
SCUOLA DI INGEGNERIA INDUSTRIALE E
DELL’INFORMAZIONE

Laurea Magistrale In Ingegneria Meccanica

ON-EDGE DEVICE FOR HUMAN TRACKING AND
IDENTIFICATION BASED ON RGB CAMERA INPUT

DATA

Supervisor: Prof. Marco Tarabini
Co-supervisor: Ing. Stefano Marelli

Lyubomyr Klymyuk

921135

Academic Year 2020/2021



ii



Acknowledgements

Questo lavoro di tesi è stato possibile prima di tutto grazie al Prof. Marco Tara-
bini. Voglio ringraziarlo per aver risposto tempestivamente alla mia richiesta e per
la sua disponibilità. Nonostante il periodo di incertezza in cui la maggior parte delle
imprese lavoravano da remoto e difficilmente assumevano nuove risorse è riuscito a
mettermi in contatto con una realtà aziendale.

Da li entro due settimane è iniziato il mio percorso di stage presso
la Forwardinnovation srl di Gallarate. Ringrazio quindi il CEO Da-
vide Vallero e tutti i colleghi di Forwardinnovation che mi hanno
accolto nella loro squadra e fatto partecipare attivamente ai vari pro-
getti interessanti.

In tutto questo percorso venivo guidato e seguito dall’Ing. Stefano Marelli
nonchè PhD del Politecnico di Milano al quale va un caloroso ringraziamento per i
suoi preziosi consigli.

Voglio dire grazie a tutti gli amici e colleghi del Politecnico di Milano con i quali
abbiamo condiviso momenti bellissimi durante questi anni. Senza di voi questo per-
corso sarebbe stato molto più ostico e sciapo. Grazie per avermi supportato e sop-
portato nei momenti difficili oltre ad aver ascoltato pazientemente le mie lamentele.
E’ stato un onore avervi al mio fianco in questa avventura e spero di incontrarvi
presto nel mondo del lavoro e non.

Un grazie speciale agli amici più stretti che mi hanno incoraggiato in questi anni
ed aver creduto in me. Avrete sempre un posto speciale nel mio cuore.

Alla base di tutta questa piramide di duro lavoro e sacrifici ma anche lungo tutto
il percorso ed ora alla fine ovviamente ci siete voi, i miei super genitori. Un enorme
grazie per il supporto morale, economico e di ogni altro tipo che mi avete dato in
questi anni. Senza di voi questo non sarebbe mai accaduto. Potete essere fieri ed
orgogliosi di me. Dopo tutti questi anni di incertezze e difficoltà vostro figlio ce l’ha
fatta!

iii



iv



Contents

1 Introduction 3

2 State of the art 5

2.1 Description of a Real-Time Location System . . . . . . . . . . . . . . 5

2.2 Technology overwiew . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Radio Frequency Identification (RFID) . . . . . . . . . . . . . 6

2.2.2 Ultra-Wideband (UWB) . . . . . . . . . . . . . . . . . . . . . 7

2.2.3 Bluetooth Low Energy (BLE) . . . . . . . . . . . . . . . . . . 8

2.2.4 Wi-Fi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.5 Infrared (IR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.6 Ultrasound . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 On-edge hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 On-edge device requirements . . . . . . . . . . . . . . . . . . 12

2.3.2 Edge AI hardware Market . . . . . . . . . . . . . . . . . . . . 14

2.3.3 Hardware for computer vision on-edge . . . . . . . . . . . . . 17

2.4 Computer vision software, frameworks and tools . . . . . . . . . . . 28

3 On-edge architecture 35

3.1 Jetson Nano board . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.1 Memory swap expansion . . . . . . . . . . . . . . . . . . . . . 40

3.1.2 Libre Office removal . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.3 Cmake library update . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Software for human tracking and identification . . . . . . . . . . . . 41

3.2.1 OpenPose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.2 TrtPose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.3 Digital identity . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Experimental results 53

4.1 Setup description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 OpenPose output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 TrtPose output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 TrackLite output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5 Performances benchmark . . . . . . . . . . . . . . . . . . . . . . . . 64

v



vi CONTENTS

4.6 Digital Identity results . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.7 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . 70



List of Figures

2.1 Generic RTLS system architecture . . . . . . . . . . . . . . . . . . . 5

2.2 RFID system setup consisting of one or more RFID tags or transpon-
ders, a reading and/or writing device also called reader and a data
management information system for transferring data to and from
readers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Frequency range comparison between different technologies . . . . . 7

2.4 Bluetooth Low Energy RTLS system generic layout. . . . . . . . . . 8

2.5 Frequency range of visible light and respective wavelenght . . . . . . 10

2.6 Sound waves frequency range and their applications . . . . . . . . . 10

2.7 Diagram of a radio communication between two points. A is the radar
receiver for example and B an aerial or satellite signal generator. . . 11

2.8 Edge AI hardware market forecast. Source: Industry experts, Sec-
ondary research, MarketsandMarkets . . . . . . . . . . . . . . . . . . 14

2.9 The most important players in AI chipset market . . . . . . . . . . . 16

2.10 Main features of the most popular Arduino boards . . . . . . . . . . 17

2.11 Raspberry Pi 4 Model B board . . . . . . . . . . . . . . . . . . . . . 18

2.12 Jetson Nano main features . . . . . . . . . . . . . . . . . . . . . . . . 20

2.13 Jetson family boards . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.14 AMD Ryzen Embedded microprocessor serie 1000 . . . . . . . . . . 21

2.15 Google Coral Dev board . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.16 Google Coral USB Accelerator . . . . . . . . . . . . . . . . . . . . . 24

2.17 Inference increasing benchmarks thanks to Google Coral USB stick . 25

2.18 Intel NCS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.19 Inference increasing benchmarks due to NCS2 stick . . . . . . . . . . 27

2.20 BODY 25 model of the body stick used by OpenPose. . . . . . . . . 31

2.21 YOLO object detection. . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.22 YOLO network structure. . . . . . . . . . . . . . . . . . . . . . . . . 33

2.23 DeepSort that uses YOLOv3 in order to detect and track the pedes-
trians. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1 NVIDIA Jetson benchmarks . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 NVIDIA Jetson Nano 4GB board . . . . . . . . . . . . . . . . . . . . 37

3.3 NVIDIA Jetson Nano leteral views . . . . . . . . . . . . . . . . . . . 38

vii



viii LIST OF FIGURES

3.4 NVIDIA Jetson Nano top view . . . . . . . . . . . . . . . . . . . . . 38

3.5 First boot screen - system configuration . . . . . . . . . . . . . . . . 39

3.6 OpenPose testing. (a) Demo video file. (b) Webcam test. . . . . . . 44

3.7 TensorRT testing. (a) Demo video file. (b) Webcam test. . . . . . . 47

3.8 Preliminary operations to the algorithm . . . . . . . . . . . . . . . . 48

3.9 Internal structure of the input file originating from OpenPose and
processed in Matlab . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.10 Unreliable identification due to fake detections, distorsions and sub-
jects interchange. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.11 MatLab find fakes block diagram . . . . . . . . . . . . . . . . . . . . 51

3.12 MatLab sorting subjects flow chart . . . . . . . . . . . . . . . . . . . 52

4.1 Experimental workstation setup and peripheral devices on Jetson Nano 53

4.2 Jetson Nano setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Jetson Nano and its devices . . . . . . . . . . . . . . . . . . . . . . . 54

4.4 OpenPose tested on demo video file . . . . . . . . . . . . . . . . . . . 55

4.5 OpenPose tested on usb webcam . . . . . . . . . . . . . . . . . . . . 55

4.6 OpenPose tested in the laboratory. Starting point of the path . . . . 56

4.7 OpenPose tested in the laboratory. Ending point of the path . . . . 57

4.8 TrtPose tested on demo video file . . . . . . . . . . . . . . . . . . . . 58

4.9 TrtPose tested on usb webcam . . . . . . . . . . . . . . . . . . . . . 58

4.10 TrtPose tested in the laboratory up to 10 fps. Starting point of the
path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.11 TrtPose tested in the laboratory up to 10 fps. Ending point of the path 60

4.12 Sequence extracted from the workshop video. From this we can see
the loss of count due to the color of the shirt similar to the surrounding
environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.13 Sequence extracted from the parking video testing. From this we can
see the even worse loss of count with respect to the internal environment. 62

4.14 Final test done within the lab confirming the performance decrease
due an increase of human detections. . . . . . . . . . . . . . . . . . . 63

4.15 Final results based on pixel resolution and number of detections on
TrackLite framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.16 Final benchmark showing the best performance obtained with three
different CV frameworks . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.17 First example of fakes detection frames . . . . . . . . . . . . . . . . . 66

4.18 Second example of fakes detection . . . . . . . . . . . . . . . . . . . 66

4.19 Scheme representing the usual situation without continuity in detection 67

4.20 Timeline diagram of the video stream input. Each color represents a
different person on the screen. . . . . . . . . . . . . . . . . . . . . . 67

4.21 Average distances between subjects of the first row of the input file
cam keypoints. Before (a) and after (b) the application of ordering
algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68



LIST OF FIGURES 1

4.22 Average distances between subjects of the second row of the input file
cam keypoints. Before (a) and after (b) the application of ordering
algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.23 Average distances between subjects of the third row of the input file
cam keypoints. Before (a) and after (b) the application of ordering
algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



2 LIST OF FIGURES



Chapter 1

Introduction

There are currently several tracking systems on the market that use ultra wideband
(UWB) and bluetooth low energy (BLE) technology and are very accurate down to
tenths of a meter i.e Ubisense, Siemens, Eliko, Sewio ecc. The problem lies in the
cost of the hardware that in particular for the UWB technology for now remains
very high. In addition there is the need to wear battery-powered tags able to send
the signal to the various gateways installed along the perimeter that in turn forward
the various signals received to the central server for the processing of the position
in real time.

Within the industrial context this is not a problem but if you consider a super-
market or a bank for example, making customers wear devices becomes impractical.

The goal then becomes to select hardware powerful enough to process the frames
coming from the video input in real time while maximizing fps.

The processing and analysis of images is performed through special computer vi-
sion software and Deep Neural Network (DNN) libraries such as OpenPose, OpenCV
and Caffé using Python as a programming language. This kind of applications as
you can imagine having to do with the graphic processing, estimation and calcula-
tion of the position of the body within the frame and all this in real time, requires
a significant computational effort in terms of GPU (Graphics Processing Unit).

Therefore, having to select a compact hardware with a decent graphics perfor-
mance and a not excessive cost, our choice fell on an embedded device designed by
Nvidia which is the Jetson Nano board.

Once the system is set up, the next step is to be able to distinguish one individual
from another. This is because the software, as powerful as it is in recognizing a
subject in the image and sketching it with a n-point skeleton, is not yet able to
distinguish between them.

Therefore the concept of digital identity is introduced. It is a unique id that
is assigned to the subject based on different parameters that can be for example
physiological characteristics and colors of clothing. This is necessary at the moment
when a subject ”A” leaves the field of visibility of camera n.1 and appears in the field
of visibility of camera n.2 while remaining ”A” and not becoming ”B” for example.

3



4 CHAPTER 1. INTRODUCTION

The same is true for a single camera with several subjects entering and leaving the
camera’s field of view.

The aim of this thesis is to create an on-edge device capable of identify people
from camera stream video in an indoor environment. The device will be part of
a more complex system that is the RTLS (Real-Time Locating System) designed
to detect and track people in closed environments where the GPS signal is poor or
absent. The device should be mounted in the close to the video source, hence the
name ’on-edge’, limiting the data traffic on the internal network and respecting the
privacy of detected people.



Chapter 2

State of the art

2.1 Description of a Real-Time Location System

A Real-Time Location System (RTLS) is a set of hardware and software used to
identify and track objects and/or people in space within a predefined area.

There are two types of tracking systems based on the type of environment in
which they are employed. The first one is used outdoors and identifies the position
of the subject thanks to the GPS (Global Positioning System) signal coming from
the satellite. The second is defined as indoor and is what we typically refer to as
RTLS, used in closed environments where the satellite signal is usually weak. To
determine the position of objects and people we go to exploit other technologies
available and more suitable for the purpose and will be discussed in detail in the
following paragraphs.

The general operation is based on a series of devices deployed throughout the
area of interest and will exchange between them different information and signals.
In common language these are defined tags and anchors where the first are mobile
and are placed on the object of which we are interested in the position, while the
second are fixed and will be placed on the existing infrastructure Fig 2.1.

Figure 2.1: Generic RTLS system architecture

5



6 CHAPTER 2. STATE OF THE ART

2.2 Technology overwiew

2.2.1 Radio Frequency Identification (RFID)

The technology is based on automatic radio frequency identification of objects and
people using electronic tags called tags or transponders. These contain within them
chips capable of storing information as well as responding to queries from other
devices called readers or interrogators that despite their name are also able to write
and update the information contained in the tags. An RFID system consists of three
basic components as you can see below.

Figure 2.2: RFID system setup consisting of one or more RFID tags or transpon-
ders, a reading and/or writing device also called reader and a data management
information system for transferring data to and from readers.

The transponder or tag inside contains a microchip for storing the information,
an antenna for transmitting the data and a physical holder needed to hold the chip
and antenna together. The latter may be active, passive, semi-passive or semi-
active. Active if it has a battery to power the microchip and any sensors and can
reach distances of up to 200m. Passive if the energy needed to activate the chip and
transmit the information stored inside it is taken from the radio frequencies emitted
by the reader. There are also mixed configurations in which the various components
are powered by batteries as required at specific times to optimise operation and
extend battery life. Depending on the application and configuration, the frequency
range is from 125 kHz (Low Frequency Range) up to UWB (Super High Frequencies),
i.e. ≥ 5.8 GHz.

Among the major advantages of this technology we definitely find: optimal trace-
ability, remote reading, targetless reading, simultaneous multiple reading, informa-
tion storage and update inside tags in real time and finally the tag battery life that
can last several years. On the other hand it has small coverage and low detection
range and it is much less precise in positioning than UWB technology for example.



2.2. TECHNOLOGY OVERWIEW 7

2.2.2 Ultra-Wideband (UWB)

Ultra Wideband is a wireless technology used for digital data transmission over short
distances at low power density. As the name implies, it occupies a very wide band
compared to other transmission technologies1, ranging from 3.1GHz to 10.6GHz,
and it uses short-duration pulses over a spectrum of frequencies.

Figure 2.3: Frequency range comparison between different technologies

These intrinsic characteristics involve a series of advantages that we list below:

• Multipath - reflections on different surfaces (infrastructure, equipment and
people) that are affected by the transmitted signals. Due to the short pulses
distributed over a wide spectrum UWB is much more resilient compared to
narrowband signals.

• Obstacles - low frequencies on the UWB frequency spectrum have long wave-
lengths λ = c/f where c ' 3 · 108m/s is the speed of light. The ability to
penetrate different materials has made UWB technology an attractive choice
for both RTLS and radar applications.

• Disturbances - there is no interference with other wireless technologies as the
power level is very low and spreading evenly across a wide spectrum. One of
the reasons why it has been in the military in fact this kind of signal is difficult
to intercept.

1www.eliko.ee/uwb-technology-indoor-positioning/



8 CHAPTER 2. STATE OF THE ART

• Precision - due to its wide frequency band (≥500MHz) and using techniques
such as Two Way Ranging, Time Difference of Arrival or Angle of Arrival we
are able to measure very precisely the final position up to few centimeters.

Among the main disadvantages we definitely have the cost of the equipment
that remains very high for the moment. It must be said that according to estimates
made by Global Real Time Location System (RTLS) Market (2020-2025) by Mordor
Intelligence as well as many others, by 2025 we will have a strong growth of the RLTS
market, consequently we will have a lowering of the costs of technology. This kind
of application is essential, for example, in logistics to obtain analyses of warehouse
flows, in production to know the processing stages of a particular object (product).

2.2.3 Bluetooth Low Energy (BLE)

Bluetooth technologies have become very valuable for location-based applications
since the introduction of the standard Bluetooth 4.0 (Bluetooth Low Energy) which
includes location-oriented specific profiles.

Figure 2.4: Bluetooth Low Energy RTLS system generic layout.



2.2. TECHNOLOGY OVERWIEW 9

Like other identification technologies, it is based on two elements: gateways
and tags (or transponders). In the case of BLE technology, these objects are called
beacons. The gateway/controller is assigned the role of an intelligent communication
tool, while the moving beacon tag (operating as an active RFID tag) transmits the
signal (identification code) to the BLE gateway. There are also some types of beacons
equipped with environmental sensors, which can measure temperature, humidity and
other parameters. These beacons are mainly used in industrial production, storage
and logistics.

The distinguishing features of this technology include: wireless communication
up to a radius of 100 metres, very low energy consumption, low costs compared to
other RTLS systems and easy recognition even from devices such as smartphones
and tablets.

The main disadvantage is a lower accuracy with respect to UWB and similar to
RFID technology. However, as Quuppa (one of the companies operating in the RLTS
sector) states, by combining Bluetooth wireless technology with direction finding
signal processing methodology, enables the superior positioning accuracy compared
to solutions that are based on Received Signal Strength Indication (RSSI). And this
can be implemented through intelligent use of position calculation algorithms based
on angle of arrival (AoA) and time difference of arrival (TDOA).

2.2.4 Wi-Fi

The main advantage of these systems is that they can use the pre-existing network
infrastructure and they are available in mobile phones and other wearable devices.
This makes them easy to deploy and cheaper than ad-hoc installations. The fre-
quency range is shown as usually in Fig.2.3 and given the reported power level, it is
clear that consumption will not be among the lowest.

The operating principle is based on measuring the intensity of the RSSI (Received
Signal Strength Indicator). The strength of the signal depends on the distance
between the sender and the receiver. By simply measuring the RSSI of the tag
(e.g. a mobile phone) to multiple WI FI access points (which act as anchors), it is
possible to estimate the position of the mobile phone using trilateration, the same
principle used in ultrasound IPS (Indoor Positioning System). The main difficulty
for these systems is that WIFI signals vary enormously in the presence of obstacles
and moving people. Also, different materials affect the signals differently which
affects accuracy. On one hand, WIFI offers great coverage, although power use is
considerable and something to be taken into account.

2.2.5 Infrared (IR)

Infrared radiation is electromagnetic radiation with a frequency band between 700nm
and 1mm. Hence the name infra (below) red (visible colour with the lowest fre-
quency 760nm). The wavelength range therefore corresponds to a frequency range
of approximately 430THz to 300GHz.



10 CHAPTER 2. STATE OF THE ART

Figure 2.5: Frequency range of visible light and respective wavelenght

The technology originated in the military as usual to be able to identify targets
in low light and visibility and/or night vision conditions. Infrared sensors convert
the incoming radiation into an image where it can be monochromatic (grey scale) or
a false colour system can be used to represent different temperatures. A tag emits
a unique Infrared ID picked up by an Infrared reader. The tag is simply a diode
emitting infrared radiation (infrared LED) that is focused and modulated by lenses
so that it can carry information.

These highly reliable systems are also expensive to install. They require an
unobstructed Line of Sight (LOS) between the anchor and the tag. This type of
system can be used as a very reliable room detector. Since light cannot traverse
walls, it is not possible for a tag to detect light from an anchor without being in
the same room. For precise localization, they require installing many anchors and
can struggle due to the low quality of the signal strength measurements required
to compute the position from multiple anchors. While the tags are low-cost and
long-lasting, a drawback of infrared is that every room needs a wired IR reader to
be installed in the ceiling. That’s fine if you’re installing it in new construction, but
retrofitting will be expensive. That’s why infrared systems are commonly used in
new hospital construction, where rooms are definitively segmented. In an open-space
warehouse instead, infrared detection and tracking would be a challenge.

2.2.6 Ultrasound

Sound waves with a frequency above 20KHz, which is the threshold of hearing of
the human ear. They can reach up to several GHz, which is why we are unable to
perceive these acoustic signals.

Figure 2.6: Sound waves frequency range and their applications



2.2. TECHNOLOGY OVERWIEW 11

They are used in various fields including ultrasound imaging in medicine, non-
destructive testing, cleaning, welding and last but not least object detection and
distance measurement. The last two in particular are reproductions of what bats,
porpoises and other animals already do to detect their prey and avoid obstacles/be-
ing eaten in nature.

An acoustic system works almost exactly like UWB except it uses sound instead
of radio. One benefit of using sound has to do with resolving multipath. If you’re
sending a transmission and taking a time measurement, you can guess the location
based on the signal speed. If that signal bounces off the wall on the way there,
you now have a multipath or maybe dozens of them. The ability to mathematically
differentiate between a direct path and a multipath is purely a function of the speed
of the medium divided by the bandwidth.

Now suppose we have the radar installed at 10m height and an aircraft at an
altitude of 10km with a distance of 5km between the two. If we use an acoustic
signal (c = 340m/s) the arrival time of the information will be 0.117s using the
following formula and scheme:

tsignal =
2hAhB
cd

(2.1)

A

B

Line of Sight (LOS)

Reflected 
multipath

d

Figure 2.7: Diagram of a radio communication between two points. A is the radar
receiver for example and B an aerial or satellite signal generator.

Using instead a transmission via an optical signal (c ' 300× 106m/s) the recep-



12 CHAPTER 2. STATE OF THE ART

tion time is 0.133µs. We can summarise the results in the following table where we
also calculate the required bandwidth f=1/T.

Signal type Velocity of propagation Time of flight Bandwidth

Acoustical 340 m/s 0.117 s 8.55 Hz

Optical 300× 106 m/s 0.133µs 7.5 MHz

Acoustic systems require less signal bandwidth to resolve multipath because the
speed of sound is so much less than the speed of light. The cost will depend on the
type of installation. If the installation is to be made in a new building, the costs
will be low, but if an existing infrastructure is to be adapted with sensors and wires,
the costs tend to rise. However the tags are unexpensive.

2.3 On-edge hardware

2.3.1 On-edge device requirements

An on-edge device is defined as such because it performs its functionality according
to its type and field of application located close to the main source of input data. Let
us take as an example a weather station with its sensors measuring temperature,
wind speed and direction, located high in the mountains. It will need to send
information with a certain regularity so that it can be of help to mountaineers who
intend to climb at high altitude in addition to its normal monitoring function.

The data generated by each of these weather stations located over a certain
territory will have to be processed by a central server, usually far away, in order to
be reliable. If we imagine the distances covered by the signals exchanged between
the station and the server, these can easily reach hundreds of kilometres depending
on the geographical location.

Let us assume that this information is transmitted via a physical cable connecting
the two points, and this is where the problem of communication delay arises. This
phenomenon is called latency and is directly proportional to the length of the cable
in which the electrical signals travel. In addition we have to take into account the
various delays introduced by the electronic and electrical components connected to
the two ends of the cable and the interference experienced during the journey. All
this leads to a more or less important time delay depending on the criticality of the
system we are monitoring, as well as to the deterioration of the signal content.

Another application, this time closer to the subject of this thesis, could be a
surveillance camera installed inside a bank vault that transmits video data to the
server for processing. In this case, in addition to the distances involved, there is also
the size of the data, which is particularly onerous for video streams.

It is precisely considerations such as those mentioned above, as well as many
other practical applications that have triggered the evolution of technology to place
the information processing unit ever closer to its source. In addition, we have to
take into account security and privacy issues related to sensitive information that



2.3. ON-EDGE HARDWARE 13

is transferred over the public network. Once we constrain this data flow on a local
network, the system is much less vulnerable to attacks from outside. In addition,
as already mentioned in the initial introduction, there is a considerable reduction
in terms of bits travelling over the wired and wireless network, thus also reducing
latency. And the latter becomes a vital parameter in applications involving real-time
monitoring.

Unlike cloud computing, edge computing devices store customer information
solely on the device, and devices can be configured to erase collected data within
a certain period of time. This makes edge computing devices excellent self-service
tools for the banking and finance, healthcare and e-commerce industries.

In the healthcare sector, edge computing devices are used on wearables and
implantable medical devices to assist patients. In most of these situations, the
device can handle biomedical signal processing schemes to help devices take specific
actions. The integration of edge devices into healthcare also improves the delivery
of personalised medical solutions to patients.

Manufacturers in the biomedical industry and service providers who own ware-
houses can also leverage edge computing devices to improve shop floor operations.
Connecting edge devices to material handling equipment or within specific sections
helps understand shop floor traffic, inventory management and productivity. Cap-
tured data can then be used to simplify warehousing and speed up order processing
activities2.

In order to design industrial edge computing hardware that meets the challenges
of industrial applications, several requirements need to be considered.

Durability must be a key consideration in the design of industrial computing
hardware. This is due to the confusion and physical characteristics of shop floor
operations. This means that when designing hardware, it must be constructed from
durable materials that can withstand high temperatures, enhanced vibration and
liquid spills. The edge hardware must also be able to function under these conditions
for the long haul.

Aesthetics and architecture-in order to bring computing into the deepest
parts of a facility, the hardware housing the edge computing resources must be
aesthetically designed for integration into different equipment. Therefore, its con-
struction is a key factor to be considered by suppliers as well as the final appearance
of the industrial edge computing device. This is due to the fact that commercial
hardware that appeals to the end user is able to do well in different markets.

The energy used by hardware devices adds to the total cost of overheads (TOC)
of running plants. Manufacturers interested in adopting industrial cloud technology
typically calculate the adoption TOC before making a move, and power require-
ments are part of the overhead column. This is why industrial edge computing
hardware should consist of ultra-low power microcontroller units.

Security of production data has always been a key consideration for integrating
the industrial cloud into facilities. Therefore, both data captured by software ap-

2www.exorint.com/it/blog/cosa-sono-i-dispositivi-di-edge-computing



14 CHAPTER 2. STATE OF THE ART

plications and hardware devices must be protected from eavesdroppers and hackers.
To mitigate security risks, the integration of hardware cryptographic accelerators or
reverse-engineering firewalls must be used to circumvent cyber threats.

2.3.2 Edge AI hardware Market

The various sources consulted report very similar forecasts for the market we have
analysed. In particular, the different analyses examined all reflect a strong growth
in the edge hardware market with an increasing trend until 2028 3. Key drivers for
the market’s growth are growing demand for low latency and real-time processing
on edge devices and emergence of AI coprocessors for edge computing [4]. Further,
underlying opportunities for the edge AI hardware market include growing demand
for edge computing in IoT and dedicated AI processors for on-device image analytics.
Major restraints for the market are limited on-device training and limited number
of AI experts. Power consumption and size constraint pose major challenges to the
edge AI hardware market.

Based on the data reported by 4 it is estimated that the value of the AI edge
market will reach 1.5 billion USD in 2024 with a growth rate (CAGR) of 20.64%
calculated over the period 2019-2024 as shown in 2.8.

Figure 2.8: Edge AI hardware market forecast. Source: Industry experts, Secondary
research, MarketsandMarkets

Four geographical macro-areas are analysed respectively: APAC (Asia-Pacific),
North America, Europe and the rest of the world (RoW).

3www.databridgemarketresearch.com/reports/global-edge-computing-market
4www.marketsandmarkets.com/Market-Reports/edge-ai-hardware-market



2.3. ON-EDGE HARDWARE 15

Asia-Pacific region is expected to experience the highest growth rate in the global
edge AI hardware market. The growing penetration of smartphones in China,
Japan, India, and South Korea is expected to increase the adoption of AI processor-
enabled smartphones [3]. As smartphones represent the most widely deployed edge
devices, chips for smartphones have undergone rapid developments, and their capa-
bilities have been extended to the acceleration of AI computing. To name a few,
Qualcomm first applies AI hardware acceleration [8] in Snapdragon and releases
Snapdragon Neural Processing Engine (SNPE) SDK, which supports almost all ma-
jor DL frameworks. This is also confirmed by benchmarks carried out on the 5 site
which illustrates the major players in the mobile industry including Qualcomm’s
Snapdragon series, Huawei and Samsung.

North America will dominate the edge computing market due to convergence
of edge computing with the Industrial Internet of Things (IIoT) has emphasized
manufacturers in the U.S. to move towards connected factories. Emergence of several
startups providing platforms to develop an edge-enabled solution is also a driver for
the market in this region.

While Asia-Pacific will be expected to witness the highest growth rate due to de-
velopment of AI (Artificial Intelligence) technologies, with the opening of Microsoft
Corporation’s research labs in China and India. IoT device management and edge
computing with 5G networks is also a driver for the market in this region6.

Although Europe is in third place in terms of market share, it is expected to
double its current share and reach USD 300 million by 2024 with almost linear
growth.

Governmental bodies across the world, are embracing advanced technologies to
address the important aspect of ensuring the security and safety of citizens. Surveil-
lance serves to be a key factor in the process. Some of the major devices for edge AI
hardware used by government agencies for the purpose includes surveillance cameras
and drones.

With the ever-increasing population, environmental damage, and criminal activ-
ities, cities are facing new challenges each day, and this has resulted in the need for
surveillance cameras. These are very much required for the prevention of incidents
such as crime, burglary, and vandalism. Besides, governments also use surveillance
cameras for enforcement of the law by analyzing the behavior, face recognition.

China is at the forefront of installing AI-based surveillance cameras to scan
public places to track anomalies in behavior and criminal identification. A recent
journal published in the New York Times revealed that the Chinese government had
installed around 426 million surveillance cameras across the country in 2020. The
country aims to spot crimes and accidents easily by integrating private and public
cameras, to build a nation-wide surveillance network. The intention is to create a
system similar to the one illustrated and anticipated in the 2011 television series
’Person of Interest’ by David Semel.

5ai-benchmark.com/ranking
6www.databridgemarketresearch.com/reports/global-edge-computing-market



16 CHAPTER 2. STATE OF THE ART

China is the largest market in the region, followed by Japan. Presence of several
significant vendors in the automobile, electronics, and semiconductor companies,
who are investing significantly in the AI technology, is driving the growth of the
edge AI hardware market in the region. During a one-month period between June
and July 2018, Beijing Municipal Commission of Economy and Information Tech-
nology counted around 4,040 AI companies in China. Besides, the presence of a
large number of manufacturing companies makes the region an attractive market
for industrial robots that implements AI technology7.

Wearable devices also play a significant role in the increasing demand for inte-
gration with vision processing units to accelerate AI tasks. Cisco Systems estimates
that the number of connected wearable devices could reach 1,105 million units by
2022. End-user industries like manufacturing, telecommunications, and automotive
have huge potential in the region.

The edge AI hardware market is currently dominated by few players with their
technological expertise in AI technology and the global market is expected to be
consolidated in nature. Intel Corporation, NVIDIA Corporation, Qualcomm Inc.,
Samsung Electronics Co., Ltd., Huawei Technologies Co., Ltd., Google Inc., Medi-
aTek Inc., Xilinx Inc., Imagination Technologies Limited, and Microsoft Corpora-
tion are some of the major players present in the current market. However, several
prominent AI startups like Cambricon Technology, Horizon Robotics, Hailo Tech-
nologies, and Habana Labs are expected to compete with the key players, on the AI
inferencing side8.

Figure 2.9: The most important players in AI chipset market

7www.researchandmarkets.com/reports/4828178/edge-ai-hardware-market-growth-trends-covid
8www.mordorintelligence.com/industry-reports/edge-ai-hardware-market



2.3. ON-EDGE HARDWARE 17

2.3.3 Hardware for computer vision on-edge

Arduino

Arduino is definitely the first thing that comes to mind when one approaches the
world of automation, whatever it may be. It is a hardware platform made up of
several integrated circuits with a microcontroller that manages the various digital
and analogue inputs and outputs on the board. Its popularity comes from the
fact that the Arduino world is simple and well-documented, it provides a great
background to the world of robotics and automation, and you can find plenty of
projects on the web by both hobbyists and professionals. The boards most commonly
used for these purposes are the Arduino Uno and the Arduino Mega2560, the latter
being an extended version of the former as you can see below9.

Figure 2.10: Main features of the most popular Arduino boards

The other key feature of these boards is the Arduino proprietary Integrated
Development Environment (IDE). It is very user-friendly and guided step-by-step,
allowing the writing of code even for those who are new to programming. The editor
is also able to compile and load the working and executable program on the board
with a single click. There is generally no need to create Makefiles or run programs
from the command line.

Now, if we immerse the Arduino in computer vision, it can still give us some
satisfaction, but only if we work with static images or almost static images (a few

9www.arrow.com



18 CHAPTER 2. STATE OF THE ART

pfs). Using the OpenCV library, it is still possible to identify objects, faces and
people, but with a lot of effort and very few details and points detected and/or
analysed. And this, as you can imagine, is unthinkable for the industrial world
and operation in real time conditions. The reason is simple, computer vision and in
particular image processing or even worse pose estimation require a lot of calculations
that have to be performed in a very short time. Since there is no GPU in the
Arduino architecture, it cannot perform the required calculations. The ATMega
processors with which the boards are equipped are good for simple calculations
to drive servo motors, home automation and sensors, but they are certainly not
capable of processing the huge amount of parallel calculations required by industrial
computer vision.

Raspberry Pi

The Raspberry, unlike the Arduino, includes a GPU in its hardware architecture, so
it can be called a single-board computer in its own right. The main operating system
is based on GNU/Linux such as Debian and Fedora but other operating systems
are also supported including Windows 10 and Android. Thanks to its affordable
price, which can vary depending on the amount of RAM required, this device is
widely used in industry and is also within reach of less experienced users or simply
electronics/automation enthusiasts. And thanks to the latter, you can find a myriad
of guides, documentation and projects with related codes on the web.

Figure 2.11: Raspberry Pi 4 Model B board

Among the main features are:



2.3. ON-EDGE HARDWARE 19

Price 38€/48€/58€/75€
Processor 1.5 GHz 64-bit quad-core ARM Cortex-A72 (ARMv8)

GPU Broadcom VideoCore VI @ 500 MHz

SDRAM 1GB/2GB/4GB/8GB shared with GPU

Dimension 85mm x 56mm x 19.5mm, 46g

Voltage supply 5V via USB-C o via GPIO

Storage microSD up to 64GB

USB ports 2x USB 2.0 and 2x USB 3.0

Networking 2.4GHz and 5GHz 802.11b/g/n/ac wireless LAN

Bluetooth Bluetooth 5.0, Bluetooth Low Energy (BLE)

DIgital I/O Pins 40-pin GPIO header

Despite the fact that it is an exceptional card for the vast majority of applica-
tions, it is still unable to guarantee a real time condition in human tracking and
pose estimation.

After consulting various benchmarks10, blogs11, guides12 and papers [7] we can
conclude that the Raspberry Pi 4 is able to process video streams through computer
vision libraries and frameworks such as OpenPose, TensorFlow Lite and Caffe with
performance that can reach a maximum of 2-3 fps. However, the result does not
meet the processing speed required by the company, which must be above 5fps to
meet the customer’s specifications.

10www.arnabkumardas.com/platforms/nvidia/nvidia-jetson-nano-review-and-benchmark/
11aallan.medium.com/benchmarking-edge-computing-ce3f13942245
12qengineering.eu/opencv-c-examples-on-raspberry-pi.html



20 CHAPTER 2. STATE OF THE ART

NVIDIA Jetson

After further research, we found several benchmarks13 and documentation [1] re-
garding the tremendous performance that NVIDIA’s Jetson family of single boards
were capable of delivering. It is no coincidence that NVIDIA is also the leading com-
pany in the GPU industry and has been dominating the market for several years
with cutting-edge technology. For simplicity’s sake, we only list the board’s data
below, as we will describe the device in more detail in Chapter 3.

Figure 2.12: Jetson Nano main features

The hardware we selected is the first in a series of modules designed by NVIDIA
and is the most modest in terms of cost and performance but still meets our re-
quirements. As higher computational power is demanded the price increases until
we arrive at the most powerful module of all which is the Jetson AGX Xavier that
will be used for fully autonomous machines unlike its predecessors more suitable for
the on-edge role.

Figure 2.13: Jetson family boards

13developer.nvidia.com/blog/jetson-nano-ai-computing/



2.3. ON-EDGE HARDWARE 21

AMD Ryzen Embedded

Of course, we couldn’t fail to mention the other leader in the video card and proces-
sors sector, AMD, which with its 27% market share shares shares a monopoly with
its direct competitor NVIDIA with 73% 14. AMD is competing for the on-edge and
miniPC market share with the Ryzen Embedded family of 64-bit multi-core x86 em-
bedded microprocessors introduced in early 2018 with the V1000 series based on the
Zen microarchitecture. The Ryzen Embedded family is a low-power variant of the
Ryzen line that primarily targets graphics-driven embedded devices such as medical
imaging, industrial systems, digital gaming and thin clients.

Figure 2.14: AMD Ryzen Embedded mi-
croprocessor serie 1000

Ryzen Embedded V1000 integrates
Zen CPUs and Vega GPUs on a single
die, offering up to 4 cores / 8 threads
and up to 11 GPU Compute Units for
a throughput of up to 3.6 TFLOPS at
16-bit computation. With a price tag
expected to be around 200USD makes
them a serious contender to the simi-
lar NVIDIA Jetson TX2 Series already
on market with the 1.33 TFLOPS as
AI Performance claimed on their web-
site 15 at a known price starting at
249USD. Just for comparison, the Jet-
son Nano has a computing capacity of
471.6 GFLOPS with the same FP16 for-
mat. Key characteristics include:

Memory Dual-channel 64-bit DDR4-3200 or DDR-2400 w/ ECC, up to 32 GiB

up to 16 PCIe lanes, 2 SATA ports, 6 USB ports;
I/O

2 Gigabit Ethernet ports

TDP 6W-45 W (with cTDP-up and cTDP-down options)

ISA Everything up to AVX2

Tech Precision Boost, 2-way SMT, AMD-Vi, AMD-V, SME, and SEV

L3$ 4 MiB

In addition, was launched in November 2020, the processors of the V2000 embed-
ded series based on the Zen 2 microarchitecture in a single monolithic die fabricated
on a TSMC 7 nm process, doubling the performance per Watt and core count over
the prior generation, and increasing IPC by 15%. These SoCs come in either hexa-
core or octa-core models with SMT and a Vega integrated graphics processor with 6
or 7 compute units in package FP6. The integrated Radeon graphics have also been
improved by 40 per cent.

14businessquant.com/global-gpu-market-share
15https://developer.nvidia.com/embedded/jetson-modules



22 CHAPTER 2. STATE OF THE ART

The Ryzen V2000 offers configurations of up to 8 cores/16 threads, 20 PCI-E 3.0
lines, supports up to 4K displays, and has a configurable TDP of 10 to 54 watts.

Processors defined as ’embedded’ are designed for integration into Edge systems,
Mini PCs and Thin Clients. The AMD Ryzen Embedded R1000 is available world-
wide since 2019 and is already supported by numerous hardware and software com-
panies including Advantech, Alphainfo, ASRock Industrial, Axiomtech, DFI, iBase,
Kontron, MEN, Mentor, Sapphire16, zSpace, Nuvo-2700DS Series17 and more.

We did not select the AMD device because of the lack of documentation and lit-
erature on human tracking and identification as well as computer vision technology,
and the risk of taking too long to finish the job. But this does not preclude the fact
that in the next few years it could be a valid alternative to the Jetson Nano and its
heirs.

Google Coral Dev board

Figure 2.15: Google Coral Dev board

The Coral Dev Board is a single-board computer that’s ideal when you need to
perform fast machine learning (ML) inferencing in a small form factor. The SoM
provides a fully-integrated system, including NXP’s iMX 8M system-on-chip (SoC),
eMMC memory, LPDDR4 RAM, Wi-Fi, and Bluetooth, but its unique power comes
from Google’s Edge TPU (Tensor Processing Unit) coprocessor. The Edge TPU is
a small ASIC designed by Google that provides high performance ML inferencing
with a low power cost. The on-board Edge TPU coprocessor is capable of performing

16www.anandtech.com/show/15549/sapphire-announces-new-4x4-amd-ryzen-embedded-
motherboards

17www.neousys-tech.com/en/



2.3. ON-EDGE HARDWARE 23

4 trillion operations (tera-operations) per second (TOPS), using 0.5 watts for each
TOPS (2 TOPS per watt). For example, it can execute state-of-the-art mobile vision
models such as MobileNet v2 at almost 400 FPS, in a power efficient manner. We
summarise the main features in the table below:

CPU NXP i.MX 8M SoC (quad Cortex-A53, Cortex-M4F)

GPU Integrated GC7000 Lite Graphics

RAM 1 GB / 4 GB LPDDR4

Price 130 USD / 170 USD

Flash memory 8 GB eMMC, MicroSD slot

Wi-Fi 2x2 MIMO (802.11b/g/n/ac 2.4/5GHz);
Wireless

Bluetooth 4.2

Type-C OTG; Type-C power; Type-A 3.0 host;
USB

Micro-B serial console

LAN Gigabit Ethernet port

3.3V power rail; 40-255Ω programmable impedance;
GPIO

82 mA max current

Power 5V DC (USB Type-C)

Dimensions 88 mm x 60 mm x 24mm

Google Edge TPU coprocessor:4 TOPS (int8);
ML Accelerator

2 TOPS per watt

We conclude by saying that the Google Coral Dev board remains much less used
and documented in the AI and computer vision world than the Jetson Nano, but
despite its higher price it is more suitable for ML (Machine Learning) applications
and ensures better performance in terms of inference. If, on the other hand, we move
into the world of computer vision and image processing, the most suitable board is
certainly the Jetson Nano with its Maxwell GPU with 128 CUDA cores.

As far as the industrial world is concerned, Jetson is more suited to small and
medium-sized enterprises and start-ups, while the Google Dev board is more suited
to medium-sized and large companies, due to the fact that it is much more restrictive
in terms of available software and for the reasons mentioned above.



24 CHAPTER 2. STATE OF THE ART

Google Coral Stick

Now let’s get back to the hardware accelerators we mentioned in the previous para-
graphs (i.e edge TPU). The first of these is also made by Google Coral and is a
USB stick that brings machine learning inferencing to existing systems. Works with
Linux, Mac, and Windows systems by simply plugging the memory stick into the
USB port.

Figure 2.16: Google Coral USB Accelerator

Technical specifications

ML accelerator Google Edge TPU coprocessor:4 TOPS (int8); 2 TOPS per watt

Connector USB 3.0 Type-C (data/power) and USB2.0 compatible

Dimensions 65 mm x 30 mm

Price starting from $59.99

The on-board Edge TPU coprocessor is capable of performing 4 trillion opera-
tions (tera-operations) per second (TOPS), using 0.5 watts for each TOPS (2 TOPS
per watt). For example, it can execute state-of-the-art mobile vision models such as
MobileNet v2 at almost 400 FPS, in a power efficient manner. To confirm the above
statements, the bench-marking performed by 18 actually shows

18blog.usejournal.com



2.3. ON-EDGE HARDWARE 25

Figure 2.17: Inference increasing benchmarks thanks to Google Coral USB stick

that inference in terms of fps increases dramatically with the addition of the
Google USB stick accelerator. The model used for the test is the MobileNetV2 as
classifier, pre-trained on ImageNet dataset. The benchmarks are performed on the
I7 processor with GTX1080 and Coral USB stick, Jetson Nano with and without
Coral USB stick and finally the Raspberry PI with and without the Coral HW
accelerator. We did not use the accelerator basically for two reasons: cost and
scope. In our project we are dealing with image processing but not with image
classification but with human tracking and pose estimation.



26 CHAPTER 2. STATE OF THE ART

Intel Neural Computer Stick 2

It should not surprise us that the other player in hardware acceleration is Intel Corp,
the market leader in microprocessors. Intel® Neural Compute Stick 2 is powered
by the Intel Movidius™ X VPU to deliver industry leading performance, wattage,
and power.

Figure 2.18: Intel NCS2

NCS 2 speeds up the development of deep neural networks, providing up to
8 times the performance of the first version, giving developers the ability to test,
optimise and prototype more advanced deep neural networks. Intel talks about a set
of 16 programmable SHAVE (Streaming Hybrid Architecture Vector Engine) cores
representing a 33 per cent increase over the previous generation, supported by a
memory interconnect with high throughput.

Intel assures that simply plugging the NCS 2 into a laptop will have AI and
computer vision applications ready in minutes. NCS 2 connects to a standard USB
3.0 port and requires no additional hardware, allowing users to convert and de-
ploy PC models on a wide range of devices natively and without Internet or cloud
connectivity.

Intel’s NCS 2 is also supported by the OpenVINO toolkit, which offers deep
learning, computer vision and hardware acceleration for the development of applica-
tions with human-like vision capabilities. The combination of the NCS 2 with Intel’s
distribution of the OpenVINO toolkit enables a rapid development and deployment
cycle: from prototyping DNNs trained on the Compute Stick to simply porting
DNNs to an embedded device based on Intel’s Movidius VPU or a system requiring
little or no code changes. The NCS 2 also supports the popular open-source software
libraries Caffe and TensorFlow. The Neural Compute Stick 2 is available in Europe
from RS Components and Mouser for around 85$.



2.3. ON-EDGE HARDWARE 27

Figure 2.19: Inference increasing benchmarks due to NCS2 stick

As with the previous solution, we report these very interesting results comparing
the Coral Dev board which already includes the accelerated Edge TPU, Raspberry
Pi3 with the NCS2 and the Jetson Nano alone tested with various tools includ-
ing OpenPose and Tiny YOLO-v3 on different image classification models such as
MobileNet-v2.



28 CHAPTER 2. STATE OF THE ART

2.4 Computer vision software, frameworks and tools

OpenCV

It is a free software library originally developed by Intel
in its research centre in Russia in Niznij Novgorod. It was
later maintained by Willow Garage and now by Itseez.
The main programming language used to develop with
this library is C++, but it is also possible to interface
with C, Python and Java. In fact, to feed the frames
to be processed to OpenPose, we use OpenCV through
scripts in Python. It is so well documented that we have
found everything we need to capture frames from a webcam or video file on their
website.19. Being a BSD-licensed product, OpenCV makes it easy for businesses to
utilize and modify the code. The library has more than 2500 optimized algorithms,
which includes a comprehensive set of both classic and state-of-the-art computer
vision and machine learning algorithms. These algorithms can be used to detect
and recognize faces, identify objects, classify human actions in videos, track camera
movements, track moving objects, extract 3D models of objects, produce 3D point
clouds from stereo cameras, stitch images together to produce a high resolution
image of an entire scene, find similar images from an image database, remove red
eyes from images taken using flash, follow eye movements, recognize scenery and
establish markers to overlay it with augmented reality, etc. OpenCV has more
than 47 thousand people of user community and estimated number of downloads
exceeding 18 million. The library is used extensively in companies, research groups
and by governmental bodies. It has C++, Python, Java and MATLAB interfaces
and supports Windows, Linux, Android and Mac OS.20

TensorFlow

TensorFlow is an end-to-end open source platform for
machine learning. It can be used across a range of tasks
but has a particular focus on training and inference of
deep neural networks. TensorFlow was developed by the
Google Brain team and made available on 9 November
2015, under the terms of the Apache 2.0 open source li-
cence. TensorFlow is compatible with major 64-bit oper-
ating systems (Windows, Linux and Mac OS X) and Android. Although the official
documentation initially spoke of limited hardware compatibility, the library can run
on many types of CPUs and even GPUs, thanks to the support of languages such
as CUDA or OpenCl. Furthermore, Google has designed and built an ASIC (Ap-
plication specific integrated circuit) processor specifically for this language, called

19docs.opencv.org/4.5.2/dd/d43/tutorial py video display.html
20https://opencv.org/about/



2.4. COMPUTER VISION SOFTWARE, FRAMEWORKS AND TOOLS 29

TPU (Tensor Processing Unit), which we have already discussed in the previous
paragraphs.

CUDA

CUDA (Compute Unified Device Architecture) is a hard-
ware architecture for parallel computing created by
NVIDIA. Through the CUDA development environment,
software programmers can write applications capable of
parallel computing on NVIDIA video card GPUs that are
of particular interest in the world of computer vision and
human tracking. CUDA accelerates applications across
a wide range of domains from image processing, to deep
learning, numerical analytics and computational science.

SciPy and NumPy

SciPy is an open source library of algorithms and mathematical tools for the Python
programming language. It contains modules for optimization, linear algebra, inte-
gration, special functions, FFT, signal and image processing, ODE solvers, and other
tools common in science and engineering.

NumPy, on the other hand, is an open source library for the Python programming
language that adds support for large matrices and multidimensional arrays along
with a large collection of high-level mathematical functions to efficiently operate on
these data structures.

Caffe

CAFFE (Convolutional Architecture for Fast Feature Embedding) is a deep learning
framework, originally developed at University of California, Berkeley. It is open
source21, under a BSD license. It is written in C++, with a Python interface22. Caffe
supports many different types of deep learning architectures geared towards image
classification and image segmentation. It supports CNN, RCNN, LSTM and fully
connected neural network designs. Caffe supports GPU and CPU-based acceleration
computational kernel libraries such as NVIDIA cuDNN and Intel MKL. Caffe is
being used in academic research projects, startup prototypes, and even large-scale
industrial applications in vision, speech, and multimedia.

PyTorch and Torchvision

PyTorch is an open source machine learning library based on the Torch library,
used for applications such as computer vision and natural language processing. Al-
though the Python interface is more polished and the primary focus of development,

21https://github.com/BVLC/caffe
22https://caffe.berkeleyvision.org/



30 CHAPTER 2. STATE OF THE ART

PyTorch also has a C++ interface. A number of pieces of deep learning software
are built on top of PyTorch, including Tesla Autopilot, Uber’s Pyro, HuggingFace’s
Transformers, PyTorch Lightning and Catalyst. PyTorch provides two high-level
features: Tensor computing (like NumPy) with strong acceleration via graphics pro-
cessing units (GPU) and Deep neural networks built on a type-based automatic
differentiation system. It is free and open-source software released under the Modi-
fied BSD license.

TorchVision is a computer vision library for manipulating images. It contains
utility functions for processing images so that they can be fed into neural networks.
It also houses popular image datasets, deep CNN model architectures along with
pretrained models.

OpenPose

OpenPose[2] has represented the first real-time multi-
person system to jointly detect human body, hand[6],
facial, and foot keypoints (in total 135 keypoints) on sin-
gle images.

Having limited hardware resources and working at
distances allowed by a classic surveillance camera, it
was decided to adopt the twenty-five keypoints model
BODY 2523. So hands and face are not taken into ac-
count because they require a significant computational effort and the latter is not
justified because at distances close to 10m from the video source additional points
are not detected.

To confirm what has been said above we report the official requirements of Open-
Pose taken from the official repository on GitHub. An NVIDIA GPU with at least
16GB of memory is required to run on the full version. For the simplified model
BODY 25 at least 10.5GB of memory is required and the GPU’s of reference are
TITAN X, QUADRO P100, QUADRO V100. From what is stated on the reposi-
tory it runs at about 2 FPS on a Titan X for BODY 25. As we will illustrate in
the following paragraphs has been used the demo version of OpenPose making small
changes to the scripts already present in Python language to adapt them to our
needs.

OpenPose is freely available for free non-commercial use, and may be redis-
tributed under these conditions.

23https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/doc/02 output.md



2.4. COMPUTER VISION SOFTWARE, FRAMEWORKS AND TOOLS 31

Figure 2.20: BODY 25 model of the body stick used by OpenPose.

TensorRT

TensorRT is Nvidia software solution for generating optimized models for production
deployment of Deep Learning Models.

With TensorRT, you can optimize neural network models trained in all major
frameworks, calibrate for lower precision with high accuracy, and deploy to hyper-
scale data centers, embedded, or automotive product platforms.

TensorRT is built on CUDA®, NVIDIA’s parallel programming model, and en-
ables you to optimize inference leveraging libraries, development tools, and technolo-
gies in CUDA-X™ for artificial intelligence, autonomous machines, high-performance
computing, and graphics.

TensorRT provides INT8 and FP16 optimizations for production deployments
of deep learning inference applications such as video streaming, speech recognition,
recommendation, fraud detection, and natural language processing. Reduced pre-



32 CHAPTER 2. STATE OF THE ART

cision inference significantly reduces application latency, which is a requirement for
many real-time services, as well as autonomous and embedded applications.

With TensorRT, developers can focus on creating novel AI-powered applications
rather than performance tuning for inference deployment.

YOLO

You Only Look Once (YOLO) is a state-of-the-art, real-time object detection system[5].
Prior detection systems repurpose classifiers or localizers to perform detection. They
apply the model to an image at multiple locations and scales. High scoring regions
of the image are considered detections. YOLO uses a totally different approach. A
single neural network is applied to the full image. This network divides the image
into regions and predicts bounding boxes and probabilities for each region. These
bounding boxes are weighted by the predicted probabilities.

Figure 2.21: YOLO object detection.

YOLO has 24 convolutional layers followed by 2 fully connected layers (FC).
Some convolution layers use 1 × 1 reduction layers alternatively to reduce the depth
of the features maps. For the last convolution layer, it outputs a tensor with shape
(7, 7, 1024). The tensor is then flattened. Using 2 fully connected layers as a form
of linear regression, it outputs 7×7×30 parameters and then reshapes to (7, 7, 30),
i.e. 2 boundary box predictions per location. A faster but less accurate version of
YOLO, called Fast YOLO, uses only 9 convolutional layers with shallower feature
maps.

To pursue the purpose of the work, it was not enough to identify the people
on the monitor but it was also necessary to track them over time and assign them



2.4. COMPUTER VISION SOFTWARE, FRAMEWORKS AND TOOLS 33

Figure 2.22: YOLO network structure.

a unique id. For this reason it was decided to implement an additional tool that
would use YOLO as a detector and track the object or person. Deep-SORT[9] was
the most suitable solution. As you can see in the figure below is able to identify a
pedestrian in the street, assign him an identifier and track his movements over time
thanks to complex techniques such as Kalman Filter and Ungarian Algotirthm.

Figure 2.23: DeepSort that uses YOLOv3 in order to detect and track the pedestri-
ans.



34 CHAPTER 2. STATE OF THE ART



Chapter 3

On-edge architecture

The ’on-edge’ device must be able to process information coming from a video stream
of one or more surveillance cameras in the shortest time possible. By doing this,
large video streams from the cameras to the server are avoided by relieving data
traffic on the customer’s local network. The only information that will be sent to
the central processor will be spatial coordinates of each subject in the video of very
small size (a few bytes). In addition, it avoids all problems related to the transfer
of sensitive data and privacy due to video streams and confining them to remain in
the domain of one or more cameras.

The device is used to identify and track objects and people in closed environments
such as warehouses, depots and large distributions where the GPS signal is poor or
absent altogether. By using a simple surveillance camera we avoid making people
wear special tags in order to identify them with technologies such as Bluetooth,
WI-FI and UWB that involve some additional cost.

The three fundamental requirements of the selected device can be summarized
as follows: cheap, compact and powerful.

The cost was reduced to ensure competitiveness. The size of the device had
to remain compact so that it could be installed in prearranged locations with very
limited space adjacent to the surveillance cameras.

The performance that the electronic device had to guarantee in order to be able
to process the amount of data coming from the video sources through a network
of machine learning and deep learning software on board required a not indifferent
calculation power.

At the end of the research and analysis of various benchmarks present in the
literature was selected the Jetson Nano by NVIDIA Corporation. It was the best
trade-off in terms of cost-performance as you can see in the Figure3.1 based on
the software we intended to use which is OpenPose. Moreover it was suitable for
installations next to surveillance cameras on walls and ceilings.

35



36 CHAPTER 3. ON-EDGE ARCHITECTURE

Figure 3.1: NVIDIA Jetson benchmarks

3.1 Jetson Nano board

The Jetson Nano is a tool designed and engineered for AI (Artificial Intelligence) and
small robotics applications with low power consumption (5-10W). Being equipped
with optimization software and libraries for deep learning, computer vision, GPU
computing and multimedia processing such as NVIDIA CUDA and cuDNN it is
able to provide excellent performance in parallel computing and run most of the
modern neural networks. All this is possible thanks to the deep knowledge of the
GPU architecture (Maxwell) designed by NVIDIA itself that implements hardware
acceleration libraries to bring out the best possible performance. The more expensive
4GB RAM version has been selected based on OpenPose requirements (at least 2GB)
so we could work with some margin.

The first step to be able to work on the card is to load the operating system conve-
niently available on the site 1 as an SD card image named Jetpack. In fact the Jetson
is equipped with an SD card slot where to put a 32GB microSD formatted according
to the procedure provided by the manufacturer. Once prepared the latter the image
has to be written on the SD card with the operating system. This latter includes all
the necessary libraries in addition to software NVIDIA needed for optimization and
hardware acceleration. Among these the most important key features for the OS
support are: NVIDIA L4T bootloader, Linux kernel, necessary firmwares, NVIDIA
drivers, sample filesystem. TensorRT which assures high performance deep learning
inference runtime for image classification, segmentation, and object detection neu-
ral networks. CUDA Deep Neural Network library which provides high-performance
primitives for deep learning frameworks such as forward and backward convolution,
pooling, normalization, and activation layers. CUDA development environment for

1https://developer.nvidia.com



3.1. JETSON NANO BOARD 37

Figure 3.2: NVIDIA Jetson Nano 4GB board

C and C++ developers building GPU-accelerated applications for CUDA hardware
architecture. Multimedial and low level APIs for flexible application development
for camera applications, video decode, encode, format conversion and scaling func-
tionality. VisionWorks, OpenCV and Vision Programming Interface libraries for
computer vision, image processing and machine learning. And finally supported
SDKs and Tools like Deepstream SDK and PowerEstimator.

Following several tests and installation attempts of the Jetpack 4.4 and Jetpack
4.4.1 versions, we found several incompatibilities in terms of software version be-
tween the various frameworks already present and those to be installed later. Going
backwards, we have therefore focused on the Jetpack 4.3 version, which has given
us fewer problems than its predecessors. To achieve our goal, we followed the guides
on the 2 blog, which was very useful and helpful.

We then format the microSD (at least 16GB recommended) with the SD Mem-
ory Card Formatter tool. If for some reason there is already an operating system
on it, the card will not be recognised by the formatting wizard. You have to delete
the existing version manually with the following procedure:

Start→Disk management→Disk corresponding to the micro SD used (32GB in

2https://spyjetson.blogspot.com



38 CHAPTER 3. ON-EDGE ARCHITECTURE

our case with 29.15GB effective)→Delete volume→Create partition

After that, the PC with which we are going to format the microSD is able to
recognise a new disk drive. Download the JetPack 4.3 image from 3 and write it to
the microSD using the Etcher tool. Once this is done, insert the microSD into the
microSD slot on the Jetson under the black heat sink and connect all the peripheral
devices as shown in the figure above 3.3.

Figure 3.3: NVIDIA Jetson Nano leteral views

Figure 3.4: NVIDIA Jetson Nano top view

We are going to power the Jetson with a 5V and 4A power supply on the RS(J25)
jack, as in the picture, and this must guarantee the effective supply of 5V and not
less, otherwise the board won’t even turn on. For this reason, NVIDIA recommends
a specific power supply for this application that takes into account the voltage drop
across the power supply cable (about 0.2V). To change the power supply mode from

3https://developer.nvidia.com/jetpack-43-archive



3.1. JETSON NANO BOARD 39

microUSB(J28) to DC(J25), you must first insert the jumper on J48 to short the pins.
Respectively we will have J48 with open pins - microUSB power and J48 shorted -
DC power. Finally, we connect the remaining peripheral devices including monitor
(HDMI), mouse and keyboard (USB 3.0), Ethernet cable (LAN) and proceed to
power-up.

Figure 3.5: First boot screen - system configuration

The Jetson board doesn’t have an on/off button, so you just plug in the power
supply and it goes. As for the shutdown, we will do it directly from the onboard
operating system (Linux). At the first power on we have to enter some data that
will identify our device 3.5.

Particular attention should be paid to the ”user name” entry, which will identify
the card when it is connected to other PCs. In particular, when you want to use
the ”Headless Mode” documented in the User Guide. This allows you to configure
Jetson Nano with an external PC using only the microUSB cable (removing the
jumper from J48), thus avoiding the need to connect the power supply, HDMI,
mouse and keyboard thanks to the SSH (Secure SHell) connection protocol. The
above mentioned mode could prove very useful, for example, at the time of the first
installation or subsequent debugging at the customer’s premises.

A few intermediate steps are required before proceeding with the actual instal-
lation. First of all, since the operating memory is limited to 4GB, a trick is used
to ”extend” it and free up part of it using the mass memory. We go to uninstall
applications and software not useful for our purposes as Libre Office on Ubuntu.
Finally we’re going to interface with the dependencies that must be respected in
order for applications to work properly. We go to update the version of CMake to
have a correct compilation of OpenPose.



40 CHAPTER 3. ON-EDGE ARCHITECTURE

3.1.1 Memory swap expansion

When dealing with computer vision, RAM memory runs out at lightning speed. The
primary function of swap space is to substitute disk space for RAM memory when
real RAM fills up and more space is needed.

The kernel uses a memory management program that detects blocks, aka pages,
of memory in which the contents have not been used recently. The memory manage-
ment program swaps enough of these relatively infrequently used pages of memory
out to a special partition on the hard drive specifically designated for “paging,” or
swapping. This frees up RAM and makes room for more data to be entered into
your spreadsheet. Those pages of memory swapped out to the hard drive are tracked
by the kernel’s memory management code and can be paged back into RAM if they
are needed.

The total amount of memory in a Linux computer is the RAM plus swap space
and is referred to as virtual memory.

NVIDIA recommended swap space of 4GB for a system with 4GB of RAM.
Before starting, in order to avoid having to type the ”sudo” command every time,
from the terminal type

sudo −

followed by the password to enter the root account mode. First of all we type

f r e e −m

in order to check the virtual memory swap and should give us 1978MB (2GB)
so let’s expand it. Type in the following commands one by one

sys t emct l d i s a b l e nvzramconfig

f a l l o c a t e − l 4G /mnt/4GB. swap

chmod 600 /mnt/4GB. swap

mkswap /mnt/4GB. swap

echo ”/mnt/4GB. swap swap swap d e f a u l t s 0 0” >> / e tc / f s t a b

and restart the system to make the changes effective. We verify the result again
with

f r e e −m

and this time we should get 4GB.

3.1.2 Libre Office removal

We remove everything that takes up memory and is not essential for our purpose.
Among these we have Libre Office, which we uninstall with



3.2. SOFTWARE FOR HUMAN TRACKING AND IDENTIFICATION 41

apt−get remove −−purge l i b r e o f f i c e ∗

apt c l ean

apt−get autoremove

3.1.3 Cmake library update

We must check the version of Cmake, which must be higher than 3.12.2

cmake −−v e r s i on

and find 3.10.2 so it needs to be updated.

apt−get i n s t a l l l i b s s l −dev l i b c u r l 4 −openss l −dev

apt−get remove cmake

cd / usr / local / s r c

wget https : // github . com/Kitware/CMake/ r e l e a s e s /download/v3
. 1 7 . 2 / cmake −3 .17 . 2 . ta r . gz

ta r −xvz f cmake −3 .17 . 2 . ta r . gz

cd cmake −3 .17 .2 . / boots t rap

make −j 4

make i n s t a l l

s e r v i c e ssh r e s t a r t

3.2 Software for human tracking and identification

Computer vision software is required to accomplish the recognition and subsequent
identification of people.

Detection and tracking are possible thanks to state-of-the-art tools made avail-
able on the web and documented by the scientific community. Among the best
known we have OpenPose, TrtPose, AlphaPose, wrnchAI, YOLO and DeepStream.
In this thesis work OpenPose, TrtPose and TrackLite have been used for the detec-
tion while for the identification after having briefly tested TrackLite we decided to
create our own algorithm because the results were not satisfactory.

It was possible to run OpenPose on the Jetson Nano but the output performance
was not as desired. Unfortunately, it was not possible to reach 5fps as requested



42 CHAPTER 3. ON-EDGE ARCHITECTURE

by the research and development department and that’s why we continued with the
search for available software.

After further research we discovered the existence of a tool made by NVIDIA
itself specifically for our Jetson Nano card and optimized to work on the hardware
architecture of the latter. The above application is TrtPose and is an analogue of
OpenPose only lighter from the point of view of computation. In fact, after several
tests and trials on images, video files and webcams we finally managed to get the
desired results. These were in line with what NVIDIA claimed in their benchmarks
and articles. They were able to identify people’s bodysticks by processing frames in
real time at 8-10 fps. For a lighter software, unfortunately, there was a price to pay
for the performance at long distances. Compared to OpenPose, it could not identify
people more than 10-12 meters away from the camera.

In addition, we still had to realize what would have been the real identification
with the assignment of a progressive id for each subject appeared on the screen.

Since the company and its development team were using YOLOv3 on a fixed
workstation with large hardware resources available to realize the identification, we
were asked to implement the same application on the on-edge workstation with
limited computing capacity.

It was interesting to see the differences between the two in order to be able to
make conclusions about performance and subsequent solutions to propose to the
final customer.

After further research in literature and in the online computer vision world we
found a very interesting application called TrackLite 4. This tool was capable of
processing up to 2fps video files and streams from the test webcam in the lab.
Although the output was below the desired threshold (5fps) was a very interesting
solution considering the fact that can re-identify a person even after leaving the
screen for a small interval of time and is a heavy operation from the computational
point of view.

Once the person has been recognized through their body stick via OpenPose,
TrtPose or similar the next step is identification. This is done by writing an ad hoc
algorithm based on the lengths of body segments obtained from the various body
sticks which we will discuss in the following paragraphs.

Below we report the installation procedures of the various applications and the
outputs obtained with the demo versions used in the test phase.

3.2.1 OpenPose

We need to enter the directory in which we are going to install OpenPose

cd / usr / local / s r c

and then copy the contents of the existing repository on GitHub to our directory

4https://github.com/Stephenfang51/tracklite



3.2. SOFTWARE FOR HUMAN TRACKING AND IDENTIFICATION 43

g i t c l one https : // github . com/CMU−Perceptual−Computing−Lab/
openpose

once this is done, we enter the /openpose directory

cd / openpose

and run the command

bash . / s c r i p t s /ubuntu/ i n s t a l l d e p s . sh

which may generate a version compatibility error such as ”python setup.py egg-
info” failed. However, this should not cause any major problems, so we continue with
the installation, which will be successful. We now install the version of OpenPose
downloaded above and compile it with Cmake from the build directory we are going
to create

mkdir bu i ld

cd bu i ld

cmake −D BUILD EXAMPLES=ON −D BUILD PYTHON=ON −D
USE OPENCV=ON . .

make −j 4

make i n s t a l l

cd python

make −j 4

We must also install this additional canberra-gtk module

sudo apt−get i n s t a l l l i b canber ra −gtk−module

Finally, to check if the installation was successful, type the following commands

cd / usr / local / s r c / openpose

. / bu i ld / examples / openpose / openpose . bin −−video . / examples /
media/ video . av i −−n e t r e s o l u t i o n 128 x64

where the --net resolution command is used to reduce the output resolution
on the display to reduce the lag of the video stream. Another interesting command
to check correct operation after connecting the webcam to the Jetson is the following

. / bu i ld / examples / openpose / openpose . bin −−n e t r e s o l u t i o n 128
x64



44 CHAPTER 3. ON-EDGE ARCHITECTURE

and the output we would expect is

(a) (b)

Figure 3.6: OpenPose testing. (a) Demo video file. (b) Webcam test.

Finally, if we want to test the program on simple images we can also use

. / bu i ld / examples / openpose / openpose . bin −−image d i r examples /
media/ image to ana lyze

3.2.2 TrtPose

Before proceeding with the explanation, it is necessary to make a small premise. As
already mentioned in the introduction, it was necessary to process the video stream
coming from a video surveillance camera in real time, guaranteeing a certain number
of frames per second (fps).

OpenPose is a very powerful tool for human pose estimation, but it requires
a considerable effort in terms of performance. Once the tool was set up and while
testing, we noticed that the performance was not exactly as reported in the NVIDIA
bechmark tables (15fps). So we investigated the matter further, and after contacting
NVIDIA we discovered that they were using their own custom tool optimised for
compact (on-edge) devices such as the Jetson Nano.

Its name is TensorRT, and as reported on the NVIDIA® website, TensorRT™
is an SDK for high-performance deep learning inference. It includes a deep learning
inference optimizer and runtime that deliv ers low latency and high throughput
for deep learning inference applications. With TensorRT, you can optimize neural
network models trained in all major frameworks, calibrate for lower precision with
high accuracy, and deploy to hyperscale data centers, embedded, or automotive
product platforms.

TensorRT is built on CUDA®, NVIDIA’s parallel programming model, and en-
ables you to optimize inference leveraging libraries, development tools, and technolo-
gies in CUDA-X™ for artificial intelligence, autonomous machines, high-performance
computing, and graphics.



3.2. SOFTWARE FOR HUMAN TRACKING AND IDENTIFICATION 45

TensorRT provides INT8 and FP16 optimizations for production deployments
of deep learning inference applications such as video streaming, speech recognition,
recommendation, fraud detection, and natural language processing. Reduced pre-
cision inference significantly reduces application latency, which is a requirement for
many real-time services, as well as autonomous and embedded applications.

For the reasons listed above, we decided to test it on our platform and try to
increase the output in terms of fps in order to get a smoother video stream.

In order to avoid confusion and overwriting of files and folders we decided to
install TensorRT on a different microSD in order to have the two environments com-
pletely separate and independent. So what we’ll do is to follow again the procedure
explained in 3.1 with the only difference on the version of the operating system im-
age that will be JetPack 4.4 this time. Once the Jetpack installation is complete,
we enter the terminal and start installing the additional libraries and frameworks
required for TensorRT to work.

The first of these is Pytorch which consists of two main parts which are tensor
computing (NumPy) with strong acceleration via graphics processing units (GPU)
and Deep Neural Networks (DNN).

sudo apt−get update

wget https : // nv id ia . box . com/ shared / s t a t i c /
yr6sjswn25z7oankw8zy1roow9cy5ur1 . whl −O torch −1.6.0−cp36−
cp36m−l i nux aarch64 . whl

sudo apt−get i n s t a l l python3−pip l ibopenb la s −base l ibopenmpi
−dev

pip3 i n s t a l l Cython

cd / usr / local / s r c

pip3 i n s t a l l torch −1.6.0−cp36−cp36m−l i nux aarch64 . whl

continue with the Torchvision machine learning framework, which is a separate
module of Pytorch

sudo apt−get i n s t a l l l i b j p e g −dev z l ib1g −dev

wget https : // github . com/ pytorch / v i s i o n / arch ive /v0 . 6 . 1 . ta r . gz

ta r −xvz f v0 . 6 . 1 . ta r . gz

cd v i s i on −0.6 .1

sudo python3 setup . py i n s t a l l



46 CHAPTER 3. ON-EDGE ARCHITECTURE

apt−get i n s t a l l l i b f r e e t y p e 6 −dev

pip3 u n i n s t a l l p i l l o w

pip3 i n s t a l l −−no−cache−d i r p i l l o w

we need to add the touch2trt converter to the latter two to be able to work easily
between the various formats of Pytorch and TensorRT

cd / usr / local / s r c

g i t c l one https : // github . com/NVIDIA−AI−IOT/ t o r c h 2 t r t

cd t o r c h 2 t r t

sudo python3 setup . py i n s t a l l −−p lug in s

These packages are also needed

pip3 i n s t a l l tqdm cython pycocotoo l s

apt−get i n s t a l l python3−matp lo t l i b

cd / usr / local / s r c

g i t c l one https : // github . com/NVIDIA−AI−IOT/ t r t p o s e

cd t r t p o s e

python3 setup . py i n s t a l l

Now we move on to the pre-trained models that we will feed to the machine
learning frameworks for human recognition and identification.

We can easily download the first model:

resnet18 baseline att 224x224 A

at the link 5 and the second one:

densenet121 baseline att 256x256 B

at 6 and we move it in /human pose directory from /Scaricati or /Downloads

depending on the language of the operative system we have installed.

5https://drive.google.com/file/d/1XYDdCUdiF2xxx4rznmLb62SdOUZuoNbd/view
6https://drive.google.com/file/d/13FkJkx7evQ1WwP54UmdiDXWyFMY1OxDU/view



3.2. SOFTWARE FOR HUMAN TRACKING AND IDENTIFICATION 47

cd /home/ user / S c a r i c a t i

mv n o m e f i l e 1 / usr / local / s r c / t r t p o s e / ta sk s /human pose

mv n o m e f i l e 2 / usr / local / s r c / t r t p o s e / ta sk s /human pose

In order to recognise video devices including the webcam, TensorRT relies on
JetCam, an archive of drivers which we install with

cd / usr / local / s r c / t r t p o s e / ta sk s /human pose

g i t c l one https : // github . com/NVIDIA−AI−IOT/ jetcam

cd jetcam

sudo python3 setup . py i n s t a l l

As usual, we verify the correct installation of the software with a series of com-
mands that call up demo versions of Python scripts already present in the installation
itself. We enter the working directory

cd / usr / local / s r c / t r t p o s e / ta sk s /human pose

and type individually one of the following commands

sudo python3 d e t e c t v i d e o . py

sudo python3 detect webcam . py

sudo python3 detec t image . py

in order to test reading from video, webcam and image files respectively. The
output should look something like this

(a) (b)

Figure 3.7: TensorRT testing. (a) Demo video file. (b) Webcam test.



48 CHAPTER 3. ON-EDGE ARCHITECTURE

If, on the other hand, you need to modify the various scripts in Python to suit
your needs or create new ones, you can do so with

sudo g e d i t nome scr ipt . py

as it is in our case where we are going to modify them to extract particular
coordinates of points to be fed to subsequent processing in the algorithms.

3.2.3 Digital identity

As mentioned in the introduction, part of the thesis work also consisted of developing
a subject identification algorithm based on limb lengths and t-shirt colors. This last
can be implemented and easily transformed in Python language and then loaded on
the Jetson Nano board in order to distinguish one person from another.

The very first attempt to implement it was carried out by colleagues during their
master thesis work a few months ago. And now resuming their work and analyzing
what has been done so far we are going to optimize and to solve a series of still
remaining problems on it.

Figure 3.8: Preliminary operations to the algorithm

In the figure above you can see what are the preliminary operations to per-
form on one of the standard formats coming from the surveillance cameras which
are .avi, .mp4 and .wmv. The video files are fed to an identification and tracking
software that in our case is OpenPose. The software returns in output a .json file
containing the spatial coordinates of all the keypoints belonging to the body sticks
of all the subjects detected. The coordinates are organized according to a logic not
immediately readable.

For this reason there is a post-processing of the .json file in MatLab in order
to obtain an ordered structure of data that the .mat. It is nothing more than a



3.2. SOFTWARE FOR HUMAN TRACKING AND IDENTIFICATION 49

structured matrix within which the coordinates are organized by rows and columns.
The rows refer to the various subjects on the screen while the columns represent the
frames coming from the camera.

Figure 3.9: Internal structure of the input file originating from OpenPose and pro-
cessed in Matlab

Following a careful analysis of the output file coming from OpenPose two main
problems emerged.

The first one concerns the presence of fake subjects that are generated when
complicated situations are created. For complicated situations we mean the over-
lapping between subjects and occlusion, the initial and final moment in which there
is a partial visibility of the bust and finally the rotation on itself that causes a de-
generation of the body stick in a line. All this causes the software to go into crisis
and create phantom body sticks having only part of the spatial coordinates and
moreover belonging to real body sticks. What happens in reality is a separation of
coordinates where one part is assigned to a new non-existent or fake subject and the
other is assigned to the real subject.

The second problem concerns the order in which the various inputs and outputs
of the subjects are recorded. Often this chronological order is lacking because of one
of the above reasons and continuity is lost. Let us explain better what is meant by
chronological order.

If a subject enters the visible field of the camera, one expects that it will be
recorded on line one and remain there until the moment it leaves the screen. Unfor-
tunately the order is not maintained and often the subjects are inverted and recorded
intermittently on two different rows. This involves considerable difficulties when we
intend to apply an algorithm for identification and recognition.

The fake detection algorithm uses the matrices of the points, of the presences
and that one of the subjects to individualize and to eliminate the fakes. The logic
followed is as follows.

Whenever there is a change in the number of subjects on the frame, two cases
are possible. The first is that it is simply a regular input or output. The second is



50 CHAPTER 3. ON-EDGE ARCHITECTURE

Figure 3.10: Unreliable identification due to fake detections, distorsions and subjects
interchange.

that it is a fake generated by the overlap between subjects or coming from a non-
continuous detection.If the new appearance is maintained for n successive frames
then it is not a fake otherwise we remove it. But before doing that a check is done
in case the subjects on screen are more than one. In these cases we try to recover
some points from the famous split fakes caused by overlapping.

The ordering algorithm makes use of the matrix of subjects and distances to
restore the chronological odrine of inputs and outputs. This is based on the sequence
between the current and previous frames. The matrix of the average distances
between all the subjects present in the frames is calculated and the minimums within
the matrix are searched for. Once identified n minima where n will be given by the
maximum number of subjects between the two frames and bring them on the main
diagonal. So the condition that must be met to have a continuous flow of subjects
in the file is that the minimum distances between all pairs are reported on the main
diagonal.

The following are flow diagrams representing the logic used for the detection of
fakes, their elimination and the chronological ordering of inputs and outputs.



3.2. SOFTWARE FOR HUMAN TRACKING AND IDENTIFICATION 51

cam_keypoints{1,1}.body{1,j} = []
mat_n_subj(j) = 0

mat_n_points{1,j} = []
mat_pres(1,j) = 0

fake_frames=[fake_frames j]

n_fakes = mat_n_subj(j) - mat_n_subj(j-1)

buffer_fakes = {}

buffer_points = cell2mat(mat_n_points(:,j))
buffer_min = min(buffer_points)

buffer_index = find(buffer_points==buffer_min,1)
buffer_fake = cam_keypoints{1,1}.body{buffer_index,j}

buffer_fakes(l,:) = {l, buffer_fake}
cam_keypoints{1,1}.body{buffer_index,j} = []

cam_keypoints{1,1}.body(buffer_index:end-1,j) = cam_keypoints{1,1}.body(buffer_index+1:end,j)
cam_keypoints{1,1}.body{end,j} = []
mat_n_points{buffer_index,j} = []

mat_n_points(buffer_index:end-1,j) = mat_n_points(buffer_index+1:end,j)
mat_n_points{end,j} = []
mat_pres(buffer_index,j) = 0

mat_pres(buffer_index:end-1,j) = mat_pres(buffer_index+1:end,j)
mat_pres(end,j) = 0

checksum==0

mat_n_subj(j) > 1

l=1:n_fakes

checksum=1

index=0 index=mat_pres(mat_n_subj(j),k)

checksum=checksum*index

START

Load input file
    data.mat

N=5

Subjects matrix
     creation

Points matrix 
   creation

Presence matrix
     creation

j=2:frm-N

k=j+1:j+N

mat_n_subj(k)==0

mat_n_subj(j) ~= mat_n_subj(j-1)
                     &&
           mat_n_subj(j) ~= 0

Delete last
empty rows

Save file FINISH

cam_keypoints{1, 1}.body{n, j}(index_a
(o),:) = buffer_fakes{m,2}(index_a(o),:)

n=1:mat_n_subj(j)

dot(member,member)
==length(member)

o=1:length(index_a)

mat_n_subj(j) = mat_n_subj(j) - n_fakes

buffer_vector = buffer_fakes{m,2}(:,1)

index_a = find(buffer_vector~=0)

buffer_vector = cam_keypoints{1, 1}.body{n, j}(:,1)

index_b = find(buffer_vector==0)

member = ismember(index_a,index_b)

m=1:n_fakes

Figure 3.11: MatLab find fakes block diagram



52 CHAPTER 3. ON-EDGE ARCHITECTURE

n_min_diag < n_matches

disp('PROBLEMA: LOOP INFINITO')
disp(frame)

BREAK

mat_dist = mat_avg_distance(frame, cam_keypoints, mat_n_subj)

n_a = mat_n_subj(frame)
n_p = mat_n_subj(frame-1)
n_matches = min(n_a,n_p)
mat_dist_temp = mat_dist

n_min_diag = n_minimi_diagonale(n_matches,mat_dist_temp)
cont_while = 0

cam_keypoints{1,1}.body{sbj_p,frame} = cam_keypoints{1,1}.body{sbj_a,frame}

diagonal = diag(mat_dist_temp)

D = diag(diagonal)
N_D = mat_dist_temp - D

a = nonzeros(N_D)
b = min(a)

[sbj_a, sbj_p] = find(mat_dist_temp == min(b))
buffer = cam_keypoints{1,1}.body{sbj_p,frame}

cam_keypoints{1,1}.body{sbj_a,frame} = buffer
mat_dist_temp = mat_avg_distance(frame, cam_keypoints, mat_n_subj)

n_min_diag = n_minimi_diagonale(n_matches,mat_dist_temp)
cont_while = cont_while + 1

cont_while > n_matches

Load input file
    data.mat

Subjects matrix
     creation

frame = 2:2542 Save file

mat_n_subj(frame)*mat_n_subj(frame-1) ~= 0 
                                 && 
mat_n_subj(frame)*mat_n_subj(frame-1) ~= 1

START

FINISH

Figure 3.12: MatLab sorting subjects flow chart



Chapter 4

Experimental results

4.1 Setup description

The test station for the Jetson Nano platform was initially installed and tested on
the table as shown in the figure below 4.1.

Figure 4.1: Experimental workstation setup and peripheral devices on Jetson Nano

Subsequently, in order to test it in what would have been its final configuration,
it was moved to the lab and connected to the camera via USB cable.

We list below the hardware and peripherals used to equip the test bench. The

53



54 CHAPTER 4. EXPERIMENTAL RESULTS

Jetson Nano has been connected to a monitor through the HDMI cable in order to
work in an agile way on the terminal and related Linux commands. Need then a
USB keyboard and mouse to give commands and be able to interface with the same.
At the third USB 3.0 port we connect a Teaisiy PC webcam HD 1080P 30fps
that acts as a surveillance camera. It was also purchased a fan to be installed on
the passive heatsink because the temperatures were still too high, especially after
prolonged video processing.

Figure 4.2: Jetson Nano setup

The power supply of the Jetson has been extensively discussed in previous para-
graphs so we will power it with a Power Jack J25. To communicate with the outside
world there are two possibilities: additional WI-FI module to be installed on the
board or the classic LAN socket. There are several pros and cons between the two
ways to send information to the outside world. In the initial phase it was decided
to connect it via Ethernet cable to the LAN socket.

Figure 4.3: Jetson Nano and its devices



4.2. OPENPOSE OUTPUT 55

4.2 OpenPose output

The first test on the Jetson Nano was done with a demo video file provided by
OpenPose developers and our USB webcam getting bad performances around 0.6fps.
It immediately became apparent that the limited resources of the Nano cannot
support a heavy application like OpenPose. In order to get as close as possible
to the desired processing speed which was about 5fps, the output resolution was
reduced to 128x64. Lowering it with the command net resolution has allowed us to
reach the max processing speed performance which was 4.2fps but we also went to
worsen precision.

Figure 4.4: OpenPose tested on demo video file

Figure 4.5: OpenPose tested on usb webcam



56 CHAPTER 4. EXPERIMENTAL RESULTS

After that, the Jetson was moved to the research and development lab to be
tested in real working conditions. As you can see in the picture 4.6 on the floor was
drawn with red tape a path to follow in order to have references. The room where
the tests took place is 15m long and 6m wide. The results of the test have confirmed
the fact that OpenPose is very efficient over long distances and can perfectly identify
the body stick even in conditions of partial visibility due to the tables in the lab.
The problem remained the processing speed that could not meet the requirements.
For this reason we continued with the research on available software and applications
that could bring us closer to the goal.

Figure 4.6: OpenPose tested in the laboratory. Starting point of the path



4.3. TRTPOSE OUTPUT 57

Figure 4.7: OpenPose tested in the laboratory. Ending point of the path

4.3 TrtPose output

Unlike OpenPose this time the subject at the bottom of the lab is not recognized.
This can be attributed to the lower computational power required by TrtPose. You
gain in processing speed and lose the ability to identify at long distances.

On the positive side, you can get up to 10 fps of processing, so in short dis-
tance applications it can be a valid alternative. Especially on on-edge devices where
hardware resources are very limited.



58 CHAPTER 4. EXPERIMENTAL RESULTS

Figure 4.8: TrtPose tested on demo video file

Figure 4.9: TrtPose tested on usb webcam



4.3. TRTPOSE OUTPUT 59

Figure 4.10: TrtPose tested in the laboratory up to 10 fps. Starting point of the
path



60 CHAPTER 4. EXPERIMENTAL RESULTS

Figure 4.11: TrtPose tested in the laboratory up to 10 fps. Ending point of the path

4.4 TrackLite output

The third and final application used is TrackLite1 with the maximum performance
achieved on the Jetson Nano of 2.2fps. A computer vision library that puts together
YOLOv3 and DeepSORT to try to achieve what is called by experts in the field the
re-identification. YOLO identifies people by drawing a rectangle that encloses the
identified person. Once identified, DeepSORT assigns a progressive identifier to

1https://github.com/Stephenfang51/tracklite



4.4. TRACKLITE OUTPUT 61

the rectangle and tries to keep it in memory even after the exit of the subject.
The retention time and accuracy depend on many factors. As you can see in the
explanatory video recorded in the laboratory, the quality of the re-identification
depends for example on the color of the clothing used. In fact, with two subjects
identified on the video, one with a red shirt and the other with a gray shirt, the
one that returns better results is precisely the red. This is because the gray shirt is
confused with the laboratory tables that have a similar shade of gray and then the
software often loses count.

Figure 4.12: Sequence extracted from the workshop video. From this we can see the
loss of count due to the color of the shirt similar to the surrounding environment.



62 CHAPTER 4. EXPERIMENTAL RESULTS

The other test was conducted concurrently with the R&D team in the outdoor
environment this time with natural sunlight. It served to understand how natural
light affected the quality of identification and re-identification in addition to mea-
suring the decrease in speed due to the number of increasing appearances.

Figure 4.13: Sequence extracted from the parking video testing. From this we can
see the even worse loss of count with respect to the internal environment.

The last test carried out was to confirm the fact that as the resolution and the



4.4. TRACKLITE OUTPUT 63

number of people present on the frame at the same time increased, it had a negative
impact on the processing speed measured in fps. The final test was carried out
indoors this time in the research and development lab with artificial light.

Figure 4.14: Final test done within the lab confirming the performance decrease due
an increase of human detections.

In the following table 4.15 instead we report the results obtained by analyzing
two video streams within which the number of persons detected changes from 1-2
Figure 4.12 to 4-8 Figure 4.14. Moreover they have been analyzed at different frame
resolutions starting from 270x480 and up to 1080x1920.

From the results obtained it can be seen that as the resolution of the frame
increases, the fps returned in output decreases and therefore the processing speed
slows down. It is something that was expected since as the resolution increases the



64 CHAPTER 4. EXPERIMENTAL RESULTS

Figure 4.15: Final results based on pixel resolution and number of detections on
TrackLite framework

number of pixels to analyze increases.

Moreover, with the same resolution, quadrupling the number of subjects present
on the frame implies a reduction of 15% of the processed fps passing from 1.82 to
1.55fps.

4.5 Performances benchmark

In the above figure, it is important to make a premise. The results shown on the
graph represent the best performance obtained in terms of frames per second pro-
cessed with a maximum of 2 people present on the screen. The resolution adopted
is the optimal one for each of the applications in order to optimize the output. For
example for OpenPose the optimal resolution on Jetson is 256x128. If increased
it causes delays in processing and the output on the monitor is intermittent. The
reason is always the limited resources of the on-edge device.

Another very important factor to mention is the type of application and its
ultimate purpose. As mentioned earlier OpenPose is very powerful and able to detect
people even at great distances. Having limited hardware resources on which to run
the on-edge device is not able to exploit its potential. TrtPose being lighter and less
performant on distance returns higher fps. Now it’s fair to compare OpenPose vs
TrtPose because both return in output the body-stick of the subject on the screen.
Instead TrackLite with YOLOv3 and DeepSORT inside does something slightly
different and much more challenging. It detects the people present and goes to
calculate their positions with the Kalman algorithm to be able to re-identify them
in the following moments by assigning an id to each. For this reason the processing
speed suffers a lot and the resulting performance is only 2fps.



4.6. DIGITAL IDENTITY RESULTS 65

Figure 4.16: Final benchmark showing the best performance obtained with three
different CV frameworks

4.6 Digital Identity results

The very first result achieved was the identification and subsequent elimination
of fake detections. In some particular cases it was also possible to recover split
coordinates due to overlapping.

Twenty-two fake frames were identified for the video considered with the Find fakes
algorithm illustrated in 3.11.

In the first case below the fakes are identified as such due to partial visibility
of the incoming subject, incomplete identification and intermittent detection. And
this results are shown in a few detected body stick point coordinates where the
remaining are zero. So what we improperly identify as a fake here is actually an
unreliable detection. Which translated into code means that the subject is not
detected correctly for at least five successive frames.

In the second case illustrated instead and in particular frame 1080 is a real fake.
In the video there are three subjects while the OpenPose cam keypoints file shows
four, which is clearly an error. The problem arises from the fact that the two subjects
are very close together and overlaps are created, which in turn causes problems in
terms of the final coordinates recorded in the input file.



66 CHAPTER 4. EXPERIMENTAL RESULTS

Figure 4.17: First example of fakes detection frames

Figure 4.18: Second example of fakes detection

The second part of the algorithm already shown in 3.12 is responsible for the
chronological sorting of people entering and leaving the camera’s field of view. The
logic is as follows.

Whenever a new entry occurs it should always be recorded on the same row of



4.6. DIGITAL IDENTITY RESULTS 67

the coordinate matrix for each frame called cam keypoints. Doing so we have a
continuity in the identification and we can say with certainty that once the subject
’A’ has entered the field of view it will remain so until the moment it exits. Its
coordinates can be found always on the line ’a’ for all frames in which it is present
on the screen.

Figure 4.19: Scheme representing the usual situation without continuity in detection

Using this logic it is possible to obtain the temporal diagram of the subjects and
have a clear situation of what are inputs and outputs.

703 1068 1072 1460 1605 2059 2068 2073 2144 2279 2499 2542

L

E

G

Figure 4.20: Timeline diagram of the video stream input. Each color represents a
different person on the screen.

The algorithm is based on two fundamental matrices: the subject matrix intro-



68 CHAPTER 4. EXPERIMENTAL RESULTS

duced in the first part and the distance matrix.

The distance matrix itself represents the logic used to organize the flow of peo-
ple and their identification. A specific function was created to generate the matrix.
The function takes as input the current frame number, the input file cam keypoints
and the matrix with the number of subjects it calculates all possible possible average
distances for all pairs of subjects in the current and previous frames 4.19.

By doing so it is possible to identify the pair with the shortest distance which
will correspond to the same subject that is identified in the next frame. The distance
matrix is a square matrix with a dimension corresponding to the maximum number
of subjects detected between the previous and the current frame.

Dim = max(np, na) (4.1)

If in the previous frame three subjects were detected and in the next frame two,
the matrix will still be a 3x3 of which three elements will be null. This is to account
for the fact that the subject has left the field of view. Same reasoning applies to a
new entry. Below are the results obtained with the implementation of the sorting
algorithm and the differences between before and after for each row of the input
matrix of coordinates.

0 500 1000 1500 2000 2500 3000

Frames

0

500

1000

1500

A
ve

ra
ge

 d
is

ta
nc

e 
in

 p
ix

el
s

0 500 1000 1500 2000 2500 3000

Frames

0

50

100

150

200

250

300

350

400

A
ve

ra
ge

 d
is

ta
nc

e 
in

 p
ix

el
s

X 1461
Y 381.5

X 2074
Y 262.2

(a) (b)

Figure 4.21: Average distances between subjects of the first row of the input file
cam keypoints. Before (a) and after (b) the application of ordering algorithm.



4.6. DIGITAL IDENTITY RESULTS 69

0 500 1000 1500 2000 2500 3000

Frames

0

200

400

600

800

1000

1200

1400
A

ve
ra

ge
 d

is
ta

nc
e 

in
 p

ix
el

s

0 500 1000 1500 2000 2500 3000

Frames

0

100

200

300

400

500

600

700

800

900

1000

A
ve

ra
ge

 d
is

ta
nc

e 
in

 p
ix

el
s

X 2074
Y 913.8

X 1461
Y 369.9

X 2059
Y 262.4

(a) (b)

Figure 4.22: Average distances between subjects of the second row of the input file
cam keypoints. Before (a) and after (b) the application of ordering algorithm.

0 500 1000 1500 2000 2500 3000

Frames

0

500

1000

1500

A
ve

ra
ge

 d
is

ta
nc

e 
in

 p
ix

el
s

0 500 1000 1500 2000 2500 3000

Frames

0

100

200

300

400

500

600

700

800

900

1000

A
ve

ra
ge

 d
is

ta
nc

e 
in

 p
ix

el
s

X 1461
Y 369.9

X 2074
Y 913.8

X 2059
Y 262.4

(a) (b)

Figure 4.23: Average distances between subjects of the third row of the input file
cam keypoints. Before (a) and after (b) the application of ordering algorithm.

Sorting is considered complete when all the minima found within the distance
matrix are on the main diagonal. And this must hold for all n-1 pairs between
current and next frames. After the sorting procedure the distances are cut down
and consequently the subject recorded on the first line of the file is maintained
and therefore we can say with certainty that we are always the same person. It
is important to point out one thing, when the subject leaves the screen there is a
distance peak because on the same line a new subject is recorded. This can be seen
very well in the diagram in the figures 4.20 and 4.21(b).



70 CHAPTER 4. EXPERIMENTAL RESULTS

4.7 Conclusions and future work

These months of work have shown that it is possible to achieve human detection
and identification with an on-edge device. It was also possible to do it inexpensively
compared to a desktop computer with dedicated hardware. This latter can hardly
be installed close to one or more surveillance cameras due to its size and cost related
issues.

The target was reached with an NVIDIA designed Jetson Nano, a compact hard-
ware optimized for computer vision and AI applications. Body stick detection was
achieved through OpenPose and TrtPose at 4 and 10 fps respectively. A first at-
tempt of identification was made with TrackLite that puts together YOLOv3 and
DeepSORT to detect subjects with rectangles instead of body sticks and assign an
ID to each of them. As can be seen from the paragraphs above, identification is a
difficult task and IDs grow as quick as the number of subjects on screen get higher.
In addition, the software is sensitive to the color of the shirt being worn as well as
occlusions and overlaps.

In light of the limitations that emerged from the tests performed in the labo-
ratory with the different software, it was decided to implement its own algorithm
for identification. As recognition software was used OpenPose from which we ob-
tained the file with the coordinates of the body sticks for each frame from the video
stream. The identification algorithm is composed of three logics. The first consists
in the identification of fake frames and their subsequent elimination. Fake frames
are those frames in which the subject is detected in a partial and not continuous
way. In particular, the detection is considered continuous if it continues for at least
five consecutive frames. In addition, a phantom subject is also considered a fake
if it is created as a result of a superimposition which in turn causes a doubling of
identity in terms of coordinates.

The second part of the algorithm sorts the subjects in chronological order and
prepares the file for further processing. In this way we are sure that from the moment
the person appears until he leaves the screen the subject always occupies the same
line of the file. All this to ensure continuity in the detection and have reliable data.

Third and last part of the algorithm performs what is the identification of sub-
jects based on their lengths calculated from the body sticks. It then goes on to solve
two types of problems found in the previous work of our colleagues. The distortion of
the frame is handled with a maximum acceptable difference below which the frame
together with its bodysticks is not considered valid. In addition, a check is made
on the completeness of the coordinates through a minimum number of points. In
this way we are sure that the detection is done on frames not hidden and without
overlapping. These logics obviously imply limitations in their use since the results
obtained are the first preliminary data and must be further tested and analyzed.
The cases treated are particular situations and it is necessary to collect many more
data samples on different types of video with different camera angles. It is hoped
that this work can be a starting point for future colleagues in the field of human



4.7. CONCLUSIONS AND FUTURE WORK 71

identification and tracking as well as in the design of on-edge systems capable of
achieving the purpose.



72 CHAPTER 4. EXPERIMENTAL RESULTS



Bibliography

[1] Artiom Basulto-Lantsova, Jose A Padilla-Medina, Francisco J Perez-Pinal, and
Alejandro I Barranco-Gutierrez. Performance comparative of opencv template
matching method on jetson tx2 and jetson nano developer kits. In 2020 10th
Annual Computing and Communication Workshop and Conference (CCWC),
pages 0812–0816. IEEE, 2020.

[2] Zhe Cao, Gines Hidalgo, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Open-
pose: realtime multi-person 2d pose estimation using part affinity fields. IEEE
transactions on pattern analysis and machine intelligence, 43(1):172–186, 2019.

[3] Andrey Ignatov, Radu Timofte, William Chou, Ke Wang, Max Wu, Tim Hartley,
and Luc Van Gool. Ai benchmark: Running deep neural networks on android
smartphones. In Proceedings of the European Conference on Computer Vision
(ECCV) Workshops, pages 0–0, 2018.

[4] Ajay Katangur, Shih-Chun Lin, Jinpeng Wei, Shuhui Yang, and Liang-Jie Zhang.
Edge computing–edge 2020. @, 2020.

[5] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv
preprint arXiv:1804.02767, 2018.

[6] Tomas Simon, Hanbyul Joo, Iain Matthews, and Yaser Sheikh. Hand keypoint
detection in single images using multiview bootstrapping. In CVPR, 2017.

[7] Ahmet Ali Süzen, Burhan Duman, and Betül Şen. Benchmark analysis of jet-
son tx2, jetson nano and raspberry pi using deep-cnn. In 2020 International
Congress on Human-Computer Interaction, Optimization and Robotic Applica-
tions (HORA), pages 1–5. IEEE, 2020.

[8] Xiaofei Wang, Yiwen Han, Victor CM Leung, Dusit Niyato, Xueqiang Yan, and
Xu Chen. Edge AI: Convergence of Edge Computing and Artificial Intelligence.
Springer Nature, 2020.

[9] Nicolai Wojke, Alex Bewley, and Dietrich Paulus. Simple online and realtime
tracking with a deep association metric. In 2017 IEEE international conference
on image processing (ICIP), pages 3645–3649. IEEE, 2017.

73


