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Abstract

Automated analysis of computer programs is a powerful tool in the arsenal of software
developers. In the last decades, researchers presented numerous techniques to extract use-
ful information from software. Some examples are tools to generate high-coverage tests,
analyze execution flows to find unreachable code or detect vulnerabilities from known
patterns. Nevertheless, being able to check whether two pieces of code are semantically
equivalent is still an open challenge. This thesis presents ByteMatcher, a tool that
employs the dynamic analysis technique known as symbolic execution to decide on the
semantic equivalence of two bytecodes (fragments of compiled programs). This problem is
generally undecidable, however it becomes solvable when faced under specific assumptions.
ByteMatcher implements state-of-the-art approaches to face the four main challenges
of symbolic execution: symbolic memory accesses, environment interactions, state space
explosion, and symbolic constraints resolution. The most innovative contribution of this
work is a technique that allows developers to compare the results of the execution of
two bytecodes to know whether they are semantically equivalent. Developers have com-
plete control over the sensitivity of ByteMatcher and can choose among four levels of
equivalence to affect how the algorithm performs the comparison. On top of that, Byte-

Matcher can detect (possible) buffer overflow vulnerabilities by analyzing patterns in
memory accesses during the symbolic execution of a bytecode. ByteMatcher was tested
on bytecodes sampled from real-world programs. In particular, to validate the ability to
detect semantic equivalence, ByteMatcher performed more than 160 000 comparisons
extracted from 431 GitHub repositories. ByteMatcher can distinguish between equiv-
alent and non-equivalent bytecodes with 81.16% of accuracy and 78.71% of F1-score. To
test the functionality of buffer overflow detection, ByteMatcher executed more than
20 000 bytecodes sampled from the 116 challenge binaries of the DARPA’s CGC qualify-
ing event. This experiment showed that ByteMatcher can detect 5 different types of
vulnerabilities (according to the CWE standard), providing predictions with 66.38% of
accuracy and 65.49% of F1-score.

Keywords: semantic equivalence, buffer overflow, symbolic execution





Abstract in lingua italiana

L’analisi automatizzata di programmi informatici è un potente strumento nell’arsenale
degli sviluppatori software. Negli ultimi decenni, i ricercatori hanno presentato numerose
tecniche per estrarre informazioni utili dai software. Alcuni esempi sono strumenti per
generare test ad alta copertura, analizzare flussi di esecuzione per trovare codice irrag-
giungibile o rilevare vulnerabilità a partire da pattern noti. Tuttavia, essere in grado di
verificare se due codici sono semanticamente equivalenti è ancora una sfida aperta. Questa
tesi presenta ByteMatcher, uno strumento che impiega la tecnica di analisi dinamica
nota come esecuzione simbolica per decidere l’equivalenza di due bytecode (frammenti
di programmi compilati). Questo problema è generalmente indecidibile, tuttavia diventa
risolvibile se affrontato sotto ipotesi specifiche. Questo strumento implementa approcci
all’avanguardia per affrontare le quattro sfide principali dell’esecuzione simbolica: accessi
simbolici alla memoria, interazioni con l’ambiente, esplosione dello spazio degli stati e
risoluzione dei vincoli simbolici. Il contributo più innovativo di questa tesi è una tecnica
che consente agli sviluppatori di confrontare i risultati dell’esecuzione di due bytecode per
sapere se sono equivalenti. Gli sviluppatori hanno il completo controllo sulla sensibilità
di ByteMatcher e possono scegliere tra quattro livelli di equivalenza per influenzare il
modo in cui l’algoritmo esegue il confronto. Inoltre, ByteMatcher può rilevare (pos-
sibili) vulnerabilità di buffer overflow analizzando i pattern negli accessi in memoria du-
rante l’esecuzione simbolica di un bytecode. ByteMatcher è stato testato su bytecode
campionati da programmi reali. In particolare, per convalidare la capacità di rilevare
l’equivalenza semantica, ByteMatcher ha eseguito più di 160 000 confronti generati da
431 repository GitHub. ByteMatcher può distinguere tra bytecode equivalenti e non
equivalenti con 81.16% di accuratezza e 78.71% di F1-score. Per testare la funzionalità di
rilevamento dei buffer overflow, ByteMatcher ha eseguito più di 20 000 bytecode presi
dai binari della fase di qualifica del CGC organizzato dalla DARPA. Questo esperimento
ha dimostrato che ByteMatcher può rilevare 5 diversi tipi di vulnerabilità (secondo lo
standard CWE), fornendo previsioni con 66.38% di accuratezza e 65.49% di F1-score.

Parole chiave: equivalenza semantica, buffer overflow, esecuzione simbolica
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1

Introduction

Computer science is at the foundation of modern society, in which technology plays a
crucial role in every aspect of people’s life. This results in the release of an incredible
number of software programs every year. Despite all the best practices and principles
developers follow when producing software, writing bug-free code on the first try remains
an open challenge. On the other hand, designing tests that correctly identify every error
and vulnerability is a notoriously complex task.

For this reason, researchers developed tools like KLEE [6] for automated test genera-
tion or Angr [21] for binary code analysis, arousing widespread interest in the scientific
community. Regardless of their excellent performance in the respective tasks and their
popularity among researchers, these tools have more than one limitation, mainly related
to well-known challenges in symbolic execution.

This thesis presents ByteMatcher, a tool based on the dynamic analysis of bytecodes
(also known as shellcodes). A bytecode is any sequence of bytes (not necessarily a complete
function or program) that a processor can interpret as instructions. These strings of bytes
derive from a compilation process and represent software in memory.

This work takes inspiration from the implementation of Angr and improves it by intro-
ducing, among other things, a fully-symbolic memory model. This model represents the
machine’s state inside of ByteMatcher and can handle memory operations on symbolic
values without concretization or path splitting.

On top of that, ByteMatcher implements an algorithm to handle input-dependent
loops by producing a reusable summary of their bodies from just a handful of iterations.
The introduction of a summary limits the path explosion problem that is still today a
concern for symbolic execution.

During the process of loop summarization, ByteMatcher can also detect specific indi-
cators in the memory model of the program under execution that may hint at a possible
buffer overflow vulnerability. This characteristic is a stepping stone to introduce Byte-

Matcher to vulnerability detection through dynamic analysis.
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Lastly, this thesis gives its main contribution with a mechanism to compare two bytecodes’
execution and predict whether they are semantically equivalent. Semantic equivalence is
the ability of two pieces of code (differing from each other) to produce the same effects
on the state of a machine upon execution.

The results of the experimental evaluation of the first implementation of ByteMatcher

are positive. The data supports ByteMatcher’s ability to recognize semantically equiv-
alent bytecodes correctly and shows that it can detect specific types of vulnerabilities
correlated to buffer overflows. Overall, the experiments demonstrate the validity of the
techniques presented in this research and the approach used to condense them into a single
tool for symbolic execution. The collected data can lead the way for future research to
improve the performance of the current implementation and enhance it with new features.

To summarize, the main contributions of this thesis are:

• ByteMatcher, a tool for symbolic execution with a fully-symbolic memory model.

• A technique for the summarization of input-dependent loops.

• An approach to decide on the semantic equivalence of two bytecodes.

• A mechanism to detect (possible) buffer overflows based on dynamic analysis.
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1.1. Problem Statement

Software development and cybersecurity are two fields that play a vital role in today’s
world in which technology permeates essential aspects of people’s lives, like work, educa-
tion, finance, and healthcare. For this reason, it is crucial to focus on devising new tools
and techniques to help developers increase computer programs’ security.

Given these circumstances, developers and security experts would benefit from the ability
to automatically test the semantic equivalence of two bytecodes. A bytecode is a fragment
of a computer program, stripped of all symbols, composed of a series of instructions in
machine code. A tool that can reliably perform such a task could significantly impact
fields like vulnerability assessment, regression verification, and shellcode generation.

Whenever a previously unknown vulnerability emerges in popular libraries and frame-
works, security experts must check existing programs to find any pattern that matches
that discovery. In this case, a tool that can automatically analyze functions to detect
equivalence with the vulnerable sample would make the process efficient and exhaustive
by checking for any possible variation of the offending code.

After updating a piece of code, for example, with optimization or refactoring, software
developers must perform regression tests to ensure the overall functionality is untouched.
These tests usually check that the function produces the same output for a strategically-
chosen set of inputs. A tool for semantic equivalence can perform regression verification
without any additional input from the developers by checking that the code before the
update matches the one after the update.

Finally, penetration testing is one of the most effective ways to test the resilience of a
computer program to external attacks. Penetration tests consist of professional hackers
trying to break into the systems under test in a controlled and systematic way. Sometimes,
hackers use shellcodes to exploit vulnerabilities (i.e., bytecodes that perform malicious
actions like opening a shell). Starting from existing exploits, hackers can use a tool to
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produce new, semantically equivalent shellcodes that meet specific constraints, like limited
size or absence of special bytes.

This research presents the steps that led to the development of ByteMatcher, a tool
that employs dynamic analysis techniques, symbolic execution in particular, to decide
whether two bytecodes are semantically equivalent.

1.2. State of the Art

This Section presents and briefly analyzes the state of the art concerning each topic this
work touches. This breakdown helps to illustrate and categorize the fields to which this
research contributes.

1.2.1. Symbolic Execution

The authors of [2] say that symbolic execution is “a popular analysis technique introduced
in the mid-’70s to test whether certain properties can be violated by a piece of software”.
This technique involves analyzing a program using a set of logical constraints that describe
the characteristics of the input rather than concrete, well-formed values. In this way, it is
possible to explore a variety of execution paths simultaneously, delegating to a constraint
solver the construction of the set of inputs that cause a property violation when detected.
In addition to introducing the concept of symbolic execution, the survey provides “an
overview of the main ideas, challenges, and solutions developed in the area, distilling
them for a broad audience”. The article outlines four challenges that every symbolic
executor has to face explaining how they generally require some assumptions depending
on the context.

• Memory: how to handle pointers, arrays, and complex objects? How to work with
symbolic addresses?

• Environment: how to handle the interaction with library or system code and the
resulting side effects?

• State space explosion: how to prevent path explosion, for example, in loops?

• Constraint solving: what does a constraint solver do?

Despite appearing for the first time in an article of 2008, KLEE [6] is still a prevalent tool
in symbolic execution that focuses on automatic high-coverage test generation and bug
finding in general. The tool uses a heuristic approach to choose which path to explore to
maximize the coverage and can report a set of bug-triggering inputs and signal dangerous
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operations. KLEE was tested on the programs of the GNU Coreutils and Busybox

suites to obtain an average coverage above 90% per tool. The paper tackles two of the
challenges presented before. In particular, when cloning a state, the authors mitigate the
path explosion problem using a compact and efficient state representation and various
optimizations like the copy-on-write mechanism for the content of the memory. They also
implement custom handlers to mock the functionality of various system calls to manage
the environment issue. KLEE also implements a broad set of optimizations to simplify
logical expressions and speed up the solver’s work.

Presented during the same year by researchers from Microsoft, SAGE [18] is a whitebox
fuzz testing tool that uses symbolic execution to generate tests. The tool executes a
program starting from a well-formed input, gathering constraints from conditional state-
ments along the way. To generate new inputs for subsequent runs, SAGE negates each
constraint individually. SAGE implements a heuristic that maximizes the code coverage
to select the following input to test. However, the authors explain that full coverage, even
if theoretically possible, is generally improbable due to the cardinality of the input space.
On the other hand, executing a program based on a concrete input solves most of the
challenges presented before.

Another research introduces Mayhem [7], a tool that finds exploitable bugs in a binary
program employing symbolic execution. An attractive characteristic of this tool is that
it provides a working shell-spawning exploit with every bug it reports. As for the chal-
lenges, Mayhem tries to solve the path explosion problem by implementing a hybrid
(concolic) execution technique. The execution starts with an online approach where the
path branches at every conditional statement (like KLEE [6]). As soon as the memory
usage reaches a fixed threshold, Mayhem moves to an offline approach that executes only
one path at a time (like SAGE [18]). Mayhem also implements an index-based memory
model which balances efficiency and completeness by concretizing write operations and
allowing reads to be symbolic.

Finally, [21] presents a unifying framework for binary analysis named Angr. Angr

implements several well-known analysis techniques in a systemized way that allows com-
paring different approaches and evaluating their advantages and disadvantages. All the
analyses implemented by Angr are cross-architecture and cross-platform. The main idea
of the authors of this paper is to create a framework that other developers can use as a
starting point to create next-generation binary analysis techniques. For this reason, their
code is open source and available to the community. Angr also implements approaches
presented in other articles to improve symbolic execution. Two notable examples are the
index-based memory model presented in Mayhem [7] and the Veritesting technique devel-
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oped for another framework called MergePoint [1]. Veritesting introduces a mechanism
to automatically switch between dynamic (path-based) and static (statement-based) sym-
bolic execution, mitigating the problems of path explosion and solver blowup.

1.2.2. Memory Models

Defining the correct memory model for each task is one of the main challenges of symbolic
execution. The ideal memory model should be able to perfectly handle any memory oper-
ation, even with symbolic addresses, in a quick way and keep the size of the representation
small. Even if this model is only theoretical, the last decade brought a series of exciting
options, each with advantages and disadvantages.

According to the authors, the paper at [23] presents the first memory model to sup-
port fully-symbolic addresses. The article presents a segment-offset-plane memory model
that stores addresses as segment:offset pairs and divides the memory content into planes
according to their semantic information. This model is part of an open-source project
named Bugst. On write operations, it splits data between the boostMap that keeps track
of concrete writes and the iteList used to record all the symbolic writes. When reading
the data, it directly returns the value if the address matches an entry in the boostMap.
Otherwise, the model loops on the iteList to construct a recursive If-Then-Else (ITE)
formula listing all the entries whose address collides with the one being read (from the
youngest to the oldest). The authors outline some of the limitations of this approach,
particularly the fact that this is a fragmented model (due to the structure of the memory)
and that it never removes records from the iteList even when newer entries overwrite
them. While the former is intrinsic in the approach, the latter would be resolvable by
checking collisions when appending a new record to the list.

The memory model presented in [15] handles symbolic pointers by decomposing the mem-
ory in non-overlapping segments so that every pointer only refers to objects in a single
segment, bypassing the need for forking the execution. The model identifies abstract
memory objects by their static allocation point in the program. Each symbolic pointer is
mapped to a set of objects using a (conservative) point-to-point analysis. To improve the
efficiency, the authors set a maximum size for segments, meaning that large objects may
span multiple segments and cause forking when accessed. This model, implemented for
KLEE [6], is available as an open-source project.

The paper at [22] extends the previous solution with a relocatable addressing model to
improve memory objects. This version uses symbolic expressions to represent the address
of each object instead of concrete addresses. In this way, it is possible to relocate them
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by changing the symbolical expression. In detail, resolving a symbolic pointer creates
a new segment containing all the referred objects. Moreover, big memory objects are
divided into smaller adjacent objects to limit the size of the SMT array. Unfortunately,
as emphasized by the authors in the papers [15, 22], the performance of this algorithm
heavily relies on the precision of the point-to-point analysis that can make the approach
degenerate in either a flat or a forking memory model.

The article at [4] contributes by proposing a systemized overview of the memory model
employed by four mainstream symbolic execution frameworks and presents a new ap-
proach named MemSight (already introduced in [8]). MemSight aims to reduce the
need for concretization by directly using symbolic expressions to address data, maintain-
ing the possibility to access all the possible alternative states resulting from symbolic
memory operations. The model handles symbolic write operations by inserting a tuple
in a memory-wide paged interval tree and produces optimized ITE expressions on read
operations. It also handles concrete writes in a paged hashmap with copy-on-write to
improve the model’s performance. MemSight accounts for state merging (a technique
that symbolic executors wildly use to reduce the number of states) by proposing algo-
rithms to join the content of two states that share a common ancestor. The paper also
presents a set of refinements and optimizations, including employing symbolic values to
represent read operations on uninitialized memory. The authors provide an open-source
implementation of MemSight for both Angr [21] and KLEE [6].

The last model in this analysis is MInt [5], an extension of MemSight [4, 8], which
introduces algorithms to handle memory-intensive operations such memset and memcpy.
MInt extends the original algorithms to work with two new sets of tuples. The tuples
track the symbolic range that each operation is targeting and allow the model to reason
on the effects of the operation only when a read on an address in that area occurs. Unlike
its predecessor, MInt is available only for Angr.

1.2.3. Loop Summarization

Managing symbolic loops is crucial in symbolic execution to avoid the problem of path
explosion. Typical frameworks handle loops using concretization or limiting the executions
of the same code section by discarding additional iterations. This approach might lose
precious information and miss possible bugs or vulnerabilities that appear after many loop
iterations (e.g., buffer overflows). In recent years, researchers developed some approaches
to try to mitigate this loss. This research analyzes the one that looks more promising,
given its primary goal: loop summarization. Summarizing a loop means producing a
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logical (symbolic) formula that describes the effects of the loop execution and is parametric
in the number of iterations. The executor can then apply this formula to a symbolic state
to obtain the same result without the effort of symbolically executing the loop.

Proteus [24, 25], is a loop analysis framework that aims to produce a disjunctive loop
summary for multi-path, possibly nested, loops. Depending on the loop behavior, the
authors classify loops into four types and define which type Proteus can summarize
precisely and which with an approximation. The summarization uses a Path Dependency
Automaton (PDA) extracted from the loop’s Control Flow Graph (CFG). The algorithm
systematically traverses the PDA to account for every execution path possible, summa-
rizing variables that follow complex sequences (constant, geometric, or combined). If the
approach looks very promising, the fact that its implementation is private and that the
papers need to be more specific to be used to replicate their results makes it impossible
to consider it for ByteMatcher.

The article at [12] presents an approach to (partially) summarize loop-invariant generation
that, under defined circumstances, can produce a summary of the loop itself. The loop
structure of the program is discovered dynamically during a single symbolic execution.
The algorithm uses loop-guard pattern-matching rules to estimate the number of iterations
of input-dependent loops. A summary in the form of the logic formula preloop ∧ postloop

is obtained whenever the execution confirms an estimation. preloop is a set of conditions
describing the executions covered by the summary, and postloop is a set of conditions
that (partially) captures the side effects of the loop. This approach produces a partial
summary because it can detect and summarize only induction variables (i.e., variables
modified by a constant value during each execution), possibly losing the effects of the
loop on other variables. The authors implement the technique for SAGE [18], but the
code is not publicly available. Nevertheless, the article extensively explains the algorithm
and provides a pseudo-code implementation.

1.2.4. Binary Similarity

Lastly, this Subsection illustrates two existing static analysis techniques to evaluate the
similarity of binaries. This work is relevant as the main contributions of these papers
are approaches that decide if two functions are similar by only considering their compiled
form. This idea aligns with the primary goal of this thesis, but the approaches and fields
of application differ vastly.

The authors of [16] firstly present pre-existing techniques that compute binary similar-
ity based on function embeddings. The idea behind these approaches is to transform
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the binaries into multi-dimensional vector representations (embeddings) that the tool can
compare using efficient geometric operations. The main shortcomings of these solutions
are that they require manually-selected features (that can introduce bias in the resulting
embedding), assume the presence of symbols in the binary, and work only on specific CPU
architectures. The article then presents SAFE, a new technique to generate embeddings
using a self-attentive neural network that overcomes the previous limitations. This tech-
nique focuses only on a specific case of similarity: two functions are similar if compiled
from the same source.

A different approach presented in [10] aims to recognize the similarity of stripped binaries
compiled using different compilers or optimization levels and for multiple architectures.
The main idea is to decompose the code into small comparable fragments that preserve
the dependence chain, called strands. Each strand is re-optimized using the compiler
optimizer to transform it into a canonical, normalized form that the algorithm efficiently
compares using a hash function. The algorithm employs a statistical framework built
using samples from the wild that focuses on comparing statistically significant strands.
A tool called GitZ implements this technique. Even in this circumstance, the approach
recognizes two functions as similar only if they originate from the same code.

1.3. Goals and Challenges

This thesis makes an effort to condense the best solutions and techniques from multiple
research fields in a comprehensive tool that can test the semantic equivalence of two
bytecodes using symbolic execution. Achieving this goal is more complex than one might
expect. In fact, from the analysis of the current research landscape, no article describes
a tool or technique that can perform a similar task.

Moreover, comparing two computer programs is closely related to the halting problem,
a fundamental problem in computer science that wonders if it is possible to establish
whether an algorithm ends its computation or loops indefinitely. Researchers have proven
that no general solution can solve the halting problem for every input. Therefore, it is no
surprise that some bytecodes might not be analyzable by ByteMatcher.

In order to accomplish the primary goal of this work, the implementation of Byte-

Matcher takes inspiration from state-of-the-art approaches by picking the most promis-
ing and suitable solution from each area of research. In particular, ByteMatcher con-
tributes by implementing a symbolic executor that can dynamically analyze the behavior
of fragments of computer programs, stripped of all symbols, composed of a series of in-
structions in machine code, known as bytecodes. This executor employs a fully-symbolic
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memory model to abstract the machine’s state that simulates the code.

Additionally, ByteMatcher implements an algorithm to compare the results of two
symbolic executions to establish whether the source bytecodes are semantically equivalent,
meaning whether they produce identical modifications to the state of the machine when
fed with the same input.

Finally, ByteMatcher exploits existing research results to implement a technique to
deal with symbolic loops that are known to be hard to execute symbolically without
running into the phenomenon of path explosion.
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This Chapter introduces the theoretical concepts behind the techniques employed by
ByteMatcher. It presents a few terms and notions that assist the reader in under-
standing the following Chapters. Refer to Chapter 3 for the description of the approach
used or Chapter 4 for the technical details of the implementation of ByteMatcher.

2.1. Code Lifting

The term code lifting refers to the translation of a computer program from its binary
representation into an Intermediate Language (IL). An IL resembles the assembly language
and abstracts the machine code as a series of (complex) human-readable instructions that
capture all the information included in the original program. The abstraction provided
by the IL is essential to analyze and simulate the code at the logical level using another
computer program.

ByteMatcher employs VEX, the IL used in Angr [21] (that in turn borrowed it from
Valgrind [19]). VEX is architecture-agnostic, meaning it can represent code compiled
from various architectures, ignoring specific details like the name and number of registers
or the endianness and segmentation of the memory. Moreover, every VEX instruction is
side-effect-free. The lifter (the program that performs the code lifting) encodes every op-
eration as a series of independent VEX instructions. For example, push and pop produce
an additional instruction to update the stack pointer.

The lifter bundles VEX instructions in a series of Intermediate Representation Super-
Block (IRSB) objects. An IRSB is a single-entry multiple-exit block of consecutive VEX
instructions. This definition implies that a VEX interpreter can execute an IRSB only
starting from its first instruction until it finds a (possibly conditional) jump to a different
IRSB that terminates its execution.
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2.2. Symbolic Variables

Symbolic execution, as the name suggests, simulates the execution of a computer pro-
gram using symbols rather than (or along with) concrete values. Each symbol represents
a generic variable that can assume (potentially) any value. Symbolic executors restrict
the value of a symbolic variable using logical constraints that usually reflect the series
of conditional branches that lead to the path in execution. Symbolic executors use these
constraints as the input for Satisfiability Modulo Theories (SMT) solvers that use a combi-
nation of logic and heuristics to obtain one or more concrete values for any of the variables
involved or prove the unfeasibility of that specific conjunction of constraints.

ByteMatcher employs the version of symbolic variables offered by the claripy library
in the form of Bit Vector (BV) objects. A BV represents a variable as a series of bits that can
be either concrete if its value is deterministically assigned or symbolic if it is still unknown.
BV objects allow to address individual or ranges of bits and support arithmetic and logical
operations to combine multiple variables into complex formulas in the form of a new BV.
The library also offers an SMT solver implemented as a Solver object. ByteMatcher

uses BV objects in its memory model to represent the content of memory and registers,
as well as memory addresses. Moreover, ByteMatcher exploits the constraint solver to
prove the equivalence of any pair of BV objects. In particular, two symbolic variables are
equivalent if the solver cannot find any possible assignment for which they are different.

bv1 ≡ bv2 ↔ ¬Solver(bv1 ̸= bv2)

2.3. Symbolic Loop Summaries

Analyzing loops is one of the most challenging tasks in symbolic execution because they
can introduce many execution paths. However, it is also crucial in numerous contexts,
like bug detection or test generation.

The authors of [12] propose an approach that generates on the fly (i.e., without the need
for static analysis) a logical expression that summarizes the effects of a loop execution.

ByteMatcher applies an approach inspired by their work to handle symbolic loops,
whose number of iterations is unknown during the symbolic execution. The defining
characteristic of a loop of this kind is that the condition deciding whether to continue
or stop depends on one or more symbolic variables. The convenience of using a logical
expression collides with the fact that, in some instances, it cannot perfectly capture all
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the side effects. For this reason, ByteMatcher completely executes concrete loops to
avoid approximated results as much as possible.

2.3.1. Glossary and Definitions

A loop has two distinct sections with different purposes:

• The header is the block of instructions that evaluates the condition controlling the
loop execution, called guard. This section always ends with a conditional branch.

• The body is the set of instructions (one or more blocks) executing at each iteration
of the loop. The body is the section whose effects need to be summarized.

Every execution of the header is called a hit. During normal execution, a loop always
begins and ends with a hit, making the loop’s Execution Count (EC) the same as the
number of hits minus one.

An Induction Variable (IV) is a variable of a loop (register or memory address) whose
value changes by a constant amount at every execution of the body. IVs are collected in
a structure named Induction Variables Table (IVT) as tuples of type T = (B, V, dV, F ).
Table 2.1 describes each of these variables. The final value is computed using the formula
F = B+ dV ∗ (EC − 1). An IV candidate is a loop variable whose status of IV is not yet
confirmed nor refuted.

Variable Description

B The base value of the IV at the end of the first iteration.

V The value of the IV computed at the end of each iteration.

dV The difference in V between two iterations.
F A symbolic function specifying the final value of the IV.

Table 2.1: Definition of each variable in the IVT tuples.

A guard is a condition of the type LHS◁RHS, in which ◁ is the comparison operator. By
defining the guard’s value as D = LHS −RHS, the condition becomes D◁ 0. Table 2.2
shows the meaning of each variable involved in defining a loop guard. The algorithm can
correctly summarize only loops whose guard is IV-dependent, meaning that D is an IV.
This characteristic is required to accurately estimate the EC of the loop, which is the key
to computing the final value of each loop variable.
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Variable Description

LHS Left-hand side term of the loop guard.

RHS Right-hand side term of the loop guard.

◁ The comparison operator ◁ ∈ {<,>,≤,≥,=, ̸=}.
D The value of the loop guard updated at every hit.
dD The difference in D between two iterations.

Table 2.2: Definition of each variable defining a loop guard.

2.3.2. Loop Summary Generation

These are the steps to generate a loop summary:

1. Initialize the loop summary.

2. Collect the IV candidates in the IVT.

3. Update the IVT.

4. Refine the IV candidates.

5. Finalize the loop summary.

Initialization At the first hit of the loop header (i.e., before the first iteration of the
body), the algorithm creates an empty IVT and computes the value of the loop guard D

for future reference.

Collecting the candidates During the first execution of the loop body, the algorithm
creates a tuple for each variable in the IVT initializing the B and V fields, again, for
future reference.

Updating the IVT When the algorithm encounters the header for the second time, it
computes the new value of the loop guard D and its difference across the executions dD.
The algorithm assumes that the loop guard is IV-dependent hence dD will not get any
update in the subsequent hits.

Refining the candidates This step takes place at the third and fourth hit. For each
of the IV candidates in the IVT, the algorithm computes its new value V along with the
difference across the executions dV . If dV changes, the algorithm discards the candidate
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for not being an Induction Variable. Repeating this process would technically raise the
confidence that each candidate is an IV by refining the content of the IVT even more.
Unfortunately, doing this would increase the execution time without guaranteeing higher
accuracy, given the assumptions necessary to make the algorithm possible.

Finalization Once the execution of the loop ends, the algorithm estimates the EC using
the available data. The exact formula depends on the comparison operand ◁ and which
branch stays in the loop. Equation 2.1 shows an example of the estimation of EC for
operand ≤, assuming that the else branch is staying in the loop. By exploiting the EC,
the algorithm can compute the final value of each IV in the IVT using the formula already
presented. The result is a set of symbolic formulas of type F = B + dV ∗ (EC − 1) that
summarize the effects of the loop on each IV depending on the base state B and the
number of iterations EC.

EC≤,E(D, dD) =


0

∞

(D − dD − 1)/− dD

if D ≤ 0

if D > 0 ∧ dD ≥ 0

if D > 0 ∧ dD < 0

(2.1)
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3.1. Algorithm Overview

ByteMatcher offers two main functionalities to developers and security experts. The
first one allows them to compare the execution of two bytecodes (fragments of compiled
programs) to determine whether they are semantically equivalent, meaning whether they
are interchangeable for all intents and purposes. The second functionality, if enabled, can
detect the presence of (possible) buffer overflow vulnerabilities by analyzing the pattern
of memory-related instructions of the bytecode.

Both these functionalities need to analyze code dynamically through symbolic execution.
ByteMatcher employs a state-of-the-art symbolic executor to simulate the code. This
solution allows focusing on the design of algorithms that customize particular aspects of
the symbolic executor’s behavior rather than implementing it from scratch.

3.1.1. Symbolic Execution

To correctly implement its functionalities, ByteMatcher submits every bytecode to a
step of exploratory analysis before even starting its execution. This exploration constructs
the Control Flow Graph (CFG) of the bytecode to extract information on looping paths.
In particular, ByteMatcher is interested in each loop’s entry and exit addresses and
uses this data to guide the symbolic execution step.

The symbolic executor cannot directly work on the bytecode but needs to transform it in
an Intermediate Language (IL) through code lifting. The IL provides an abstraction over
architecture-specific details, allowing to symbolically execute code originally compiled for
any processor in the same way.

Figure 3.1 provides a high-level representation of the division of the tasks inside of Byte-

Matcher. These three main components interact at different levels during the symbolic
execution to obtain the best outcome possible from the code simulation.
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Figure 3.1: High-level overview of ByteMatcher’s main components.

Executor This is the entry point of ByteMatcher and the only component interact-
ing with the developers. It receives the bytecode and performs the exploratory analysis
on it. It also functions as an orchestrator during the symbolic execution phase. It keeps
track of all the execution paths that still need to be explored and decides which one to
simulate at each step.

ExecutorState This component represents the machine’s state at any point during
symbolic execution. It implements a fully-symbolic memory model divided into registers
and memory and tracks every operation modifying the machine’s state. This component
also acts as an interface to the external symbolic executor. Indeed, it implements func-
tion handlers that the symbolic executor uses to outsource the simulation of particular
instructions. Besides the operations accessing the state, it handles conditional branches
and function calls implementing original algorithms.

LoopSummary This component handles a particular case of conditional branches.
Input-dependent loops represent one of the leading open challenges of symbolic execu-
tion. It is, in fact, notoriously tricky to correctly simulate the body of a loop without
knowing the concrete number of iterations. For this reason, this component implements an
approach that uses symbolic execution to estimate the number of iterations and produce
a reusable logical summary of the loop.

At the end of the symbolic execution, ByteMatcher reconciles all the diverging execu-
tion paths in a single ExecutorState using a custom approach to merge memory models
obtained from the execution of different (related) branches. This unique data structure
contains the logical description of the state of every single register and memory address
after the execution of the bytecode, parametric in the initial state.
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3.1.2. Semantic Equivalence

To test the semantic equivalence of two bytecodes, developers can ask ByteMatcher to
compare the results of their execution (in the form of ExecutorState objects). Developers
can also control the sensitivity of the comparison by selecting one of four equivalence levels
that affect the behavior of ByteMatcher. Different equivalence levels might result in
different predictions. Because of this, it is crucial to select the right equivalence level for
the context of the bytecodes’ application.

The algorithm performing the comparison implements an original technique devised dur-
ing this research. This technique consists in extracting the logical formula describing the
final state of (almost) every register and memory address from the first ExecutorState

and testing it against its counterpart from the second ExecutorState. These formulas
are compatible if there is no assignment of inputs in the initial state (common to both
executions) that produces a different concrete value for that register or memory address.
Two bytecodes are semantically equivalent only if all tests produce a positive result.

3.1.3. Buffer Overflow Detection

Developers can instruct ByteMatcher to report the detection of (possible) buffer over-
flow vulnerability during the symbolic execution phase. ByteMatcher provides this
function through another original technique that analyzes all the operations that change
the content of the memory during the execution of a symbolic loop. The loop summariza-
tion algorithm takes note of all those instructions that update the content of the memory
based on a symbolic pointer. Whenever ByteMatcher uses a loop summary, if it can-
not concretize the address of the target of a write operation, it flags it as odd behavior,
triggering the action to report this possible vulnerability to the developer. This tech-
nique works on the reasonable assumption that write operations with symbolic pointers
are dangerous, especially in the context of symbolic loops. Because of this, detecting an
overflow does not guarantee that the bytecode is vulnerable also in real scenarios.

3.2. Approach Details

3.2.1. Fully-Symbolic Memory Model

It is possible to summarize the state of a program during its execution by describing the
content of the registers and the allocated memory (stack and heap). For this reason, to
correctly simulate a program, it is essential to define a structure (memory model) that
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stores such information together with a protocol describing how to interact with it.

The memory model for ByteMatcher is inspired by the description of MemSight [4, 8],
an approach to symbolic execution that offers support for memory operations on sym-
bolic addresses by providing a compact representation without the need of concretization.
ByteMatcher splits the state between registers and memory, each implementing Mem-

Sight differently. Both registers and memory support three fundamental operations:
read, write, and merge. While the first two are straightforward, the merge operation
enables the option of joining the content of two data structures and plays a central role
in the ByteMatcher’s approach as outlined in Chapter 4.

Registers

ByteMatcher describes the state of the processor registers as a set of tuples of the form
T = (r, v, τ, δ). Table 3.1 describes each of these variables. The size of the symbolic value
v matches the number of bits of the code’s architecture. An object of type Register-

State stores the tuples along with two counters, one that increases by one at every write
operation (τ+) and one that decreases by the same amount at every read operation (τ−).

Variable Description

r Unique identifier of the register.

v Concrete or symbolic value assigned to the register.

τ Insertion time of the tuple.
δ Logical condition under which the tuple is valid.

Table 3.1: Definition of each variable in the register tuples.

Write operation Algorithm 3.1 shows the pseudo-code for the function that writes the
value of a register. The statement at Line 3 increases the time variable as anticipated.
After that, the algorithm standardizes the size of the value to be written v by either
extending it with the content already present in the register (Line 4) or by clipping it to
the desired size (Line 7). Finally, the algorithm instantiates a new register tuple and adds
it to the set of tracked tuples (Lines 10-11).

Read operation Algorithm 3.2 shows the pseudo-code for the function that reads the
value of a register. The read operation retrieves the value of a register at any time τ̂ . The
algorithm begins by filtering all the tuples related to the desired register and sorting them
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Algorithm 3.1 Register write operation.
1: global τ+, tuples, arch
2: function RegisterWrite(r, v)
3: τ+ ← τ+ + 1
4: if v.size < arch.bits then
5: rpre ← RegisterRead(r, arch.bits, τ+)
6: v ← v ⊕ rpre[v.size : arch.bits− 1] ▷ ⊕ represents the concatenation operator
7: else if v.size > arch.bits then
8: v ← v[0 : arch.bits− 1]
9: end if

10: tuple ← new RegisterTuple(r, v, τ+, true)
11: tuples ← tuples ∪ tuple
12: end function

by increasing time (Lines 3-4). If no tuple exists, the algorithm injects a symbolic value
as a placeholder at the negative time τ− to symbolize an uninitialized read (Line 6-10).
Starting at Line 11, a loop over the tuples produces an expression made of nested if-then-
else (ITE) operators. Traversing the tuples in chronological insertion order ensures that
the resulting expression evaluates the most recent tuple before anything else. Finally, the
resulting expression is sliced to the desired size and returned (Line 17).

Algorithm 3.2 Register read operation.
1: global τ−, tuples
2: function RegisterRead(r, size, τ̂)
3: filtered ← filterByRegister(tuples, r)
4: sorted ← sortByTime(filtered)
5: v ← uninit(r) ▷ Symbolic value that depends on r
6: if sorted.isEmpty then
7: τ− ← τ− − 1
8: tuple ← new RegisterTuple(r, v, τ−, true)
9: tuples ← tuples ∪ tuple

10: end if
11: for tuple in sorted do
12: if tuple.τ > τ̂ then
13: break
14: end if
15: v ← ite(tuple.δ, tuple.v, v)
16: end for
17: return v[0 : size− 1]
18: end function

Merge operation Algorithm 3.3 shows the pseudo-code for the function that merges
two RegisterState objects R1 and R2 by updating their closest common ancestor A.
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Each of the two RegisterState is associated with a logical condition under which its
content is valid (c1 and c2, respectively). The algorithm executes two loops. The first,
extracts all the tuples that are in R1 but not in the ancestor A (Line 3) and injects them
in A adding c1 to the tuple’s condition δ (Line 4). The second, repeats the same operation
for R2. At Lines 9-10, it updates the ancestor times to preserve a consistent state.

Algorithm 3.3 Register merge operation.
1: function RegisterMerge(R1, c1, R2, c2, A)
2: for tuple in R1.tuples do
3: if tuple.τ > A.τ+ ∨ tuple.τ < A.τ− then
4: tuple.δ ← tuple.δ ∧ c1
5: A.tuples ← A.tuples ∪ tuple
6: end if
7: end for
8: ... ▷ Repeat Lines 2-7 for R2

9: A.τ+ ← max(R1.τ+, R2.τ+)
10: A.τ− ← min(R1.τ−, R2.τ−)
11: end function

Memory

Similarly to registers, ByteMatcher describes the state of the memory as a set of tuples.
There are two different kinds of tuples, one generated by operations on concrete addresses
Tc = (ac, v, τ, δ) and one by operations on symbolic addresses Ts = (amin, amax, as, v, τ, δ)

(Table 3.2). An object of type MemoryState stores the two sets of concrete and symbolic
tuples along with the τ+ and τ− counters already presented for registers.

Variable Description

ac Concrete memory address.

as Symbolic memory address.

amin The smallest concrete value that as can assume.

amax The largest concrete value that as can assume.

v Concrete or symbolic value assigned to the byte of memory.

τ Insertion time of the tuple.
δ Logical condition under which the tuple is valid.

Table 3.2: Definition of each variable in the memory tuples.
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Write operation Algorithm 3.4 shows the pseudo-code for the function that writes a
value of arbitrary size starting from a memory address. Since ByteMatcher handles
the memory in bytes, the first step of the write operation is to chop the value v into
single byte values (Line 2), which then calls Algorithm 3.5 that writes it in consecutive
addresses starting from a. Depending on the nature of the address, the second algorithm
creates and stores either a concrete tuple (Line 6) or a symbolic tuple (Line 9).

Algorithm 3.4 Multi-byte memory write operation.
1: function MemoryWrite(a, v)
2: bytes ← chop(v)
3: for byte in bytes do
4: MemoryWriteByte(a, byte)
5: a← a+ 1
6: end for
7: end function

Algorithm 3.5 Single-byte memory write operation.
1: global τ+, tuplesc, tupless
2: function MemoryWriteByte(a, v)
3: amin ← min(a)
4: amax ← max(a)
5: τ+ ← τ+ + 1
6: if amin = amax then
7: tuple ← new ConcreteTuple(amin, v, τ+, true)
8: tuplesc ← tuplesc ∪ tuple
9: else

10: tuple ← new SymbolicTuple(amin, amax, a, v, τ+, true)
11: tupless ← tupless ∪ tuple
12: end if
13: end function

Read operation Algorithm 3.6 shows the pseudo-code for the function that reads an
arbitrary number of bytes from memory. As for the write operation, ByteMatcher

can read consecutive memory addresses in one operation by loading each byte using Al-
gorithm 3.7 and concatenating it in a single symbolic value (Line 6). The procedure to
read a byte from memory is similar to the one for registers, the main difference being the
function beginning at Line 21. The search operation extracts all the tuples whose address
overlaps the given range (between amin and amax) and whose insertion time precedes the
given time τ̂ .
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Algorithm 3.6 Multi-byte memory read operation.
1: function MemoryRead(a, size, τ̂)
2: bytes ← ∅
3: for i ← 0; i < size; i ← i + 1 do
4: bytes ← bytes ∪ MemoryReadByte(a + i, τ̂)
5: end for
6: return concat(bytes)
7: end function

Algorithm 3.7 Single-byte memory read operation.
1: global τ−, tuplesc, tupless
2: function MemoryReadByte(a, τ̂)
3: amin ← min(a)
4: amax ← max(a)
5: valid ← MemorySearch(amin, amax, τ̂)
6: sorted ← sortByTime(valid)
7: v ← uninit(a)
8: τ− ← τ− − 1
9: if amin = amax then

10: tuple ← new ConcreteTuple(amin, v, τ−, true)
11: tuplesc ← tuplesc ∪ tuple
12: else
13: tuple ← new SymbolicTuple(amin, amax, a, v, τ−, true)
14: tupless ← tupless ∪ tuple
15: end if
16: for tuple in sorted do
17: v ← ite(tuple.a = a ∧ tuple.δ, tuple.v, v) ▷ tuple.a can be either ac or as
18: end for
19: return v
20: end function
21: function MemorySearch(amin, amax, τ̂)
22: valid ← ∅
23: for tuple in tuplesc do
24: if amin ≤ tuple.a ≤ amax ∧ tuple.τ ≤ τ̂ then
25: valid ← valid ∪ tuple
26: end if
27: end for
28: ... ▷ Repeat Lines 23-27 for tupless
29: return valid
30: end function

Merge operation Algorithm 3.3 shows the pseudo-code for the function that merges
the content of two MemoryState objects M1 and M2. The algorithm is similar to the one
presented for registers.
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Algorithm 3.8 Memory merge operation.
1: function MemoryMerge(M1, c1, M2, c2, A)
2: for tuple in M1.tuplesc do
3: if tuple.τ > A.τ+ ∨ tuple.τ < A.τ− then
4: tuple.δ ← tuple.δ ∧ c1
5: A.tuplesc ← A.tuplesc ∪ tuple
6: end if
7: end for
8: ... ▷ Repeat Lines 2-7 for M1.tupless, M2.tuplesc, and M2.tupless
9: A.τ+ ← max(M1.τ+, M2.τ+)

10: A.τ− ← min(M1.τ−, M2.τ−)
11: end function

3.2.2. Uninterpreted Function Calls

In mathematical logic, the term uninterpreted function describes the practice of repre-
senting a function only through its signature (name and arguments). The uninterpreted
function theory describes complex functions whose effects are unknown or uninteresting,
depending on the context, via a symbol.

ByteMatcher leverages the uninterpreted functions theory to handle any call during
the symbolic execution of a bytecode. This strategy simplifies the simulation by skipping
parts of the code altogether. In particular, calls are a critical topic because:

• The function might have some unwanted side effects that ByteMatcher cannot
track (e.g., system or user interaction).

• The function might be out of the scope of the bytecode, thus being unknown to
ByteMatcher (e.g., library functions).

• Even if the previous points do not apply, a call disrupts the execution flow and
increases the overall complexity of the simulation.

Whenever ByteMatcher encounters a call, it uses the function’s name and arguments
to produce a so-called fingerprint, a symbolic value that depends only on the function’s
signature. ByteMatcher uses that fingerprint as the function’s return value, allowing
the simulation to continue without issue. By applying this behavior, ByteMatcher can
correctly match two bytecodes invoking the same function without the extra burden of
simulating it.
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3.2.3. Comparison and Equivalence Levels

Compare Operation

ByteMatcher considers computer programs as black boxes that it simulates without
knowledge or interest in the specific instructions. The focus of ByteMatcher is only
on the input and output states. From this point of view a program P is just a block that
transforms a series of inputs i1, i2, ..., in into a series of outputs o1, o2, ..., om (Figure 3.2).

⋯

in

i1 o1
⋯

om
P

Figure 3.2: Representation of a program as a black box.

On real machines, inputs and outputs are stored either in registers or in memory. These
two locations constitute the state of that machine. Any generic program can access the
whole state of the input machine Mi, transforming it into a new state Mo during the
execution (Figure 3.3).
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Figure 3.3: Definition of the machine’s state in the black box representation.

From this point of view, two programs P1 and P2 are semantically equivalent if, given the
same input state Mi, their respective output state M1

o and M2
o are equivalent, or, more in

practice, if their codes produce the same effect on the state of a machine and are therefore
interchangeable from the point of view of a black box (Figure 3.4).
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Figure 3.4: Semantic equivalence in the black box representation.
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Equivalence Levels

When comparing the execution of two bytecodes, ByteMatcher offers to the developers
a series of predefined settings to control its sensitivity altering the behavior of the com-
parison algorithm and, therefore, the result of the procedure. In detail, ByteMatcher

provides the following levels of equivalence:

• Lite: skips the comparison of pointer registers (IP, SP, BP) and other artificial
registers (e.g., temporary registers). Lite is the default level of equivalence.

• API: skips the comparison of all the registers saved by the caller according to the
architecture’s calling convention. ByteMatcher implements it for the x86_64
architecture as a proof of concept.

• Memory: ignores all registers during the comparison operation.

• Total: compares the entire content of both registers and memory.

• Permutation: compares the overall content of registers and memories even when
the two codes use different temporary registers or variables are allocated in mixed
order. ByteMatcher does not currently implement this level of equivalence.

In addition, ByteMatcher allows developers to provide the comparison algorithm a
list of register names (according to the specific architecture of the bytecode) to ignore
regardless of the level of equivalence selected.

3.2.4. Buffer Overflow Detection

Developers can instruct ByteMatcher to report the detection of (possible) buffer over-
flow vulnerabilities. In particular, the tool analyzes memory operations during the sym-
bolic execution of the bytecode, looking for unsafe patterns that might indicate a vul-
nerability. This way of detecting vulnerabilities in the code has roots in the reasonable
assumption that every register or memory address that is uninitialized at the beginning
of the execution of the bytecode might be part of its inputs. Since it is a good secu-
rity practice never to trust user input, ByteMatcher considers uninitialized variables
potentially unsafe.

While symbolic write operations are not problematic in the generic case, they might be-
come a security risk if they happen inside a symbolic loop. A loop is symbolic if the
number of iterations of its body is unknown, meaning that it depends on some combina-
tion of uninitialized variables. On the other hand, a symbolic write happens when the
target address is unknown and, as said, potentially controllable. Putting these two things
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together means the user can control where and how many times to write, thus the buffer
overflow vulnerability.

The vulnerability detection happens in the algorithm that applies a LoopSummary to an
ExecutorState. Whenever ByteMatcher cannot concretize the address of a symbolic
memory write using the context provided by the ExecutorState, that operation is consid-
ered malicious and reported to the developer as potentially vulnerable. Nevertheless, since
ByteMatcher analyzes out-of-context bytecodes and not entire binaries, this technique
to detect buffer overflow vulnerabilities does not guarantee the existence of a real threat.
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4.1. System Architecture

This Section provides an overview of the structure of the ByteMatcher project and
the technologies contributing to its development.

4.1.1. Tools and Technologies

ByteMatcher is implemented using Python, the de-facto standard in computer security
and binary exploration. Python is the perfect programming language to build a project
quickly and reliably. It is open-source and offers an extensive collection of external li-
braries to support developers in any aspect of the development process, from debugging
to performance optimization.

At the core of ByteMatcher, there is Angr [21], whose team offers an open-source
library implementing their framework for symbolic execution. In particular, among the
ones packaged with Angr, ByteMatcher makes use of the following libraries:

• archinfo: it exposes a collection of classes containing architecture-specific informa-
tion such as the number of bits in a word, the list of registers, or the endianness of
the memory.

• pyvex: originally developed for [20], it is a Python interface for VEX intermedi-
ate language that is essential to symbolically execute a bytecode as explained in
Section 2.1.

• claripy: it provides an interface for Z3 [11], a powerful Satisfiability Modulo The-
ories (SMT) solver from Microsoft.

• networkx: a library for the creation and analysis of complex data structures, which
is at the center of Angr’s Control Flow Graph (CFG) implementation.
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4.1.2. Project Structure

Figure 4.1 shows the structure of ByteMatcher, grouping classes of objects by their
main functionality:

• Controller objects handle the symbolic execution and most business logic.

• Model objects implement the memory model described in Subsection 3.2.1.

• Data objects provide an interface for the tuples employed in the memory model.
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Figure 4.1: UML class diagram of ByteMatcher.

Controller

Executor It is the only point of contact with the external world. It serves as an orches-
trator for the symbolic execution and stores the simulation’s results. Moreover, developers
can compare multiple Executor objects to test for equality. To track the state of the sim-
ulation process, Executor builds a tree of objects of type ExecutorState. In particular,
during symbolic execution, it keeps a reference to the tree’s root and the active state
under analysis, along with a queue of ExecutorState objects waiting to be visited by the
algorithm. At the end of the simulation, the queue is empty, there is no active state, and
a single ExecutorState represents the collapsed state tree, referenced by the root. When
dealing with symbolic loops, Executor objects invoke a new instance of their same class
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to perform the summarization task in a detached environment. In this case, the inner
Executor receives an object of type LoopSummary containing information about the loop.
LoopSummary tracks any update during the summarization process. The outer Executor
caches the LoopSummary object and applies it instead of executing the symbolic loop.

ExecutorState This object behaves as the node of a bidirectional tree, meaning that
every object holds a reference to its parent node and (up to) two children. Moreover,
ExecutorState implements the memory model in the form of a couple of RegisterState
and MemoryState objects. ExecutorState exposes methods that are used by the pyvex

library during the execution of IRSBs. Besides the methods to read and write from regis-
ters and memory, it provides handlers to manage function calls and conditional branches.
The latter plays an essential role in the simulation as it generates new ExecutorState

objects that act as children of the current tree node. The branch handler is also crucial
to identify symbolic loops, and it signals the execution of the loop header.

LoopSummary As mentioned before, this object holds specific information about a
symbolic loop, such as the addresses of its header and body sections or its exit target.
LoopSummary implements the algorithm of Section 2.3 by providing support methods
for ExecutorState objects. Within each LoopSummary object (Figure 4.2), there is an
IVTable that tracks the IV candidates during the summarization process as tuples of type
IVTableEntry. Once the process terminates, the IVTable takes the final value of each IV
represented by a logical formula in the form of a BV and decomposes it in variables that
are organized in a DependencyGraph to make the process of applying the loop summary
to an ExecutorState easier.

Model and Data

RegisterState and MemoryState objects have an essentially similar structure as they
both implement the read, write and merge operations presented in Subsection 3.2.1 to
manipulate the content of registers and memory, respectively. Special data objects of type
Tuple store the content of the machine, and their actual implementation changes based
on the type of data and the operation used to create it. RegisterState only manages
objects of type RegisterTuple, while MemoryState stores the data in SymbolicTuple

or ConcreteTuple objects depending on whether the memory address is symbolic. Both
RegisterState and MemoryState also implement the compare operation that tests the
content of two objects of the same type for equivalence.
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IVTableEntryIVTable

LoopSummary Dependency 
Graph

registers *
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Figure 4.2: Detail of the UML class diagram for LoopSummary.

4.2. System Details

This Section dives into the details of implementing the most complex classes presented in
Section 4.1. It also maps the approach of Chapter 3 with the code of ByteMatcher.

4.2.1. Executor

The user can symbolically execute a bytecode by instantiating an Executor. This process
only requires the following information:

• The string of bytes representing the instructions to simulate.

• The processor architecture for which the code is compiled (from archinfo).

• The (optional) address of the first instruction in memory.

Exploratory Analysis and Initialization

At the beginning of its initialization routine, Executor uses some of the tools offered by
Angr [21] to analyze the bytecode. This pre-processing step is essential to gather data,
like the flow of execution and the number and type of loops used to guide the simulation.

The method load_shellcode, inherited from Angr, transforms the user input into an
object of type Project. The Project class is the main entry point of Angr. It contains
a set of binaries and the relationships among them and exposes a variety of analyses to
gain all sorts of knowledge about those binaries.

To unlock the full potential of Angr, Executor needs to build the Control Flow Graph
(CFG) of the bytecode. It does so through the CFGFast analysis that quickly produces a
graph of nodes of type CFGNode using a heuristic approach.
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A CFG is a directed graph highlighting all the paths the code might traverse during its
execution. Every node represents a basic block of consecutive instructions that starts
with a jump target (or the entry point) and ends with a jump. There are no other jumps
or jump targets in a block. The edge from node A to node B exists only if B is among
the targets of the jump in A.

The result of CFGFast might present cycles. For this reason, Executor exploits another
functionality of Angr to collect data on those loops when they exist. The LoopFinder

analysis gathers all this information in a set of Loop objects.

Finally, Executor performs operations to initialize the data structures employed during
the symbolic execution:

• It stores the Loop objects in a dictionary indexed by the address of their header.
This dictionary also serves as a cache for the generated LoopSummary objects.

• It prepares an empty dictionary to store the fingerprints computed for function calls
indexed by the address of the call instruction.

• It creates a blank ExecutorState that becomes both the tree’s root and the active
state. The queue of states waiting to be visited is empty instead.

Symbolic Execution

The symbolic execution of the bytecode begins immediately upon initialization, without
the need for additional user interaction. This choice bypasses the possibility of having
Executor objects in incoherent states.

For the symbolic execution, Executor assumes that the part of memory containing exe-
cutable code is only the one occupied by the bytecode, that is, the block of n consecutive
bytes beginning at address a where n is the size of the string of bytes and a is either the
address provided by the user or a constant default value. Any attempt to lift any code
outside this area shall fail.

Executor simulates the code inside its main loop that breaks if and only if, after an
ExecutorState is deactivated, it is not able to find a new state to activate (i.e., the
queue of states to visit is empty).

At each iteration of the main loop, Executor queries the active state for the value of the
Instruction Pointer (IP) register, which contains the address of the next instruction to
be executed (base address). At this point, Executor exploits the pyvex library to lift as
many instructions as possible, starting from the base address. If the process of lifting
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fails, the execution of the current state ends, and a new state is activated.

After obtaining a valid IRSB, Executor checks whether the cache contains a LoopSummary

for the base address. In such a case, Executor applies it to the active state, and the
execution skips to the next iteration of the main loop. Subsection 4.2.3 discusses the
details of the loop summarization.

Otherwise, Executor instructs the active ExecutorState to symbolically execute the
IRSB as illustrated in Subsection 4.2.2. If ExecutorState detects a symbolic loop during
the simulation, Executor triggers the specific routine to generate and apply a Loop-

Summary.

After the analysis, Executor appends the newly-created children of the active state to
the queue and selects a new ExecutorState to activate for the following iteration.

Consolidation of the State Tree

Executor executes this step at the end of its initialization routine. It consists of collapsing
the tree of ExecutorState objects built during the code simulation in a single state whose
memory model accounts for all the possible paths taken during the execution. The root
attribute stores the super-state of the tree that is the object involved when comparing
one Executor to another to test for equivalence.

Executor traverses the state tree using a DFS strategy and collapses every node N ac-
cording to the following rules:

1. If N has no children (i.e., is a leaf), then N is already the super-state.

2. If N has one child C, then C is the super-state for the tree rooted in N .

3. If N has two children C1 and C2, then the super-state for the tree rooted in N is
the result of the merge between C1 and C2.

4.2.2. ExecutorState, RegisterState, and MemoryState

ExecutorState is a crucial component for symbolic execution. It inherits from the class
VEXMixin of pyvex that exposes a single interface through which the symbolic executor
can modify the state of the hypothetical machine running the code. VEXMixin provides,
among others, the handle_vex_block method that Executor needs to simulate a IRSB.
During the symbolic execution, VEXMixin triggers several handlers, each of which mimics
the effect of a specific type of instruction. Following the mixin pattern from Python,
ExecutorState overrides some of these handlers to implement custom functions.
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The Get/Put and the Load/Store functions (of type _perform_vex_expr_) handle in-
structions that interact with registers and memory respectively. ExecutorState forwards
these requests to the RegisterState and MemoryState objects that fulfill them as illus-
trated in Subsection 3.2.1.

The _perform_vex_expr_CCall reacts by definition to calls to pure (without side-effects)
C helper functions and takes as arguments the name of the function and the list of
arguments. The version implemented in ExecutorState computes the fingerprint of the
function call as explained in Subsection 3.2.2 and uses it as the return value. However,
Executor manually invokes this handler whenever a IRSB ends with an anonymous call
to a memory address. In this case, the name of the function is replaced by the string
“anonymous” while the arguments are retrieved using the following heuristics:

1. Reverse the instructions of the IRSB

2. According to the architecture, record all the writes to argument registers.

3. Stop at the first write to a non-argument register.

Finally, pyvex calls the _perform_vex_stmt_Exit function whenever the IRSB ends with
a conditional branch to select the jump target. This handler plays a crucial role in Byte-

Matcher and manages various situations. Algorithm 4.1 illustrates the function. The
boolean variables computed at Lines 12-13 ensure to append to the state tree only the
ExecutorState corresponding to feasible jump targets. When present, LoopSummary

handles the loop summarization. In such case, the behavior of ExecutorState mutates
to keep only one target for each loop iteration (Lines 16-22). Like the handler analyzed
before, Executor also calls the Exit function during its main loop on two special occasions:

• The IRSB ends with an unconditional jump.

• The IRSB ends with an anonymous function call.

In both cases, Executor needs the handler to correctly spawn a child ExecutorState and
continue the simulation.

Merge Operation

As seen in Subsection 4.2.1, during the lifetime of Executor, the tree of states needs to
be collapsed in one super-state, possibly requiring merging two ExecutorState objects.
The procedure to merge two states consists in joining the content of their RegisterState
and MemoryState objects through the merge operation illustrated in Subsection 3.2.1.
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Algorithm 4.1 Handler for conditional branches in ExecutorState.
1: global irsb, constr, summary, max_hits ← 4
2: function Exit(guard, target)
3: targetjt ← target ▷ jt stands for jump taken
4: targetjnt ← irsb.default_exit_target ▷ jnt stands for jump not taken
5: g ← guard ̸= 0
6: constajt ← constr ∪ g
7: constajnt ← constr ∪ ¬ g
8: gdt ← isTrue(g) ▷ Guard definitely true
9: gdf ← isFalse(g) ▷ Guard definitely false

10: gpt ← isSatisfiable(constajt) ▷ Guard possibly true
11: gpf ← isSatisfiable(constajnt) ▷ Guard possibly false
12: jt ← gdt ∨ (¬ gdf ∧ gpt)
13: jnt ← gdf ∨ (¬ gdt ∧ gpf)
14: if summary then
15: summary.HandleHit(g) ▷ Algorithm 4.2
16: if summary.hit < max_hits then ▷ Keep only the looping branch
17: jt ← summary.jt_in_loop
18: jnt ← summary.jnt_in_loop
19: else ▷ Keep only the breaking branch
20: jt ← ¬ summary.jt_in_loop
21: jnt ← ¬ summary.jnt_in_loop
22: end if
23: end if
24: if jt then
25: childjt ← Clone(constajt, targetjt)
26: end if
27: if jnt then
28: childjnt ← Clone(constajnt, targetjnt)
29: end if
30: end function

Compare Operation

Following the theoretical representation of a computer program as a black box intro-
duced in Subsection 3.2.3, ExecutorState objects represent the machine’s state, and the
bytecode simulated by Executor represents the program (Figure 4.3). The input of the
symbolic execution is a fully-symbolic ExecutorState in which (almost) every register
and memory address is uninitialized, and the output is a different ExecutorState reflect-
ing the effects of the computation. Therefore, two bytecodes are semantically equivalent
if their output ExecutorState objects are equivalent. The outputs are the super-states
of the respective Executor objects.
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Figure 4.3: Black box representation in ByteMatcher.

The comparison of two ExecutorState objects is “point-to-point” in the sense that it
tests the value of each register or memory address in the first state only to its analogous
in the second state. The value of each entry is a BV extracted performing a read on
the RegisterState or MemoryState. The comparison uses claripy’s constraint solver
to define whether the two entries match (refer to Section 2.2 for more information on
BV objects). To improve the performance of the process, ByteMatcher restricts the
comparison only to entries in use. A register or a memory address is in use if Register-
State and MemoryState contain at least one Tuple modifying its value. As anticipated
in Subsection 3.2.3, depending on the EquivalenceLevel of choice and the user’s input,
some entries might be ignored during the comparison process.

4.2.3. LoopSummary

LoopSummary serves a triple function:

• It provides information about a symbolic loop (the Loop object from Angr) em-
ployed during the execution.

• It stores the data required for the summarization and orchestrates the algorithm to
produce the summary.

• It offers a method used by Executor to apply the results of a symbolic loop to any
ExecutorState object.

Section 2.3 presents in-depth theoretical concepts and a high-level description of the al-
gorithm for loop summarization.

Symbolic Loop Detection

The detection of a symbolic loop happens during the main loop of the simulation in
Executor. Thanks to the exploratory analysis performed using Angr, Executor already
has a dictionary of all the loops in the CFG of the bytecode. When the address of the
IRSB in execution matches the address of the header of a loop, if the active Executor-
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State ends with two children (i.e., the jump condition is symbolic), Executor triggers
the generation of a LoopSummary.

After the summary is complete, Executor caches it and rewinds the execution, restart-
ing the execution from the parent of the active ExecutorState. Executor applies the
summary the next time the loop header becomes active.

Loop Summarization Algorithm

The outer Executor kicks off the summarization process by initializing a LoopSummary

with the data about the loop and by passing it to a new (inner) Executor. The inner
Executor can simulate only the blocks of code specified by the Loop object in a new
isolated environment.

During the symbolic execution of the first iteration of the loop body, every write operation
triggers a side effect that enters a new IVTableEntry to the IVTable as a candidate.

When the branch handler of ExecutorState is triggered by the header of the loop (hit),
LoopSummary runs Algorithm 4.2. The algorithm’s behavior changes slightly based on
the number of iterations already simulated. The first two times (Lines 5-9), LoopSummary
extracts from the loop guard the information needed to estimate the Execution Count
(EC). The rest of the hits (Lines 10-11), update the IVTable as shown in Algorithm 4.3.

Algorithm 4.2 Handler for a loop header hit.
1: global hit, op, D, dD, ivt
2: function HandleHit(g)
3: hit ← hit + 1
4: lhs, rhs ← g.args
5: if D is None then ▷ Hit #1
6: op ← g.op
7: D ← lhs − rhs
8: else if dD is None then ▷ Hit #2
9: dD ← D − (lhs − rhs)

10: else ▷ Hits #3+
11: UpdateIVT()
12: end if
13: end function

As soon as the simulation in the inner Executor finishes, the LoopSummary is finalized
by estimating the EC from the data collected during the execution and by using it to
compute the final value of each IVTableEntry that is still in the IVTable. During this
process, LoopSummary builds a DependencyGraph that recursively connects each BV to its
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arguments. The recursion stops whenever it cannot further decompose a BV. In such case,
the BV is a graph entrance.

Extracting the arguments is usually made possible by the args property of BV objects that
returns a list of objects appearing in the formula of the BV. Unfortunately, this property is
empty for values generated in response to an uninitialized read that lose the dependency
from the register or the memory address they represent.

Algorithm 4.3 Routine to update the IVTable.
1: global ivt
2: function UpdateIVT
3: for idx, entry in ivt do
4: if entry.type = “memory” then
5: V ← MemoryRead(idx)
6: else
7: V ← RegisterRead(idx)
8: end if
9: dV ← V − entry.V

10: entry.V ← V
11: if entry.dV is None then
12: entry.dV ← dV
13: else if entry.dV ̸= dV then
14: ivt.remove(idx)
15: end if
16: end for
17: end function

To recover from this situation, LoopSummary checks the dependencies stored in the anno-
tations of the BV every time the args property is empty while building the Dependency-

Graph. Since the loop execution happens in a fully-symbolic environment, each graph
entrance is guaranteed to have annotations. The library claripy provides a mechanism
to annotate BV objects with instances of classes inheriting from Annotation. Therefore,
when RegisterState or MemoryState objects generate a new uninitialized value, they
annotate it with additional information to help the summarization process (Table 4.1).

Application of the Loop Summary

The first step for applying a LoopSummary to an ExecutorState is to recursively gener-
ate a dictionary with the translations from the fully-symbolic world to the scope of the
ExecutorState by traversing the DependencyGraph.

For each entrance of the graph, LoopSummary reads its value from the RegisterState or
MemoryState of the state depending on its TypeAnnotation and adds it to the dictionary.
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Annotation Description

R
eg TypeAnnotation States that the BV belongs to a register.

ConcreteDep.Ann. Identifier of the register.

M
em

TypeAnnotation States that the BV belongs to the memory.

ConcreteDep.Ann. Concrete memory address (for concrete reads).
SymbolicDep.Ann. Symbolic memory address (for symbolic reads).

Table 4.1: Annotations of uninitialized BV objects.

After that, the algorithm traverses the DependencyGraph with a BFS strategy starting
from the entrance and updates the value of each node using the replace_dict method
of BV. The resulting dictionary tracks the translation of all the visited nodes.

To apply the effects of the loop on the ExecutorState, LoopSummary uses the dictionary
to compute the final value F of every IVTableEntry in the IVTable and performs a write
to the RegisterState or MemoryState. In the case of a memory entry, LoopSummary also
translates its address before the write.

Finally, the algorithm updates the IP register with the address of the first instruction after
the loop. After this operation, the ExecutorState represents the state of the machine
after the complete execution of the loop, and the simulation can continue in the outer
Executor with the next ExecutorState.

4.2.4. Additional Features

This Subsection presents some additional features implemented to help during the devel-
opment of ByteMatcher that enhance the usability and are interesting from the point
of view of the overall complexity.

Initial Configuration

The user can customize the behavior of ByteMatcher by providing key-value settings
through the config.yml file. The following list presents the available options along with
their default value.

• stop_first_mismatch (true): if true, the comparison algorithm stops at the first
register or memory address that is not equivalent in the two Executor objects.
Otherwise, the comparison continues logging all the mismatches. The return value
of the comparison function is not affected in any way.
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• stop_buffer_overflow (false): if true, applying a loop summary might throw an
exception of type BuffOverflowException to report a (possible) buffer overflow
vulnerability, as seen in Subsection 3.2.4.

• remove_register_overlap (false): if true, RegisterState deletes tuples with
the same register identifier and δ condition on write operations. This option did not
provide any real speedup during the execution.

• concrete_stack_addresses (true): if true, Executor initializes SP and BP regis-
ters with a concrete value. This option greatly improves the speed of the execution
because, usually, memory operations are relative to one of these registers, and sym-
bolic references sensibly increase the complexity of the BV objects.

• registers_initialization ({}): this dictionary allows the user to initialize any
register to a concrete value by referencing it by its name in the architecture (e.g.,
rax, rbx). ByteMatcher interprets this option after concrete_stack_addresses
so that it is possible to overwrite the default value of those registers.

Launcher

The launcher script was created to speed up the testing of ByteMatcher and provides
a handler to interact with the project from the terminal and to provide C code instead of
bytecode. It offers four actions:

1. clear: deletes the binary files from the files folder. It is possible to target single
files or delete them all at once.

2. compile: compiles all the C files from the files folder. It is possible to target single
files or compile them all at once.

3. run: initializes an instance of Executor with the provided C file.

4. compare: runs two instances of Executor with the provided C files and compares
them with the given EquivalenceLevel.

All the actions allow the user to choose the architecture for the bytecode. The run and
compare actions automatically compile the C file only if the respective binary file does
not exist or if the last update of the source is more recent than the one of the binary.
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This Chapter presents the steps performed to validate the implementation of Byte-

Matcher along with all the details necessary to reproduce the results. The first half
illustrates the general goals of the validation procedure, offering information about the
setup in which the tests run. The second half shows the detail of each trial, from the
composition of the test dataset to the results of the executions.

5.1. Goals of the Validation

The trials outlined in the following Sections want to prove the validity of the current
implementation of ByteMatcher concerning two particular claims:

1. ByteMatcher can correctly recognize the semantic equivalence of two bytecodes
using dynamic analysis techniques.

2. ByteMatcher can detect and report (possible) buffer overflow vulnerabilities
when symbolically executing a bytecode.

Testing these claims requires designing two trials, each employing test cases from different
source datasets tailored to the trial’s requirements.

Besides testing whether the implementation of ByteMatcher is valid, the analysis of
the trials’ results aims to set a direction for a future extension of this project by discovering
both the conditions in which ByteMatcher performs better and the aspects that need
to be enhanced.

5.2. Experimental Setup

This Section describes the specifications of the system used to perform the trials. It also
presents the approach to split each test dataset into smaller batches whose results can be
combined to ensure a smooth execution of all the test cases.
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5.2.1. Environment

The machine performing the experiments presents the hardware specifications outlined in
Table 5.1. The operating system running on the machine is a 64-bit version of Ubuntu
(5.15.0-58-generic).

Specification Value

Processor 2×2GHz quad-core CPUs

Architecture x86_64, little-endian

Memory 16 GB
Disk 32 GB (15 GB for / partition)

Table 5.1: Hardware specification for experimental validation.

In order to execute ByteMatcher, and therefore the trials, the system has Python
installed. The tests run in an isolated Python environment that contains all the libraries
required by ByteMatcher and specified in the project’s repository.

5.2.2. Testing Approach

Both trials use the same testing platform implemented in Python to extract the test cases
from the test datasets, execute them using ByteMatcher, and report the outputs. The
platform generates two output files named results.csv and errors.csv in which it
stores respectively the result of correctly terminating test cases and the execution traces
of the ones that reach an error state.

Each test case is independent of the rest of the dataset by design so that the platform
can work on fixed-size batches of random test cases instead of the whole dataset. This
strategy allows the platform to interleave the execution of test cases from both trials.
Moreover, the platform immediately records the output of a test (result or error) on file
so that the execution can restart without losing the tests completed up to that point if a
failure occurs.

The testing platform exploits all the machine cores to perform up to 8 test cases in parallel
thanks to the multiprocessing library that instantiates a managed pool of workers. Each
worker executes tasks on a different processor. Whenever a worker is free, the pool loads a
test case from the current batch and assigns it to the worker. Each worker can consume up
to 180 seconds of CPU time and 4 GB of memory. These limits, selected empirically, are
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the ones that minimize the number of errors while keeping a reasonable execution time for
each batch. If the worker exceeds any threshold, its task is aborted with a TimeoutError

or a MemoryError, respectively.

5.3. Semantic Equivalence

5.3.1. Goal and Strategy

This first trial aims to collect enough data to prove that the approach implemented
by ByteMatcher can classify whether two bytecodes are semantically equivalent with
enough confidence. The execution of each test case incorporates two steps:

1. Execute two bytecodes from the test dataset with the default configuration.

2. Compare the results of the two executions using the default equivalence level (Lite).

The result of each test also provides insights into the symbolic execution of the two
bytecodes, like the number of symbolic loops summarized or the number of function calls.

This trial comprises two experiments using a different test dataset to cover the full spec-
trum of possible results.

The first experiment compares pairs of bytecodes compiled from the same source code
using different optimization flags. Under these settings, it is impossible to have false
positive or true negative results since the functions under comparison are always supposed
to be equivalent.

For this reason, the second experiment compares pairs of random functions that should
not be equivalent (more on this in the following Subsection). Since this experiment cannot
present true positives or false negatives, it ensures that combining the two experiments
will fully populate the spectrum of possible results.

5.3.2. Dataset

The construction of the source dataset for this trial starts from the list of C++ projects
also used to validate [3]. The list contains the URLs of 556 GitHub repositories. Con-
sidering only those projects that allow changing the optimization flag during compilation
reduces the number of repositories analyzed to 431. Each “controllable” project is com-
piled for the x86_64 architecture using four optimization flags: -O0, -O2, -O3, and -Os.
A script employs Angr [21] to extract the bytecode of each function, along with its name
and memory address, from every binary. The script uses the name of each function to
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match its bytecode across optimization levels.

The source dataset of this trial is a csv file that contains only functions presenting all four
optimization variants and whose bytecode is longer than 6 bytes (the length of prologue
and epilogue combined for x86_64 functions). This dataset contains 61 124 rows struc-
tured as in Table 5.2. Every row uses a concatenation of repository, binary, and function
information as a global identifier and stores each variant in four consecutive columns.

Column Description

Global ID String of type “Author_Repo_Binary_Function”.

Flag Optimization flag of variant 1.

Address Starting address of variant 1.

Size Size in bytes of variant 1.

Bytecode Binary representation of variant 1.

... Information of variant 2.

... Information of variant 3.

... Information of variant 4.

Table 5.2: Row structure of the source dataset for the first trial.

Experiment 1

For the first experiment, test cases only compare pairs of bytecodes from the same function
(i.e., from the same row). For every row of the source dataset, six possible combinations
of two bytecodes exist. The six rows extracted from the same function share the same test
group identifier that, combined with the flag of the two variants, provides a unique iden-
tification of the test. This first test dataset contains 366 744 test cases and is structured
as in Table 5.3.
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Column Description

Test group ID Global identifier of the function.

Flag Optimization flag of function 1.

Address Starting address of function 1.

Size Size in bytes of function 1.

Bytecode Binary representation of function 1.

... Information of function 2.

Table 5.3: Row structure of the test dataset for experiment 1.

Experiment 2

The second experiment instead requires comparing pairs of bytecodes that are supposedly
different. To ensure this characteristic, pairs of functions are selected randomly from the
source dataset, independently of the optimization flag. In order to rule out the possibility
of comparing equivalent bytecodes, the script excludes couples with the same name (checks
only the function name, not the whole identifier) or with a perfectly matching bytecode. In
this case, the number of possible test cases is enormous and is limited to 366 744 to match
the size of the previous test dataset. Each test case follows the structure of Table 5.4.
The test group identifier is the concatenation of the identifiers of the two functions under
analysis. In this case, finding all possible variants in the test group is not guaranteed.

Column Description

Test group ID String of type “F1-GlobalID_F2-GlobalID”.

Flag Optimization flag of function 1.

Address Starting address of function 1.

Size Size in bytes of function 1.

Bytecode Binary representation of function 1.

... Information of function 2.

Table 5.4: Row structure of the test dataset for experiment 2.

5.3.3. Results

This Subsection presents the results of the first trial to validate this research. The goal
is to demonstrate that ByteMatcher, as currently implemented, can effectively predict
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whether two bytecodes are semantically equivalent. This trial includes two experiments
for statistical reasons:

• The first experiment compares bytecodes compiled from the same source code with
different optimization flags. The ground truth is always “Equivalent”. Hence the
prediction is either a true positive or a false negative.

• The second experiment compares bytecodes extracted pseudo-randomly from the
source dataset. The ground truth is always “Not equivalent”. Hence the prediction
is either a true negative or a false positive.

The total number of test cases executed for the first experiment is 129 726. The tests
compare the code of 21 621 functions compiled with four optimization flags (i.e., 6 test
cases for every function). Of those, 97 169 (74.90%) result in a prediction from Byte-

Matcher. The first half of Table 5.5 summarizes the errors that prevented the rest of
the test cases from terminating.

The second experiment, instead, produced 80 411 predictions from the 123 762 test cases
executed (64.97%). In this case, the test cases compare the code of functions extracted
randomly from the source dataset (with some checks to avoid checking undisputably
equivalent functions). The second half of Table 5.5 shows the distribution of errors for
this experiment.

Experiment 1 Experiment 2

Error type Occurrences % of tests Occurrences % of tests

TimeoutError 30 630 23.61% 41 091 33.20%

MemoryError 349 0.27% 105 0.08%

Other 1 578 1.22% 2 155 1.74%

Total 32 557 25.10% 43351 35.03%

Table 5.5: Distribution of the errors reported during the first trial.

In both cases, TimeoutError dominates the table. It is, in fact, the cause of 94.08%

and 94.79% of all the errors, respectively. The results (presented later) show that the
loop summarization algorithm is the most likely cause of this massive contribution. In
particular, some types of symbolic loops are too complex to be summarized from the
current implementation of ByteMatcher. The threshold limiting the processor time
(180 seconds) does not influence the outcome. In fact, during tests with up to 12 minutes
of limit, the ratio of timeouts to the total number of tests was never lower than 20%.
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MemoryError, on the other hand, only appears in 1.07% and 0.24% of the errors, respec-
tively. This result is unsurprising given that the maximum memory for each test case is
4 GB and that the execution of ByteMatcher is not particularly memory-intensive.

The rest of the errors, classified in the table as “Others”, consist mainly of failures related
to claripy’s SMT solver and the CFGFast algorithm implemented by Angr [21]. This
Subsection will not analyze them in detail, given their scarcity.

Besides the boolean value that represents whether the two bytecodes are semantically
equivalent according to ByteMatcher, each test case provides insights into the symbolic
execution of both bytecodes in the form of the number of symbolic loops and function
calls detected. Table 5.6 shows the structure of each row of the results.csv file that
contains the outputs.

Column Description

Test group ID Depends on the experiment.

Flag Optimization flag of function 1.

Loops Number of symbolic loops in function 1.

Calls Number of symbolic loops in function 1.

... Information of function 2.

Prediction Whether the functions are semantically equivalent.

Table 5.6: Structure of each row of the result dataset for the first trial.

These results provide a new perspective on the outcome of the trial. If the percentage
of test cases with at least one function call is realistic (26.35% and 46.59%), the rate of
tests with at least one symbolic loop throws up a red flag. The fact that only 0.13%

and 0.12% of the cases report the presence of loop summaries (less than expected for
real-world functions) points with high probability to the loop summarization algorithm
as the main weakness of ByteMatcher. For this reason, it is essential to remember
that the considerations in the rest of the Subsection might suffer from survivorship bias.

The collected data contributes to creating a new set of features outlined in Table 5.7 to
understand whether, and in which measure, the characteristics of the input influence the
correctness of ByteMatcher’s prediction.
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Feature Description

Flags Concatenation of the compilation flags of the two bytecodes.

Has Loops True if the two bytecodes combined have at least one symbolic loop.

Same Loops True if the bytecodes have the same number of symbolic loops.

Diff Loops True if the bytecodes have a different number of symbolic loops.

Has Calls True if the two bytecodes combined have at least one function call.

Same Calls True if the bytecodes have the same number of function calls.
Diff Calls True if the bytecodes have a different number of function calls.

Table 5.7: Test features for the first trial.

Table 5.8 presents each feature’s correlation with the trial’s outcome (true if the predic-
tion matches the ground truth, false otherwise). Unfortunately, the data shows no deci-
sive influence for the second experiment. However, the outcome of the first experiment
presents a strong (negative) correlation with the Has Calls feature. As expected, the data
confirms the assumption that the uninterpreted theory employed by ByteMatcher to
handle function calls introduces errors when comparing functions compiled with different
optimization flags.

Feature Experiment 1 Experiment 2

Flags 0.10 -0.04

Has Loops -0.05 0.01

Same Loops 0.05 -0.01

Diff Loops -0.05 0.01

Has Calls -0.81 0.26

Same Calls 0.55 -0.25
Diff Calls -0.55 0.25

Table 5.8: Correlation of test features with the outcome of the first trial.

At this point, it is interesting to statistically analyze the results of the two experiments at
the trial level. This analysis discards some of the results from the first experiment in favor
of an aggregate result dataset balanced in terms of ground truth distribution. Therefore,
the analysis considers 160 822 test cases, half from each experiment.
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Table 5.9 shows the confusion matrix obtained by comparing ByteMatcher’s prediction
(P) with the ground truth (T). At a glance, most test cases lie on the principal diagonal
containing the correct predictions (true positives and true negatives). This observation
already provides reassurances about the performance of ByteMatcher.

In addition, a convenient characteristic is that each of the two columns represents the
result of a different experiment. Comparing the content of the columns, it appears that
ByteMatcher performs better in tasks that involve non-equivalent bytecodes. The most
likely explanation for this behavior is that, as known, some of the techniques employed by
ByteMatcher introduce approximations that make it easy to find discrepancies when
comparing the execution of two bytecodes independently of the ground truth.

T

Equivalent Not equivalent

P
Equivalent 56 006 (34.82%) 5 892 (3.66%)

Not equivalent 24 405 (15.18%) 74 519 (46.34%)

Table 5.9: Confusion matrix of the first trial.

Table 5.10 provides additional insight into the performances of ByteMatcher by pre-
senting the most commonly used statistical indicators computed with the same inputs
as the confusion matrix. These metrics confirm the observations made on the confusion
matrix. The high precision score and the non-spectacular recall are compatible with the
feeling that the ByteMatcher performs better in the test cases from the second ex-
periment. Indeed, according to the results, ByteMatcher is more prone to misclassify
equivalent bytecodes as non-equivalent rather than the opposite. The F1-score, which is
lower than 80%, is a further endorsement of this trend.

On a positive note, the data reveals a reasonably good accuracy. This metric is the
most straightforward performance measure. It is usually ignored by many during analysis
since it is heavily susceptible to unbalances in the distribution of the (actual) classes in the
result dataset. In this case, however, the accuracy is computed on a set of results explicitly
constructed to present the same number of equivalent and non-equivalent bytecodes to
provide a realistic measure of the performance of ByteMatcher. The value of this score
gives reassurance on the techniques presented in this research and certifies that, in most
situations, ByteMatcher provides the correct prediction.
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Accuracy Precision Recall F1

81.16% 90.48% 69.65% 78.71%

Table 5.10: Statistics of the first trial.

To summarize, this trial proves that ByteMatcher can detect the semantic equivalence
of two bytecodes, employing dynamic analysis techniques and symbolic execution. The
results of this trial are satisfying but leave room for improvement. In particular, the data
gathered from the test cases show that the loop summarization algorithm is the main
point of failure of the current implementation of ByteMatcher and should be the focus
of further research.

5.4. Buffer Overflow Detection

5.4.1. Goal and Strategy

This trial wants to gather evidence to support the claim that ByteMatcher can recog-
nize (possible) buffer overflows during the symbolic execution of a bytecode, in particular
when applying a symbolic loop summary as explained in Subsection 3.2.4. Additionally,
the trial wants to discover which classes of vulnerabilities trigger a response in Byte-

Matcher. Vulnerabilities are classified according to the Common Weaknesses Enumer-
ation (CWE) standard [17].

This trial is composed of only one experiment. Each test case extracts one bytecode from
the dataset and executes it with the configuration variable stop_buffer_overflow set to
true. This setting instructs ByteMatcher to abort the execution with a BuffOverflow-
Exception whenever it reaches a state that might hint at a buffer overflow vulnerability.

The result of each test case is a boolean flag stating whether the symbolic execution
ended with a BuffOverflowException or was completed normally (i.e., whether Byte-

Matcher classifies the bytecode as vulnerable).

5.4.2. Dataset

This trial analyzes binaries from the DARPA’s Cyber Grand Challenge (CGC) [9] qualify-
ing event. In particular, the programs come from a GitHub repository [13] that holds the
source code of the challenges and provides, among other tools, a script to compile them
in binary form automatically. The compilation process results in a pool of 116 challenge
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binaries built for the x86_64 architecture using the -O3 optimization flag (there is no
particular reason behind the choice of this flag).

A script similar to the one presented in the first trial uses Angr [21] to extract all the
functions from the pool of binaries. Even in this case, the dataset contains only those
functions whose bytecode is at least 6 bytes long. The script collects each function in a
csv file that represents the test dataset of this trial. This dataset contains 25 032 rows,
one per function, structured as in Table 5.11.

Column Description

Test group ID String of type “Challenge_Function”.

Flag Optimization flag.

Address Starting address.

Size Size in bytes.
Bytecode Binary representation.

Table 5.11: Row structure of the test dataset for the second trial.

Each CGC program includes a README file containing the list of vulnerabilities affecting the
binary according to the CWE standard. This trial focuses on the classes of vulnerabilities
described in Table 5.12. The trial uses the output of the test cases to understand which
combination of vulnerabilities is recognized by ByteMatcher.

Vulnerability Description

CWE-119 Improper Restriction of Operations within the Bounds
of a Memory Buffer.

CWE-120 Buffer Copy without Checking Size of Input (‘Classic
Buffer Overflow’).

CWE-121 Stack-based Buffer Overflow.

CWE-122 Heap-based Buffer Overflow.

CWE-787 Out-of-bounds Write.
CWE-788 Access of Memory Location After End of Buffer.

Table 5.12: CWE vulnerabilities considered in the second trial.
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5.4.3. Results

This Subsection elaborates on the statistical results of the single experiment of this trial,
showing that ByteMatcher correctly reports (possible) buffer overflows during the
symbolical execution of a bytecode.

ByteMatcher produced a prediction for 21 717 of the 25 032 test cases composing the
test dataset (86.76%). Table 5.13 summarizes the errors reported during the experiment.

Like in the previous trial, the TimeoutError dominates the table, contributing to 85.64%

of the total number of errors, while the occurrences of MemoryError are irrelevant. The
considerations made for the first trial on the nature of the errors still hold.

Error type Occurrences % of tests

TimeoutError 2 839 11.34%

MemoryError 8 0.03%

Other 468 1.87%

Total 3 315 13.24%

Table 5.13: Distribution of the errors reported during the second trial.

The statistical analysis considers multiple classifiers representing different ground truths
to cope with each binary having more than one vulnerability. In this way, the experiment
can discover which vulnerabilities are predictable using ByteMatcher. In total, from 6
classes of vulnerabilities, the analysis obtained 63 classifiers, but Table 5.14 only reports
the top-performing ones. As a clarifying example, the ground truth for the classifier C1

says that a binary is vulnerable if it presents at least one vulnerability among the ones in
the table (CWE-119, CWE-120, CWE-121, CWE-787, CWE-788).

ByteMatcher predicts 56 out of a total of 116 binaries as vulnerable. ByteMatcher’s
prediction for a binary is positive (vulnerable) if at least one of the functions of that
binary triggers a BuffOverflowException. However, only some functions can contribute
to the prediction. The analysis must exclude standard C library functions [14] because
they introduce a bias in the statistical results by triggering the recognition without being
inherently vulnerable, for example, memset, memcpy, strcpy and strncpy combined would
account for 72.47% of all the positive results.

The goal of ByteMatcher in this experiment is to predict the presence of buffer over-
flows in a bytecode. Therefore, it is safe to assume that false positives are preferable



5| Experimental Validation 55

ID CWE Vulnerabilities

C1 CWE-119, CWE-120, CWE-121, CWE-787, CWE-788

C2 CWE-119, CWE-120, CWE-121, CWE-122, CWE-787, CWE-788

C3 CWE-119, CWE-120, CWE-121, CWE-122, CWE-787

C4 CWE-119, CWE-120, CWE-121, CWE-787

C5 CWE-120, CWE-121, CWE-787, CWE-788

C6 CWE-119, CWE-120, CWE-787, CWE-788

C7 CWE-119, CWE-120, CWE-122, CWE-787, CWE-788
C8 CWE-120, CWE-121, CWE-122, CWE-787

Table 5.14: Top-performing classifiers of the second trial.

to false negatives. In cases like this, the best classifier would be the one with the high-
est recall. However, a classifier could fool this metric by always predicting true to get
the maximum score. For this reason, the top performer is the classifier with the highest
F1-score. This indicator rewards classifiers with both high recall and high precision.

From now on, the analysis continues focusing on the best classifier C1. Nevertheless, it
shows the results in Table 5.15 and Table 5.16 for all of the top classifiers to give an idea of
the differences in performance among them. Underlined values in each column represent
the best result across all the classifiers.

It comes without much surprise that ByteMatcher does not excel in detecting buffer
overflows that happen in the heap (CWE-122). This behavior is explainable as Byte-

Matcher does not simulate the execution of function calls and, therefore, is unaware of
operations revolving around dynamically allocated buffers.

Other than that, the statistics support the claim that ByteMatcher can detect buffer
overflows using symbolic execution. It can correctly predict the presence or absence of a
vulnerability 2 out of 3 times (66.38% of accuracy), making it a discrete classifier.

False positives amount to 16.38%, which is less than expected considering that Byte-

Matcher detects vulnerabilities analyzing functions without any context. On the other
hand, the best guess to explain the 17.24% of false negatives is that the misclassification
happens on functions with vulnerabilities outside of symbolic loops or connected to a
variable not recognized by the current implementation of the summarization algorithm.
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ID True positives False positives False negatives True negatives

C1 37 (31.90%) 19 (16.38%) 20 (17.24%) 40 (34.48%)

C2 41 (35.34%) 15 (12.93%) 30 (25.86%) 30 (25.86%)

C3 40 (34.48%) 16 (13.79%) 30 (25.86%) 30 (25.86%)

C4 35 (30.17%) 21 (18.10%) 20 (17.24%) 40 (34.48%)

C5 34 (29.31%) 22 (18.97%) 19 (16.38%) 41 (35.34%)

C6 30 (25.86%) 26 (22.41%) 11 (9.48%) 49 (42.24%)

C7 34 (29.31%) 22 (18.97%) 22 (18.97%) 38 (32.76%)
C8 37 (31.90%) 19 (16.38%) 29 (25.00%) 31 (26.72%)

Table 5.15: Results of the top-performing classifiers of the second trial.

ID Accuracy Precision Recall F1

C1 66.38% 66.07% 64.91% 65.49%

C2 61.21% 73.21% 57.75% 64.57%

C3 60.34% 71.43% 57.14% 63.49%

C4 64.66% 62.50% 63.64% 63.06%

C5 64.66% 60.71% 64.15% 62.39%

C6 68.10% 53.57% 73.17% 61.86%

C7 62.07% 60.71% 60.71% 60.71%
C8 58.62% 66.07% 56.06% 60.66%

Table 5.16: Statistics of the top-performing classifiers of the second trial.

To summarize, the second trial demonstrates that ByteMatcher can recognize (pos-
sible) buffer overflows during the symbolic execution of a bytecode. The results are
incredibly encouraging and open the way to developing new solutions to improve this
functionality. In order to increase ByteMatcher’s performance on the vulnerability
detection task, future research should focus on improving the summarization algorithm
and the approach to handle function calls.
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6| Limitations

ByteMatcher is a complex project that spans multiple open research fields absorbing
ideas from cutting-edge tools and techniques. For this reason, the implementation could
not overcome some limitations that leave few gaps in the domain of bytecodes that Byte-

Matcher can analyze.

This Chapter briefly presents the issues regarding:

1. How ByteMatcher implements the memory model.

2. How ByteMatcher summarizes symbolic loops.

3. How ByteMatcher handles function calls.

ByteMatcher is technically cross-architecture, meaning developers can easily extend
ByteMatcher’s code to analyze code compiled for any CPU included in the archinfo

library. The tool inherits this characteristic from Angr [21] and pyvex [20]. Neverthe-
less, given how the symbolic state is modeled (in particular, the processor registers), the
comparison operation is only possible between two bytecodes compiled for the same ar-
chitecture. Solving this problem requires either redesigning the memory model used for
symbolic execution or devising a brand-new algorithm capable of comparing two bytecodes
employing different register sets and memory structures.

Summarizing a loop is a non-trivial operation that requires performing an in-depth anal-
ysis of the code. The current summarization algorithm limits the types of loops that
ByteMatcher can properly handle. In particular, ByteMatcher:

• Cannot summarize nested loops or loops with complex paths in their body.

• Cannot correctly handle loops whose guard is not IV dependent.

• Cannot account for the effects of loops on variables that are not IV.

ByteMatcher inherits these issues from the original algorithm [12], but other re-
searchers [24, 25] claim that a solution already exists, even if it was not possible to
replicate their results in this work.
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Finally, one of the requirements of ByteMatcher is to analyze and compare bytecodes
that are fragments of complete programs stripped of all symbols. This prerequisite ex-
plains why ByteMatcher does not follow function calls during the symbolic execution.
Instead, ByteMatcher implements an algorithm to skip the execution of the call based
on the uninterpreted functions theory. This choice becomes a problem in contexts where
ByteMatcher needs to compare a bytecode that performs a function call with one
that presents the same function inlined among its instructions (e.g., due to compiler op-
timization). It is difficult to imagine an alternative approach to handle function calls and
overcome this limitation.
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7| Future Works

This research outlines the implementation of ByteMatcher, a prototype that aims to
cover multiple open research topics with a single tool for symbolic execution. As such,
there are a few areas in which ByteMatcher can undoubtedly improve.

The approach to symbolic loop summarization represents the area where it is possible
to have the most impact. The algorithm implemented in ByteMatcher is relatively
constrained in the type of loops that can handle adequately. Future research should focus
on finding a way to improve the existing technique, extending it to the summarization of
loops with complex control structures and broadening the definition of IV, or developing
an entirely new approach that can cover the majority of (if not all) the cases.

Since the development focused mainly on proving that the technique described in this
work is viable, ByteMatcher can exceed time and memory constraints when performing
intensive computations. In particular, an optimized memory model would improve the
overall performance. A pagination mechanism for the memory as in [4, 8] would reduce
the time required to retrieve the tuples when performing memory reads. In addition,
applying the state merge operation also during the symbolic execution whenever possible
(in addition to collapsing the state tree at the end) would decrease the number of paths
to analyze and the memory absorbed by ByteMatcher. Finally, implementing the
solution already described in [5] would improve the performance of the memory model in
the presence of memory-intensive operations.

Lastly, there is no technical reason why the component that performs the analysis of the
bytecode (Executor) should also represent the result of the execution at comparison time.
Detaching the two features requires considerable structural changes but would improve
the clarity of the code, other than reducing the space required to store the results of each
computation. To implement this idea, the symbolic execution of a bytecode should return
an object that contains only the subset of the data required to carry out the comparison.
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8| Conclusions

This thesis presented the research and the efforts behind the implementation of Byte-

Matcher, a tool for symbolic execution that mixes different existing techniques and new
approaches to determine the semantic equivalence of bytecodes. This work began with an
extensive analysis of the state of the art to understand the main challenges that symbolic
executors face. The research converged on four categories of problems: the memory model,
the interaction with the environment, the explosion of the state space, and the resolution
of sets of complex symbolic constraints.

The development of ByteMatcher tried to distill the best solutions from past research
and to mix them with new approaches to obtain a symbolic executor that could dy-
namically analyze bytecodes and recognize semantic equivalence. Among those solutions
stands a fully-symbolic memory model which tracks both processor registers and memory
addresses. This model implements algorithms to handle symbolic operations without the
need for concretization and without branching the execution path.

The focal point of ByteMatcher’s implementation was an original approach to compare
fully-symbolic memory models resulting from the execution of different bytecodes. This
technique is the one used to decide on semantic equivalence.

ByteMatcher also implements a technique to produce symbolic summaries of loops
that it uses to emulate their execution. Loop summaries represent the best solution to
avoid creating infinite execution paths without putting a limit on the number of loop
iterations simulated. Other relevant techniques included a methodology to exploit the
loop summarization to detect (possible) buffer overflows in the bytecode and an algorithm
to produce fingerprints for function calls. ByteMatcher uses these fingerprints to avoid
the burden of simulating external functions during symbolic execution.

Two sets of experiments (trial) provided data that supports the validity of the techniques
implemented in ByteMatcher. A first evaluation tested whether ByteMatcher could
correctly classify pairs of bytecodes as semantically equivalent (or non-equivalent), while a
second analyzed its performance in detecting vulnerabilities. Both trials showed positive
results and provided exciting insights into ByteMatcher’s implementation.
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Ultimately, the trials pointed out a few sides of ByteMatcher that need improvement,
the most prominent of which is the summarization algorithm. Although, in theory, it
should provide a great advantage to symbolic execution, this advantage did not appear
in real-world scenarios. Nevertheless, ByteMatcher proved to be a fresh approach to
binary analysis and deserves to be the subject of further research to refine the implemented
techniques and introduce new functionalities.
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