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Abstract
Orbits about libration points offer unique possibilities for space missions, allowing config-
urations that are fixed with respect to two primary bodies. However, the major drawback
associated with those trajectories is their inherent instability. Due to the presence of the
unstable manifold, even a small perturbation can cause a spacecraft to completely diverge
from its reference path. The design of a suitable orbit maintenance strategy is thus vital
for the success of the missions.

The focus of this work is the station-keeping problem. The analysis is carried out using
three different methods: target point, Floquet mode, and short term approach. The algo-
rithms are then applied to the case study of LUMIO mission, with the goals of improving
its station-keeping performance, and exploring different solutions.

The simulations are executed in a computational environment, which involves the high fi-
delity roto-pulsating restricted n-body problem, to propagate the motion of the spacecraft,
and various operational errors, to estimate the station-keeping cost with little approxi-
mation. The results are obtained with a Monte Carlo analysis, to ensure their statistical
significance. Finally, the strategies are compared and contrasted, and validated against
literature sources.

Keywords: Halo Orbit, Station-Keeping, Target Point Approach, Floquet Modes, Short
Term Approach.





Abstract in lingua italiana
Le orbite nell’intorno dei punti di Lagrange offrono possibilità uniche per le missioni
spaziali, consentendo configurazioni stazionarie nei confronti di due corpi primari. Tut-
tavia, il principale svantaggio associato a queste traiettorie è la loro instabilità. Per
questo motivo, anche piccole perturbazioni possono causare una rapida divergenza del
satellite dalla sua traiettoria di riferimento. Il progetto di una strategia di mantenimento
dell’orbita è di conseguenza vitale per il successo delle missioni.

Questo lavoro di ricerca è focalizzato sul problema dello station-keeping. L’analisi viene
svolta usando tre strategie differenti: il target point, il Floquet mode, e lo short term ap-
proach. Questi algoritmi vengono successivamente applicati al caso studio della missione
LUMIO, con l’obiettivo di migliorare le sue performance, e di esplorare nuove soluzioni.

Le simulazioni vengono svolte in un ambiente computazionale, che include un modello ad
alta fedeltà nel sistema roto-pulsante per integrare le equazioni di moto, e degli errori
operativi per approssimare le vere condizioni di missione. I risultati sono ottenuti con
un’analisi Monte Carlo, per assicurare significatività statistica. Infine, le strategie sono
confrontate l’una con l’altra, e validate utilizzando risultati della letteratura scientifica.

Parole chiave: Orbita Halo, Station-Keeping, Target Point Approach, Modi di Floquet,
Short Term Approach.
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1| Introduction
CubeSats are small artificial satellites, composed of units of standardized dimensions,
equal to 10 × 10 × 10 cm, or 1U. The interest in using this class of spacecraft for space
missions has been rising in recent times, owing to their lower cost, that allows more players
to fund their own ones [33]. Furthermore, CubeSats are more scalable, can be built using
"off the shelf" components, and, due to their small volume, can be launched with greater
ease and less budget.

Almost all of these satellites are launched into Earth-centered orbits, though other types of
trajectories will undoubtedly be investigated for future missions. Studies on the Moon, for
example, could use libration point orbits to perform their activity in a fixed configuration
with respect to both the Moon and the Earth. To design such missions, one has to consider
the circular restricted three-body problem (CR3BP), a dynamical model that considers
the gravity of two different bodies.

One major downside associated with CubeSats is their weak, or worse absent, propulsion
system. This fact is usually compensated by the choice of their trajectories, that require
little to no attention to orbit maintenance. However, when designing a mission about a
libration point orbit, the station-keeping problem, defined as the problem of keeping the
spacecraft near its reference trajectory, becomes central, because those trajectories may
be unstable. These two facts, coupled together, create the need for a deeper investigation
regarding the orbit maintenance strategies employed for such missions. Hence the main
motivations and the goals of this work, which are explained hereafter, and are formulated
on the basis of the previous considerations.

1.1. Motivations and Goals
The circular restricted three-body problem, due to its dynamics, provides special config-
urations for use in space applications. The presence of equilibrium points and periodic
orbits enables missions with spacecrafts that are fixed with respect to two primary bodies.
In addition, the stable and unstable manifolds can be exploited through ballistic captures,



2 1| Introduction

a type of transfer that requires minimal fuel consumption. Those considerations, com-
bined together, explain why the interest in libration point missions is consistently rising
within the scientific community.

When designing a mission for a lagrangian point, the orbit maintenance cost may take up
a substantial fraction of the fuel budget, because some of these trajectories are unstable.
In addition to the instability of the orbit, it must be considered that a spacecraft is not
perfectly injected onto the trajectory, and that the position of the spacecraft is known
with some error. All of these deviations from the nominal path are unavoidable, and must
be corrected with a suitable station-keeping strategy.

As a result, the primary goal of this work is to implement a method that solves the
station-keeping problem for a libration point orbit. In addition to the inherent instability
of the trajectory, the algorithm shall be able to model and compensate for the operational
errors made during the mission. The investigation is carried out on a halo orbit about the
second lagrangian point in the Earth-Moon system, by implementing multiple strategies,
selected through a trade-off, that are subsequently compared and contrasted.

To produce more realistic and useful results, the parameters of the simulations are set
considering a case study, which is LUMIO. It is a CubeSat mission, planned by the
European Space Agency, for an orbit which coincides with the scope of this work. The
station-keeping strategies are thus implemented while taking into account the parameters
used in the design of LUMIO, as well as its reference trajectory. With the design of the
mission already under development, a baseline orbit maintenance strategy has already
been selected. The goal of this work is to improve the baseline method, by tuning its
parameters, and to experiment with new strategies, to see if they can outperform the one
that has already been tested.

1.2. Literature Review
A current and reliable analysis of the dynamics of the circular restricted three-body prob-
lem is offered by Szebehely [29]. Leonhard Euler and Giuseppe Lodovico Lagrangia, in
the 18-th century, demonstrated the existence of five equilibrium points, and Jacobi com-
puted an integral of motion [29]. In relation to the model, Markeev [23] examined the
stability of those equilibrium points, and Moser [24] demonstrated that there are families
of periodic orbits revolving around them. Doedel et al. [10] classified these trajectories
into different categories.

The roto-pulsating restricted n-body problem (RPRnBP) represents a more accurate de-
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scription of reality. Gomez et al. [18] computed the dynamical substitutes for libration
points, and demonstrated how to continue the invariant manifolds in increasingly com-
plex models. In addition, Dei Tos and Topputo [8] described a method concerning how to
produce quasi-periodic orbits in the RPRnBP, that are similar to libration point orbits
in the CR3BP.

The investigation on how to control a spacecraft on libration point orbits began in the
sixties, when Farquahr [11] proposed station-keeping techniques based on feedback control
laws. The first work regarding halo orbits about the point L2 in the Earth-Moon system
is dated 1974, and belongs to Breakwell et al [3]. Although it was in the Sun-Earth
system, the ISEE-3 mission [12] marked the beginning of the use of libration point orbits
for mission-related purposes. Impulsive maneuvers allowed the spacecraft to remain in the
vicinity of the desired orbit. The first mission on a halo orbit about the second lagrangian
point in the Earth-Moon system, which is the one of interest in this investigation, was
Genesis [22], which was launched in 2001.

Thanks to the growing interest in libration point missions, various station-keeping strate-
gies have been investigated. Floquet mode approach, first cited by Wiesel and Shelton
[34], and better developed by Simò et al. [16], computes maneuvers that cancel the un-
stable character of the orbit. Another strategy is target point approach, first presented
by Howell and Pernika [20], that computes maneuvers by minimizing a weighted cost
function. The two methods cited above were compared by Keeter [19], on a halo orbit in
the Sun-Earth system.

Other targeting strategies were investigated by Pavlak [25], Folta et al. [14], and Pavlak
and Howell [26], all in the framework of the ARTEMIS mission. Those strategies make
use of the multiple-shooting method, to compute fuel-optimal maneuvers that match user
imposed constraints, to continue the orbit or to meet end of life conditions.

Lian et al. [21] exploited sliding mode control to stabilize a spacecraft in a libration point
orbit, using the linearized and discretized equations of motion, to keep the state near
a sliding surface. Finally, Bai and Junkins [2] applied the modified Chebishev-Picard
iteration method to stabilize a halo orbit, stating the station-keeping problem as a two-
point boundary-value problem.

A review of all the libration point missions and strategies was performed by Shirobokov
et al [28], and it is summarized in Table 1.1.



4 1| Introduction

Table 1.1: Review of Previous Libration Point Missions [28]

Mission Launch Date Orbit Ay, Az[103km] ∆v[m/s/y]
ISEE-3 12/08/1978 Halo (SE L1) 666.67, 120.0 8.5
Wind 01/11/1994 Quasi-Halo (SE L1) 640.0, 170.0 1.0
SOHO 02/12/1995 Halo (SE L1) 666.67, 120.0 2.4
ACE 25/08/1997 Lissajous (SE L1) 264.0, 157.41 1.0
WMAP 30/06/2001 Lissajous (SE L2) 264.0, 264.0 1.2
Genesis 08/08/2001 Quasi-Halo (SE L1) 800.0, 450.0 9.0

Quasi-Halo (EM L2) 63.52, 35.20 7.39
ARTEMIS 17/02/2007 Quasi-Halo (EM L1) 58.82, 2.39 5.28

Quasi-Halo (EM L1) 67.71, 4.68 5.09
Herschel 14/05/2009 Halo (SE L2) 700.0, 400.0 1.0
Planck 14/05/2009 Lissajous (SE L2) 300.0, 300.0 1.0
Chang’e 2 01/10/2010 Lissajous (SE L2) 918.0, 400.0 ∼
Gaia 19/12/2013 Lissajous (SE L2) 350.0, 100.0 2.0
Chang’e 5-T1 23/10/2014 Lissajous (EM L2) 40.0, 35.0 ∼
DSCOVR 11/02/2015 Lissajous (SE L1) 264.1, 157.4 ∼
LISA Pathfinder 03/12/2015 Quasi-Halo (SE L1) 800.0, 600.0 1.8

1.3. Research Question
The research question is formulated mainly considering the objectives of the work. The
first interest is to study and implement the station-keeping of a libration point orbit.
However, considering that the case study of the work is LUMIO mission, the strategies
implemented can also be compared and contrasted with the baseline of the mission. Fi-
nally, the best outcome would be to improve the baseline station-keeping method, thus
lowering the mission’s fuel budget. Those considerations lead to the formulation of the
following research question:

To what extent is it possible to improve the station-keeping of a mission at the Earth-
Moon second lagrangian point?

1.4. Organization of the Work
The work is organized into different chapters, which are presented hereafter:

Dynamical Models. Chapter 2 serves the purpose of introducing the equations used in
this work to integrate the dynamics of the spacecraft. The circular restricted three-
body problem is first explained, which is the framework in which libration point
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orbits are constructed. After that, the roto-pulsating n-body problem is described,
which is needed to find results with higher fidelity for the mission.

Station-Keeping Strategies. Various examples of station-keeping techniques are ex-
plained in Chapter 3. The strategies are divided in methods based on dynamical
effects, and of general control theory. The Chapter ends with a trade-off between
the techniques, to choose the most interesting ones to implement for this research.

Target Point Approach. Chapter 4 starts with the definition of the station-keeping
problem. It describes the operational errors and the Monte Carlo simulation, which
are common features of all the strategies analyzed in this work. As the title suggests,
the main topic of the Chapter is the description of the target point approach, which
is the first method implemented in this work.

Floquet Mode Approach. The theoretical framework of Floquet modes is provided in
the beginning of Chapter 5. Then, two types of controller are designed, which aim
at cancelling the unstable component of the spacecraft’s motion. The Chapter ends
with the station-keeping algorithm, which is very similar to the one of target point,
and the objectives of the analysis.

Short Term Approach. Short term approach is the last method to be implemented
in this thesis and is presented in Chapter 6. The first topic to be touched is the
simple-shooting method, which is used to compute the maneuvers of this strategy.
After that, the algorithm and the objectives are presented.

Results. After the theoretical framework given by the previous Chapters, Chapter 7
presents the results obtained with the implementation of the station-keeping strate-
gies. The first section gives a brief outline of LUMIO mission, and presents the
parameters used for the simulations. The latter three sections show the results of
the three methods chosen during the trade-off.

Conclusions. The last chapter, which is Chapter 8, sums up the work and gives some
final thoughts about the results. It finally proposes future ways to improve the
results obtained.
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2| Dynamical Models
The motion of any massive body i = 1, ..., n, in a gravitational environment, is, in the
most general case, governed by Newton’s universal law of gravitation

Fji = −G
n∑

j=1
j ̸=i

mimj

r3
ji

rji, i = 1, . . . , n. (2.1)

The vector rji is the relative position of the i-th body with respect to the j-th body.
Using the same notation, Fji is the force exerted on the i-th body by the j-th body.

By remembering Newton’s second law of dynamics, it is possible to write the equations
of motion of the system

mir̈i = −G
n∑

j=1
j ̸=i

mimj

r3
ji

rji, i = 1, . . . , n. (2.2)

Systems with n > 2 don’t have an analytical solution, neither a formulation which is time
independent. For this reason, to understand the behaviour of a system, it is necessary
to make simplifying assumptions to formulate a time invariant model. In the case of this
work, which is focused on a Earth–Moon libration point orbit, a time independent model,
which considers only the gravitational influence of the Earth and the Moon, is suitable as
a first approximation. This model is the circular restricted three-body problem.

2.1. The Circular Restricted Three-Body Problem

2.1.1. Equations of Motion

The equations of motion of three massive bodies under mutual gravitational attraction
may be written as Equation (2.2) with i = 1, 2, 3. However, the CR3BP requires some
additional assumptions.
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Figure 2.1: Geometry of the Circular Restricted Three-Body Problem [6]

The restricted hypothesis imposes the mass of the third body (the spacecraft), to be much
smaller than the mass of the two primaries (the Earth and the Moon), i.e m3 << m2 < m1.
Physically, this implies Keplerian motion of the two primaries with respect to the system’s
center of mass, with no influence from the third mass. The center of gravity of the system,
which coincides with the one of m1 and m2, is used as the origin of the frame of reference.

Additionally, the circular hypothesis requires circular motion of the two primaries, bounded
to the (X, Y ) plane, with constant angular speed ω2. For reference, the geometry of the
CR3BP can be seen in Figure 2.1.

Consequently, the equations of motion can be written as [6]

Ẍ = −G

(
m1

X + a cos θ

r3
1

+ m2
X − b cos θ

r3
2

)
,

Ÿ = −G

(
m1

Y + a sin θ

r3
1

+ m2
Y − b sin θ

r3
2

)
,

Z̈ = −G

(
m1

Z

r3
1

+ m2
Z

r3
2

)
,

(2.3a)

(2.3b)

(2.3c)
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where r1 and r2 are the radii of the third body with respect to m1 and m2, a and b are
the radii of the two primaries with respect to the system’s center of gravity, and θ is the
angle between the X axis and the direction of m1 and m2.

It can be convenient to rewrite the equations of motion in the synodic frame of reference
[x̂, ŷ, ẑ], which is rotating in such a way to maintain the primaries at fixed positions on
the x̂ axis. To do so, it is necessary to rotate the previous equations of motion, which
were written in the sidereal reference frame. The rotation matrix reads

R =


cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 . (2.4)

By defining ρ such that r = Rρ, and ω2 such that θ = ω2t, the equations of motion, in
matrix form, become

¨̂ρ = −2RT Ṙ ˙̂ρ−RT R̈ρ̂−G

(
m1

ρ̂− ρ̂1

||ρ̂− ρ̂1||3
+ m2

ρ̂− ρ̂2

||ρ̂− ρ̂2||3

)
. (2.5)

Equation (2.5) can be simplified even more by introducing dimensionless variables, con-
structed such that the distance between the primaries, the angular rate and the sum of
their masses have unitary values. The values are [29]

ρ = ρ̂

a + b
, τ = ω2t, µ = m2

m1 + m2
. (2.6)

With this adimensionalisation, the positions of the primaries become (−µ, 0, 0) and (1−
µ, 0, 0), respectively.

Finally, the dimensionless equations of motion can be written as [28]

ẍ− 2ẏ = Ω(3)
/x ,

ÿ + 2ẋ = Ω(3)
/y ,

z̈ = Ω(3)
/z ,

(2.7a)

(2.7b)

(2.7c)

where Ω(3) is the pseudo-potential of the CR3BP, defined as

Ω(3) = 1
2
(
x2 + y2

)
+ 1− µ

r1
+ µ

r2
+ 1

2µ(1− µ). (2.8)
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The equations of motion written in this form, which is autonomous, posses a first integral
of motion, called the Jacobi integral. Its expression is:

J = 2Ω(3) −
(
ẋ2 + ẏ2 + ż2

)
. (2.9)

2.1.2. Lagrangian Points

The CR3BP possesses five equilibrium points, located where the spatial derivatives of the
Jacobi integral are null. The condition reads

Ω(3)
/x = x− (1− µ)(x + µ)

ρ3
1

− µ(x− 1 + µ)
ρ3

2
= 0,

Ω(3)
/y = y

(
1− 1− µ

ρ3
1

+ µ

ρ3
2

)
= 0,

Ω(3)
/z = −z

(
1− µ

ρ3
1

+ µ

ρ3
2

)
= 0.

(2.10a)

(2.10b)

(2.10c)

From the third equation it is trivial that the Lagrangian points lie on the (x, y) plane.

The second conditions has ρ1 = ρ2 = 1 as a solution. It means that two of the equilibrium
points form equilateral triangles with the primaries. These equilibrium points are called
L4 and L5, and their coordinates are respectively:

L4 :
(

1
2 − µ,

√
3

2 , 0
)

, L5 :
(

1
2 − µ,−

√
3

2 , 0
)

. (2.11)

The solution of the first condition is, on the other hand, more difficult, and requires
a numerical technique. The results are three equilibrium points, on the x axis, called
collinear libration points. Their abscissas, in the Earth Moon system, are [7]:

L1 : 0.83691513, L2 : 1.15568226, L3 : −1.005062645. (2.12)

It is visible how L1 is between the two bodies, L2 is behind the lower mass body, and L3

is behind the higher mass body.
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Figure 2.2: Geometry of the Roto-Pulsating Frame [7]

2.2. The Roto-Pulsating Restricted n-Body Problem
As the CR3BP is used as a base approximation to understand the physics of the system,
a more detailed model is required to produce a more accurate analysis. This model is
the roto-pulsating restricted n-body problem (RPRnBP), which is the one used in the
simulations of this work. In this model, the motion of the two primaries is elliptical and
no longer circular. The RPRnBP considers additional dinamical influences with respect
to the CR3BP, such as the gravities of all the solar system planets, and the solar radiation
pressure. Nevertheless, the restricted hypothesis is retained. Consequently, the mass of
the spacecraft is assumed to have no influence on the system.

2.2.1. The Roto-Pulsating Frame

To write the equations of motion in the RPRnBP it is first necessary to define the transfor-
mations to the roto-pulsating frame (RPF), which is shown in Figure 2.2. The coordinate
change from the solar system barycentric frame to the RPF is possible thanks to the
following equations [7]
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R(t) = b(t) + k(t)C(t)ρ(τ),

V (t) = ḃ + k̇Cρ + τ̇ kCρ′,

τ = n(t− t0),

(2.13a)

(2.13b)

(2.13c)

where primes indicate derivatives with respect to non-dimensional time, whereas dots
indicate derivatives with respect to the dimensional one.

The parameters of the transformation are defined as [8]

b(t) = m1R1 + m2R2

m1 + m2
,

k(t) = ||R2 −R1||,

C(t) = [e1, e2, e3],

(2.14a)

(2.14b)

(2.14c)

where

e1 = R2 −R1

k
, e2 = e3 × e1, e3 = (V2 − V1)× (R2 −R1)

||(V2 − V1)× (R2 −R1)||
. (2.15)

These three parameters produce the three transformations needed to change reference
frame. In detail:

1. b(t) produces a translation of the origin from the solar system barycenter to the
center of mass of the two primaries,

2. k(t) is a scaling factor, that adjusts the positions of the primaries so that they
remain fixed in the RPF,

3. C(t) is a rotation matrix that keeps the primaries aligned with the x-axis. As in
the CR3BP, their position is fixed at [−µ, 0, 0] and [1− µ, 0, 0], respectively.

The result is a system that rotates and pulsates in a time dependent way. The time is
scaled with respect to the rotation of the primaries about the system barycenter. In fact,
the scaling factor is

n =
√

G(m1 + m2)
ā3 , (2.16)

where ā is the mean distance between the primaries.
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2.2.2. Equations of Motion

The equations of motion in the RPRnBP are written with the Lagrangian formalism. The
kinetic and potential energy of the spacecraft, in the solar system barycentric frame, are
respectively [7]

T = 1
2Ṙ · Ṙ,

V = −
n∑

j=1
µj

1
||R−Rj||

.

(2.17a)

(2.17b)

The model also includes the solar radiation pressure, of which the acceleration is computed
as [9]

aSRP = SP0
R−RS

||R−RS||3
, (2.18)

where SP0 is a parameter that reads

SP0 = (1 + cr)
A

m

Ψ0d
2
0

c
, (2.19)

cr is the reflectivity coefficient of the spacecraft, A/m its area to mass ratio, Ψ0 the solar
flux intensity at distance d0, and c is the speed of light in vacuum.

The resulting Lagrange equations are obtained by applying the necessary condition, which
leads to [7]

R̈ + ∇RV = aSRP . (2.20)

To compute the desired equations of motion, Equation (2.20) must be transformed into
the RPF. After the transformation, the adimensional acceleration is isolated, the result
being

ρ′′ = 1
τ̇

(
2k̇

k
I + 2CT Ċ

)
ρ′ − 1

τ̇ 2

[(
k̈

k
I + 2 k̇

k
CT Ċ + CT C̈

)
ρ + Cb̈

k

]
+

+∇Ω + SP0

k3n2
ρ− ρS

||ρ− ρS||3
,

(2.21)

where Ω is the pseudo-potential of the RPRnBP, defined as
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Ω =
n∑

j=1

µ̂j

||ρ− ρj||
. (2.22)

The equations of motion can be written by components, namely

x′′ = b1 + b4x
′ + b5y

′ + b7x + b9y + b8z + b13Ω/x + ax,

y′′ = b2 − b5x
′ + b4y

′ + b6z
′ − b9x + b10y + b11z + b13Ω/y + ay,

z′′ = b3 − b6y
′ + b4z

′ + b8x− b11y + b12z + b13Ω/z + az,

(2.23a)

(2.23b)

(2.23c)

where ax,y,z are the components of the acceleration induced by the solar radiation pressure,
and the bi coefficients are [8]:

b1 = − b̈ · e1

kn2 , b7 = − 1
n2

(
k̈

k
− ė1 · ė1

)
,

b2 = − b̈ · e2

kn2 , b8 = 1
n2 ė1 · ė3,

b3 = − b̈ · e3

kn2 , b9 = 1
n2

(
2 k̇

k
e2 · ė1 + e2 · ë1

)
,

b4 = − 2
n

k̇

k
b10, = − 1

n2

(
k̈

k
− ė2 · ė2

)
,

b5 = 2
n
e2 · ė1, b11 = 1

n2

(
2 k̇

k
e3ė2 + e3 · ë2

)
,

b6 = 2
n
e3 · ė2, b12 = − 1

n2

(
k̈

k
− ė3 · ė3

)
,

b13 = µS + µP

k3n2 .

It is interesting to note that by assuming b5 = 2, b7 = b10 = b13 = 1, and bi = 0 for
i ̸= 5, 7, 13, one can obtain the equations of motion for the CR3BP. Thus, the CR3BP
can be seen as a more particular case of the RPRnBP.

2.2.3. Linearized Model

A useful tool to propagate small variations of the initial condition is the linearized model.
Let x = [ρ;η] be the state vector, containing the spacecraft position and velocity. The
matrix that propagates small variations of the initial condition is the state transition
matrix (STM), computed through the integration of the variational equation
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Φ̇(t0, t) = ∂f

∂x
Φ(t0, t), Φ(t0, t0) = I. (2.24)

The variational equation can be integrated together with the equations of motion, result-
ing in a model which features 42 scalar differential equations.

The STM is used to propagate small variations in the initial condition with the following
relation:

δx(t) = Φ(t0, t)δx0. (2.25)

To integrate the variational equation it is necessary to compute the Jacobian of the right
hand side, which can be expressed as

∂f

∂x
=


∂f1

∂ρ

∂f1

∂η

∂f2

∂ρ

∂f2

∂η

 , (2.26)

where

∂f1

∂ρ
= 03×3,

∂f1

∂η
= I3×3,

∂f2

∂ρ
= −2

τ̇

(
k̇

k
I + CT Ċ

)
− 1

τ̇ 2k3

n∑
j=1

µj

(
I

||ρ− ρj||3
− 3(ρ− ρj)(ρ− ρj)T

||ρ− ρj||5

)
+

+ SP0

τ̇ 2k3

[
I

||ρ− ρj||3
− 3(ρ− ρj)(ρ− ρj)T

||ρ− ρj||5

]
,

∂f2

∂η
= −2

τ̇

(
k̇

k
I + CT Ċ

)
.

(2.27a)

(2.27b)

(2.27c)

(2.27d)

2.3. Periodic Orbits about Lagrangian Points
Periodic orbits about Lagrangian points can be computed thanks to the linearized model,
in the CR3BP, with a semi-analytical approach. This method consists in the use of
perturbation techniques to correct the initial condition, and continuation techniques to
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(a) Reference Orbit (b) Projection on (x, z) Plane

Figure 2.3: Reference Orbit in the CR3BP

expand the orbits [27].

Various families of orbits are created with the method. The orbit used as baseline in this
work is a halo orbit about L2, with a Jacobi constant of CJ = 3.09. It is represented in
Figure 2.3.

2.3.1. Dynamical Substitutes of Periodic Orbits

The periodic orbits about Lagrangian points are computed in the CR3BP. However, this
work is carried out in the RPRnBP. This creates the need of a reference trajectory,
computed in the RPRnBP, that stays as close as possible to the seed orbit in the CR3BP.
Such a trajectory can be computed with a method developed by Dei Tos and Topputo [8].

The method is divided into three steps. It starts with the generation of a seed orbit, then
a correction with modified multiple-shooting, and finally interpolation/extrapolation with
Fourier analysis. Specifically:

1. Generate a seed orbit, in the form of a sequence of nodes. The seed orbit comes
from the CR3BP at the first iteration, and from Step 3 at further iterations.

2. For a given time span ∆T perform the modified multiple-shooting method. This is
stated as a non-linear program, in which the requirement is to produce a continuous
trajectory that remains as close as possible to the seed orbit. The variable of the
problem is the initial condition of the trajectory, the constraints are the defects
between each arc, and the objective is the minimization of the corrections with
respect to the seed orbit.

3. Finally, the Fourier interpolation provides an approximation of the generated orbit.
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(a) Reference Orbit (b) Projection on (x, z) Plane

Figure 2.4: Reference Orbit in the RPRnBP

Since the orbit produced by the multiple-shooting will be quasi-periodic, Fourier
series is the best tool for interpolation. After the interpolation, the extrapolation is
necessary to provide an initial guess to repeat Step 1. When the generated trajectory
stays close to the seed orbit for enough time, the process is terminated.

The trajectory used for this work is the dynamical substitute of the CR3BP orbit shown
in the previous section. It is reported in Figure 2.4.

2.3.2. Local Stability

To assess the stability proprieties of the libration point orbits in the CR3BP it is sufficient
to use the linearized model, which is still periodic. The most important parameters in
this investigation are the eigenvalues of the Monodrimy matrix.

The Monodromy matrix is defined as the STM for one period of the orbit

M = Φ(0, T ). (2.28)

The eigenvalues of M , for halo orbits, can be divided into three pairs:

• A pair of real reciprocal eigenvalues, such that λ1λ2 = 1.

• A pair of unitary eigenvalues.

• A pair of complex conjugate eigenvalues, with norm equal to 1.

Each couple of eigenvalues has a specific geometrical meaning [19].
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• The reciprocal pair (λ1, λ2), with λ1 > 1, is associated with the stability charac-
teristics of the orbit. In particular, λ1 defines the most expanding direction of the
orbit. The eigenvectors associated to the pair (λ1, λ2), can be used as initial guesses
to compute the unstable and stable manifolds, respectively.

• The unitary pair (λ3, λ4) is associated with the neutral variables of the orbit. Specif-
ically, the eigenvector of λ3 is the tangent vector, and λ4 is related to variations of
energy/period along the family of halo orbits.

• The complex conjugate pair (λ5, λ6) is composed of eigenvalues of unitary norm.
Geometrically, complex conjugate eigenvalues represent a rotation. This behaviour
represents the existence of quasi-periodic halo orbits around the specific halo orbit.

It is important to note that the orbits in the RPRnBP are only quasi-periodic, and
consequently, the monodromy matrix is not defined. It is however possible to do the same
considerations, by computing the STM over a time interval close to the orbital period in
the CR3BP. In this case, it can happen that the two unitary eigenalues become another
complex conjugate pair, because of the loss of periodicity. For reference, the eigenvalues
of the orbit used in this work are reported in Table 2.1. Note that, for numerical reasons,
the unitary eigenvalues are not computed exactly, although they are equal to one up to
the 11-th decimal digit.

Table 2.1: Eigenvalues of Reference Orbit

Eigenvalue Real Part Imaginary Part
λ1 248.6325 0
λ2 0.004022 0
λ3 0.9999 0
λ4 0.9999 0
λ5 0.1321 0.9912
λ6 0.1321 - 0.9912
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3.1. Methods Based on Dynamical Effects
The methods based on dynamical effects exploit the features of the CR3BP. As seen in
Chapter 2, the monodromy matrix has one unstable eigenvalue. These methods aim at
removing the unstable component in the motion of the spacecraft.

3.1.1. Floquet Mode Approach

The Floquet mode approach (FMA) exploits Floquet theory to compute and eliminate
the unstable component of the motion. The computation of the unstable component
requires the the integration of the variational equations to obtain the STM. However, for
large time intervals, the STM can become ill-conditioned. One can take advantage of
Floquet modes to express the eigenstructure of the STM, with a formalism that exploits
the periodicity of the orbit, and consequently does not require long integration intervals.

The controller implemented in the Floquet modes approach aims at eliminating the in-
fluence of the unstable manifold on the motion of the spacecraft. To do so, at every
maneuver point, the ∆v is computed in order to cancel the unstable component of the
state vector.

3.2. Methods of General Control Theory
The methods of general control theory are techniques formulated for the general control
problem, applied to the station-keeping problem.

3.2.1. Target Point Approach

The target point approach (TPA) is a strategy that aims at maintaining the spacecraft in
the vicinity of the reference trajectory. At each maneuver point, the controller computes
the ∆v in order to minimize a weighted cost function, which reads [5]
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J = ∆vT Q∆v +
NT P∑
i=1

dT
i Rid

T
i , (3.1)

where Q and Ri are the weight matrices, di are the distances between the spacecraft and
the target points, and NT P is the number of target points. The cost function is defined in
terms of the ∆v, and the deviations in position and velocity from the reference trajectory
at specific times. The points on the reference orbit at those specific epochs are called
target points, and are used by the method to blend the necessity of minimizing the fuel
cost, with the constraint of remaining in the vicinity of the reference trajectory.

3.2.2. Other Targeting Strategies

Other targeting strategies, different from the target point approach, have been imple-
mented. One was considered by Pavlak and Howell [26], called short term approach
(STA). In this strategy only one point is targeted, and the objective function, which is
only the maneuver ∆v, is minimized using the simple-shooting method. After having
discretized the reference trajectory into a series of patch points, the method computes the
∆v in order to connect with the following patch point, while minimizing the magnitude
of the maneuver.

Another example is the orbit continuation strategy (OCS) examined by Folta et al [13].
Here the maneuvers are computed to retain the spacecraft into an orbit that is around
the libration point, without following any specific reference trajectory. This is done by
imposing a set of user defined constraints, in terms of the spacecraft’s state, at successive
crossings of the (x, z) plane.

Finally, the long term approach (LTA) was considered by Pavlak [25]. This method com-
putes locally optimal maneuvers through direct optimization, using sequential quadratic
programming. The optimization problem is stated as a multiple-shooting, in order to
compute a continuous solution that meets a set of end of mission constraints.

3.2.3. Sliding Mode Control

The sliding mode control (SMC) was implemented by Lian et al. [21], in order to stabilize
the spacecraft in its orbit. The framework of the method is the linearized equations of
motion, discretized in time, written as [28]

x(k + 1) = Ax(k) + B∆v(k), (3.2)
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where

A = Φ(tk, tk+1),

B = Φ(tk, tk+1)B̄,

(3.3a)

(3.3b)

with B̄ = [03×3; I3×3]. For this strategy, the system’s state is driven to the sliding surface,
defined as [21]

σ = {x ∈ R3|s(x) = 0 ∈ R3}, (3.4)

and remains attached to it for the rest of the motion. The sliding surface is generally
written as a linear function, specifically the intersection of three hyper-planes passing
through the origin. s is called switching function, and reads

s(k) = C1r(k) + C2v(k), (3.5)

where C1 and C2 are real square matrices, that must verify Cx(k) = 0 when the state
reaches the sliding surface. The controller is developed in order to keep the state on the
sliding surface, while minimizing a performance index, written as

J =
∞∑

k=0
xT (k)Qx(k). (3.6)

The performance index is generally minimized with a discretized linear quadratic regulator
control strategy.

3.2.4. Modified Chebishev-Picard Iterations

The modified Chebishev-Picard iteration method (MCPI) was applied by Xiaoli Bai et
al [2]. In this method the reference trajectory is represented by means of Chebishev
polynomials. The controller computes the ∆v by solving a two-point boundary-value
problem, using Picard iterations to refine the solution. The standard Picard iteration for
a second order two-point boundary-value problem reads [1]

xk+1 = ω2
2CxCB

α f + CxΘxif , (3.7)
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where xk+1 is the k-th iterate of the initial state, ω2 is a parameter, Cx and CB
α are

matrices, related to Chebishev polynomials, f is a vector of evaluations of the right hand
side at different epochs, and Θxif is a matrix related to the boundary conditions. The
maneuver ∆v is computed through those iterations, with a problem stated in a similar
way to a Lambert problem.

The main advantage of the method is the possibility of parallelization. This makes the
computational time fast, enabling the distribution of tasks to different processors. More-
over, the method does not require neither gradients nor state transition matrices, making
the integration time lower.

3.3. Comparison and Trade-Off
The strategies to be implemented in this work are selected thorugh a trade-off. The
primary factors considered are: the fuel cost, the requirement of a reference trajectory,
the frequency between maneuvers, and the dynamical model in which the strategy was
implemented in previous studies. The objective is to minimize the fuel cost, consequently
the choice of the ∆v as a parameter is trivial. Also, the presence of a reference trajectory
is considered because for mission LUMIO it is not necessary, and the relaxation of that
constraint might lead to lower fuel cost. The maneuver frequency and the dynamical
model are both constraints imposed by the mission. It must be noted that controlling
the spacecraft is easier if the maneuvers are closer to each other, while implementing
a strategy in the CR3BP leads to lower costs with respect to the RPRnBP. Table 3.1
summarizes the previously cited characteristics of the strategies.

Table 3.1: Trade-Off between Station-Keeping Strategies

Strategy ∆v [m / s / y] Ref. Trajectory Man. Frequency Model
Target Point 18.3 ✓ LUMIO RPRnBP
Floquet Mode 7 ✓ 1/2T CR3BP
Chebishev-Picard 14.7 ✓ 1/7T CR3BP
Sliding Mode 16 6 d RPRnBP
Short Term N/A ✓ 7 d Ephemeris
Long Term 10 ✓ 7 d Ephemeris
Orbit Continuation 35 7 d Ephemeris

Target point approach was already implemented by Cipriano et al. [5] for LUMIO mis-
sion. Although results are already present, they can be improved by better tuning the
parameters of the method.
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Floquet mode approach was implemented by Cravedi [6] for orbits belonging to the same
family as LUMIO, but with a higher Jacobi constant (easier to control), and with less
stringent constraints on maneuver timing. Trying to implement the method with the
maneuver constraints, and in the orbit of LUMIO would be of practical interest. The
results given by Gomez et al. [17] show that controlling the spacecraft with the maneuver
timings of LUMIO could be very difficult. However, even if controlling LUMIO with FMA
turns out to be impossible, a blend between FMA and TPA could be a way to use Floquet
modes to improve the fuel budget of the mission. Consequently, Floquet mode approach
is selected to be investigated in this work.

The main advantage offered by modified Chebishev Picard iteration method is the com-
putational efficiency, because of the ease of parallelization and the absence of variational
equations. Since the computation of LUMIO’s maneuvers is done by the ground segment
and not onboard, the advantage in efficiency is not considered crucial for the mission.
Consequently the strategy is discarded.

Sliding mode control was tested on an orbit with CJ = 3.14. A higher Jacobi constant
means that the periodic nature of the CR3BP orbit is more preserved, leading to easier
controllability with a linearized model. Although the strategy has a promising fuel cost,
the paper suggests high sensitivity to tracking errors. The fact that the errors used in
the paper are lower with respect to the ones of LUMIO, and the orbit is more favourable,
one can assume that the results applied to LUMIO would be worse. For these facts, the
strategy is not selected.

The paper by Pavlak and Howell [26] does not report the resulting fuel cost for the short
term approach. However, it presents the strategy as viable for halo orbits, also in the
ephemeris model, which is more complex than the CR3BP. It is considered of interest to
find numerical results for the method applied to LUMIO mission.

The long term approach has one of the best fuel costs of the list. One issue is that it was
tested on the ARTEMIS mission, which was on a Lissajous trajectory, instead of a halo.
The other important feature of the method is the ability to target end of life constraints,
which are not of practical interest for LUMIO mission. The method was thus discarded.

As long term approach, orbit continuation strategy was applied to ARTEMIS mission.
In addition to that, the strategy requires user defined constraints to extend the orbit.
Writing such constraints requires extensive tuning campaigns of the parameters. For
those reasons the method was not taken into consideration.

In conclusion, target point approach, Floquet modes approach and short term approach
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were selected for this work. TPA may be improved by better tuning the parameters, FMA
needs to be tested in the RPRnBP, and may be blended with TPA, and STA needs to be
implemented to see its performances.
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4.1. Station-Keeping Problem
After the spacecraft is injected onto the nominal orbit, it is necessary to implement
maneuvers that keep the satellite close to its reference trajectory. In fact, without any
correction, a vehicle on a libration point orbit would diverge from the desired path, due to
the unstable dynamics and the perturbations from the other bodies in the solar system.

Although it is impossible to keep the spacecraft exactly on the reference orbit, one can
aim at enclosing the motion inside a torus, centred about the nominal trajectory. The
objective of the station-keeping problem is to bind the motion of the spacecraft into the
torus, while respecting constraints and optimizing performance indexes.

In the case of LUMIO mission, which is the case study analyzed in this work, the main
performance index considered is the fuel cost. The constraints, on the other hand, are
related to the time between maneuvers and the maximum deviation, which have been
fixed in the mission analysis.

4.2. Operation Errors
Three potential sources of error were considered for the analysis:

1. Orbit injection error. The spacecraft arrives on the reference trajectory thanks to
an orbit insertion maneuver. However, the injection cannot be perfect, and this fact
has to be modeled. To do this, each component of the initial state is perturbed
independently at the beginning of the simulation.

2. Orbit determination error. During the mission the state of the spacecraft is not
known exactly. In fact, it is determined by the camera of the satellite, that inherently
has an error in its measurements. Hence, each tracking campaign is simulated as a
perturbation of the real state.

3. Maneuver execution error. Each time a station-keeping maneuver is computed, it
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has to be executed by the engine. As the other processes explained before, the engine
has a degree of inaccuracy, both in the magnitude of the burn and in the pointing.
Consequently, an element of randomness is added to the ∆v of the maneuver.

The first two sources of error are modeled as a random number, that respects a Gaussian
distribution. The distribution is constructed with zero mean, and a variance dictated
by the precision of the maneuver or the tracking device, respectively. In contrast, the
maneuver execution error represents a percentage of the ∆v computed.

4.3. Representation of the Nominal Orbit
This station keeping strategy does not require to propagate the actual state of the space-
craft. In fact, propagating only the deviations from the nominal orbit is enough. This
requires the STM to be available at any given time along the reference trajectory.

The output files from the orbit generation contain the state and the STM only at specific
epochs. A solution would be to integrate the variational equation during the station-
keeping simulation, but it would massively increase the computational cost. For this
reason, the values of the STM generated together with the orbit are used to create an
interpolation. Cubic splines are exploited to approximate both the reference trajectory
and the STM. This method requires negligible computational time, while still retaining a
high degree of accuracy [19].

4.4. Station-Keeping Strategy
Target point approach computes the maneuver ∆v by minimizing a weighted cost func-
tion J . The function is constructed to combine the magnitude of the impulse with the
deviation from the reference trajectory. The latter is computed as the distance between
the spacecraft and some target points at a future epoch, and reads

J = ∆vT Q∆v +
NT P∑
i=1

dT
i Rid

T
i , (4.1)

where di is the predicted deviation at the i-th target point, NT P is the number of target
points considered, and Q and Ri are the weighting matrices. The deviation from the
reference trajectory is predicted through the STM, as

di = Φrr(tc, ti)δrc + Φrv(tc, ti)δvc + Φrv(tv, ti)∆v, (4.2)
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where the subscripts r and v are referred to 3-by-3 components of Φ, that map position
and velocity deviations to a successive position deviation, respectively. In addition, tc is
the cutoff time, tv is the maneuver execution epoch, and ti is the epoch of the i-th target
point.

The expression of the maneuver ∆v derives from the minimization of the cost function,
as a solution of an LQR problem. It reads [5]

∆v = A
NT P∑
i=1

αiδrc + βiδvc, (4.3)

where A, αi, and βi are defined as

A = −
(QT + Q

)
+

NT P∑
i=1

ΦT
rv(tv, ti)

(
RT

i + Ri

)
Φrv(tv, ti)

−1

,

αi = ΦT
rv(tv, ti)

(
RT

i + Ri

)
Φrr(tc, ti),

βi = ΦT
rv(tv, ti)

(
RT

i + Ri

)
Φrv(tc, ti).

(4.4a)

(4.4b)

(4.4c)

4.5. Station-Keeping Algorithm
The station-keeping algorithm simulates the real mission scenario. It starts when the
spacecraft is injected into the reference orbit, and goes on until either the final time
or the maximum deviation is reached. If the simulation ends because of the maximum
deviation constraints, the station-keeping is failed.

The algorithm can be summarized as:

1. Start the simulation with the initial deviation being equal to the orbit injection
error.

2. Propagate the deviation, through the STM, until the cutoff time. Here add the
orbit determination error to the deviation. Store the true and the perturbed state
as two different vectors.

3. Propagate both the true and the perturbed state until maneuver time.

4. Compute the maneuver with the perturbed state, but apply the maneuver to the
true state.

5. Add maneuver execution error to the ∆v.
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Algorithm 4.1 Station-Keeping Algorithm with Target Point Approach
1: function DV(t0, tf , Φ, ∆tc, ∆tv, ∆ti, σ2

OI , σ2
OD, σ2

EX , Q, R)
2: t← t0
3: Generate Orbit Insertion Error: εOI ∼ N (0, σ2

OI)
4: Orbit Insertion: δxtrue ← εOI

5: while t ≤ tf & δxtrue ≤ 10000 km do
6: tv ← t + ∆tv

7: tc ← t + ∆tc

8: ti ← t + ∆ti

9: if ti ≥ tend then
10: ti ← tend

11: end if
12: Propagate to Cutoff Time: δxtrue ← Φ(tc, t)δxtrue

13: Generate Orbit Determination Error: εOD ∼ N (0, σ2
OD)

14: Orbit Determination: δxOD ← δxtrue + εOD

15: Plan Maneuver: ∆v = A
∑NT P

i=1 αiδrOD + βiδvOD

16: Propagate to Maneuver Execution: δxtrue = Φ(tc, tv)δxtrue

17: Generate Maneuver Execution Error: εEX ∼ N (0, σ2
EX)

18: Perturb Maneuver ∆v: ∆v ← ∆v ◦ εEX

19: Execute Maneuver: δxtrue ← δxtrue + [03×1; ∆v]
20: t← tv

21: end while
22: end function

6. Repeat steps 2 to 5 until the final time is reached, or until the maximum deviation
is surpassed.

The algorithm can also be written in the form of a pseudo-algorithm, which is reported
as Algorithm 4.1.

4.6. Monte-Carlo Analysis
The station-keeping algorithm presented in the previous section would not generate signif-
icant results with a single simulation. This is because the operation errors are generated as
a random number, which respects a normal distribution. For this reason, it is not possible
to obtain an analytical result for the station-keeping problem. Although not analytical, if
the simulation is ran multiple times, the results can become statistically significant. This
is why a Monte-Carlo simulation is necessary to evaluate the effectiveness of a strategy.

To produce a Monte-Carlo analysis, the simulation is ran multiple times, to generate
different samples, each one different from the other because of the randomness of the
operation errors. The results of the analysis are to be intended as mean ∆v to keep the
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spacecraft bounded to the reference orbit. Together with the mean, the range spanned by
the ∆v is also an important performance parameter, because it represents the robustness
and the reliability of the strategy. The results of this work are obtained with 10000
samples, as in the main literature sources [17].

4.7. Objectives of the Analysis
The target point approach was already tested for LUMIO by Cipriano et al. [5], and
improved by Dei Tos and Baresi [32], as baseline station-keeping strategy, and was proved
to be successful. Provided the effectiveness of the strategy, there is still room for improve-
ment. This analysis has two main objectives regarding target point approach.

First, in the work by Cipriano et al. [5], the orbit determination errors are treated as
instantaneous displacements of the spacecraft. After the addition of the orbit determi-
nation error the true state is lost, and the perturbed state becomes the real one. This
hypothesis is dropped in this work, as the state affected by the orbit determination error
is used to compute the maneuver. The ∆v computed is then applied to the real state.

The second objective is to improve the tuning of the parameters. Considering that ma-
neuver timing is a constraint imposed by the mission analysis, particular focus is given to
the epochs of the two target points. The weight matrices are finally considered, to test
their impact on the performances of the strategy.
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5| Floquet Modes Approach
Floquet modes approach aims at keeping the spacecraft onto the reference orbit by re-
moving the component of the state vector associated with the unstable manifold. To
do so, it is necessary to have information about the eigenvectors of the STM at every
epoch. Even though the orbits in the CR3BP are perfectly periodic, the STM does not
retain that feature. In fact, considering the rules for propagation of the STM, its element
exponentially increase with time

Φ(t0, nt) = Φn(t0, t).

Floquet theory comes in handy, because it introduces a formalism in which the eigen-
vectors of the STM are written in a periodic manner. Although orbits in the RPRnBP
are not periodic, Floquet theory can still be used provided some assumptions are taken,
which are better explained in the following sections.

5.1. Computation of Floquet Modes
Floquet theory is formulated in the CR3BP , where the orbits are perfectly periodic. In
that model, the STM is a fundamental matrix, and can thus be decomposed into the
product of a T periodic matrix E and an exponential matrix [35]

Φ(t0, t) = E(t0, t)eJt. (5.1)

Post-multiplying both sides by a constant real square matrix S, one can obtain

Φ̃(t0, t) = Ẽ(t0, t)eJ̃t, (5.2)

where Φ̃(t0, t) and Ẽ(t0, t) are simply
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Φ̃(t0, t) = Φ(t0, t)S, Ẽ(t0, t) = E(t0, t)S. (5.3)

After a quick demonstration [19], matrix J̃ can be computed as

J̃ = S−1JS.

It can be shown that the monodromy matrix can be diagonalized with matrices S and J̃ ,
the results being

M = Se−J̃T S−1. (5.4)

Because of this, matrix S has to contain the eigenvectors of M , and J̃ has to contain the
Poincarè exponents of M . The The final expression of Floquet modes is

Ẽ(t0, t) = Φ(t0, t)Se−J̃t, t ∈ [0, T ]. (5.5)

Matrix S is simply computed as the eigenvectors of the monodromy matrix. To cope with
the fact that M has a complex conjugate pair, it can be rewritten as

S = [s1, s2, s3, s4, Re{s5}, Im{s5}]. (5.6)

In addition, considering that the model of this work is the RPRnBP, it can happen that
the two unitary eigenvalues become complex conjugate, because of the loss of periodicity.
In that case, matrix S is

S = [s1, s2, Re{s3}, Im{s3}, Re{s5}, Im{s5}]. (5.7)

Matrix J̃ , on the other hand, requires the computation of the Poincarè exponents. These
are function of the eigenvalues of the monodromy matrix, in general defined as

ωi = 1
T

ln λi. (5.8)

In the case of a complex eigenvalue, which can be written as λi = ai + jbi, the Poincarè
exponent is also complex, namely
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ωi = ri + jθi, (5.9)

where

ri = 1
T

ln
(√

a2 + b2
)

,

θi = 1
P

tan−1
(

b

a

)
.

Matrix J̃ is finally assembled in diagonal blocks

J̃ =



r1 0
0 r2

r3 θ3

−θ3 r3

r5 θ5

−θ5 r5


. (5.11)

5.2. Station-Keeping Using Floquet Modes
After having computed the Floquet modes for the orbit, it is necessary to develop a
controller that exploits them to keep the spacecraft onto the reference trajectory. This is
done by computing maneuvers that cancel the unstable component of the state vector.

For this analysis two types of controllers were considered: the first one investigated by
Gomez et al. [17], and the second implemented by Keeter [19]. For both the controllers
the 3-axis version was selected, in order to counteract the perturbations given by the solar
system planets, which are present in the RPRnBP, and are strong especially on the z axis.

5.2.1. First Controller

The first controller is the one analyzed by Gomez [17]. At any epoch along the orbit, the
state error vector can be expressed as a linear combination of the Floquet modes

δx(t) =
6∑

i=1
αiẽi. (5.12)

Assuming that the first vector of the basis is the one associated with the unstable manifold,
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the objective of the controller is to annihilate the magnitude of α1. To do so, it is first
necessary to define a matrix that substitutes the unstable Floquet mode with the error
vector, as

Ẽunst = [δx, ẽ2, . . . , ẽ6]. (5.13)

Hence, the unstable component reads

α1 = det(Ẽunst)
det(Ẽ)

. (5.14)

The unstable component can also be written as the scalar product between the error
vector and the projection factors πi, the results being

α1 = π1δx + · · ·+ π6δż = π · δx. (5.15)

The projection factors are necessary for the controller ∆v, and can be computed as

πi = Ci,1(Ẽunst)
det(E) , (5.16)

where Ci,1 is the cofactor computed by eliminating the i-th row and the first column from
Ẽunst matrix.

The maneuver ∆v is computed by imposing the annihilation of the unstable component,
which requires (δx + δv) · π = 0. This leads to the controller equation, which is

∆xπ4 + ∆yπ5 + ∆zπ6 + α1 = 0. (5.17)

The controller equation is undetermined, although one can still find an optimal solution,
by minimizing the norm of ∆v. Such solution reads [17]

∆x = − α1π4

π2
4 + π2

5 + π2
6
, ∆y = − α1π5

π2
4 + π2

5 + π2
6
, ∆z = − α1π6

π2
4 + π2

5 + π2
6
. (5.18)
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5.2.2. Second Controller

The second and last controller analyzed is the one considered by Keeter [19]. To exploit
this controller, it is necessary to project the error vector δx onto the Floquet basis. This
is done by multiplying the vector by projection matrices

δxi = Πiδx, (5.19)

where δxi is the component associated with the i-th vector in the Floquet basis, and the
projection matrices read

Πi = ẽiẽ
T
i

ẽT
i ẽi

. (5.20)

Therefore, δx1 is the unstable component of the error vector.

The controller is designed in order to implement a maneuver that eliminates the unstable
component. The maneuver ∆v can be written as

∆v = [03×1, δv] = [0, 0, 0, ∆x, ∆y, ∆z]T . (5.21)

Additionally, the equation that expresses the controller objective is

δx1 + ∆v = α2δx2 + α3δx3 + α4δx4 + α5δx5 + α6δx6, (5.22)

where αi are unknown coefficients, and the equation means that the error vector has in
fact no component in the unstable direction after the maneuver has been applied. It can
be helpful to rewrite Equation (5.22) in state-space components:



δx1x

δx1y

δx1z

δx1ẋ

δx1ẏ

δx1ẋ


+



0
0
0

∆x

∆y

∆z


=



δx2x . . . δx6x

δx2y

. . .

δx2z

... ...
δx2ẋ

δx2ẏ

. . .
δx2ż . . . δx6ż





α2

α3

α4

α5

α6


. (5.23)

The solution of the equation, however, is not trivial, because the unknowns are the αi
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coefficients and the components of the maneuver ∆v, which are more numerous than the
equations. An exact solution exists for the one-axis controller, which may be enough to
control the spacecraft in the CR3BP. Since this analysis is carried out in the RPRnBP,
it is necessary to develop the expression of the three-axis controller, which requires an
optimization.

First, Equation (5.22) has to be rewritten to isolate the unstable component. This reads

δx1 = Ẽ∗α∗, (5.24)

which in state space components is written as



δx1x

δx1y

δx1z

δx1ẋ

δx1ẏ

δx1ẋ


=



δx2x . . . δx6x 0 0 0
δx2y

. . . 0 0 0
δx2z

... ... 0 0 0
δx2ẋ −1 0 0
δx2ẏ

. . . 0 −1 0
δx2ż . . . δx6ż 0 0 −1





α2

α3

α4

α5

α6

∆x

∆y

∆z



. (5.25)

The system cannot be inverted because the matrix Ẽ∗ is not square. It is however possible
to write a minimization problem, which is

minα∗||α∗||2Q, (5.26)

subject to the constraint:

g(α∗) = Ẽ∗α∗ − δx1 = 0. (5.27)

In words, it is required that the Q-norm of the vector α∗ is minimized, such that the
unstable component of the state vector is removed. The matrix Q is a weighting matrix
that provides more flexibility to the strategy. The minimization problem can be solved
analytically using Lagrange multipliers, leading to the following necessary conditions:
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α∗ = −1

2Q−1Ẽ∗Tp,

δx1 = −1
2Ẽ∗Q−1Ẽ∗Tp,

(5.28)

where p is the vector of Lagrange multipliers. Solving the second equation for p and
substituting into the first, one obtains

α∗ = Q−1Ẽ∗T
(
Ẽ∗Q−1Ẽ∗T

)−1
δx1, (5.29)

which is the solution of the problem. The last three components of α∗ are the ∆v

computed by the controller.

5.3. Station-Keeping Algorithm
The station-keeping algorithm used for Floquet modes approach mimics the one used for
target point approach, although there are some differences. The first trivial one is that
the maneuvers are computed with one of the two controllers presented before, whereas
the main difference is the initialization process.

The STM is necessary to compute the Floquet modes, together with matrices S and J̃ .
The state transition matrix is stored as a spline and is available at any epoch, as in target
point approach. Matrices S and J̃ , on the other hand, are computed before the station-
keeping simulation, and don’t require any kind of interpolation, because they are the same
for the whole orbit. They do require another kind of attention though. In fact, in the
RPRnBP the orbits are not periodic. To cope with this fact, the matrices are computed
for every quasi-orbit. The definition of a quasi-orbit is arbitrary, but for the sake of this
work, the boundaries of the quasi-orbits were set at crossings of the (x, z) plane.

5.4. Objectives of the Analysis
The objective of the analysis is to test Floquet modes approach as a backup to target
point approach. The results closest to the framework of this work are the ones obtained
by Gomez et al [17]. In their analysis, the performances of target point approach are
better than the ones of Floquet modes approach. In addition, they also used a reference
trajectory with a higher Jacobi constant, which is less favourable for TPA but more
favourable for FMA, as its periodic characteristics are more maintained.
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Given those premises, it is still interesting to investigate the degree of controllability
that Floquet modes approach can provide to a mission like LUMIO. Even though FMA
is probably not going to be able to control the spacecraft for the entire mission, the
strategy can be experimented as blended with TPA. It is important to remember that
Floquet modes approach is a strategy built to counteract the influence of the unstable
manifold. However, in the RPRnBP, the influence of the other solar system planets is also
present, although not clearly modeled into the eigenvectors of the monodromy matrix. An
experiment with the first few maneuvers computed with FMA, and the other with TPA
will be made to see if Floquet modes approach gives cost effective maneuvers until the
instability given by the solar system planets builds up.
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6| Short Term Approach
The last strategy implemented in this work is the short term approach, described by
Pavlak and Howell [26]. The goal of the strategy is to design fuel optimal maneuvers,
that keep the spacecraft near the reference trajectory for a short time span, in the order
of one or two periods. This is done exploiting the simple-shooting technique, and by
targeting a single target point. The idea of the strategy is graphically presented in Figure
6.1.

6.1. Simple-Shooting
The simple-shooting method is used to minimize the maneuver ∆v, while meeting certain
constraints at the end of the trajectory. The goals are expressed in terms of the position
of a target point. The problem is stated as a non linear program, in which the vector of
optimization variables comprises the maneuver ∆v and the final epoch. It reads

y = [∆v; τf ]. (6.1)

As already mentioned, the aim is to design fuel-optimal maneuvers. This is done by
stating an objective function which is simply the squared norm of the maneuver ∆v,

Figure 6.1: Graphical Representation of the Short Term Approach Strategy [28]
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namely

J = ||∆v||2. (6.2)

The norm of the maneuver ∆v is squared to have a convex function, which is useful when
solving the problem with gradient-based methods. Hence, the optimization is stated as a
non linear program:

min
y

J(y), s.t. g(y) = 0, (6.3)

where g(y) represents the vector of equality constraints. Such constraints are needed in
order to meet the target point at the final time, and are defined as

g(y) = φr(x+, τman, τf )− rT P , (6.4)

where x+ = x− + [03×1; ∆v] is the state vector to which the maneuver ∆v is added, and
x− is the state before the maneuver. The goal is to make a maneuver that meets the
target point at a certain future epoch, in fact τman is the maneuver epoch, and τf is the
final time of the trajectory, which is a variable of the problem.

To improve the convergence of the optimization, it is important to provide the solver with
the Jacobians of the functions [9]. The first is trivially computed as

∂J

∂y
=



2∆x

2∆y

2∆z

0


. (6.5)

The second requires to compute the derivatives of the flow, with respect to the initial
state and the final time, namely

∂g

∂y
=
[

∂φr

∂∆v

∂φr

∂τf

]
, (6.6)

where
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∂φr

∂∆v
= Φrv(t, tf ),

∂φr

∂τf

= fr(φ(x+, t, tf ), tf ),

(6.7a)

(6.7b)

where the subscripts r and v indicate the parts of the vectors or matrices associated with
the position and velocity, respectively. The optimization problem can be solved with
the MATLAB solver fmincon. As suggested in the work of Folta et al. [14], the chosen
optimization algorithm is sequential quadratic programming.

6.2. Station-Keeping Strategy
The strategy implemented in the short term approach is similar to the one of target point
approach. However, the minimization of the weighted cost function is substituted by
the direct optimization of the maneuver ∆v. The part of the cost function related to
the position deviation is replaced with a non-linear equality constraint. The other main
difference is that, for this approach, the error vector is not a sufficient information, and
the full propagation of the state of the spacecraft is required.

Although similar to target point approach, it is useful to summarize the algorithm to
highlight the differences. The main steps of the algorithm are explained hereafter, and
Algorithm (6.1) is the pseudo-algorithm associated with short term approach.

1. Initialize the simulation by adding the orbit insertion errors to the initial state.

2. Propagate the state, by integrating the equations of motion, until cut-off time.

3. Perform tracking by adding the orbit determination error to the propagated state.

4. Propagate true and perturbed state to maneuver execution epoch.

5. Compute maneuver using the perturbed state, with the simple-shooting method.

6. Add maneuver execution error and execute maneuver, adding the ∆v to the real
state.

7. Repeat steps 2 to 6 until final time is reached.

6.3. Objective of the Analysis
The main objective of the analysis is to test this station-keeping strategy on the case
study of LUMIO. This is because there are no result available for the method on halo
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Algorithm 6.1 Station-Keeping Algorithm with Short Term Approach
1: function DV(t0, tf , Φ, ∆tc, ∆tv, ∆ti, σ2

OI , σ2
OD, σ2

EX)
2: t← t0
3: Generate Orbit Insertion Error: εOI ∼ N (0, σ2

OI)
4: Orbit Insertion: xtrue ← x0 + εOI

5: while t ≤ tf & δxtrue ≤ 10000 km do
6: tv ← t + ∆tv

7: tc ← t + ∆tc

8: ti ← t + ∆ti

9: if ti ≥ tend then
10: ti ← tend

11: end if
12: Propagate to Cutoff Time: xtrue ← φ(xtrue, t, tc)
13: Generate Orbit Determination Error: εOD ∼ N (0, σ2

OD)
14: Orbit Determination: xOD ← xtrue + εOD

15: Propagate to Maneuver Execution:
16: xtrue = φ(xtrue, tc, tv)
17: xman = φ(xOD, tc, tv)
18: Plan Maneuver: ∆v = simpleShooting(xman,xT P )
19: Generate Maneuver Execution Error: εEX ∼ N (0, σ2

EX)
20: Perturb Maneuver ∆v: ∆v ← ∆v ◦ εEX

21: Execute Maneuver: xtrue ← xtrue + [03×1; ∆v]
22: t← tv

23: end while
24: end function

orbits. The method can be considered as a variation of the target point approach, since
it features a similar kind of algorithm. It is interesting to compare an optimization based
on a weighted cost function with one based directly on the minimization of ∆v, where the
target point is imposed as a constraint.

In contrast to Floquet modes approach, which is not suitable as a baseline strategy, and
has to be blended with TPA, short term approach could turn out to be cheaper than TPA
when considering fuel cost. It depends on the effectiveness of the direct optimization of
the maneuver ∆v. The results of the simulations will tell if STA is suitable as a baseline
strategy.
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7.1. LUMIO Mission
LUMIO is a mission planned for the lunar environment, which aims at studying the flux
of meteoroid impacting the lunar surface. It will be carried out by a 12U form-factor
CubeSat, equipped with LUMIO-cam, its main instrument.

Meteoroids collide with the lunar surface with high kinetic energy, which is partitioned
into four components: production of seismic waves, formation of a crater, ejection of
particles and emission of radiation. LUMIO-cam is designed to detect impact flashes,
while observing a large portion of the lunar surface.

Studying the flux of meteoroid impacts is of scientific interest, because they can improve
our knowledge about near-Earth objects, and the formation of the solar system. Moreover,
characterization of impacts is also vital for the design of space based assets, particularly
their shields. Finally, the impacts with larger near Earth objects, although rare, pose a
significant threat to life on Earth, and studying their population can be vital for mitigation
actions.

Doing this research with a satellite allows to exploit numerous advantages, such as the ab-
sence of atmosphere, day/night cycle and weather, the possibility of full-disk observation
at all longitudes, and the complementarity of lunar far-side observations with ground-
based experiments.

The following mission statement for LUMIO was written on the basis of the previous
observations [30]:

LUMIO is a CubeSat mission orbiting in the Earth–Moon region that shall observe, quan-
tify, and characterize meteoroid impacts on the lunar far-side by detecting their impact
flashes, complementing Earth-based observations of the lunar nearside, to provide global
information on the lunar meteoroid environment and contribute to Lunar Situational
Awareness.

The mission is divided into five main phases, represented in Figure 7.1, and better ex-
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Figure 7.1: LUMIO Mission Architecture [4]

plained hereafter [31].

1. Deployment: which comprises the switch-on of the spacecraft, early operations,
stabilization and attitude acquisition, establishment of communications, and com-
missioning of propulsion system.

2. Transfer: made by a first orbit determination, then the execution of two maneuvers:
a change of plane, and a manifold injection maneuver.

3. Commissioning: with orbit determination and acquisition, calibration of instru-
ments and beginning of operations.

4. Operation: which consists in both scientific operations, such as images acquisi-
tion and processing, and technical operations, such as communications and control
maneuvers.

5. End of Life: with a final communication with the orbiter, and the execution of the
disposal maneuver.

7.1.1. Operational Constraints

This work is centred around the operation phase of the mission. The operational orbit is
chosen to be a halo orbit, about the L2 point of the Earth-Moon system. It is selected
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Figure 7.2: Disposition of Station-Keeping Maneuvers for LUMIO Mission [5]

through a trade-off, which includes Keplerian orbits, frozen orbits and various libration
point orbits. Keplerian and frozen orbits are discarded because of their excessive fuel
requirement. The halo type is selected between the libration point orbits, for its low fuel
cost, both in the transfer and in the orbit maintenance [7].

The final selection of the orbit is done considering a coverage analysis, and a more detailed
calculation of the fuel budget. The resulting orbit has a Jacobi constant of CJ = 3.09.
The trajectory is generated with the method explained in Section 2.3.1, and is the one
used as reference for the station-keeping simulations.

During the operation phase the orbits are divided into Science orbits, and Navigation and
Engineering orbits. The placement of the orbits and, consequently, the station-keeping
maneuvers, is schematized in Figure 7.2. During a Navigation and Engineering orbit the
spacecraft performs three maneuvers: the first, the seventh, and the last day of the orbit.
On the other hand, on Science orbits the spacecraft does not perform any maneuver.
Consequently, there are intervals of 14 days without any correction to the trajectory,
which is a fundamental constraint to keep in mind when designing the station-keeping
strategy.

Concerning station-keeping, the two most important subsystems to consider are the
propulsion system, and the attitude determination and control system. The propulsion
system features one main green mono-propellant thruster, for the main maneuvers, and
four cold gas RCS thrusters for de-tumbling and de-saturation.

As for the attitude determination and control system, the sensor suite is composed of a sun
sensor, two star trackers and an inertial measurement unit. A set of three reaction wheels
operate together with the RCS thrusters for attitude control. The orbit determination is
performed using LUMIO-cam, using autonomous full-disk optical navigation.

The proprieties of those two subsystems are reflected in the values chosen for the opera-
tional errors, guaranteed by the work of Franzese et al [15]. The parameters are presented
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Table 7.1: Standard Deviations of Operation Errors

Orbit Injection:
σx, σy, σz 1 km, 1 km, 1 km
σẋσẏ, σż 1 cm/s, 1 cm/s, 1 cm/s
Orbit Determination:
σx, σy, σz 1 km, 1 km, 1 km
σẋσẏ, σż 1 cm/s, 1 cm/s, 1 cm/s
Maneuver Execution:
σ∆ẋ, σ∆ẏ, σ∆ż 2%, 2%, 2%

in Table 7.1. Also correlated to the orbit determination process, the cutoff time is set at
tc = 12h.

7.2. Target Point Approach
As explained in Section 4.7, the objective of the analysis is to improve the results obtained
with the parameters in Cipriano et al [5], which are reported in Table 7.2.

Table 7.2: Baseline Parameters for Target Point Approach

Parameter Value Unit
∆t1 35 [d]
∆t2 42 [d]
Q 10−1I3×3 [∼]
R1 10−2I3×3 [∼]
R2 10−2I3×3 [∼]

A first simulation is made with the baseline parameters, and its results are reported in
Table 7.3. Its fuel perfomances are worse than the ones expected in Cipriano et al. [5],
because of the different approach in the implementation of orbit determination. Consid-
ering the process as a real error made by the spacecraft, instead of a displacement of the
state, has a deep effect in the results and increases the mean ∆v of the simulation.

The first step taken to improve the parameters is to perform a grid search over the location
of the target points, with the objective of finding if the epochs of the target points are the
best ones or if there is room for improvement in the selection of those parameters. The
grid search is performed with a step of 1 day between the epochs, ranging between 20 and
50 days. The lower value is chosen considering the robustness of the algorithm, a target
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Table 7.3: Baseline Results for Target Point Approach

∆vtot Min ∆v Max ∆v Max Dev Fails
[m/s/y] [m/s] [m/s] [km] [∼]

Ave Range Ave Ave Ave (%)
58.17 18.23 129.82 0.016 9.62 537 0

point sooner than 20 days could cause problems in the event of a missed maneuver. The
higher value, on the other hand, is selected because with target points farther in time the
STM becomes ill conditioned, leading to numerical errors in the propagation and in the
computation of the maneuvers. The results of the grid search are presented as a plot, in
Figure 7.3.
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Figure 7.3: Results for Target Point Grid Search

The plot clearly shows regions in which it is unfavourable to place the target points,
leading to an increase of around 10% in the fuel cost. On the other hand, there is no
absolute minimum region, and there are multiple viable options for the choice of the target
point epochs. The best pair found by the grid search is

∆t1 = 23 d, ∆t2 = 41 d, (7.1)
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although the pairs (38, 41) and (25, 30) are also close in terms of performance. The best
∆v resulting from the simulation is 56.81 m/s/y, which is a decrement of 2.3 % with
respect to the baseline parameters.

The tuning of the parameters is further improved by changing the weights of the cost
function. Because it is not possible to make a pork chop plot with three variables, the
analysis is done by varying the coefficients one at a time. The resulting plots appear in
Figure 7.4.
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Figure 7.4: Mean ∆v as Function of TPA Weights

The plots are made in order to test the neighborhood of the baseline parameters, because
those were chosen as values found to be optimal in literature. Although relatively small,
the change of the weights can improve the fuel budget, especially the tuning of Q. The
plots suggest that, in order to improve the performance, it is better to relax the weight
of the deviation from the target points, and increase the weight of the ∆v, which is a
result that is intuitively correct. Following this line of reasoning, a number of simulations
is done, by increasing Q and decreasing R1 and R2 together. The best results are found
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Table 7.4: Results for Target Point Approach with Improved Weights

∆ti ∆vtot Min ∆v Max ∆v Max Dev Fails
[d] [m/s/y] [m/s] [m/s] [km] [∼]

Ave Range Ave Ave Ave (%)
(23, 41) 55.92 22.03 104.13 0.01 9.49 1303 0.03
(38, 41) 56.09 19.48 109.34 0.01 9.51 1218 0
(25, 30) 55.83 20.17 113.73 0.01 9.51 1845 0.5

with values:

Q = 0.2, R1 = 0.05, R2 = 0.05. (7.2)

After those value, a further change in the weights leads to an increase in the failed simula-
tions, due to the maximum deviation being violated. The results obtained with the gains
in Equation (7.2), and the best couples of target point epochs, are reported in Table 7.4.
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Figure 7.5: Monte Carlo Samples for Target Point Approach

The results show another, although relatively small, improvement in the ∆v. In contrast,
the decrement in the maximum ∆v obtained by the simulations is in the order of 20%
with respect to the original parameters. This makes the refined strategy more robust,
requiring less fuel margin for the worst case scenario. The number of fails is still small,
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Figure 7.6: Position Deviation for Target Point Approach

although different from zero in the first and third cases, giving the results a high level of
confidence. The parameter that worsens is, as expected, the maximum deviation. This is
however acceptable, because the average remains well under the operational constraint.

On the basis of the previous considerations, the first result is considered as the best one,
mainly because of the maximum ∆v obtained in the simulation. The second option is, on
the other hand, the most reliable, having scored zero fails in ten-thousands trials. The
Monte Carlo samples for the final strategy are plotted in Figure 7.5. The results are sta-
tistically significant, because the mean and standard deviation have reached convergence,
even before 1000 trials.

Finally, Figure 7.6 shows the position deviation over only one simulation. The results is
not statistical but shows how the strategy tends to control the spacecraft. It is expected
that position deviation builds up over time, and it is confirmed by the slope of the re-
gression line. However, two things must be noted. First, most of the maneuvers prove
to be successful at lowering the deviation of the spacecraft, and even though the devia-
tion shows an increasing trend, the spacecraft remains bound to the reference trajectory.
Secondly, the deviation is computed with respect to a isochronous point on the reference.
This means that the position may not deviate with respect to the desired path, but only
shift in time. Over the samples used for the simulations, the mean angular coefficient for
the regression line is 4.47 km/d, which gives a mean final deviation of 1632 km, compat-
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ible with the results. It must be noted that no cases resulted in a negative coefficient of
the regression line, demonstrating that allowing some deviation to build up over time is
a feature of the method.

7.3. Floquet Modes Approach
As already mentioned in Section 5.4, the goal is to test Floquet modes approach as
a backup for target point approach. As foreseen by analyzing the results obtained by
Gomez [17], the strategy is not able to keep the spacecraft in the vicinity of the desired
trajectory. As a reference, the results of the simulations are still reported in Table 7.5.
The parameters used to obtain the results are in common with target point approach, the
only exception being the matrix Q from the second controller. It was defined with the
values suggested by Keeter [19], which are

Q = diag{1.81, 1.81, 1.15, 1.81, 1.81, 0.120, 30.1, 356}. (7.3)

The vast majority of the simulations are failed, because of the maximum deviation being
reached. The second controller is not able to produce any successful result. With the first
one, on the other hand, a small number of simulations are able to control the spacecraft.
The best one even results in a ∆v comparable with target point approach, but it is
statistically insignificant.

The strategy is consequently tested as a backup of TPA. The algorithm is programmed
such that if the unstable component α1 is below a certain threshold value the maneuver
is executed with Floquet modes approach, otherwise with TPA. This is tried with two
different values of α1, which are: α1 = 10−4 and α1 = 10−5. Higher values are not con-
sidered because they would lead to maneuvers which are too high in magnitude, whereas
lower values are not considered because they actually never happen, and the results of
the simulation would be the same as with only TPA. The outcome of those simulations

Table 7.5: Results with Floquet Mode Approach

∆vtot Min ∆v Max ∆v Max Dev Fails
[m/s/y] [m/s] [m/s] [km] [∼]

Controller Ave Range Ave Ave Ave (%)
1 203.67 64.12 463.55 0.01 39.03 14958 99.5
2 N/A N/A N/A N/A N/A N/A 100
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is reported in Table 7.6.

The results clearly show that Controller 1 performs better. The first round of simulations,
with α1 = 10−5, is able to keep the average ∆v close to the one of TPA. In addition, Cont.
1 has a small impact on the maximum deviation and on the success rate. In both cases
the range of ∆v obtained by the simulations is increased, although much more with Cont.
2. When considering α1 = 10−4 the results worsen considerably. The ones with Cont. 2
have a number of failures that is too high to consider the strategy as viable. The ones
with Cont. 1, on the other hand, have a higher success rate, but the performances are
still much worse than TPA.

Another trial is made by considering the first few maneuvers done with FMA and the
other with TPA. This is because the main concern for Floquet modes approach is the
absence of periodicity in the orbit. It is consequently interesting to see what happens if
the FMA maneuvers are applied before the perturbations given by the other planets have
had time to impact the spacecraft trajectory. The results of the simulation are reported
in Table 7.7.

The results show that again the second controller is not able to successfully control the
spacecraft. The ∆v shows an increasing trend, meaning that the FMA maneuvers are
not effective. In fact, with the highest number of maneuvers done with Floquet mode
approach, the simulation shows only failed attempts. The first controller, on the other
hand, shows a stable trend of the ∆v. To take advantage of this, the ∆v is plotted against
the number of maneuvers done with FMA. It is reported in Figure 7.7.

As shown in the plot, until 6 maneuvers done with FMA there are no significant changes
with respect to TPA when using the first controller. After that, the fuel cost starts

Table 7.6: Results with Floquet Mode Approach as Backup to TPA

∆vtot Min ∆v Max ∆v Max Dev Fails
[m/s/y] [m/s] [m/s] [km] [∼]

Parameters Ave Range Ave Ave Ave (%)
Max α1 = 10−5

Cont. 1 58.26 25.51 180.11 0.01 10.65 1478 0.7
Cont. 2 57.80 22.54 237.40 0.01 10.42 13168 18
Max α1 = 10−4

Cont. 1 75.32 21.75 257.39 0.009 18.46 3095 10
Cont. 2 77.92 28.49 213.83 0.006 19.63 76956 86
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Table 7.7: Results with First Maneuvers Done with Floquet Mode Approach

∆vtot Min ∆v Max ∆v Max Dev Fails
[m/s/y] [m/s] [m/s] [km] [∼]

Parameters Ave Range Ave Ave Ave (%)
First 2 Man.
Cont. 1 56.10 17.76 118.46 0.01 9.46 1302 0
Cont. 2 58.66 21.50 112.96 0.006 9.54 1333 0.1
First 3 Man.
Cont. 1 56.28 18.79 121.62 0.01 9.50 1296 0
Cont. 2 61.24 23.80 148.81 0.006 9.65 1315 0.1
First 4 Man.
Cont. 1 56.12 18.52 107.00 0.01 9.49 1315 0
Cont. 2 80.53 23.25 209.88 0.006 18.42 3531 16
First 5 Man.
Cont. 1 56.39 21.84 162.88 0.01 9.53 1308 0.05
Cont. 2 86.97 35.10 214.22 0.005 28.83 32403 84

increasing. This shows a success at blending Floquet mode and target point approach
into a strategy that provides a backup to target point approach for the first few orbits.
After that, probably because of the perturbations given by the solar system’s planets,
Floquet mode approach starts becoming disadvantageous to use.

As shown for target point approach, the Monte Carlo trials are plotted in Figure 7.8.
The specific plot was made considering the first four maneuvers done with FMA. It is
demonstrated that 10000 trials are enough to produce statistically significant results. In
fact, the standard deviation reaches convergence well before 1000 trials.

Finally, the position deviation for the hybrid strategy, performed with controller 1, is
plotted in Figure 7.9. The rise of the deviation in the first maneuvers is faster than with
target point, given the minor effectiveness of Floquet mode approach for the reference
orbit. The number of maneuver performed with FMA, however, is small enough to allow
TPA to stabilize the spacecraft afterwards. In fact, the plot looks similar to the one of
Target point approach after the first maneuvers. This is additionally confirmed by the
fact that the number of failures detected with the hybrid strategy is as small as with TPA
alone. The mean inclination of the regression line is 5.37 km/d, higher than with TPA
alone, and confirmed by the higher mean final deviation seen in Tables 7.6 and 7.7.

The last simulation is performed to validate the previous results. The validation is done
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Figure 7.7: Mean ∆v as Function of the Number of FMA Maneuvers

against the results obtained by Gomez et al [17]. The reference orbit considered has a
Jacobi constant of CJ = 3.16, and belongs the family of halos considered in the design of
LUMIO. It is not exactly the orbit used in the reference, but it is the closest one available
in the halo family generated for LUMIO. The frequency of the maneuvers is changed to
one every two days, and the other parameters are left as in the previous analysis. The
results of the validation are reported in Table 7.8.

The results are similar to each other, although not equal. The first cause could be that
they are obtained with Monte Carlo simulations, which never produces exactly the same
results. To be more specific, Gomez introduces other filters into the simulation. There
are several tracking interval, and a maneuver is performed only if an exponential increase
in α1 is detected in three consecutive trackings. There is also a condition for which a

Table 7.8: Validation Against Gomez et al. Results

∆vtot Min ∆v Max ∆v Max Dev Fails
[m/s/y] [m/s] [m/s] [km] [∼]

Results Ave Range Ave Ave Ave (%)
LUMIO 6.61 4.97 8.84 0.0003 0.15 111 0
Gomez et al. 6.21 5.17 11.01 0.03 0.21 N/A N/A
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Figure 7.8: Monte Carlo Samples of Floquet Mode Approach

maneuver is not performed if it has a magnitude lower than a threshold value. Those two
additional conditions cause different results, and produce a much higher change than the
sole randomness of the operational errors.
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Figure 7.9: Position Deviation of Hybrid Strategy with Controller 1

In conclusion, the results obtained with the analysis done with Floquet mode approach are
considered valid, thanks to the comparison with the work of Gomez et al [17]. Although
the strategy is not able to successfully control the spacecraft, it is demonstrated that a
blend between FMA and TPA is possible. Floquet mode approach is advantageous in
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the first stages of the mission, when the motion has not been perturbed yet by the other
solar system planets, whereas target point approach is more suitable to counteract those
forces. The final hybrid strategy leads to results which are interchangeable with target
point approach.

7.4. Short Term Approach
Short term approach is implemented to test its performance on the case study of LUMIO.
For this work two different strategies are investigated:

1. Strategy 1 involves the targetting of the next maneuver point. This means that the
target point is either 7 or 14 days after the maneuver.

2. Strategy 2, on the other hand, always targets a point 14 days after the maneuver,
to provide a maneuver that continues the trajectory for one orbit.

The selection of a target point farther in time is prevented by the use of the simple-
shooting method. Either a multiple-shooting scheme or additional conditions would be
necessary to continue the orbit for additional time.

The main difficulty encountered with the implementation is the high computational cost.
For this reason, the number of simulations for the Monte Carlo analysis is set to 100. The
investigation is performed on a Windows PC, equipped with a Intel Core i7 7700k proces-
sor, with a base frequency of 4.20 GHz, and with all four cores running in parallel. Com-
puting 100 trials of Strategy 2 takes more than 1 day, with Strategy 1 being slightly less
computationally heavy, because of the shorter time span of the simple-shooting method.

The results obtained with both strategies, using the short term approach, are reported
in Table 7.9. The first results that stand out are the mean maximum deviation and the
number of failures. These however have to be associated with the simple shooting method
converging to solutions that are feasible but very far from the reference trajectory. These
cases can be graphically seen when doing the simulation, and may be avoided by improving

Table 7.9: Results of Short Term Approach

∆vtot Min ∆v Max ∆v Max Dev Fails
[m/s/y] [m/s] [m/s] [km] [∼]

Results Ave Range Ave Ave Ave (%)
Strat. 1 105.78 39.14 201.39 0.03 14.37 13915 62
Strat. 2 79.64 38.57 155.21 0.03 10.12 54997 69



7| Results 57

0 50 100 150 200 250 300 350 400

0

500

1000

1500

2000

2500

(a) Strategy 1

0 50 100 150 200 250 300 350 400

0

200

400

600

800

1000

1200

(b) Strategy 2

Figure 7.10: Position Deviation of Short Term Approach

the initial guess of the simple-shooting, for example with a differential correction scheme,
or by adding additional constraints to the method. When considering only the successful
cases, the mean deviation is in the order of hundreds of km, which is much lower than
target point approach. Even though additional work has to be done to consider the
method safe, it must be pointed out that the successful cases show that this strategy
can reliably maintain the spacecraft near the reference trajectory. This is supported also
by Figure 7.10. It can be noticed that the curve for Strategy 1 resembles in some way
the one for TPA, whereas Strategy 2 performs better than all the other strategies. The
values on the y axis are much smaller, and the regression line is more shallow than the
others. Short term approach, consequently, seems like a viable strategy if the deviation
is a constraint for the mission, although the problems with the convergence of the simple
shooting have to be addressed.
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Figure 7.11: Alignment Between ∆v and Stable Manifold
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Regarding the different strategies, Strategy 2 results in a much lower fuel cost, but fails
more frequently. It is interesting to see that performing a simple-shooting that has a
target point farther in time gives better performance. The strategy may give better
results, hopefully better than target point, if implemented with a target point two or
three orbits in advance. It is however impossible to compute such a maneuver with the
simple-shooting explained in Chapter 6. The method should be improved either with a
multiple-shooting method or with additional constraints.

An important feature of the short term approach, discussed in the work of Pavlak and
Howell [26], is the fact that maneuvers, even though computed with a gradient based
solver, tend to align with the stable manifold. This fact is analyzed in Figure 7.11. It
can be seen that the alignment is present for Strategy 2, whereas in Strategy 1 the two
vectors are almost perpendicular. This could be a hint of the better fuel performance
of Strategy 2. What is interesting to notice, is that the ∆v of Strategy 1 tends to be
opposite with respect to the unstable manifold, as shown in Figure 7.12. This feature is
not presented in the work by Pavlak and Howell, but seems to be consistent for the entire
station-keeping simulation. Although the plots present a single maneuver, this facts are
checked for multiple maneuvers in various simulations, and are in accordance with the
inspections performed.
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Figure 7.12: Alignment Between ∆v and Unstable Manifold

To finally validate the results, it must be noted that, for both strategies, the mean result
is obtained with more than 30 valid simulations, which the lower theoretical limit to



7| Results 59

0 5 10 15 20 25 30 35 40

0

50

100

150

200

250

(a) Strategy 1

0 5 10 15 20 25 30 35

0

20

40

60

80

100

120

140

160

(b) Strategy 2

Figure 7.13: Monte Carlo Samples with Short Term Approach

use normal distributions for the operational errors. The samples of the Monte Carlo
simulations are plotted, for both strategies, in Figure 7.13. Although some oscillations
are still present in the mean, the standard deviation has reached sufficient convergence,
and those oscillations would change the results by an amount lower than 5%. The results
are thus considered valid.
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8| Conclusions
The primary goal of this research is the investigation of the station-keeping problem,
applied to the case study of LUMIO mission. To achieve this objective, the equations
of motion are first derived, both in the circular restricted hypothesis and in the high
fidelity roto-pulsating model, that is the one used to obtain the final results. After that,
some existent station-keeping strategies are reviewed, in order to make a trade-off and
select which ones to implement. This work focuses on Floquet mode approach and short
term approach. Considering that target point approach is the baseline technique for the
mission, some effort is also spent to improve the tuning of the parameters of TPA.

The station-keeping strategies are then implemented inside a simulation algorithm that
models the real mission scenario, with operational errors. The code is ran multiple times
to conduct a Monte Carlo analysis, in order to gather statistically significant data. The
results show that target point approach can be slightly improved by changing the param-
eters. Short term approach, on the other hand, is not successful at improving the average
∆v. Finally, Floquet mode approach, while being unable to control the spacecraft by
itself, is able, when blended with TPA, to serve as a backup strategy for the first few
orbits, without significantly changing the performances of TPA. The results are finally
compared with an authoritative literature source, to test their validity.

To finally answer the research question, even though this work is unable to massively
reduce the fuel cost for the station-keeping of LUMIO, it shows that the reliability can
be improved by implementing Floquet mode approach as backup strategy for the first
maneuvers of the mission. The mission can now consider a second option in case of any
problem with target point approach, but only for the first two orbits.

8.1. Future Developments
Regarding the possible future improvements of this work, two different areas can be
addressed: one related to the station-keeping of libration point orbits, and the other
specific to LUMIO mission.
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For what concerns libration point orbits, target point approach has been deeply investi-
gated by various researchers, and there is plenty of literature material available. Floquet
mode approach seems like a very promising method when applied in the CR3BP, but
its performance degrades when implemented in the RPRnBP. There is consequently a
necessity of improving the mathematical framework related to Floquet modes, by either
extending it to quasi-periodic orbits, or testing whether it is a viable strategy for simula-
tions in higher fidelity models. Regarding the short term approach, it was mainly tested
in the design of ARTEMIS mission. It would be fruitful to extend the investigation to
other kinds of libration point orbits. In general, the research about station-keeping, as
seen in the first Chapter, seems to be focused mainly on halo and Lissajous trajectories.
The analysis of other kinds of orbits, such as Lyapunov orbits, can be of practical interest
for future works.

As for LUMIO mission, target point approach has been investigated multiple times, lead-
ing to an improvement thanks to the tuning of the parameter. A possibility not yet
analyzed is time varying weight matrices, which could lead to a further improvement of
the fuel budget. Floquet mode approach is shown to be evanescent at controlling the
spacecraft on the orbit of LUMIO. However, with an orbit with higher Jacobi constant,
it can be better than target point approach, due to the orbits being more quasi-periodic.
Short term approach has turn out to be more expansive than target point approach.
However, it could be improved in two ways. One is the implementation of the multiple
shooting method, to allow the target point to be farther in time. The other is the in-
vestigation of the orbit continuation strategy, where the target point is substituted by
user defined constraints, and there is no need for a reference trajectory. The definition of
the constraints is of interest, because they are only found in literature for the ARTEMIS
mission, and are not available for halo orbits.

The interest in libration point missions will continue to grow in the future due to the
unique configuration that they provide. The feasibility and success of those missions
are inextricably linked to the development of station-keeping strategies, and this work is
presented in the hope that the investigations conducted will contribute to the success of
LUMIO, and other future libration point missions.
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