
 
 

SCHOOL OF INDUSTRIAL AND INFORMATION ENGINEERING 
 
 

MASTER OF SCIENCE IN 
SPACE ENGINEERING               

 
 

 
 
 

Investigation about the free volume in butadiene and isoprene 
based elastomers by Positron Annihilation Lifetime Spectroscopy 

 
 
 

 
Supervisor: prof. Giovanni Consolati 

 
Author: 

 

Giuseppe Maria Viola 
 

                                                                   883457 
 
 
 
 
 

 

Academic Year: 2019-2020 



 



 II 
 

Contents 
 
 
List of figures                                                                                                           III 
 
List of tables                                                                                                         IV 

Abstract V 

Chapter 1 1 

Introduction 1 

Chapter 2 5 

Acquisition Chain 5 
Positronium Annihilation Lifetime Spectroscopy 5 
Scintillator 8 
Photomultiplier 14 
CFD 18 
TAC 21 
ADC 22 
MCA 23 
Cryostat and ITC 25 
HyperTerminal 27 

Chapter 3 29 

Data processing 29 
LT_polymer program 29 
Quantum mechanical models 36 
Dilatometry 39 
Experimental free volume fraction f 40 
Theoretical free volume fraction h 45 

Chapter 4 49 

Results 49 

Chapter 5 54 

Conclusions 58 

Bibliography 60 

 
 



 III 
 

List of Figures 

 
Figure 2.1 - Pure Crystal                                                                                                                                9 
Figure 1.2 - Activated Crystal                                                                                                                             9 
Figure 2.3 - Energy levels of organic molecules                                                                                        10 
Figure 2.4 - Energy spectrum of BaF2 scintillator                                                                                   12 
Figure 2.5 - Working principle of a Photomultiplier                                                                                 16 
Figure 2.6 – Working principle of a CFD                                                                                                   20 
Figure 3.1 - Spectrum of a S5 polymer sample at 300K                                                                         32 
Figure 3.2 - o-Ps lifetime τ3 as function of the temperature T for the polymer S6                                   33 
Figure 3.3 - o-Ps lifetime τ3 as function of the temperature T for the polymer S5                                   34 
Figure 3.4 - o-Ps lifetime τ3 as function of the temperature T for the polymer S4                                   34 
Figure 3.5 - o-Ps lifetime τ3 as function of the temperature T for the polymer S3                                   35 
Figure 3.6 - o-Ps lifetime τ3 as function of the temperature T for the polymer S2                                   35 
Figure 3.7 - Vs in function of vh in spherical approx. for the polymer S4                                                     41 
Figure 3.8 - Vs in function of vh in spherical approx. for the polymer S5                                                     42 
Figure 3.9 - Vs in function of vh in spherical approx. for the polymer S6                                                     42 
Figure 3.10 - Vs in function of vh in spherical approx. for the polymer S3                                                42 
Figure 3.11 - Vs in function of vh in spherical approx. for the polymer S2                                                          42 
Figure 3.12 - Vs in function of vh in isotropic cylindrical approx. for the polymer S6                                    42 
Figure 3.13 - Vs in function of vh in isotropic cylindrical approx. for the polymer S5                                    42 
Figure 3.14 - Vs in function of vh in isotropic cylindrical approx. for the polymer S4                                    43 
Figure 3.15 - Vs in function of vh in isotropic cylindrical approx. for the polymer S3                                    43 
Figure 3.16 - Vs in function of vh in isotropic cylindrical approx. for the polymer S2                                    43 
Figure 3.17 - Vs in function of vh in anisotropic cylindrical approx. for the polymer S6                            43 
Figure 3.18 - Vs in function of vh in anisotropic cylindrical approx. for the polymer S5                            43 
Figure 3.19 - Vs in function of vh in anisotropic cylindrical approx. for the polymer S4                            43 
Figure 3.20 - Vs in function of vh in anisotropic approx. cylindrical for the polymer S3                            44 
Figure 3.21 - Vs in function of vh in anisotropic approx. cylindrical for the polymer S2                            44 
Figure 4.1 – Comparison between h, f in spherical approx. for the polymer S6                                49 
Figure 4.2 – Comparison between h, f in spherical approx. for the polymer S5                                50 
Figure 4.3 – Comparison between h, f in spherical approx. for the polymer S4                                50 
Figure 4.4 – Comparison between h, f in spherical approx. for the polymer S3                                51 
Figure 4.5 – Comparison between h, f in spherical approx. for the polymer S2                                51 
Figure 4.6 – Comparison between h, f in isotropic cyl. approx. for the polymer S6                                                                                                                                                                                                                                                                      52 
Figure 4.7 – Comparison between h, f in isotropic cyl.  approx. for the polymer S5                               53 
Figure 4.8 – Comparison between h, f in isotropic cyl.  approx. for the polymer S4                               53 
Figure 4.9 – Comparison between h, f in isotropic cyl.  approx. for the polymer S3                               54 
Figure 4.10 – Comparison between h, f in isotropic cyl.  approx. for the polymer S2                          54 
Figure 4.11 – Comparison between h, f in anisotropic cyl.  approx. for the polymer S6                          55 
Figure 4.12 – Comparison between h, f in anisotropic cyl.   approx. for the polymer S5                 56 
Figure 4.13 – Comparison between h, f in anisotropic cyl.   approx. for the polymer S4                 56 
Figure 4.14 – Comparison between h, f in anisotropic cyl.   approx. for the polymer S3                 57 
Figure 4.15 – Comparison between h, f in anisotropic cyl.   approx. for the polymer S2                 57 

 

 



 IV 
 

List of Tables 
 

Table 1 - Data on the elastomers 4 
Table 2 - Average lifetime of o-Ps τ3 in function of the temperature T for each elastomer 33 
Table 3 - Specific Volumes Vs as function of the temperature T for each elastomer 39 
Table 4 - Scaling parameters values for each polymer. 48 
Table 5 - Theoretical free volume fraction h in function of the reduced temperature . 48 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 V 
 

Abstract 

 
The aim of this thesis is to study the free volume fraction in a set of elastomers. This 

quantity is an important parameter for the understanding of their mechanical and 

transport proprieties. The study is focused on trying to find the best shape for the cavities 

that could fit the most the experimental behavior of each polymer. The experiments were 

carried on five different rubbers blends characterized by a different percentage of the 

main components, butadiene and isoprene. Systematic discrepancies were found using 

the standard spherical approximation, so the focus was put on different geometries, in 

particular on elongated/flattened cylindrical shape.  
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Chapter 1 

 

Introduction 
 

 

 

The present work bases its hypothesis on the results obtained from the studies of a 

isoprene rubber and its miscible blends [1]. In that paper, it was obtained the free volume 

fraction in function of the temperature. The authors of the study used the same 

investigation technique employed in this work, that is the Positron Annihilation Lifetime 

Spectroscopy. Thanks to PALS the authors found an excellent agreement with the 

theoretical free volume fraction, but in order to do that, they had to introduce an ad-hoc 

occupied volume that did not correspond to the one predicted by the theory. On the 

other hand, making use of the theoretical occupied volume, it could be noticed a 

discrepancy between the two free volume fractions. Therefore, starting from this 

premise, the aim of this work is trying to understand if this systematic discrepancy may 

be due to other assumptions, implicit in the studies involving positronium. Indeed, it is 

possible to correlate the average lifetime of the positronium, coming from the 

experiment, to the dimension of its host cavity (that represents the free volume) by 

adopting a mathematical model framing its geometry. The most diffuse representation 

of these cavities is through a spherical geometry. Due to the discrepancies with the 

theory, in this work another geometry has been examined, the cylindrical one, in order 

to better characterize the cavities of a series of isoprene and butadiene elastomers. It 

was found, in this case, a very good agreement between experimental and theoretical 

data, as long as the growth of the cavities with the temperature was not assumed 

isotropic but was considered to rise faster in the direction of the radius of the cylinder 

rather than in its height. 
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It was chosen to make use of the PALS analysis since it is one of the few experimental 

techniques able to supply information about the free volume in a polymer. The free 

volume is a fundamental parameter since it is strictly connected with important 

characteristics of the polymer such as mechanical and thermal properties. In comparison 

to other methods, PALS has the advantage of not interfering with the matter subjected 

to study, moreover it does not need to use large probes that could influence the 

evaluation of the free volume.  
 

PALS uses Positronium (Ps), that is an unstable system formed by an electron and its 

antiparticle, a positron, orbiting around their common center of mass. It forms when a 

positron is injected into a medium and interacts with the surrounding electrons, placing 

itself into the cavities of the material. In polymer research the interest is focused only on 

ground state Positronium which exists in two sub-levels, according to the spin 

orientations of the two particles, para-Ps (p-Ps) and orto-Ps (o-Ps). Since positrons and 

electrons are antiparticles, they annihilate transmuting their mass into pure energy, not 

leaving behind any waste and this is optimal for the study of free volume holes. In vacuo 

the p-Ps annihilation process happens with the emission of two γ rays and its lifetime can 

be approximated by the following formula [2]: 
 

                                                                                               (1.1) 
 

While the o-Ps annihilate emitting three γ rays and the time of decay can be 

approximated as follow [2]: 
 

                                                                                    (1.2) 
 

Thus, p-Ps lifetime is approximately 125 ps, this time span is too short to be useful for 

the purposes of this research, moreover it does not vary significantly with the host cavity 

size. On the other hand, o-Ps has a lifetime of about 140 ns, three orders of magnitude 

higher than the p-Ps and more importantly it undergoes another process consisting in the 
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annihilation in two photons with an electron of the surroundings in a relative singlet state. 

This shortens the lifetime of the o-Ps with respect to its value in vacuo, the smaller the 

cavity the shorter its. lifetime.  This phenomenon is exploited to relate the experimentally 

estimated lifetime of o-Ps with the size of the sub-nanometric holes vh of the material 

under study, provided that the o-Ps lifetime is shorter than the one of the cavities. 

Indeed, these last have to be thought as dynamical entities, which are generated and 

disappear according to the movement of the macromolecules. 
 

Of course, for different choices of shape, different mathematical model will be 

adopted and so different volumes for the holes will be obtained. In reality the cavities 

have an irregular shape so any geometry chosen would be a mere approximation, 

nonetheless the key point of this research is focused on this aspect since among the 

various possible geometries, only the most appropriate one will give reliable insight about 

the morphology of the nanostructure of a polymeric material. The simplest 

approximation is the spherical one but as it will be shown further on, this geometry does 

not match with the theory. Moreover, info about the behavior of the specific volume Vs 

of the polymer with temperature are available from dilatometry studies. 
 

Both the volume of the cavities vh from the PALS analysis and the specific volume Vs 

from dilatometry are needed to obtain the number density of holes N in the polymer and 

the occupied volume Vo, by means of a linear interpolation of Vs versus vh both at the 

same temperature. At this point it can be calculated the specific free volume Vf that will 

be in turn used to get eventually to the free volume fraction f (all these steps will be seen 

in detail in a dedicated chapter). As the name says, this parameter represents the portion 

of the free volume on the entire volume, it is the synthesis of all the previous results, and 

it allows to compare easily the experimental data with the theoretical ones. 
 

Of course, a theoretical model must be introduced to compare the obtained results 

with. In this work it has been chosen to make use of the Simha-Somcynsky lattice-hole 

theory [3]. This is a theory that describe amorphous polymer through two equations of 

state that relate various quantities as the reduced specific volume and the free volume 

fraction h with the corresponding reduced temperature (all these other steps will be 
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explained in detail in a dedicated chapter too). Then, these general results can be adapted 

to the particular polymer under study by means of appropriate scaling parameters T*
 and 

V*. Once these scaling parameters are available it is possible to link the theoretical free 

volume fraction h with the absolute temperature chosen for the study and finally it can 

be compared to the one obtained experimentally f and see if they match or if there are 

discrepancies.  
 

This research was conducted on the following elastomer blends: 
 

1. S1= Europrene Neocis BR 40 + 3phr DCP (1.2 pure) – Butadiene rubber 

2. S2= IR high cis type IR0310 Keaton + 3phr DCP (1.2 pure) – Isoprene rubber 

3. S3= 50% S1 + 50% S2  

4. S4= 25% S1 + 75% S2 

5. S5= 75% S1 + 25% S2 

6. S6= NBR N4560 + 3phr DCP with 45% of acrylonitrile 
 

As it can be seen, at each elastomer was assigned, for convenience, a label “Sx”. From 

now on the elastomers will be indicated according to this nomenclature. In the following 

table are listed, for each polymer, the parameters useful for this work. 
 

Table 1 - Data on the elastomers 

 S1 S2 S3 S4 S5 S6 

Density at 296K [g/cm3] 0.93 0.91 0.92 0.91 0.92 1.01 

Tg [K] - DSC 166 215 215 215 214 265 

UTS [N/mm2] 2.0 1.50 1.62 1.35 1.40 2.30 

 

The elastomer S1 was not object of study during this work, it is here reported only 

because it is part of the other elastomer blends.  
 

In the next chapters it will be described how the experimental data are obtained, how 

they are elaborated, how the spherical geometry fails to match theory results and how 

other shapes are a better fit to frame the holes.  
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Chapter 2 

 

Acquisition Chain 
 

 

 

Positronium Annihilation Lifetime Spectroscopy 
 

Before focusing on the various acquisition instruments one by one, it is important to 

describe the fundamentals of the PALS, since it is our main tool of investigation. Thus, a 

more detailed description about positronium is needed, starting from its formation. 
 

Positronium is formed by a positron and an electron. For this work positrons were 

generated by the natural decay of the radioisotope 22Na. It undergoes to the so called β+ 

decay, emitting a positron, a γ ray and an antineutrino. Positrons are emitted with a 

continuous range of kinetic energy between 0 - 520 keV and within 2-3 ps it is emitted a 

γ ray with an energy of 1.274 MeV. Since the time scale of the measurements of interest 

is in the order of magnitude of several ns, the emission of positrons and the γ ray can be 

approximated as simultaneous, so that the positron emission could be identified by 

detecting the photon. The positrons are emitted into the polymer under study that has 

an ionization energy of about tens of eV, much lower than the one of positrons. A 

positron injected into a material loses its energy due to anelastic collision with molecules 

which are ionized. The positron leaves behind a trail of unpaired electrons which rapidly 

recombine with their ions. Only when the positron has lost enough energy the 

positronium can form.  
 

Positronium is an unstable system that decays emitting γ rays. The ground state 

positronium can be subdivided into two sub-states depending on the spin orientation of 

the electron and the positron forming it. There is the state called para-Ps when their spins 

are anti-parallel, and the state called orto-Ps when their spins are parallel. In vacuo p-Ps 

decays emitting two γ rays and its lifetime is about 125 ps while o-Ps decays emitting 
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three γ rays and its lifetime is about 140 ns, so there are three orders of magnitude 

between them. While in a material, due to the presence of surrounding electrons, the 

positronium system can also annihilate with an electron of the medium through the so 

called “pick-off” process. Various situation may happen depending on the spin state of 

the positron of the Ps atom and the electron of the material. Regarding the positron of a 

p-Ps atom (anti-parallel spin) can interact with an electron of parallel spin forming an o-

Ps atom, but this slightly affect its annihilation process since it is much more likely that 

the positron of the Ps annihilate with its own electron since the process is much faster, 

as it was stated before. Thus, almost nothing changes for the p-Ps moving from vacuo to 

matter. The situation changes as far as o-Ps is concerned. If a positron of an o-Ps atom 

encounters an electron with parallel spin state, again, nothing changes, since the 

annihilation lifetime would be of the same order of magnitude. If, on the other hand, it 

interacts with an antiparallel state electron it will decay into two gammas, decreasing up 

to three orders of magnitude the process. In a medium with a density comparable to the 

one of a polymer, the o-Ps decreases its lifetime from about 140 ns to about 2 ns, so it is 

greatly affected by moving from vacuo to matter and in addition its lifetime it is strongly 

correlated to the dimension of the cavities. This happens for a non-magnetized material 

where half of the electrons have a spin up and the other half have a spin down so that o-

Ps annihilates half of the times as p-Ps and the other half as o-Ps. While if the material is 

very porous, the “pick-off” process is negligible.   
 

In the next chapter it will be seen that the spectrum was deconvoluted in three 

components following this annihilation scheme. The shortest one, of about 0.12 ns, 

represents the annihilation of p-Ps, the middle one, of about 0.3-0.4 ns, represents the 

annihilation of the free positrons in less-dense areas of the material and the last 

component, of about 2-3 ns, represents the o-Ps annihilation (that is three time more 

probable than the p-Ps) through the “pick-off” process and it’s much longer than the 

others. 
 

The information to be acquired from the spectral analysis is the lifetime of these three 

different components with a particular care for the longer one since it is the one 
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dependent from the hole size. In order to have this information it has to be measured the 

time interval between the positron emission, that, as it was shown, can be represented 

by the start γ ray that coincides in first approximation with the positronium formation, 

and the stop γ ray of the annihilation process. As highlighted before, the most probable 

way for positronium to decay is with the emission of two γ rays, thus, there will be two 

stop photons. It is known that the starting photon has a fixed energy of 1.274 MeV, typical 

for the β+ decay of 22Na. Now it has to be derived the stop photon energy. Since the 

positron and the electron in the positronium bound state are antiparticles, they 

annihilate completely, so the involved energy is given by the mass-energy equivalence 

equation E = 2mec2, with me the mass of the electron that is equal to the one of the 

positron, considering also that the positronium atom is in thermal equilibrium with the 

surrounding material and it has negligible kinetic energy. Thus, the two photons have the 

half of the total energy released, that is 0.511 MeV. The big gap in the start and stop 

photon energies helps their discerning and leads eventually to the measurement of the 

time interval between them and so to the lifetime.  This final step is done considering 

that annihilation events distribute according to the radioactive decay law:  
 

                                                                                                                                                             (2.1) 

 

where n(t) is the number of atoms of positronium at the time instant t, n(0) is the 

number of atoms of positronium at the time instant assumed as zero, t is the measured 

elapsed time between the start and stop photons and finally τ is the average lifetime we 

are looking for. 
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Scintillator 
 

Scintillators are used as nuclear radiation detector thanks to their peculiar 

characteristic of exhibiting scintillation, that is a photoluminescence process triggered by 

ionizing radiation. It consists in the absorption of a γ ray photon’s energy and the 

subsequent energy emission in the form of visible light or UV radiation. When a photon 

collides with a scintillation crystal brings its molecules to an excited state, then these 

molecules return back to the ground state by emitting photons with a higher wavelength 

and so lower energy with respect to the original one. To have luminescence the material 

has to be made so that the optical transition between excited and ground state is allowed, 

otherwise the incoming photon would go through the crystal without triggering the 

absorption-emission process described before. Moreover, it is required that the excited 

state time isn’t higher than 10-8 s, which corresponds to the typical lifetime of an excited 

state for an allowed transition. Thus, all the substances that get excited to metastable 

states are excluded since their excited lifetime is significantly longer (in the order of 0,01-

1 s) and the probability of a spontaneous transition to a lower energy level is decreased 

by a factor of 106 to 108. There are two main type of scintillators, the organic scintillators 

and the inorganic ones.  

 

Inorganic scintillators are crystals grown in high temperature furnaces and are 

typically Alkali Halides, Oxides or Lanthanium Halides. They have scintillation properties 

by virtue of their crystalline structure, that creates the energy bands between which 

electrons can jump. In a pure inorganic crystal lattice such as NaI, electrons are only 

allowed to occupy selected energy bands. The forbidden band or band gap is the range 

of energies in which electrons cannot be found. The absorption of energy can elevate 

electrons from the valence band to the conduction band leaving a gap in the valence 

band. However, the return of an electron to the valence band with the emission of a 

photon is an inefficient process. Few photons are released per decay, the energy is 

emitted by other mechanisms. In addition, band gap widths in pure crystals are such that 

the resulting emitted photon is too high to lie within the visible range.  
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Small amounts of impurities are therefore added to the crystal. The impurities are 

called activators, they create special sites in the lattice at which the band gap structure 

is modified. The energy structure of the overall crystal is not changed, just the energy 

structure at the activator sites.  

          

Figure 2.1 - Pure Crystal                                                   Figure 2.2 - Activated Crystal 

            

There are now new energy states within what would be the forbidden band in the pure 

crystal. The electron can de-excite through these levels back to the valence band. The 

energy levels created by the activator’s presence within the crystal are narrower than in 

the pure crystal. This greatly enhances the efficiency of the inorganic crystals, moreover 

the photons emitted will be lower in energy, thus the emission spectrum is shifted to 

longer wavelengths and will not be influenced by the optical absorption band of the bulk.  

Organic scintillators on the contrary are composed of aromatic hydrocarbons, unlike 

inorganic scintillators, they scintillate on a molecular level. No crystal structure is needed. 

Basically, each scintillator molecule can act as a scintillation center. Their 

photoluminescence process is based on the Stokes-shift effect, where a system decreases 

its energy after a photon absorption by emitting another photon with lower energy, and 

this is the phenomenon that transforms the start and stop γ photons in visible and UV 

photons detectable by the photomultiplier. This phenomenon is due to the fact that 

excited states and ground states have different interatomic distances so once a photon 

is absorbed, molecular state is excited to a certain vibrational level of the excited 

electronic level, this transition is followed by a decay to the lower vibrational level and 

finally there is a transition back to the ground electronic state, but in a higher vibrational 

state (Figure 2.3).   
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Figure 2.3 - Energy levels of organic molecules 

 

There is a substantial difference between absorbed and emitted photon energy, the 

missing energy has been thermally dispersed in the scintillation crystal. The energy level 

scheme explains why organic scintillators can be transparent to their own fluorescence 

emission. Most fluorescence emissions have a lower energy than the minimum required 

for absorption. There is little overlap between emission and absorption spectra, therefore 

the emitted light mostly passes straight on through the scintillation medium, this is 

important since afterwards it must reach and transfer its energy to the photocathode. 

Apart from their structural differences, inorganic and organic scintillators differ in their 

mode and level of interaction with ionizing radiation. For a typical x-ray/γ-ray energy 

range from 10 keV up to 1 MeV, the main interaction mechanisms involved are the 

Photoelectric effect and Compton scattering. In order to express numerically the 

probability that an atom will cause a photon of a given energy to undergo either one of 

these two process, it is introduced the concept of cross section. The total absorption 

cross section, for removing a photon from the impinging beam of light per atom, is given 

by the sum of these two processes.  

The Photoelectric effect is a radiation-matter interaction process involving a photon 

impacting with an atom in such a way that its energy is absorbed, and in exchange, an 

electron is expelled. The kinetic energy of the electron expelled is equal to the one of the 

impinging photon minus the binding energy. It come by itself that not all kind of radiations 

are enough to trigger this phenomenon, they must have at least an energy equal to the 

binding energy of the electron. Moreover, the higher is the frequency (and so the energy) 
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of the photon, the higher will be the probability of expelling the electron. In this case the 

cross section is proportional to Z5, with Z the atomic number of the atom. 

The Compton effect is a scattering process due to the interaction of a photon with a 

charged particle, an atomic electron in this case. The γ-ray is not completely absorbed, 

only part of its energy is transferred to the recoiling electron, resulting in a decrease in 

energy of the photon, that is scattered out of the beam. In this case the cross section is 

proportional simply to Z. 

There is also another effect called pair production process in which a positron and an 

electron pair are created with a total energy equal to the one of the photon. This can 

happen only when the energy in play is higher than E = 2mec2 = 1,02 MeV, that is the sum 

of the rest mass of the to particles. Actually, in order to have a significant absorption 

coefficient, the photon energy has to be much higher than 1.28 MeV, that is the start 

photon energy and the maximum energy dealt with in this work, so this term is simply 

neglected. 

Inorganic scintillators are usually made of high Z-elements and have a fairly high 

density, the high Z make the photoelectric effect the predominant process (it depends 

on Z5) over the Compton effect (it depends on Z), while the high density increases the 

interaction efficiency. On the opposite, organic scintillators are made of low Z-elements 

and have low density. The main interaction in this case is the Compton scattering and 

because of the low density, more volume is required to obtain a reasonable detection 

efficiency.  

For this work it has been chosen inorganic scintillators, because it can be easily 

distinguished the photoelectric peaks over the Compton contribution, so that the energy 

windows can be centered around the peaks, in order to obtain an increased efficiency 

and a lower background by making the window smaller.  The inorganic scintillators used 

are quite big (10 mm diameter, 40 mm height), this worsen the resolution function, but 

it is still acceptable because the focus is mainly on the o-Ps lifetime which is longer than 

the FWHM of the resolution function. In organic scintillators the energy peaks are not as 
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well defined, thus they need larger energy windows and have a lower efficiency, but they 

excel in the response time that is very short. In order to overcome the problem of the 

usual high response time of inorganic scintillators (that is of about 0,1 ms) it was used the 

BaF2 crystal, that compared to NaI, one of the most diffused inorganic scintillators, has a 

response time much higher, its fluorescent time is of about 1 ns, but it has a lower 

efficiency, even if it still has energy spectra with well defined energy peaks.  

 
Figure 2.4 - Energy spectrum of BaF2 scintillator 

 

The usual geometry for the detectors is face-to-face, the two scintillators are disposed 

as close as possible and in between them there is the copper cup containing the sample 

and the 22Na positron source embedded in two Kapton foils. The start photon has an 

energy of 1,274 MeV and the two stop photons have an energy 0,511 MeV, as was stated 

before. Thus, in the lifetime measurement, the energy windows are set at 1,274 MeV and 

0,511 MeV full energy peaks that are well visible in Figure 2.4.  

The region highlighted with the letter a in the figure denote an area where the 1,274 

MeV start photon and the 0,511 MeV stop photon sum their spectra, this happens when 

the solid angle subtended by the start oscillator reach 2π and so one of the two 

annihilation γ-ray must enter that scintillator. Since almost all the positrons do not survive 

for more than few nanoseconds in a solid, they live for sure less than the risetime of the 

photomultiplier and so they are accounted as one event. While the region highlighted 



 13 

with the letter b represent the region where the stop photon energy of 0,511 MeV is 

accounted together with the backscattering. 

The registered time intervals between the full energy peak at 1,274 MeV and the one 

at 0,511 MeV are the undistorted time intervals, the so called “good events” where start 

and stop signals are correctly accounted for. But with the linear geometry described 

above it can also happen that other distorted time interval could be registered. For 

example, the scattering of the 1,274 MeV photon in the scintillator at an angle over 66°, 

when combined with the energy of the annihilation photon (region a in the Figure 2.4), 

gives to the recoil electron an energy sufficient to trigger the start. Or going on, if the 

Compton effect in the start counter scatters the γ-ray backwards, this enters the stop 

counter summing up with the 0,511 MeV photon (region b in the Figure 2.4) altering the 

stop count.  

The Constant Fraction Discriminators (CFD) produce timing signals when the bipolar 

pulse crosses zero. When the pulse is the sum of two signals, the delayed component of 

the sum delays the moment of zero crossing. In this way, the sum of spectra alters the 

measured intervals. In the first case listed, the start signal is delayed by a time 

proportional to the lifetime of a positron, while the stop signal is accounted correctly, so 

it adds a spurious component of smaller lifetime with respect to the “good event” case. 

While in the second case listed, both the start and stop signals are delayed, the distorted 

time spectrum in this case is more complex, but again it can be seen a short-life 

component. Placing about 6 mm of Lead (Pb) in front of the start counter helps in 

reducing the spurious component, since this act as a filter absorbing almost all the 

backscattering photons and reduce the intensity of the region a in the start counter, but 

at the same time this procedure decreases a lot the counting rate. For this reason, the 

linear (180°) geometry is not acceptable in the positron lifetime measurement with BaF2 

scintillators. The solution adopted was to place the two counters forming an angle of 90° 

so that only one of the pair of annihilation photons is able to enter the scintillators.  
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In order to evaluate the scintillator efficiency, it is considered an impinging photonic 

beam with power Pn. Then are accounted all the phenomena interfering with the 

detection process. The power produced by a scintillator is:   

                                                               Psc = PnFnCnp                                                                (2.2) 

where Fn is the fraction of total energy absorbed by the scintillator, Cnp is the conversion 

efficiency of a γ ray in visible or UV ray. A fraction of Psc is lost across the scintillator, and 

the power effectively emitted is: 

                                                                Psc
e = PscTpFp                                                                                          (2.3) 

where Tp is the degree of transparency of the scintillator to its own radiation, and Fp is 

the fraction of photon actually emitted. Thus, the scintillator efficiency become: 

                                                              ηsc = FnCnpTpFp                                                                                            (2.4) 

resulting: 

                                                                Psc
e = ηscPn                                                                 (2.5) 

 

Photomultiplier 
 

After the γ-rays, produced by the β+ decay, are transformed into visible light, the 

photonic signal has to be converted into an electric one. For PALS it is commonly used a 

quantum photodetector, capable to identify an incoming photon. The detector can work 

by either one of these two effects: photon energy can be used to excite an electron in a 

semiconductor from valence band to conduction band causing a conduction 

enhancement, or to extract the electron from the material. In both cases detection is a 

threshold process, meaning that there is a minimum energy to be reached by the photons 
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in order to have an effect on the electrons. In this work it was used the external-effect 

photodetection. 

A standard detector of this kind is the vacuum photodiode. It is formed by two plates 

at a certain distance d in vacuum, with a strong electric field ε among them. The photon 

colliding with the cathode (the plate with negative potential), that has an energy 

quantified by the equation E=hν, in order to extract an electron by photoelectric effect, 

has to satisfy the following threshold condition:  

                                                               hν > eϕ                                                                  (2.6) 

where ϕ is the work function of the cathode material (i.e. the minimum energy required 

to extract an electron). If this happens, the electron extracted is accelerated towards the 

anode by the electric field. The current generated by this charge movement act as 

electrical signal that reveals a photon arrival. The signal produced is weak and need to be 

amplified, but the background noise introduced by these amplifications is higher than the 

one of the photodetector alone. Thus, in order to increase the signal-to-noise ratio, a 

photomultiplier (PM) was used in this work. 

In a photomultiplier other than the initial cathode and the final anode, there are also 

a series of intermediate electrodes, called dynodes, polarized with increasing potential. 

Electrons extracted from the photocathode, before arriving to the final anode, collide 

first with the dynodes. The electrons, accelerated by a strong electric field, acquire 

enough energy to extract a certain number of secondary electrons from the first dynode, 

which are accelerated towards the second dynode extracting more electrons and so on 

in a multiplication effect, as shown in the following figure. 
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Figure 2.5 - Working principle of a Photomultiplier 

 

Since the electrons emitted from the photocathode need to have enough energy to 

generate further secondary electrons, the threshold condition must be greatly exceeded, 

it must occur that the residual energy of an electron extracted by a photon must have a 

residual energy E = hν – eϕ >> 0 (from eq. 2.6).  

The photomultiplier gain can be defined as G = αn, where α is the average number of 

secondary electrons produced by every dynode and n is the number of dynodes. The 

number of electrons reaching the anode plate is proportional to the gain G and the so is 

for the electric signal produced. The stochastic nature of the multiplication process 

introduces another kind of noise due to the gain fluctuations. The photomultiplier is 

intrinsically a nosier device than the vacuum photodiode, but it has the great advantage 

of avoiding the electronic amplification step, ending up with an overall better signal-to-

noise ratio.  The typical voltage supply value of a photomultiplier varies in the interval 

1.8-2.2 kV, to be distributed among the two main electrodes and the dynodes by means 

of a voltage divider. Since the dynode gain G shows a saturation behavior for a certain 

voltage V (about 250 V), it means that it is not significant any further. Usually, only the 

first stadium is polarized up to saturation voltages because a missing electron at this step, 

implies a big variation of the number of electrons arriving to the anode (because of the 

multiplication effect), whereas a missing electron at the final step is not so important 

since it weighs less on the overall process.  
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The photomultiplier efficiency can be defined as: 

                                                                  ηpm = SmfFc                                                               (2.7) 

where Sm is the cathode spectral sensibility, it represents its dependance on the incoming 

photon wavelength, f represents the degree of overlapping between the spectrum 

actually produced by the scintillator and the cathode spectral sensibility, Fc is the fraction 

of photoelectrons collected by the dynodes.  

As stated before, the electrons are eventually collected by the anode in a region that 

it would better to be dot-like and placed at its center. But there are also electrons 

collected at the anode edges that need to reach the center causing a broadening of the 

system impulse response. In fact, secondary electrons could be emitted along directions 

not perpendicular to the dynode, colliding with the next one in peripheral areas. 

Moreover, even if electrons would be emitted along the axis of the detector, impinging 

photons could be collected by peripheral areas of the photocathode and there would be 

electrons reaching the anode far from its center anyway. These two factors restrict the 

temporal resolution of the photomultiplier. In order to focus the incoming photons to the 

photocathode center cathode dimensions can be reduced, but this operation would 

decrease the detection efficiency. The electronic beam could be confined around the 

detector’s axis, focusing electrons through electrostatic field gradients, using crossed 

magnetostatic and electrostatic field or it could be done simply using a geometrical 

focalization by means of dynodes with spherical cap. While the Photomultiplier response 

time is a negligible parameter in the case of PALS since the same delay concerns both 

start and stop detectors thus it is irrelevant in relative temporal measurement. However, 

the maximum delay of the response time is given by the time needed by an electron, 

moving along the axis, to cross the entire length of the photomultiplier, from the 

photocathode to the anode.  

For this work PHILIPS XP 2020 phototubes were used. Voltage supply is 2300 V, with a 

corresponding gain of about 3·107, and it is distributed among various dynodes by a 

suitable divider, in particular it is concentrated between the photocathode and the first 
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dynode. As a voltage supplier an HV ORTEC 556 was employed. Impulse rise time at the 

anode is about 1.8 ns. Average transit time of electrons through the phototube is about 

30 ns, but the real important parameter is its dispersion valued around 250 ps.  

CFD 
 

The Constant Fraction Discriminator (CFD) is a device used to distinguish start and stop 

events and to produce fast synchronizing signals to be used to measure the positronium 

lifetime. CFD intercept input pulses coming from the anode of the photomultiplier in the 

range of 0 to -10 V and if they exceed the lower bound, but not the higher one, within 10 

ns after the constant fraction zero crossing time, then the CFD generates a timing output 

signal. As it was shown before, a photon incident on the photocathode that satisfies the 

threshold condition generates a current pulse at the anode, the amplitude of this current 

is proportional to the impinging photon energy. This is why it is possible to distinguish a 

start photon from a stop photon. 
 

To correctly report start and stop photon, the energy windows of the instrument must 

be calibrated. On the stop detection branch, they must be calibrated so that only pulses 

corresponding to photon energies around 0.511 MeV are selected, whereas on the start 

detection branch only pulses corresponding to photon energies around 1.274 MeV. 

When suitable window energy amplitudes have to be chosen, it can be decided if they 

should cover a narrower or a wider interval. A narrower interval means less background 

and higher resolution but at the same time less counts per unit time and this is a 

disadvantage since in order to have the same counts (for a batter statistic) measurements 

must be longer worsening the resolution function due to possible drifts induced by 

thermal fluctuations. In this work the windows are calibrated so that are accepted only 

stop signals having energy in the range ± 20% of 0.511 MeV energy peak and are accepted 

start signals having energy higher than 70% of 1.274 MeV energy peak. The stop channel 

has an energy window with a lower and an upper bound in order to exclude both low 

energy photons, due to background noise, and high energy photons related to the start 

signal. Thus, the energy window for stop signals has to be quite narrow in order to 
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minimize false stop signals that in reality are degraded start signals, but not too much in 

order to keep a good counting rate. While, for the start signal is simply enough a lower 

band that cuts out the low energy photons to not misinterpret stop signals.  
 

Here it is described how energy windows are calibrated in practice. The electrical 

output from the anode is sent to the CFD, then to the ADC and finally to a computer. If 

no bunds are set, on the monitor is possible to see the whole spectrum on a graphic in 

which x and y axis represent respectively the channel number (proportional to the energy 

released by the scintillator) and the number of counts at a certain energy. Using two 

markers a lower and an upper bound are set for the stop energy windows. Then, it is 

taken the same signal as before but coming from one the last dynodes, it is amplified and 

sent to the ADC where a coincidence circuit generates an output only when it receives 

the same signal from both the discriminator and one of the last dynodes. Therefore, what 

it is now displayed on the monitor is the coincidence between signals coming from the 

dynode and signals filtered by the CFD. Having kept fixed the markers position, precision 

potentiometers, located in the front panel of the CFD, can be used in order to determine 

lower and upper levels so that the monitor would show only the part of the spectrum 

within the markers set before, and finally energy window bounds can be set. The same 

procedure is repeated for start signal. Usually, energy windows calibration is conducted 

periodically in order to take in account unavoidable parameters drifts of electronic 

instrumentation.  
 

Once energy windows are set, the focus is put on the time lag between the start event 

and the stop one, that is of fundamental importance since it regards the accuracy of 

calculation of the lifetime of positronium. The discriminator is able to supply very fast 

logic pulses temporally correlated with the anode signal, allowing to indicate with a very 

high precision when a start or stop event occurs. But the generation of these signals is 

affected by several error sources. There could be signal distortions, due to the stochastic 

nature of the detecting process, like variations in the photon production rate in 

scintillators or fluctuations in photon and electron transit time respectively in the 

scintillator and the phototube. Temperature variation in the measurement environment 
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is usually also a problem since it produces temporal drift in the measure, but this was not 

a problem for this work since it was carried out in a thermo-regulated laboratory, with a 

variation in temperature of maximum ±1° in a day with measures lasting at maximum 24 

hours. The most troublesome problem is the amplitude walk, that is the systematic 

dependence of the time marker on the amplitude of the input pulse. This problem can 

be solved by obtaining a constant fraction pulse. The unipolar incoming signal is split in 

two signals, one of which is attenuated by a factor f, whereas the other one is delayed 

and reversed; the two modified signals are then summed, making a bipolar pulse, this is 

the constant fraction pulse. By optimizing parameters like the delay undergone by the 

signal in one branch and the attenuation undergone by the other one it is possible to 

create a pulse whose zero-crossing point is independent from the original pulse 

amplitude (Figure 2.6). Optimization is accomplished inserting suitable delays on input 

signals. This an empirical procedure and after several trials of different delays on the stop 

branch and the start branch, the couple providing the best resolution is the one adopted.  

 

 
Figure 2.6 – Working principle of a CFD 

 

 

For the stop channel were used the CFD ORTEC 583 device, and the CFD ORTEC 473A 

device for the start channel. The last one is characterized by only one boundary, the lower 

one and this is enough given what was said before, while the other one has a real energy 

window and let to set both the lower and the upper bound. 
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TAC 
 

The Time to Amplitude Converter is a module that measures the time interval between 

start and stop input pulses and generates an analogical output pulse proportional to the 

measured time. The time can span from 50 ns to 2 ms and a start-stop conversion is 

carried out only when a valid start has been identified and a stop pulse arrives within the 

selected time range. TAC bases on the working principle of an RC integrator circuit. When 

a valid event is identified on the start channel, i.e. a pulse overcomes the CFD selection 

and gets to the TAC, at the same time that the timing pulse is generated by the 

discriminator, the RC circuit is fed by a current supply. This kind of circuit generates a 

ramp function as output when it receives a step function as input. If within a prefixed 

temporal window, a pulse overcomes the CFD selection on the stop channel, then, 

correspondingly to the timing pulse coming from the stop discriminator, the input to the 

RC integrator is disconnected and the time elapsed between the two events can be 

calculated from the height reached by the ramp. In an RC circuit the two quantities, 

voltage and time, are directly proportional each other, linked by the following relation: 
 

                                                                                                                        (2.8) 
 

Usually, TACs show some non-linearities at the initial stage of the charging process of 

the capacitor and so the relation between voltage and time could not be approximated 

anymore as linear. In order to solve this problem and to keep using the linear relation 2.8 

to calculate backwards the elapsed time, an artificial delay is inserted on the stop channel 

by means of a suitable cable, so that all the measured time intervals appear to last more 

(a start and a stop photon received simultaneously would give rise to a lifetime equal to 

the additional delay). The consequence of this operation is a rigid translation of the 

spectrum on the time axis. If no stop input is accepted before an overrange condition is 

sensed (usually within 50-100 ns), the measurement will be aborted and no output signals 

for the TAC will be generated. If no stop signal is identified within a prefixed time interval 

from the start pulse, it is assumed that the stop photon (0.511 MeV) has not been 

detected, so the ramp is reset, and the TAC is set up to wait another start signal. If the 
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TAC didn’t contemplate this occurrence, TAC terminal voltage would continue to increase 

until a stop pulse is detected, but almost certainly it would be related to another start 

photon, leading eventually to a misleading lifetime. In the present work was used a TAC 

ORTEC 566. 
 

ADC 
 

The Analog-to-Digital Converter is needed to transform the analogical output coming 

from the TAC into a number proportional to it, so it can be read by a computer. The 

converter used in this work performs a ramp conversion. A digital circuit compares the 

analogical value to be converted with the output of a circuit generating a ramp, a kind of 

integrator similar to the one seen in the TAC. The comparator produces a high logic 

output only when the ramp overtakes the analog voltage to be converted. This logic 

output is linked to a counter that stores clock pulses at constant frequency, until a 

commutation from low to high occurs, the number of counts is proportional to the 

analogical value to convert and represents the number produced by the conversion. The 

most significant parameters for an ADC are its response speed and its integral and 

differential linearity. The conversion speed is directly related to the time interval during 

which any new arriving signal is not accounted for since the ADC is already busy in 

converting the previous one. The maximum dead time is corresponding to the highest 

voltage coming from the TAC. The conversion linearity is an index of how much the digital 

output is actually proportional to the analogical input amplitude. Ideally, the input-output 

curve of an ADC is a series of steps, so that linking the middle points of each step gives 

place to a straight line. In practice that does not happen. Thus, it is useful to define the 

integral linearity parameter, as the maximum deviation between the ideal straight line 

and the real curve, and the differential linearity, as the difference between two 

contiguous digital values, that should be ideally constant.  
 

A converter AD SILENA 7411 was employed for this work, with an integral linearity 

lower than ± 0.025% and a differential linearity lower than ± 0.3% out of 99.8% of the 

scale. Conversion time is 4.7 μs for 1024 channels.  
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MCA 
 

After being digitalized by the ADC, the measurements are sent to a Multi-Channel 

Analyzer to store the spectrum. For this work it was used a memory buffer SILENA 7329 

with 4096 channels able to manage four spectrometers. Every channel corresponds to a 

certain time interval, so that the n-th channel contains the annihilation events occurred 

between nT and (n+1)T. Therefore, the total number of counts stored in every channel is 

equal to the number of pulses generated by the TAC in that time range. What’s left, in 

order to achieve a correct deconvolution of the spectrum, is to evaluate the time 

resolution of the spectrometer and the channel-time conversion related to the MCA, i.e. 

the time interval T corresponding to a single channel. 
 

The spectrometer calibration serves precisely this purpose. Through the procedure 

here described it can be determined the time interval corresponding to a single channel. 

To this purpose, a 60Co is used. The lifetime spectrum produced by its nuclear decay, 

should be given by a delta function. Indeed, the source emits two gamma rays with similar 

energies (1.17 and 1.33 MeV) within 0.7 ps and they can be considered simultaneous in 

comparison with our time scale of several ns. However, but because of system non-

idealities, it will result in a broadened function, called resolution function. As previously 

mentioned, stop signals are always delayed with respect to the start ones, so even though 

two signals arrive simultaneously, the relative spectrum is not placed at the first channel, 

but it is situated around the channel corresponding to the fixed delay. If it is introduced 

an additional delay, arbitrary chosen, it is found the same spectrum but shifted by a 

certain amount of channels corresponding to the delay. The same happens if more 

arbitrary delay are applied. Then the centroid of each curve is calculated using the 

weighted average formula: 
 

                                                                                                          (2.9) 
 

 



 24 

where ch is the channel number and count(ch) is the number of counts at a certain 

channel. Once the values of the centroids for each curve are found, they are plotted 

versus the relative delay obtaining a straight fitting line whose angular coefficient 

represents the time interval per channel. For the apparatus employed in this work it was 

found a value of 10 ps/ch. 
 

As it was stated, the spectrometer is characterized by a resolution function R(t), that 

represents the system response to two simultaneous signals. But because of many 

sources of uncertainties, it cannot be a delta-like function. Knowing this function leads to 

a correct estimation of the time resolution of the apparatus, that is essential for the 

analysis of lifetime data. The spectrum obtained is the convolution between the physical 

spectrum and the system pulse response. Thus, the R(t) function is needed in order to 

perform an accurate deconvolution of the spectrum. The real broadened resolution 

function is responsible for smearing effects on the initial channels. Thus, the most 

perceivable effect is close to the origin, while time resolution effects are not so important 

for long lifetimes and this is favorable to our experiments since they concern the o-Ps 

lifetime that is the longest component of the deconvoluted spectrum. A good 

spectrometer is characterized by a symmetric pulse response R(t), which is often 

approximated by a Gaussian curve, whose full width at half maximum (FWHM) is 

conventionally assumed to be the apparatus resolution.  
 

The resolution function can be determined in practice exploiting again the decay of 
60Co. This radioisotope decays towards an excited state of 60Ni which de-excite emitting 

two photon of 1.17 MeV and 1.33 MeV respectively. Since the second emission follows 

the first one only about 0.7 ps later, they can be considered to be emitted at the same 

time, indeed, the time span between them is insignificant compared to the 

measurements involved. The FWHM of this emission spectrum, as anticipated, is a figure 

of merit of the time resolutions. The aim is to try to have the lowest value possible 

through electronic device optimization.  
 

The measures were carried out in two different electronic apparatuses in order to 

double the statistics. Thus, two lifetime spectrometers were used (out of the four allowed 
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by the memory buffer) and so four CFDs were needed (two start-stop couples). Before 

initiating the measures of interest, all the possible permutation for the CFDs at disposal 

were tried (with the only limit that the CFDs with only one boundary had to be used for 

the start channel), in order to find the best two start-stop couples to reach, not only the 

lowest FWHM possible, but also a similar value between them, to have comparable 

results. In the end the best compromise was to end up with the two couples returning 

values of FWHM of about 35 channels that with the channel-time conversion of 10 ps 

found previously, correspond approximately to 350 ps. 
 

The estimation of the resolution obtainable by means of 60Co is intrinsically inaccurate. 

In fact, if the 1.17 MeV photon approximates very well the start photon (1.274 MeV), the 

same cannot be said about the 1.33 MeV photon, that is very far from stop photon energy 

of 0.511 MeV, so it is considered as stop photon, a high energy photon degraded. 

Therefore, stop photon acquisition efficiency is lower than if the source was 22Na (the 

radioisotope used in the experiments), and so the resolution function is worse. This 

resolution curve is larger than real curve, but this one is physically unobtainable since 

there isn’t in nature a radionuclide which decays emitting simultaneously two photons of 

energy 1.274 MeV and 0.511 MeV. Making a rough estimate it can be said approximately 

that the real FWHM is about 10% lower than FWHM found with 60Co source.  

 

 

Cryostat and ITC 
 

The aim of this work is to study the free volume in function of temperature. Thus, a 

cryostat must be employed which allows to reach temperatures until about 80K, that is 

the liquid nitrogen temperature, and up about 500K through a series of resistances. The 

cryogenic system used for this work is made up of different parts. The terminal part is a 

cylinder made of copper, material chosen for its high conductivity, so that it reaches in 

the least time possible the temperature set by the control system. In contact with the 

copper cylinder, on its upper side, there is a component called “room”, in which are 

present all the resistances needed for heating. The cylinder is in contact with the “room”, 

physically separated by a copper sheet above which tiny droplet of nitrogen fall over, and, 
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as soon as they touch the walls of the “room”, they evaporate decreasing the 

temperature by conduction. The copper sheet is needed to prevent liquid nitrogen from 

dropping into the cylinder. On top of the “room” there is a Dewar, a vacuum container 

needed to store the liquid nitrogen and to pour it drop by drop in the “room” below. 

Liquid Nitrogen is inside the internal wall of the Dewar at a temperature of 77K, far lower 

than the ambient one, thus, it must be thermally isolated from the outside as much as 

possible. As known, there are three ways of exchanging heat: conduction, convection or 

irradiation. Conduction is neglected since there is vacuum between the internal and the 

external wall. There is no convection either since liquid nitrogen is stationary in the 

container. Finally, irradiation can be strongly reduced by adopting reflecting walls. The 

container cannot be hermetically sealed because nitrogen tends to evaporate and as a 

result there would be an accumulation of gaseous nitrogen that could lead to a dangerous 

increase of pressure, so the Dewar comes with an evacuation circuit connected with the 

external environment in order to expel any potentially dangerous excess of gas. In the 

terminal part of the container there is a capillary tube crossed by the stored liquid 

nitrogen whose diameter is controlled by a valve. The larger the diameter is, the more 

liquid nitrogen gets through, the faster will be the cooling. Once the “room” is cooled up, 

the copper cylinder and the polymer sample inside of it, get cooled too by conduction, 

reaching the desired temperature. Both the “room” and the copper cylinder are covered 

with a steel jacket and again vacuum is made in the middle, in order to avoid, here too, 

the thermal exchange with the exterior. But this steel jacket is a source of losses, it 

increases the distance between the scintillator and the source, thus the amount of 

photons impinging on the scintillator decreases because the solid angle relative to the 

scintillator is smaller.  
 

Vacuum is obtained by means of two pumps. The first one is a rotary pump able to 

reach pressures of about 10-2 Pa, the second one is a turbo-molecular pump that start 

working from the vacuum created by the first one and goes up to 10-5 Pa. Pumps are kept 

working for a whole day to obtain an optimal vacuum, and this operation is repeated each 

time there is the need to change the sample in the copper cylinder.  
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In the “room” there is a resistance thermometer in order to update continuously the 

value of the temperature. An external Intelligent Temperature Controller unit is in charge 

to maintain the desired temperature, by varying the electrical current flowing into the 

resistances and the amount of liquid nitrogen reaching the “room” through the valve. 

Once reached the desired value, the system continues to deliver liquid nitrogen and at 

the same time it feds current to the resistances, eventually reaching a dynamic thermal 

equilibrium.  
 

The cryostat used was the DN 1714 Oxford Instruments apparatus, purposely 

modified, while the temperature control unit used was the Oxford ITC 4. 
 

 

HyperTerminal 
 

Finally, the MCA can communicate with a computer through its serial port, in this way 

the acquired data can be transferred and stored on the machine in order to be studied 

afterward. The MCA and the computer must be able to talk one another, so it is needed 

a program that allows the PC to interface with the memory buffer. The program used for 

the data acquisition for this work purposes is HyperTerminal. This is an emulation 

program that supports text-based communication and it is capable of connecting to 

systems through the internet via Telnet or SSH, by Dial-Up Modem, or directly connected 

by a RS232 serial cable and COM port (this is the case). This terminal emulator is designed 

to mimic different types of terminal systems in order to communicate with any kind of 

external device by properly setting key parameters. The parameters to be initially chosen 

are the baud rate, data bits, parity, and flow control. First of all, the communication 

parameters have to be set on the MCA, then the commands on HyperTerminal come 

accordingly since they have to match the instructions of the buffer. The parameter 

adopted for this study are a baud rate of 9600 bits per second, a character length of 7 

data bits, no parity, 1 for the stop bits and a hardware flow control. Then in the ASCII 

setup window all the checkboxes must be selected in order to allow a proper data 

exchange. After that the program has to be put in transfer mode so that is ready to 

receive the information. On the MCA the measures have to be stopped both on the first 
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and the second task (as stated before, two measures are performed at the same time 

and it possible to switch from one to another using the control panel of the memory 

buffer). Once the measurements are stopped, it is possible to select the copy option, and 

if the HyperTerminal was correctly configurated and set ready to capture data, it 

immediately shows the information being transferred. It returns, in the end, two text 

files, one per task, where are reported all the numbers of the counts per channel. The 

4096 channels are acquired divided in eight columns, thus subsequent manipulations are 

needed to unroll the data and study the full spectrum. 
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Chapter 3 
 

Data processing 
 

 

 

LT_polymer program 
 

 

The analysis of the components of the spectrum is carried out using an appropriate 

program that is the LT Program, the specific version for polymers, by Jerzy Kansy. It takes 

as input the text file coming from the HyperTerminal Program, that contains all the 

information of the spectrum to be analyzed. It must first be modified into a layout 

readable by the LT Program, after that the user is required to enter a series of parameters 

that can be set free or be fixed to a specific value. These parameters concern the positron 

source, the transfer function R(t), the number of components chosen, the background 

and others. Of course, the program operates on the free parameters in order to get the 

best fit between the hypothesized model and the experimental data, while the fixed 

parameters do not change during the research of the best approximation. The 

optimization proceeds through a nonlinear least-squares fitting, after the deconvolution 

of the experimental data. Hereinafter, the parameters chosen for this study are described 

in detail. 
 

The first thing required are the initial and final channel among which the analysis 

should be performed. As left limit, it is chosen a channel on the left of the one considered 

as zero. It is chosen within a range of about a quarter of the FWHM of the R(t) that is 

about 10 channels. This choice is made in order to avoid information losses due to the 

effects of the convolution of the R(t) and the exponential components of the Gaussian 

(later it will be seen that these components are related with how the transfer function is 

represented by this program). For the right limit, it is simply chosen a channel where the 

spectrum starts to be horizontally flattened, i.e., the portion of the curve where are 
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accounted only the counts relating to the background noise, being careful to not include 

the final part of the longer exponential queue. 
 

It is required the background. This value is already known with enough precision 

directly from the spectrum memorized in the MCA, it is simply the integral on the last 

channels (where the spectrum is flattened) divided by the number of channels chosen. 

Thus, this is a fixed parameter, and it is not modified during the iterations. 
 

Information about the source are also required. Some positrons annihilate in the 

copper cylinder, generating a spurious signal that has to be filtered out during the 

deconvolution of the spectrum. In fact, the 22Na source is hold in place between two foils 

of Kapton with a thickness of about 7 μm each. It is needed to specify the percentage of 

positrons that annihilate in the Kapton and their average life. From literature, in particular 

from the work by Plotkowksi [4], it is found that for the thickness of Kapton used in the 

experiments, it corresponds a fraction of positrons that annihilate in the support of 20% 

with an average lifetime of 386 ps. Since these values are known in advance, they are 

fixed parameters. 
 

It is required the shape of the resolution function R(t). Two possibilities are available. 

It can be chosen between a single Gaussian function with exponential queues: 
 

                                                                                         (3.1) 
 

where  stand for the convolution operation, G represent the Gaussian function with a 

certain Full Width at Half Maximum, τl and τr are the time constants respectively of the 

left and right exponential queue. The second option consist in the sum of two or more 

Gaussians functions with different weights, FWHM and centroids: 
 

                                     R(t)=f1G(t,FWHM1,Δ1)+ f2G(t,FWHM2,Δ2)+…                           (3.2) 
 

where G(t,FWHM,Δ) is the Gaussian, function of time, centered in Δi , with its Full Width 

at Half Maximum FWHMi and fi weight relative to the i-th term. In order to obtain 

accurate results, the single exponential-sided Gaussian turned out to be enough for this 
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work purposes. Moreover, as described previously, from 60Co decay measurements it is 

known that the FWHM of the curve is about 350 ps. But this is not considered a fixed 

parameter during the fitting process since it is the result of an experimental measure, 

thus subjected to uncertainties and fluctuations, so it is only used as an initial guess from 

where the fitting can start. This value was fixed (not necessarily at 350 ps) only when an 

unrealistic fit was returned. The time resolution of the lifetime spectrometer affects much 

more the shorter lifetime component, the one of the p-PS, and luckily much less the 

higher o-PS lifetime which is the component of interest. Since the life of p-PS in vacuum 

is 125 ps and it undergoes to almost any changes passing from vacuum to matter, it was 

decided to fix the value of FHWM every time that, leaving it free, it was returned a lifetime 

under 100 ps, that could be reasonably considered as an unfeasible value. Fixing the value 

of the resolution worsen the fit since there is one degree of freedom less, but this 

worsening is acceptable because it is a compromise in order to obtain a realistic physical 

meaning (the aim is to obtain a description of the reality, not to obtain an artificially high 

χ2). 
 

It is finally required the number of components in which the spectrum has to be 

decomposed and if it the component has to be a discrete or a continuous variable. As 

discussed before, it was chosen to use three discrete components to deconvolute the 

spectrum. These lifetime parameters were set as free and, accordingly with the 

theoretical model, were chosen as initial guesses: 0.12 ns for the p-PS lifetime, 0.35 ns 

for the free positrons lifetime and 2 ns for the o-PS lifetime. 
 

These analyses were carried on the spectra of five different samples for a preselected 

range of temperatures (from 230 K to 300 K). In this way the information embedded in 

the spectrum has been quantified. In fact, the program outputs are the lifetime values of 

the three components and their intensity. All the variables set initially as free, are shown 

with their statistical uncertainty. Furthermore, as already mentioned, a χ2 test is given, 

that is useful to quantify the goodness of the fit. In addition to the numerical outputs, the 

results can be also displayed in graphical form, showing the experimental spectrum, the 

fitted spectrum, their difference (the residuals) and the three deconvoluted components. 
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Residuals are useful since the presence of systematic oscillations is the sign that the 

model is not satisfactory. An example is shown in the following figure. 

 

 
Figure 3.1 - Spectrum of a S5 polymer sample at 300K 

 

On the x-axis is displayed the time frame in ns, obtained from the channel number 

through the channel-time conversion parameter calculated previously and resulting to 

be of 10 ps/ch. It can clearly be seen that there has been applied a cut-off around the 

2000th channel (20 ns) and that it was chosen as start channel, one near to the centroid 

of the curve on the left side. On the y-axis is displayed the number of counts per channel 

that is clearly represented by the experimental dot-curve. While, of the four solid lines, 

three represent the discrete components in which the spectrum is deconvoluted and the 

fourth represent the positrons that annihilate in the Kapton. 
 

In the end it was obtained a satisfactory statistical test, with a normalized χ2 in the 

range 0.92-1.08 (very near to the ideal value of 1). It always has to be kept in mind that 

the results coming from the program were never taken as absolute truth, they were 

always checked (regardless of the χ2 returned), asking if they would make sense in reality 

or not, following the criteria mentioned above. 
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Eventually these values were tabulated in function of the temperature focusing only 

on the o-PS lifetime, allowing the calculations described in the following paragraphs. 

 

Table 2 - Average lifetime of o-Ps τ3 in function of the temperature T for each elastomer 

T [K] 230 240 250 260 270 280 290 300 310 315 320 

τ 3
 [n

s]
 

S6 - - 1.69 1.80 1.85 1.95 2.06 2.05 2.14 - 2.24 

S5 - - 2.38 2.41 2.46 2.50 2.55 2.58 2.60 - 2.64 

 

 

 

S4 1.98 2.10 2.22 2.34 2.46 2.58 2.64 2.70 2.73 - 2.75 

S3 2.08 2.18 2.26 2.36 2.46 2.55 2.64 2.69 - 2.71 - 

S2 1.85 1.97 2.05 2.23 2.39 2.53 2.62 2.72 - 2.75 - 

 

 

 

 
 

Figure 3.2 - o-Ps lifetime τ3 as function of the temperature T for the polymer S6 
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Figure 3.3 - o-Ps lifetime τ3 as function of the temperature T for the polymer S5 

 
 

 
 

Figure 3.4 - o-Ps lifetime τ3 as function of the temperature T for the polymer S4 
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Figure 3.5 - o-Ps lifetime τ3 as function of the temperature T for the polymer S3 

 
 

 
 

Figure 3.6 - o-Ps lifetime τ3 as function of the temperature T for the polymer S2 



 36 

These graphics highlight a linear trend of the o-Ps lifetime with the temperature.  But 

it is also noticeable that above around 300 K (depending on the polymer) there is a 

reduced increase of τ3, it is a common feature for all the polymers studied. Many 

explanations were proposed in literature: formation of a Ps bubble [5], digging of holes 

by Ps itself [6] or a relaxation time of the molecular chains which is comparable to the Ps 

lifetime [7] . Whatever the explanation, in this temperature region it is safe to say that Ps 

cannot give reliable information on the free volume holes [8], therefore the discussion 

will be limited to temperatures below 300K. While for the lower limit it was chosen to 

not go below the glass transition temperature Tg of the polymer, since below this 

temperature inter- chains motions are strongly hindered, and the free volume shows only 

small variations with temperature (even if the relation continue to still be linear but with 

a lower slope). Furthermore, our results will be compared to the lattice-hole theory as 

explained later. Since this last is valid only for amorphous polymers at equilibrium, that is 

above the glass transition temperature, this is the only region of interest for the present 

study.  Thus, the study was carried on the linear trend region between around 230K and 

300K (again, each polymer needs specific choices). This region showed a correlation 

coefficient in the range 0.9946-0.9998 highlighting that the linear fit is a very good 

approximation (the ideal value would be 1). 
 

 

Quantum mechanical models 
 

The lifetimes of o-Ps have to be converted into the average size of the free volume 

holes vh. To this purpose many mathematical models can be adopted in order to frame 

the Positronium in the cavity. The most popular one is the Tao-Eldrup model [9], [10]. The 

cavity hosting the Positronium is assumed to be a spherical void with radius R. In reality, 

such positronium trap would have a finite depth potential well, but in order to make 

calculation easier the depth is considered to be infinite and the radius is increased by a 

quantity ΔR evaluated empirically and set equal to 0.166 nm, introduced to take into 

account the penetration of the Ps wave function into the bulk. The electron density is 

supposed to be zero inside the sphere, so for r < R, and constant outside, so for r > R. The 
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relationship between the o-Ps lifetime τ3 and the radius R is given by the following 

equation: 
 

                                                                                  (3.3) 
 

where λp is the pickoff decay rate and λ0, set equal to 2 ns-1, is the annihilation rate of o-

Ps in the presence of high electron density. While λp is directly related to the o-Ps lifetime. 

In fact, τ3 is the inverse of the total decay rate λ3, that is the sum of the pickoff decay rate 

and the intrinsic decay rate λi, equal to 1/142 ns-1: 
 

                                                                                                              (3.4) 
 

Since the o-Ps lifetime is known from PALS analysis described above, λp can be easily 

calculated by reverting the equation 3.4. Thus, everything is known in the equation 3.3 

except for the radius R that is the desired value. This can be retrieved by using the fzero 

function in MATLAB in order to find the zeroes of the function. For the spherical geometry 

it is obtained a hole volume vh = (4/3)πR3. The volumes obtained are tabulated in function 

of the temperature as the o-Ps lifetimes from which they come from. As it will be shown 

in the next chapter, the spherical geometry hardly describes the reality in the investigated 

polymers, therefore other geometries must be adopted. 

  

The second model adopted was a finite cylinder with radius R and height h. Where the 

height does not vary freely but it is linked to the radius by the aspect ratio q, so that it 

results h = qR. When q > 1 it is called elongated cylinder, while, when q < 1 it is called 

flattened cylinder. The relation between the o-Ps lifetime τ3 and the radius R is in this 

case [11], [12]: 
 

                                                                                                                (3.5) 
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where: 
  

                                                                                            (3.6) 
 

                                                                                                   (3.7) 
 

where J0(x) is the zero-order Bessel function of the first kind and a1 = 2.4048 is its first 

zero, while Δh is equal to 0.166 nm and again it is the quantity introduced to take in 

account the penetration of the Ps wave function into the bulk. In a similar way as before 

R is retrieved and the hole volume can be now calculated as vh = hπR2 = qπR3. Again, the 

results are unsatisfactory so the investigation must proceed towards other models. 
 

Since the same type of discrepancy has been obtained with both the previous 

geometries adopted, the reason of the deviation from the theory has been addressed to 

the assumption of isotropic expansion of the holes vh ∝ R3. Dropping the isotropic 

assumption, a cylindrical geometry has again been considered to model the holes, the 

expansion along the direction of the radius R is supposed to be free, but this time the 

height h, that is still linked to the radius R by the aspect ratio q, grows slower than it as 

shown by the formula: 
 

                                                                                                                            (3.8) 
 

where p is the anisotropy parameter, expected to be less than one (while for p = 1 we 

recover the previous isotropic expansion), and R0 is the initial radius of the cylinder. 

Repeating the above steps, the radius R can be once again be retrieved and the hole 

volume calculated as vh = hπR2 = qπR0
1-pR2+p. This time, choosing suitable parameters q 

and p for each polymer, it is found a very good agreement between the theoretical and 

the experimental estimates of the free volume fraction, as it will be shown in the next 

chapter. But first, it has to be described, in the following paragraphs, how the 

experimental free volume fraction is obtained, and from where the theoretical one is 

derived, in order to finally confront them 
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Dilatometry 
 
 
One thing still missing, in order to get the experimental free volume fraction, are the 

specific volumes Vs of the polymers. These data are also needed, together with the 

Simha-Somcynsky equation of state (explained in a specific chapter later), to evaluate the 

scaling parameters T* and V*, which in turn are needed to obtain the theoretical volume 

fraction. The data about the specific volumes are at our disposal from dilatometry studies 

[13]. Dilatometry measures the change in volume of a specimen subjected to different 

temperatures and pressures through a particular machine, the Pressure Volume 

Temperature (PVT) Apparatus. They are obtained and tabulated in function of the 

temperature, showing a linear trend. In the following tables are shown the specific 

volumes in function of the temperature for each polymer studied in this work [14]. 

 
 

Table 3 - Specific Volumes Vs as function of the temperature T for each elastomer 

T [K] 343 333 323 313 303 296 293 283 273 263 258 

V s
 [c

m
3 /g

] 

S6 1.0272

6 

1.0208

1 

1.0145

7 

1.0083

5 

1.0022

2 

0.9980

8 

0.0060

9 

0.9906

3 

0.9847

5 

0.9790

7 

0.9761

4 

 

S5 1.1386

4 

1.1309

2 

1.1234

9 

1.1159

9 

1.1085

2 

1.1032

9 

1.1010

5 

1.0933

6 

1.0860

0 

1.0784

6 

1.0748

4 

 

 

 

 

S4 1.1482

3 

1.1407

5 

1.1334

0 

1.1259

8 

1.1185

3 

1.1134

0 

1.1110

8 

1.1035

7 

1.0961

3 

1.0894

0 

1.0857

7 S3 1.1428

7 

1.1354

7 

1.1280

4 

1.1206

4 

1.1132

7 

1.1081

6 

1.1058

9 

1.0984

7 

1.0911

0 

1.0841

6 

1.0805

6 S2 1.1484

1 

1.1408

7 

1.1335

8 

1.1261

9 

1.1189

4 

1.1138

3 

1.1116

9 

1.1042

4 

1.0968

0 

1.0894

6 

1.0861

0  
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Experimental free volume fraction f 
 
 
As it can be seen, the average volume of the cavities vh and the specific volume Vs 

were evaluated at different temperatures. In order to use them to perform the following 

calculations, they are needed to be comparable (evaluated in the same conditions). As 

was stated before, they both showed a remarkable linear behavior, thus, without loss in 

accuracy they were both fitted with a linear interpolant and then their values were 

calculated for the same set of temperature chosen at the beginning of the study and that 

has been discussed above. 
 

 The total free volume is given by the sum of the specific hole free volume Vf and the 

interstitial free volume Vif. This last volume consists of local empty spaces, too minute to 

localize even the Ps. The specific hole free volume Vf can be expressed as the product of 

the number of holes per unit mass N times the average hole volume vh: Vf = Nvh. This free 

volume is accessible to Ps and it is the one calculated as the hole fraction in the lattice-

hole theory (see next sub-chapter). Thus, this is the variable of interest for this work, 

while the interstitial free volume Vfi is associated with the occupied volume Vo. The 

specific volume Vs is then given by the sum of the specific free volume Vf and the occupied 

volume Vo: 

                                                                                                      (3.9) 
 

where the occupied volume Vo is now given by the sum of the Van der Waals volume and 

the interstitial free volume.  
 

Indeed, the graphic showing the results of the specific volume Vs versus the average 

volume of the cavities vh evaluated at the same temperatures (Figures 3.7-3.21), 

highlights a linear trend between the data, with a correlation coefficient higher than 0.99 

for all the polymers. This was clearly expected, since both the variables showed a linear 

behavior with the temperature in the selected range of interest, that is, as explained 

before, above the glass transaction temperature and below the saturation temperature. 

N can be assumed constant, it is independent from the temperature, at least for T > Tg. 

Thus, these data can be fitted by straight lines. According to the eq 3.9 N and Vo are 
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respectively the slope and the intercept of the linear fitting. Here below are shown the 

results. As it can be seen, whether it is used the spherical approximation, the isotropic 

cylindrical approximation or the anisotropic cylindrical one, the trend is always the same. 

A strongly linear behavior is highlighted, indeed all the results showed a correlation 

coefficient above 0.99.  

 

 

 

 

 

 
Figure 3.7 - Vs in function of vh in spherical approx. for the polymer S4                                                      
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Figures 3.8, 3.9 - Vs in function of vh in spherical approx. for polymers S5 and S6 

 

    
Figures 3.10, 3.11 - Vs in function of vh in spherical approx. for polymers S3 and S2 

 
 

  
Figures 3.12, 3.13 - Vs in function of vh in isotropic cylindrical approx. for polymers S6 and S5 
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Figures 3.14, 3.15 - Vs in function of vh in isotropic cylindrical approx. for polymers S4 and S3 

  
Figures 3.16, 3.17 - Vs in function of vh in Isotropic cylindrical approx. for polymer S2 and in 

anisotropic cylindrical approx. for polymer S6 

 

  
Figures 3.18, 3.19 - Vs in function of vh in anisotropic cylindrical approx. for polymers S5 and S4 
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Figures 3.20, 3.21 - Vs in function of vh in anisotropic cylindrical approx. for polymers S3 and S2 

 

 
 

Finally, now that N is available from the fitting of the previous graphs, and the free 

volume Vf is retrieved, the fractional free volume f can be evaluated according to the 

definition: 
 

                                                                                                         (3.10)  
 

Its behavior versus the temperature will be compared with the one of the theoretical 

fractional free volume h, derived in the next chapter.  
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Theoretical free volume fraction h 
 
 
One of the most popular theoretical models used to characterize the polymers 

consists in treating them as thermodynamic systems. The idea is to calculate the values 

of the missing thermodynamic coordinates starting from the physical known quantities 

solving an equation of state. From statistical mechanics a polymer can be approximated 

as a solid with a complex structure, in which the molecules are made up of long chains of 

monomers. According to this approximation, the material appears to be organized in a 

structure originated by the repetition of a single constituent, the cells. These cells can be 

occupied by the molecules of the polymer or can be empty. This model is so widespread 

because it allows to easily visualize the structure of the polymer and its molecular 

dynamics. To take in account that some cells are full and other empty, the occupied 

volume fraction y and the free volume fraction h are defined, linked by the relation               

h = 1-y. Using this model to describe the polymer, the theory of Simha-Somcynsky has 

come to outline an equation of state linking various thermodynamic quantities related to 

the polymer, moreover it establishes that the polymer, above the glass transition 

temperature Tg, can be seen as a thermodynamic system at equilibrium and so a second 

equation could be defined in order to describe it. The glass transition temperature Tg is a 

parameter characterizing amorphous polymers, it marks two different “regions” in which 

the polymer shows a totally different behavior. The kinetic behavior of the molecules is 

different, inter-chain motions are hindered, the so-called cooperative motions results not 

active under this temperature, and this translates at macroscopic level in different 

thermal properties, mechanical properties and many other properties. This is why from 

a thermodynamic point of view, a polymer above Tg can be seen as a thermodynamic 

equilibrium, while under Tg, the polymer is in a “frozen” condition, because of the slower 

movements of its chains, thus the hypothesis of equilibrium under these circumstances 

falls and it cannot be studied with the Simha-Somcynsky theory. This is why all the results 

shown previously were taken above the Tg, in order to correctly compare them with this 

theory. Under the hypothesis of the Simha-Somcynsky theory, a polymer can be 
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described by means of an equation in which appears four thermodynamic coordinates: 

the specific volume , the occupied volume fraction y, the temperature  and the 

pressure . The general form of the Simha-Somcynsky equation is [3]:  
 

                                                        (3.11) 
  

where , ,  are dimensionless parameters called reduced parameters and are defined 

as   ,   and  . While the quantities p*, T*, V* are the scaling 

parameters, specific for each polymer. This form is useful because in this way the 

equation is valid for any amorphous polymer and the solution can be tabulated without 

having to solve each time the equation, the general results can be adapted to the specific 

polymer knowing its scaling parameters. The eq 3.11 takes in account 4 variables, but in 

most cases the variables are reduced to three, since usually the results are derived in the 

most common case of atmospheric pressure, in these conditions the reduced parameter 

 tends to zero and the equation can be rewritten as:  
 

                                                 (3.12) 
 

Out of the three remaining variables, the specific volume and the occupied volume 

fraction are the unknowns, while the temperature is known and fixed each time. Thus, 

there are two unknowns and only one equation, it is needed another equation in order 

to get the specific volume and the occupied volume fraction values. For the assumptions 

stated before, the polymer above the Tg can be considered in thermodynamic 

equilibrium, this allows to write another equation related to the minimization of the free 

energy of the system [15], [16]:  
 

          (3.13) 
 

Solving these two combined equations leads to obtain the unknown values of y and  . 

Now it can be better understood the need of considering the polymer at thermal 
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equilibrium, outside this hypothesis the eq 3.13 is no longer valid and so the variables 

could not be calculated. 

Once y is known, the free volume fraction h could be calculated through the formula           

h = 1-y. Thus, once the values of V* and T* are available, it is possible to obtain a 

theoretical estimation of h that can be compared with the experimental data to check 

their accuracy. 
 

Finally, only V* and T* are missing to complete the analysis. They will be then put in 

relation with the general equation through the reduced parameters  and 

. The scaling parameters can be obtained starting from the experimental 

specific volumes Vs in function of the temperature T found with dilatometry. For 

amorphous polymers above Tg the following empirical relationship can be written [17], 

which is successfully used for a wide class of polymers [18]: 
 

                                                                                                                             (3.14) 
 

where A and B are universal constants whose values are A = -0.1033 and B = 23.835. The 

eq 3.14 can be rewritten in this equivalent form: 
 

                                                                                                                 (3.15) 
 

This equation is in the form z = Cx+D where z = ln(Vs), C = [B/T*3/2] and D = [A+ln(V*)] that 

simply represents the equation of a straight line. As was mentioned before, the specific 

volumes Vs in function of the temperature T are available from dilatometry for each 

polymer (see the inherent sub-chapter). From these values it is possible to obtain a 

graphic showing z = ln(V) in function of x = T3/2. A linear fit of these data is done in order 

to obtain the experimental equation of the line z = Cx+D. The universal constants A and 

B are known, from the fit C and D are now also known, thus, T* and V* can be finally 

calculated and be used to adapt the general Simha-Somcynsky equation to the specific 

polymer.  
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Here below are shown two tables summing up the results of what were discussed in 

this chapter. Basically, in these tables there are all the necessary information from which 

the theoretical free volume fraction h can be derived [14], [19]. 
 

Table 4 - Scaling parameters values for each polymer. 

Polymer Fitting Line Equation V* [cm3/g] T* [K] 

S6 y = 2.3080e-5*x - 0.1197 0,9839 10222 

S5 y = 2.6105e-5*x - 0.0353 1,0705 9416 

S4 y = 2.5432e-5*x - 0.0227 1,0841 9582 

S3 y = 2.5446e-5*x - 0.0275 1,0789 9578 

S2 y = 2.5314e-5*x - 0.0218 1,0851 9612 

 

Table 5 - Theoretical free volume fraction h in function of the reduced temperature . 
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Chapter 4 
 

Final results 

 
 
 
Here it is shown the final comparison between the two experimental and theoretical 

free volume fractions. Starting from the results obtained by approximating the cavities as 

spheres. It can be seen that f found from experiments is systematically higher than h 

coming from the theoretical model. 

 

 

 

 
Figure 4.1 – Comparison between h, f in spherical approximation for the polymer S6 
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Figure 4.2 - Comparison between h, f in spherical approximation for the polymer S5 

 

 

 
Figure 4.3 - Comparison between h, f in spherical approximation for the polymer S4 
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Figure 4.4 - Comparison between h, f in spherical approximation for the polymer S3 

 
 

 
Figure 4.5 - Comparison between h, f in spherical approximation for the polymer S2 
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Here are shown the results obtained for the isotropic cylindrical approximation 

compared with the ones coming from the spherical approximation. A specific aspect ratio 

q was used for each polymer, trying to obtain the best fit. But it can be seen that the 

results are similar to the one obtained with the spherical approximation. This is a sign 

that an isotropic expansion for the cavities could not be a valid assumption. 

 

 

 

 

 

 
Figure 4.6 - Comparison between h, f in isotropic cylindrical approx. for the polymer S6 
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Figure 4.7 - Comparison between h, f in isotropic cylindrical approx. for the polymer S5 

 
 
 

 
Figure 4.8 - Comparison between h, f in isotropic cylindrical approx. for the polymer S4 
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Figure 4.9 - Comparison between h, f in isotropic cylindrical approx. for the polymer S3 

 

 
Figure 4.10 - Comparison between h, f in isotropic cylindrical approx. for the polymer S2 



 55 

Finally, are shown the results for the anisotropic cylindrical approximation compared 

with the ones of the spherical approximation. As It can be seen, there is a very good 

agreement between the experimental free volume fraction f the theoretical free volume 

fraction h. Also in this case, an aspect ratio q, combined with an anisotropy parameter p, 

specifics for each polymer, were used in order to obtain the best fit. 

 

 

 

 

 

 
Figure 4.11 - Comparison between h, f in anisotropic cylindrical approx. for the polymer S6 
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Figure 4.12 - Comparison between h, f in anisotropic cylindrical approx. for the polymer S5 

 
 
 

 
Figure 4.13 - Comparison between h, f in anisotropic cylindrical approx. for the polymer S4 
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Figure 4.14 - Comparison between h, f in anisotropic cylindrical approx. for the polymer S3 

 
 
 

 
Figure 4.15 - Comparison between h, f in anisotropic cylindrical approx. for the polymer S2 
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Chapter 5 
 

Conclusions 
 
 
 

In conclusion, PALS in combination with specific volume data coming from PVT 

measurements makes possible the determination of the free volume fraction of a 

polymer with respect of the temperature. The results depend on the geometry adopted 

for the holes, as well as on the expansion model chosen, isotropic or anisotropic. A 

comparison between PALS data and the predictions from the Simha-Somcynsky lattice-

hole theory allows to gain insight into the hole structure by providing information about 

their morphology. Indeed, as seen in the final results, the anisotropic cylinder 

approximation gave a far better agreement with the theory than the other two 

geometries adopted. The best fit, for the elastomers under study, was given by a disk-like 

geometry expanding anisotropically. In particular, these results were obtained for 

cylinders with an aspect ratio q < 1 that is a flattened cylinder geometry, and an 

anisotropy parameter p around 0.2, meaning that the cylinder radius grow faster than its 

height (both parameters were different for each polymer but showed the same trend). 

This does not mean that the spherical geometry necessarily produces flawed results, but 

at the same time, this study highlights that it cannot be used as the standard model for 

every case scenario, since it may differ greatly from reality, as in the elastomers 

presented in this work. It does not mean either, that the disk-like geometry represents 

perfectly the reality. As was mentioned at the beginning, in reality the cavities of the 

polymers have an irregular shape, impossible to be represented with a simple geometry. 

Nonetheless this result is useful to better represent the microstructure of the elastomers 

that reflects their macroscopic behavior. Moreover, it emphasizes that the expansion of 

the holes must not always be equal in every direction of the space, but it could prefer a 

direction over the others. In future, in order to get a better understanding of the hole 

morphology in rubbers, computer simulations of the elastomers would be needed, but 
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this path is rather time consuming and It has to be guided by the awareness obtained 

from the results achieved so far. 
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