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Abstract

This thesis considers two aspects of count data that can raise in a real case
scenario: the over-abundance of the zero value and the spatial reference.
When there is an excess of zeros the more conventional probabilistic distri-
butions, such as Poisson or Negative Binomial, are inefficient. The proposed
alternative solution to the problem is the hurdle distribution, where all zeros
are enclosed in a probability point mass at zero and a discrete distribu-
tion is truncated to account for only the strictly positive observations. Four
Bayesian models that exploits Poisson hurdle distributions are introduced
and tested with synthetic data.
Therefore we consider a dataset in which the burned hectares of a forest are
assumed to have a Poisson hurdle distribution. Furthermore each observa-
tion is characterized by geological and meteorological measurements which
act as covariates and by a spatial reference such that each observation be-
longs to a sub-region treated as a group. The most suitable model out of the
four proposed, has been applied to the dataset. It has a regression structure
in order to take into account the covariates and some group-specific ran-
dom effects to explain the spatial dependence. After assigning some prior
distributions to the model parameters we obtain the posterior distributions
(using Markov Chain Monte Carlo methods to sample from them). Then a
Bayesian inference on the parameters is performed to assert the relevance (or
not) of the group structure among data and which covariates are the most
significant. We have also compared the bayesian estimates of the parameters
with empirical ones (computed through the MLE). At the end a prediction
on new unseen data is made.

Keywords: Bayesian Approach, Markov Chain Monte Carlo Methods, Pois-
son Hurdle.
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Sommario

Questa tesi considera due aspetti dei dati discreti che possono nascere in uno
scenario reale: l’estrema abbondanza del valore zero e la dipendenza spazia-
le. Quando c’è un eccesso di zeri le convenzionali distribuzioni di probabilità,
come Poisson o Binomiale Negativa, risultano inefficienti. La soluzione al-
ternativa proposta è la distribuzione hurdle, in cui gli zeri sono rappresentati
da un unico punto di massa di probabilità a zero e una ditribuzione discreta
viene troncata per tener conto solo dei valori strettamenti positivi. Quattro
modelli Bayesiani che sfruttano la distribuzione Poisson hurdle sono presen-
tati e testati su dati artificiali.
Poi consideriamo un dataset dove gli ettari bruciati di una foresta sono ri-
tenuti avere una distribuzione Poisson hurdle. Inoltre ogni osservazione è
caratterizzata da misurazioni meteorologiche e geologiche che fungono da
covariate e da un riferimento spaziale secondo cui ogni osservazione appar-
tiene ad una sotto-regione, trattata come un gruppo. Il modello dei quattro
proposti più adatto è applicato al dataset. Si tratta di quello che presenta
una regressione per tener conto delle covariate e dei random effects di grup-
po per spiegare il riferimento geografico. Dopo aver assegnato ai parametri
del modello delle distribuzioni a priori abbiamo ottenuto le distribuzioni a
posteriori (usando le catene di Markov Monte Carlo per campionare). Poi
abbiamo fatto inferenza bayesiana sui parametri per asserire la significatività
o meno della struttura a gruppi dei dati e quali covariate fossero le più signi-
ficative. Abbiamo confrontato la stima bayesiana dei parametri con quella
empirica (calcolata con MLE) e infine è stata fatta predizione su nuovi dati
inosservati.

Parole chiave: Approccio bayesiano, Markov Chain Monte Carlo Methods,
Poisson Hurdle.
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Introduction

Between all data types that exist in real world, count data play an important
part. There are several ways to treat and model this kind of data but, in-
evitably, some discrete probability distributions like Poisson, Binomial and
Negative Binomial are more suitable than others and strong of this fact,
they are recurrent in the majority of studies which deal with modeling real
problems with positive or null integer data.
A further aspect of these kind of data is that in some real-case circum-
stances they may have a spatial reference, provided that are observed within
a metric space: they are immersed in a reference space that is usually a
multi-dimensional space, not necessary a surface, even if in this elaborate we
will consider only flat surfaces. A particular case is represented by areal data
which is generated partitioning a domain in a finite number of sub-regions
at which outcomes are aggregated.
When a non standard scenario shows up, for example when data contemplate
an overabundance of zero values, the models that take advantage of the above
mentioned distributions encounter some limitations, because of the limited
shapes which the more conventional probability distributions offer. Fortu-
nately some powerful countermeasures exist and they have been discussed in
some scientific papers under the name of Hurdle and Zero-inflated models.
For example, in [1] the choice of Ver Hoef and Jansen, in order to take in
consideration the spatial dependence among data, has been to consider some
random effects both in a hurdle and a zero-inflated regression model. In [2]
Neelon, Ghosh and Loebs focused on the socio-economic problem related to
the increasing demand of emergency department visits in Durham, North
Carolina and they also adopted an hurdle regression model with random ef-
fects with the intent of discovering if a correlation between the access to the
Emergency department (access or not) and the number of the visits would
exists. The contribution of Ghosh, Gelfand, Zhu and Clark [3] is to address
the limitations of these models when even the extreme overabundance of zero
values (potentially more than 80%) represents an issue.
Taking this literature as a starting point we are going to deal with Bayesian
models that involve the so called Hurdle distributions. In particular, in this
elaborate the purpose is to investigate the potentiality of an hurdle model in
a Bayesian framework and studying its application in cases where there is a
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group structure distributed over a space.

The thesis will be divided into 4 main chapters and final conclusions.
In particular, chapters are organized as follows. In Chapter 1, after submit-
ting the Hurdle and the Zero-inflated concepts together with their probability
notions, a bunch of models that exploits Poisson hurdle distributions are in-
troduced, increasing the complexity one model after another: we start from
a minimal Poisson Hurdle model and then we develop firstly a regression
structure, using generalized linear models’ theory, and subsequently a group
structure among the observations. Chapter 2 briefly recap the theory of the
Bayesian approach, along with the theory of Markov chains and the Markov
chain Monte Carlo (MCMC) methods, which facilitates to sample from the
Bayesian posterior distribution. In Chapter 3 we have tested with simulated
data all the four models covered in the first chapter, before considering, in
Chapter 4, a real-world dataset concerning the ignition and the spread of
wildfires occurred in a western region of the Iberian Peninsula. The most
specific model out of four has been applied to the dataset. After that, a
Bayesian inference on model parameters and prediction complete the chap-
ter.
In the end some conclusions on the work are made, included some ideas for
future developments and improvements.
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Chapter 1

Statistical models

When dealing with processes that yield an overabundance of zeros, hurdle
and zero-inflated models are commonly used to address this problem because
they allow more flexibility in modeling the probability of a zero outcome. The
basic idea is to act on a well-known discrete distribution, such as a Poisson
or Negative Binomial, increasing the probability of observing a zero value.
We present now two classes of discrete models.

1.1 Hurdle and zero-inflated models

Suppose a Bernoulli random variable Z governs the binary outcome of whether
a count random variable Y has a zero or a positive realization. The above
statement rules both the zero-inflated model and the hurdle one.
In the case the Bernoulli realization is positive, if the conditional distribution
of the positives is governed by a distribution whose support is any strictly
positive count value (some possible choices are truncated-at-zero Poisson or
Poisson plus one) is the case of hurdle models; otherwise, if the conditional
distribution includes the zero value (such as Poisson or Negative Binomial
(NB)), it is a Zero-inflated model and generally they are referred as ZI, with
the addition of the suffix related to the chosen discrete distribution, like ZIP
or ZINB for the previous cases.
Zero-inflated models have been theorized by Diane Lambert in 1992 [4] and
the differences between them and hurdle models have been investigated so
far; as said before they are both suitable to describe the high occurrence of
zeros but their main difference is intrinsic and related to the source of the
zero value: in a Poisson hurdle model the realization of value zero is uniquely
possible if it is drawn from the Bernoulli trail because the Truncated Pois-
son has support only on strictly positive values. On the other hand, if we
consider a Zero-inflated Poisson (ZIP), it is a mixture model where the zero
value could come from both the Bernoulli trial and the Poisson distribution
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since, in this case, the Poisson distribution has a support that includes zero.
Just for completeness and to understand better what we have argued so far
we formally introduce a ZIP model although it will not be used from now on
because we will focus only on hurdle one.
We define a ZIP model starting from the conditional distribution of Y given
the Bernoulli trial Z:

P (Y = y|Z = z) =

{
0 if z = 0

Pois(y|λ) if z = 1

Given the above probability and knowing the distribution of Z ∼ Be(p), the
marginal distribution of Y is:

P (Y = y) =

{
(1− p) + pe−λ if y = 0
p Pois(y|λ) if y = 1, 2, . . .

where we can notice the two possible sources of the probability of observing
a value of zero.

Let us introduce the other model class, the hurdle model, with the specific
case of a Poisson hurdle one.
A random variable Y ∼ HPois(p, λ) has a Poisson hurdle distribution if the
conditional distribution of Y given Z is:

P (Y = y|Z = z) =

{
0 if z = 0

tPois(y|λ) if z = 1

where

tPois(y|λ) = λye−λ

y!(1− e−λ)
=

λy

y!(eλ − 1)
y = 1, 2, . . .

is the truncated Poisson density and the marginal distribution of Y is:

P (Y = y) =

{
1− p if y = 0

p tPois(y|λ) if y = 1, 2, . . .

The next subsections will be organized following a common path: firstly the
Z = I{Y > 0} random variable is introduced: it has two possible distinct
realizations that are 1 if Y > 0 and 0 if Y = 0. Then the conditional
distribution Y |Z is computed. After these two preliminary steps and using
the property of conditional probability the likelihood is straightforward.
The likelihood function describes the joint probability of the observed data as
function of the parameters of the chosen statistical model and if the random
variables that are responsible of the given data (let us indicate them as Yi in a
general scenario) are assumed to be independent and identically distributed
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the likelihood is given by:

L(y|θ) = P (Y1 = y1, · · · , YN = yn|θ) =
∏

i∈{1,...,N}

P (Yi = yi|θ) (1.1)

where y is the vector of realization of {Yi}i∈{1,··· ,N} and θ is the vector of
hidden parameters under the distribution of Yi.
Let us consider a sample of independent Poisson hurdle random variables
{Y1, · · · , YN} and use it to formally introduce some models. The main focus
is to exploit the model structure, get the likelihood function and take ad-
vantage of it, later on, for a Bayesian analysis.

1.1.1 Poisson hurdle base model

We start from the simplest model involving a Poisson hurdle scenario. Con-
sider the sample of independent random variables given by {Y1, . . . , YN},
where:

Yi
iid∼ HPois(p, λ) i ∈ {1, 2, ..., N}

Its likelihood function (seen as a function of the parameters given the data)
is:

L(p, λ|y) =
∏
i∈Ω0

(1− p)
∏
i∈Ω1

p
λyie−λ

yi!(1− e−λ)

= (1− p)|Ω0| · pN−|Ω0| ·
∏
i∈Ω1

λyie−λ

yi!(1− e−λ)

(1.2)

where y = (y1, . . . , yN ) is the realization of Y = (Y1, . . . , YN ), Ω0 = {i|yi =
0}, Ω1 = {i|yi > 0} and Ω0 ∪ Ω1 = {1, 2, ..., N} (so |Ω0| + |Ω1| = N , where
| · | denotes the cardinality of a set).

Introducing Zi = I{Yi > 0}, by the independence of {Yi} for i ∈ {1, · · · , N},
the likelihood of (Z1, . . . , ZN ) is the following:

P (Z1 = z1, . . . , ZN = zN |p) =
N∏
i=1

pzi(1− p)1−zi = p
∑N

i=1 zi · (1− p)N−
∑N

i=1 zi

(1.3)

Compute now the joint conditional likelihood of Y |Z, where Z = (Z1, . . . , ZN )
and z = (z1, . . . , zN ) is its realization:

P (Y1 = y1, . . . , YN = yN |z, λ) =
N∏
i=1

( λyie−λ

yi!(1− e−λ)

)zi
I(yi = 0)1−zi (1.4)
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In this way, multiplying (1.3) and (1.4) we get exactly the previous result
(1.2) for the likelihood of {Y1, . . . , YN}, written this time as a function of Z
and considering that |Ω0| = N −

∑N
i=1 zi :

L(p, λ|y, z) =
∏

i∈1,...,N
(1− p)1−zi

(
p

λyie−λ

yi!(1− e−λ)

)zi

=

= (1− p)N−
∑N

i=1 zi · p
∑N

i=1 zi ·
∏
i∈Ω1

λyie−λ

yi!(1− e−λ)

(1.5)

And by the exponential property:

L(p, λ|y, z) = (1− p)N−
∑N

i=1 zi · p
∑N

i=1 zi · λ
∑N

i=1 yie−|Ω1|λ

(1− e−λ)|Ω1|

∏
i∈Ω1

1

yi!

1.1.2 Poisson hurdle regression

The next model of our list (and some others further on) is based on the Gen-
eralized Linear Model (GLM) concept. The term generalized linear model
refers to a class of models spread for the first time by McCullagh and Nelder
in 1982 [5]. In these types of models, the response variable Y has a distri-
bution belonging to the exponential family and its mean µ is assumed to be
dependent on some covariates x ∈ RJ through some predictors β ∈ RJ using
a (often nonlinear) function f such that µ = f(xTβ). The fact that the
function is "nonlinear" is misleading because according to McCullagh and
Nelder the covariates affect the distribution of Y only through the linear
combination xTβ.
In a GLM framework we adopt a link function for both the parameters p
and λ and we refer to the predictor as the usual GLM notation η = xTβ.
The possible choices for the link function of p are:

(a) log-log link function ⇐⇒ ln(ln(p)) = η;

(b) log link function ⇐⇒ ln(p) = η

(c) logit link function ⇐⇒ ln( p
1−p) = η, where p

1−p is the called odds
ratio;

(d) probit link function ⇐⇒ Φ−1(p) = η, where Φ−1(·) is the cumulative
distribution function of the standard normal distribution;

Instead for λ usually consider:

(a) log link function ⇐⇒ ln(λ) = η;

We have introduced the GLM concept because we want to extend the model
of the previous section, introducing a regression on its parameters p and λ.
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We could have some covariates related to the p parameter and some others
related to the λ parameter, which we collect them in the following matrices
X(p) ∈ RN×J and X(λ) ∈ RN×J . In particular each row x

(p)
i and x

(λ)
i of the

matrices refers to a single observation.
For example choosing (c) for p and (a) for λ as desired link functions and
substituting them in (1.5), the model becomes:

Yi|x(p)i , x
(λ)
i

iid∼ HPois(pi, λi) i ∈ {1, 2, . . . , N}
log( pi

1−pi
) = x

(p)
i β(p) i ∈ {1, 2, . . . , N}

log(λi) = x
(λ)
i β(λ) i ∈ {1, 2, . . . , N}

The likelihood is a function of the new parameters β(p) and β(λ):

L(β(λ), β(p)|y, z,X(p), X(λ)) =

=
∏

i∈1,...,N
(1− pi(x

(p)
i β(p)))1−zi

(
pi(x

(p)
i β(p)))

λi(x
(λ)
i β(λ))yie−λi(x

(λ)
i β(λ)))

yi!(1− e−λi(x
(λ)
i β(λ)))

)zi

(1.6)

Instead of considering the likelihood itself we apply the logarithmic function
to (1.6) because we want to show an important peculiarity of hurdle models.
The so called log-likelihood is the following:

ln(L(β(λ), β(p)|y, z,X(p), X(λ))) =

= ln

 ∏
i∈1,...,N

(1− pi(x
(p)
i β(p)))1−zi

(
pi(x

(p)
i β(p)))

λi(x
(λ)
i βλ)yie−λi(x

(λ)
i βλ)

yi!(1− e−λi(x
(λ)
i βλ))

)zi
 =

=
N∑
i=1

(1− zi) · ln{1− pi(x
(p)
i β(p))}+

N∑
i=1

zi · ln{pi(x(p)i β(p))}+

+
N∑
i=1

zi · ln

{(
λi(x

(λ)
i β(λ))yie−λi(x

(λ)
i β(λ))

yi!(1− e−λi(x
(λ)
i β(λ)))

)}
=

=

N∑
i=1

(1− zi) · ln{1− pi(x
(p)
i β(p))}+

N∑
i=1

zi · ln{pi(x(p)i β(p))}+

+
∑
i:zi>0

(
yi · ln(λi(x

(λ)
i β(λ)))− λi(x

(λ)
i β(λ))− ln(yi!)− ln(1− e−λi(x

(λ)
i β(λ)))

)
= Λ1(β

(p)|z,X(p)) + Λ2(β
(λ)|y, z,X(λ))

(1.7)

Observe that the log-likelihood function is separable with respect to the pa-
rameters β(p) and β(λ). Due to this fact the log-likelihood function consists
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in two contributions: a term related to the binary outcome trial, that is a
function of the only β(p) parameter, and the other term responsible of the
zero-truncated trial which incorporates the parameter β(λ).

1.1.3 Poisson hurdle with group structure

Let us consider now a more specific case in which data are grouped in such a
way we have K groups of nk observations. Basically we have K groups and
each group has proper parameters pk and λk that distinguish the group.
Assuming the above structure the model is the following:

Yi,k
iid∼ HPois(pk, λk), i ∈ {1, 2, ..., nk}, k ∈ {1, 2, ...,K}

where i denotes the single observation of the group, k denotes the specific
group, n = (n1, . . . , nK)T is the vector which collects the cardinality of each
group, p = (p1, . . . , pK)T collects the pk parameter of each group and the
same for λk with λ = (λ1, . . . , λK)T .
Adopting the usual notation for the Zi,k = I{Yi,k > 0} variable the likelihood
function of Z is:

P (Z1,1 = z1,1, . . . , ZnK ,K = znK ,K |p) =
K∏
k=1

nk∏
i=1

p
zi,k
k (1− pk)

1−zi,k =
K∏
k=1

p
∑nk

i=1 zi,k
k · (1− pk)

nk−
∑nk

i=1 zi,k
(1.8)

Consider now the joint contribution of the response variables Y given the
Bernoulli trials Z, Y |Z:

P (Y1,1 = y1,1, . . . , YnK ,K = ynK ,K |z, λ) =
K∏
k=1

nk∏
i=1

( λyi,ke−λk

yi,k!(1− e−λk)

)zi,k
I(yi,k = 0)1−zi,k

(1.9)

Multiplying (1.8) and (1.9) we get the likelihood function:

L(p, λ|y, z) =
K∏
k=1

nk∏
i=1

(1− pk)
1−zi,k

(
pk

λyi,ke−λk

yi,k!(1− e−λk)

)zi,k

(1.10)

1.1.4 Poisson hurdle regression with group structure

The following model has the same group structure described in Section 1.1.3
and the same notation of Section 1.1.2 for the quantities involved in the
regression part, with the addition of some covariates linked to the group
membership and collected in the matrices X̂(p) ∈ RK×J and X̂(λ) ∈ RK×J ,
where each row x̂

(p)
k and x̂

(λ)
k of the matrices refers to a single observation.
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A regression on both parameters is performed.
Given {Y1,1, . . . , Yn1,1, . . . , Y1,K , . . . , Ynk,K} the GLM model is the following:

Yi,k|x
(p)
i,k , x

(λ)
i,k

iid∼ HPois(pi,k, λi,k) i ∈ {1, 2, . . . , nk}, k ∈ {1, 2, . . . ,K}
log(

pi,k
1−pi,k

) = x
(p)
i,kβ

(p) + x̂
(p)
k θ(p) i ∈ {1, 2, . . . , nk}, k ∈ {1, 2, . . . ,K}

log(λi,k) = x
(λ)
i,k β

(λ) + x̂
(λ)
k θ(λ) i ∈ {1, 2, . . . , nk}, k ∈ {1, 2, . . . ,K}

Observe that in the regression structure there are two different contributions:
the first one which includes the β(·) parameter is observation-wise, while the
second one, with θ(·) parameter, is group-wise. Hence the row x

(·)
i,k of X(·)

refers to the observation i of group k, while the row x̂
(·)
k of X̂(·) refers to the

observation of group k.
As done before it is useful to get the marginal likelihood of Z, where Zi,k =
I{Yi,k > 0}:

P (Z1,1 = z1,1, . . . , ZnK ,K = znK ,K |β(p), θ(p), X(p), X̂(p)) =

=

K∏
k=1

nk∏
i=1

pi,k(x
(p)
i,kβ

(p) + x̂
(p)
k θ(p))zi,k(1− pi,k(x

(p)
i,kβ

(p) + x̂
(p)
k θ(p)))1−zi,k =

=: L1(β
(p), θ(p))|z,X(p), X̂(p))

(1.11)

Then we consider each Yi,k|Zi,k contribution ∀i ∈ {1, 2, . . . , nk},∀k ∈ {1, 2, . . . ,K}
and compute:

P (Y1,1 = y1,1, . . . , YnK ,K = ynK ,K |z, β(λ), θ(λ), X(λ), X̂(λ))

=

K∏
k=1

nk∏
i=1

( λi,k(x
(λ)
i,k β

(λ) + x̂
(λ)
k θ(λ))yi,k

yi,k!(1− e−λi,k(x
(λ)
i,k β

(λ)+x̂
(λ)
k θ(λ)))

e−λi,k(x
(λ)
i,k β

(λ)+x̂
(λ)
k θ(λ))

)zi,k
·

· I(yi,k = 0)1−zi,k =: L2(β
(λ), θ(λ)|y, z,X(λ), X̂(λ))

(1.12)

The full likelihood is the product of (1.11) and (1.12):

L(β(p), β(λ), θ(p), θ(λ)|y, z,X(p), X̂(p), X(λ), X̂(λ)) =

L1(β
(p), θ(p)|z,X(p), X̂(p))× L2(β

(λ), θ(λ)|y, z,X(λ), X̂(λ)) =

=
K∏
k=1

nk∏
i=1

(1− pi,k(x
(p)
i,kβ

(p) + x̂
(p)
k θ(p)))1−zi,k · pi,k(x

(p)
i,kβ

(p) + x̂
(p)
k θ(p))zi,k ·

·
( λi,k(x

(λ)
i,k β

(λ) + x̂
(λ)
k θ(λ))yi,k

yi,k!(1− e−λi,k(x
(λ)
i,k β

(λ)+x̂
(λ)
k θ(λ)))

e−λi,k(x
(λ)
i,k β

(λ)+x̂
(λ)
k θ(λ))

)zi,k
(1.13)
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Chapter 2

Bayesian statistics

2.1 Introduction to Bayesian approach

There are two approaches to statistics. On one side the frequentist one and
on the other side the Bayesian one. If we are in a parametric environment,
the former one assumes that the underlying numerical characteristics of the
population, the parameters, are unknown but fixed, with the direct con-
sequence that probability statements about their distributions can not be
made. Vice versa the Bayesian assumption consists in the randomization
of the parameters in fact the philosophical and intuitive explanation is that
since they are unknown, they must be considered as random variables with
a proper distribution and with the possibility to make inference about it.
Considering the random nature of the parameters, a prior distribution is the
probabilistic translation of the possible prior believe one could have about
the parameters before observing the data.
The prior assumption is just a guess in fact the Bayes’ theorem allows to
update the prior distribution through data, getting in this way, the posterior
distribution. In this way the prior believe on parameters could be modified
and partially (or totally) changed according to the observed data.
As long as the frequentist approach, the first step in a Bayesian framework
is to choose a probability model for the data. This process requires under-
standing and deciding on a probability distribution for the data. Suppose we
have N data given by D = {Y1, · · · , YN} where Yi ∈ RD and their density is
given by f(y1, . . . , yN |θ). The quantity θ = (θ1, · · · , θK)T ∈ Θ ⊆ RK is the
vector of unknown parameters assumed random.
Once the data model is chosen, it is mandatory the assertion of a prior
distribution π(θ) on the unknown parameters. The choice of the prior distri-
bution could be of different types: for example an approach could be choos-
ing an informative prior distribution and with this strategy the statistician
exploits his knowledge about the problem to construct a prior distribution
that reflects his beliefs about the unknown parameters. Another approach
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is choosing a non-informative prior, which represents ignorance about the
model parameters. Choosing a non-informative prior distribution could be
a smart option when no prior knowledge about the parameters exists before
observing the data.
Another strategy to choose the prior distribution is to adopt a certain prior
such that the posterior ends up being in the same distribution family as
the prior. If this holds it is called conjugate prior. The advantage of this
option is that if your conjugate prior distribution has a closed-form form ex-
pression, the posterior distribution’s summary statistics such as maximum,
mean, variance and so on are easy to compute analytically. However, pro-
ceeding in this way, we can hardly put the knowledge about the real problem
in the prior distribution.
Retrieve now the Bayes’ theorem [6], which will help us for the next con-
siderations. Given a random vector (X,Y ), let fX,Y (x, y), fX(x), fY (y) be
the density functions of (X,Y ), X, Y respectively, and let fX|Y (x|y) and
fY |X(y|x) be the density function of X conditioned on Y and Y conditioned
on X. The Bayes theorem reads as:

fX|Y (x|y) =
fY |X(y|x) · fX(x)

fY (y)
(2.1)

Once data has been observed, the likelihood function L(D|θ), which describes
the distribution of data, is straightforward. Then, using the Bayes’ theorem
and substituting the likelihood and the prior distribution, we are able to
compute the posterior distribution:

π(θ|D) =
L(D|θ)π(θ)∫

Θ L(D|θ)π(θ) dθ
(2.2)

where π(θ|D) is the posterior distribution of θ, L(D|θ) is the likelihood of
the data, π(θ) is the prior distribution on parameter θ and Θ is the domain
of θ. Note that the denominator does not depend on θ so the posterior is
proportional the the numerator.
The main interest is to handle the posterior distribution but often it is not
easy since it is not guaranteed to be in a close-form expression, making it
difficult sampling from it. For this purpose there exist some techniques and
our focus is on the Markov Chains Monte Carlo methods (MCMC). Basically
they are a family of algorithms that uses Monte Carlo methods to construct
a Markov Chain from which we get the posterior distribution.
Once the posterior is available we would still like to have a single estimate θ̂,
as well as an interval describing our uncertainty about θ. The posterior mean
( E[θ|D] ) is commonly used for θ̂, while a 100(1 − α)% Bayesian credible
interval for θ (let us call it ICθ), which is an interval such that the posterior
probability P (θ ∈ ICθ|D) = 1−α, is used to point out the uncertainty of θ.
One common choice for ICθ is simply the interval [θα

2
, θ 1−α

2
], where θα

2
and
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θ 1−α
2

are the α
2 and 1−α

2 quantiles of the posterior distribution π(θ|D).
In the end we may be interested in making prediction of new (or future) ob-
servations and in the Bayesian framework predicting means sampling from
the posterior predictive distribution.
The posterior predictive distribution for a new data point Y new after having
observed data D is given by:

f(Y new|D) =

∫
Θ
f(Y new|θ,D)π(θ|D) dθ =

∫
Θ
f(y|θ)π(θ|D) dθ

(since Y new is independent of the sample data D and f(y|θ) is the density
of the Poisson hurdle random variable).
For any further information about Bayesian theory and inference see [7] and
[8].

2.2 Markov chains and Monte Carlo methods

Let us consider, for our purpose, a discrete-time Markov chain. Briefly a
discrete-time Markov chain is a sequence of random variables where the
current value is probabilistically dependent just on the value of the previous
variable.
Formally, given a probability space (Ω,F , P ) and a space state set Θ with
its Borel σ-algebra, the succession of random variables {θn}n≥0 on (Ω,F , P )
with values in Θ is a discrete-time Markov chain if the following property
(called Markov property) holds:

P (θn+1 ∈ (·) |θn = θ̄n, θn−1 = θ̄n−1, . . . , θ1 = θ̄1) =

P (θn+1 ∈ (·) |θn = θ̄n) ∀n ∈ N, ∀ (θ̄1, . . . , θ̄n−1, θ̄n, θ̄n+1)
T

(2.3)

As already explained, the realization of the next variable θn+1 is only depen-
dent upon the last variable in the chain (θn).
MCMC methods expect to construct a Markov Chain with support on the
parameter space Θ, whose invariant distribution (the distribution of the
states of the chain after a sufficiently long time that the distribution do not
change any longer) coincides with the posterior distribution π(θ|D); in this
way the chain could be considered as a sample obtained from the posterior
distribution.
In application studies it is important to check that we are sampling from the
correct posterior distribution otherwise the results, included any posterior
inference, are not reliable at all. We have guarantee to get reliable results if
and only if the chain reaches its invariant distribution (see [9] for a rigorous
proof) and for the occurrence are used some graphical techniques that are
going to be explained in details in the next chapter.
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As extensively said, within the Bayesian framework the main interesting ob-
ject is the posterior probability distribution of parameters but not always
it is straightforward to compute it: in many cases the designed model has
extremely complex structure and Monte Carlo methods are useful as a com-
putational device with the ultimate goal of characterizing these complex
distributions and performing statistical inference at the end.
In general Monte Carlo methods help us in several different situations; a
simple scenario is when quantities like integrals must be computed.
For example define:

I =

∫
Θ
g(θ)π(θ|D) dθ = Eπ(θ|D)(g(θ)) < ∞ = Eπ(θ|D)[g(θ)] < ∞

Having an analytical solution of these integrals is usually unfeasible when
π(θ|D) is complex or even not in close form expression, but we can obtain
an approximate solution. For example here a Monte Carlo method simply
consists of getting an independent and identically distributed (i.i.d.) sample
from the parameter vector to be inferred and use it to approximate the de-
sired integral by mean of an unweighted sum. The N draws {θ(n)}n∈{1,··· ,N}
can be obtained either by sampling directly from the target distribution (i.e.,
the posterior π(θ|D)), as shown in Algorithm 1, or by replicating the physi-
cal procedure where the desired parameters are involved.

ALGORITHM 1

• Draw an i.i.d. sample {θ(n)} from π(θ|D), for n ∈ {1, · · · , N}

• Compute ÎN = 1
N

∑N
n=1 g(θ

(n))

ÎN is the Monte Carlo estimate of I and it is an unbiased approximation.
Moreover, by the strong law of large numbers, ÎN → I almost surely (a.s.)
as N → ∞. Furthermore, if g(θ) is square integrable w.r.t. π(θ|D), then we
can use the central limit theorem (TCL) [10] to state that:

ÎN − I√
VN

d→ N(0, 1) N → ∞,

where d→ denotes convergence in distribution, and

VN =
1

N
Eπ((g(θ)− I)2) =

1

N

∫
Θ
(g(θ)− I)2π(θ|D)dθ.

Unfortunately, Algorithm 1 cannot be always applied, because we cannot
always draw samples directly from π(θ|D). However, in these cases, if we can
perform point-wise evaluations of the quantity π̂(θ|D) = L(D|θ)π(θ) (that
is the numerator of (2.1), which is proportional to the posterior π(θ|D)), we
can apply other types of Monte Carlo algorithms, like Markov chain Monte
Carlo (MCMC).
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2.2.1 Metropolis-Hastings

One of the most popular MCMC algorithm is the Metropolis-Hastings method
[11]. In particular, as a general idea, some values are sampled iteratively and
then accepted or rejected according to a certain probability. If they are ac-
cepted, not even they contribute to the resulting Markov chain itself but they
are also responsible for the sampled value of the next value of the chain; oth-
erwise, if rejected, they are discarded.
Specifically, the algorithm let π(x) be the probability mass (or density) func-
tion of the distribution from which we wish to extract a sample of draws.
We call it target distribution. Denote by q(xnew|x) a family of conditional
distributions of arbitrary choice, from which it is easy to generate draws (let
us call it proposal distribution). It is required that x, xnew have the same
dimension.
The Metropolis-Hastings algorithm starts from any value x0 belonging to the
support of the target distribution. Then, the values x1, . . . xT are generated.
In particular, a generic value xt with t ∈ {1, . . . , T}, is generated as follows:

1. Draw xnew from the proposal distribution with density q(xnew|xt−1);

2. Set
αt = min

(π(xnew)
π(xt−1)

q(xt−1|xnew)
q(xnew|xt−1)

, 1
)

(2.4)

3. Draw ut from a uniform distribution on [0, 1];

4. Check the condition: if ut ≤ αt, set xt = xnew; otherwise, set xt = xt−1.
Since ut is uniform the probability of accepting the proposal xnew as
the new draw xt is equal to αt.

Let us point out some elements of the algorithm (but also typical of other
MCMC processes):

• Burn-in: a random point is chosen to be the first sample from the
chain. It may take some time for moving far away from this initial
starting point. If the target distribution has a sparser density in that
values of the support, the estimates produced from the MCMC will
be biased. To mitigate this, an initial portion of the Markov chain is
discarded so that the effect of initial values on inference is minimized.
This is referred to as the burn-in period;

• Efficiency: A probability density, or proposal distribution, is assigned
to suggest a candidate for the next sample value, given the previous
sample value. A typical choice is to let the proposal distribution be
such that points closer to the previous sample point are more likely to
be visited next. Whatever form (Gaussian or otherwise) the proposal
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distribution takes on, the goal is for this function to adequately and
efficiently explore the sample space where the target distribution has
the greatest density. If the target distribution is very broad and the
proposal distribution is too "narrow" it may take quite a while for
the walk to find its way around the whole target distribution, and the
MCMC will not be very efficient;

• Acceptance ratio: an acceptance ratio is used to decide whether to
accept or reject the next proposed sample. Observe that this ratio is
proportional to the density of the target distribution. If the proposal
distribution is too broad, the acceptance ratio may hardly allow the
chain to move from the current spot and the the chain may be trapped
in a localized area of the target distribution.

The probabilistic programming language for statistical modeling that we are
going to use is the open-source software STAN [12]. It takes advantage of
the rstan package which allows it to interface with the already mentioned
R (and also with other different programs like Python, MATLAB, Stata,
and Mathematica).
Briefly to define a model using the STAN language it is sufficient to specify
the data (as input for STAN), the parameters to be estimated (or even the
transformed parameters which are optional variables used as transformation
of the model parameters), the model (which includes definition of priors for
each parameter and the likelihood for the data) and the generated quanti-
ties (some quantities that are not part of the model but can be computed
from the parameters). Note that STAN’s MCMC techniques are based on
Hamiltonian Monte Carlo (HMC), a more efficient and robust sampler than
Metropolis-Hastings for models with complex posteriors.
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Chapter 3

Test on synthetic data

In this Chapter we go back to models widely described in Chapter 1 to adopt
and use them under the Bayesian assumption. Data is generated with some
user-defined functions (see Appendix A) that sample from a Poisson hurdle
model with fixed hidden parameters (each model has its own function ac-
cording to its structure). With hidden we refer to the fixed input parameters
given to the user-defined functions in order to generate the data sample.
For each model we care about varying the number of available data, in order
to simulate different sizes of the hypothetical dataframe and the starting
points from which we start sampling to get the posterior distribution. In
addition to this, different hyper-parameter values, resulting in different prior
distributions, have been tried. In other words a sensitivity analysis, in order
to check the robustness of the models with respect to the hyper-parameters,
has been performed. Then we have used some diagnostic tools to monitor
the reliability of the results, especially addressing the chains of the parame-
ters’ posterior distribution. Traceplots are helpful to check if the chains are
mixed (in this way the chain explores all possible values of the posterior dis-
tribution), without trends, cycles or seasonalities and ACF (auto-correlation
function) plot provides a rough estimate about how much information we are
loosing through thinning (the conservative procedure which keep just a value
in a buffer of values provided by the sampler). In the end we compute the
Mean Square Error of each parameter (MSE), using the hidden parameter
values θ and the values produced by the chain of the model θ̂i, according to
the formula:

MSEθ =
1
T

∑T
i=1(θ̂i − θ)2

where T is the size of the chain.
The goal is to analyse and compare the performances of each model using
generated data.
For each model we have decided to run two independent chains to have a
more reliable parameters estimate. Then we varied the fixed starting points
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of the chains to check that the choice does not influence the posterior results.
The two chains are run for a total maximum of 10000 iterations with a warm-
up of 1000 (so these values are not considered in the chain because they are
the initial points of the Markov chain and for this reason more subject to
the arbitrary chosen starting points) and a thinning of 20 which means that
every 20 states of the Markov chain the state value is kept and considered
for the final Markov chain.
In the end, in order to simulate different real cases scenarios we have con-
sidered different sample sizes of data, from a minimum a 10 to a maximum
of 1000 and even 10000 in some cases.
Note that in all the plots and tables of the current Section (where not ex-
plicitly stated) a standard data sample size of 100 has been considered and
every time a different sample size is taken, although the plots have not been
reported, they are observed and analyzed.
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3.1 Poisson Hurdle base model

Going back to the first model explained in details in Chapter 1, Section 1.1.1,
and following the above explained procedure, we start with the choice of the
hidden parameters and their prior distributions.
The current model consists in just two parametrs, p and λ; suppose that the
hidden parameters are:

• p=0.5

• λ=4

The model that has been implemented in STAN is the following:

Yi|p, λ
iid∼ HPois(p, λ) i ∈ {1, 2, ..., N}

p ∼ Beta(2, 5)
λ ∼ Gamma(2, 0.5)

Let us motivade the choice of the prior distributions recalling the likelihood
of the data:

L(p, λ|y, z) = (1− p)N−
∑N

i=1 zi · p
∑N

i=1 zi ·
∏
i∈Ω1

λyie−λ

yi!(1− e−λ)
=

= (1− p)N−
∑N

i=1 zi · p
∑N

i=1 zi ·
∏
i∈Ω1

1

yi!
· λ

∑N
i=1 yie−|Ω1|λ

(1− e−λ)|Ω1|

(3.1)

Using the Bayes’ theorem the joint posterior distribution of p and λ π(p, λ|y, z) ∝
π(p, λ, y, z) = L(y, z|p, λ)π(p)π(λ). Looking at the likelihood in (3.1), just
to the term containing the parameter p, it is straightforward to recognize
the kernel of a Beta distribution. Hence it is possible to choose a conjugate
Beta prior Beta(a, b) for p, i.e. π(p) ∼ Beta(a, b) (due to the separability in
p and λ of the likelihood); we get:

π(p|·) ∝ (1− p)N−
∑N

i=1 zi+b−1 · p
∑N

i=1 zi+a−1

where π(p|·) denotes a distribution where just the parameter p is considered
not fixed. Hence the posterior distribution of p is in close form since it is a
Beta(

∑N
i=1 zi + a,N −

∑N
i=1 zi + b). The parameters of the prior distribu-

tion are updated adding the number of positive realizations (
∑N

i=1 zi) to the
first parameter and the number of zero values (N −

∑N
i=1 zi) to the second

parameter.

Looking at (3.1) for the choice of the prior of parameter λ, in the same way,
it is possible to recognize the kernel of a Gamma distribution but in this
case, after choosing a Gamma prior Γ(α, β) for λ, i.e. π(λ) ∼ Gamma(α, β),
the posterior is not in close form, because of the term 1

(1−e−λ)|Ω1|
. Indeed it
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is given by:

π(λ|·) ∝ λ
∑N

i=1 yi+α−1e−(|Ω1|+β)λ

(1− e−λ)|Ω1|

where in π(λ|·) we consider just λ as not fixed.
Even in a simple model like this we observe that the posterior distribution is
not guaranteed to assume a close form. In these circumstances it is necessary
to apply MCMC methods to sample from the posterior distribution.
With the STAN software we are able to sample from the posterior distribu-
tion. Hence, after running the model in STAN using a data sample of size
100, we can extract some descriptive statistics (reported in Table 3.1) and
make inference about the posterior parameters:

Parameter Mean SD Q0.025 Q0.25 Q0.5 Q0.75 Q0.975
p 0.4984 0.01121 0.4778 0.4909 0.4985 0.5058 0.5205
λ 3.9666 0.06542 3.8470 3.9197 3.9649 4.0093 4.1033

Table 3.1: Parameter β and λ summary statistics about posterior distribu-
tion.

Results’ reliability is strengthened by acceptable traceplots for each param-
eter (see Figures 3.1 and 3.2), in fact the chains are mixed and without any
seasonality, trend or cycle. The auto-correlation function ACF (Figure 3.5),
which show the correlation ρ between a state of the chain and any previous
state at a certain lag, does not show any peak and is extremely low in fact
|ρ| < 0.1.
In Figure 3.3 and 3.4 the approximation of the posterior distributions are
shown.
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Figure 3.1: Traceplot of p parame-
ter.
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Figure 3.2: Traceplot of λ parame-
ter.

For the sake of completeness we are interested in the computational work-
load which we investigate looking at the time spent on running the chains
of model. The results are reported in Table 3.2.
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Figure 3.4: Posterior distribution of
λ parameter.
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Figure 3.5: Auto-correlation function for the chains of p and λ parameters.

Number of data Elapsed time Chain 1 [sec] Elapsed time Chain 2 [sec]
1000 35.461 31.894
100 3.355 8.503
10 0.706 0.511

Table 3.2: Required computational time for different sample size.

The computational time required by the STAN implemented model is ex-
tremely low since just around 30 seconds are sufficient to run a chain of
10000 iterations (450 sample size per chain because of the warm-up of 1000
and thinning of 20) on a dataset of size 1000 observations.
The Mean Square Error, computed varying the data sample size, is reported
in Table 3.3. We observe that increasing the sample size up to 1000 obser-
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Number of data MSE of p MSE of λ
1000 0.00012 0.04397
100 0.00116 0.045714
10 0.03289 0.92078

Table 3.3: MSE of each parameter for different sample size.

vations makes the MSE decreasing. In fact an important property of the
Bayesian assumption is that since the posterior distribution maximizes the
chance of observing the given data according to our prior beliefs and data it-
self, when the sample size is large the posterior is largely affected and driven
by the data and less by the prior distribution. The MSE behaviour that
characterizes Table 3.3 is a typical trend that we are going to appreciate also
for the next (more complex) models.
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3.2 Poisson Hurdle Regression

In this Section we update the previous model introducing some independent
variables in order to perform a regression model. We generated the response
Yi ∀i ∈ {1, · · · , N}, through a user-defined function implemented in R (see
appendix A), such that the synthetic data sample behaves as the model
in Section 1.1.2. The choice of the model parameters is indifferent for our
purpose, provided that it does not affect the result’s stability. For example
consider the following hidden parameters of dimension 3:

• β(p) = (0.2, 0.9, 0.2)

• β(λ) = (1, 0.2, 0.7)

For the current model it is also necessary to generate random covariates
values {xi}i=1,··· ,N through R.
Given all these elements we are able to implement in STAN the following
model:

Yi|pi, λi
iid∼ HPois(pi, λi) i ∈ {1, 2, ..., N}

log( pi
1−pi

) = x
(p)
i β(p) i ∈ {1, 2, ..., N}

log(λi) = x
(λ)
i β(λ) i ∈ {1, 2, ..., N}

β
(p)
j ∼ N(0, 9) j ∈ {1, 2, 3}

β
(λ)
j ∼ N(0, 9) j ∈ {1, 2, 3}

Let us motivate the prior choices saying that they are all weakly informative.
The single elements β(·)

j for j ∈ {1, 2, 3} are uncorrelated with mean 0 and a
variance of 9, such that it is sufficiently large and little informative.
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Figure 3.6: Traceplot of β(p) param-
eter.
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Figure 3.7: Traceplot of β(λ) param-
eter.

The chains are mixed and do not show cycles, seasonalities or trends.
Figures 3.8 and 3.9 show the posterior distribution of β(p) and β(λ) parame-
ters and Table 3.4 collects their means and standard deviations.
The AFC plot in Figure 3.10 excludes any correlation between states of the
chain at different lags since the maximum correlation in absolute value is
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Figure 3.8: Posterior distribution of
β(p) parameter.
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Figure 3.9: Posterior distribution of
β(λ) parameter.

Parameter Mean SD Parameter Mean SD
β
(p)
1 0.1472 0.05746 β

(λ)
1 1.0241 0.03155

β
(p)
2 0.9691 0.07466 β

(λ)
2 0.2803 0.04664

β
(p)
3 0.2139 0.06652 β

(λ)
3 0.6939 0.04705

Table 3.4: Parameters summary statistics.

Lag

A
ut

oc
or

re
la

tio
n

−0.10
−0.05

0.00
0.05
0.10

0 5 10 15 20 25 30

●

●
●

●
● ●

●
●

●
● ● ● ●

●

●

●
●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●
●

●

●
●

●

●
●

● ●

●
● ● ●

● ●

● ●
●

● ●

betap[1]
−0.10
−0.05
0.00
0.05
0.10

●

● ● ●
●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

● ● ●
● ●

●
●

●
●

●

●
●

●

●
●

●

●

● ●

●
●

●
●

●

●
● ● ●

● ● ●
●

● ●
●

●

●
●

●
●

●
●

●

betap[2]
−0.10
−0.05

0.00
0.05
0.10

●

● ●

●
● ●

●
●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

● ● ●

●

● ●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●
● ●

●

●
● ●

●

●
● ●

betap[3]
−0.10
−0.05
0.00
0.05
0.10

●

● ● ●
●

● ●

● ●

●
●

●

●
● ●

●

●
●

●

●

●

●
● ●

● ●

● ●

●
●

●

●

●

●

● ●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
● ●

●

betal[1]
−0.10
−0.05

0.00
0.05
0.10

●
●

● ● ●

●

●
● ●

●
●

●

● ●

●

●

●

● ●
● ●

●

●

●

●

●

● ●

●
●

●
●

●
●

●

● ●

●
●

● ●

●

● ● ●
●

●
●

●

●
●

● ● ●
●

● ●

●

●
●

betal[2]
−0.10
−0.05
0.00
0.05
0.10

●
● ● ●

●
● ●

●

● ●

●

●
●

● ●

●

●

●
●

●
●

●
●

● ●

●

● ●
●

●

●

●

● ●

●

● ● ● ● ●
●

●

●
●

●
●

●

●

●

●

●

●

● ● ●

●

● ●

●

●

betal[3]

Figure 3.10: Auto-correlation function for the chains of βs and λs param-
eters.

smaller than 0.1.
Computationally speaking the elapsed time for running the chains are showed
in Table 3.5.
The computational cost synthesized by the occurred time to run the chains
of the model is larger than the previous model (around 4-5 times larger) but
still characterized by an acceptable order of magnitude. This is an expected
result since we have introduced the regression part.
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Number of data Elapsed time Chain 1 [sec] Elapsed time Chain 2 [sec]
1000 145.554 130.102
100 14.699 16.622
10 5.692 5.509

Table 3.5: Required computational time for different sample size.

Number of data MSE of β(p)
1 MSE of β(p)

2 MSE of β(p)
3

1000 0.00357 0.00639 0.00585
100 0.12912 0.08826 0.05151
10 9.75035 10.35407 6.17989
Number of data MSE of β(λ)

1 MSE of β(λ)
2 MSE of β(λ)

3

1000 0.00098 0.01359 0.00542
100 0.13266 0.32287 0.02766
10 0.24860 0.70593 0.17076

Table 3.6: MSE of each parameter for different sample size.

The MSEs reported in Table 3.6 decrease as data sample size increases for
all the parameters, because the posterior is more and more driven by the
likelihood.
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3.3 Poisson Hurdle with group structure

Consider now the model in Chapter 1, Section 1.1.3 and its notation. As
widely described the corresponding section, a group structure is introduced
among observations: each group has its own parameters that could vary from
one group to another. This condition is a natural assumption since there is
no constrain in real cases to assume the opposite, as long as the the fact that
the groups could have different cardinalities.
Consider the case where the hidden parameters are the following:

• n=(130,70,95,105,145,55,80,120,65,135)

• p=(0.1,0.4,0.3,0.7,0.6,0.8,0.2,0.5,0.9,0.25)

• λ = (3,5,5,7,2,8,4,6,9,5)

The vector n contains the cardinality of each group (using the same nota-
tion as in Section 1.1.3 the single component k coincides with nk for every
k ∈ {1, 2, . . . ,K}) for a total number of groups of K = 10. The p and λ pa-
rameters are vectors that preserve the order observed in n in such a way that
the first elements p1 and λ1 are the parameters referred to the first group
n1, the second ones to the second group and so on. The groups cardinality,
given by vector n, is shown in Figure 3.11 and have been chosen in order to
have heterogeneous groups (the smallest one has size 65, the largest 145).

Groups cardinality

0
20

40
60

80
10

0
12

0
14

0

Figure 3.11: Groups cardinality (given by n).

The model implemented in STAN is:

Yi,k|pk, λk
iid∼ HPois(pk, λk) i ∈ {1, 2, ..., nk}, k ∈ {1, 2, ..., 10}

pj ∼ Beta(2, 5) j ∈ {1, 2, ..., 10}
λj ∼ Gamma(2, 0.5) j ∈ {1, 2, ..., 10}
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Figure 3.12: Traceplots of p parameter’s components.

We have choosen a prior distribution for each parameter and we have as-
sumed that the components of p and λ are uncorrelated.
The traceplots are mixed, without seasonalities, trends and cycles, as shown
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Figure 3.13: Traceplots of λ parameter’s components.

in Figures 3.12 and 3.13.
From Figures 3.14 it is possible to observe that when the "true" param-

eter is high, for example p4 = 0.7, the mean of the posterior distribution
is "pulled" towards low values because the posterior distribution (when the
data sample size is not so large) is driven by the prior Beta(2,5) distribution
which has a mean of 2

7 , quite lower than 0.7. Instead in Figure 3.15 are
reported the λ parameters.
The AFC plot is not reported but for each parameter the condition of low
autocorrelation between the states of the chains is satisfied.
In Table 3.7 it is possible to see the required time for running a single chain
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Figure 3.14: Posterior distribution of p parameters.
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Figure 3.15: Posterior distribution of λ parameters.

Number of data Number of groups Elapsed time Ch.1 [sec] Elapsed time Ch.2 [sec]
10000 10 1098.58 1211.48
1000 10 100.229 101.281
100 10 8.533 8.55

Table 3.7: Required computational time for different sample size.

of the model when the number of groups is kept fixed at 10. Increasing by
an order of magnitude the data sample size and passing from 103 to 104, the
time required to run one chain increases by an order of magnitude too.
With the inclusion of 10000 sample size is possible to appreciate that the
parameters’ MSE decreases because the data sample size for each group in-
creases.
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Number of data MSE of β1 MSE of β2 MSE of β3 MSE of β4
10000 4.749150e-05 1.651637e-04 1.866497e-04 9.654945e-05
1000 0.00044 0.00159 0.00157 0.00286
100 0.01244 0.01604 0.01440 0.01865
Number of data MSE of β5 MSE of β6 MSE of β7 MSE of β8
10000 1.651999e-04 1.583563e-04 4.292488e-04 1.454318e-04
1000 0.00152 0.00145 0.01027 0.00107
100 0.09735 0.16929 0.00761 0.06313
Number of data MSE of β9 MSE of β10 MSE of λ1 MSE of λ2

10000 9.979544e-05 6.279057e-04 2.627937e-02 9.526981e-03
1000 0.00121 0.00639 0.15395 0.84043
100 0.02958 0.01228 1.89052 0.58129
Number of data MSE of λ3 MSE of λ4 MSE of λ5 MSE of λ6

10000 7.975336e-03 6.520310e-02 1.279396e-02 3.326599e-02
1000 0.58221 0.05630 0.04143 0.10790
100 15.51225 1.87481 0.21697 2.80244
Number of data MSE of λ7 MSE of λ8 MSE of λ9 MSE of λ10

10000 7.902756e-02 3.690021e-02 9.836123e-03 2.638838e-02
1000 0.2188 0.17999 0.14807 0.86464
100 4.24819 1.10936 0.61259 3.03410

Table 3.8: MSE of each parameter for different sample size.
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3.4 Poisson Hurdle Regression with group struc-
ture

We continue with the model described in Section 1.1.4 of Chapter 1 which
mixes the regression formulation and groups structure.
As done before the general procedure forces to generate some data through
a user-defined function (see Appendix A) and to adopt a prior distribution
for each parameter. Consider the case where the hidden parameters are the
following:

• n = (250, 350, 125, 275);

• β(p) = (1, 0.05, 0.03);

• β(λ) = (1, 0.06, 0.07);

• θ(p) = (0.1, 0.3, 0.5, 0.7);

• θ(λ) = (0.8, 0.6, 0.4, 0.2);

Using the same notation of the previous section we have K = 4 total number
of groups of different cardinality. β(·) parameter has J = 3 components
but a different choice is possible; vice versa since there are four groups θ(·)

parameter has 4 components, one for each different group.
The implemented STAN model is:

Yi,k|pi,k, λi,k ∼ HPois(pi,k, λi,k) i ∈ {1, 2, ..., nk}, k ∈ {1, 2, 3, 4}
log(

pi,k
1−pi,k

) = x
(p)
i,kβ

(p) + x̂
(p)
k θ(p) i ∈ {1, 2, ..., nk}, k ∈ {1, 2, 3, 4}

log(λi,k) = x
(λ)
i,k β

(λ) + x̂
(λ)
k θ(λ) i ∈ {1, 2, ..., nk}, k ∈ {1, 2, 3, 4}

β
(p)
j ∼ N(0, 9) j ∈ {1, 2, 3}

β
(λ)
j ∼ N(0, 9) j ∈ {1, 2, 3}

θ
(p)
k ∼ N(0, 9) k ∈ {1, 2, 3, 4}

θ
(λ)
k ∼ N(0, 9) k ∈ {1, 2, 3, 4}

As prior distribution for β parameter we choose a normal distribution cen-
tered in 0. The variance of β(·) and θ(·) are kept large (both 9), to guarantee
a diffuse prior distribution. In the current example we decided to take as x̂(p)k

and x̂
(λ)
k a vector whose component are all zeros with the exception of the

position relative to the observation’s group that takes value 1, i.e. (0,0,1,0)
for an observation belonging to group 3.

Diagnostics starts observing the traceplots of all the model parameters, re-
ported in Figures 3.16, 3.17, 3.18 and 3.19, which are all mixed, without any
cycle, trend and seasonality.
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Figure 3.16: Traceplot of β(p) pa-
rameter.
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Figure 3.17: Traceplot of β(λ) pa-
rameter.
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Figure 3.18: Traceplot of θ(p) pa-
rameter.
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Figure 3.19: Traceplot of θ(λ) pa-
rameter.

The summary statistics about the parameters’ posterior distributions are re-
ported in Table 3.9.

Parameter Mean SD Parameter Mean SD
β
(p)
1 1.09652 0.098332 θ

(p)
1 0.11661 0.990282

β
(p)
2 0.04147 0.059114 θ

(p)
2 0.24932 0.981004

β
(p)
3 0.01944 0.052958 θ

(p)
3 0.47296 1.001548

β
(λ)
1 1.21032 0.098447 θ

(p)
4 0.61525 1.005025

β
(λ)
2 0.06108 0.009317 θ

(λ)
1 0.68121 0.982752

β
(λ)
3 0.07213 0.009162 θ

(λ)
2 0.52177 0.987242
θ
(λ)
3 0.33365 0.974984
θ
(λ)
4 0.13154 0.962914

Table 3.9: Posterior distributions’ summary statistics.

From a qualitative and quick observation, the posterior distributions’ esti-
mates of β(·) and θ(·) parameters, in terms of their means, recover the "true"
parameters.
The auto-correlation functions, which are not reported due to the large num-
ber of parameters, do not show any significant correlation between the states
of the chain up to a lag of 30 (all the parameters have an auto-correlation
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|ρ| < 0.1).
The required computational time is reported in Table 3.10.

Number of data Number of groups Elapsed time Ch.1 [sec] Elapsed time Ch.2 [sec]
1000 4 10218 17316.9
100 4 380.6 450.1

Table 3.10: Required computational time for different sample size.

The order of magnitude, for a data sample size of 1000 observations, is
around 104 seconds (10 times slower than model is Subsection 3.3 and 100
times slower than model in 3.2).
Finally, the MSE is reported in Table 3.11.

Number of data MSE of β(p)
1 MSE of β(p)

2 MSE of β(p)
3

1000 0.09541 0.00353 0.00429
100 1.75568 0.80552 0.16465
Number of data MSE of β(λ)

1 MSE of β(λ)
2 MSE of β(λ)

3

1000 0.10822 0.00073 0.00042
100 1.51221 0.04644 0.06307
Number of data MSE of θ(p)1 MSE of θ(p)2 MSE of θ(p)3 MSE of θ(p)4

1000 0.19640 0.18258 0.18892 0.12458
100 1.84794 2.0868 1.86553 2.82616
Number of data MSE of θ(λ)1 MSE of θ(λ)2 MSE of θ(λ)3 MSE of θ(λ)4

1000 0.15317 0.11076 0.14468 0.10599
100 2.09258 2.0224 2.05052 1.9646

Table 3.11: MSE of each parameter for different sample size.
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Chapter 4

Analysis of a real dataset

4.1 Dataset

The dataset has been proposed for the first time by Cortez and Morais [13]
and deals with the well known and one of the major environmental issue
of our epoch: forest fires (also called wildfires). Considering the negative
consequences that wildfires can bring, from an ecological havoc itself to the
economic waste of resources to regenerate the area, it is challenging to in-
vestigate if there exist some connections among areas that may lead us to
infer the high or low risk of wildfire of specific regions. In addition to wild-
fires data itself, the dataset provides also meteorological and geological data
that will be included in the analysis because if we exclude the human direct
responsibility they are the most intuitive and sensible marker to take in con-
sideration.
Every year millions of forest hectares (where 1 ha = 104 m2) are destroyed
all around the world. Portugal, due to position and weather conditions, is
highly affected by forest fires. From 1980 to 2005, over 2.7 million hectares of
forest area have been destroyed. In particular the 2003 and 2005 fire seasons
were especially dramatic, affecting 4.6% and 3.1% of the territory. The area
of our interest is the Montesinho natural park, in the Northeast region of
Portugal (Figure 4.1).
The data used in this elaborate has been collected in a time interval of 4
years, from January 2000 to December 2003. It was built using two sources
and before entering into the detail of the dataset, we need to explain what
the two sources consist of.
The first source is the forest Fire Weather Index (FWI) which is the Cana-
dian system used for rating fires danger [14]. In particular it is an indicator
such that high values suggest severe burning conditions. The index con-
sists in six components: Fine Fuel Moisture Code (FFMC), Duff Moisture
Code (DMC), Drought Code (DC), Initial Spread Index (ISI), Buildup Index
(BUI) and FWI [15]. They jointly contribute to provide an index of the fire
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Figure 4.1: Montesinho Natural park map.

intensity. However we are not interested in the mechanism to produce the
index because we will consider the components one by one. Consider the first
four components: according to the FWI theory FFMC denotes the numeric
rating of the moisture content surface litter (an indicator of the flammability
of the surrounding fine fuel), while the DMC and DC represent the numeric
rating of moisture content of shallow and deep organic layers (this code gives
an indication of fuel consumption in moderate layers). In the end the ISI
is a score that correlates with expected rate of fire velocity spread (it is the
influence of wind speed on fine surface). Moreover these indexes incorporate
a memory (in terms of a time lag) of past weather conditions: 16 hours for
FFMC, 12 days for DMC and 52 days for DC.
Another type of data come from a different source: it has been collected by
the Bragança Polytechnic Institute with automatic meteorological stations
that are often available in real time. The data contains weather observations
(temperature, relative humidity, wind speed and rain). Unlike the FWI that
includes time lags, in this case each value stands for an instant of time,
recorded by the station sensors when the fire was detected (the only excep-
tion is the rain variable, which denotes the accumulated precipitation within
the previous 30 minutes).
Other information about the wildfire like where and when it has been de-
tected, as long as the amount of burned hectares, completes the dataset.
Intuitively every time a forest fire breaks out, the date and the spatial loca-
tion (within a 9×9 grid) are transcribed.
In Table 4.1 a summary of the quantities involved in the dataset is shown.
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X x-axis coordinate (from 1 to 9)
Y y-axis coordinate (from 1 to 9)
month Month of the year (January to December)
day day of the week (Monday to Sunday)
FFMC Fine Fuel Moisture Code
DMC Duff Moisture Code
DC Drought Code
ISI Initial Spread Index
temp Outside temperature (in °C)
RH Outside relative humidity (in %)
wind Outside wind speed (in km/h)
rain Outside rain (in mm/m2)
area Total burned area (in ha)

Table 4.1: Summary of dataset attributes.

4.2 Descriptive statistics

The dataset consists in 4 categorical (X, Y , Day and Month) and 9 numer-
ical (FFMC, DMC, DC, ISI, Temperature, Relative humidity, Wind
intensity, Rain amount and Burned area) attributes. The first six obser-
vations are reported in Table 4.2.

X Y month day FFMC DMC DC ISI temp RH wind rain area
7 5 mar fri 86.2 26.2 94.3 5.1 8.2 51 6.7 0.0 0
7 4 oct tue 90.6 35.4 669.1 6.7 18.0 33 0.9 0.0 0
7 4 oct sat 90.6 43.7 686.9 6.7 14.6 33 1.3 0.0 0
8 6 mar fri 91.7 33.3 77.5 9 8.3 97 4 0.2 0
8 6 mar sun 89.3 51.3 102.2 9.6 11.4 99 1.8 0.0 0
8 6 aug sun 92.3 85.3 488 14.7 22.2 29 5.4 0.0 0

Table 4.2: Dataset details.

The most interesting variable, represented by the hectares of burned area, is
expressed in ha, (1 ha= 104 m2). Since the unit of measure is expressed in
hectares the majority of the data are concentrated near zero. In particular
the percentage of exactly zero values is 47,8% while considering the values
that do not reach the measure of 1 ha the percentage raises to 53%. With
this percentage the assumption of overabundance of zero is satisfied; to have
a close look of the zeros and the distribution of positive values of burned
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hectares see Figure 4.2.
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Figure 4.2: Burned hectares (all observations to the left, 96% of the obser-
vations to the right).

As said before the whole national park can be divided in sub-regions of equal
extension, introducing a coordinate system and a grid 9×9 (see Figure 4.1).
Hence data can be grouped according to their location over the entire area
and it is possible to have a look at the distribution of burned hectares in each
region. Note that since data are collected over four years each sub-region
encloses measurements detected over that temporal span and not necessarily
in the same year. Made this clarification we can have a look at the distribu-
tion of the amount of burned territories caused by the wildfire, for each area
of the map (Figures 4.3, 4.4 and 4.5). In these figures and in some other
analysis later on, the sub-regions of the map might be indicated with pro-
gressive numbers from 1 to 36; we use this convenient numeration to avoid to
report the geographical coordinates X and Y (also because there are empty
sub-regions where no data has been recorded). This numeration proceeds
scanning the map in Figure 4.1 from North to South and from West to East
(like a scanning by column from left to right).
Another useful and interesting plot is Figure 4.6, where the number of mea-
surements per sub-region is represented. We notice that the number of mea-
surements has a large variability denoting that exist areas more subjected
to possible wildfires than others. Furthermore some regions have been char-
acterised by just one broken wildfire in four years and other areas where
many more measurements (even over 50) have been taken. In detail, for the
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Figure 4.3: Burned area distribution of the first 12 sub-regions of the map
(corresponding to areas such that X ∈ {1, 2, 3} and Y ∈ {2, 3, 4, 5}). It is
the West territory of the park.

Histogram of subregion 13

burned hectar [he]

F
re

qu
en

cy

0 10 20 30 40 50

0
2

4
6

8

Histogram of subregion 14

burned hectar [he]

F
re

qu
en

cy

0 20 40 60 80

0
5

10
15

Histogram of subregion 15

burned hectar [he]

F
re

qu
en

cy

0 50 100 150

0
5

10
15

Histogram of subregion 16

burned hectar [he]

F
re

qu
en

cy

0 10 20 30 40 50 60

0
1

2
3

4

Histogram of subregion 17

burned hectar [he]

F
re

qu
en

cy

0 5 10 15 20 25

0
4

8
12

Histogram of subregion 18

burned hectar [he]

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

2.
0

3.
0

Histogram of subregion 19

burned hectar [he]

F
re

qu
en

cy

0 2 4 6 8 10 12 14

0.
0

1.
0

2.
0

Histogram of subregion 20

burned hectar [he]

F
re

qu
en

cy

0 10 20 30 40 50 60

0
5

10
15

Histogram of subregion 21

burned hectar [he]

F
re

qu
en

cy

0 20 40 60 80 100

0
1

2
3

4

Histogram of subregion 22

burned hectar [he]

F
re

qu
en

cy

0 200 400 600 800 1000

0
5

10
20

Histogram of subregion 23

burned hectar [he]

F
re

qu
en

cy

0 2 4 6 8

0.
0

1.
0

2.
0

Histogram of subregion 24

burned hectar [he]

F
re

qu
en

cy

0 5 10 15 20 25

0.
0

0.
4

0.
8

Figure 4.4: Burned area distribution of the 13-24th sub-regions of the map
(corresponding to areas such that X ∈ {4, 5, 6} and Y ∈ {3, 4, 5, 6} plus
region (7,3)). It is the middle territory of the park.

analysis, consider the fact that considering all the 517 data (subdivided in
36 groups), there are: 5 groups of just 1 measurement, 3 groups of 2 mea-
surements, 3 groups of 3 measurements and 5 groups of 4 measurement.
Before applying any model to the dataset we show some boxplots of the
quantities described so far, which will be used as covariates. They are orga-
nized by sub-regions and are reported in Figure 4.7 and 4.8.
The quantities that have the smallest variability on data are FFMC and
rain, where we can state that it is extremely rare to have some millimeters
of rain in the 30 minutes before the outbreak of a fire.
All the quantities have more or less a quite symmetrical distribution with
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Figure 4.5: Burned area distribution of the 25-36th sub-regions of the map
(corresponding to areas such that X ∈ {7, 8, 9} and Y ∈ {3, 4, 5, 6, 7, 8, 9}).
It is the East territory of the park.
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Figure 4.6: Cardinality of observations of each region/group (denoted by
nk).

the exception of FFMC which have more extreme values toward low values.
In general looking at all the quantities involved we can assert from a qual-
itative point of vie that there is no clear distinction between some groups
and others.
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Figure 4.7: Boxplots of FFMC, DMC, DC and ISI quantities.
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Figure 4.8: Boxplots of Temperature, Relative humidity, Wind intensity
and Rain amount quantities.

4.3 The Poisson hurdle model

4.3.1 Model setting

The above described dataset is suitable for the implementation of a Poisson
hurdle generalized linear model with group structure and therefore we have
chosen to adopt the model in Section 1.1.4 for our analysis. In particular
consider the burned area attribute of the dataset, whose unit of measure is
hectares, as the dependent variable Y ; in order to make this data appropriate
to our model, Y is converted from real numbers to natural numbers with an
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operation of rounding down to the nearest integer number. Then, since data
is already grouped in sub-regions according to its spatial coordinates (look
at attributes X and Y in Table 4.2 and recover Figure 4.1 to see the display
of the groups partition), we have aggregated each instance of the dataset
according to this criterion. We end up having 517 instances divided in 36
groups.

The dataset is then reduced from 517 number of data to 506 (11 observa-
tions are not considered for the analysis) due to numerical stability issue and
groups/sub-regions becomes 35 since the region (X = 8, Y = 8) bottom right
in Figure 4.1 disappears, in the sense that there is no longer any observation
in this area.
To have a look at the wildfires distribution over the entire park observe Fig-
ure 4.9. Each point represent the percentage of zero burned hectares in each

Figure 4.9: Percentage of zeros (zero burned hectare) for each sub-region
of the map.

area of the map represented in Figure 4.1. In the details the percentages
of zeros in each sub-region are respectively 0.83, 0.3, 0.33, 0, 0.61, 1, 0.37,
0.3, 0, 0.65, 0.86, 1, 0.41, 0.44, 0.62, 0.5, 0.43, 1, 0.5, 0.64, 0.37, 0.35, 0.67,
0.5, 0.45, 0.73, 0.5, 0, 0, 0.25, 0.46, 0, 0.5, 0, 0.5 (considering the progres-
sive numeration). The maximum value is 1 and denotes a sub-region full
of zeros, where no wildfires broke out (like it happens for sub-regions 6, 12
and 18 represented by light dots). Looking at the figure in a quick way, the
extreme left and right regions of map, corresponding to the extreme West
and East regions of the park seem to be the areas most affected by wildfires.
Note that this plot gives indication of the zones most affected by the fires in
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terms of number of broken wildfires, but do not give any indication about
the intensity of the aforementioned fires: in principle there could be areas
where the weather mitigates the spread of severe fires and other areas where
even a contained number of fires encounter suitable climatic conditions for
growth.

We have chosen to keep all the geothermal and meteorological attributes de-
scribed in the previous section as covariates (FFMC, DMC, DC, ISI, Temper-
ature, Relative Humidity, Wind and Rain), with the addition of the temporal
covariate Month, while Day is not considered (notice that the categorical
variable Month depends on the single observation of the dataset).
Made these assumptions, we have implemented in STAN the following model
with the following settings:

Yi,k|pi,k, λi,k ∼ HPois(pi,k, λi,k) i ∈ {1, 2, . . . , nk}, k ∈ {1, 2, . . . , 35}

log
(

pi,k
1−pi,k

)
= x

(p)
i,kβ

(p)+x̃i,kϕ
(p)+x̂

(p)
k θ(p) i ∈ {1, 2, . . . , nk}, k ∈ {1, 2, . . . , 35}

log(λi,k) = x
(λ)
i,k β

(λ)+ x̃i,kϕ
(λ)+ x̂

(λ)
k θ(λ) i ∈ {1, 2, . . . , nk}, k ∈ {1, 2, . . . , 35}

β
(p)
j ∼ N(0, 9) j ∈ {1, 2, . . . , 9}

β
(λ)
j ∼ N(0, 9) j ∈ {1, 2, . . . , 9}

ϕ
(p)
h ∼ N(0, 9) h ∈ {1, 2, . . . , 12}

ϕ
(λ)
h ∼ N(0, 9) h ∈ {1, 2, . . . , 12}

θ
(p)
k ∼ N(0, 9) k ∈ {1, 2, . . . , 35}

θ
(λ)
k ∼ N(0, 9) k ∈ {1, 2, . . . , 35}(4.1)

The response represents the hectares of burnt forest and is distributed as a
Poisson hurdle with parameters p and λ. The covariates used in the regres-
sion of the two parameters are the same because even if we can guess that
some covariates are intuitively linked to p parameter and others to λ (in fact
given the Poisson hurdle structure, p rules just the probability that a fire
breaks out and λ rules the intensity of the broken fire in terms of burned
hectares), we have chosen a more conservative approach, so x

(p)
i,k ≡ x

(λ)
i,k ,

x̃
(p)
i,k ≡ x̃

(λ)
i,k and x̂

(p)
k ≡ x̂

(λ)
k ∀i ∈ {1, 2, ..., nk}, ∀k ∈ {1, 2, ..., 35}. The group

covariates x̂
(p)
k and x̂

(λ)
k are vectors [0, . . . , 0, 1, 0, . . . , 0]T , where a 1 is put

in correspondence of the group k ∈ {1, . . . , 35} in which the observation i

belongs. As long as x̂(·)k , x̃(p)i,k and x̃
(λ)
i,k are vectors [0, . . . , 0, 1, 0, . . . , 0]T where

a 1 is put in correspondence of the month (keeping the conventional sort-
ing, so a 1 in position 1 indicates January and a 1 in position 12 refers to
December). Briefly x

(·)
i,k ∈ R9 (8 covariates plus the intercept), x̂(·)k ∈ {0, 1}35

and x̃
(·)
i,k ∈ {0, 1}12. Then each single observation is collected row-wise
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in the matrices X(p) ≡ X(λ) ∈ R506×9, X̂(p) ≡ X̂(λ) ∈ {0, 1}506×35 and
X̃(p) ≡ X̃(λ) ∈ {0, 1}506×12.

4.3.2 Prior distributions’ choice

The prior distributions are Gaussian vectors, with zero mean and diagonal
covariance matrix with a homogeneous variance for each single component of
9; they are all not so informative priors because of the pretty large variance.
We recover the likelihood of the data from equation (1.13) of Section 1.1.4
(note that in (1.13) does not appear the ϕ(·) parameter because we had not
included categorical variables, which here, instead, are considered), using
ρ to refer to the collection of all the parameters, i.e. ρ = (β(p), β(λ), θ(p),
θ(λ), ϕ(p), ϕ(λ)) and using D = {y, z,X(p), X(λ), X̂(p), X̂(λ), X̃(p), X̃(λ)} for
the collection of the data. The likelihood becomes:

L(ρ|D) = L(β(p), β(λ), θ(p), θ(λ), ϕ(p), ϕ(λ)|y, z,X(p), X(λ), X̂(p), X̂(λ), X̃(p), X̃(λ)) =

=
K∏
k=1

nk∏
i=1

(
1− pi,k(x

(p)
i,kβ

(p) + x̃
(p)
i,kϕ

(p) + x̂
(p)
k θ(p))

)1−zi,k
×(

pi,k(x
(p)
i,kβ

(p) + x̃
(p)
i,kϕ

(p) + x̂
(p)
k θ(p))

)zi,k
×( λi,k(x

(λ)
i,k β

(λ) + x̃
(λ)
i,k ϕ

(λ) + x̂
(λ)
k θ(λ))yi,k

yi,k!(1− e−λi,k(x
(λ)
i,k β

(λ)+x̃
(λ)
i,k ϕ

(λ)+x̂
(λ)
k θ(λ)))

e−λi,k(x
(λ)
i,k β

(λ)+x̃
(λ)
i,k ϕ

(λ)+x̂
(λ)
k θ(λ))

)zi,k
In the formulation above the parameters β(p), β(λ), θ(p), θ(λ), ϕ(p) and ϕ(λ)

are expressed as a function of p(·) and λ(·). However the implemented model
prescribes to choose as link function for p and λ the logit(p) and the log(λ),
so the likelihood becomes:

L(ρ|D) = L(β(p), β(λ), θ(p), θ(λ), ϕ(p), ϕ(λ)|y, z,X(p), X(λ), X̂(p), X̂(λ), X̃(p), X̃(λ)) =

=

K∏
k=1

nk∏
i=1

(
1− 1

1 + e−(x
(p)
i,kβ

(p)+x̃
(p)
i,kϕ

(p)+x̂
(p)
k θ(p))

)1−zi,k
×

( 1

1 + e−(x
(p)
i,kβ

(p)+x̃
(p)
i,kϕ

(p)+x̂
(p)
k θ(p))

)zi,k
×

( e(x
(λ)
i,k β

(λ)+x̃
(λ)
i,k ϕ

(λ)+x̂
(λ)
k θ(λ))

yi,k

yi,k!(1− e−e
(x

(λ)
i,k

β(λ)+x̃
(λ)
i,k

ϕ(λ)+x̂
(λ)
k

θ(λ))

)

e−e
(x

(λ)
i,k

β(λ)+x̃
(λ)
i,k

ϕ(λ)+x̂
(λ)
k

θ(λ)))zi,k
(4.2)

To recover the posterior distribution it is sufficient to apply the Bayes’ The-
orem and we get:
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π(ρ|D) =

=
L(D|ρ)× π(β(p))× π(β(λ))× π(θ(p))× π(θ(λ))× π(ϕ(p))× π(ϕ(λ))∫

supp(ρ) L(D|ρ)× π(β(p))× π(β(λ))× π(θ(p))× π(θ(λ))× π(ϕ(p))× π(ϕ(λ))dρ

(4.3)

The posterior distribution in (4.3) is not in close-form expression (due to the
non conventional expression of the likelihood (4.2)) but we can get it using
STAN.

The sampler gives us the following traceplots of β(p) and β(λ), which are
reported below in Figures 4.10 and 4.11.
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Figure 4.10: Traceplots of β(p) parameters.

We have run two different chains of size 20000 iterations, included a burn-
in size of 1000, which forces the first 1000 values to be discarded, and we
have decided to keep just one value every 20. Both the chains are mixed,
converging to the invariant distribution, without seasonality, trends or cycles.
The chains relative to θ(p), θ(λ), ϕ(p) and ϕ(λ) parameters are not reported
here but, as long as the ones in Figures 4.10 and 4.11, do not show any
alarming behaviour.
We end our diagnostic check looking at the AFC plot, which is not reported
here due to high number of parameters, but no correlation between states
of the chain at different lags has been found for all the parameters of the
model.
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Figure 4.11: Traceplots of β(λ) parameters.

4.3.3 Bayesian posterior inference

Once the model has passed successfully the diagnostic check, we are ready
to focus on the posterior distributions of the parameters provided by the
sampler, which give us the opportunity to make inference about them and
extract any interesting quantity.
The current model has several parameters (even 112 if we consider each com-
ponent of β(p), β(λ), ϕ(p), ϕ(λ), θ(p) and θ(λ) individually, where 70 of them
are related to the group effects). From the posterior distributions of the
parameters, which is obtainable from the chain, we can select which param-
eters are most significant and which ones are negligible (at a certain level
of credibility), in order to keep just the ones which have a direct influence
on the response and to reduce the model complexity. Therefore, the 95%
credible intervals are constructed and shown in Figure 4.12.
The figure highlights that not all the predictors of the regression are signifi-
cant: when the zero value is contained in its 95% credible interval we assume
it is zero at that fixed level of credibility, vice versa if zero value is not con-
tained the predictor is taken different from zero. For the parameter β(p) the
only significant component is β

(p)
2 ≡ β

(p)
FFMC , relative to covariate FFMC

(which is linked to the moisture content surface litter), while for parameter
β(λ) almost all covariates (each one with its positive or negative sign) are
significant at 95% level, with the exception of the intercept β

(p)
1 . We can

infer at a level of credibility of 95% that a fire ignition is mostly determined
by the surface litter condition (and less by the condition of deeper layers)
and its spread in the surrounding areas by a mixture of factor depending on
soil and weather. For a briefly recap of all the quantities and abbreviation
recover Table 4.1.
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Figure 4.12: Posterior credible intervals for all parameters β(p), β(λ), θ(p),
θ(λ), ϕ(p) and ϕ(λ); on the left the ones relative to p, on the right the ones
relative to λ.

Some summary statistics (mean and standard deviation) about the signif-
icant parameters’ posterior distributions are reported below in Table 4.3,
Table 4.4 and Table 4.5. The FFMC coefficient (β(p)

2 ) has a positive sign
meaning that a small moisture content surface litter rating increases the
probability of a fire outbreak (a high value of the FFMC code means high
dryness conditions). With regards to β(λ) the features that increases the
destructive power of the fire are high values of FFMC, DMC (related to
moisture content of shallow organic layer rating), temperature, relative hu-
midity and wind; the features that decreases it are DC (related to moisture
content of deep organic layer), ISI (which is reasonable since, although the
wind speed in general helps to spread the fire flames, it may turn off them
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at a surface level, especially when the fire has just been started) and rain.

Parameter Mean SD Parameter Mean SD
β
(p)
FFMC 0.0365208 0.0202695 β

(λ)
FFMC 0.0184882 0.0068474
β
(λ)
DMC 0.0035499 0.0004414
β
(λ)
DC -0.0076169 0.0003937

β
(λ)
ISI -0.0279919 0.0060162

β
(λ)
temp 0.1012044 0.0061654
β
(λ)
hum 0.0190489 0.0016437

β
(λ)
wind 0.0859631 0.0092593
β
(λ)
rain -0.2983274 0.0398054

Table 4.3: Posterior distributions’ summary statistics of β(p) and β(λ).

Looking at ϕ(·) coefficients we notice that in December the probability of
a wildfire is increased, while in September and October the probability of
observing a huge wildfire reaches its peak, after an increasing trend starting
from July. The December results are quite counterintuitive but they are
highly affected by the fact that the amount of recorded data about burnt
hectares in this month is little (just 9), although they are all positive values.

Parameter Mean SD Parameter Mean SD
ϕ
(p)
Dec 4.5177281 1.7208704 ϕ

(λ)
Sep 2.5760325 0.9175409

ϕ
(λ)
Oct 2.9132045 0.9237138

Table 4.4: Posterior distributions’ summary statistics of ϕ(p) and ϕ(λ).

Parameter Mean SD Parameter Mean SD
θ
(p)
1 -2.9145979 0.8899205 θ

(λ)
24 1.0898245 0.5431789

θ
(p)
4 3.7392289 1.7430845 θ

(λ)
27 2.3174036 0.5375751

θ
(p)
12 -3.6203240 1.6963759 θ

(λ)
30 -2.4375235 0.8506232

θ
(p)
18 -3.3144143 1.8926843 θ

(λ)
32 1.3967926 0.5379530
θ
(λ)
34 1.7050257 0.5337973
θ
(λ)
35 -1.8988314 0.8479513

Table 4.5: Posterior distributions’ summary statistics of θ(p) and θ(λ).

About the θ
(p)
k and θ

(λ)
k coefficients look at Figures 4.13 and 4.14 respec-

tively. θ(p) parameter in Figure 4.13 is responsible for the fire ignition, while
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in Figure 4.14 θ(λ) is responsible for the fire propagation.
Each sub-region is shown in a coloured scale from red to blue, in such a
way that regions in shades of red corresponds to positive θ

(·)
k , proportional

to their magnitude, and the same with shades of blue regions which corre-
sponds to regions with negative θ

(·)
k . Note that the most marked regions

corresponds to the most significant coefficients reported in Table 4.5 (like
θ
(p)
1 at coordinates (1, 2), θ(p)4 at (1, 5), θ(p)12 at (3, 6), θ(p)18 at (5, 5) for the p

parameter and θ
(p)
24 at coordinates (7, 3), θ(p)27 at (7, 6), θ(p)30 at (8, 5), θ(p)32 at

(9, 4), θ
(p)
34 at (9, 6), θ

(p)
35 at (9, 9) for the λ parameter), since they are the

largest in magnitude and do not contain the zero value in the 95% posterior
credibility interval. From these figures seems that both the extreme left and
right areas of the park are more subjective to the outbreak of a fire, vice
versa the middle area is a quite safe zone; the North-East area, instead, is
more dangerous in terms of magnitude of the fire, while in the West area,
which was more subjective to the ignition, the flames of the fires have much
more difficulty to spread.

Figure 4.13: Groups effect θ(p) relative to the fire ignition: regions in shades
of red corresponds to positive θ

(p)
k (high probability of fire ignition), shades

of blue regions corresponds to regions with negative θ
(p)
k (low proability),

proportional to the magnitude of the coefficient.
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Figure 4.14: Groups effect θ(λ) relative to the fire spread: regions in shades
of red corresponds to positive θ

(λ)
k (high fire spread), shades of blue regions

corresponds to regions with negative θ
(λ)
k (low fire spread), proportional to

the magnitude of the coefficient.

4.3.4 Sensitivity analysis

Prior sensitivity examination plays an important role in applied Bayesian
analysis. Especially in the situation where there is not much information
available to use for selecting the suitable prior distribution. Hence, handling
complex Bayesian models without any prior robustness may be problematic
and could have an undesired influence on the posterior inference. In order
to guarantee reliable and robust results, it is essential to check how sensitive
the resulting posteriors are for each prior input.
In Bayesian statistics literature the general sensitivity concept is treated by
Geisser (1992) [16], Clarke and Gustafson (1998) [17] and Millar and Stew-
art (2007) [18]. The technique we are considering consists of repetitive fits
of the model with modified prior hyperparameters. If the posterior distri-
butions do not differ much, robustness is claimed. The main drawback of
this approach is that it requires several re-fits of the model, which may be
extremely time consuming. Our strategy will be focusing on a bunch of prior
distributions (simply varying the hyperparameter’s values as said above) to
limit the number of model re-fits.
In particular two scenarios will be considered:

1. Standard model (the one in equation (4.1));

2. Different parameters’ values in equation (4.1) (in particular we adopted
a normal distribution N (0,100) for all single components of the param-
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eters β(·), θ(·) and ϕ(·), instead of N (0,9), in order to have more diffuse
priors);

Changing the hyperparameters the main parameters relative to the signifi-
cant β(·), θ(·) and ϕ(·) do not change neither in sign nor in the magnitude of
the parameters. In conclusion, we can state that substantive different results
from one model to the other do not show up.

4.3.5 Prediction

In [1] the authors were interested in comparing the posterior parameters es-
timations per location between a ZIP and a hurdle model; here we have a
slightly different purpose which is to check how accurate a predicted value
is, compared to an empirical value (for the moment not in terms of pre-
dicted values Y themselves but looking the the Poisson hurdle parameters
p and λ). In order to have an unbiased estimate of both the empirical pa-
rameters pk and λk of each sub-region, we use the MLE estimators for the
Bernoulli trial and the Truncated Poisson distribution (for the latter an es-
timate of λ̂kMLE

is provided by Moore [19] ), therefore p̂kMLE
=

∑nk
i=1 zi
nk

and

λ̂kMLE
=

∑
i∈{1,...,nk}:yi>0

yi∑
i∈{1,...,nk}:yi>0

I(yi<k̂)
, where k̂ = max

i∈{1,...,nk}:yi>0
(y1, . . . , ynk

). Ob-

serve that the estimators are computed without considering the covariates
and looking just at the response Y .
The Bayesian estimate of λk and pk (which we denote as pkBayes

and λkBayes
)

instead, are computed through the estimated posterior parameters β(p),
β(λ), θ(p), θ(λ), ϕ(p) and ϕ(λ) (setting the value of them at their posterior
mean) and reconstructing the Bayesian posterior estimates of pkBayes

and
λkBayes

,∀k ∈ {1, . . . , 35} through the inv-logit function and the exponential
one (basically replacing in (4.1) the covariates for each observation and then
computing the mean by groups).
In the end, the relative deviations (between the MLE estimations and the

Bayesian ones) RDpk =
|p̂kMLE

−pkBayes
|

p̂kMLE
and RDλk

=
|λ̂kMLE

−λkBayes
|

λ̂kMLE

are

computed for each sub-region and showed respectively in Figures 4.17 and
4.20.
In Figures 4.15, 4.16, 4.18 and 4.19 we report the empirical (through MLE)
and the (Bayesian) posterior model parameters p and λ for each sub-region
of the park; each dot represents the parameter of the relative sub-region and
it is proportional to its magnitude. We observe, looking at the size of the
dots in a qualitative way, that the model parameters are able to recover the
empirical parameters. For a quantitative checking look at Figures 4.17 and
4.20.

The dashed line in Figure 4.17 is at a constant value of 0.1 and all the
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Figure 4.15: Empirical value of p parameter (computed through MLE) for
each sub-region. Each single dot represents the empirical probability that a
fire breaks out in the corresponding sub-region.
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Figure 4.16: Bayesian estimate of p parameter for each sub-region. Each
single dot represents the bayesian mean posterior probability that a fire
breaks out in the corresponding sub-region.

relative errors are below this value. In particular the maximum value is
0.09785145, meaning that approximating the empirical p with the posterior
p we are making less than 10% error with respect to the magnitude of the
parameter itself.

Also for λ parameter the dashed line in Figure 4.20 is plotted at 0.1. How-
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Figure 4.17: Relative deviation RDpk between MLE and Bayesian estima-
tions of p parameter for each sub-region k ∈ {1, . . . , 35}.
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Figure 4.18: Empirical value of λ parameter (computed through MLE) for
each sub-region. Each single dot represents the empirical magnitude of a
broke out fire in the corresponding sub-region.

ever, this time, the greatest relative error is 0.740901401, which is much
bigger than the maximum relative error on p, suggesting a greater uncer-
tainty when predicting the burned area that follows the fire ignition, whose
responsible is parameter λ.
Note that for sub-regions 6, 12 and 18 we do not have the relative error
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Figure 4.19: Bayesian estimate of λ parameter for each sub-region. Each
single dot represents the bayesian posterior mean of the magnitude of a broke
out fire in the corresponding sub-region.

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Relative deviation on λ

sub−regions

R
el

at
iv

e 
de

vi
at

io
n

Figure 4.20: Relative deviation RDλk
between MLE and Bayesian estima-

tions of λ parameter for each sub-region k ∈ {1, . . . , 35}.

estimation because they are regions full of zeros (no fire recorded) and it is
impossible to extract λ̂6MLE , λ̂12MLE and λ̂18MLE .

A Bayesian analysis leads naturally to making predictions about future ob-
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servations from the random process that generated the data. A Bayesian
prediction is the outcome value simulated from the posterior predictive dis-
tribution, which is the distribution of unobserved (or future) data given the
observed data.
For our occurrence we have randomly selected a sample of 50 data among
the total 506, which have been used as test test, just for making prediction.
They corresponds roughly to 10% of the available data. Their covariates are
used to simulate predictive values while the corresponding true outcome is
used later, in comparison with predictions.
In Figure 4.21 we have simulated a single data (represented in red) using as
coefficients the parameters’ posterior means E[β(·)|D], E[θ(·)|D] and E[ϕ(·)|D]
and we have compared it with the real observed value (the black dot).
Instead, in Figure 4.22 we have simulated 20 outcomes from the Bayesian
predictive distribution P (Y new|y) for each of the 50 testing data. In red dots
are shown the predicted outcomes while the black dots are the corresponding
true values. Differently from the previous case (Figure 4.21), where the val-
ues of the model posterior parameters have been kept fixed at their mean, in
this case we are considering also their uncertainty, because we are sampling
from the predictive distribution which uses the posterior distribution of the
model parameters. In other words this is a Bayesian prediction which differs
from a frequentist prediction because it consists in simulated outcomes and
thus stochastic quantities.
In general the model seems to predict with more accuracy the situation where
no fires occurs, while when the wildfire breaks out, it often underestimates
its magnitude.

4.3.6 Computational costs

Table 4.6 shows the computational costs in terms of time spent to run the
chains of the model. The elapsed time for each chain is in tune with the times
in Section 3.4 (Table 3.10), where also the number of groups is significantly
different from the test on synthetic data to the current real dataset.

Number of data Number of groups Elapsed time Ch.1 [sec] Elapsed time Ch.2 [sec]
506 35 10600.9 10608.2

Table 4.6: Required computational time for current dataset.
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Figure 4.21: Prediction on new unseen data: the prediction is a single data
(represented in red) obtained using as coefficients the parameters’ posterior
means E[β(·)|D], E[θ(·)|D] and E[ϕ(·)|D], compared with the real observed
value (the black dot).

●

●

●

●

●
●

● ● ●

●

● ● ● ● ● ● ● ●

●

● ● ●

●

●

●

● ● ● ● ● ● ●

●

●
●

●

● ●

● ●
●

●

●
● ●

●

● ● ● ●

0 10 20 30 40 50

0
20

40
60

80

Test set

H
ec

ta
re

s 
bu

rn
t

●

●

● ● ●

●

● ● ● ●

●

●

●
●

●

●

● ●

●

●

●

●

● ●

●

●

●

● ● ● ●

●

●

● ●

●

●

● ●

●

●

● ● ● ● ● ● ●

●

●

●
●

● ● ● ● ● ●

●

●

●

●

● ● ●

●

● ● ●

●

● ● ● ● ●

● ●

●

●

● ●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

● ● ●

●

●

●

● ● ● ● ● ● ●

●

●

●

● ●

●

●

●

● ●

●

●

●

● ● ● ●

●

● ●

●

●

●

●

● ●

●

● ● ● ●

●

●

●

●
●

●

●

●

●
●

●

● ● ●
●

●

●

● ●

●

●

●

● ● ● ● ● ● ●

●

●

●

●

● ●

●

●

●

● ● ●

●

● ●

●

●

● ●

●

●

●

●

● ● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ● ●

●

●

●

● ● ● ●

●

●

●

● ●

●

● ● ● ● ● ● ● ● ●

●

●

●

●

●
●

● ● ● ●

●

● ● ●

●

●

●

● ● ● ● ●

●

●

●

●

●
●

● ● ●

●

● ●

●

●

● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ●

●

●

●

● ● ● ●

●

● ●

●

●

●
●

● ● ●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

● ● ● ● ● ● ●

●

●●

●

● ● ● ●

●

● ●

●

●

● ● ●

●

●

●

●

●

●

● ● ● ● ●

●

●

● ●

●

●

●

●

●

● ● ● ● ●

●

●

●

● ● ● ●

●

●

●
●●

●

● ● ●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

● ● ●

●

●
●

●

●

●

●

● ●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●●

●

●

● ● ● ● ● ● ●

●

● ● ● ● ● ● ●

●

●

●

● ● ●

●

●

● ●

●

● ● ● ● ● ● ● ● ● ●

●

● ● ● ●

●

●

●

●

●

●● ●

●

● ●

●

● ●

●

●

●

●

● ● ● ● ● ● ●

●

●

●

● ●

●

● ●

● ● ●

●

●

●

●

● ●

●

● ●

●

● ● ● ● ●
●

●

● ● ●● ●

●

● ● ● ●

●

●

●

●

● ● ●

●

● ● ●

●

●

●

●

● ● ●

●

●
●

●

●

● ●

● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ●

●

●

●

●
● ●

● ●

● ●

●

●

●

●

●

● ● ●

●

●

● ● ● ●

●

●

●

● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

● ●

●

● ● ●

●

● ● ●
●

●

● ●

●

●

●

●

● ● ● ●

●

●

●

● ●

●

●

●

● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

● ● ●● ●

●

● ●

●

● ●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

● ●
●

● ● ●

●

●

●

● ● ● ● ● ● ●
●

●● ●

●

●
● ● ●

●

● ●

●

●
● ● ● ● ● ●

●

●

●

●

● ● ●

●

●

●

● ● ●

●

●

●

● ●

●

●

●

●

●

●

● ● ●

●

● ●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

● ● ● ● ●

●

●

●

● ● ●

●

● ● ● ●

●

● ● ●

●

●

● ● ●

●

● ●

●

● ●

●

● ●
●

●

●

● ●

●

● ● ●

●

● ● ●

●

● ● ● ● ● ● ●

●

●

● ● ● ●

●

●

●

● ● ● ●

●

● ●
●

● ● ●

●

●

●

● ● ●

●

● ● ● ● ●

●
●

●

● ●

●

● ● ● ●

●

●

●

● ● ● ● ●

●

●

● ●

●

● ●

●

●

● ●

●

●

●

● ● ● ● ● ● ●

●

● ● ● ●

●

●

●

● ● ●

Figure 4.22: Bayesian prediction of 50 new unseen data (whose outputs are
known and represented in black dots): for each data 20 outcomes generated
from the Bayesian predictive distribution are represented in red dots.
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Discussion and conclusions

The Poisson hurdle models proposed in Chapter 1 and tested in Chapter 3
of this elaborate can cover a variety of real case situations, from the sim-
plest one without neither covariates nor group-specific structure to the most
complex in which both the formulations could be present. Moreover, all
the models have some attractive features, first of all the ability to address
potential zero inflation relative to the ordinary Poisson distribution. In ad-
dition to this they consist of binary and truncated Poisson components, in
fact this peculiarity of hurdle models guarantees to split the occurrence of an
event and the magnitude of the occurred event. This has the powerful con-
sequence that separate analyses could be carried out (a Poisson distribution,
by its own intrinsic structure, would make it more complicated). This as-
pect has been widely covered in Chapter 4, which proposed a Poisson hurdle
model for exploring geographic incidence of wildfires, by making inference on
two distinct parameters. Another important aspect tackled in the elaborate
has been the data spatial dependence which was solved using group-specific
random effects that highlighted the presence of areas with different char-
acteristics and strengthened our idea to adopt a model that accounts the
existence of heterogeneous areas; here a quite surprising result has shown
up in fact we discovered that there exist regions where a high incidence of
fires does not correspond to an equal destructive power and viceversa. This
fact can translate into a more careful management of the available resources,
reinforcing the prevention of fire ignition in some areas and the prevention
of fire spread in others. Regarding the significance of the other model pa-
rameters we can infer that do exist fire prone regions, in the terms described
above and that the summer months bring the risk of wildfires but the peak
of severe fire incidence occurs in the early autumn months.
Continuing to work the case study we obtained the posterior distributions
of all the model parameters. Most of them contained the zero value in the
95% credibility interval. By far the most significant warning light for the fire
ignition is concerning the moisture content surface litter, while its spread is
affected by a mixture of meteorological and geothermal factors.
The chosen bayesian model is also able to replicate the parameters extracted
in an empirical way from data, through the MLE, since the posterior param-
eters’ estimates slightly differ from the empirical ones, though the Poisson
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part of the model shows greater deviations and uncertainty.
The same uncertainty relative to the fire propagation (once it broke up) was
found in prediction, where the model captured the no fires cases with good
results and it did underestimate the fire case.

In the statistical community GLM regression and groups structure are re-
current concepts which, in our case, have been blended with the Poisson
hurdle distribution. A further step forward could be done proposing and
exploiting a new alternative model, which is different from all the ones seen
in this elaborate but it recovers the Poisson hurdle structure and is suitable
to handle both the over-abundance of zeros and the spatial reference. The
model has the following structure:

Yi,k ∼ UkVi,kNi,k i ∈ {1, 2, ..., nk}, k ∈ {1, 2, ...,K}
Uk ∼ Be(q) k ∈ {1, 2, ...,K}
Vi,k ∼ Be(pk) i ∈ {1, 2, ..., nk}, k ∈ {1, 2, ...,K}
Ni,k ∼ tPois(λk) i ∈ {1, 2, ..., nk}, k ∈ {1, 2, ...,K}

It assumes that data is organized in K sub-regions (or macro-regions) and
each group has a fixed number nk of observations. Furthermore there are
two steps to handle to have a positive data: the first step is given by draw-
ing from a Bernoulli random variable Uk, which is responsible of the whole
macro-region k, in the sense that according to its outcome we can have a
region full of zero values (Uk = 0) or not (Uk = 1). In addition to this, it
is straightforward to point out that conditionally on Uk = 0 the responses
{Yi,k}i=1,...,nk

in the same group are dependent because they are all zero,
while conditionally on Uk = 1 the responses in the same group are indepen-
dent. The second stage, which involves within groups variables Vi,k and Ni,k,
is a familiar Poisson hurdle structure whose definition is introduced at the
beginning of Chapter 1, for which the same parameters has been used.
By its structure, this model is more suitable for dynamics where the are
entire groups of data consisting of zero values.
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Appendix A

R Functions

Here, in this Appendix, we report the functions implemented in software R
to sample from a Poisson hurdle distribution.

A.1 Functions used for models in Sections 3.1, 3.2,
3.3 and 3.4

Poisson Hurdle base model (3.1)
sample_hurdle=function(N,p,lambda){

z=rbern(N,p)
y=rtpois(N, lambda, a = 0, b = Inf)
return(z*y)

}

Poisson Hurdle Regression (3.2)
sample_hurdle_glm=function(N,beta_p,beta_l,X_p,X_l){

p=1/(1 + exp(-(X_p %*% beta_p)))
lambda=exp(X_l %*% beta_l)
z=rbern(N,p)
y=rtpois(N, lambda, a = 0, b = Inf)
return(z*y)

}
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Poisson Hurdle with group structure (3.3)
sample_hurdle_group=function(vectorng,vectorp,vectorlambda){

y=c()
for(i in 1:length(vectorp)){

y=c(y,sample_hurdle(vectorng[i],vectorp[i],vectorlambda[i]))
}
return(y)

}

Poisson Hurdle Regression with group structure (3.4)
sample_hurdle_group_glm=function(vectorng,beta_p,beta_l,
theta_p,theta_l,X_p,X_l){

y=c()
vectorp=c()
vectorlambda=c()
k=1
for(i in 1:length(vectorng)){

for(j in 1:vectorng[i]){
vectorp=c(vectorp,1/(1+exp(-(beta_p %*% X_p[k,]+theta_p[i]))))
vectorlambda=c(vectorlambda,exp(beta_l %*% X_l[k,]+theta_l[i]))
y=c(y,sample_hurdle(1,vectorp[k],vectorlambda[k]))
k=k+1

}
}
return(y)

}
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