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Abstract 

 
Many systems may be described as networks composed of nodes connected 
by links. Complex natural and man-made systems have connections 
patterns that closely match a scale-free network structure. Scale-free 
concepts are commonly described in real-world networks, indicating that 
nodes with degree k appear with a probability p(k) proportional to k^−ε. This 
pattern has many implications for complex systems structure. 

In Italy, the bus transport service plays an important role in moving people 
within and between cities; therefore, it is significant to study its topological 
features, network structures, and connectivity as well as analyze its 
evolution, development, robustness, and resilience. 

In this thesis, firstly, the bus transport networks of Lecco, Como, and Varese 
cities have been modeled as unweighted, directed graphs, and evaluated 
whether they follow the scale-free feature. 
 
Secondly, the robustness of the three bus systems has been studied under 
random attack and intentional attack. 
 
 
Keywords: Urban transit network; Scale-free network; Degree distribution; 
robustness. 

 
 

 

 

 

 



Sommario 

 
Molti sistemi possono essere descritti come reti composte da nodi collegati 
da lati. Molti sistemi complessi sia naturali, sia creati dall'uomo hanno schemi 
di connessione che corrispondono strettamente a una struttura di rete scale-
free. Le reti scale-free sono comunemente descritte nelle reti del mondo 
reale, indicando che i nodi di grado k, in tali reti, appaiono con probabilità 
p(k) proporzionale a k^−ε. Questo modello ha molte implicazioni per la 
struttura di sistemi complessi.  
 
In Italia, il servizio di trasporto con autobus svolge un ruolo importante nello 
spostamento delle persone all'interno e tra le città; pertanto, è significativo 
studiarne le caratteristiche topologiche, le strutture di rete e la connettività, 
nonché analizzarne l'evoluzione, lo sviluppo, la robustezza e la resilienza. 
 
In questa tesi, in primo luogo, modelliamo le reti di trasporto servite da 
autobus delle città di Lecco, Como e Varese come grafi diretti, non pesati e 
valutiamo se risultano scale-free. 
In secondo luogo, la robustezza delle tre reti viene studiata sotto attacco 
casuale e attacco intenzionale. 
 
Parole chiave: Rete di trasporto urbano; scale-free network; distribuzione dei 
gradi; robustezza 
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N number of nodes 
 
E number of edges 
 
V set of nodes 
 
L set of edges/links 
 
A area in km^2 
 

P population in thousands of inhabitants 
 
k degree of a node 
 
d diameter of a graph 
 
k average degree 
 
C average clustering coefficient 
 
r assortative coefficient 
 
l average path length 
 
g(i) betweenness centrality of the node i 
 
LAC Local average connectivity 
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1 Chapter 1 
Introduction 

 

In our daily lives, complex systems such as airports, power grids, 
transportation systems, and disease control systems make our lives more 
convenient and comfortable. Networks with complex topologies can model 
these infrastructures. 
In the last 20 years, complex network theory has experienced an important 
growth in popularity. This has been the result of not only many important 
theoretical insights, e.g., the models introduced by A. L. Barabási, R. Albert, 
D. J. Watts, or S. H. Strogatz, but also of the wide applicability of network 
principles in the study of real-world systems. Since the initial works 
describing the topology of various transportation systems, analyses have 
become more sophisticated and cover a wide range of domains. 
Undoubtedly, many systems in nature can be described by models of 
complex networks, which are structures consisting of nodes or vertices 
connected by links or edges. (Chen, Xi, Liu, & Li, 2020) 

Complex network theory is a science that studies the connection and 
interaction between components in a system. It is an emerging field, 
developing at a rapid rate. Particularly in the last decade, the proposing of 
small-world and scale free models have brought about comprehensive 
research and interest on this subject from different disciplines, which shows 
that the structures of networks existing in various domains are more similar 
than one would have expected. (Van Steen, 2010) 

 
When the Erdos-Renyi method for producing random graphs was initially 
proposed, network analysis began to gain interest. Nevertheless, it was 
eventually realized that the topologies and evolution of real-world networks 
in our daily lives are governed by more advanced concepts in the field of 
complex networks. A variety of systems can be characterized as complex 
networks, including PTNs, the Internet, financial systems, social networks, 
etc. They are applicable to many types of real-world systems. 



Two characteristics of complex networks have emerged to be particularly 
relevant; these are scale-free patterns and small-worlds effects. Small 
worlds were introduced by Watts and Strogatz; these networks have the 
particularity of being locally well connected while remaining close. (Watts & 
Strogatz, 1998) 

Scale-free networks, as introduced by Barabási and Albert, follow a power 
law distribution between the number of nodes and their number of links, i.e., 
few nodes have many links, and many nodes have few links. (Barabási & 
Albert, 1999) 

Transportation networks are examples of networks in real life. They are 
among the critical infrastructures underpinning our societies and economies. 
 
In this thesis, we analyze the Bus transport network (BTN) of 3 cities in the 
northern part of Lombardia, an Italian region: Lecco city, Como city, and 
Varese city based on the concepts of scale-free network. In order to design 
and manage the bus system efficiently, it is crucial to understand their 
topological properties, network structures, and connectivity. Furthermore, 
the evolution of these cities has an important influence on the development 
of BTNs. 
The work aims to analyze the BTNs in the 3 cities from a complex network 
perspective, mainly whether they have a scale-free feature. Moreover, we 
effectively analyze the complexity and robustness of those system. 
 
 
 
 
 
 
 
 
 
 
 
 



2 Chapter 2 
 
Literature Review 

 
 

This chapter overviews theoretical aspects on networks and graphs that are 
the  base of the analysis tasks we perform. We first introduce general 
concepts  on network theory, properties, and models we are interested at. 
We then focus on the public transportation network, their topologies, and the 
bus services they provide, which is the core on this work. 
 

2.1 Network theory 

 
In the context of network theory, a complex network is a graph (network) 
with non-trivial topological features—features that do not occur in simple 
networks such as lattices or random graphs but often occur in networks 
representing real systems. The study of complex networks is a young and 
active area of scientific research since 2000. (Albert & Barabási, 2002) 
 
There are many definitions describing the theory of network: 

 Is the study of graphs as a representation of symmetric or asymmetric 
relationships among discrete objects. 

 Is a branch of mathematics that studies networks in order to represent 
sets of discrete objects with symmetric or asymmetric pairwise 
interactions. 

 In computer science and network science: a network is a graph with 
properties on the nodes and/or edges.  

 
Networks are fundamental to the study of large-scale transportation models 
representing an entire metropolitan area, a state, or multistate regions. They 
can be applied in many contexts, including alternatives analysis, developing 
congestion pricing plans, identifying bottlenecks and critical infrastructure, 



shipping and freight logistics, multimodal planning, and disaster evacuation 
planning, to name only a few. The reason network models are so useful, and 
so broadly applicable, is because a mathematical network is a simple, 
compact, and flexible way to represent a large, complicated system. 
A network is considered reliable if the expected trip costs are acceptable, 
even when users are extremely pessimistic about the state of the network. 

A graph is a representation of a network and its connections in symbols. It 
entails a reduction of reality to a network of linked nodes. Leonhard Euler, 
who devised the "Seven Bridges of Konigsberg" problem in 1735, is credited 
with the invention of graph theory. Someone had to cross all the bridges only 
once and in a continuous sequence to solve this problem, which Euler proved 
to have no solution by modeling it as a set of nodes and connections. This 
paved the way for the development of graph theory and future 
advancements. Growing effects from studies of social and complex networks 
have enriched it throughout the last few decades. 

Most networks in transportation geography have a clear spatial base, such 
as road, transit, and rail networks, which are defined more by their links than 
by their nodes. This isn't always the case with all transit systems. Maritime 
and air networks, for example, are more defined by their nodes than by their 
links, which are sometimes ill-defined. A network can also be used to 
describe a telecommunication system, while its spatial expression may be 
minor and difficult to depict. Mobile phone networks and the Internet, which 
may be the most complex graphs to analyze, are examples of networks with 
a structure that is challenging to represent. Cellphones and antennae, on the 
other hand, can be depicted as nodes, with individual phone calls serving as 
linkages. Servers, which are at the heart of the Internet, can be depicted as 
nodes in a graph, with physical infrastructure, such as fiber optic cables, 
acting as links. As a result, graph theory can be used to model all 
transportation networks in some way. 

Directed graph is a graph in which edges are directed, i.e. an edge has a 
starting node and an ending one (sometimes shortened to digraph). In a 
directed graph, each edge represents a one-way link from one node to 
another, but not backwards. In graph theory, it is possible to associate a 



number to each edge. Such a number is called weight, and the graph is said 
to be weighted. The magnitude of relationships between nodes in a weighted 
network is essential to the relationship we're researching. The existence of 
a connection in an unweighted graph is the focus of our attention. 

Undirected graphs refer to the graphs in which all edges are bidirectional. In 
a directed graph, bidirectional interactions are still conceivable (and even 
common), but they involve two edges rather than just one. 

 

 

 

Figure 2.1 An illustration of undirected network (a) and directed network (b). 

Understanding graph theory requires the knowledge of the following 
elements: 

 Graph: A graph G is a group of nodes (vertices) linked by edges (links), 
e.g., G= (V, E). 

o Vertex (Node): In transportation networks, a node v is an abstract way 
to represent a place like a city, a crossroad, or a terminal (stations, 
terminuses, harbors, and airports). 

o Edge (Link): An edge e connects two nodes. The connection (i,j) 
connects the starting i and terminal nodes j. A link represents a 
transport system that allows people to move between nodes. It has a 
direction, which is usually depicted by an arrow. When no arrow is 
present, the link is presumed to be bi-directional. 

o Sub-Graph: A sub-graph is a part of a larger graph G. G' = (V', E') is one 
example of a separate sub-graph of G. Unless the whole global 
transportation system is evaluated, every transport network is 
theoretically a sub-graph of another. For example, the road 
transportation network of a city is a sub-graph of a regional 



transportation network, which is itself a sub-graph of a national 
transportation network. 

o Buckle (Loop or self-edge): A buckle is a connection that makes a node 
correspond to itself. 

 Planar Graph: A graph in which each vertex represents the intersection 
of two edges. The topology of this graph is two-dimensional since it lies 
in a plane. This is common in power grids, road, and railway networks, 
albeit the definition of nodes must be approached with caution 
(terminals, warehouses, cities). 

 

 Non-planar Graph: There is no vertex at the intersection of at least two 
edges in this graph. Non-planar networks are networks that cannot be 
represented in a planar manner, such as roadways. This suggests a 
third dimension in the graph's structure since a movement might "pass 
over" another movement, such as in air and marine transportation or 
as an overpass for a road. A non-planar graph might have a lot more 
connections than a planar network. 

 

 Simple graph: The term "simple" refers to a graph with no loops and 
multiple edges. A basic graph is a road or rail network. 

o Emax = N (N - 1)/2. 

 

 Multigraph: A graph with several sorts of connections between its 
nodes. Some couples of nodes are connected by a link only, while 
other couples are connected by many links, active at the same time. 
A multigraph is a graph that depicts a road and rail network with 
various relationships between nodes served by one or both modes. 

 

 

 



A transportation network facilitates the movement of people, freight, and 
information through its linkages. Therefore, graph theory should be able to 
represent movements as links, which can be considered from several 
perspectives: 
 
Connection: Every node is linked to every other. The knowledge connections 
allows you to see if you can reach a node from another node in a graph. 
 
Path: A path is a sequence of nodes, pairwise distinct, under the assumption 
that an edge links two consecutive nodes in a path. In order to measure 
accessibility and traffic flows, it is necessary to find all feasible pathways in 
a graph. 
 
Chain: A series of connections that share a common connection. The 
direction does not matter. 
 
Length of a Link: Connection or Path. A link, connection, or path has a label 
attached to it. This label might refer to the link's distance, traffic volume, 
capacity, or other essential features. The number of links (or connections) 
that make up a route determines its length. 
 
Cycle: Refers to a chain that has the same beginning and terminal node and 
does not repeat the same path. 
 
Cluster: It refers to a collection of nodes with deeper relationships than with 
the rest of the network. To find clusters in a network, a variety of approaches 
are applied, the most common of which are modularity metrics (intra- versus 
inter-cluster variance). (Rodrigue J.-P. , 2020) 
 
 
 
 
 
 
 
 
 
 
 



2.2 Network properties 

 
 Adjacency matrix:  A graph with N nodes and E edges can be described by 
its N x N adjacency matrix A, which is defined as 
 

𝐴 =   
1    if i and j are connected
0                           Otherwise

 

 
 
The matrix A is symmetric if the graph is undirected. Otherwise, if the graph 
is directed, its adjacency matrix is not forced to be symmetric. 
 
 Degree: Node degree is the most straightforward index to quantify the 
individual centrality. It is believed that the most important node must be the 
most active one, so the number of edges connecting to a node is indicated 
by its degree, which is defined based on an adjacent matrix as 
 

𝑘 =  𝑎

∊

 

 
V represents the set of nodes i, and  𝑎  is the entry value in the adjacent 
matrix. In essence, node degree equals the connectivity in space syntax. If 
a directed network is considered, then the degree can be extended to in-
degree and out-degree, which respectively calculate the number of links 
ending in or starting from the node. They are written as 

 

𝑘 =  𝑎

∊

 

 

𝑘 =  𝑎

∊

 

 
the well-known scale-free network is based on the degree definitions. If the 
degree of a graph follows a power-law distribution — that is, 𝑃(𝑘) 𝛼 𝑘  then 
the network is referred to as scale-free (Barabási & Albert, 1999). It indicates 
that there is a huge heterogeneity in the network; a few nodes are highly 
connected hubs, whereas most of the rest are very poorly connected. This 
pattern imposes important consequences for dynamic processes on 



transport networks; therefore, it has attracted much attention since it was 
proposed. 

 

 
  Diameter: The diameter of the network is determined by the shortest 
path between all pairs of nodes, i.e.  

 
              𝐷(𝐺) =  𝑚𝑎𝑥

,
 𝑙                                       (1) 

 

 𝑙  = the length shortest path between nodes 𝑖 and 𝑗. 

The diameter represents the longest route (number of stations along the 
longest route) in the network if a passenger uses the optimal routes, which 
means that they take the shortest route between any two stations. An 
interesting observation is that the diameter does not correspond with the 
area of the city. 

 

 Average path length: The average path length is defined as 
 

  (𝑙) =
( )

 𝑙                       (2) 

 

It only occurs if the network has no disconnected nodes. If we select these 
stations at random, the average path length corresponds to how many 
stations there are between two stations on the shortest route. 
 
 
 Eccentricity distribution: The eccentricity 𝑒 of a node 𝑖 is the longest 
distance between 𝑖 and any other node in the network; that is  

 
𝑒(𝑖) = 𝑚𝑎𝑥 𝑙                    (3) 

 
here, it tells us how far a stop/station is from the most distant stop/station 
in the PTN. 

 
 Degree distribution: The list of the node degrees is the degree sequence of 
the network. Degree distribution P(k) is defined as the proportion of nodes 
with degree k; or, equivalently, as the probability that a uniformly chosen 



node has degree k. For directed networks, we can examine the in-degree 
and out-degree distributions. 

 
 Degree centrality: Basically, it is the degree 𝑑𝑖 of node 𝑖 (in directed 
networks, it is the in- and out-degrees) and it indicates how big the 
neighborhood of 𝑖 is. According to our earlier observations, the distributions 
decay with a power law in scale-free networks. 

 
 
 Local average connectivity: Let 𝑁  be the set of neighbors of u and 𝐺[𝑁 ]  be 

the subnetwork induced by the nodes in 𝑁 . The degree of a node j in the 
subnetwork 𝐺[𝑁 ] is denoted by d [ ](𝑗). Next, the local average 
connectivity [20] of node 𝑖 is defined as 

𝐿𝐴𝐶( ) =
1

d
d [ ](𝑗)

∈

 

 
and it describes how close its neighbors are. In a public transportation 
system, it basically means that if a stop/station cannot be used for some 
reason, the neighboring stops become disconnected from each other. Nodes 
with high 𝐿𝐴𝐶 values are the locally central nodes. 
 
 Closeness centrality:  As the name shows, closeness centrality calculates 
how far it is from a given node to all other nodes in a network 

 

𝐶 =                               (4) 

 

For a non-weighted graph, it becomes the geodesic distance. However, it 
works only in a connected graph. 
 
 Betweenness centrality: Betweenness quantifies the level of intermediate 
importance of a node in the interaction between other nodes (Freeman, 
1977,1979). The node betweenness can be defined as: 

 

𝐶 =
𝑛 (𝑖)

𝑛
 

 



where 𝑛 (𝑖) is the number of the shortest paths between node j and 𝑔, which 
are passing through node 𝑖, while 𝑛  is the number of all shortest paths 
between them. In the same way, edge betweenness can also be determined, 
which can be used to detect network community structure (Cardillo, Scellato, 
Latora, & Porta, 2006). The nodes with a high betweenness would impose 
critical constrains on network security in real transportation systems 
(Barthelemy, 2004) (Lin & Ban, 2013). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2.3 Models of complex networks 

 
In both natural and social sciences, modeling is an effective and easy 
technique to describe the dynamics of the actual world. In recent decades, 
many new network models have been suggested in a variety of fields, 
ranging from simple random models to complex evolving or evolution 
models. 
 
 
 
 
2.3.1 Random model 

.  
Erdős and Rényi (ER) model is the most famous random model proposed by 
(Renyi, 1959). This model can be built by connecting randomly two nodes 
from the initial N nodes with probability p. The ER model exhibits a small 
path length and a low clustering coefficient as its characteristics. 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1: The Erdős and Rényi model with NV =30 and p=0.1 (NE =82, C=0.073, L=3.11) 
 
 
 

 
 
 

 



2.3.2 Regular model 

 
Regular models can be generated by providing the number of nodes 
and average degrees per node. As an example, if there are n nodes, 
and the degree per node is k, the number of edges in an undirected 
model equal (n*k)/2. This definition shows a high level of clustering of 
the network, but the characteristic path length value is large.  
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 3.2: The regular circle model with NV = 30 and p=4 (NE =60, C=0.5, L=4.14) 
 

 
 
 
 
 
 
 
 
 
 

 
 



2.3.3 Small-world model 

 
 
These two models represent two extreme scenarios, neither of which 
can be compared to real life. Most real network nodes can be reached 
by passing through a relatively small number of edges. Researchers 
have been working for a long time to improve and construct another 
model that more closely replicates the real world from a global 
perspective with a low average path length and a significant clustering 
coefficient. In 1998, Watts and Strogatz made a significant 
breakthrough. They proposed the small-world model, which is also 
known as the Watts and Strogatz (WS) model. Based on the probability 
p, the WS model rewires any links in a regular network. The probability 
p varies from 0 to 1. The two extreme cases correspond to a regular 
network and to a random one, respectively. Therefore, in a small-world 
network there are likely to be relatively few intermediate links between 
two nodes, indicating a small characteristic path length and a large 
clustering coefficient. In Fig. 3.3, a small-world model is generated 
based on the regular ring model in Fig. 3.2 and a rewiring probability 
p.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.3: A small-world model with NV =30, p=0.30 (NE=60, C=0.322, L=2.717) 
 
 



2.3.4 Network growth models 
 

Barabási and Albert (BA) model 
 
The understanding of dynamic evolution process has gained much progress 
in addition to the effort on static topological models. The network growth 
model is much more complicated because it includes an evolution 
perspective. According to (Barabási & Albert, 1999), many real networks 
exhibit preferential connectivity during their evolution. That is to say, a node 
with a higher connectivity is more likely to be connected with a new node in 
a network, the big one will only get bigger. In order to quantify the 
connectivity, the node degree is the most straightforward way. Therefore, the 
attaching probability of connecting a new vertex to node vi is calculated as 
follows: 
 

→

=
𝑘

𝛴 𝑘
 

 

In this example, 𝑘  indicates the degree of node vi at time t-1. It is assumed 
that the original network only consists of one node, and a new node with c 
new links are added per step. Then this procedure can be divided into two 
steps: 

 One new vertex is added per time step with c links, thus the number of 
nodes and edges in the network equal to: 
 

𝑁 = 𝑁 + 1 = 𝑡 + 1 
 

𝑁 = 𝑁 + 𝑐 = 𝑐𝑡 
 

 
 
 

 Preferential attachment: the new vertex connects with c existing nodes 
according to the probability, then the total degree of the network at time 
t is: 

𝛴 𝑘 = 2𝑐𝑡 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.4: The growth mechanism of the BA model. A new node n is connected to vertices i and i’ at 
time t. 

Figure 3.4 illustrates the mechanism. It is important to note that the degree 
distribution of a BA model always follows a scale-free pattern, so it is also 
called a scale-free model. In conjunction with the small-world model, it is 
recognized as one of the two most important models to mark the beginning 
of complex network theory. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2.4 Transport Network 
 
Transport (transportation) network refers to a group of centers also known 
as nodes and linked by routes. Transport network is the overall system 
consisting of transport route and mode. Networks are connected through 
roads and streets, railways, pipes, aqueducts, and power lines. 

Transport networks enable people and goods to move from one place to 
another. Street networks, train networks, pedestrian walkway networks, river 
networks, utility networks, and pipeline networks are only examples of 
different types of transportation networks. Geographical models of 
transportation networks consist of linear features and points of intersection. 
(Rodrigue J. , 2020) 

 

2.4.1 Public Transport  

Public transportation is a form of collective transportation for passengers. 
Unlike privately operated vehicles that charge a posted fee per trip, public 
transportation is typically scheduled, operated on established routes, and 
made available to the general public. Furthermore, it is implemented at the 
local or regional level. 
Public transportation systems include a variety of transit options such as 
buses, light rail, trolleybuses, and subways. Transportation systems help 
ensure that people can reach everyday destinations, such as jobs, schools, 
healthy food outlets and healthcare facilities, safely and reliably. 
 
Incorporating public transportation options and considerations into broader 
economic and land use planning can also benefit a community by facilitating 
business opportunities, reducing sprawl, and creating a sense of community. 
By creating a locus for public activities, such development contributes to a 
sense of community and can enhance neighborhood safety and security. 
Because of these reasons, areas with good public transit systems are 
economically thriving communities and are attractive places to work or live. 



And, in times of emergency, public transit is fundamental to evacuation 
safety and efficiency. 
 
The benefits of public transportation system: 
o Reducing motor vehicle travel (air pollution) and traffic congestion.  
o  Economic benefits to the community. 
o  Cheaper. 
o  Public transportation services play an important role for people who are 
unable to drive, including those without access to personal vehicles, children, 
individuals with disabilities, and older adults. 
o Public transportation systems provide opportunities for increased physical 
activity in the form of walking or biking on either end of the trip. 
 
The criteria to measure the usability of different types of public transport are: 
 
o  Speed is calculated from total journey time including transfers. 
o  Comfort 
o  Safety 
o  Cost 
o  Proximity means how far passengers must walk or otherwise travel before 
they can begin the public transport leg of their journey and how close it 
leaves them to their desired destination. 
o  Timelines is how long they must wait for the vehicle. 
o  Directness records how far a journey using public transport deviates from 
the route. 

 
Local public transportation [LPT] refers to the many kinds of public 
transportation available locally in a city, province, or area. Local public 
transportation can be provided using a variety of modes of public 
transportation and a variety of infrastructures, both in a reserved area and in 
mixed areas. The bus, trolleybus, tram, underground, train, …etc., are the 
means used in carrying out the LPT service 

 



Some indicators are used in a generic manner to evaluate and compare the 
different local public transportation systems, such as: 

 Network density: length in kilometers of public transport networks 
per 100 km² of municipal surface. 

 Density of stops: number of stops per km² of municipal surface. 
 Demand for public transport: number of passengers transported 

during the year by public transport in urban areas (buses, trams, 
trolley buses, underground and funicular). 

 Seats-km: total number of seats offered to users during the 
year. This value is obtained as the product of the cars-km² for the 
average capacity of the cars supplied. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2.4.2 Transport Network topologies 
 

 
As a specific instance of spatial networks, transportation networks have 
routes as an essential component of the network topology. Routes are 
intermediate concepts between paths and edges: a route is a path serviced 
by a given means of transport. According to the available literature on 
transportation systems, L-space and P-space are two primary strategies to 
represent routes. Nodes on an L-space topology are connected if they are 
consecutive stops on the route. Degree in L-space represents the number of 
different nodes that can be reached within one segment, and path length 
represents the number of stops. Two nodes in the P-space are connected if 
they have a route between them, so the degree of a node indicates how 
many nodes can be reached, either directly or indirectly, on that route. In P 
space, a path length corresponds to how many connections/transfers are 
required to connect one node to another. (von Ferber, Holovatch, Holovatch, 
& Palchykov, 2007) 
 
L-Space 
 
The graph topology, also called space L, shows each station as a node; the 
link between nodes indicates at least one route sequentially servicing the 
two corresponding stations. Furthermore, only one edge can connect two 
nodes, even when the nodes are directly connected via multiple routes. 
 
 
P-Space 
 
P-space graphs are particularly useful for analyzing PTNs. Nodes here are 
stations, just as in L-space, but they are linked if they are serviced by at least 
one route. Thus, nodes in P-space have neighbors that can be reached 
without changing modes of transportation, and each route generates a 
complete P-subgraph. 
 
 
 
 
 
 



 
B-Space 
 
An alternative concept is a bipartite graph, which has proven helpful in 
analyzing cooperation networks. B-space is a representation that represents 
both routes and stations as nodes. Each route node is linked to all station 
nodes that it services. Nodes of the same type are not directly linked. 
 
 
C-Space 
 
The complementary projection of the B-space graph to route nodes leads to 
the C-space graph of route nodes, where any two route nodes are neighbors 
if they share a common station. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2.4.3 Bus services  

Buses can be used on regular roads to transport a large number of people 
over shorter distances. Buses have a lower capacity (than trams or trains) 
and may run on regular roads with relatively affordable bus stops to service 
passengers. As a result, buses are usually applied in smaller towns, cities, 
and rural regions. Local bus routes are typically classified into two 
categories: urban and suburban.  

The level and reliability of bus services are often dependent on the quality of 
the local road network and levels of traffic congestion, and the population 
density. Buses are also used for scheduled bus transport, scheduled coach 
transport, school transport, private hire, or tourism. Buses usually run very 
frequently. 

The statistics are based on a survey of the most used public transport 
method in Italy in 2018. That year, the most common means were buses and 
trolleybuses (69 percent), followed by the metro (41 percent). Only 26 
percent of passengers stated that the tram was their most used mode of 
public transportation ( Statista Research Department, Nov 5, 2021). 
 
Italy has wonderful natural landscapes that are best enjoyed by taking the 
bus, which is one of the safest and cheapest ways to travel. Bus connections 
between Italian cities make it easy to travel to most popular destinations. 

 
Buses are sometimes a better choice in many regions. Moreover, the only 
way to get to small towns off the rail grid or along Italy's mountain spine will 
be by bus. 

Every province in Italy has its own bus system with independent lines 
focused just on serving the provincial and neighboring provinces. The bus 
company offers both "linee urbane" (city bus routes) and "linee extraurbane" 
(routes out and nearby cities). 

 



3 Chapter 3 
Vulnerability, Resilience and Robustness 

 

Our societies depend enormously on some critical infrastructure, including 
electric powered power, transport, water supply, sewage handling, 
information and communication, and banking structures. These structures 
have grown and grown, and actually are very complex and interdependent 
systems. If the supply of any of those services stops or is significantly 
reduced, the established systems will fail or drop at a low level of 
performance. There are different kinds of disruptions and threats to critical 
infrastructure, including the transport system, which may require various 
analysis tools and courses of action for anticipation, prevention, mitigation, 
and restoration; these threats could be internal or external. 

The internal threats may be caused by mistakes and accidents caused by 
users or staff, technical failures, malfunctioning components, faulty 
constructions, overloading, etc. However, external threats associated with 
natural phenomena include numerous degrees of adverse climate and 
natural disasters, such as: heavy rains, snowfalls, thunderstorms, 
hurricanes, tornadoes, floods, wildfires, landslides, tsunamis, volcanic 
eruptions, earthquakes, etc. In the external threats, we include also artificial 
actions, such as terrorist attacks.  

Transport network disruptions have a wide range of impacts. Accidents, 
infrastructure failures and terrorist strikes all have the potential to result in 
injuries and deaths, either directly or indirectly. Many ordinary interruptions 
have less severe consequences: a road may be closed, trains may be forced 
to stop, or flights may be canceled for a period of time. Passengers' travel 
periods and goods delivery times will be delayed due to such incidents, and 
some trips will be canceled. These interruptions will have social and direct 
economic consequences. The expenses of getting the transportation system 
reworking and running and repairing or replacing the infrastructure might be 
significant. 



Vulnerability in its different forms is the key concept we use to analyze the 
network structure. Water distribution systems, transportation systems, the 
internet, and engineering design provide examples of vulnerability 
representation and analysis methods. 

Measures of vulnerability are estimated as loss of connectivity and efficiency 
concerning the two different types of disruptive events considered. It permits 
to prove potential vulnerabilities of the urban networks that should be 
considered to help the arranging system produce resilient structures. 
(Candelieri, Galuzzi, Giordani, & Archetti, 2019) 

Our work focuses on one specific critical infrastructure system – the transport 
system. Since a reliable and robust transportation system is very important 
from an economic and welfare perspective, a lot of studies have been done 
to figure out what causes its vulnerability, how to make it more robust and 
resilient, and how to mitigate the consequences of disturbances and 
disruptions.  

This chapter provides network analysis functionalities for vulnerability, 
resilience, and robustness assessment in public transportation networks 
regarding disruptive events. The establishment of urban networks with 
strong connection and interdependence between its components is one of 
the main scopes of urban transportation planning. 

 

 

 

 

 

 

 

 

 



3.1 Network Vulnerability  
 

The idea of vulnerability in a complex network is used to quantify the 
network's security and stability when it is subjected to various types of 
failures. The higher the impact of unexpected losses on network 
performance, the lower the system's resilience and the higher the risk. The 
concept of risk is represented by a risk curve Fig 3.1, which shows the 
distinction between transport unreliability (the upper left section of the risk 
curve) and vulnerability (the lower right section of the risk curve). 
In risk analysis, reliability is used to indicate a device's ability to function 
under specified conditions for the duration of time intended. In the 
transportation literature, reliability refers to stability, certainty, and 
predictability. In every case, vulnerability refers to rare events and significant 
adverse effects, and it describes a network's weakness. 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1 . Risk curve showing the cumulative probability of risk scenarios with consequences greater than or equal to x. 

 
 

To measure the vulnerability of a complex network, many methodologies 
have been proposed. The vulnerability of complex transportation systems 
can be linked to their sensitivity to interruptions, resulting in a significant drop 
in network serviceability. One of the most referenced and typical definitions 
of vulnerability in a road transportation system is found in (Berdica, 2002): 
"Vulnerability in the road transportation system is a susceptibility to incidents 
that can result in considerable reductions in road network serviceability." This 
definition may be generalized to different modes of transportation and 



emphasizes an initial disruptive incident, that the transportation system's 
essential function is harmed, and that its consequences are severe. The 
topological approach is necessary for dealing with transport network 
vulnerability analysis. An entire transportation network is represented in this 
method as an abstract graph, with nodes and links that correspond to real-
world equivalents. The used graph can be directed or undirected and 
unweighted or weighted according to the application in mind.  
Network efficiency (E) and vulnerability are two related concepts, and when 
nodes/links are removed are frequently measured as a change in essential 
metrics. In (Latora & Marchiori, 2001)) the network efficiency is defined as 

𝐸 =
1

𝑛(𝑛 − 1)

1

𝑑
∈ ,

 

 

where dij represents the distance between nodes i and j. Normalization by 
n(n−1) ensures that E ≤ 1, When the graph is complete, the maximum 
value E=1 is achieved. Graphs representing real-world networks, on the 
other hand, can have large E values. A significant vulnerability of a network 
will correspond to a significant decrease of E, in case of the removal of a 
node or some nodes. 
The second efficiency indicator is the relative size of the most significant 
component (S) that considers the greatest connected component's size 
 

𝑆 =
𝑁

𝑁
 

 
N and N1 are the numbers of nodes of the network and its largest 
component, respectively. As we will see, a vulnerable network will 
correspond to a significant decrease of S in case of the removal of a node or 
some nodes. 
 
Another index used to assess vulnerability of a network is operational 
efficiency. First, we define the operational efficiency from vi to vj as the 
average passenger volume along edges on shortest path from vi to vj: 
 



φij(𝛥𝑡) =
𝛴ωe(𝛥𝑡)

𝑑𝑗𝑖
 

 
where Σωe(Δt) is sum of passenger volume along edges on shortest path 

from vi to vj during a specified time period; dij is shortest distance from vi to 
vj. The smaller the distance between two vertices, the larger the passenger 
flow is, the higher the operational efficiency from vi to vj is. 
The average value of all two vertices' operational efficiencies in G, it is 
defined as, 

𝑂𝐸 (𝛥𝑡) =  
1

𝑁(𝑁 − 1)
φij(𝛥𝑡)

, , ,…

 

 
where 𝑂𝐸 (𝛥𝑡) is operational efficiency of G during a specified period.  
Based on the physical topology of the transportation network, the operational 
efficiency varies over time with passenger flows. 
The vulnerability of a network can be measured as the decrease of 
operational efficiency after the failure of a vertex or an edge. It can be 
measured as follows: 
 

Γi(ij)(Δt) = OEG(Δt) − OEG(i/ij) (Δt) 
 

Γ(Δt)  = 1/𝑀 Γi (ij)(Δt) 

, , ,…

 

 

𝑇𝑉 (𝛥𝑡) =
1

𝑛
𝛤 ( , )(𝛥𝑡)−𝛤(𝛥𝑡)

, ..

 

 
 
where TVG(Δt) is the vulnerability of G during a specified time; Γi(ij)(Δt) is the 
change of operational efficiency when vi or eij fails; OEG(Δt) is normal 
operational efficiency during a specified time period; OEG(i/ij)(Δt) is 
operational efficiency when vi or eij fails; n is the number of vertices or edges; 



M is number of edges/links . If TVG(Δt) is large, the degree of failure of 
vertices and edges on operational efficiency will be greater. A failure of some 
vertex or edge will lead to a significant drop in operational efficiency, resulting 
in higher vulnerability and risk.  Consequently, the smaller the 𝑇𝑉 (𝛥𝑡) is, the 
smaller the level of failures on the operational efficiency of its vertices and 
edges, which translates into lower vulnerability and reduced risk. (Xiao, Jia, 
& Wang, 2018) 
 
 

3.1.1 Vulnerability Analysis Using the Degree Distribution 

Node degree is the number of links connected to a network node. Node 
degree distribution is an effective measure of network vulnerability based on 
the assumption that nodes with higher degrees are more important than 
those with lower degrees. In a robust degree distribution, removing a small 
portion of nodes at random will not affect the network's functionality and 
stability. Based on the distribution of node degrees, networks can be 
categorized into two types: 
 

o Random networks (or homogeneous networks) in which each node 
has approximately the same number of links. 

o Scale free networks (or inhomogeneous networks) in which the 
probability of a node having k links P(k) follows a power law. The 
degree distribution that follows the power-law is a useful property to 
analyze the vulnerability of a network. It means the fraction 𝑃(𝑘) of 
nodes in the network with a degree d goes from large to low values of 
d as  

𝑃(𝑘) ≈ 𝑘 𝜀 
 
Where 𝜀 is a parameter with a value that is usually in the range 2 < 𝜀 < 3. 
Many complex networks have been observed to be scale-free.  
 
In a network, the highly connected nodes serve as "hubs" that maintain the 
network's topology and function. Hubs are the main characteristic that 
emerges in the scale-free and are essential in deciding the network's 



vulnerability. Scale-free networks have the obvious characteristic of being 
resilient to random node removal, meaning that random attacks on them will 
not hinder a network's ability to function. Hence, networks work in a stable 
state. Despite this, scale-free networks are vulnerable to attacks targeting 
hubs that may result in catastrophic results for the entire network. 
(Candelieri, Galuzzi, Giordani, & Archetti, 2019). 

 

3.1.2 Vulnerability analysis based on centrality measures 
 
 
The betweenness centrality measures the centrality and importance of a 
node in a network. When the shortest path between all network nodes is 
computed, betweenness centrality is computed as the number of shortest 
paths that traverse each node. Each node along the shortest paths gets an 
equal share of betweenness centrality if more than one shortest path 
connects one pair of nodes. The indicator can be described as follows. 
 

𝐶 =
𝑛 𝑙̇

𝑛
 

 
 
Where: 

𝐶 = Betweenness Centrality for node 𝑖 

𝑛 𝑙̇  = the number of shortest paths between node 𝑗 and 𝑔 that passes 

through node 𝑖 
𝑛  = the total number of shortest paths between node 𝑗 and 𝑔 

 
There is a correlation between the number of shortest paths that travel 
through a node and the importance of the node's performance to a network 
and its location within a network. The larger the number of shortest paths 
that go through a node, the more important and central the node is in the 
network. 



Betweenness centrality can also be defined for edges. In the same way as 
for nodes, it is calculated and used to find the most central edges. 
Betweenness centrality can also be represented by normalized betweenness 
centrality. It is calculated by dividing each node’s betweenness centrality with 
the network’s total betweenness centrality. As a result, each node gets a 
betweenness value between 0 and 1, corresponding to the percentage 
centrality of the whole betweenness network. This means that it is easier to 
compare the network centrality among different networks with this way of 
representing the indicator. 
 
The vulnerability of the network can be measured by means of the 
betweenness centrality as 

𝑉 , (𝐺) =
1

𝑛
𝐵(𝑖)

∈

 

In theory, these p-functions reflect the idea that the distribution of the minimal 
paths between nodes affects the vulnerability of a network. In this case, the 
higher 𝑉 ,  is, the lower its robustness. (Candelieri, Galuzzi, Giordani, & 

Archetti, 2019) 

 

 

 

 

 

 

 

 

 

 

 

 

 



3.2 Resilience of Networks 

 

Natural and human-caused disruptions, delays, and risks are potential 
threats to urban transportation networks. To mitigate the effects of 
disruptions, the concept of resilience has been implemented into urban 
transportation networks. We are curious about the idea of resilience in 
transportation systems due to increased exposure to extreme events in our 
cities, such as heavy traffic jams and natural disasters.   
Resilience, from its Latin root "Resilire", means the capability of a system to 
resist, rebound or spring back in response to endogenous events (e.g., 
component failures) or exogenous (Natural or man-made) attacks.  
 
Since there are many definitions of resilience in transportation systems, we 
report some of them: 
It's defined as "The ability for a transportation network to absorb disruptive 
events gracefully and return itself to a level of service equal to or greater 
than the pre-disruption level of service within a reasonable time frame" 

(Freckleton, Heaslip, Louisell, & Collura, 2012). 
Also, "The concept of resilience is intended to capture a system's capacity 
to maintain its function after a major disruption or disaster" (Mattsson & 
Jenelius, 2015). 
 
Resilience is defined as "The ability of a transportation system to absorb 
disturbances, maintain its basic structure and function, and recover to a 
required level of service within an acceptable time and costs after being 
affected by disruptions" (Wan, Yang, Zhang, Yan, & Fan, 2018).                                         
Transportation systems are resilient not only because they avoid a complete 
or partial system failure in the case of disruption but also because they can 
adapt, limit their impact, or avoid whole or partial system collapse if 
necessary. 
 
 
 
 



Resilience of urban transportation systems is defined as “the ability of a system 
to resist, reduce and absorb the impacts of a disturbance (shock, interruption, or 
disaster), maintaining an acceptable level of service (static resilience), and 
restoring the regular and balanced operation within a reasonable period and cost 
(dynamic resilience). (Gonçalves, L. A. P. J. & Ribeiro, 2020) 

 
Based on our analysis of the conceptual definition of the resilience of 
transportation systems, the following four main actions are identified: resist, 
recover, absorb, and transform. 
 
Some studies divided resilience into two categories: static and dynamic. In 
transportation systems, static resilience is related to its robustness to 
maintain the system operating after a shock or hazard occurs without 
immediate system infrastructure restoration. In turn, dynamic resilience aims 
to re-establish the initial level of performance and operation as quickly as 
possible after the occurrence of a disaster. This is similar to concept of 
resilience, which refers to how fast the system returns towards equilibrium 
after a shock (Pimm’s 1984). (Reggiani, Nijkamp, & Lanzi, 2015) further 
analyze the relationship between resilience, vulnerability, and connectivity 
by analyzing how they are framed, interpreted, and measured.  
These principles suit properly into Fig 3.2, which illustrates the 
consequences of decision-making on infrastructure resilience (McDaniels, 
Chang, Cole, Mikawoz, & Longstaff, 2008). 
 



 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.2 Effects of decision-making on resilience 

 

The conditional vulnerability was added to the figure. It can be seen as the 
aggregate consequences of a disruption scenario represented by the area 
between the dotted line in the figure corresponding to the whole system 
function and the relevant curve representing the reduced level of function. 
The latter curves rely typically on actions of ex-ante mitigation or ex-post 
adaptation. 
 
The purpose of studying resilience is to determine methods for measuring 
transportation resilience, to determine what degree of system resilience can 
be achieved under various disruptions, and to identify critical areas (sections 
or intersections) from which countermeasures to mitigate consequences can 
be created, both in a static and/or dynamic framework. (Mattsson & Jenelius, 
2015). 
 
 
 
 
 
 
 
 
 
 

Conditional 
vulnerabilit
y 



3.2.1 Main characteristics of the resilience of urban 
transportation systems: 

 

There are mainly eight characteristics to assess the resilience of 
transportation systems, such as redundancy, adaptation, efficiency, 
robustness, interdependence, preparedness, flexibility, and rapidity. 
However, some characteristics are more related to the operability of the 
transportation system, such as interdependence, efficiency, and flexibility. In 
addition, some have a high level of overlap with other characteristics more 
used and consolidated in studies on resilience, such as robustness with 
efficiency and redundancy with flexibility, which may not be considered the 
main characteristics of the resilience of transportation systems. 
 

 

i. Redundancy: is the ability of some components of a system 
to perform the functions of failing components without 
affecting their performance. 

ii. Adaptation: refers to a system's ability to adapt to new 
demands in a flexible manner. 

iii. Efficiency: is the capacity to support disturbances while 
maintaining a level of service and connection in 
transportation networks, and it is the positive connection 
between the service supplied by a static system and the 
service offered by a dynamic system.  

iv. Robustness:  A system is robust if it is able to support a 
certain level of stress or demand without deteriorating or 
losing its functionality. 

v. Interdependence: this term refers to the interconnection of 
system's components or aspects, as well as the system's 
network of interactions. 

vi. Preparedness: refers to "preparing specific steps before 
discontinuance" and strengthening a system's resilience by 
lowering the impact of possible negative consequences of 
disruptive events. 



vii. Flexibility: is known as the ability to reorganize resources in 
the face of uncertainty. Also, is a system's ability to adapt 
shocks and adjust to changes following disruptions through 
contingency planning. 

viii. Rapidity: is the ability to fulfill priorities and meet goals in a 
timely way in order to limit losses and prevent future 
interruptions. 
 

 
 
The oldest and most commonly utilized method in transportation system 
resilience research is redundancy. According to a review of works and 
definitions on transportation system resilience, efficiency and adaptability are 
strongly linked to other resilience characteristics. On the other hand, 
interdependency is intrinsically linked to the connection and dependence 
aspects of a transportation system's performance. 
 
In evaluating the resilience of transportation networks, the efficiency, 
interconnectedness, and preparation are characteristics still under 
exploration. Efficiency is applied across different dimensions of 
transportation systems and, more specifically, in freight, railway, and road 
transportation. Furthermore, it should be used to measure the performance 
of a transportation system and for that reason must not be considered as a 
main characteristic of resilience and we can consider that efficiency is 
already accomplished in the evaluation of robustness. On the other hand, 
interdependence is mainly applied in studies about connectivity between 
different modes of transportation in railways, roads and freight transportation 
systems. Finally, preparedness is transversally associated with almost all 
transportation infrastructures, freight transportation systems, road 
transportation systems, railway transportation systems and more broadly in 
the entire urban transportation system. A transportation system can always 
be seen as an interconnected system of other transportation subsystems, 
especially in a multimodal urban context. Thus, interdependency should not 
be considered a primary characteristic of resilience. 
 



Therefore, we can conclude that there are five main characteristics of the 
resilience of transportation systems: i) redundancy, ii) adaptation, iii) 
robustness, iv) preparedness, and v) rapidity. 
 
Based on the following explanation, Fig. 3.3 describe the relationship 
between the main characteristics and main actions of a transportation 
system's resilience as follows:  
-If a system is robust and prepared, then it can resist most of the 
disturbances. 
-If a system is robust, prepared and with recovering capacity within an 
acceptable time, it can recover more easily and rapidly to the disturbances. 
-If a system is redundant with its subsystems, it can absorb most of the 
disturbances and impacts. 
-If a system cannot recover to the initial stage of operation, it can adapt and 
transform to a different stage of equilibrium and operation. 
 

 

 

 

 

 

 

 

 

Figure 3.3 The relation between the main characteristics and main actions of the resilience of a transportation system 

 

Transportation resilience system is assessed in terms of its infrastructure/ 
network and its level of operation and usage. However, it could be observed 
that there is a minimal number of studies on resilience that simultaneously 
incorporate both the infrastructure and the operation of the transportation 
system. 
 



3.2.2 The main variables to assist performance of the resilience: 
 

 
Currently, the resilience of transportation systems, mainly roads, is assessed 
in a similar way to the performance analysis commonly used in current 
mobility studies, i.e., by measuring variables related to supply and demand 
mismatches, such as delays, travel speed, and traffic flows vs. capacity, 
among others. Furthermore, many resilience indicators connected to the five 
key resilience features were presented based on the reviewed studies.  
Resilience Indicators are created through the combination of the variables 
that characterize the system and the performance assessment is most often 
used in studies on resilience in transport. 
 
 
 
 

I. Variables contributed to resilience studies: 
 

- Travel distance, time, paths, and volume. 
- Traffic volumes. 
- Geographic location of the elements of the network. 
- Capacity of the elements that make up the network 
- Bus, Train and Terminal lines 
- Number of intermodal stations, the elements that make up the network 
- Network size 
- Alternative proximity infrastructures 
- Number of transportation modes 
- Population size and density 
- Level of initial damage 
- Volatility of traffic flow 
- Free flow traffic speed 
- Average speed. 
- Speed of traffic with the network load. 
 
 



II. Transportation resilience indicators 
 

Indicators are commonly used tools to illustrate the determinant properties 
of the study object and thus are essential instruments for decision making. 
Based on the literature review results, it was sought to identify the significant 
resilience indicators in transportation and how these could be treated to 
support mobility planning. Regarding infrastructure, resilience is determined 
considering network connectivity. 

- Multiple routes (travel characteristics - origin – destination) 

- Extra infrastructure (links/ nodes) capacity 

- Diversity in transportation modes (ground vs. underground, walking/biking 
vs. motorized transportation, etc.) 

- Population data historic/ variation (number of inhabitants, population          
density, etc.) 

- Critical traffic data (flow, capacity, and speed… etc.) 

- System performance to disruptions. 
 
According to the literature, resilience analyses of urban transportation 
systems focus on post-disaster analysis, more specifically after natural 
disasters such as earthquakes and hurricanes. 
The resilience of an urban transportation system mainly applies to: (i) 
transportation infrastructure, where the structural resilience of infrastructures 
is analyzed; (ii) operation/use of the transportation system, where the 
functional performance of the systems and their risks are assessed against 
a disturbance (interruption, shock, perturbation, disaster). However, studies 
that incorporate and link the structural and functional aspects of the 
transportation system are still very limited.  
Resiliency analyses in the specific area of road transportation systems have 
attracted much attention, and the relationship between supply and demand 
(traffic flow) was the main analytical variable used to evaluate resilience. 
Finally, the resilience of transportation systems has also been studied on a 
wider scale, such as an urban system, integrating various surface transport 
systems such as roads and railways, and these studies are used mainly to 



assess: (i) the infrastructure resilience and (ii) the system resilience. 
(Gonçalves, L. A. P. J. & Ribeiro, 2020) 
 

 

3.2.3 Methods adopted to measure and/or to improve the 
resilience of urban transportation systems 

 

To measure and/or enhance the resilience of transportation networks, there 
are eight main approaches and available strategies. 
Identifying methods to measure and/or improve a transportation system's 
resilience is one of the main challenges and, at the same time, an enigma 
due to a large number of methods and techniques that have been used for 
this purpose, ranging from mathematical models to conceptual frameworks, 
as described below: 
 
• Conceptual framework: a conceptual matrix that serves as the foundation 
for constructing a logical framework for completing any job and organizing 
concepts, tasks, and execution stages. This approach is mostly used to 
identify an issue and methodology before moving on to other strategies to 
quantify the outcomes. 
 
• System Dynamics: a methodological approach to studying complex 
systems' behavior throughout time. This method is mostly used in 
transportation systems to evaluate traffic flow disruptions and infrastructure. 
 
• Stochastic processes: This is a collection of random variables that depict 
the evolution of a set of values through time. This approach is mainly used 
to characterize the transportation system's behavior. 
• Simulation: is used to study the performance of a system under different 
scenarios through a calibration and validation process. It is a handy tool to 
describe and predict system behavior to evaluate the resilience of a 
transportation system to the hypothetical consequences of different testing 
scenarios. 



 
• Optimization processes: procedures for selecting the optimal answer from 
among all possible solutions based on a given objective function depending 
on whether the variables are continuous or discrete. This method is primarily 
used to assess the impact of interruptions on transportation network 
performance. 
 
• Monte Carlo Method: a statistical strategy for approximating actual findings 
that rely on many random samples. It is a strategy for evaluating the 
performance of transportation systems using hypothetical scenarios and 
methodology validation. 
 
• Fuzzy theory: The logical values of the variables can be any actual integer 
between 0 (FALSE) and 1 (TRUE) in this type of multivariate logic (TRUE). 
Fuzzy logic has been expanded to include the idea of partial truth, in which 
the truth value might range from totally true to completely false. Its primary 
purpose is to assess potentially robust circumstances. 
 
• Network Science is a network technique to construct predictive models that 
represent physical, biological, and social events. Graph theory is a network 
science technique that has lately been applied in various publications. 
Models for assessing and/or enhancing resilience, like other assessment 
procedures, can be qualitative or quantitative and include conceptual 
frameworks, simulation models, and mathematical models. As a result, most 
of the literature determines resilience using sophisticated mathematical 
models of theoretical character, which are difficult to use in practical ways. 
As a result, simply using formulas to represent resilience was not always 
sufficient, especially in real-life settings. Because it is difficult for 
transportation authorities and related entities to understand and implement 
resilience assessment, they are unlikely to be interested in developing more 
integrated and complex models to measure and assess resilience 
improvement (Wan et al., 2017). Therefore, there are few studies using 
models and decision support tools that are easy and friendly to understand 
and use. 
 



In brief, analyzing the resilience of urban transportation systems while 
including infrastructures, network operation, and simulation approaches can 
lead to the development and construction of user-friendly and 
practical/technical instruments, which represents a future avenue of 
resilience research. The use of simulation techniques would allow for a 
predictive assessment of resilience for all transportation systems, identifying 
the most impacted components, warning organizations to intervene in crucial 
zones, and other analyses deemed necessary by government officials. 
 
Finally, Fig 3.4 present the interconnectedness of the various concepts, 
definitions, characteristics, and methods used to measure and improve 
resilience, which must be a supporting structure of a process for developing 
new methodologies for evaluating the resilience, i.e., the operability and use, 
of transportation systems against potential disruptions. 
 

 
 

 

Figure 3.4 The relation between the various concepts of the resilience of urban transportation systems 



3.3 Robustness of Networks 

 
The robustness of the network refers to the ability to absorb shocks with 
minimum influence on system performance. Minor disruptions in a 
component's performance do not significantly impact the overall system 
performance; hence, a system can be called resilient in terms of disruptions 
on that component. The fundamental goal of a robustness study is to develop 
reliability indicators that can be utilized in a variety of domains and can 
measure changes in network performance throughout the whole range of 
conceivable capacity decreases. By generating performance curves, two 
robustness indicators are conceptualized and articulated to assess the 
absolute change and the initial moment of network performance degradation 
as a function of link capacity decreases. 
The analysis of these indicators allows identifying the extent and the relation 
between capacity reduction and performance reductions and thus support 
infrastructure management and capacity allocation. 
Most relevant studies on public transportation system safety evaluation 
concentrates on system-level analysis. Nevertheless, little research has 
been done on the relationship between capacity reduction and safety. It is 
crucial to assess the influence of various capacity reduction scenarios on the 
public transportation system’s resilience, not just for efficiency reasons but 
also for reliability and safety concerns. 
Most research in the urban transportation system focuses on big cities' 
subway systems. However, data reveal that until March 2019, just 212 urban 
areas in the world had subway systems, and only a few of these cities 
depended heavily on subways for public transportation. On the other hand, 
buses are more commonly employed in urban public transportation around 
the world. In modern cities, the stability and robustness of the transit bus 
network are critical. Natural catastrophes, road construction, accidents, 
traffic congestion, and even terrorist acts may represent a threat to this 
network. Threats to the robustness of a network can be categorized into 
random failures and intentional attacks.  
 



The scale-free networks are robust under random failures, but they are 
vulnerable to intentional attack. The robustness of bus networks has been 
examined primarily with two approaches. The first approach examines a 
specific type of attack on selected nodes in a bus network, and the second 
approach probes different types of attacks and their distinct threats to the 
network robustness. 
 

 

3.3.1 Robustness measures 

 

G (N, E) is commonly characterized as an undirected network in urban bus 
network research. The direction of bus routes, particularly in densely 
populated areas with many one-way streets and tidal traffic flows, has a 
considerable impact on the strength of the urban bus network. As a result, 
the UBN is modeled as a directed network, with one undirected edge divided 
into two directed edges in this research. The degree distribution of an urban 
bus network, at least asymptotically, follows a power law distribution. The 
weighted degree of node i (ki) is the sum of weights of all directly connected 
edges. 

𝑘 ̇ = 𝑤

∈

 

 

where j is the node directly connected to 𝑖, 𝑤  is the number of lines 

operating between 𝑖 and 𝑗. For a directed network, the degree of a node is 
defined by the number of different nodes that are directly linked to the given 
one as in-degree, and vice versa as out-degree, the cumulative degree 
probability distribution of urban bus network in space L. 

Graphs are used to evaluate the network robustness, the vertical axis 
represents cumulative probability, whereas the horizontal axis represents 
weighted degree. 

 



A power law distribution is used to explain the probability of node degree in 
a scale-free network: 

𝑃(𝑘) = 𝛼 ∗ 𝜅 𝜀 

 

where the exponent 𝜀 is the scaling factor. A larger 𝜀 indicates that the hubs 
of the network are more visible. α is multiplying coefficient. 

The complex network theory and attack simulation method are applied to 
reveal the determinants of urban bus network robustness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 Chapter 4 
 

Scale Free Modelling 
 

  

A common feature of real world networks is the presence of hubs, or a few 
nodes that are highly connected to other nodes in the network. The presence 
of hubs will give the degree distribution a long tail, indicating the presence of 
nodes with a much higher degree than most other nodes. 
 
Scale-free networks are a type of network characterized by the presence of 
large hubs. A scale-free network is one with a power-law degree distribution.  
Networks with power-law distributions are called scale-free because power 
laws have the same functional form at all scales. 
 

The network technique is helpful not just for reducing and analyzing large 
amounts of data, but also for identifying the most important elements and 
their interactions. In addition, various methodologies have been developed 
to investigate the underlying topological features of a network, such as 
community structure (Li, Zhang, Di, & Fan, 2008) “Community structure of 
complex networks”, the core-periphery structure, small-world and scale-free 
properties. 
 

In this chapter, by adopting the network approach, we analyze and model 
the bus public transportation systems of 3 Italian cities located in northern 
Italy in Lombardia region from how close they have the scale free feature. 
These cities have been chosen as representatives of medium sized cities in 
terms of population. 
 
The structure and properties of such a transportation system have 
substantial implications for urban planning for sustainable development.  
 
The transportation network was modeled as a complex network with exact 
geographical coordinates of its bus stops. Therefore, this study analyzes the 
structure of the public transportation system through the theory of complex 
networks in a static approach of network topology.  



 
Previous studies often used undirected networks, one novelty here is to 
consider directed edges. Our analysis was based on the capacities of the 
public transport in order to get a detailed picture about the existing public 
transport networks. 
 
Graph theory was used to describe a PTN using a topological approach. A 
multi-graph representation of a PTN represents multiple lines/routes 
between two stations/stops, and specific attributes/labels are applied to 
distinguish two or more edges between two nodes. The advantage of this 
approach is that it does not require a large amount of data to build the graph 
associated with a PTN infrastructure. However, it can nevertheless provide 
valuable information about the vulnerability of the transport network. 
 
Therefore, to perform a comprehensive network analysis of the public 
transportation systems of these cities, the first step was to generate the 
transportation networks (The represented graphs). This was done by 
modelling stations/stops as nodes and lines that connect them as directed 
links in MATLAB program. If a line runs between two stops in both directions, 
as is usually the case, we can decompose the link that represents this line 
into two directed links due to the orientation. 
 

 
 

 

 

 

 

 

 

 

 

 

 

 
 



4.1 Data  

Typical network data describe one or two sets of nodes and the relations 
between them, respectively between the nodes. The adjacency matrix is the 
square matrix of order n equal to the number of nodes, whose elements 
equal to 1 if there is an edge between the two given nodes, 0 otherwise.  

The dataset (Lines numbers and stops) for Lecco, Como and Varese bus 
transport network is measured from bus lines companies that service on 
these cities; “Leccolinee”, “ASF Autolinee” and “Autolinee Varesine srl”, 
respectively.  

 

 

 

 

 

 
 
 
 
 
 
 

Figure 4.1 Adjacency matrix 



In this section, we describe the three public transportation networks of the 
Lombardia region northern Italy, analyzed in this paper. Besides, the three 
PTNs are modelled through a directed graph, because more than one 
route/line may connect two stops. The first PTN considered is the public bus 
transportation in Lecco Fig 4.2. This touristic city is one of the interesting 
cities in north Italy, with a population of about 48,131 inhabitants and it lies 
at the end of the south-eastern branch of Lake Como. 
 

 

Figure 4.2 Lecco City 
 
 
The public bus transportation system is done by a single operator, named 
“LeccoLinee”, and consists of about 20 bus lines (Both direction). Figures 4.3 
and 4.4 show the corresponding graph and Map lines, consisting of 233 
nodes/stops and 694 edges/links. 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.3 Lecco graph 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.4 Lecco Bus Lines 



The second PTN considered is bigger than the first one and consists of the 
public bus transportation in Como with 84,808 people living in the city. It is 
located on the southern end of the western branch of Lake Como , in a small 
basin surrounded by wooded moraine hills in the center of the Lombardy of 
lakes. The city contains Lake Como, Alps  and the city contains numerous 
works of art, churches, gardens, museums, theatres, parks, and palaces, 
and so it is a tourist destination. 

Buses in Como are sevice by “ASF Lines” with 20 bus lines (Both direction) 
that cover 237 bus stops and 942 edges/links in the city as illustrate in Fig 
4.5. 

 

 

 

 

 

 

 

 

Figure 4.5 Como graph 

 

 

 

 

 

 

 

 

 

Figure 4.6 Como Bus Lines 



Varese is the biggest analyzed city among the three ones, in terms of size 
with 54km2 and 80,559 inhabitants. It lies among the Alpine foothills 
descending to the Lake Varese. The public bus transportation system is 
operated by “Autolinee Varesine,” which service 19 bus lines (Both 
direction). Figure 4.7 shows the corresponding Map lines, consisting of 215 
nodes and 804 edges. 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 Varese graph 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 Varese Bus Lines 



4.2 Model  
 

Degree distribution of a transit stop assumed a central role and appeared in 
almost every study investigating the topology of public transport networks 
(Shanmukhappa et al, 2019). For a directed network, the total degree k of a 
node is the total number of incoming edges and outgoing edges incident at 
the node. The degree distribution provides the probability of a node having 
a degree k, mathematically expressed as P(k) = N/sum(N), where sum(N) is 
the total number of nodes in the network and the N is the number of nodes 
having a total degree k. The plotting of P(k) versus k for nodes in the 
topological bus network exhibits a strong power law. 
 

In practice, the methods and techniques we used are carried out by computer 
programs [MATLAB]. Thus, it is important not only to have a convenient way 
to theoretically represent a network (the network structure) but a way to store 
data so that it can be easily accessed and utilized by computer programs. 

 

The dataset collected manually from the bus lines companies is used for the 
generation of the directed, unweighted graph for the bus transport networks 
[BTN] in the three cities. The graph has n nodes, where each node 
represents a bus stop, and e edges which are connected in Space-L (there 
exists a link between two nodes if there is a bus route connecting them 
directly).  

 

Degree distribution corresponds to the probability of finding a node with 
degree k or the probability distribution of node degrees over the complete 
network. [Barabasi et al.] showed that if the degree distribution of a network 
follows power law distribution, then the network is scale free. The power law 
distribution is defined as  

𝑃(𝑘) = 𝛼 ∗ 𝜅 𝜀 

 



The analysis is oriented towards the study of the scale-free property. Figures 
below show a linear scale plot, where the x and y axes represent the degree 
and cumulative probability density, respectively. 
For a digraph, the in-degree is defined as the total number of links in-going 
to a particular node and the out-degree is defined as the total number of links 
out-going to the node. Hence, the total degree of a node is total links = “in-
going + out-going”. By measuring the directed in and out degrees of the 
network, it is found that every node is typically 2-connected in the cites BTN.  

 

The scale-free behavior of some networks, as defined by [Barabási and 
Albert], is one of the most significant contributions to the field. Consider a 
graph 𝐺 = {𝑉, 𝐸}; it has a scale-free pattern if the probability density function 
f that a vertex v has b connections (number of edges linked to vertex) or 
number of lines 𝑙 passing through a vertex v follows a power law: 
 

𝑓(𝑏) = 𝛼𝑏     
𝑓(𝑙) = 𝛼 𝑙  

 
When randomly sampling vertices, the distribution of links and lines are 
found to follow a power law. The exponent 𝜀 is called the scaling factor. If 
we take all bus stops v of a network and identify those that host one or many 
lines and if the frequency plot decays following a power law, then it is a scale-
free network. This translates into having many stops hosting only one line 
and few stops hosting more than one line.  
 
The statistical significance of the goodness-of-fit (adjusted 𝑅 ), the t-test and 
the p-test values are examined. We decided to perform a test to validate 
whether the fitted models followed power law distributions. Essentially, we 
applied 𝑅 -test that is particularly suited to examine frequency distributions 
as it is the case under consideration. This test is defined as: 
 

𝑅 =
(𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 − 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 )

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑
 

 
 



where `Expected' is calculated using hypothesized model, and `Observed' is 
the data points collected; here, actual values are used, not the log-form. 
 
Goodness-of-fit tests are statistical methods commonly used to interpret 
observed values. The goodness-of-fit test is used to measure how closely 
observed data follows expectations. Using goodness-of-fit tests to predict 
future trends and patterns, we can determine how closely actual values 
match those predicted by a model. The Chi-square test is the best goodness 
of-fit test for discrete distributions, which is typically used. 
 
There are different types of goodness-of-fit tests, as noted above. They 
include the chi-square test, which is the most common, the Kolmogorov 
Smirnov test, and the Shipiro-Wilk test. These tests are usually conducted 
using computer software. However, statisticians can calculate these tests 
using formulas tailored to the particular test. 
 
The Chi-square test determines whether categorical variables are related 
and if the sample represents the entire group. It measures the degree to 
which the observed data matches the expected data or how well the two fit 
together. Observed values are measured, and the frequency is used with 
expected values and the degrees of freedom to calculate chi-square. 
(Barceló, 2018) 
 
T-values measure the difference between your sample data and the variation 
in the data. Alternatively, T is the measured difference, expressed in units of 
standard error. A larger T indicates stronger evidence against the null 
hypothesis. This indicates that there is a significant difference. If T is close 
to 0, it is more likely that there isn't a significant difference. 
 
 
Given an observed data set and a power-law distribution model from which 
the data are drawn, we would like to know whether our network is a plausible 
one to the model. After constructing the networks and identify the ingoing, 
outgoing, total links and the total lines crossing the nodes as the degree input 
for analyzing and checking how much our model is identical to the scale free 
model. Table 1 shows the results (scaling factor “ε”, multiplier coefficient “α”, 
the distance between the points in the graph “RMSE” and the 𝑅 -test) of all 
bus transport lines. 
 



To begin with Lecco Network the graphs follow the scale free model from the 
entering links, exiting and total lines degree-distribution regarding the 
adjusted 𝑅  value is >0.85, the power-law exponent ε is between 2-3 and the 
multiplier coefficient between 0.76 and 1. 
 
 
In addition, in Como Network modeling graphs, 𝑅  values are approximately 
the same for the entering links and total lines degree-distribution by 0.6 while 
0.31 for the exiting links. The power-law exponent ε are 1.96, 1.5 and 0.99 
respectively. the multiplier coefficient value between 0.4 and 0.55.  
 
Furthermore, in Varese Network graphs analysis, the entering links and 
exiting degree-distribution have a typical 𝑅 , ε and the multiplier coefficient 
values 0.68, 2.6 and 0.75 respectively. At the same the total lines degree 
distribution values are 0.78, 1.8 and 0.4. Furthermore, fig.4.9 shows the 
nodes (bus stops) that have the highest crossing lines. 
 
 
By observing the three networks from the total links degree distribution 
perspective, we can say they are not following the scale-free features 
because the 𝑅  value and multiplier coefficient are less than 0.1, although 
the multiple factors are less than 0.75.  
 
 



 

Figure 4.9 Nodes with high bus lines 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 1 Modeling results 

 

 

 

Modeling Networks Results 



Varese Network 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11 Varese - Ingoing links degree 

Figure 4.10 Varese -Total lines degree 



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12 Varese-Outgoing links degree 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13 Varese - lines degree 

 

 



Como Network 

 

 

 
 
 
 
 
 

 

Figure 4.14 Como - Total lines degree 
 
 
 
 
 
 
 

 

Figure 4.15 Como - Ingoing links degree 



 
 
 
 
 
 
 
 

 

Figure 4.16 Como - Outgoing links degree 

 

 
 
 
 
 
 
 

 

Figure 4.17 Como - Total links degree 

 

 



 

Lecco Network 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.19 Lecco- Ingoing links degree 

Figure 4.18 Lecco - Lines degree 



 

 

 

 

 

 

 

 

 

 
Figure 4.20 Lecco- Outgoing links degree 

 
 
 
 
 
 
 
 
 
 

Figure 4.21 Lecco - Total links degree 
 



5 Chapter 5  
Networks Analysis 

 

The robustness of a network topology is a crucial indication for assessing 
self-organization performance. Understanding how a system responds to 
failures or perturbations may help you improve or plan for scenarios. 
Identification and assessment of the most vital connections in a network are 
critical to transportation maintenance and planning challenges and the 
overall robustness network (Besinovic 2020). Network topology plays a 
significant role in its robustness; for example, highly connected networks 
tend to be more robust (Barabasi 2016). Robustness measurement and 
system robustness assessment are crucial since the proportion of riders on 
services increases in highly urban areas. It is highly important to measure 
and assess the robustness, given that ridership is highly concentrated in 
dense urban areas. 

Multiple connections (multiline, multilayer, or multiplex networks) are the 
other technique to make networks more robust, and this multiline element is 
shown in various systems. As example within a same day, information can 
be exchanged between the same two individuals via various modes of 
communication (e.g., phone, e-mail, and in person), and transportation 
networks frequently provide multiple modes of transit (e.g., bus and rail) or 
alternatives routes between two locations using the same mode of 
transportation (e.g., roads, railways). The multiline network is able to be more 
robust or resilient to breakdowns or disturbances than single-line networks, 
even though these multi-line networks are increasingly being studied (Kivela 
et al. 2014). Assessing the robustness of multiline transportation systems 
now faces two key challenges. Firstly, multiline transportation systems are 
frequently referred to as single-line systems. Their robustness is assessed 
using network connection criteria, eliminating the added information and 
value of having several lines (Derrible & Kennedy, The complexity and 
robustness of metro networks, 2010); (Derrible, Network centrality of metro 
systems, 2012) (Jun-Qiang, Long-Hai, Liu, & Zhao, 2017). Second, multiline 
robustness measures have been created for transportation applications, but 
they are mathematically more challenging to utilize, which may rule them out 



for usage in planning applications (Boccaletti et al. 2014; Halu, Mukherjee, 
and Bianconi 2014; De Domenico et al. 2015; (Mattsson & Jenelius, 2015); 
Auerbach 2018). In general, the percolation process (Barabasi 2016) or 
disruption simulations (Kim, Kim, and Chun 2016) may be used to verify 
network robustness. However, these techniques frequently need an 
additional level of study, potentially reducing the efficiency of the issues or 
applications. 

(Alvarez-Socorro, Herrera-Almarza, & González-Díaz, 2015) developed a 
global robustness index based on the inclusion-exclusion principle, a line 
coverage similarity measure comparable to network dissimilarity indices. 
(Jun-Qiang, Long-Hai, Liu, & Zhao, 2017) The global network index is based 
on the differences between standard adjacency matrices and new multiline 
adjacency matrices, which may be used to assess the impact of shared 
connectivity caused by the system's numerous lines overlapping. This 
indicator allows you to see how the connectedness of all pairs of lines in a 
network differs and how it differs. There is a proposal for identifying nodes in 
multiline systems that significantly impact local robustness measures. 

Although this technique has been frequently used and utilized for network 
analysis due to its ability to generalize complex systems into a basic form, it 
ignores the additional information provided by many connections between 
the same pair of nodes in multiline networks. (Derrible & Kennedy, The 
complexity and robustness of metro networks, 2010) 

Our study examines the robustness of multiline networks by modeling them 
as multiline networks constructed of routes. The directed network comprises 
nodes (stops) and edges (links). The digraph of these routes represents the 
whole bus network. 

As Kim (2012) and O'Kelly (2015) defined, a hub is a particular facility in 
transportation networks that is typically regarded as an essential 
interconnection point where many lines are linked in a facility for reaching, 
transferring, and departing to destinations. The failure of these specific 
nodes has been shown to significantly reduce network functionality (Kim, 
Kim, and Chun 2016; Kim and Ryerson 2017) and influence network 
vulnerability and robustness to network failure (O'Kelly 2015). Recent 
research claims that not all hubs are crucial, depending on network topology 
or node fluxes (Kim 2012; Kovacs and Barabasi 2015). These let to ask what 



circumstances the best predictors or variables would be affecting network 
vulnerability and robustness. The robustness of these bus transit systems is 
related to the position of hubs for transferring passengers, and these multi-
lines allow passenger mobility through the transit networks (Kim and 
O’Kelly 2009; Li and Kim 2014). 

Some nodes have a higher priority than others in complicated networks. 
The more significant a node gets, the more probable it is that its removal 
would cause the network to collapse; hence identifying key nodes is 
essential in many situations. To improve network robustness, it is essential 
to address such crucial nodes (Auerbach, Fitzhugh, and Zavisca, 2021; 
Auerbach and Kim, 2021). 

Adjacency matrices, in which the number of connections between nodes is 
bidirectional, have been used to quantify connectivity (Wu et al. 2011; Ellens 
and Kooij 2013).  

 

Because of the kind of stops and the degree of connectivity through lines, 
the typical binary representation of network connections presents a 
significant challenge when used in bus transportation systems. As proposed 
similarly by (O'Kelly 2010) and (Derrible & Kennedy, The complexity and 
robustness of metro networks, 2010), a graphic representation for transit 
networks required a distinct understanding of the concepts of nodes and 
edges. They distinguished between two types of nodes: transfer and end 
nodes and single and multiple edges. These ideas were proposed to look at 
the structure of transport systems to figure out how directness and 
complexity are related (Derrible, Network centrality of metro systems, 2012). 
On the other hand, intermediate bus stops are critical components that 
impact a network's robustness since any breakdown between transfer 
stations might result in the line's immediate loss of connectivity or a stop in 
system flow. (Kim, Kim, and Chun 2016)  

 

 

 

 



5.1 Robustness networks indicators: 

By combining complex network theory with the concept of transit network 
robustness, network average efficiency and relative size of the giant 
connected component GCC are chosen as the analysis index: 

 Network average efficiency E 

When network nodes are attacked, the connections of network changes. E 
is a metric that measures the degree of connection (Albert and Barabasi, 
2002). 

𝐸 =
1

𝑛(𝑛 − 1)
 

1

𝑑
 

Where 𝑑  is path length. A larger E indicates better network connectivity. 

 The relative size of the GCC of the network S 

The stability performance can be represented by the relative size of GCC or 
connectivity probability S: 

𝑆 =
𝑁′

𝑁
 

 
N and N' represent the number of nodes in the network's GCC before and 
after the attack, respectively. The value of S is between [0, 1]. When S = 1, 
the network is well connected; when 0< S<1, the network is still relatively 

integrated; when S=0, the network collapses. 

 

Scale-free networks vary qualitatively from random networks, (Renyi, 1959). 
These are: 

 

o Scale-free networks are less prone to failure. This means that following 
the removal of randomly picked nodes, the network is more likely to stay 
connected than a random network. 



o Scale-free networks are more prone to failure under non-random attacks. 
Therefore, when nodes are dropped in order of their degree, the network 
rapidly collapses. 

o Average path lengths in scale-free networks are generally short. In 
reality, log N/ log log k is the average length of a path. (Broido & Clauset, 
2019). 

 

Attacking methods 

The reaction of networks to targeted attacks or random failures is explored 
to define network robustness. The two procedures for node removal 
discussed in this study are (i) random node removal and (ii) degree-based 
node removal. 

o Random removal: The node to be eliminated is randomly selected from all 
the nodes in the network with an equal chance of being removed. 

o Removal based on degree: The node to be eliminated in the network has 
the greatest degree. If more than one node has the highest degree, one is 
picked at random from all the highest-degree nodes with an equal chance. 
(Wang, Koç, Derrible, Ahmad, & Kooij, 2015) 
 

Typically, to study the robustness of complex network, one can remove a 
node and all edges that contain it, and then check if the network is still 
connected. If it is not, one can compute the size of the largest sub-network 
or cluster. The node to be removed can be chosen either randomly (error), 
or according to some principle (attack). Choosing nodes with higher degree 
is one of the most common criteria for nodes to attack (degree-based attack). 
Nodes are gradually deleted in this study, starting by eliminating nodes with 
the greatest degree and remove nodes in decreasing order of degree. 
 
Analyzing the Varese network, in fig 5.1, bus stops [6,7,8,26 and 27] have 
the highest degree and most lines crossing them. Any attack or maintenance 
work in these critical stops and lines may lead the drivers to take an 
alternative road to reach the destinations (the blue and green lines). 
As observed on table 2, the network efficiency E is significantly affected after 
removing these nodes. At the same time, a minor decrease in the 
connectivity probability S is apparent in table 3. 



Moreover, Como network figures 5.2, 5.3, and 5.4 illustrate the most critical 
nodes and lines that are vulnerable to affect the network robustness due to 
any natural or target attack. The network efficiency E decreases and the 
connectivity probability S is between the range 0.97 and 0.99, as shown in 
table 4 and 5 respectively.  
 
In addition, Fig 5.6 demonstrates the critical nodes, all lines crossing these 
nodes have alternatives that may be used in case of an attack to Lecco 
network. The efficiency connectivity E is severely dropped as illustrated in 
table 6, and connectivity values are minor decreased by 0.05. Furthermore, 
any attack in the critical nodes 6 and 10 may lead to network collapse due to 
the remoteness of the alternative ways that buses used to reach their 
destinations. That makes the network efficiency close to zero, consistent with 
the theory that a scale-free network is more vulnerable to target attack.  
 
Node Distance 

before 
attack 

[m] 

Alternative 
distance 

direction 1 
[m] 

Alternative 
distance 

direction 2 
[m] 

E 
before 
attack 

% 

E 
alternative 

1 % 

E 
alternative 

2 % 

7 341 674 1190 0.292 0.148 0.084 

6 - 7 345 750 - 0.288 0.133 - 

8– 27 304 1070 456 0.327 0.093 0.218 

Table 2 Varese efficiency connectivity E 

 
 

 Node 
number 

Total 
nodes 

Total 
links 

S 

Before attack - 215 804 1 
After attack 7 215 803 0.995 
After attack 6-7 213 800 0.9907 
After attack 8-27 213 802 0.9907 

Table 3 Varese connectivity probability S 

 



Node Distance 
before 
attack 

[m] 

Alternative 
distance 

direction 1 
[m] 

Alternative 
distance 

direction 2 
[m] 

E 
before 
attack 

% 

E 
alternative 

1 % 

E 
alternative 

2 % 

15-16 470 575 715 0.212 0.173 0.139 

17 620 2340 - 0.161 0.042 - 

21-22 415 674 1190 0.24 0.148 0.084 
Table 4 Como efficiency connectivity E 

 
 Attack 

Node 
Total 
nodes 

Total 
links 

S 

Before attack - 237 942 1 

After attack 15-16 235 926 0.9915 

After attack 17 236 935 0.9873 

After attack 21-22 234 924 0.9873 

After attack All 232 908 0.9789 
Table 5 Como connectivity probability S 

 

Node Distance 
before 
attack 

[m] 

Alternative 
distance 

direction 1 
[m] 

Alternative 
distance 

direction 2 
[m] 

E 
before 
attack 

% 

E 
alternative1  

% 

E 
alternative2 

% 

5 276 537 531 0.36 0.185 0.187 
55 366 560 - 0.272 0.178 - 
83 238 605 - 0.42 0.165 - 
130 165 485  0.6 0.2 - 

Table 6 Lecco efficiency connectivity E 

 Node 
number 

Total 
nodes 

Total 
links 

S 

Before attack - 233 694 1 
After attack 5 232 687 0.995 
After attack 55 232 687 0.995 
After attack 83 232 687 0.995 
After attack 130 232 686 0.995 

Table 7 Lecco connectivity probability S 



 

 
 
 

 

 

 

 

 

 

 

 

Figure 5.1 Varese network blocks and 
alternatives lines 

 
 

 
 
 
 

 

 

 

 

 

 

 

 

 

Figure 5.2 Como network block and alternative for node 15 and 16 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Como network block and alternative for node 17 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 Como network block and alternative for node 21 and 22 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 Lecco network critical nodes 

 

 

 

 

 

 

 

 

 

 



6 Chapter 6 
Conclusions 

 

This study examined the spatial structure of urban bus networks in medium-
sized cities using complex network theory. Based on the operating 
configuration of bus lines, the bus service network has been modeled 
through the MATLAB program using the L-space principle to represent the 
relationship between bus stops by employing directed and unweighted 
graph-based methods. 
 
 
Two primary goals drove the analysis of bus transport networks (BTNs). To 
begin with, defining the scale-free characteristics of Lecco, Como, and 
Varese BTNs using the goodness-of-fit statistical method to answer the 
question; is the network under consideration identical to the scale-free 
model? Then, assessing the robustness of these networks to unpredictable 
events, namely, random and targeted attacks. 
 
The assessment results from total lines, in-degree and out-degree degree 
distribution reveal that only the Lecco bus network with 𝑅  value > 0.85 and 
the power-law exponent ε between 2-3 follows the scale-free feature, 
whereas with 𝑅  value < 0.8 and power-law exponent less than 2 Varese 
and Como bus network cannot be described as scale-free networks. In 
addition, the graphs with total links degree distribution for the three cities do 
not follow the scale-free model. 

Also, this research contributes to evaluating the robustness of the urban bus 
network; the analysis is based on identifying nodes with high clustering and 
most crossing lines. Scale-free networks are more vulnerable to targeted 
attacks but less prone to random attacks. In them the connectivity efficiency 
indicator is lower when the nodes with greater degrees and more lines 
passing through are removed. Furthermore, the three assessed networks 
are still relatively integrated into the connectivity probability S index because 
they are between 0.97 and 0.99. 



To finish, our work is just a starting; based on a proper dataset provided by 
the bus services companies, future research should study the features of 
these bus transport networks. Furthermore, evaluating the vulnerability and 
resilience considering other robustness indexes could provide a better 
indicator of how the networks act under any attack scenario and could also 
help develop and extend the city.  
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