the convex set, and a value of ∞ otherwise.

The concept of the splitting method is that minimising the two functions m and n is

faster and simpler than minimising the single function f directly. The minimisation of

the newly formed functions can be executed using various methods, with one of the most

general methods being the Proximal Method of Multipliers. Introducing the proximal

augmented Lagrange function L

L(x, v,λ) = m(x) + n(v) + λT (x− v) +
ρ

2
||x− v||2 + 1

2
||x− x(i)||2P1

+
1

2
||v − v(i)||2P2

,

(2.18)

where ρ represents a positive penalty term, λ the Lagrange multiplier, and P1 and P2 are

positive semide�nite matrices. The minimisation can be solved by adopting the following

iterative equations:

(x(i+1),v(i+1)) ∈ argmin
x,v

L(x,v,λ) ,

λ(i+1) = λ(i) + ρ(x(i+1) − v(i+1)) .

(2.19)

Although minimising the proximal augmented Lagrange function over the x and v simul-

taneously can be as complicated as minimising the original problem, using an alternating

method which minimises over the two variables can be much faster and e�cient. This

concept gives rise to some of the most famous and used methods such as the ADMM, the

Douglas-Rachford Splitting Method, and the Chambolle-Pock scheme [30].

2.1.3. Active-Set Methods

Active-set methods (ASMs) emerged as early as 1963, stemming from an e�ort to solve

convex quadratic problems (QPs) by adapting the widely used simplex method of that

time. Over the years, these solvers have stood the test of time, o�ering a distinctive

advantage by drawing upon well-established methodologies. These types of methods result

in being extremely attractive for QPs with a small number of parameters and variables,

where the solution is competitive in terms of the computational burden required and the

accuracy of the solution obtained. In fact, Ref. [18] performs an investigation on the

e�ciency of IPMs and ASMs with problem complexity, and �nds that for problems where

a low number of variables and constraints is small, ASMs perform better, whereas for

16 2| Theoretical Background

larger problems the poor scalability of these methods is evident and limiting.

The underlying theory behind ASMs is relatively straightforward. If one poses the QP

eliminating the inequality constraints, then the problem is formulated in a reduced space

where only the equality constraints are present, which can be treated as solving a trivial

linear set of equations. Moreover, it is understandable that in a simulation not all con-

straints are active at the solution. In the realm of ASMs, the concept of the "working

set" plays a pivotal role. This set is comprised of the active constraints imposed to solve

the problem and is updated at any given iteration, evolving dynamically throughout the

optimisation process by the addition or removal of constraints as progress towards the

optimal solution is made [30].

One of the major drawbacks of ASMs is that they do not provide a priori bounds on the

number of iterations that are needed to �nd the optimal solution to a de�ned problem,

which is a vital requirement for real-time systems [31�33]. Although recent studies have

been carried out to try and overcome this de�cit [34, 35], the certi�cation on the exact

bound on the maximum number of iterations and �oating point operations is limited to

state-of-the-art ASM solvers and to speci�c problems, and therefore cannot be applied to

other types of problems without an extensive investigation.

2.1.4. Method Comparison

In order to compare theoretically the three major methods used in convex optimisation

described in this section, one has to �rst introduce two major concepts: warm-starting

and matrix sparsity. Both of these methods are used by some of the solvers in order to

speed up the simulation and grant a faster convergence.

Warm-starting: Warm-starting is a technique used by FOMs and ASMs to speed up

the optimisation of a given problem by providing as an initial guess for an iteration the

solution of the previous iteration [30]. This serves to provide an initial starting point

that is already close to the optimal solution granting a faster convergence and reducing

the computations needed to reach optimality. Because of this nature, warm-starting is

particularly useful in sequential programming [20], where a sequence of programs is solved

and the process can be accelerated by building upon the previous solution. Moreover,

this technique proves to be extremely advantageous for ASM solvers, as the solution of a

previous problem is by de�nition comprised of a feasible set [21]. Providing a feasible set

to the solver therefore eliminates the need for further computations required to make an

infeasible set feasible.

2| Theoretical Background 17

Matrix sparsity: IPMs and FOMs are able to exploit the sparsity of matrices to allow

for accelerated gradient computations and fast linear system solutions. The mostly zero

entries in the matrices also allow for e�cient storage and faster matrix operations such

as matrix factorisation and matrix-vector multiplication [30].

Having introduced the di�erent methods along with their bene�ts and drawbacks, and

having talked about the two major techniques used by solvers to allow for more e�cient

optimisations, a table comparing the solver methods has been constructed and can be

seen in Table 2.1 following a similar methodology as in Ref. [21]. A colour code is used

where, as for convention, green is used for a positive outcome, red for a negative one, and

orange for a measure in-between. The classi�cation of the problem sizes has been made

using the number of variables, constraints and parameters as in Ref. [21], respectively 6,

15, and 18 for small problems and 500, 3000, and 2000 for large problems.

Table 2.1: Comparison of convex solution methods.

ASMs FOMs IPMs

Solver implementation Medium Easy Hard

Speed (small problems) Good Medium Medium

Speed (large problems) Worst Medium Best

Consistency (speed) Medium Worst Best

Accuracy (large problems) Low Medium High

Memory usage Medium Good Good

From this �rst table, it is clear that key di�erences exist among the solvers, and the most

suitable one depends on the problem characteristics and level of accuracy required. Under

a strictly implementable point of view, FOMs result in the most easily executable solvers

as the algebra required is more straightforward, compared to the more sophisticated linear

algebra used by ASMs and IPMs [4, 30].

The size of the problem, namely the second and third entry of the table, also seems to

have an e�ect on the preferred method of choice when analysing the computational time

required to reach convergence, with IPMs favoured when the number of variables and

constraints is high [17]. For small problems, due to the fact that IPMs have a �xed cost

when solving for the factorisation of the KKT matrix, the required computational time

to �nd an optimal solution is higher, with ASMs representing the ideal choice [18].

18 2| Theoretical Background

Another characteristic that was compared is the ability of a solver to obtain the same

solutions with respect to di�erent instances of related problems (consistency), as this

re�ects the ability of a solver to obtain a solution for di�erent trajectories. IPMs exhibit

a favourable trend with an almost constant computational load for di�erent instances,

while FOMs result in being greatly a�ected by the problem at hand and ASMs fall in

between these two categories [4, 30].

Moreover, as understandable, the level of accuracy obtained when solving an optimisation

problem highly depends on the solver being used. The ASM solvers can provide results

with low accuracy for problems with large sizes, while FOMs can guarantee low to medium

accuracy [20, 29, 36], and for high-accuracy solutions the IPMs are preferred [17, 18]. The

data memory required to solve the optimisation problem is seen to be worse for ASMs.

This is because the number of linear equations solved is larger compared to IPMs and

FOMs, and hence a greater amount of memory is needed to store the matrices used when

solving these linear equations [18]. A second table (Table 2.2) highlights the technical

di�erences between the three convex methods.

Table 2.2: Comparison of characteristics of convex solution methods.

ASMs FOMs IPMs

Allows warm-starting Yes Yes No

Exploits matrix sparsity No Yes Yes

Infeasible acceptance No Yes Yes

Regarding the techniques used by the solvers of the di�erent families, it can be seen how

ASMs and FOMs allow for a warm-starting of the process [21, 30], while FOMs and IPMs

exploit the sparsity of the matrices in their calculations [30]. On the other hand, the

ASMs are the only which require the initial guess to be feasible [17].

2.2. Convex Optimisation in Space Guidance

Optimisation engineering problems mostly require the minimisation or maximisation of

an objective function, subject to some constraints and accuracy requirements. In guid-

ance, these constraints are normally formed by the dynamics of the problem and some

parameters that are related to the thrust or to the form of the control used. Over the

last 15 years, the use of convex optimisation, where the problem is formulated in a con-

vex manner through linearisation or convexi�cation techniques, has become more popular

2| Theoretical Background 19

[37]. As a result, this has pushed the optimisation industry to create new e�cient solvers

and improve existing ones.

Applications of convex optimisation in spacecraft are not only interesting, but also rep-

resent a forced choice because of the tight times of some mission scenarios. One example

lies in the problem involving a Mars precision landing with non-convex constraints on the

magnitude of the thrust vector [38]. This investigation is intended to improve the land-

ing precision of future Mars missions by orders of magnitude and enable the opportunity

for Mars sample return missions. Ref. [39], instead, focuses on the formulation of the

non-convex control constraints into a �nite-dimensional convex optimisation problem, ad-

dressed by a second-order cone (SOC) problem. The particular scenario of a Mars entry,

descent and landing phase represents a more general class of missions where a solution

to an optimisation problem is required in a swift time due to the tight �ight times of the

mission.

Another precise landing scenario which has been investigated by NASA is the idea to de-

velop an algorithm that is capable of autonomously designing the optimal powered descent

trajectory onboard a spacecraft, immediately prior to the descent burn [40]. Compared to

the aforementioned study, where the gravitational �eld of Mars can be easily estimated, a

smaller and irregular body like that of an asteroid has a much more unpredictable grav-

itational �eld which cannot be approximated by a constant gravity. Ref. [41] takes the

study to the next level by developing a second convex optimisation method to determine

the optimal time of �ight that yields the lowest propellant consumption over all �ight

times investigated.

In the realm of proximity operation, the actions required to reach a target vehicle have

been formulated as a nonlinear optimal control problem, resulting in the solving of a SOC

problem [42]. The dissertation of Ref. [43] speci�cally focuses on the use of SOCPs for

autonomous trajectory planning in rendezvous and proximity operations.

In spacecraft trajectory planning, the optimisation of an Earth-to-Mars trajectory has

been tested and veri�ed by re-writing the problem in a convex formulation using convex-

i�cation and linearisation techniques [11]. Ref. [9] builds on this investigation, applying

a homotopic approach to obtain an increased performance by considering energy-to-fuel

smoothing for the Earth-to-Dionysus bench case. A comparison of the di�erent solutions

obtained from indirect and convex methods is executed on three di�erent target bod-

ies (Mars, asteroid 67P and Dionysus), with the results showing better convergence for

modi�ed equinotical elements coordinates compared to spherical ones [5].

Convex optimisation problems, speci�cally SOC problems, have low computational com-

20 2| Theoretical Background

plexity and can be e�ciently solved within polynomial time. Algorithms like IPMs are

capable of �nding an optimal solution with a deterministic stopping criteria while main-

taining a speci�ed level of accuracy. This feature ensures that the global optimum can be

computed to any desired accuracy, all within a determined upper bound on the number

of iterations required for convergence. Consequently, numerical second-order cone pro-

grams (SOCPs) o�er signi�cant promise for performing real-time onboard computations,

particularly in scenarios where time is of the essence.

2.2.1. Sequential Convex Programming

Figure 2.1 depicts the taxonomy of the optimisation problem families, with the complexity

of the class increasing when moving from the inside to the outside. All of the classes can

be seen to be in the non-linear program (NLP) family, with the convex optimisation family

being formed at the most general level by the semide�nite program (SDP) class. This

class is currently under high development and is extremely promising for robust design

algorithms [4]. Next come the SOCPs which are currently the most advanced class that

can be used to solve onboard space problems reliably and e�ciently [4]. The smaller

classes then include quadratically constrained quadratic programs (QCQPs), QPs and

the simplest, linear programs (LPs).

NLP

Convex
OptimisationSDP

SOCP
QCQP

QP
LP

Figure 2.1: Taxonomy of optimisation technique families.

Convex optimisation can be seen to be capable of tackling a large number of problem

families. In order to solve these optimisation problems, a popular choice is the use of a

sequential convex program (SCP). At the core of this method lies the reformulation of an

2| Theoretical Background 21

original optimisation problem in a convex subproblem using di�erent techniques. These

subproblems are solved sequentially by feeding an initial guess and using the solution of

each iteration to update the approximation for the next subproblem. The initial guess

does not need to respect the constraints and can be very far from the optimal solution

of the problem [8]. Every SCP algorithm is composed of three major components, which

include the starting step, the iteration step and the stopping step:

1. Starting: The �rst step of an SCP involves the generation of an initial guess.

2. Iteration: This step involves the most computational time and e�ort. The opti-

misation problem is in fact re-written as a convex subproblem, which is solved in

a sequential manner using the initial guess generated in the �rst step. In order to

obtain a solution, a convex optimisation solver must be used. The solution of each

iteration is used to update the starting approximation of the next subproblem.

3. Stopping: At each iteration, a check is made to verify if certain stopping criteria

are met. This can take many forms and can be based on the accuracy of the solution,

the computational time, and/or the number of iterations.

The implementation of SCPs in space is renowned and it is being used in important appli-

cations like the SpaceX Starship landing manoeuvres and Falcon 9 trajectory optimisation

[12]. Moreover, NASA and Blue Origin have recently started testing the potential use of

SCPs onboard the New Shepard rocket [13, 44].

2.3. Survey of Available Software

This section deals with the state-of-the-art tools and solvers available to formulate a con-

vex optimisation problem and solve it. The tools are programs that allow the formulation

of an optimisation problem, while the solvers are focused on the resolution of the de�ned

problem through an optimisation method. This investigation, along with Subsection 2.1.4

was used to determine which tools, software and methods showed potential and were of

interest in the analysis.

2.3.1. Tools

FORCESPRO: FORCESPRO represents a competitive commercial tool used to generate

optimisation solvers which can be customised based on the user requirements and can be

deployed on embedded systems [45]. The ideal case of use is in real-time situations, where

the data supplied to the solver varies and the optimisation problem needs to be solved

several times. A custom optimisation solver in C-code is generated tailored to the problem

22 2| Theoretical Background

constructed by the user, with data that can later be accessed and modi�ed, allowing to

solve multiple instances of the same problem1.

ACADO: The ACADO Toolkit is a versatile commercial software environment compris-

ing a collection of algorithms designed for automatic control and dynamic optimisation

tasks [46]. This toolkit o�ers a comprehensive framework for employing an extensive

range of algorithms, encompassing direct optimal control, model predictive control, state

and parameter estimation, and robust optimisation [47]. ACADO Toolkit is crafted as

self-contained C++ code and is complemented by an intuitive MATLAB interface. Its

object-oriented architecture provides an e�cient means of integrating external optimisa-

tion packages and allows users to expand its capabilities with custom-built optimisation

routines. The choice of the solver in use spans from ASMs with qpOASES to IPMs with

FORCES and HPMPC.

µAO-MOC: µAO-MOC is a freely available code generation tool for embedded linear

model predictive control. The software is tailored to real-time embedded applications,

with a particular e�ort in making the optimisation algorithm suitable and e�ective for

micro-controller applications providing a low memory footprint and having determinis-

tic execution time while adopting only additions and multiplications [48]. The software,

written in Python, uses a QPs optimisation algorithm based on an augmented Lagrangian

method combined with Nesterov's fast gradient method, but other QP solvers are sup-

ported.

FiOrdOs: FiOrdOs is a MATLAB toolbox that allows to specify problem parameters

through MATLAB objects, providing a certi�cation of the iteration count. It can be freely

installed and used for automated C-code generation for �rst-order methods.

CVXPY: CVXPY is a powerful and user-friendly open-source optimisation framework in

Python designed for solving convex optimisation problems [49]. This tool provides a high-

level interface that allows users to specify optimisation problems in a simple and intuitive

manner, rather than in the restrictive and technical form associated with optimisation

solvers. Its ease of use and versatility in tackling di�erent types of problems, along with

the wide range of state-of-the-art solvers available to choose from (such as ECOS, SCS

and MOSEK, presented in the following section), has allowed CVXPY to gain popularity

in both academia and industry.

CVXPYgen: CVXPYgen is a tool that builds on CVXPY by transforming a family

of convex optimisation problems, initially modelled using CVXPY, into a tailored solver

implemented in C [19]. The resulting solver is uniquely designed for the speci�c prob-

1Available at: <https://embotech.com/FORCES-Pro> (last access on 06/04/2023)

https://embotech.com/FORCES-Pro

2| Theoretical Background 23

lem family and is adaptable to accept various parameter values. Notably, this solver

is well-suited for use in embedded systems, making it a valuable choice for optimising

performance in such environments. The problems formulated need to satisfy two strict

requirements: they need to be compliant with Disciplined Convex Programming (DCP)

and Disciplined Parametrized Programming (DPP). For the problem to respect the DCP

rules, only a certain amount of base functions with known curvature can be used [50].

DPP, instead, allows to de�ne parameters that can be accessed and modi�ed very quickly

and e�ciently. The reason behind this is because by de�ning the problem once and access-

ing the parameters at a later time to assign their values is much quicker than repeatedly

solving a new problem [51]. The DPP formulation comes with its challenges, as for a

system to be compliant it needs to satisfy the following rules [49]:

� all parameters, like variables, need to be classi�ed as a�ne,

� the product of two expressions is a�ne when at least one of the expressions is

constant, or when one is parameter-a�ne and the other is parameter-free.

A limit of CVXPYgen, however, is that contrarily to CVXPY the number of solvers

supported, although extremely powerful, is much smaller. At the time of writing, the

choice was limited to ECOS, SCS, and OSQP (another FOM solver, see Subsection 2.3.2).

2.3.2. Solvers

There exists a multitude of solvers for addressing optimisation problems, comprising a

spectrum that ranges from commercially licensed to open-source alternatives, and from

long-established algorithms to emerging, in-development solutions. To keep this section

concise, only the most relevant solvers are reported, categorising them based on the opti-

misation method employed.

IPMs

ECOS: An open-source solver implemented in C. It adopts a standard primal-dual Mehro-

tra predictor-corrector method with Nesterov-Todd scaling and self-dual embedding, with

search directions found via a symmetric inde�nite KKT system. It results in being very

competitive for medium-sized problems, which go up to tens of thousands of variables,

however, the ideal size of problems to optimise is small, showing a faster behaviour com-

pared to most existing SOCP solvers [52].

MOSEK: An optimisation suite which provides three di�erent solvers based on the prob-

lem type: a simplex solver (for linear problems), an interior-point conic solver (for linear,

24 2| Theoretical Background

nonlinear continuous, conic, and quadratic problems), and a mixed-integer solver (for

problems with integer variables or disjunctive constraints)2. It is extremely suited for

large-scale problems and allows to solve a multitude of problems which take di�erent

forms, including linear, conic, convex quadratic and quadratically constrained formula-

tions. It also provides support for a variety of programming languages, which extend from

C and Java to Julia and Rust.

NAG: Another optimisation suite which provides a vast collection of robust and tested

solvers for discrete and continuous optimisation3. It allows the modi�cation of existing

models to vastly increase the e�ciency, computational burden, and accuracy of the solu-

tion. The NAG library covers a range of di�erent types of problems, including machine

learning and numerical integration.

GUROBI: The Gurobi optimiser provides the choice between two types of algorithms: a

barrier method algorithm and a simplex method algorithm4. The barrier method results

in being the most suitable choice for large complex problems, granting a fast solution

but showing a greater numerical sensitivity. The simplex method instead grants greater

numerical stability at the expense of computational time. GUROBI also allows to use

a concurrent optimiser, which runs various algorithms simultaneously and returns the

optimal solution from the �rst converged algorithm.

CPLEX: Among the di�erent solvers available, an IPM Barrier algorithm is implemented

using a primal-dual predictor-corrector scheme which provides a valid alternative to the

simplex method. This solver is generally preferred when tackling large problems or in

cases in which the problems may exhibit issues related to numerical instability5.

CVXOPT: A free software package for convex optimisation, which interfaces with Python

and exploits the usage of dense and sparse matrices to �nd an optimal solution. Addi-

tionally, it provides interfaces to some external solvers such as MOSEK [53].

COPT: A high-performance mathematical programming solver that supports a large

variety of problem formulations and is intended to support even more in the future [54].

It has interfaces which allow the solver to be run from many well-known programming

languages and is intended to e�ciently solve large-scale problems.

2Available at: <https://www.mosek.com/documentation/> (last access on 20/04/2023)
3Available at: <https://support.nag.com/numeric/nl/> (last access on 20/04/2023)
4Available at: <https://www.gurobi.com/documentation/> (last access on 20/04/2023)
5Available at: <https://www.ibm.com/docs/en> (last access on 20/04/2023)

https://www.mosek.com/documentation/
https://support.nag.com/numeric/nl/
https://www.gurobi.com/documentation/
https://www.ibm.com/docs/en

2| Theoretical Background 25

qpSWIFT: An open-source optimisation solver developed in C that implements a primal-

dual IPM with a Mehrotra predictor-corrector step and Nesterov-Todd scaling [55]. It

was developed speci�cally for embedded and robotic QP applications.

CLARABEL: Unlike other IPM solvers, the Clarabel open-source solver handles a

quadratic objective function without requiring any epigraphical reformulation, resulting

in signi�cant computational savings for problems with these objective functions [56]. It

allows the solution of di�erent types of problems, including LPs, QPs, SOCPs, and SDPs.

FOMs

SCS: A Douglas-Rachford splitting method solver applied to a homogeneous embedding

of the quadratic cone program [57]. It is designed speci�cally for solving large-scale

problems, representing the �rst ADMM-based solver available, and being used widely in

the optimisation community.

OSQP: Developed by the University of Oxford, this solver uses an ADMM algorithm

[58]. It also grants the user the possibility to generate compiled and tailored C code to

obtain a fast and reliable solver for the given family of QPs. Using this compiled code, the

user can access and change the problem data, but not its dimensions, between problem

instances. A drawback of this solver is that it does not support second-order constraints.

ProxQP: Has its �rst targeted application is Robotics [59]. It has been extensively

tested, showing the best reliability and performance on the toughest problems found in

the literature. It is able to deal with dense, sparse or matrix-free problems.

COSMO: An accelerated ADMM-based solver for convex conic optimisation problems

written in Julia which supports a variety of problem types, including LPs, QPs, SOCPs

and SDPs [60]. It is well-suited for large-scale problems.

pipG: A novel primal-dual ADMM �rst-order method for conic optimisation [61]. pipG

improves various parameters of IPMs, including the convergence rate of the duality gap

and the convergence rate of constraint violations. However, it is still unclear whether it

can outperform state-of-the-art second-order solvers like MOSEK.

ASMs

qpOASES: A freely available implementation of the recently proposed online active set

strategy [62], which was inspired by important observations from the �eld of parametric

QPs [63]. It has several theoretical features that make it well-suited for MPC applications.

26 2| Theoretical Background

daqp: An active-set solver developed for condensed real-time MPC problems, resulting

in a competitive performance for small to medium-scale QPs and LPs [64]. For larger

problems, the solver does not perform as well as other well-known and established solvers

that exploit matrix sparsity.

HiGHS: A high-performance serial and parallel software that is freely available under the

MIT license [65]. It is extremely suited for solving large-scale sparse LPs, mixed-integer

programs and QP models.

quadprog: A convex quadratic solver that adopts the Goldfarb/Idnani numerically stable

dual algorithm [66].

QPDAS: A solver which uses a dual active-set method. The performance of the solver

results can be very e�cient when the number of inequalities of the problem is small [67].

A drawback of the solver is that, unlike other ASMs, it is not possible to warm-start the

problem and hence allow for a faster convergence of the solution.

Software Selection

Following the study and the comparison of the di�erent methods, it was clear that ASMs

represent a family with solvers that are less developed and less suitable for the context of

onboard trajectory optimisation with respect to the FOMs and IPMs. While ASMs have

demonstrated their robustness and e�ciency over decades of practical application, they are

not without their challenges. As mentioned in Subsection 2.1.3, their scalability becomes a

concern for larger and more complex problems, rendering them less �tting for certain high-

dimensional applications like interplanetary trajectory optimisation. Furthermore, their

major drawback lies in the absence of a priori bounds on the complexity certi�cation of the

solvers which represents a signi�cant limitation of the method for real-time applications.

These factors have contributed to their declining usage in contemporary optimisation

practices, and have therefore not been selected to be investigated in this study. In the wake

of this decision, CVXPYgen resulted in being the ideal candidate for this investigation

as it allowed to compare the state-of-the-art solvers for the IPMs and the FOMs. This

software allowed to generate problem-speci�c solvers by incorporating the problem de�ned

in a convex formulation in CVXPY with the open-source ECOS and SCS solvers.

2| Theoretical Background 27

2.4. Trade-o� Criteria Selection

This section delves into the aspect of selecting the trade-o� criteria needed for a fair and

correct comparison of the di�erent solvers. E�ective decision-making in real-time and

complex scenarios often hinges on the consideration of multiple factors. These selected

trade-o� criteria form the cornerstone of this study, guiding the comparative analysis

of the solvers in Chapter 4 and helping distinguish the di�erent methods in terms of

performance and solution obtained. The selected parameters include:

1. Optimality;

2. Accuracy;

3. Reliability;

4. E�ciency;

5. Computational Burden;

6. Complexity;

7. Memory;

8. E�ectiveness.

Optimality

In the context of decision-making, the term "optimality" is an extremely important crite-

rion. In essence, optimality represents the ultimate objective of an optimisation process

and is the �rst parameter that is analysed in any solution obtained. At its core is the

value of the objective function needed to minimise (or maximise, depending on the nature

of the problem). This criterion serves as a pivotal reference point, allowing to assess and

compare the values obtained, given a desired level of accuracy, using di�erent solvers. It

is measured by the value of the objective function J , which is a re�ection of the mass of

the spacecraft at �nal time tf . The lower the value of J , the higher the value of the �nal

mass, and the more the solution produced is optimal.

Accuracy

The optimality alone is not su�cient to rank the solvers from worst to best. In fact, as

various discretisation techniques can be used to transform problems from a continuous

time to a discrete time, and hence be executable on computers, accuracy (ϵ) is indeed

a fundamental aspect that can signi�cantly impact the success of an endeavour. Once

28 2| Theoretical Background

the optimal solution is obtained, its propagation using an interpolation method results

in di�erences between the desired �nal solution and the obtained one. In the context

of this study, accuracy refers to the precision obtained concerning critical parameters

such as radial position (r), velocity (v), and spherical angles (θ, ϕ) with respect to the

desired �nal values. Achieving a high level of accuracy in these variables is of paramount

importance, as they often pertain to the success of a mission. A low accuracy can in

fact lead to extensive additional fuel consumption to reach the desired state and, in some

extreme cases, also mission failure.

Reliability

As in real-time decision-making scenarios, the optimisation algorithm is run several times,

and the consistency of the solver to reach an optimal and feasible solution stands as a

critical criterion in this �eld. This fundamental characteristic de�nes the dependability of

the output of a solver, making it an indispensable consideration when selecting a solver.

To evaluate this parameter as a percentage as in Equation 2.20, a series of simulations

has to be run, and the number of non-converged solutions (failures) recorded:

R (%) =
simulations− failures

simulations
× 100 . (2.20)

E�ciency

E�ciency is quanti�ed by the computational time required to solve a given problem per

iteration (tk). It serves as a pivotal metric for evaluating the computational performance

and resource utilisation of various processes as this parameter describes how swiftly and

economically a solver progresses towards the optimal solution. The value is calculated

by taking a mean of the computational time required to solve each SCP iteration, until

convergence at the �nal iteration kf :

tk =
1

kf

kf∑
i=1

tki . (2.21)

Computational Burden

Another parameter that is crucial when evaluating any algorithm, especially for real-time

problems where a fast response is needed, is the total allocated computational (CPU) time

tCPU. Compared to the e�ciency, which represents the progress made towards a solution,

2| Theoretical Background 29

this parameter is required to determine the overall computational time required to obtain

convergence (Equation 2.22). It embodies the demand placed on computing resources,

measuring the extent to which the solvers tax the available computational power. In

decision-making scenarios, a swift response can provide signi�cant overall savings for the

mission and is hence a parameter to be considered when selecting a solver.

tCPU =

kf∑
i=1

tki . (2.22)

Complexity

Complexity is determined by the number of iterations required to attain an optimal con-

verged solution. It delineates the intricacy of the path of a solution towards optimality

and is of signi�cance as it sheds light on the computational time and resource demands

inherent to a given problem. This is not only represented by the number of SCP iterations,

but also by the number of internal solver iterations, hereafter de�ned as "operations" to

distinguish with the former.

Memory

Memory is characterised by both the memory consumption required during the solver

execution and the overall size of the compiled code. This dual aspect of memory encap-

sulates the resource demands of a computational process and exerts a direct and crucial

impact on real-life scenarios in which memory size and consumption are constrained. To

study the memory usage during the execution of the SCP, the Resident Set Size (RSS)

was measured, which represents the actual physical memory consumption.

E�ectiveness

E�ectiveness is characterised by the behaviour of an approach when faced with various

problems. The study of e�ectiveness involves understanding how well a particular method

adapts to di�erent types of problems or di�erent instances of the same problem. Since each

problem formulation may di�er from previously solved ones, all the aforementioned criteria

may be in�uenced by the new problem formulation and therefore require evaluation. The

adaptability of a solver lies at the core of many real-life implementations, as consistent

performance is essential when encountering diverse problems.

31

3| Methodology

The following chapter dives into the methodology adopted in the study, along with the

techniques used to represent the strictly non-convex minimum fuel optimisation problem in

a convex manner. Moreover, the logic behind the sequential convex program is explained,

providing the convergence criteria which has been implemented and the main parameters

applied. The chapter starts with Section 3.1 which describes the dynamical model in

spherical coordinates adopted by the study along with the normalisation criteria used.

Section 3.2 then de�nes the general optimal control problem of a fuel-optimal problem,

with Section 3.3 reporting the techniques used to reformulate the problem in convex

form, using methods such as linearisation, convexi�cation and change of variables. The

parameters used for the SCP algorithm are then outlined in Section 3.4 highlighting their

importance in achieving convergence. The chapter then ends by reporting the whole

problem concisely, along with the logic of the de�ned algorithm.

3.1. Dynamical Model

In this study, the spherical coordinate system is used to denote the state of the spacecraft.

The convention adopted is shown in Figure 3.1a where r represents the distance from the

central body to the spacecraft, θ the azimuth angle from the x axis, in the x-y plane, and

ϕ the elevation angle from the x-y plane. The spherical coordinate system is powerful

and versatile as it allows to extend the ability to pinpoint locations in three-dimensional

space, especially in scenarios where cylindrical or spherical symmetries prevail.

In spherical coordinates, the state x ∈ R7 of a spacecraft can be described as

x = [r, v, m]T = [r, θ, ϕ, vr, vθ, vϕ, m]T , (3.1)

where m indicates the mass of the spacecraft. The control vector u ∈ R3, instead, is

u = [T, αr, αϕθ]
T , (3.2)

32 3| Methodology

where T is the thrust magnitude. The angles αr and αϕθ represent how the thrust vector

projects onto the reference frame adopted [11] and are illustrated in Figure 3.1b.

αr = arccos (T/Tr) ,

αϕθ = arcsin
(Tθ

T sinαr

)
.

(3.3a)

(3.3b)

(a) Coordinates. (b) Control.

Figure 3.1: Spherical reference frame adopted.

The dynamics of a spacecraft can hence be represented in a compact state space formu-

lation [11] that takes the form of

ẋ = f(x, u) , (3.4)

where the vector f ∈ R7 represents the dynamics of the spacecraft dependent on both

the state and the control.

3| Methodology 33

3.1.1. Equations of Motion in Spherical Coordinates

The equations of motion represent a fundamental framework for describing the dynamics

of an object in three-dimensional space. For a spherical system, they are as follows [11]:

ṙ = vr

θ̇ =
vθ

r cosϕ

ϕ̇ =
vϕ
r

v̇r =
v2θ
r

+
v2ϕ
r

− µ

r2
+

T cosαr

m

v̇θ = −vθvr
r

+
vϕvθ tanϕ

r
+

T sinαr sinαϕθ

m

v̇ϕ = −vϕvr
r

− v2θ tanϕ

r
+

T sinαr cosαϕθ

m

ṁ = −T

ve

(3.5a)

(3.5b)

(3.5c)

(3.5d)

(3.5e)

(3.5f)

(3.5g)

where ve is the exhaust velocity. As notable in Equation 3.5d, Equation 3.5e, and Equa-

tion 3.5f the control is highly coupled with the state.

3.1.2. Normalisation

In order to allow the variables used in this study to have a similar magnitude, and hence

allow for faster computations, a normalisation method is used. The values used for the

normalisation of the position, velocity, time, thrust, and mass are reported in Table 3.1,

along with the physical constants used in every simulation. As the angles in spherical

coordinates are already in radians, there is no need to normalise them [11]. The value of

the distance unit used is of exactly one astronomical unit (AU), from which the velocity

unit is derived through V U =
√

µ/DU , representing the velocity of the Earth if its orbit

was circular. The time unit, instead, is obtained as TU = DU/V U . The implementation

of this approach allowed the scaled gravitational constant in all simulations to take the

value of one, simplifying the equations of motion.

34 3| Methodology

Table 3.1: Physical constants.

Parameters Value

Gravitational constant, µ (m3/s2) 1.32712440e+20

Gravitational acceleration, g0 (m/s2) 9.80665e+00

Distance unit, DU (m) 1.49597870e+11

Velocity unit, V U (m/s) 2.97846919e+04

Time unit, TU (s) 5.02264286e+06

Thrust unit, FU (N) Tmax

Mass unit, MU (kg) m0

As can be seen from the table above, all the parameters reported are constant through

simulations except for FU and MU , as they depend on the speci�cs of the spacecraft and

the propulsion unit in use. Following the normalisation of the parameters, the equations

of motion described in Equation 3.5 become

ṙ = vr

θ̇ =
vθ

r cosϕ

ϕ̇ =
vϕ
r

v̇r =
v2θ
r

+
v2ϕ
r

− 1

r2
+

cT cosαr

m

v̇θ = −vθvr
r

+
vϕvθ tanϕ

r
+

cT sinαr sinαϕθ

m

v̇ϕ = −vϕvr
r

− v2θ tanϕ

r
+

cT sinαr cosαϕθ

m

ṁ = −cT

ve
,

(3.6a)

(3.6b)

(3.6c)

(3.6d)

(3.6e)

(3.6f)

(3.6g)

where c takes the value of TmaxDU/(m0V U2), and the �rst three equations reported are

unchanged compared to the previous formulation.

3.2. Optimal Control Problem

Taking the dynamics of the spacecraft as de�ned in Equation 3.4, and the state and

control as Equation 3.1 and Equation 3.2 respectively, the minimum-fuel optimisation

3| Methodology 35

problem can be represented by a two-point boundary-value problem. The initial and �nal

times (t0 and tf) of the problem are �xed along with the initial state x(t0) and �nal state

x(tf). The �nal mass m(tf), however, is left free in order to perform a minimisation on it

and obtain a fuel-optimal solution. The representation of the aforementioned boundary

conditions (BCs) can be summarised as

x(t0) = [r(t0), θ(t0), ϕ(t0), vr(t0), vθ(t0), vϕ(t0), m(t0)]
T = x0 ,

x(tf) = [r(tf), θ(tf), ϕ(tf), vr(tf), vθ(tf), vϕ(tf)]
T = xf .

(3.7a)

(3.7b)

Additional limits can be imposed on the problem by setting lower and upper bounds on

the state and the controls to ensure that the solution is feasible [5, 11]:

0.1

0

−π

−10

−10

−10

0.1

≤

r

θ

ϕ

vr

vθ

vϕ

m

≤

10

10π

π

10

10

10

1

, (3.8)

00
0

 ≤

 T

αr

αϕθ

 ≤

 1

π

2π

 . (3.9)

Although, theoretically, the lower bound of r should be zero, a value of 0.1 is chosen

to prevent singularities from occurring. All other values are chosen following [11] and

common sense. The thrust is bounded within the limit 0 ≤ T ≤ 1 as the values are

normalised by the maximum thrust [5]. The objective function J , instead, for fuel-optimal

problems is de�ned in Mayer form as:

J = −m(tf) , (3.10)

where minimising the fuel consumption of a single-stage spacecraft is equivalent to max-

imising its �nal mass. The minimum-fuel problem can hence be posed as an optimal

control problem with the form:

36 3| Methodology

minimise
u

J = −m(tf) ,

s.t. ẋ = f(x,u) ,

x(t0) = x0 ,

x(tf) = xf ,

0.1

0

−π

−10

−10

−10

0.1

≤

r

θ

ϕ

vr

vθ

vϕ

m

≤

10

10π

π

10

10

10

1

,

00
0

 ≤

 T

αr

αϕθ

 ≤

 1

π

2π

 .

(3.11)

3.3. Successive Convexi�cation Method

As previously stated in Subsection 3.1.1, the problem is highly non-linear, with the cou-

pling of the control and states which can cause problems of convergence [10]. This section

deals with the techniques and methods used to correctly formulate the dynamics in a

linear manner and the problem in a convex form.

3.3.1. Change of Variables

The coupling of the state and the control in the dynamics can cause high-frequency jitters

to emerge when a successive linearisation is applied [10]. A way around this problem is

to apply a change of variables to de�ne the original problem. Introducing the new control

variable τ and the pseudo-mass variable z:

τ = T/m , (3.12)

z = lnm, (3.13)

3| Methodology 37

allows to rewrite Equation 3.6g as

ż = −cτ/ve. (3.14)

In order to ensure that the control is decoupled from the states, there is a need to introduce

another three variables that represent the projection of τ onto the reference frame:

τr = τ cosαr , (3.15)

τθ = τ sinαr sinαϕθ , (3.16)

τϕ = τ sinαr cosαϕθ , (3.17)

which follow the constraint

τ 2r + τ 2θ + τ 2ϕ = τ 2 . (3.18)

Following the changes in the problem formulation, the limit of the control is transformed

from Equation 3.9 to 0 ≤ T ≤ 1/m, which generates the subsequent BCs [5, 11]:

0 ≤ τ ≤ exp(−z). (3.19)

−10

−10

−10

 ≤

τrτθ
τϕ

 ≤

1010
10

 . (3.20)

The BC of the pseudo mass, instead, can be written as:

ln(0.1) ≤ z ≤ 0 , (3.21)

with the bounds on the position and velocity unchanged from Equation 3.8. Using the

de�nition presented in Equation 3.13, and applying the newly de�ned variables, the dy-

namics of the problem becomes

38 3| Methodology

ṙ = vr

θ̇ =
vθ

r cosϕ

ϕ̇ =
vϕ
r

v̇r =
v2θ
r

+
v2ϕ
r

− 1

r2
+ cτr

v̇θ = −vθvr
r

+
vϕvθ tanϕ

r
+ cτθ

v̇ϕ = −vϕvr
r

− v2θ tanϕ

r
+ cτϕ

ż = −cτ

ve
,

(3.22a)

(3.22b)

(3.22c)

(3.22d)

(3.22e)

(3.22f)

(3.22g)

which can be written as a state space formulation

ẋ = f(x) +Bu , (3.23)

with the matrix B ∈ R7×4 representing the control matrix, and the newly de�ned state

vector (x ∈ R7) and control vector (u ∈ R4) are

x = [r, θ, ϕ, vr, vθ, vϕ, z]T , (3.24)

u = [τr, τθ, τϕ, τ]T . (3.25)

The initial BC has to be updated in order to account for the pseudo-mass using x0 =

[r(t0), θ(t0), ϕ(t0), vr(t0), vθ(t0), vϕ(t0), z(t0)]
T .

The parameters f and B hence take the form of

f(x) =

vr

vθ/(r cosϕ)

vϕ/r

v2θ/r + v2ϕ/r − 1/r2

−vθvr/r + vϕvθ tan(ϕ)/r

−vϕvr/r − v2θ tan(ϕ)/r

0

, (3.26)

3| Methodology 39

B(x) =

0 0 0 0

0 0 0 0

0 0 0 0

c 0 0 0

0 c 0 0

0 0 c 0

0 0 0 −c/ve

. (3.27)

The control, u, is now decoupled from the state in the dynamics, removing the possibility

of the aforementioned jitters and allowing for better convergence. It can also be noted that,

once the problem parameters are de�ned, the B matrix remains unchanged throughout

the simulation as both the exhaust velocity, ve, and c are constants of the spacecraft. This

means that the dependency of the parameter on x can be dropped.

The objective function of the optimal control problem presented in Equation 3.10 can also

be rede�ned as

J =

∫ tf

t0

τ(t) dt , (3.28)

considering that the lower the total control cost, the lower the fuel consumption.

A drawback of the change of variables used is that the control constraints (Equation 3.18

and Equation 3.19) will need to be convexi�ed, as they are now in a non-linear and

non-convex form. This can be resolved and is addressed in the following subsection.

3.3.2. Convexi�cation

Control

The problem formulation after the change of variables remains non-convex due to the

constraints of Equation 3.18 and Equation 3.19. By applying a �rst-order Taylor series

expansion to the upper bound of the latter, the constraint can be represented in a convex

form, through the following condition [11]:

0 ≤ τ ≤ exp(−z∗)[1− (z − z∗)] , (3.29)

where z∗ represents the reference time history of the pseudo-mass. The second constraint

(Equation 3.18), instead, is non-convex as it represents the surface of a cone in three-

40 3| Methodology

dimensional space, where the interior of the cone is not included in the domain. In order

to ensure that the interior is taken into account, and hence allow for a convex constraint

to be used, a relaxation technique is adopted to expand the feasible set to

τ 2r + τ 2θ + τ 2ϕ ≤ τ 2 . (3.30)

Although the constraint in 3D space can be complicated to visualise, a representation in

2D space [11] can help explain the convexi�cation process visually by setting one of the

left-hand side parameters, in this case, τr, equal to zero as illustrated in Figure 3.2.

Figure 3.2: Control constraint in 2D space.

While imposing this constraint, a "bug" was found in the atomic function used to generate

second-order constraints (soc), with errors arising when dealing with more than 100

constraints. A way around this problem has been found by rewriting these constraints in

explicit form. These are all issues that the CVXPYgen community is currently working

on, and therefore it is expected that in the future these limits will be addressed.

Dynamics

Having the constraints all in a linear or SOC form, the remaining part that needs to be

linearised is the dynamics. The change of variables introduced in Subsection 3.3.1 allowed

the control to be fully decoupled from the state, and hence the only term which remains

nonlinear in the dynamics is f . This term can be linearly approximated by introducing

a reference trajectory x∗:

ẋ = f(x∗) +A(x∗)(x− x∗) +Bu , (3.31)

3| Methodology 41

where A ∈ R7×7 is the derivative of the dynamics with respect to the reference trajectory:

A(x∗) =

0 0 0 1 0 0 0

− vθ
r2 cosϕ

0
vθ sinϕ

r cos2 ϕ
0

1

r cosϕ
0 0

−vϕ
r2

0 0 0 0
1

r
0

2

r3
−

v2θ + v2ϕ
r2

0 0 0
2vθ
r

2vϕ
r

0

vrvθ − vθvϕ tanϕ

r2
0

vθvϕ
r cos2 ϕ

−vθ
r

vϕ tanϕ− vr
r

vθ tanϕ

r
0

vrvϕ + v2θ tanϕ

r2
0 − v2θ

r cos2 ϕ
−vϕ

r
−2vθ tanϕ

r
−vr

r
0

0 0 0 0 0 0 0

. (3.32)

3.3.3. Discretisation

In order to solve the problem on a computer, the convex subproblem needs to be tran-

scribed from continuous time to discrete time through the use of an integration method

[4]. Ref. [1] focuses on analysing di�erent discretisation techniques, covering the Adaptive

Legendre-Gauss-Radau Pseudospectral Method, the Arbritary-Order Legendre-Gauss-

Lobatto (LGL) Method, and the First-Order-Hold (FOH) Method for three di�erent test

cases. The study �nds the FOH method as being the most suitable for onboard low-thrust

minimum-fuel trajectory optimisation, with LGL and pseudospectral methods presenting

oscillations in the control which violate the bounds of the thrust. As the focus of this

thesis is not on the discretisation methods, but on the performance of convex solvers, the

trapezoidal integration scheme is used as in Ref. [11] due to its straightforwardness and

simplicity in implementation [68].

The problem is therefore discretised evenly through time, forming a set of N − 1 equality

constraints, where N represents the number of nodes. The state di�erential equation can

be written using the trapezoidal scheme as

xi − xi−1 =
∆t

2
(ẋi − ẋi−1) , (3.33)

where i represents the node, taking values of i = 2, ..., N , and ∆t indicates the time step

(ti − ti−1) which is constant throughout the integration scheme. The trapezoidal repre-

sentation, combined with the dynamics of Equation 3.31 forms the following constraint

which is enforced at each node:

42 3| Methodology

xi − xi−1 =
∆t

2
[f(x∗

i) +A(x∗
i)(xi − x∗

i) +Bui − ...

f(x∗
i−1)−A(x∗

i−1)(xi−1 − x∗
i−1)−Bui−1].

(3.34)

The cost function (Equation 3.28) also needs to be converted using the same trapezoidal

scheme, for consistency, resulting in

J =
∆t

2

N∑
i=2

(τi + τi−1), (3.35)

which can be written in a more compact form as

J =
∆t

2
(τ2:N + τ1:N−1). (3.36)

The original non-convex problem can hence be rewritten as a convex subproblem:

minimise
u

J =
∆t

2
(τ2:N + τ1:N−1) ,

s.t. xi − xi−1 =
∆t

2
(ẋi − ẋi−1) for i = 2, ..., N ,

x(t0) = x0 ,

x(tf) = xf ,

0 ≤ τi ≤ exp(−z∗i)[1− (zi − z∗i)] for i = 1, ..., N ,

τ 2ri + τ 2θi + τ 2ϕi ≤ τ 2i for i = 1, ..., N ,

0.1

0

−π

−10

−10

−10

ln(0.1)

≤

r

θ

ϕ

vr

vθ

vϕ

z

≤

10

10π

π

10

10

10

0

,

−10

−10

−10

 ≤

τrτθ
τϕ

 ≤

1010
10

 .

(3.37)

Due to the linearisation of the dynamics the solution of Equation 3.37, along with the

lower and upper limits, does not necessarily grant an optimal solution to the minimum-

3| Methodology 43

fuel optimisation problem [5]. In order to overcome this issue, the convex subproblem is

solved sequentially through an SCP, updating the reference trajectory at every iteration

with the optimal solution of the previous step until a prede�ned tolerance is reached.

3.4. Sequential Convex Programming Algorithm

The equations and constraints de�ned in the previous section are not su�cient alone to

generate a state-of-the-art SCP. In fact, in order to allow for better convergence of the

algorithm some methods can be used, like the introduction of slack variables or a trust

region. Moreover, a convergence criterion needs to be imposed to allow the algorithm to

terminate when a certain tolerance in the solution is achieved. The following subsections

will cover these aspects, presenting the methods adopted in the algorithm.

3.4.1. Arti�cial Infeasibility

The problem of arti�cial infeasibility arises when the solution of the convex subproblem

obtained from the SCP process de�ned in Subsection 2.2.1 results infeasible at times

in which the original problem is theoretically solvable [8, 37, 69]. This is caused by the

linearisation of the dynamics, and can be solved through the introduction of slack variables

[5]. In the case of the dynamics, h ∈ R7 transforms the equation into

ẋ = f(x∗) +A(x∗)(x− x∗) +Bu+ h. (3.38)

As a linearisation is executed also on the control, the same procedure needs to be applied

to Equation 3.29 by introducing the slack variable η ∈ R at each node [9]:

0 ≤ τ ≤ exp(−z∗)[1− (z − z∗)] + η. (3.39)

The slack variables must also be taken into account in the cost function as

J =
∆t

2
(τ2:N + τ1:N−1) + C

7∑
j=1

N∑
i=1

|hj,i|+D
N∑
i=1

max(0, ηi), (3.40)

where C > 0 and D > 0 are weight factors of the slack variables, both chosen to be 100,

which act as a penalising term in the cost function [1]. It is therefore understandable that,

at the end of the optimisation process, the values of the slack variables h and η must be

near zero in order to satisfy the constraints and yield an optimal result.

44 3| Methodology

3.4.2. Trust Region

For SCP algorithms a trust region has been demonstrated to greatly improve convergence

by keeping the solution in the neighbourhood of the reference trajectory [1, 5, 9, 11]. A

study has been carried out by Ref. [1] to analyse the e�ect that di�erent trust regions

have on the convergence and optimal solution obtained for fuel-optimal trajectories. The

�ndings, which cover a variety of hard and soft trust regions, concluded that all methods

yield similar results but the soft trust region required more iterations to solve the SOC

constraint, leading to a greater computational time. For this study, a constant trust

region, δ, has been applied for the �rst SCP iteration.

∥∥x(k) − x(k−1)
∥∥
∞ ≤ δ, (3.41)

where the superscript k represents the iteration of the SCP algorithm. This constraint

is applied when k = 1 and the only information available for the reference trajectories is

the initial guess x(0), with δ taking the value of

δ = [1, 5π, 10π, 0.4, 0.4, 0.4, 10]T . (3.42)

As the initial generated reference trajectory x(0) holds no information on the pseudo-mass

z, the limit imposed on this variable was selected to be of a high magnitude in order to

mitigate a restriction on the convergence of this parameter. The remaining values of δ

can be seen to be relatively high if it is considered that the variables are normalised. This

is done to account for the possibility that the initial reference trajectory supplied to the

solver might be far from the optimal one, and therefore the output from the �rst SCP

iteration might diverge drastically from x(0).

When the algorithm enters the second iteration (i.e. for k > 1), the information stored

includes two reference trajectories, allowing for a Cauchy sequence to be applied [11] to

guarantee a better convergence.

∥∥x(k) − x(k−1)
∥∥
∞ ≤ γ

∥∥x(k−1) − x(k−2)
∥∥
∞ , (3.43)

where the trust region factor γ ∈ (0, 1) is selected in accordance with the desired level of

convergence, as indicated by Ref. [5]. The choice of this factor bears a direct impact on the

optimisation process. While a lower value of γ can potentially allow for faster convergence,

this accelerated progress might come at the cost of introducing infeasibilities into the

3| Methodology 45

optimisation. Conversely, a higher value of γ can increase the likelihood of successful

convergence at the expense of a longer optimisation process, potentially leading to a

computational burden that outweighs the gains.

3.4.3. Convergence Criteria

As stated in Subsection 3.3.3 an SCP algorithm continues to sequentially solve the optimi-

sation problem until a certain, prede�ned, tolerance is achieved. The choice of the method

used for convergence is trivial to ensure that the solution obtained is in fact optimal, and

re�ects the desired level of accuracy.

Like the trust region, the selection of the convergence technique can take various forms.

In this paper, the process reported in Ref. [1] is adopted which focuses on the maximum

constraint violation (εc) and the relative change of �nal pseudo-mass (εz) between the

latest and previous SCP iteration. These values enforce the following stopping criteria:

εc ≤ 10−6 , (3.44)

εz =
∣∣z(k)(tf)− z(k−1)(tf)

∣∣ ≤ 10−4 , (3.45)

where εc is found by recording the maximum constraint violation of the problem de-

�ned through CVXPY (prob.constraint.violation). An optimal solution is therefore

found if both constraints are respected. The values of the pseudo-mass convergence and

constraint violation were selected in accordance with Ref. [1].

In order to prevent the algorithm from running endlessly when an optimal solution is

obtained without satisfying the convergence criteria, an additional check is implemented

to monitor the progress of the solution across successive SCP iterations, as adopted in

Ref. [1]. The execution of the algorithm is therefore stopped if the relative di�erence in

solution of the state, εx, falls below a prede�ned threshold:

εx =
∥∥x(k) − x(k−1)

∥∥
∞ ≤ 10−7 , (3.46)

or if the number of SCP iterations, k, exceeds a prede�ned limit (kmax). In this study,

the maximum number of iterations is set to 50 following initial analyses which showed

convergence at a value far below that chosen for kmax.

46 3| Methodology

3.4.4. Initial Guess Generation

As there is a lack of information on the reference trajectory for the initial iteration of the

SCP algorithm, a guess has to be generated. Describing the position of the spacecraft

using a third-order polynomial, where

r = at3 + bt2 + ct+ d , (3.47)

and

v = 3at2 + 2bt+ c , (3.48)

one can �nd the constants of the equation (a, b, c, d) using the initial and �nal boundary

conditions. In fact, through a correct substitution, the constants take the values of

a =
2(r0 − rf)

t3f
+

vf + v0

t2f
,

b =
vf − v0

2tf
− 3atf

2
,

c = v0 ,

d = r0 .

(3.49a)

(3.49b)

(3.49c)

(3.49d)

Equation 3.47 and Equation 3.48 are therefore used, along with the problem bounds, to

generate a reference trajectory for the �rst SCP iteration, where the time is discretised in

N − 1 uniform time steps ranging from t0 to tf . No reference was generated for the mass

of the spacecraft, leaving the parameter unchanged.

3| Methodology 47

3.4.5. Algorithm

Combining all the criteria, techniques and bounds discussed in this section, the convex

subproblem takes the following form:

minimise
u,h,η

J =
∆t

2
(τ2:N + τ1:N−1) + C

7∑
j=1

N∑
i=1

|hj,i|+D

N∑
i=1

max(0, ηi) ,

s.t. xi − xi−1 =
∆t

2
(ẋi − ẋi−1) for i = 2, ..., N ,

ẋ = f(x∗) +A(x∗)(x− x∗) +Bu+ h ,

x(t0) = x0 ,

x(tf) = xf ,

0 ≤ τi ≤ exp(−z∗i)[1− (zi − z∗i)] + ηi for i = 1, ..., N ,

τ 2ri + τ 2θi + τ 2ϕi ≤ τ 2i for i = 1, ..., N ,∥∥x(k) − x(k−1)
∥∥
∞ ≤ δ for k = 1 ,∥∥x(k) − x(k−1)

∥∥
∞ ≤ γ

∥∥x(k−1) − x(k−2)
∥∥
∞ for k > 1 ,

0.1

0

−π

−10

−10

−10

ln(0.1)

≤

r

θ

ϕ

vr

vθ

vϕ

z

≤

10

10π

π

10

10

10

0

,

−10

−10

−10

 ≤

τrτθ
τϕ

 ≤

1010
10

 .

(3.50)

As reported in Subsection 2.2.1, an SCP algorithm is necessary in order to solve a series

of subproblems of the original optimisation problem and progress to a solution, until

prede�ned convergence criteria are met. Algorithm 3.1 displays the logic behind the SCP

algorithm adopted in this study, with the problem and criteria outlined in this section.

48 3| Methodology

Algorithm 3.1 Sequential Programming Algorithm

1: generate a reference trajectory x(0)

2: for k in kmax do

3: x∗ = x(k−1)

4: solve Problem 3.50 to �nd x(k) and u(k)

5: if εc ≤ 10−6 & εz ≤ 10−4 then

6: optimal solution found: xopt = x(k)

7: uopt = u(k)

8: break

9: else if εx ≤ 10−7 then

10: progress is too small: break

11: end if

12: end for

DPP compliance

In order to allow the problem to be formulated according to DPP convention, as stated

in the CVXPYgen introduction of Subsection 2.3.1, certain rules have to be satis�ed, and

are reported here for reference:

� all parameters, like variables, need to be classi�ed as a�ne,

� the product of two expressions is a�ne when at least one of the expressions is con-

stant, or when one of the expressions is parameter-a�ne and the other is parameter-

free.

This allows to de�ne parameters which can be modi�ed without reconstructing the entire

problem, signi�cantly speeding up the solution of the SCP as updating the values can be

much faster than repeatedly solving a newly de�ned problem.

As can be seen from the requirements, some of the constraints imposed in the problem

formulation need to be rede�ned to prevent two variables from being allocated in the same

expression. This brought to the introduction of a new variable, ∆x, which represents the

di�erence between the current state and reference state:

∆x = x(k) − x(k−1), (3.51)

and the de�nition of parameters f , A, x∗ to update with the iteration-speci�c values.

3| Methodology 49

Moreover, in order to impose the convergence of the algorithm and allow it to pass from

the de�ned trust region δ to a Cauchy sequence, the trust region condition was updated

from Equation 3.41 and Equation 3.43 to:

∥∥x(k) − x(k−1)
∥∥
∞ ≤ Υ , (3.52)

where the newly de�ned parameter Υ took a value of:

Υ =

δ , if k = 1

γ
∥∥x(k−1) − x(k−2)

∥∥
∞ , otherwise .

(3.53)

Lastly, another parameter needed to be de�ned in order to prevent the multiplication of

two parametrized expressions, which goes against DPP rules [49]. This was de�ned as

expz, which represented the exponential of the reference pseudo-mass of Equation 3.39:

expz = exp(−z∗) (3.54)

51

4| Numerical Results

This chapter presents the results obtained using the proposed setup and their analysis.

Section 4.1 �rst introduces the di�erent test cases used, explaining their importance and

reintroducing the criteria used for the analysis. Section 4.2 then discusses the important

choice of parameters such as the value of the trust region factor for each test case and the

limit of operations imposed on each solver. A form of validation is given by comparing the

results obtained using the proposed algorithm and the ones from literature in Section 4.3.

Section 4.4 then provides a detailed analysis of the simulation results corresponding to

the evaluation criteria outlined in Section 2.4. Section 4.5 concludes the chapter by

analysing the performance of the available IPM solvers in CVXPY and comparing the

results obtained from the compiled and non-compiled codes.

The simulations of all test cases were run on the same Microsoft Surface Laptop 4, powered

by an 11th Gen Intel(R) Core(TM) i5-1135G7 and with 16 GB RAM. To ensure su�cient

data collection and mitigate the risk of introducing bias, a Monte Carlo (MC) simulation

was employed. This simulation enclosed a total of 100 runs and incorporated a standard

deviation of 10% applied to the �nal position, xf , in order to generate an initial perturbed

reference trajectory. While the trajectory produced through this method might diverge

drastically from the optimal solution, it was deliberately designed to challenge the solvers

to their utmost capacity and provide a comprehensive assessment of their performance.

This strategic approach grants to scrutinise the abilities of the solvers under demanding

conditions and draw meaningful insights about their e�ciency and limitations.

The reported results represent the median across all MC samples, and, when present, error

bars indicate the lower quartile and upper quartile. The simulation setup was carried out

using CVXPYgen v0.2.31 in conjunction with Python v3.92. The problem formulation

utilised CVXPY v1.33, and ECOS v2.0.14 and SCS v3.2.35 were employed to generate the

compiled solvers. To ensure that both solvers leveraged the strengths of their respective

1Available at: <https://github.com/cvxgrp/cvxpygen> (last accessed on 12/10/2023)
2Available at: <https://www.python.org/downloads/> (last accessed on 04/05/2023)
3Available at: <https://www.cvxpy.org/> (last accessed on 12/10/2023)
4Available at: <https://github.com/embotech/ecos> (last accessed on 20/09/2023)
5Available at: <https://github.com/cvxgrp/scs> (last accessed on 20/09/2023)

https://github.com/cvxgrp/cvxpygen
https://www.python.org/downloads/
https://www.cvxpy.org/
https://github.com/embotech/ecos
https://github.com/cvxgrp/scs

52 4| Numerical Results

method family (see Subsection 2.1.4), the option to use warm starting was enabled for

SCS, while ECOS automatically exploited matrix sparsity.

4.1. Experimental Setup

Adopting the SCP scheme presented in Algorithm 3.1, a MC analysis was carried out in

GitLab (see Appendix C) where three test cases were used to compare the performance

of the solvers. The three scenarios were taken to have an increasing complexity to try

and push to the edge the performance of the solvers. These problems include an Earth-

to-Mars transfer with BCs taken from [11], a CubeSat transfer from Sun�Earth Lagrange

point L2 to near-Earth asteroid 2000 SG344 (SEL2�NEA) taken from [1], and �nally an

Earth-to-Venus transfer, also taken from [1]. The simulation parameters for each of the

three problems are given in Table 4.1, with the BCs for each case, in spherical coordinates,

reported in Table 4.2.

Table 4.1: Simulation parameters for the test cases.

Parameters Earth�Mars SEL2�NEA Earth�Venus

Time of Flight (days) 253 700 1000

Initial Mass (kg) 659.3 22.6 1500

Maximum Thrust (N) 0.55 2.25e-03 0.33

Speci�c Impulse (s) 3300 3067 3800

Number of Nodes (-) 100 125 150

The number of revolutions for the initial guess generation (Subsection 3.4.4) were taken

as in literature to be of 0 for the Earth�Mars case, 2 for the SEL2�NEA transfer and 3

for the Earth�Venus case. The choice of the test cases was made not only to increase the

complexity and push the performance of the methods, but also to represent a source of

validation for the obtained output and the proposed algorithm.

The �rst case involves the Earth�Mars trajectory, chosen for its simplicity, featuring a

short time of �ight and a single revolution. This case acts as a foundational benchmark,

enabling a straightforward assessment of the performance of the optimisation algorithm

for interplanetary transfers.

Moving beyond the straightforwardness of the Earth�Mars case, the second scenario con-

cerns a SEL2�NEA CubeSat transfer similar to the M-ARGO mission analysis of Ref.

4| Numerical Results 53

[70]. This scenario introduces more complexity and brings diverse initial and �nal posi-

tions when compared to planet-to-planet transfers. The SEL2�NEA transfer provides a

more comprehensive test bed for evaluating the versatility and adaptability of the solvers.

What makes this case harder compared to the Earth�Mars trajectory is the extended

time of �ight of the transfer combined with the low thrust levels imposed by the limited

dimensions of the spacecraft.

Finally, the study extends to the Earth�Venus problem, representing the most complex

scenario simulated in the study. With a prolonged time of �ight and a higher number of

revolutions, the Earth�Venus scenario is aimed to challenge the capacities of the solvers

to handle interplanetary missions with extended trajectories, further gauging their e�ec-

tiveness in real-world applications.

It is noteworthy to mention that at the time of writing CVXPYgen presents a constraint

on the number of parameters that can be employed, imposing a maximum allowance of

150 nodes for the minimum-fuel problem presented. In light of this, the number of nodes

used for the three di�erent simulations are of 100, 125, and 150, chosen to re�ect the

increasing times of �ight of the transfers.

Table 4.2: Boundary conditions in non-dimensional units.

Earth�Mars SEL2�NEA Earth�Venus

Initial Final Initial Final Initial Final

r (DU) 1.0000e+00 1.5237e+00 9.9568e-01 9.2843e-01 9.9948e-01 7.1860e-01

θ (rad) 0.0000e+00 3.1416e+00 2.3531e+00 1.3670e+01 2.4001e-01 2.0894e+01

ϕ (rad) 0.0000e+00 0.0323e+00 -3.5264e-05 -1.5444e-03 -1.6719e-06 3.8500e-02

vr (VU) 0.0000e+00 0.0000e+00 8.8856e-03 -4.7179e-02 -1.6986e-02 -1.9924e-03

vθ (VU) 1.0000e+00 0.8101e+00 4.4338e-05 1.0625e+00 1.0014e+00 1.1831e+00

vϕ (VU) 0.0000e+00 0.0000e+00 0.0000e+00 -1.3067e-03 1.5011e-05 5.3326e-02

The results presented cover the analysis of the criteria introduced in Section 2.4, which

are reported for completeness in Table 4.3 with a more detailed description.

54 4| Numerical Results

Table 4.3: Description of criteria used.

Criteria Measure

Memory
Determined by analysing the size of the compiled code and the mem-

ory usage during the execution of the SCP.

Complexity

Represents the total number of iterations and operations to reach

a converged solution, and is measured by using the SolverStats6

object of a CVXPY problem.

E�ciency

Describes the computational performance of the solver:

tk =
1

kf

kf∑
i=1

tki . (4.1)

Computational

Burden

Indicates the overall CPU time required to obtain convergence:

tCPU =

kf∑
i=1

tki . (4.2)

Accuracy

Outlines the error between the re-propagated optimal solution, x̃,

and the desired state at �nal time:

ϵ = |x̃(tf)− xf | . (4.3)

Optimality

Measured by determining the value of the objective function that is

being minimised:

J =
∆t

2
(τ2:N + τ1:N−1) + C

7∑
j=1

N∑
i=1

|hj,i|+D
N∑
i=1

max(0, ηi) . (4.4)

6Available at: <https://www.cvxpy.org/index.html> (last accessed on 13/11/2023)

https://www.cvxpy.org/index.html

4| Numerical Results 55

Reliability

Constitutes the percentage of converged optimal solutions among

the MC samples, measured through:

R (%) =
simulations− failures

simulations
× 100 . (4.5)

E�ectiveness
Re�ects the variation of the above criteria with a change in the initial

guess or test case.

4.2. Parametric Analysis

Trust Region Factor

As outlined in Subsection 3.4.2, the trust region factor embodies the intricate interplay

between convergence rate, feasibility, and computational e�ciency, shaping the outcome

of the optimisation algorithm. In order to understand how these values are a�ected, an

analysis was done using the Earth�Mars case, varying the trust region factor and leaving

all other parameters constant. This is shown by reporting the solver performance and

e�ciency in Figure 4.1 and Figure 4.2.

(a) Burden. (b) E�ciency.

Figure 4.1: E�ect of the trust region factor on computational loads.

56 4| Numerical Results

These initial �gures clearly illustrate how variations in the parameter γ have a pronounced

impact on the obtained results. Particularly, when running the ECOS solver, a trust

region factor of 0.7 emerges as the optimal choice in terms of computational burden and

e�ciency. On the other hand, with regards to SCS, the computational e�ciency remains

relatively consistent across di�erent γ values, with only a marginal decline observed for

higher values of the trust region factor. In the context of problem complexity, variations

in the number of iterations directly correlate with the number of operations required to

reach an optimal solution. The study highlights that, for both solvers, a γ value of 0.7

strikes as a favourable balance between problem complexity and computational behaviour.

(a) Iterations. (b) Operations.

Figure 4.2: E�ect of the trust region factor on complexity.

Another parameter that had to be considered, as it is vital for space missions, is the

accuracy of the propagated solution, which is reported in Figure 4.3. In the �gure, the

di�erence between the desired �nal radial position, r, and that obtained through a propa-

gation of the optimal solution is reported as it was the leading parameter for the accuracy

investigation, with more pronounced di�erences with respect to the velocity and angles.

4| Numerical Results 57

Figure 4.3: E�ect of the trust region factor on accuracy.

Ultimately, following this last analysis, the value of γ was chosen to be of 0.7 for the Mars

case. This was based on the conclusion that it guaranteed the overall best performance

of the solvers while allowing for the highest accuracy. Furthermore, in support of this

decision, a consistent behavior was noted when assessing the accuracy across both velocity

and spherical angles.

Since the trust region factor is an algorithmic parameter rather than a solver-speci�c one,

the same analysis was conducted to determine an appropriate value of γ for the remaining

test cases (see Section A.1). This approach was taken to ensure that both solvers achieved

their highest overall performance to grant a fair and equitable comparison between them,

which is purely based on the solver type, resulting in a value of 0.8 for the SEL2-NEA

case and of 0.99 for the Earth�Venus trajectory.

Operations Limit

Following the initial simulations, a notable di�erence in the maximum operations ad-

missible (max_iters) between the default value of the SCS solver and that imposed by

CVXPY was observed. While SCS defaults to 100,000 iterations, CVXPY sets a limit

of 2,500 iterations when using the solver. Recognising the signi�cance of this di�erence,

an investigation was carried out to understand how the maximum number of operations

a�ected the obtained solutions. The subsequent �ndings, illustrated in Figure 4.4, Fig-

ure 4.5, and Figure 4.6, outline the impact of varying this parameter for the SEL2�NEA

case. It is worth noting that similar trends were observed for the other two test cases,

and these results are provided in Section A.2 for reference.

58 4| Numerical Results

(a) Burden. (b) E�ciency.

Figure 4.4: E�ect of SCS operations limit on computational loads.

(a) Iterations. (b) Operations.

Figure 4.5: E�ect of SCS operations limit on complexity.

The maximum allowable operations have a noticeable and consistent impact on both

the computational burden and e�ciency of the solver. In fact, with an increase of this

parameter, there is a corresponding increase in both the total computational time and the

time per iteration. This trend is closely linked to the behaviour illustrated in Figure 4.5,

where a decrease in the number of iterations is observed, leading to an increase in the total

number of operations required to reach optimality. This decrease in the number of SCP

iterations can be attributed to the ability of the solver to execute more operations before

4| Numerical Results 59

terminating and providing the best optimal solution for successive runs. Nevertheless, the

progress made while reducing the number of iterations does not o�set the losses in terms

of operations, which have a direct impact on the computational load.

Figure 4.6: E�ect of SCS operations limit on accuracy.

While fewer operations may seem preferable from a computational and complexity point

of view, it is essential to consider solution accuracy. Figure 4.6 reveals that there is no

evident relationship between a variation in max_iters and the accuracy of the solution.

Due to these considerations, a value of 2, 500maximum operations was selected for the SCS

solver. This decision re�ects the understanding that a marginal improvement in solution

accuracy would not be worth the associated computational and operational trade-o�s.

As the limit imposed on the maximum operations for ECOS was the same in the default

values of the solver and CVXPY, and because this limit was never reached throughout

the iterations, no investigation was carried out on the operations limit for ECOS.

4.3. Results Validation

In order to ensure that the data collected is reliable, it is important to verify that the

results obtained are close to those presented in the literature. Figure 4.7 presents the

trajectories, thrust pro�les and corresponding mass changes of the optimal solution from

the SCP and the results from the literature, for the Earth�Mars case. As the results for

the two convex methods have a negligible di�erence with regard to the median outputs,

the choice to present only the solution from ECOS was taken.

60 4| Numerical Results

x [AU]

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 y [AU]−1.5−1.0−0.50.0
0.51.0

1.5
z [

AU
]

−0.04

−0.02

0.00

0.02

0.04

Transfer orbit
Departure orbit
Arrival orbit
Initial state
Final state
Thrust vector

(a) SCP trajectory. (b) Benchmark trajectory [11].

0 50 100 150 200 250
Time [days]

0.0

0.2

0.4

0.6

0.8

1.0

Th
ru
st
 m

ag
ni
tu
de

 [-
]

(c) SCP thrust pro�le. (d) Benchmark thrust pro�le [11].

0 50 100 150 200 250
Time [days]

540

560

580

600

620

640

660

m
 [k

g]

(e) SCP mass pro�le. (f) Benchmark mass pro�le [11].

Figure 4.7: Results obtained from the proposed SCP of this thesis (left) and from Ref.

[11] (right) for the Earth�Mars case.

4| Numerical Results 61

Analysing the two outputs, it can be concluded that the obtained results compare closely

to the literature, providing a means of validating the proposed problem formulation and

implementation. Of importance is also the standard bang-bang pro�le common to opti-

misation techniques. This is re�ected in the mass changes of the spacecraft, with constant

negative gradients obtained when the propulsion unit is turned on at the maximum thrust.

The �nal mass of the SCP algorithm presented by Ref. [11] of 530.33 kg is of a similar

magnitude to that obtained from this work of 531.29 kg. What stands out from the

two solutions is the number of iterations required to reach convergence. In fact, the

proposed algorithm took a median of 4 iterations to reach optimal convergance, whereas

the benchmark required 13 [11]. Furthermore, the computational toll of the optimisation

is of 0.043 s per iteration and 0.344 s total, compared to the values of Ref. [11] of 0.25 s

per iteration and 2.5 s total. This being said, it has to be considered that the programs

have been run using di�erent software and on di�erent machines, and hence to properly

compare the two parameters the SCPs should be run on the same computer. Moreover,

no mention of a MC simulation was stated in Ref. [11].

The same veri�cation was made with the SEL2�NEA case (Figure 4.8) and the Earth�

Venus case (Figure 4.9), using as a benchmark the results obtained from Ref. [1], from

which the same conclusions were drawn. In fact, similar �nal masses, thrust pro�less

and trajectories were observed. As the investigation of discretisation methods, trust

regions, nodes and orders of integrating polynomials is not comparable to that of the solver

methods, other parameters could not be compared. For a comprehensive exploration of

the former, the interested reader is referred to Ref. [1].

62 4| Numerical Results

x [AU]

−1.0−0.50.00.5
1.0

 [AU]

−1.0
−0.5

0.0
0.5

1.0

z [AU]

−0.0015
−0.0010
−0.0005
0.0000
0.0005
0.0010
0.0015
0.0020

Transfer orbit
Departure orbit
Arrival orbit
Initial state
Final state
Thrust vector

(a) SCP trajectory.

0 200 400 600
Time [days]

0.0

0.2

0.4

0.6

0.8

1.0

Th
ru
st
 m

ag
ni
tu
de

 [-
]

(b) SCP thrust pro�le.

0 200 400 600
Time [days]

21.8

22.0

22.2

22.4

22.6

m
 [k

g]

(c) SCP mass pro�le.

Figure 4.8: Results obtained from the proposed SCP of this thesis for the SEL2�NEA

case.

4| Numerical Results 63

x [AU]

−1.00−0.75−0.50−0.250.000.250.500.751.00
y [A

U]

−1.00
−0.75
−0.50
−0.25

0.00
0.25
0.50
0.75
1.00

z [
AU

]

−0.04

−0.02

0.00

0.02

0.04

Transfer orbit
Departure orbit
Arri al orbit
Initial state
Final state
Thrust ector

(a) SCP trajectory.

0 200 400 600 800 1000
Time [days]

0.0

0.2

0.4

0.6

0.8

1.0

Th
ru
st
 m

ag
ni
tu
de

 [-
]

(b) SCP thrust pro�le.

0 200 400 600 800 1000
Time [days]

1300

1350

1400

1450

1500

m
 [k

g]

(c) SCP mass pro�le.

Figure 4.9: Results obtained from the proposed SCP of this thesis for the Earth�Venus

case.

64 4| Numerical Results

4.4. Trade-o� Criteria Analysis

This section presents and investigates the trade-o� criteria outline in Table 4.3 for the

two solvers and all test cases.

4.4.1. Memory

When comparing the memory characteristics of both solvers, two key aspects were as-

sessed: the size of the compiled code and the memory usage during the execution of the

SCP. Analysing the results obtained, it can be observed that with an increase in the prob-

lem complexity, and hence in the number of nodes for the trajectory, the dimension of

the compiled code increases. Like the nodal increment, this increase is seen to be linear

since with the nodes the number of parameters and constraints also increases. ECOS, in

particular, generates a compiled code that is approximately 18% larger, indicative of the

more complex operations performed by the IPM solvers [4, 30].

Figure 4.10: Memory of compiled code.

The memory consumption was found by recording the di�erence in RSS memory size

from the start to the end of the optimisation process using the psutil7 library. The

results obtained for the two solvers can be seen to di�er. Firstly, ECOS exhibits an

extremely favourable behaviour, with an almost constant memory usage which increases

linearly from 164.979 MB for the Mars case to 170.527 MB for the Venus case. The

FOM, instead, requires a greater memory usage resulting in values that increase with

problem complexity reaching a maximum of 291.414 MB. Moreover, the di�erence in

consistency is not only in the di�erent cases, but also in the MC samples as there is

7Available at: <https://pypi.org/project/psutil/> (last accessed on 13/11/2023)

https://pypi.org/project/psutil/

4| Numerical Results 65

a greater sparseness in range for SCS. This di�erence is seen to increase with problem,

while it remains indi�erent and negligible for the IPM. It is essential to note that the

dissimilarity in memory usage between solvers can be contingent upon the particular

problem at hand and the con�gurations of the solver settings. Nevertheless, ECOS is

renowned for its memory e�ciency, and its ability to handle large-scale problems with a

relatively low memory footprint [52] is re�ected in the presented results.

Table 4.4 indicates the di�erence in the size of the problems investigated. The variables

of a problem in CVXPY are de�ned as the optimisation variables which are free to vary in

order to minimise or maximise an objective function. The parameters, instead, represent

constant expressions whose value is speci�ed after the problem creation [49]. As outlined

in Subsection 3.4.5, their de�nition is of extreme importance for the SCP algorithm as

they allow to modify the problem at each iteration.

Table 4.4: Problem dimension with test case.

Earth�Mars SEL2�NEA Earth�Venus

Nodes 100 125 150

Constraints 3720 4645 5570

Variables 2600 3250 3900

Parameters 6407 8007 9607

As aforementioned, the nodal increase has a direct impact on the problem size. The

increment in the constraints, variables and parameters is constant between the cases

since they are dependent on the number of nodes. The constraints are in fact imposed

on the dynamics (with a dependency of 7N), the lower and upper bounds (22N), the

control (N), and ∆x (7N). The BCs and trust region, instead, have a constant size of

respectively 13 and 7 for each problem as they are independent of the number of nodes.

Similarly, the increment in the number of variables is constant, as the variables are directly

proportional to the dimensions of u, x, ∆x, h, and η (4N +7N +7N +7N +N = 26N).

The same can be said for the parameters, with a dependency on f , A, x∗, expz, and Υ

(7N + 49N + 7N +N + 7 = 64N + 7).

4.4.2. Complexity

The complexity of the optimisation solvers can be evaluated with two parameters that are

intertwined: the iterations of the SCP and the number of operations needed for the solver

66 4| Numerical Results

to reach optimality. The results obtained for the three cases are reported in Figure 4.11.

The number of operations and iterations required by ECOS to obtain an optimal solution

remains fairly similar between the di�erent simulations, showing once again the strong

consistency of the IPMs [4, 30]. Regarding SCS, although the SCP iterations are in the

same order of magnitude as ECOS, the values of the solver operations are notably higher,

di�ering by two orders of magnitude. Moreover, a di�erence in the number of iterations

and operations can be observed, with a jump in value when passing from the simpler case

to the NEA trajectory. The values of the SCS parameters show a small decrease for the

Earth�Venus case, highlighting a better performance for the most complex scenario.

(a) Iterations. (b) Operations.

Figure 4.11: Iterations and operations of simulations.

4.4.3. Computational Burden and E�ciency

The computational values reported in Figure 4.12 are obtained by clocking the di�erence

in time between the start and the end of each SCP iteration. The Python time module

was adopted, using process_time_ns to return the value, in fractional nanoseconds, of

the sum of the system and user CPU time.

A similar behaviour can be seen for the two methods when analysing the computational

e�ciency of the solvers with di�erent problems, with an almost linear increase, although

the values of the FOM solver remain higher.

The total computational time needed to run the optimisation algorithm is a result of the

interplay between the computational e�ciency of the solver and the iterations reported

4| Numerical Results 67

in Figure 4.11. As anticipated, both methods exhibit an increase in the computational

demands as problem complexity rises. For ECOS, due to the small linear increment in

iterations, the time required to reach an optimal solution increases linearly with the com-

plexity of the problem. This increase, however, is small when considering the magnitude

of the values, resulting in a remarkably fast solution spanning from 0.344 s for the Earth�

Mars case to 0.711 s for the Venus trajectory. In contrast, SCS results in a change from

2.438 s to 18.938 s for the same cases, with a more prominent increase. Overall, the val-

ues obtained remain superior for the IPM solver, with more than an order of magnitude

improvement for the parameters investigated.

Figure 4.12: Computational e�ciency and burden of simulations.

4.4.4. Accuracy

The accuracy of the solution, ϵ, is found by propagating the optimised control vector

using the scipy8 integrator odeint. As the values of u are known only at the nodes, the

control in between the nodes is obtained by interpolating the control history. Due to the

discretisation used, there is a di�erence in solution between the desired �nal state and

the propagated one as seen in Figure 4.13 and Table 4.5, which is calculated through:

ϵ = |x̃(tf)− xf | . (4.6)

To ensure that the error in the accuracy of the methods, which at �rst impact might seem

high, was due to the discretisation method and not the problem formulation, an investi-

gation was done by increasing the number of nodes, and can be seen in Appendix B. The

8Available at: <https://scipy.org/> (last accessed on 13/11/2023)

https://scipy.org/

68 4| Numerical Results

results proved that increasing the nodal number increased the accuracy of the solution,

validating the method used.

(a) Distance. (b) Velocity.

(c) Azimuth. (d) Elevation.

Figure 4.13: Accuracy of the propagated optimal solution.

Although the results for the ECOS solver are better in terms of overall accuracy, they

can be treated as comparable to the results of SCS as they are within the same order of

magnitude. This is understandable as the accuracy of the optimal solution is dependent

on the level of tolerance set in the solver, which is set to the same value of 10−8 for

both solvers. The tolerance is imposed on the relative and absolute values of the duality

gap (see Section 2.1), which represents a measure of the optimality of the solution [22].

4| Numerical Results 69

Moreover, the accuracy can be seen to decrease with the complexity of the problem, which

is attributed to the increase in time of �ight. As trajectories become more prolonged,

they may involve more complex manoeuvres, multiple revolutions, or extended coasting

phases. In addition, small errors in the initial states can lead to larger errors in the �nal

state, when propagated, making it more di�cult to �nd a precise solution. Moreover, the

aforementioned interpolation error becomes more signi�cant as the time of �ight grows.

Table 4.5: Accuracy in spherical coordinates of the propagated optimal solution.*

Earth�Mars SEL2�NEA Earth�Venus

Accuracy ECOS SCS ECOS SCS ECOS SCS

r (km) 497.237 836.414 65096.348 66000.333 114870.838 135196.287

θ (rad) 0.011 0.011 0.041 0.041 0.145 0.184

ϕ (rad) 2.138e-04 2.142e-04 2.334e-04 2.155e-04 6.838e-02 6.911e-02

vr (m/s) 2.305 2.306 10.924 10.923 57.106 61.059

vθ (m/s) 0.091 0.092 14.630 14.630 32.501 38.217

vϕ (m/s) 0.034 0.034 0.195 0.195 23.223 21.878

*Values reported are median results of 100 MC simulations.

4.4.5. Optimality

As with the accuracy, the values of the optimality (J) of the solvers increase with the time

of �ight, with very similar values for the IPM and FOM solvers. Recalling the problem

de�nition, the objective of the minimum-fuel trajectory optimisation problem is re�ected

in minimising a pre-de�ned function in order to maximise the �nal mass. It is therefore

understandable that a measure of the performance of the solver is both J and the value

of the mass at time tf , which are shown in Table 4.6.

Table 4.6: Optimality of converged solution.*

Earth�Mars SEL2�NEA Earth�Venus

ECOS SCS ECOS SCS ECOS SCS

J (-) 1.661222 1.661252 2.391095 2.391100 5.071635 5.071716

m(tf) (kg) 531.293 531.276 21.718 21.718 1290.568 1290.552

*Values reported are median results of 100 MC simulations.

70 4| Numerical Results

4.4.6. Reliability

The ability of the solver to consistently reach an optimal solution is paramount when

applied to real-life and time-critical applications. The IPM solver shows an extremely

positive output under this performance criteria, as the success rate remains high across

all cases. Conversely, the success rate of SCS experiences a decrease with an increase in

problem complexity. To rigorously challenge the two solvers and push their performance

to the limit, the convergence tolerance of the constraints, εc, was reduced from an initial

value of 10−6 to a value of 10−7 after determining that it was the leading criterion for

convergence. As seen from Figure 4.14, this showed that with a more stringent criterion,

the reliability of the solutions diverges between methods.

Figure 4.14: Reliability and e�ectiveness of simulations.

The consistency of ECOS and its ability to reach an optimal solution remains high,

whereas SCS once again shows its weakness in terms of problem consistency, with a more

strict requirement increasing the SCP runs with no solution. An interesting observation

emerges when considering the FOM solver as the success rate across the three cases is

signi�cantly in�uenced by the choice of convergence tolerance. A higher value in εc ex-

hibits reduced reliability with problem complexity, while a decreased value yields lower

but congruent results. This illustrates the sensitivity of SCS to the chosen convergence

tolerance, highlighting the importance of the parameter selection.

4| Numerical Results 71

4.4.7. E�ectiveness

The convergence rate is not the only parameter that has to be considered when judging

the consistency of a method, as it is essential to observe how the parameters vary between

di�erent runs and from one case to another. The thrust pro�les of all converged solutions

are displayed in Figure 4.15, where all the pro�les of the MC samples are shown in grey.

The mean of the thrust magnitude of all converged samples is taken at each node to

investigate the consistency of the solution, with the resulting pro�le reported in red.

When analysing the �rst two cases, it is interesting to see how ECOS shows a much more

resonant behaviour, with consistent bang-bang pro�les except for only two instances in

the SEL2�NEA case. What further supports this claim is the mean, which exhibits a

congruous pro�le. In fact, the noise caused by two MC samples in the NEA trajectory

is seen to be insigni�cant when calculating the mean of the pro�le, proving that the

IPM solver obtains consistent and similar bang-bang pro�les for that case. On the other

hand, the pro�les for SCS are seen to be less optimal for the Earth�Mars case, with the

plane-change maneuver at 100 days [11] occurring over a greater time span and at a lower

magnitude compared to ECOS. This is not the case for the second trajectory, where bang-

bang pro�les are indeed observed, but with a much lower consistency between themselves.

In fact, several con�icting pro�les can be seen, causing the mean to exhibit noise.

A much di�erent conclusion can be drawn when examining the more complex Earth�

Venus case. The IPM solver �nds two solutions for the minimum-fuel problem, one with

an initial fuel burn at around 60 days and one without. Although both solutions are

valid as they grant similar �nal masses and show the bang-bang pro�le, this behaviour

highlights a limit in the consistency of outputs for more complex scenarios for ECOS. As

a result, this causes the mean solution to exhibit a less bang-bang-like pro�le compared

to the �rst two cases, as seen in Figure 4.15e. In contrast, SCS exhibits a much more

favourable behaviour, with congruous bang-bang pro�les being seen through all of the

converged solutions and hence in the mean pro�le.

72 4| Numerical Results

0 50 100 150 200 250
Time [days]

0.0

0.2

0.4

0.6

0.8

1.0

Th
ru
st
 m

ag
ni
tu
de

 [-
]

(a) Earth�Mars ECOS.

0 50 100 150 200 250
Time [days]

0.0

0.2

0.4

0.6

0.8

1.0

Th
ru
st
 m

ag
ni
tu
de

 [-
]

(b) Earth�Mars SCS.

0 100 200 300 400 500 600 700
Time [days]

0.0

0.2

0.4

0.6

0.8

1.0

Th
ru
st
 m

ag
ni
tu
de

 [-
]

(c) SEL2�NEA ECOS.

0 100 200 300 400 500 600 700
Time [days]

0.0

0.2

0.4

0.6

0.8

1.0

Th
ru
st
 m

ag
ni
tu
de

 [-
]

(d) SEL2�NEA SCS.

0 200 400 600 800 1000
Time [days]

0.0

0.2

0.4

0.6

0.8

1.0

Th
ru
st
 m

ag
ni
tu
de

 [-
]

(e) Earth�Venus ECOS.

0 200 400 600 800 1000
Time [days]

0.0

0.2

0.4

0.6

0.8

1.0

Th
ru
st
 m

ag
ni
tu
de

 [-
]

(f) Earth�Venus SCS.

Figure 4.15: Output of the thrust pro�les obtained using ECOS (left) and SCS (right).

Grey lines: converged solutions, red line: mean pro�le.

4| Numerical Results 73

In order to analyse how the criteria in the previous sections behave when a di�erent

problem is posed, through MC sampling, or when a di�erent test case is considered, all

of the reported data needs to be analysed. The standard deviation of the solution shown

in Table 4.7, along with the values of the lower and upper quartiles displayed in the

previous graphs, help to understand the variation of the results obtained for the three

cases. This information is of importance as it is a measure of the consistency of the solver

in achieving the same solutions with a change in MC sample, or test case, in the same

way as Figure 4.15 was for the thrust pro�les.

Table 4.7: Standard deviation of propagated solution.

Earth�Mars SEL2�NEA Earth�Venus

Standard deviation ECOS SCS ECOS SCS ECOS SCS

Memory usage (MB) 0.024 25.282 0.031 43.708 0.037 170.374

Iterations (-) 0.934 5.613 1.526 7.506 1.331 6.281

Operations (-) 34 14033 127 18766 41 15703

Burden (s) 0.122 2.722 0.426 4.539 0.257 11.444

E�ciency (s) 0.011 0.037 0.032 0.019 0.015 0.343

Accuracy r (km) 837.091 2440.396 2455.559 10686.106 87515.234 7839.907

Accuracy v (m/s) 1.036 1.028 6.135 6.190 27.066 18.019

J (-) 3.935e-04 8.464e-04 1.203e-02 3.025e-01 5.102e-03 2.532e-04

Mass (g) 27.164 59.074 4.360 106.440 191.998 11.448

From the presented data it can be concluded that the sparseness of the solutions is higher

for the FOM when compared to the IPM except for one instance. The area in which SCS

behaves better is in the accuracy of the solution for the more complex Earth�Venus case,

and in its variation in optimality, with the mass having a smaller variation of one order

of magnitude compared to ECOS. This is consistent with the thrust pro�les analysed

in Figure 4.15f, which showed a much more congruent behaviour for SCS with respect

to the two con�icting solutions found by the IPM solver. Another criterion that stands

out is the di�erence in memory usage. The values are extremely consistent for ECOS

while having a greater divergence for SCS, which was found to increase with problem

complexity. The behaviour of the variation of the accuracy can be seen to be re�ective

of the pattern observed in Subsection 4.4.4, with an increase in the time of �ight of the

trajectory increasing the standard deviation, apart from the radial error of SCS. Moreover,

the SEL2�NEA case proved to be more challenging for the solvers than anticipated, as

74 4| Numerical Results

shown in the higher variation in operations and iterations required by the two solvers

compared to the Earth�Venus case, re�ective of Figure 4.11.

4.5. CVXPY Analysis

To investigate the solutions obtained with ECOS, some simulations were made using

the other available IPM solvers in CVXPY for the Earth�Mars trajectory. Due to the

absence of their implementation in CVXPYgen the compiled code could not be generated.

Although the computational performance of the solvers in CVXPY is not comparable

with that in CVXPYgen, other parameters that are not dependant on the run time are

and can be seen in the Table 4.8. Since the non-compiled codes require a greater run

time, the number of MC samples was reduced to 30 in order to gather the required data

within a reasonable amount of time. All the simulations carried out with the IPM solvers

converged to an optimal solution, highlighting the consistency of these methods in terms

of accuracy and complexity. Additionally, the memory usage of the solvers can also be

seen to be of the same order of magnitude, proving once again their consistency. The

number of operations required to reach convergence for the MOSEK and CPLEX solvers

is not reported due to the inability of CVXPY to obtain that information.

Table 4.8: Analysis of solvers in CVXPY (Earth�Mars case).*

MOSEK GUROBI CLARABEL COPT CPLEX NAG

Memory usage (MB) 201.285 184.191 175.094 183.393 167.174 162.705

Iterations (-) 4 4 4 4 4 4

Operations (-) - 65 99 97 - 119

Burden (s) 43.422 40.211 41.383 39.859 63.445 66.633

E�ciency (s) 10.996 10.104 10.025 9.934 15.521 16.147

Accuracy r (km) 672.352 497.567 486.116 497.709 496.243 531.293

Accuracy v (m/s) 2.251 2.299 2.284 2.289 2.264 2.230

J (-) 1.661386 1.661224 1.661222 1.661234 1.661225 1.661224

Success rate (%) 100 100 100 100 100 100

*Values reported are median results of 30 MC simulations.

4| Numerical Results 75

With regards to the FOM solvers, SCS is currently the only one that supports SOCPs

in CVXPY, and hence no comparison could be made with solvers of the same family.

However, the simulations made with the CVXPY software using SCS remain of importance

as they can be used, combined with the ECOS runs, to support the advantage of using a

compiled code instead of a non-compiled one, as highlighted in Table 4.9.

Table 4.9: Comparison of compiled and non-compiled code (Earth�Mars case).*

ECOS SCS

CVXPY CVXPYgen CVXPY CVXPYgen

Memory usage (MB) 172.604 164.961 174.340 187.797

Iterations (-) 4 4 4 5

Operations (-) 94 96 100000 12500

Burden (s) 45.836 0.344 55.898 2.438

E�ciency (s) 10.736 0.043 13.354 0.450

Accuracy r (km) 497.493 497.237 723.729 836.414

Accuracy v (m/s) 2.285 2.268 2.294 2.303

J (-) 1.661222 1.661222 1.663951 1.661252

Success rate (%) 100 100 100 100

*Values reported are median results of 30 MC simulations.

Understandably, as the problem formulation along with the convergence criteria and solver

tolerance settings are kept the same, the accuracy levels obtained using CVXPY and CVX-

PYgen are of the same order. Moreover, the memory consumption during the optimisation

process is seen to remain fairly similar between the two software. What is of importance,

instead, is the signi�cant saving in both the computational burden and e�ciency when

passing from the raw code to the compiled one, with a greater improvement observed for

ECOS. During this analysis, it was noted that for SCS to obtain comparable results the

maximum number of operations had to be raised to 10, 000 using CVXPY.

77

5| Conclusions and Future Work

5.1. Conclusion

In this work, a convex approach has been applied to the classical minimum-fuel problem

of low-thrust trajectory optimisation in order to assess the performance of convex solvers

for onboard interplanetary missions. The method adopted involved analysing three dif-

ferent test cases, with increasing problem complexity and with di�erent initial and �nal

objectives, to compare prede�ned trade-o� criteria and grant a complete and unbiased

assessment. These scenarios comprised the Earth-to-Mars, SEL2-to-NEA, and Earth-to-

Venus transfer problems taken from literature and which played a role in validating the

proposed algorithm and the results obtained. The solvers used for this study have been

selected as ECOS (for the interior-point method) and SCS (for the �rst-order method) as

they represent the pinnacle of their solver family at the time of writing.

In order to allow for the solvers to perform at their best capabilities, an investigation has

been done into the trust region factor adopted for each test case, along with the maximum

number of allowable operations for each solver. The outcome of this survey resulted in a

higher maximum number of allowable operations for SCS compared to ECOS. The trust

region factor, used to keep the solution in the neighbourhood of the reference trajectory

and improve convergence of the SCP, was found to be re�ective of the increasing di�culty

of the trajectories, as tighter constraints were imposed for the simpler cases.

Results from the simulations show a clear di�erence in performance between the two

solvers. When analysing the size of the compiled code a favourable result emerges for

the FOM solver, with a smaller code size of 18% for SCS compared to ECOS, owning to

the simpler operations required by FOMs. In contrast, the analysis of the memory usage

shows that while ECOS exhibits a quasi-constant memory consumption between cases,

SCS demonstrates a much more prominent increase with problem complexity.

A di�erence is also noted in the complexity of the solvers, with the ECOS requiring a

fairly low and consistent number of operations to converge to an optimal solution. On

the other hand, although SCS shows a similar, consistent, behaviour with an increase in

78 5| Conclusions and Future Work

problem complexity, the number of operations remains two orders of magnitude higher.

With regards to the accuracy and optimality of the solutions, the two methods are com-

parative, as these criteria are re�ective of the same level of tolerance imposed on the

duality gap of the solution. Signi�cantly, the accuracy of the solution decreases with

the complexity of the problem due to the extended time of �ight which leads to a more

pronounced interpolation error.

The reliability results in being superior for the IPM, with tighter convergence criteria on

the constraints highlighting the discrepancies between the solvers. In fact, the success rate

of ECOS is consistently high for all test cases, remaining above 96%, while it exhibits a

decreasing behaviour for SCS, reaching as low as 82% for the Earth�Venus trajectory. In

contrast, the thrust pro�les of the MC samples show an interesting behaviour. For simpler

problems, ECOS is more consistent, reaching the same optimal solution over repeated

simulations while SCS has more di�culty in doing so, especially for the second case.

The Earth�Venus trajectory, instead, results in extremely consistent bang-bang pro�les

for the FOM solver, whereas the IPM solver obtains two con�icting solutions. Hence,

although the success rate of SCS is lower, the results for the more complex scenario are

more consistent in terms of trajectory compared to ECOS.

Another parameter that is of key importance in real-life and decision-making scenarios

like deep-space applications, where a fast response can provide signi�cant overall savings

for the mission, is the computational toll of the process. The comparison with CVXPY

and CVXPYgen demonstrates the powerful bene�ts of using a compiled code compared

to a non-compiled one. Results from the latter show an increase in computational burden

and e�ciency for both solvers, with values that remain below one second for ECOS and an

order of magnitude greater for SCS, for the trajectories investigated. However, considering

the deep-space low-thrust application, where transfer orbits take in the order of hundreds

of days, even the run time for SCS is negligible when compared to the total time of �ight

of the trajectory.

Finally, the consistency of the two methods under study has also been analysed by taking

into account how the criteria above change with di�erent cases and MC samples. It was

found that ECOS exhibits a behaviour that is much more consistent, with a small linear

decrease in performance with an increase in problem complexity. SCS shows a similar

relation with problem complexity while displaying a much greater variation in results

between di�erent runs, with the exception of the accuracy of most complex case. These

�ndings are re�ected and supported by the aforementioned thrust pro�le behaviour.

5| Conclusions and Future Work 79

In conclusion, the trajectories investigated show a similar result in terms of accuracy and

optimality. The behaviour of the IPM solver remains superior in terms of the computa-

tional toll, success rate, and memory usage when compared to the FOM solver. Moreover,

it has been found that for simpler problems ECOS results in being the preferred solver of

choice, with consistent bang-bang thrust pro�les. For more complex trajectories like the

Earth�Venus case, instead, although SCS exhibits a lower reliability of 82% and a longer

CPU time of 11.444 s, the standard deviation of the accuracy is smaller, with much more

consistent thrust pro�les making it an extremely attractive solution.

5.2. Future Work

Future developments for the comparison of convex solvers for low-thrust trajectory opti-

misation go hand in hand with the development process of CVXPYgen. This thesis has

proven the great versatility and bene�ts of using this software to produce compiled code.

Nevertheless, CVXPYgen is a library that is still under heavy development, and this can

be exploited to �ll the gaps of the presented study such as the number of solvers adopted

or the complexity of the test cases analysed.

Under a solver point of view, the introduction of CLARABEL 1 (see Subsection 2.3.2) as

the main solver for CVXPYgen is underway, and is supposed to be released in the next

version of the software. This will allow to study the behaviour of another interior-point

method and probe the results obtained. Although already proven with CVXPY, the

use of an additional compiled code will verify or refute the results obtained with ECOS

from a computational point of view. Another interesting aspect to expand upon would

be the addition of more �rst-order methods that support second-order cone constraints.

Moreover, active-set methods could be added to CVXPYgen to test their performance

and determine whether they would be suitable for onboard applications.

The performance of the methods can also be pushed by investigating problems of larger

sizes through the introduction of a greater number of nodes. This can be done by switching

software or waiting for the release of the next version of CVXPYgen, which is intended

to vastly improve in this aspect. Due to the novel nature of CVXPYgen, a limitation

has been found in this study for the maximum number of parameters available for the

problems, resulting in an upper limit of 150 nodes. This led to the selection of the Earth-

to-Venus case as the most complex trajectory for providing solutions comparable to the

literature. Analysing the behaviour of the methods with more intricate trajectories like

1Available at: <https://github.com/oxfordcontrol/Clarabel.cpp> (last accessed on
12/10/2023)

https://github.com/oxfordcontrol/Clarabel.cpp

80 5| Conclusions and Future Work

the Earth-to-Dionysus one could be of interest to understand the methods better and

verify their use in onboard applications. The analysis of a more complex scenario can be

extremely useful in understanding if the FOM solver behaves better in terms of thrust-

pro�le consistency and accuracy when compared to the IPM solver for more complex

trajectories, as observed in this study.

Another prospective direction for future research involves evaluating solver performance in

scenarios with di�erent dynamics, such as the planetary landing problem. The synthesis of

the literature review and this study demonstrate the profound utility of convex methods

across a variety of space applications. Leveraging these methods holds the promise of

advancing our understanding and exploration of the solar system.

81

List of Figures

2.1 Taxonomy of optimisation technique families. 20

3.1 Spherical reference frame adopted. 32

3.2 Control constraint in 2D space. 40

4.1 E�ect of the trust region factor on computational loads. 55

4.2 E�ect of the trust region factor on complexity. 56

4.3 E�ect of the trust region factor on accuracy. 57

4.4 E�ect of SCS operations limit on computational loads. 58

4.5 E�ect of SCS operations limit on complexity. 58

4.6 E�ect of SCS operations limit on accuracy. 59

4.7 Output of results for the Earth�Mars case. 60

4.8 Output of results for the SEL2�NEA case. 62

4.9 Output of results for the Earth�Venus case. 63

4.10 Memory of compiled code. 64

4.11 Iterations and operations of simulations. 66

4.12 Computational e�ciency and burden of simulations. 67

4.13 Accuracy of the propagated optimal solution. 68

4.14 Reliability and e�ectiveness of simulations. 70

4.15 Comparison of thrust pro�les. 72

A.1 E�ect of the trust region factor on performance for the NEA case. 100

A.2 E�ect of the trust region factor on performance for the Venus case. 101

A.3 E�ect of SCS operations limit on performance for Earth�Mars. 103

A.4 E�ect of SCS operations limit on performance for Earth�Venus. 104

B.1 E�ect of nodal number on the accuracy of the solution. 106

B.2 Di�erence between the SCP propagated and output solutions. 107

B.3 Equivalence of control constraint relaxation for the three test-cases. 108

C.1 Screenshot of GitLab repository. 109

83

List of Tables

2.1 Comparison of convex solution methods. 17

2.2 Comparison of characteristics of convex solution methods. 18

3.1 Physical constants. 34

4.1 Simulation parameters for the test cases. 52

4.2 Boundary conditions in non-dimensional units. 53

4.3 Description of criteria used. 54

4.4 Problem dimension with test case. 65

4.5 Accuracy in spherical coordinates of the propagated optimal solution.* . . 69

4.6 Optimality of converged solution.* . 69

4.7 Standard deviation of propagated solution. 73

4.8 Analysis of solvers in CVXPY (Earth�Mars case).* 74

4.9 Comparison of compiled and non-compiled code (Earth�Mars case).* . . . 75

85

Nomenclature

Physical properties

α thrust angle [rad]

δ trust region [m, rad, rad, m/s, m/s, m/s, kg]

r position [m, rad, rad]

u control [kgm/s2, rad, rad]

x state [m, rad, rad, m/s, m/s, m/s, kg]

∆t time step [s]

µ gravitational constant [m3/s2]

ϕ azimuth angle [rad]

τ control variable [m/s2]

θ elevation angle [rad]

DU distance unit [m]

FU thrust unit [kgm/s2]

g gravitational acceleration [m/s2]

m mass [kg]

MU mass unit [kg]

r radial distance [m]

T thrust [kgm/s2]

t time [s]

TU time unit [s]

v velocity [m/s]

86 | Nomenclature

V U velocity unit [m/s]

z pseudo-mass [−]

Other parameters

λ Lagrange multiplier [−]

ν search parameter [−]

ϕ barrier function [−]

Υ Cauchy parameter [−]

A dynamics derivative [−]

a polynomial constant [−]

B control matrix [−]

b trinomial constant [−]

c binomial constant [−]

d monomial constant [−]

f dynamics [−]

g constraint function [−]

H Hessian [−]

h dynamics slack variable [−]

L augmented Lagrange function [−]

l Lagrange dual function [−]

Q feasible set [−]

S s diagonal matrix [−]

s slack variable [−]

y Lagrange multiplier of equality constraint [−]

Z z diagonal matrix [−]

z Lagrange multiplier of inequality constraint [−]

χ duality measure [−]

| Nomenclature 87

ϵ accuracy [−]

η control slack variable [−]

γ trust region factor [−]

ι path parameter [−]

κ scaling factor [−]

R real [−]

ρ splitting-method penalty term [−]

σ centring parameter [−]

τ control variable [−]

ε convergence criteria [−]

ζ barrier parameter [−]

C dynamics weight factor [−]

c dynamisc constant [−]

D control weight factor [−]

J objective function [−]

N nodes [−]

R reliability [−]

Subscripts/Superscripts

∗ reference

ϕ elevation component

θ azimuth component

0 initial

a� a�ne-scaling

c constraint

e escape

f �nal

88 | Nomenclature

i node

k SCP iteration

max maximum

r radial component

x state

z pseudo-mass

Acronyms

ADMM Alternating Direction Method of Multipliers

ASM Active Set Method

AU Astronomical Unit

BC Boundary Condition

CPU Computational

DCP Disciplined Convex Programming

DPP Disciplined Parameterised Programming

DU Distance Unit

FOH First-Order-Hold

FOM First Order Method

FU Thrust Unit

IPM Interior Point Method

KKT Karush-Kuhn-Tucker

LGL Legrendre-Gauss-Lobatto

LP Linear Program

MC Monte Carlo

MPC Model Predictive Control

MU Mass Unit

NEA Near-Earth-Asteroid

| List of Tables 89

NLP Non-Linear Program

QCQP Quadratically constrained quadratic program

QP Quadratic Program

RSS Resident Set Size

SCP Sequential Convex Program

SDP Semide�nite Program

SEL Sun-Earth Lagrange

SOC Second-Order Cone

SOCP Second-Order Cone Program

TU Time Unit

VU Velocity Unit

91

Bibliography

[1] Hofmann Christian, Morelli Andrea, and Topputo Francesco. Performance assess-

ment of convex low-thrust trajectory optimization methods. Journal Of Spacecraft

And Rockets, 60(1):299�314, 01 2023. doi:10.2514/1.A35461.

[2] Tsiotras Panagiotis and Mesbahi Mehran. Toward an algorithmic control theory.

Journal of Guidance, Control, and Dynamics, 40:1�3, 02 2017. doi:10.2514/1.

G002754.

[3] Morante David, Sanjurjo Rivo Manuel, and Soler Manuel. A survey on low-

thrust trajectory optimization approaches. Aerospace, 8(3), 03 2021. doi:10.3390/

AEROSPACE8030088.

[4] Danylo Malyuta, Yue Yu, Purnanand Elango, and Behçet Açikme³e. Advances in

trajectory optimization for space vehicle control. Annual Reviews in Control, 52:282�

315, 2021. doi:10.1016/j.arcontrol.2021.04.013.

[5] Nurre Nicholas and Taheri Ehsan. Comparison of indirect and convex-based methods

for low-thrust minimum-fuel trajectory optimization. In 2022 AAS/AIAA Astrody-

namics Specialist Conference, Charlotte, NC, USA, 08 2022.

[6] E. Trélat. Optimal control and applications to aerospace: Some results and chal-

lenges. Journal of Optimization Theory and Applications, 154(3):713�758, 09 2012.

doi:10.1007/s10957-012-0050-5.

[7] Liu Xinfu, Lu Ping, and Pan Binfeng. Survey of convex optimization for aerospace

applications. Astrodynamics, 1(1):23�40, 2017. doi:10.1007/s42064-017-0003-8.

[8] Danylo Malyuta, Taylor P. Reynolds, Michael Szmuk, Thomas Lew, Riccardo Bonalli,

Marco Pavone, and Behcet Acikmese. Convex optimization for trajectory generation,

06 2021. arXiv:2106.09125.

[9] Morelli Andrea Carlo, Hofmann Christian, and Topputo Francesco. Robust low-

thrust trajectory optimization using convex programming and a homotopic approach.

https://doi.org/10.2514/1.A35461
https://doi.org/10.2514/1.G002754
https://doi.org/10.2514/1.G002754
https://doi.org/10.3390/AEROSPACE8030088
https://doi.org/10.3390/AEROSPACE8030088
https://doi.org/10.1016/j.arcontrol.2021.04.013
https://doi.org/10.1007/s10957-012-0050-5
https://doi.org/10.1007/s42064-017-0003-8
https://arxiv.org/abs/2106.09125

92 | Bibliography

IEEE Transactions on Aerospace and Electronic Systems, 58(3):2103�2116, 11 2022.

doi:10.1109/TAES.2021.3128869.

[10] Zhenbo Wang and Michael Grant. Constrained trajectory optimization for plane-

tary entry via sequential convex programming. Journal of Guidance, Control, and

Dynamics, 40:1�13, 07 2017. doi:10.2514/1.G002150.

[11] Zhenbo Wang and Michael J. Grant. Minimum-fuel low-thrust transfers for space-

craft: A convex approach. IEEE Transactions on Aerospace and Electronic Systems,

54(5):2274�2290, 03 2018. doi:10.1109/TAES.2018.2812558.

[12] Danylo Malyuta et al. Starship landing scp example. Link: https://github.com/

dmalyuta/scp_traj_opt. Last access 08 08 2023.

[13] NASA. Nasa tipping point partnership with blue origin to test precision lunar land-

ing technologies. Link: https://www.nasa.gov/directorates/spacetech/NASA_

Tipping_Point_Partnership_to_Test_Precision_Lunar_Landing_Tech/. Last

access on 08 08 2023.

[14] Boyd Stephen P and Vandenberghe Lieven. Convex optimization. Cambridge uni-

versity press, 2004.

[15] Nocedal Jorge and Wright Stephen J. Numerical optimization. Springer, 1999.

[16] Nababithi Goswami, Supriyo K. Mondal, and Swapan Paruya. A comparative study

of dual active-set and primal-dual interior-point method. IFAC Proceedings Volumes,

45(15):620�625, 07 2012. doi:10.3182/20120710-4-SG-2026.00029.

[17] Bartlett R.A., Wachter A., and Biegler L.T. Active set vs. interior point strategies

for model predictive control. Proceedings of the 2000 American Control Conference.

ACC (IEEE Cat), 6:4229�4233, 06 2000. doi:10.1109/ACC.2000.877018.

[18] Lau Mark S. K., Yue S. P., Ling K. V., and Maciejowski J. M. A comparison of

interior point and active set methods for fpga implementation of model predictive

control. European Control Conference (ECC), 1:156�161, 08 2009. doi:10.23919/

ECC.2009.7074396.

[19] Maximilian Schaller, Goran Banjac, Steven Diamond, Akshay Agrawal, Bartolomeo

Stellato, and Stephen Boyd. Embedded code generation with CVXPY. IEEE Control

Systems Letters, 6:2653�2658, 2022. doi:10.1109/LCSYS.2022.3173209.

[20] Wong Elizabeth and Philip E. Gill. Active-Set Methods for Quadratic Programming.

Phd thesis, University Of California, San Diego, 2011.

https://doi.org/10.1109/TAES.2021.3128869
https://doi.org/10.2514/1.G002150
https://doi.org/10.1109/TAES.2018.2812558
https://github.com/dmalyuta/scp_traj_opt.
https://github.com/dmalyuta/scp_traj_opt.
https://www.nasa.gov/directorates/spacetech/NASA_Tipping_Point_ Partnership_to_Test_Precision_Lunar_Landing_Tech/
https://www.nasa.gov/directorates/spacetech/NASA_Tipping_Point_ Partnership_to_Test_Precision_Lunar_Landing_Tech/
https://doi.org/10.3182/20120710-4-SG-2026.00029
https://doi.org/10.1109/ACC.2000.877018
https://doi.org/10.23919/ECC.2009.7074396
https://doi.org/10.23919/ECC.2009.7074396
https://doi.org/10.1109/LCSYS.2022.3173209

| Bibliography 93

[21] Bemporad Alberto. Lecture notes in model predictive control - quadratic program-

ming and explicit mpc, 2023. Scuola IMT Alti Studi Lucca.

[22] Alexander Domahidi. Methods and tools for embedded optimization and control. Doc-

tor of sciences dissertation, ETH ZURICH, 2013. doi:10.3929/ETHZ-A-010010483.

[23] John T. Betts. Practical Methods for Optimal Control and Estimation Using Nonlin-

ear Programming. Society for Industrial and Applied Mathematics, second edition,

01 2010. doi:10.1137/1.9780898718577.

[24] Benyamin Ghojogh, Ali Ghodsi, Fakhri Karray, and Mark Crowley. Kkt conditions,

�rst-order and second-order optimization, and distributed optimization: Tutorial and

survey, 10 2021. arXiv:2110.01858.

[25] Irvin Lustig. A Practical Approach to Karmarkar's Algorithm. Systems Optimization

Laboratory, Department of Operations Research, Stanford University, 06 1985.

[26] Karmarkar Narendra. A new polynomial-time algorithm for linear programming-II.

Combinatorica, 4:373�395, 12 1984. doi:10.1007/BF02579150.

[27] Karmarkar Narendra. Seminar presentation at stanford university. 01 1985.

[28] Mehrotra Sanjay. On the implementation of a primal-dual interior point method.

SIAM Journal on Optimization, 2:575�601, 11 1992. doi:10.1137/0802028.

[29] Pavel Dvurechensky, Shimrit Shtern, and Mathias Staudigl. First-order methods

for convex optimization. EURO Journal on Computational Optimization, 9:100015,

2021. doi:10.1016/j.ejco.2021.100015.

[30] H.J. Ferreau, S. Almér, R. Verschueren, M. Diehl, D. Frick, A. Domahidi, J.L.

Jerez, G. Stathopoulos, and C. Jones. Embedded optimization methods for in-

dustrial automatic control. IFAC-PapersOnLine, 50(1):13194�13209, 2017. doi:

10.1016/j.ifacol.2017.08.1946.

[31] Goldfarb Donald. Advances in Optimization and Numerical Analysis. Springer

Netherlands, 01 1992.

[32] Karl Heinx Borgwardt. Probabilistic analysis of the simplex method.

In DGOR/NSOR, Berlin, Heidelberg, 1988. Springer. doi:10.1007/

978-3-642-73778-7$_$148.

[33] Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: why

the simplex algorithm usually takes polynomial time. J. ACM, 51:385�463, 07 2001.

doi:10.1145/380752.380813.

https://doi.org/10.3929/ETHZ-A-010010483
https://doi.org/10.1137/1.9780898718577
https://arxiv.org/abs/2110.01858
https://doi.org/10.1007/BF02579150
https://doi.org/10.1137/0802028
https://doi.org/10.1016/j.ejco.2021.100015
https://doi.org/10.1016/j.ifacol.2017.08.1946
https://doi.org/10.1016/j.ifacol.2017.08.1946
https://doi.org/10.1007/978-3-642-73778-7$_$148
https://doi.org/10.1007/978-3-642-73778-7$_$148
https://doi.org/10.1145/380752.380813

94 | Bibliography

[34] Cimini Gionata and Bemporad Alberto. Exact complexity certi�cation of active-

set methods for quadratic programming. IEEE Transactions on Automatic Control,

62(12):6094�6109, 12 2017. doi:10.1109/TAC.2017.2696742.

[35] Daniel Arnström and Daniel Axehill. A unifying complexity certi�cation framework

for active-set methods for convex quadratic programming. IEEE Transactions on

Automatic Control, 67(6):2758�2770, 06 2022. doi:10.1109/TAC.2021.3090749.

[36] Cristóbal Guzmán and Arkadi Nemirovski. On lower complexity bounds for large-

scale smooth convex optimization. Journal of Complexity, 31(1):1�14, 02 2015. doi:

10.1016/j.jco.2014.08.003.

[37] Liu Xinfu, Lu Ping, and Pan Binfeng. Survey of convex optimization for aerospace

applications. Astrodynamics, 1:23�40, 09 2017. doi:10.1007/s42064-017-0003-8.

[38] Lars Blackmore, Behçet Açikmese, and Daniel P. Scharf. Minimum-landing-error

powered-descent guidance for mars landing using convex optimization. Journal of

Guidance Control and Dynamics, 33(4):1161�1171, 07 2010. doi:10.2514/1.47202.

[39] Behçet Açikmese and Scott R. Ploen. Convex programming approach to powered

descent guidance for mars landing. Journal of Guidance Control and Dynamics,

30(5):1353�1366, 09 2007. doi:10.2514/1.27553.

[40] Robin M. Pinson and Ping Lu. Rapid generation of optimal asteroid powered de-

scent trajectories via convex optimization. In AAS/AIAA Astrodynamics Specialist

Conference, Vail, Colorado, USA, 08 2015.

[41] Pinson M. Robin and Lu Ping. Trajectory design employing convex optimization

for landing on irregularly shaped asteroids. In AAS/AIAA Astrodynamics Specialist

Conference, Long Beach, California,USA, 09 2016. doi:10.2514/6.2016-5378.

[42] Ping Lu and Xinfu Liu. Autonomous trajectory planning for rendezvous and prox-

imity operations by conic optimization. Journal of Guidance Control and Dynamics,

36(2):375�389, 03 2013. doi:10.2514/1.58436.

[43] Xinfu Liu. Autonomous trajectory planning by convex optimization. Phd thesis, Iowa

State University, 2013. doi:10.31274/etd-180810-3525.

[44] John Carson, Michelle Munk, Ronald Sostaric, Jay Estes, Farzin Amzajerdian, James

Blair, David Rutishauser, Carolina Restrepo, Alicia Dwyer-Cianciolo, George Chen,

and Teming Tse. The SPLICE project: Continuing NASA development of GNC

technologies for safe and precise landing. In AIAA Scitech 2019 Forum, San Diego,

California, USA, 01 2019. doi:10.2514/6.2019-0660.

https://doi.org/10.1109/TAC.2017.2696742
https://doi.org/10.1109/TAC.2021.3090749
https://doi.org/10.1016/j.jco.2014.08.003
https://doi.org/10.1016/j.jco.2014.08.003
https://doi.org/10.1007/s42064-017-0003-8
https://doi.org/10.2514/1.47202
https://doi.org/10.2514/1.27553
https://doi.org/10.2514/6.2016-5378
https://doi.org/10.2514/1.58436
https://doi.org/10.31274/etd-180810-3525
https://doi.org/10.2514/6.2019-0660

| Bibliography 95

[45] A. Zanelli, A. Domahidi, J. Jerez, and M. Morari. Forces nlp: an e�cient implemen-

tation of interior-point methods for multistage nonlinear nonconvex programs. In-

ternational Journal of Control, 93(1):1�26, 04 2017. doi:10.1080/00207179.2017.

1316017.

[46] Boris Houska, Jaochim Ferreau, and Mortiz Diehl. ACADO Toolkit � An Open

Source Framework for Automatic Control and Dynamic Optimization. Optimal Con-

trol Applications and Methods, 32(3):298�312, 03 2011. doi:10.1002/oca.939.

[47] Boris Houska, Jaochim Ferreau, and Mortiz Diehl. An Auto-Generated Real-Time

Iteration Algorithm for Nonlinear MPC in the Microsecond Range. Automatica,

47(10):2279�2285, 10 2011. doi:10.1016/j.automatica.2011.08.020.

[48] Pablo Zometa, Markus Kogel, and Rolf Findeisen. µAO-MPC: A free code gen-

eration tool for embedded real-time linear model predictive control. In American

Control Conference (ACC), Washington D.C., USA, 06 2013. doi:10.1109/ACC.

2013.6580668.

[49] Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling lan-

guage for convex optimization. Journal of Machine Learning Research, 17(83):1�5,

04 2016.

[50] Akshay Agrawal, Robin Verschueren, Steven Diamond, and Stephen Boyd. A rewrit-

ing system for convex optimization problems. Journal of Control and Decision,

5(1):42�60, 10 2018. doi:0.1080/23307706.2017.1397554.

[51] Maximilian Schaller, Goran Banjac, Steven Diamond, Akshay Agrawal, Bartolomeo

Stellato, and Stephen Boyd. Embedded code generation with CVXPY. ACCESS

Seminar, 03 2022.

[52] Alexander Domahidi, Eric Chu, and Stephen Boyd. ECOS: An SOCP solver for

embedded systems. In 2013 European Control Conference, ECC 2013, 07 2013. doi:

10.23919/ECC.2013.6669541.

[53] Martin Andersen, Joachim Dahl, and Lieven Vandenberghe. CVXOPT: A

python package for convex optimizatio. version 1.3.1. https://cvxopt.org/

documentation/index.html, 03 2023. Last access 25 04 2023.

[54] Dongdong Ge, Qi Huangfu, Zizhuo Wang, Jian Wu, and Yinyu Ye. Cardinal Opti-

mizer (COPT) user guide. https://guide.coap.online/copt/en-doc, 2023. Last access

21 04 2023.

[55] Abhishek Goud Pandala, Yanran Ding, and Hae-Won Park. qpswift: A real-time

https://doi.org/10.1080/00207179.2017.1316017
https://doi.org/10.1080/00207179.2017.1316017
https://doi.org/10.1002/oca.939
https://doi.org/10.1016/j.automatica.2011.08.020
https://doi.org/10.1109/ACC.2013.6580668
https://doi.org/10.1109/ACC.2013.6580668
https://doi.org/0.1080/23307706.2017.1397554
https://doi.org/10.23919/ECC.2013.6669541
https://doi.org/10.23919/ECC.2013.6669541
https://cvxopt.org/documentation/index.html
https://cvxopt.org/documentation/index.html

96 | Bibliography

sparse quadratic program solver for robotic applications. IEEE Robotics and Au-

tomation Letters, 4(4):3355�3362, 10 2019. doi:10.1109/LRA.2019.2926664.

[56] Paul Goulart and Yuwen Chen. Clarabel: A library for optimization and control.

Link: https://oxfordcontrol.github.io/ClarabelDocs/stable/, 2021. Last ac-

cess on 08 08 2023.

[57] Brendan O'Donoghue, Eric Chu, Neal Parikh, and Stephen Boyd. Conic opti-

mization via operator splitting and homogeneous self-dual embedding. Journal of

Optimization Theory and Applications, 169(3):1042�1068, 06 2016. doi:10.1007/

s10957-016-0892-3.

[58] Bartolomeo Stellato, Goran Banjac, Paul Goulart, Alberto Bemporad, and Stephen

Boyd. OSQP: an operator splitting solver for quadratic programs. Math-

ematical Programming Computation, 12(4):637�672, 12 2020. doi:10.1007/

s12532-020-00179-2.

[59] Antoine Bambade, Sarah El-Kazdadi, Adrien Taylor, and Justin Carpentier. PROX-

QP: Yet another Quadratic Programming Solver for Robotics and beyond. In RSS

2022 - Robotics: Science and Systems, New York, United States, 06 2022. URL:

https://hal.inria.fr/hal-03683733.

[60] Michael Garstka, Mark Cannon, and Paul Goulart. COSMO: A conic operator split-

ting method for convex conic problems. Journal of Optimization Theory and Appli-

cations, 190(3):779�810, 2021. doi:10.1007/s10957-021-01896-x.

[61] Yue Yu, Purnanand Elango, and Behçet Aç� kme³e. Proportional-integral pro-

jected gradient method for model predictive control. IEEE Control Systems Letters,

5(6):2174�2179, 2021. doi:10.1109/LCSYS.2020.3044977.

[62] Hans Joachim Ferreau, Hans Georg Bock, and Moritz Dieh. An online active set

strategy to overcome the limitations of explicit MPC. International Journal of Robust

and Nonlinear Control, 18(8):816�830, 01 2008. doi:10.1002/rnc.1251.

[63] Hans Joachim Ferreau, Christian Kirches, Andreas Potschka, Hans Georg Bock,

and Moritz Diehl. qpOASES: A parametric active-set algorithm for quadratic

programming. Mathematical Programming Computation, 6(4):327�363, 12 2014.

doi:10.1007/s12532-014-0071-1.

[64] Daniel Arnström, Alberto Bemporad, and Daniel Axehill. A dual active-set solver for

embedded quadratic programming using recursive LDLT updates. IEEE Transactions

on Automatic Control, 67(8):4362�4369, 2022. doi:10.1109/TAC.2022.3176430.

https://doi.org/10.1109/LRA.2019.2926664
https://oxfordcontrol.github.io/ClarabelDocs/stable/
https://doi.org/10.1007/s10957-016-0892-3
https://doi.org/10.1007/s10957-016-0892-3
https://doi.org/10.1007/s12532-020-00179-2
https://doi.org/10.1007/s12532-020-00179-2
https://hal.inria.fr/hal-03683733
https://doi.org/10.1007/s10957-021-01896-x
https://doi.org/10.1109/LCSYS.2020.3044977
https://doi.org/10.1002/rnc.1251
https://doi.org/10.1007/s12532-014-0071-1
https://doi.org/10.1109/TAC.2022.3176430

| List of Tables 97

[65] Q. Huangfu and J. A. J. Hall. Parallelizing the dual revised simplex method.

Mathematical Programming Computation, 10:119�142, 04 2018. doi:10.1007/

s12532-017-0130-5.

[66] Donald Goldfarb and Ashok Idnani. A numerically stable dual method for solving

strictly convex quadratic programs. Mathematical Programming, 27:1�33, 09 1983.

doi:10.1007/BF02591962.

[67] Mattias Fält and Pontus Giselsson. QPDAS: Dual Active Set Solver for Mixed Con-

straint Quadratic Programming. In IEEE 58th Conference on Decision and Control

(CDC), Nice, France, 12 2019. doi:10.1109/CDC40024.2019.9029900.

[68] John T. Betts. Very low-thrust trajectory optimization using a direct sqp method.

Journal of Computational and Applied Mathematics, 120(1):27�40, 08 2000. doi:

10.1016/S0377-0427(00)00301-0.

[69] Yuanqi Mao, Michael Szmuk, Xiangru Xu, and Behcet Acikmese. Successive con-

vexi�cation: A superlinearly convergent algorithm for non-convex optimal control

problems. arXiv preprint, 2019. doi:10.48550/arXiv.1804.06539.

[70] Francesco Topputo, Yang Wang, Carmine Giordano, Vittorio Franzese, Hannah

Goldberg, Franco Perez-Lissi, and Roger Walker. Envelop of reachable aster-

oids by M-ARGO CubeSat. Advances in Space Research, 67(12):4193�4221, 2021.

doi:10.1016/j.asr.2021.02.031.

https://doi.org/10.1007/s12532-017-0130-5
https://doi.org/10.1007/s12532-017-0130-5
https://doi.org/10.1007/BF02591962
https://doi.org/10.1109/CDC40024.2019.9029900
https://doi.org/10.1016/S0377-0427(00)00301-0
https://doi.org/10.1016/S0377-0427(00)00301-0
https://doi.org/10.48550/arXiv.1804.06539
https://doi.org/10.1016/j.asr.2021.02.031

99

A| Parametric Investigation

A.1. Trust Region Factor

As the trust region factor γ depends on the algorithm adopted and is not a parameter

which is speci�c to the solver, the e�ort was made to investigate its e�ect in all cases

and for all solvers used. This was done to try and guarantee the best possible result and

solver performance for ECOS and SCS, in order to compare the most optimal solutions.

To complete the investigation reported in Section 4.2 for the Earth�Mars trajectory, the

remaining cases are illustrated below. The parameters reported in the �gures are a rep-

resentations of the criteria introduced in Section 2.4 and described in Table 4.3.

For the SEL2-NEA case, as shown in Figure A.1, the e�ect that the trust region factor has

on the computational toll for SCS is almost negligible, whereas a value of 0.7 guarantees

the best computational burden for ECOS. Analysing the complexity of the operations

done, one can see that a parameter of 0.8 proves to be extremely bene�cial to SCS,

reducing the number of operations solved by one order of magnitude compared to a value

of γ of 0.7 or 0.9. The accuracy, instead, results to be una�ected for ECOS, while it

exhibits a decreasing behaviour for SCS as the parameter is increased. A value of 0.8 was

therefore chosen for the NEA.

The Earth-to-Venus trajectory optimisation in Figure A.2 presents di�erent results from

the previous two. ECOS shows similar outputs for the di�erent values of γ. The same can

be said for SCS from the computational and operational point of view. The two values

that seemed more promising were of 0.8 and 0.99, due to the lower computational burden

for ECOS. However, after analysing the accuracy of the solutions obtained, it was clear

that a value of 0.99 was more suitable due to the similar behaviour of the two solvers.

100 A| Parametric Investigation

(a) Burden. (b) E�ciency.

(c) Iterations. (d) Operations.

(e) Accuracy.

Figure A.1: E�ect of the trust region factor on performance for the NEA case.

A| Parametric Investigation 101

(a) Burden. (b) E�ciency.

(c) Iterations. (d) Operations.

(e) Accuracy.

Figure A.2: E�ect of the trust region factor on performance for the Venus case.

102 A| Parametric Investigation

A.2. SCS Operations

As mentioned in Section 4.2, the investigation on the maximum number of solver iterations

was carried out for all three test cases. This section of the appendix reports the �ndings

for the Earth-to-Mars (Figure A.3) and Earth-to-Venus (Figure A.4) cases which show

the similar behaviour of the parameters as the SEL2-to-NEA example. The parameters

reported in the �gures are a representation of the criteria introduced in Section 2.4 and

described in Table 4.3.

The behaviour of the computational load is similar for all cases, with an increase in values

observed with an increase in allowable operations. Only the Earth-to-Mars case shows a

minor improvement in the criteria at the last value compared to the previous one. The

same can be said for the number of total operations required to reach convergence for SCS

(Figure A.3d and Figure A.4d). Moreover, the accuracy of the solution once again shows

an unclear behaviour, with a limit of 5000 operations for the SCS solver resulting in the

best solution in terms of accuracy for the Mars case, and the second-best for the Venus

case. Due to the worsening behaviour of the computational load and complexity with

allowable operations and lack of a clear relationship for the accuracy of the maximum

number of operations was set to 2500 as explained in Section 4.2.

(a) Burden. (b) E�ciency.

A| Parametric Investigation 103

(c) Iterations. (d) Operations.

(e) Accuracy.

Figure A.3: E�ect of the maximum number of allowable SCS operations on performance

for the Mars case.

(a) Burden. (b) E�ciency.

104 A| Parametric Investigation

(c) Iterations. (d) Operations.

(e) Accuracy.

Figure A.4: E�ect of the maximum number of allowable SCS operations on performance

for the Venus case.

105

B| Veri�cation and Validation

In order to ensure that the results obtained were correct, a series of investigations and

comparisons were performed. This chapter explores and presents said tests together with

the results.

B.1. Accuracy Veri�cation

Initially after obtaining the �rst results the nodes of the problems were varied progressively

to ensure that the high accuracy observed was due to the number of nodes used during the

trajectory optimisation and not due to an erroneous problem de�nition. As the accuracy of

the solution (see Table 4.3 for de�nition) depends on the state of the propagated solution,

one has to analyse the radial position, velocity and angles to have a complete evaluation

(see Figure B.1). The accuracy reported is obtained by propagating the optimal control

and comparing the di�erence between the desired �nal state, xf , and the propagated

solution at time tf .

As it is possible to see from the �gure below, increasing the number of nodes improves

the accuracy of the solution. The pattern observed is similar for the velocity and angles.

Although the relationship between the accuracy in the radial position of the spacecraft

and the number of nodes di�ers from the other parameters, an improvement in the values

can still be seen. This validates that the low accuracy obtained, especially in the r, is

attributed to the node number and not a wrong formulation of the convex problem.

106 B| Veri�cation and Validation

(a) Distance. (b) Velocity.

(c) Azimuth. (d) Elevation.

Figure B.1: E�ect of the number of nodes on the accuracy of the propagated solution for

the Earth-Mars case using ECOS.

Moreover, by representing the accuracy of the radial distance in Cartesian coordinates, it

is clear that the di�erence in the obtained optimal solution (xopt) and the one propagated

using the optimal control is due to a propagation error. In fact, the absolute of the error

increases with the node i, as shown in Figure B.2.

B| Veri�cation and Validation 107

0 25 50 75 100 125 150
Node [-]

0

100000

200000

300000

400000

Er
ro
r i
n
x
[k
m
]

(a) Error in x.

0 25 50 75 100 125 150
Node [-]

0

20000

40000

60000

80000

100000

Er
ro
r i
n
y
[k
m
]

(b) Error in y.

0 25 50 75 100 125 150
Node [-]

0

25000

50000

75000

100000

125000

Er
ro
r i
n
z [

km
]

(c) Error in z.

Figure B.2: Di�erence between the propagated optimal solution and the SCP trajectory

output for the Venus case.

B.2. Control Validation

Using the obtained optimal control from the SCP algorithm, it is possible to plot the

control relaxation by taking the di�erence between the left-hand side and the right-hand

side of Equation 3.30. Figure B.3 demonstrates that this di�erence stays extremely close

to zero, and therefore the constraint is at the very upper limit of the inequality. This

proves that the transformation of the constraint to a convex form respects the equality of

Equation 3.18, with the relaxed control constraint remaining active throughout the whole

optimised trajectory [11].

108 B| Veri�cation and Validation

0 50 100 150 200 250
Time [days]

10−21

10−19

10−17

10−15

10−13

10−11

τ2
−
τ2 r

−
τ2 θ

−
τ2 ϕ
 [-

]

(a) Earth-Mars.

0 200 400 600
Time [days]

10−26

10−23

10−20

10−17

10−14

10−11

τ2
−
τ2 r

−
τ2 θ

−
τ2 ϕ
 [-

]
(b) SEL2-NEA.

0 200 400 600 800 1000
Time [days]

10−19

10−17

10−15

10−13

10−11

τ2
−
τ2 r

−
τ2 θ

−
τ2 ϕ
 [-

]

(c) Earth-Venus.

Figure B.3: Equivalence of control constraint relaxation for the three test-cases.

109

C| GitLab Repository

This appendix provides reference to the GitLab repository associated with this thesis.

The repository contains all the source code, data sets, and additional materials used in

the research discussed in the main text. Readers can access and download these resources

to gain a deeper understanding of the research methodology and to reproduce the exper-

iments conducted and the results presented.

GitLab Repository URL: https://gitlab.com/leogrillo/cvx_thesis.

The GitLab repository (Figure C.1) contains the following resources:

� Source code for the experimental software;

� Data-sets used for analysis;

� Documentation on how to set up data �les;

� Documentation on how to run the experiments.

To access the resources in this GitLab repository, visit the provided URL. Detailed in-

structions on how to use the code are available in the README.md �le within the repository.

Figure C.1: Screenshot of GitLab repository.

https://gitlab.com/leogrillo/cvx_thesis

	Abstract
	Sommario
	Ringraziamenti
	Contents
	Introduction
	Objectives of the Thesis
	Research Question
	Limitations
	Thesis Outline

	Theoretical Background
	Convex Optimisation Methods
	Interior-Point Methods
	First-Order Methods
	Active-Set Methods
	Method Comparison

	Convex Optimisation in Space Guidance
	Sequential Convex Programming

	Survey of Available Software
	Tools
	Solvers

	Trade-off Criteria Selection

	Methodology
	Dynamical Model
	Equations of Motion in Spherical Coordinates
	Normalisation

	Optimal Control Problem
	Successive Convexification Method
	Change of Variables
	Convexification
	Discretisation

	Sequential Convex Programming Algorithm
	Artificial Infeasibility
	Trust Region
	Convergence Criteria
	Initial Guess Generation
	Algorithm

	Numerical Results
	Experimental Setup
	Parametric Analysis
	Results Validation
	Trade-off Criteria Analysis
	Memory
	Complexity
	Computational Burden and Efficiency
	Accuracy
	Optimality
	Reliability
	Effectiveness

	CVXPY Analysis

	Conclusions and Future Work
	Conclusion
	Future Work

	List of Figures
	List of Tables
	Nomenclature
	Bibliography
	Parametric Investigation
	Trust Region Factor
	SCS Operations

	Verification and Validation
	Accuracy Verification
	Control Validation

	GitLab Repository

