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Dare un senso, questo compito
resta assolutamente da assolvere,
posto che nessun senso vi sia già.

Friedrich Nietzsche
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Abstract (ENG)
This thesis is developed in the context of the study of cuprate superconductors: a
promising class of high-Tc superconductors, by means of Resonant Inelastic X-ray
Scattering (RIXS). RIXS measurements of cuprates show a variety of interesting
phenomena, among which are charge density waves (CDW) and recently discovered
charge density fluctuations (CDF): two rather exotic types of charge order exci-
tations which still lack a widely accepted theoretical description. The purpose of
this thesis is to develop the computational analysis of a recently proposed model by
first running simulations with reasonable guesses of parameters, and then, most im-
portantly, extracting a range of physically relevant parameters through a global fit
of experimental data collected at various temperatures on high quality YBCO and
BSCCO samples. Results encouraged an exciting discussion regarding the physics
behind charge density modulations and their interplay with other phenomena, and
yielded promising matches between theory and experiment in the whole temperature
range under scrutiny.
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Abstract (ITA)
Questa tesi si sviluppa nel contesto dello studio dei cuprati superconduttori: una
promettente classe di superconduttori ad alta temperatura critica, tramite lo scatter-
ing risonante ed inelastico di raggi X (RIXS). Le misure RIXS sui cuprati mostrano
una gran varietà di fenomeni interessanti, tra i quali troviamo le ”charge density
waves” (CDW), i.e. onde di densità di carica, e le ”charge density fluctuations”
(CDF), più recentemente scoperte: due tipi piuttosto esotici di eccitazioni dell’ordine
di carica per i quali ancora non esiste una descrizione teorica ampiamente condivisa.
Lo scopo di questa tesi è quindi quello di sviluppare un’analisi computazionale di un
modello recentemente proposto, tramite -in primo luogo- una simulazione facente uso
di un set ragionevole di parametri e -in secondo luogo- estraendo dei parametri fisica-
mente rilevanti attraverso un fitting globale dei dati sperimentali, raccolti a diverse
temperature su campioni di YBCO e BSCCO (ad alta qualità). I risultati ottenuti
hanno incoraggiato una stimolante discussione in merito alla fisica delle modulazioni
della densità di carica elettronica e delle loro interazioni con altri fenomeni fisici,
e hanno prodotto interessanti corrispondenze tra teoria ed esperimento nell’intero
intervallo di temperature preso in considerazione.
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Introduction

Through the fall semester of 2020 and the beginning of 2021 I’ve had the opportunity
to join the research team lead by Giacomo Ghiringhelli at the Department of Physics
of Politecnico di Milano. This group has a solid and well established expertise in
the branch of experimental physics performed through soft X-ray spectroscopy at
synchrotron facilities, for the study of electronic and magnetic properties of matter.
At the heart of their activity is a technique called RIXS: Resonant Inelastic X-
ray Scattering, which is a cutting-edge technology suitable for the investigation of
excitations bound to the charge, spin, orbital, lattice degrees of freedom in systems
with strong electron correlation. The group has pioneered the development of this
technique and of its applications, providing an enlightening, innovative and often
complementary, perspective with respect to the previously known techniques (such
as X-ray Absorption Spectroscopy (XAS), Inelastic Neutron Scattering (INS) and
many more) in the world of experimental physics for the study of suitable systems.

Since 2009 the group has coordinated its efforts towards the investigation of materi-
als based on 3d transition metals oxides (3dTM in short), which offer an abundance
of electronic and magnetic properties thanks to their strong electron correlation;
and more specifically to superconductive layered copper oxides. These are a class
of peculiar quasi-bi-dimensional structured materials which exhibit superconductive
behavior at relatively high temperatures, constituting an extremely exciting and
promising frontier for research, yet one of the longest standing problems of contem-
porary solid state physics due to the lack of a deep understanding of the mechanisms
regulating their properties.

A thorough study of cuprates using RIXS is unveiling the existence of many physical
phenomena, among which we find charge density waves (CDW) and fluctuations
(CDF) which are rather exotic and intriguing types of charge density oscillations,
occurring in specific regions of these crystals’ reciprocal space. The fast-paced quest
for an extensive understanding of the nature of cuprates, and therefore also of all
related phenomena such as CDW and CDF, is leading experimental physicists to
collect data and theorists to formulate models. The aspiration is that the scientific
community will soon be able to provide accurate predictions and insights into the
physics behind charge order, and the role it might play in superconductivity.
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Following the exciting and possibly revolutionary findings of recent experimental
activities ([1],[2]), this thesis arises in the context of seeking a match between the
RIXS experimental data collected by our research group at various synchrotron
facilities throughout Europe, and a mathematical model developed by a team of
theoretical physicists at Universitá la Sapienza, Rome, lead by Carlo Di Castro.

The first chapter will be devoted to a brief introduction on highly correlated systems
and superconductivity, and to a description of 3dTM-based systems, with a closer
look on layered copper oxides (cuprates). It will end with an overview of the most
up-to-date findings on charge density modulations.

The second chapter will commit to the characterization of the RIXS experimental
technique, and a presentation of the excitations it can get access to.

The third chapter will specifically focus on the experimental data used for the anal-
ysis and on the mathematical model which will be at the heart of the simulations.
I will then provide the first results which emerge from the implementation of the
model by using a reasonable set of physical parameters, and by quantitatively ex-
ploring what role each of them plays in the simulated intensity signal; paving the
way for the central part of the work: the global fit.

The fourth chapter introduces the logic behind the fitting scheme and focuses on
the methods adopted to face the main challenges related to finding a match between
experimental data and simulations. Among these the presence of a background, an
elastic peak in Γ and the temperature dependence of the characteristic frequency of
CDF: ω0. Then the outcomes of the fit are displayed, together with an explanation
of where it provides encouraging insights, highlighting its limits and their possible
explanation.

In the conclusions I summarize the main results of the project and provide a concise
description of its successes and limits, and how they encourage further research and
analysis. Hence, I present a range of thrilling future perspectives pointed out by
the findings of this work, which involve the interplay of a wide variety of physical
phenomena and experimental techniques.

In Appendix A and B the reader can find (respectively) a brief remark on compu-
tation times and the code used for the fit.

Lastly, I shall note that due to the Covid-19 pandemic I was unfortunately not able to
attend in person any of the measurements sessions at the beamlines of synchrotrons,
and therefore my work closely focused on the data analysis and interpretation.
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1 3dTM-based systems

1.1 Highly correlated systems

One of the most active branches of contemporary solid state physics is that which in-
vestigates the nature and properties of the so called quantum materials, i.e. systems
which exhibit strong electronic correlations.

In such structures, the electron-electron interaction taking place within the valence
band is non-negligible, and has to be taken into account beyond the perturbative
correction. The single particle description provided by one-electron theories fails to
reproduce their observed physical properties due to the intermediate character of the
valence electron wave functions, neither localized on the atoms nor totally spread
over the whole solid. Put simply, we have to discard the approximation of considering
an identical Hamiltonian for every electron, which decouples their wave functions by
accounting for their mutual interactions through the use of a mean-field approach.
In certain quantum materials, the divergence from the behavior predicted by one-
electron theories is so large that instead of behaving as metals with a conductive band
cutting the Fermi level, they are instead insulators with wide band gaps (at least at
room temperature). This is the case for ceramic high temperature superconductors
based on CuO2 layers, which exhibit a poorly conducting antiferromagnetic phase
below their Néel temperature (∼ 300 K) and a superconductive phase below a critical
temperature Tc.

In principle, many body calculations should be employed to provide a more physical
characterization of the structure of these materials, nevertheless many body theories
rely on technical mathematical representations, such as density functional theory
(DFT)[3], and are beyond the purpose of this work, which favors an experimental
approach.

A general discussion of the electronic structure of transition metal (TM) oxides can
be found in [4].

Several systems based on 3d transition metals fall within the definition of quantum
materials. In such structures, which we will refer to as 3dTM, the open 3d shell is
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sufficiently atomic-like to lead to strong electronic correlation and localized magnetic
moments; but also radially extended enough to form highly covalent bonds with
partnering anions, resulting in large hopping integrals and strong superexchange
interaction. This explains the very rich phenomenology of these systems, which
exist in various forms (alloys, oxides, calchogenides...) and is reflected in the fact
that their crystalline structure, local orbital symmetry, atomic spin orientation and
charge density are all coupled and have comparable energy scales, leading different
orders to compete and/or cooperate, and allowing the existence of a variety of exotic
phases (such as high critical temperature superconductivity in layered copper oxides
[5]).

1.2 High Tc superconductors

Superconductors are systems which, below a certain critical temperature Tc, un-
dergo a phase transition to the so-called superconducting state, characterized by an
identically null resistivity and a magnetic field repellent condition.

Superconductors hint at one of the most desirable technological applications of solid
state physics: loss-free electricity transfer. As one can easily imagine, such a dis-
covery would completely revolutionize the energy sector and the whole world as
a consequence; nevertheless there remain a huge challenge standing in the way of
such a scientific leap: the temperature (or pressure [6]) ranges required to enter the
superconductive state of currently studied materials.

Conventional superconductors, described by BCS theory [8] rely on a well under-
stood mechanism of phonon-mediated coupling of electrons, (see Fig. 1.2) which
leads to a breakdown of the resistance below Tc. In simplified terms, electrons in-
volved in the mentioned pairing are endued with opposite momenta and opposite
spin: they are in a singlet state. These paired particles, called Cooper Pairs, are
therefore bosons and, according to the Bose-Einstein distribution, are increasingly
more likely to populate the (same) ground state as T decreases. Below the criti-
cal temperature Cooper pairs condense in a bosons superfluid and this causes, as a
macroscopic effect, the insurgence of the superconductive state. Fundamental to the
BCS mechanism is the fact that, despite the strong direct Coulomb repulsion, the
relatively weak attractions between electrons induced by the coupling to the vibra-
tions of the lattice (phonons) can bind the electrons into pairs at energies smaller
than the typical phonon energy [9]. These materials have been studied for decades
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Figure 1.1: Tc versus time. Superconducting transition temperatures versus year of
discovery for various classes of superconductors. Note in particular BCS superconduc-
tors (green circles), cuprates (blue diamonds), and iron-based superconductors (yellow
squares). Fig. from [7]

and are characterized to a satisfactory extent by the current depiction; their critical
temperatures vary depending on the specific material, nonetheless they remain quite
low, (the current ’record’ is held by MgB2 with Tc around 40 K) as can be observed
in figure 1.1.

Figure 1.2: A naive depiction of the mentioned phonon-mediated pairing mechanism
which leads to superconductivity in the BCS framework.

In 1986 Bednorz and Muller discovered that a certain class of materials (cuprates,
indeed) entered the superconductive state at a relatively high temperature (as high
as 138 K at atmospheric pressure), forbidden by canonical BCS theory [10]. In gen-
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eral, for this class of materials, the mechanisms behind BCS do not fit or justify
the experimentally observed behavior. For example, whereas in conventional super-
conductors the superconducting electrons wavefunctions have the same symmetry
of the underlying lattice, in high temperature cuprate superconductors unconven-
tional symmetries arise (see unconventional pairing in [11]). Despite the fact that
a thorough description of superconductivity falls well beyond the purpose of this
work, it is interesting to point out that a coherent and complete theory explaining
the mechanisms behind high-Tc superconductivity is still missing. This encourages
the further development of a broad range of experimental techniques such as in-
elastic neutron scattering (INS), X-ray absorption spectroscopy (XAS), resonant
inelastic X-ray scattering (RIXS) and many more, and calls for novel theories to be
formulated and tested.

It must be noted that in the study of highly correlated 3dTM-based systems and,
specifically, layered copper oxides, it is crucial to to understand also the physics
behind the normal state from which the superconductive (SC) state emerges, and
all the other unconventional phases and exotic elementary excitations that can take
place (such as phonons, magnons, paramagnons, charge density fluctuations and so
on).

1.3 Layered copper oxides

We refer to layered copper oxides as cuprates, these materials are the only ones
currently reliably known to be SC at ambient pressure above the boiling point of
liquid nitrogen (77 K) thus having great practical as well as theoretical interest [10].
In general, the peculiar physical properties of cuprates derive from their electronic
structure. Indeed, differently from what happens in most 3d transition metals, where
the conduction of electrons takes place in bands which originate (in the sense of a
tight-binding calculation) from the 3d orbitals, in cuprates there is a fair degree of
O(2p)–Cu(3d) hybridization [12], and therefore the electronic band which dictates
a significant portion of their properties has non-negligible contributions from both
the 3d orbitals of copper and the 2p orbital of oxygen; this is a distinctive and
fundamental characteristic arising from the very narrow energy difference between
those orbitals.

Despite cuprates having appreciable size in all 3 dimensions, their physical properties
are bound to CuO2 layers which constitute a powerful example of two dimensional
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systems. In the CuO2 plane, copper atoms are in the Cu2+ ionization state, thus
manifesting a 3d9 electronic configuration (starting from 3d104s of Cu) in which nine
of the ten available 3d orbitals are filled up [13]. The presence of oxygen ligands
surrounding copper atoms, both in plane (i.e. in the CuO2 plane) and out of plane,
due to their geometrical coordination within the cell, breaks the spherical symmetry
of the potential that Cu2+ ions are subject to and lifts degeneracy in energetic levels
having the same quantum numbers, i.e. among 3d orbitals in this case. These
systems can have various coordination polyhedra: octahedral, pyramidal or squared
(see Fig. 1.3). For example, in the octahedral case there is a 6-fold coordination,
where the 3dTM cation is at the center of an octahedron and the ligands lie at the
vertices. In this case the in-plane distance between Cu and O atoms is roughly ∼
1.9 Å, while the distance from out-of-plane oxygen atoms (called apical oxygens) is
∼ 2.4 Å[14]; each crystal can present an indefinite number of planes, separated by a
spacing layer. The interlayer distance typically ranges from about 6 to 15 Å, being
much larger than the in-plane lattice constant, in addition much of the inter-plane
material is fairly insulating while the CuO2 planes are conducting, this means that
cuprates are strongly anisotropic, and this partially makes sense of the fact that
their properties are mostly determined by the behavior of the electrons (holes) in
the CuO2 planes, as mentioned. Moreover, for the same motivation it is thus not
surprising that they show a fair degree of universality [14].

A simple representation of the periodical repetition of two-dimensional unit cells
of a cuprate, together with the most important electronic orbitals, Cu dx2−y2 and
O pσ, are shown in figure 1.4. Its respective reciprocal lattice unit cell is found in
figure 1.5. The representation in reciprocal space is fundamental in regards to this
work given that, during a RIXS experiment, incident and scattered x-ray photons
have to obey momentum conservation, and therefore their exchanged momentum is
a significant vector in the solid’s reciprocal space. This will be explained more in
detail later on, but it is enough to understand that, depending on the incidence angle
of the incoming beam with respect to the sample, different regions of its reciprocal
space will be probed. The data that will be used for the analysis described in
the following chapters was collected sampling points along the (H,0) and (H,K=H)
directions (respectively Γ-X and Γ-M directions in figure 1.5).

In particular, considering an octahedral geometry of the surrounding oxygen anions,
the five 3d orbitals split into two groups called t2g and eg according to their symmetry
(as represented in Fig. 1.6). t2g orbitals, identified as yz, xz, xy, are the lowest-energy
ones since their electronic spatial distribution is such that Coulombian repulsion with
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Figure 1.3: Some of the possible coordination polyhedra in cuprates. In (a) we have the
CuO2 plane. In (b), (c), (d) we have different geometrical coordinations of the ligands.
Fig. from [15]

neighboring oxygen ions is minimized, while eg orbitals, specifically x2 − y2 and z2,
have higher energies. Moreover, the octahedral geometry can be regular or distorted:
if a pair of opposite ligands is farther or closer to the center than the other four,
i.e. if two in-plane unit cell vectors, namely a and b are slightly different from each
other, a tetragonal distortion is present and the actual geometry is orthorombic.
Due to the departure from a cubic crystalline field, degeneracy is lost also among
orbitals within each single group.

A one-electron theory would predict a metallic behavior for cuprates because of the

Figure 1.4: The universal building block of high-Tc cuprates: the CuO2 sheet, formed
by the periodical repetition of a square lattice. The most important electronic orbitals,
Cu dx2−y2 and O pσ, are shown. (Copper atoms in blue and oxygen atoms in red). The
interatomic distance between copper atoms is a ∼ 3.8 Å. Fig. from [16]
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Figure 1.5: Typical representation of a 2D square lattice in reciprocal space showing
high symmetry points and directions. We refer to the Γ-X direction as (H,0) or simply
H0, and to the Γ-M direction as (H,H) or simply HH.

presence of a non completely filled outer shell (the 3d shell, indeed). Nevertheless,
in these systems, the energy associated with an electron hopping from a ligand site
to a metal site, known as charge transfer energy: ∆, is non-negligible, where ∆ =
E(dn+1L) − E(dn), and L represents a hole on the ligand site. This is clearly not
taken into account by one-electron theories and introduces an energy gap (typically
on the order of a few eV) which forces cuprates to be insulators, or more precisely
Mott charge-transfer insulators, at room temperature [18].

Cuprates also show interesting magnetic properties: each Cu2+ ion in the CuO2

plane has spin 1/2 and spins arrange themselves in an antiferromagnetic fashion,
parallel to the CuO2 layer (see Fig. 1.7). The process behind such an arrangement
is a super-exchange mechanism [19] mediated by oxygen, that can be well described
by a bi-dimensional Heisenberg model (more on magnetic ordering in [15]). Mag-
netic excitations in cuprates offer a rich phenomenology and their study through
techniques such as neutron scattering or RIXS is of utmost relevance in the contem-
porary solid state physics debate.

Layered copper oxides as have been described so far, as mentioned, are electric
insulators. In order to allow the insurgence of the superconductive state, cuprates
(of every kind) have to be doped with extra holes or electrons in the CuO2 plane
by acting on the chemical composition of the material outside the plane (in the so-
called charge reservoir layers). Actually, the critical temperature which determines
the phase transition to the SC state is a function of doping, this allows us to map the
behavior of cuprates in phase diagrams as a function of temperature and doping level;
we call optimal doping the value associated to the highest Tc for a given material. As
it turns out SC is only one among many exotic phases in which cuprates can be found,
and each of them entails properties very much different from the others. Among
these we find the pseudo-gap state, the strange-metal state, the antiferromagnetic
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Figure 1.6: Cu d orbitals splitting in energy due to the lower symmetry of the system,
using a crystal field approach. Electronic configurations which minimize Coulombian
repulsion with oxygen ligands are the most stable in energy. Fig. from [17]

Figure 1.7: Simple representation of a 2D antiferromagnetic (AF) lattice. Fig. from [20]

state and, of course, the superconductive state. Also interestingly, in given domains
of doping and temperature, phenomena such as spin density (SDW) waves and
charge density waves (CDW) can take place, where the latter will be of foremost
relevance for this thesis. In figure 1.8 one can observe a typical phase diagram of
cuprates.

Note that what controls the interesting behavior of cuprates (in the sense of phase
transitions) is the number of doping-induced extra carriers in the CuO2 plane, more
often than not p-carriers i.e. the number of holes per CuO2-unit below and above the
value (namely 0) of the stoichiometric parent compound (i.e. the undoped cuprate),
moreover it becomes of key importance to ascertain the relation between p and the
chemical stoichiometry [14].
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Figure 1.8: Phase Diagram. Temperature versus hole doping level for cuprates, in-
dicating where various phases occur. AF is antiferromagnetic, d-SC d-wave supercon-
ductivity, and FL Fermi liquid. SDW and CDW represent incommensurate spin density
wave and charge density wave order. “onset” marks where precursor order or fluctuations
become apparent. Fig. from [9]

1.3.1 YBCO

Yttrium Barium Copper Oxide (generally informally referred to as YBCO) is a
variety of high-Tc superconducting cuprate crystal. It includes the first SC material
ever recorded to have a critical temperature above the boiling point of liquid nitrogen
(77 K) at around 93 K, discovered in 1987 [21]. Most YBCO compounds have the
general formula YBa2Cu3O7−δ (also known as Y123), where δ is used as a doping
level controller, and the parent compound is YBa2Cu3O6. As already mentioned for
cuprates by and large, their SC properties are strongly dependent on doping, this
is the case for YBCO in particular, where the SC state emerges for 0 ≤ δ ≤ 0.65
below the relative Tc, and has a maximum value of Tc ≈ 95 K at p ≈ 0.16 (holes
per Cu atom).

YBCO compounds crystallize in layered-perovskite structures, with the presence of
now-well-known CuO2 layers. Parallel to those planes are CuO chains (laying in
top and bottom planes of Fig. 1.9), which act as a charge reservoir when YBCO is
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hole-doped. Yttrium atoms are found between CuO2 planes, and barium atoms are
located between CuO chains and CuO2 planes [13], the structure is represented in
figure 1.9.

Figure 1.9: Crystal structure of YBCO. Fig. from [16]

It should be noted that neighboring planes may be shifted by (1/2, 1/2) relative to
one another, so that the true crystallographic unit cell contains two CuO2 planes.
The BaO layers, called spacing layers or buffer layers, are more or less independent
of δ.

Experimental data analyzed in the following chapters is relative to a slightly over-
doped YBCO sample, having hole doping p ≈ 0.19, whereas the optimal doping is
found at p ≈ 0.16. The reason for this doping choice will be detailed more carefully
in Sect. 1.4. The sample was grown by pulsed laser deposition (PLD) at Chalmers
University, Göteborg and the doping was regulated actively controlling the oxygen
pressure in the chamber during the post-annealing process which brings the sample’s
temperature down from ∼ 750 C◦ to room T [22]. The quality of the sample was
determined through a thorough work of characterization which can be found in Ref.
[23].

1.3.2 BSCCO

Bismuth Strontium Calcium Copper Oxide (generally informally referred to as
BSCCO), is another type of cuprate high-Tc superconductor. Its studied stoichiome-
tries vary depending on the number of the metallic ions which it contains. The
variant we considered belongs to the category commonly referred to as Bi2212, hav-
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ing stoichiometry Bi2Sr2CaCu2O8+x. Similarly to YBCO, BSCCO crystallizes in a
layered-perovskite geometry, with BiO–SrO–CuO2–Ca–CuO2–SrO–BiO stacking of
crystallographic planes, characterized by a weak, van der Waals-type bonding be-
tween adjacent BiO layers [12]. BSCCO needs to be hole-doped with an excess of
oxygen atoms to superconduct, and the optimal doping for Bi2212 is around p ≈
0.16, which leads to Tc ≈ 98 K. Bi2212 was the second compound in which charge
order was ever observed in 2002 through STM studies by Hoffman et al. in Ref.
[24]. In our case, the sample which will be analyzed was grown at the Institute of
Physics, Beijing and is (again, as for YBCO) slightly overdoped: p ≈ 0.19. The
sample quality is testified by the work done in Ref. [23].

1.4 Charge Density Modulations

The phenomenon of charge order in solids consists in a broken-symmetry state oc-
curring when valence electrons self-organize into periodic structures incompatible
with the symmetry of the underlying lattice [12]. Charge density waves constitute
indeed a rather peculiar phenomenon, being periodic modulations of conduction
electron density typical of highly correlated systems. In these structures the on-site
Coulomb repulsion between two electrons in the same d orbital can overcome the
kinetic energy part of the Hamiltonian, inducing the electronic distribution to find
new ways to lower its total energy, often by spontaneous breaking of the native
symmetries of the lattice [12]. Charge density modulations are often found in low-
dimensional systems such as NbSe2 or different types of copper layered oxides [25],
where they originate in CuO2 planes in correspondence of well defined incommensu-
rate wave vectors values denominated Qc, thus breaking the translational symmetry
of prototypical orbitals.

Actually, charge density modulations of some kind have been observed in all families
of high–critical temperature superconducting cuprates, and they are consistently
found in the underdoped region of phase diagrams at relatively low temperatures
(see Fig. 1.10). Nevertheless, despite being such a widespread phenomenon, it is
still debated to what extent they influence the unusual properties of these systems
in broad terms [1].

Over the last decade, interest in this field has been fueled by evidence that un-
conventional superconductivity arises more often than not in the vicinity of another
ordered electronic state, and a wealth of experimental results has suggested the pres-
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Figure 1.10: Phase diagram T vs p-doping of YBCO
The green zone is the antiferromagnetic phase. In the cone above optimal doping between
T∗ and the Fermi liquid the Strange Metal phase is found. In the light-blue shaded area
below TCDW we find quasi-critical CDW responsible for the NP, whereas in the darker
blue triangular area we find 3D static CDW characterized by long-range order (hidden in
absence of high magnetic fields because of their competition with SC). The reddish area
represents 2D dynamical CDF (BP). Figure from [26].
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Figure 1.11: Evidence of competition between CO and SC.
Temperature evolution of the charge order peak intensity (above) and full-width-at-half-
maximum (below), showing a cusp at Tc, thereby providing evidence of competition be-
tween charge order and superconductivity. RIXS-measured data readapted from [2].

ence of forms of charge order in the pseudogap region of the cuprate phase diagram,
thus underlying a possible connection between the two [27]. Moreover, experimen-
tal results using nuclear magnetic resonance (NMR) in strong magnetic fields [28],
and elastic X-ray scattering [29] have confirmed the similar energy scale of charge
density modulations and superconductivity in YBCO. Nevertheless, strong evidence
has emerged that these two processes actually compete with each other, being CDW
quenched by SC below Tc, while otherwise appearing also at lower temperatures in
the presence of intense magnetic fields which prevent the onset of superconductivity.
Indeed, RIXS intensity and FWHM data indicate a clear weakening of the charge
ordered (CO) state both in its amplitude and spatial correlations at the emergence
of the superconducting state [12], as can be observed in Fig. 1.11.

As it also occurs for high-Tc in cuprates in general, a widely accepted theory of
CDW, inclusive of what triggers their onset, what other phenomena they are bound
to, how they respond to variations of temperature, doping, material and so on, is
still missing. Nonetheless, an increasing amount of scientific research is being carried
out, and experimental evidence is being collected all around the world, encouraging
and guiding the efforts of physicists in unraveling the true nature of charge density
modulations in quantum materials.
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In some theoretical scenarios being proposed by contemporary solid-state physics
theorists, charge density modulations are pivotal to the anomalous characteristics of
cuprates; in such models they are expected to permeate, through dynamical charge
density fluctuations (CDF), a broad range of the phase diagram. RIXS measure-
ments of YBCO, BSCCO and NBCO (NdBa2Cu3O7−δ) have recently found evidence
to support such theories, strengthening the idea that charge density modulations
might be crucial in the determination of normal properties of cuprates [1]. This, as
we will see, has triggered much interest in seeking a correspondence between latest
measurements and most up-to-date models, and is the starting point of this thesis.

One of the most prominent ways in which experimental evidence of the existence of
charge density modulations is manifested, is through the presence of quasi-lorentzian
peaks in the RIXS quasi-elastic scattered intensity obtained scanning reciprocal
space along the (H,0) direction (i.e. Γ-X direction in figure 1.5), as can be observed
in figure 1.12. Notably, the existence of four similar in-plane modulations (±Qc,0)
and (0,±Qc) indicates that they are associated to the (nearly square) CuO2 planes
rather than the CuO chains, and this, along with their weak (close to non-existent)
correlation in the direction perpendicular to the planes, makes them a bi-dimensional
phenomenon [30] [31].

Notably, in this thesis I will resort to reciprocal lattice units (r.l.u.) to quantitatively
map wavevectors in momentum space. Reciprocal lattice units represent a notation
where wavevectors are expressed as Q = (H,K,L), corresponding to Q = (H·2π/a,
K·2π/b, L·2π/c) in physical units (typically Å−1). Also, I will refer wavevectors to
the undistorted unit cell, where a and b axes (and correspondingly the reciprocal axes
H and K) are parallel to the Cu-O bond directions with lattice parameters equal
to the nearest Cu-Cu distance. Whenever c (and correspondingly L) is omitted,
it means the discussion refers to phenomena taking place in CuO2 planes (and
respectively to their reciprocal lattice), so c = L = 0.

An extremely interesting recent observation in RIXS data collected on underdoped
YBCO and NBCO (see Fig. 1.12) is the presence of both a narrow peak (NP), which
shows all characteristics of medium-ranged incommensurate CDW widely found in
underdoped cuprates, and the existence of a broader peak (BP) which shares with
the NP the position in reciprocal space (besides a small amount), but displays a
far weaker temperature dependence [1]. The larger width of the BP (in momentum
space) is reflected onto its correlation length ξ through a sharp decrease, given that
ξ ∼ 1

FWHM
, it is therefore attributed to very short-ranged charge modulations (i.e.

ξCDF ≈ 3 lattice spacings [26]) which, for this reason, have been called charge density
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fluctuations and not waves. Indeed, the CDW-related narrower peak implies a cor-
relation length of several lattice spacings, which actually keeps increasing at lower
temperatures, supposedly reaching divergence at a putative CDW quantum critical
point (QCP), e.g. located at p ∼ 0.17 in YBCO [32] corresponding to the lower-right
corner of the dark-ish blue triangle in Fig. 1.10. At low T, ξCDW is so large that
CDW become correlated also in the direction perpendicular to CuO2 planes, giving
rise to what has been identified as 3D charge density waves (indicated with a dark-
ish blue triangular area in Fig. 1.10). These are not of immediate detection, given
that at such low temperatures huge magnetic fields are needed to quench supercon-
ductivity, which otherwise ends up competing with (and suppressing) charge order.
Vice versa ξCDW → ξCDF when T is raised, suggesting, possibly, a common origin of
the two phenomena, backed up by their almost equal wave vectors Qc. Interestingly,
CDF have been found to permeate a much broader portion of cuprates’ phase dia-
grams with respect to CDW, occurring also well above the pseudogap temperature
T∗ and in a larger doping range, thus supposedly constituting the bulk of the iceberg
of charge density excitations. The energy of CDF is doping dependent, being higher
at lower doping, whereas its temperature dependence is still quite debated and we
will take me time to discuss it in the following chapters. It is indeed this particular
phenomenon (i.e. CDF) that will be the subject of the fitting at the heart of this
thesis.

By exploiting the high energy-resolution of RIXS measurements, it is possible to
extract estimates of the characteristic energy of these charge modulations. Results
point at an ωBP

0 ≈ 15 meV, whereas the energy of the NP is found to be fairly
elastic. This gives on to the idea that the NP has nearly-static nature, whereas the
BP is the result of a dynamic fluctuation.

Moreover, high energy X-ray scattering and NMR experiments have confirmed that
the medium-range charge order associated to CDW is truly static, and one of the
hypotheses is that these static CDW might arise from pinning of correlated charge
fluctuations by defects which are always present in any sample [25].

As observed in Ref. [1], two-dimensional dynamical CDF carry with them most of
the overall scattered intensity (volume of the associated BP) at every temperature,
and pervade a large portion of the phase diagram of cuprates (see red-shaded area
in Fig. 1.10): this places them quite at the center of the discussion regarding
charge order in these materials. Also, quite notably, they do not compete with
superconductivity (as CDW do [28] [29] [33] [30]), and therefore are not quenched
at subcritical temperatures; this allows their detection also in systems in which
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static CDW would be undetectable, being their onset temperature lower than Tc,
which would call for strong magnetic fields to avoid the SC transition to emerge
[34]. This also means that if the doping we choose is higher than values which allow
the existence of CDW, let’s say p ≈ 0.19 in YBCO or BSCCO, we can study CDF’s
BP alone even well below Tc without interference from the more intense NP. This is
exactly what was done to collect the data which is analyzed in this thesis, justifying
the doping choice for our samples.

The complexity of charge order-related phenomena is evident, and reinforced by
studies which draw attention to the fact that many different kinds of order, such as
superconductivity, pseudogap, CDW and antiferromagnetism, occur on comparable
temperature scales, and this could be non-accidental highlighting that they could
be strongly intertwined [31].

As mentioned, the nature of CDF is yet far to be fully understood, but their extensive
presence for different T and q ranges, together with their large width in momentum
space, suggests them as quite an effective scattering mechanisms for other quasi-
particles, thus possibly justifying some of the peculiar behaviors of cuprates such as
the linear temperature dependence of the resistivity in the strange-metal state [1]
[26] [34] .
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Figure 1.12: Two distinct peaks in fits to NBCO data. (A) Quasi-elastic scan
measured along (H,0) on NBCO at T = 250 K (red circles). (B) After subtracting the
linear background, given by the quasi-elastic scan measured along the Brillouin zone diag-
onal [open squares in (A)], a clear peak is still present, which can be fitted by a Lorentzian
profile (dashed line). (C) Same as (A), but at T = 60 K (violet circles). (D) After sub-
tracting the linear background [open squares in (C)], the data can be fitted with a sum of
two Lorentzian profiles (solid line): one broader (dashed line), similar to that measured at
250 K, and the second one narrower and more intense (dotted line). (E) The 3D sketch
shows the quasi-elastic scans measured along H (cubes) and along K (spheres) at T =
60 K, together with the Lorentzian profiles used to fit them. A narrow peak (NP, blue
surface) emerges at qNP = (0.325,0) from a much broader peak (BP, red surface) centered
at qBP = (0.295,0). Fig. from [1]
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2 Resonant Inelastic X-ray
Scattering (RIXS)

Figure 2.1: ID32 RIXS beamline at ESRF. Figure from [35].

2.1 The motivation

The investigation of the properties of highly correlated systems, the so-called quan-
tum materials, and in particular 3dTM oxides, requires the choice of an adequate
probe, able to interact with all the excitations that contribute in determining the
physics which governs their behavior.

The most common probes used for research in experimental solid state physics are
electrons, neutrons and photons.

Electrons beams are easy and cheap to produce and control (i.e. mainly accelerate
and focus). They can be used for microscopy with techniques such as scanning
electron microscopy (SEM), transmission electron microscopy (TEM), leading to
astounding results, eventually even reaching single atom resolution. They can also
be employed to perform diffraction experiments: low energy electron diffraction
(LEED) and reflection high energy electron diffraction (RHEED) are powerful tools
for the characterization of surfaces’ reciprocal lattice geometry (and therefore also
their real lattice geometries through Fourier transformation). Electron energy loss
spectroscopy (EELS) is also used to identify the ionization energy of given atoms’
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shells in chemical compounds and to point out the energy of phenomena such as
plasmons. The issue with the use of electrons beams, is that they can only penetrate
few atomic layers because of their strong interaction with matter, thus resulting in
an extremely surface sensitive probe, which overlooks completely bulk properties.

Neutrons, on the other hand, are remarkably weakly interacting with matter thanks
to their neutral charge. Consequently, they are quite bulk sensitive and this makes
them ideal for diffraction experiments, and maybe even more for the investigation
of matter’s magnetic properties. This is due to their spin (1/2) which interacts
with atomic moments in the sample and allows us to measure magnetic dispersion
relations with extremely high resolution. Up until a decade ago, neutrons were
the only probe suitable for this purpose. Nevertheless, the downside of neutrons
is that, lacking charge, they are much harder (and therefore more expensive) to
generate, accelerate and focus on samples, often resulting in poor count rates and
large spot sizes. Additionally, being so weakly interacting with matter they require
thick samples, so their use for the study of thin films is completely unfeasible.

Photons in the visible range are good for microscopy, but they are far from reaching
atomic resolution despite the recent progress in near field microscopy (NFM), which
aims at reducing the resolution by confining the source down to the nanometric
scale, thus reconstructing the evanescent components in the object’s spectrum. The
use of photons in the visible range to perform spectroscopy sets a rather low limit
on the maximum energy that can be transferred to the system, and therefore to the
electronic transition that can be induced.

Finally, X-ray photons are great probes for a broad range of applications such
as diffraction (XRD) and spectroscopies (XAS, RIXS). Having penetration depths
ranging from tens of nanometers to few microns, they are perfectly bulk sensitive,
and their energy (e.g. ∼ 1000 eV for soft X-ray) allows the excitation of core levels
of atoms within crystal structures thus suggesting their compatibility with the study
of 3dTM oxides (e.g. L3 absorption edge of Cu ∼ 931 eV).

Over the last decades, the development of brilliant and powerful synchrotron sources
has opened the gates to X-ray energy loss spectroscopy. Synchrotrons guarantee high
photon fluxes: the intensity on the sample can be around ∼ 1011 – 1012 photons

s
, al-

lowing much better count rates with respect to other experimental techniques (such
as neutron scattering). One fundamental advantage which comes with the use of
X-rays is that high-energy photons carry much more significant momentum with
respect to visible ones (see Fig. 2.2), and thus momentum conservation between
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Figure 2.2: (Kinetic) energy and momentum carried by the different elementary particles
that are often used for inelastic scattering experiments. Fig. from [18]

incident and scattered photons will make experiments sensitive to collective excita-
tions in solids whose energy depends on momentum. X-rays are also sensitive to
orbital symmetry and can couple to the spin degree of freedom thanks to the spin
orbit splitting of electronic levels in matter, which can reach tens of eV in 2p levels
of 3dTM oxides.

Resonant Inelastic soft X-ray Scattering (RIXS) is an ideal spectroscopy to study
3dTM oxides because, quite uniquely, it can get access to elementary excitations
related to all degrees of freedom: charge, orbital, spin and lattice. It is an energy
loss spectroscopy which uses X-rays tuned to match the binding energy of a core
level, or more precisely the absorption edge of an atomic species in the sample [18].
During a RIXS experiment therefore, as it occurs in general for all spectroscopies,
scattered photons have to obey energy conservation: ℏΩ = ℏω − ℏω′ where ω is the
incident photon’s frequency, ω′ is the scattered one, and ℏΩ is the energy loss; and,
as mentioned, they also have to obey momentum conservation. This means q = k’
- k, where the momentum transfer q is a significant vector of the crystal’s reciprocal
space if the sample is a single crystal (to a significant extent) and can be taken (or
given) by a variety of particles, quasi-particles and excitations, such as magnons,
phonons, CDW and so on. The first resonant scattering measurements on cuprates
in the soft X-ray regime were performed in 2002 by Abbamonte et al. [36].

If performed off-resonance, it can be used to measure processes which entail large
energy losses (in the eV to hundreds of eV range), for example to study plasmons
and core level excitations (X-ray Raman Spectroscopy); or, conversely, for few meV
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energy-loss values, when vibrational and lattice excitations are probed (High Reso-
lution Inelastic X-ray Scattering [37]).

2.2 The RIXS mechanism

In the resonant process (RIXS), on the other hand, incoming photons match an
absorption edge of the 3dTM under scrutiny, therefore guaranteeing a large absorp-
tion cross section. They trigger the promotion of a core electron into a bound state
just above the Fermi level; subsequently, the core hole left ”below” is filled back by
either the same or a different electron, with the emission of another photon. If it
is the same electron going back to its ground state, we have -strictly speaking- an
elastic scattering event, which probes the static component of the charge and mag-
netization density occurring in the system under study. Conversely, if an electron
with a different energy fills the core hole, we talk about inelastic scattering, which
is sensitive to dynamical processes and low-energy excitations. However, due to the
finite energy resolution ∆E of the spectrometer, perfectly elastic scattering cannot
be accessed, and it is more appropriate to use the term quasi-elastic, referring to
a regime which is static up to a timescale τ ∼ ℏ/∆E [12]. That being so, in both
cases this process involves three states: initial, intermediate and final (differently
from non-resonant techniques such as XRD which lack an intermediate state). Only
initial and final states can be observed with the measurement, so we will have a
combination of all the possible processes that share the same initial and final states.
A complete theory of RIXS, detailed for different classes of materials, can be de-
veloped quantitatively (e.g. in Ref. [18]), but it is beyond the scope of this work.
Nevertheless, it is remarkable that the lack of a core hole in the initial and final
states prevents it from taking part in additional lifetime broadening which would be
detrimental for the spectral resolution, as it occurs in other processes such as XAS
[38].

RIXS in 3dTM-based systems is usually performed at L2,3 edges of transition metal
oxides, which is ideal being 3d orbitals those that govern the magnetic and electronic
properties of these materials. This means that upon absorption of the incoming
photon, a 2p electron is promoted to an empty state of the 3d shell just above the
Fermi level (see figure 2.3). This transition is allowed for electric dipole radiative
transitions, resulting in a large cross section and reassessing the power of resonant
scattering methods as opposed to conventional diffraction techniques, which, being
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non-resonant, are largely insensitive to subtle electronic ordering phenomena not
involving lattice degrees of freedom (such as CDW and CDF) [12]. Nevertheless, we
must keep in mind that inelastic scattering is a second order process, so its cross
section, even at resonance, is intrinsically small, thus making RIXS much more
photon hungry with respect to its elastic counterpart REXS. The intermediate state
is highly excited, being the energy difference between the levels involved comprised
between 450 eV and 950 eV going from Ti to Cu. Its spin state is mixed because
of the large spin-orbit interaction in the 2p level, which splits into the 2p1/2 and
2p3/2 levels, falling 7 eV to 20 eV apart. This intermediate state also happens to be
very short lived: few fs, due to other non-radiative processes such as Auger decay,
which we choose to neglect, but still play an essential role in setting the lifetime
of this state [18]. Then, in direct RIXS, before the solid has time to readjust its
magnetic and lattice structure according to the excitation, some 3d electron will fill
the 2p core hole, with the consequential emission of an X-ray photon of a similar yet
slightly different energy (where ℏΩ is the energy loss introduced earlier). Contrarily,
indirect RIXS occurs when the crystal does have time to change some of its properties
according to the intermediate excited state. This occurs for example when the
presence of the newly promoted electron in the 3d orbital induces a deformation in
the lattice structure due to Coulombian attraction/repulsion with neighboring sites,
triggering the excitation of a phonon. Similarly, the excited electron adds a spin
vector 1/2 to the 3d shell, and this perturbation can set off one or more magnons
(e.g. bi-magnon). As it occurs, magnons and phonons appear in RIXS spectra as
indirect transitions.

The combination of the fact that the 3d shell is directly involved in the optical
transition, and the strong spin orbit splitting of p levels conjure in allowing a broad
range of possible excitations, as at this point has been brought up quite a few
times, such as the charge transfer between anions and 3dTM ions, electron-hole
pairs formation, phonons, CDW, spin excitations and so on. Clearly, the photon
energy is bound to the 2p - 3d energy difference, so to ℏω ≤ 1 KeV, which falls in
the soft X-ray range. For the same reason also the maximum momentum transfer
is bound to the X-ray photons’ wave vector k ≤ 0.5 Å−1, which allows us to span
most of the Brillouin zone size of typical 3dTM-based systems.

So RIXS is evidently a very powerful instrument to perform momentum-resolved
measurements of the properties of quantum materials, eventually reaching extremely
high spectral resolution. In these terms, from a practical standpoint, the key for
successful RIXS lies in the quality of the instrumentation [39].
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Figure 2.3: The RIXS process. The scattering process is illustrated for the case of 2p
core state (L3 absorption edge) of a 3d transition metal element: the final result can be seen
as an electron-hole (e-h) pair excitation. Actually several classes of excitations (final states)
are possible: e-h and charge transfer, dd (ligand field), spin (magnons, paramagnons, muti-
magnons), lattice (phonons) excitations are all present in a RIXS spectrum at different
energy ranges. Fig. from [20]

2.3 The RIXS instrumentation

The characteristics and quality of the instrumentation used to perform RIXS exper-
iments ultimately settles the resolution of the measurement. Over the last years,
efforts in developing better setups have lead to a decisive improvement of the re-
solving power, as can be observed in Fig. 2.5. Current RIXS systems can reliably
go below 50 meV with photons around 1 KeV (resonance with the L3 absorption
edge of Cu ∼ 930 eV). Additionally, as mentioned, RIXS is a second order process
and is thus very photon-hungry. The combination of these requirements (i.e. X-ray
energies and large photon fluxes) leads to the necessity for synchrotron radiation,
which is the first thing to be considered when designing a RIXS facility.

Incident beams are hence generated at dedicated beam lines by long (4 – 6 m) undu-
lators of 3rd generation synchrotron radiation storage rings. Undulators can provide
fully polarized radiation with linear (σ or π with respect to the horizontal scattering
plane) or circular polarization. Then, soft X-ray monochromators (incident beam)
and spectrometers (scattered photons) are realized with the use of diffraction grat-
ings mounted on high-quality X-ray mirrors and used at very grazing incidence (1.5◦
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Figure 2.4: RIXS setup. Schematic representation of the experimental setup of ERIXS
(beamline ID32). Figure from [40].

to 2.2◦ from the surface, see Fig. 2.4) [18]. The monochromator has the function
of cutting the bandwidth down to 2 - 8 · 105 of the photon energy and then optical
elements are used to focus it onto the sample surface to few micrometers in height
and some tens of micrometers horizontally [20].

In the simplest cases, a single optical element: a grating with spherical shape (radius
of curvature ∼ 100 m), disperses the scattered photons, and then a 2D Si CCD
detector (cooled to reduce thermal noise) collects the intensity over a few eV energy
of range, in parallel. Then, translating the detector coordinate into energy, the
spectrum is then easily obtained [20].

As one can imagine, arm lengths are crucial in the determination of the final resolving
power: longer instruments can reach higher resolution. For example, in order to
reach sub-40 meV the ERIXS facility (ID32 beamline at ESRF) was built with an
11 m-long arm [35] as can be seen in Fig. 2.5. For this reason RIXS apparatuses
are becoming extremely large, complex and expensive, so that dedicated buildings
outside the main experimental facilities are manufactured [20]. The structure in
Fig. 2.1 can provide a continuous rotation of the spectrometer from 50◦ to 150◦

with respect to the incident beam, and adjust the orientation and alignment of the
sample with a high-quality 6 axis diffractometer, both without breaking ultra-high-
vacuum operation conditions (∼ 10−9 mbar) [41]. ERIXS has set a new standard
and is being followed by equally or even more ambitious projects at other storage
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rings (Diamond Light Source, NSLS in Brookhaven, MAX IV, TPS, Sirius) [20]. We
can therefore expect exciting scientific findings coming forth in the next decades.
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Figure 2.5: RIXS resolution. A) Progress in soft X-ray RIXS resolution at the Cu L3

edge at 931 eV; (a) (Ichikawa et al., 1996), BLBB @ Photon Factory; (b) I511 - 3 @ MAX
II (Duda et al., 2000b); (c) AXES @ ID08, ESRF(Ghiringhelli et al., 2004); (d) AXES
@ ID08, ESRF(Braicovich et al., 2009); (e) SAXES @ SLS (Ghiringhelli et al., 2010); (f)
Current @ ID32, ESRF. Figure readapted from [18].
B) Current RIXS throughput and resolution @ ID32 ESRF. Figure readapted from [35].

2.4 Data acquisition

Data produced by the CCD photodetector during a RIXS experiment is, for a fixed
point of reciprocal space, a two dimensional map where on one axis we see the
different spectral components of the scattered signal, separated in space by the
diffraction element in the optics, which are collected in parallel on a few hundred
points spanning an interval of a few eV, and along the other axis we have isofrequancy
lines, as can be observed in figure 2.6. Such an image is taken in a few to several
tens of seconds, and up to hundreds of such maps have to be acquired to gain a
significant statics. We will then sum along the iso-energetic direction to add extra
signal and reject more noise [42].

This is how we end up with the precursor of a spectrum, a plot displaying scattered
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Figure 2.6: RIXS raw data. Typical image produced by the CCD detector during a
RIXS experiment. Along the vertical direction we see the energy-related spatial coordinate,
where photons have been diffracted by the grating. At the same time, photons with the
same energy will hit the detector along iso-energetic lines perpendicular to the diffraction
plane. This is shown in the horizontal direction as a degenerate spatial dimension over
which we sum to obtain a spectrum. The two arrows indicate the presence of the zero
energy-loss peak, i.e. the elastic peak. Figure from [42].

photons vs pixels. The correspondence meV-per-pixel can be determined by using
an elastic scatterer and looking at the shift of the elastic line in pixels when varying
the incoming photon energy [42]. This procedure yields a ”regular” spectrum, i.e.
an I(ω) curve, then the sample is tilted in order to act on the projection q∥ of
the vector q, where q = k′ - k is the difference between the scattered and the
impinging photons’ wave vectors. This allows us to probe different points of the
crystal’s reciprocal space in the parallel direction with respect to the CuO2 planes,
so along Cu-O bonds as indicated in Fig. 2.7. Using angles as defined in this figure
we get: |q∥| = 2|k|sin(θ) sin(δ). This course of action can then be replicated in
a similar way for many values of the sample’s temperature, thus ending up with
I(ω,T,q): a function of energy, temperature and momentum, which retains a vast
amount of information.

2.5 Accessible excitations

An important issue is understanding which excitations RIXS allows us to probe in
a sample.

All RIXS spectra share the presence of a strong peak at zero energy loss; this
elastic peak is therefore associated to elastically scattered X-ray photons: photons
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Figure 2.7: RIXS geometry. The incoming beam hits the sample surface, assumed to
be parallel to the ab plane (Cu atoms in red and O atoms in grey). The scattering angle
2θ is fixed, while the incident angle and the azimuthal angle can be changed. They define
δ, the angle between the sample c-axis and the transferred momentum q (red arrow).
The projection of q onto the sample ab-plane, q∥, is also shown. During experiments δ is
changed by rotating the sample around a vertical axis. Figure from [43]

re-emitted by the material with the same energy of the incident beam. This feature
is so prominent that it often winds up obscuring other interesting phenomena which
are characterized by a low energy loss, but smaller intensity. As one can imagine
this ultimately translates in a matter of improving the resolution of the instrument.

Among all other processes that one can investigate through resonant inelastic X-ray
scattering which appear in measured spectra, in the next sections I will point out
two which are of major relevance, and mention a few more for completeness.

2.5.1 Magnetic Excitations

Magnetic excitations happen when incoming X-ray photons perturb the ground state
of the magnetic order of the crystal. In a naive but intuitive single-ion model, we
can think of a purely magnetic excitation as arising from an electron that, decaying
from an (intermediate) excited state, returns to its original orbital, but with flipped
spin. In an ordered spin lattice the reversal of a single spin at one site is not an
eigenstate of the magnetic Hamiltonian, therefore this perturbation of the magnetic
equilibrium can cause the excitation of a magnon a.k.a. of a spin wave: a linear
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combination of local spin flip excitations with a site-to-site constant relative phase
shift, which can be visualized as the precession around the ground state alignment
direction as displayed in Fig. 2.8.

Figure 2.8: Magnetic Excitations. A) Representation of a 2D antiferromagnetic
lattice and its Brillouin zone. B) Simple depiction of the excitation of a magnon in an
AF-arranged system. Readapted from [20].

Magnetic excitations in cuprates are found in the proximity of 0.4 eV. It is notable
that the periodicity of the spin lattice is double that of the crystal lattice, and thus
the magnetic Brillouin zone will be half the size of the canonical one as displayed in
Fig. 2.8 A) [19].

RIXS can therefore be used to determine the dispersion relation of magnons in
antiferromagnetic (AF) cuprates (Fig. 2.9), whereas this was only possible with
INS until a decade ago. Measuring spin-wave dispersion relations in cuprates is of
great interest given that magnetic excitations in these materials are believed to play
a central role in the generation of cooper pairs, similarly to what is done by phonons
in conventional BCS superconductors [20].
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Figure 2.9: Magnonic dispersion relation. Comparing single magnon neutron data
and RIXS measurements at the copper L3 edge of La2CuO4; figure from [44].

2.5.2 Ligand field excitations

Ligand field excitations, or orbital excitations, take place when the RIXS process
causes an electron’s initial state’s orbital to be different from its final one. In
cuprates, where the resonant transition happens at the L3 absorption edge, these are
called dd excitations since they involve electrons belonging to d shells. As discussed
in the first chapter, in cuprates, the lower symmetry of the potential felt by the 3d
transition metal lifts degeneracy among d orbitals x2 − y2, z2, yz, xz, xy. Therefore,
the excitation spectrum of dd transitions becomes more varied and the energy of
each peak can be directly associated to the parameters describing the ligand field
that lowers the spherical symmetry in the first place [45], thus allowing us to measure
the orbital symmetry of the 3d states, which is linked to the crystalline structure
[46]. For example, in the simplest case, we have Cu2+ ions with a 3d9 configuration,
therefore the (intermediate) 3d10 excited state is unique (as can be observed with
XAS) and, if the 3d electron that decays into the 2p level (final state) belonged to
a different-symmetry 3d orbital, then we have a dd excitation. When the cation
ground state has multiple holes as it occurs for example in Ni2+ (3d8) and Mn2+

(3d5) the set of dd excitations is wider and spectra are richer and more complex, but
still relatively straight forward to interpret in terms of the local symmetry of each
specific material [20].

Figure 2.10 shows the RIXS spectrum of a series of cuprates, where charge transfer,
magnetic and dd transitions are clearly visible and easy to tell apart.
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Figure 2.10: RIXS in various cuprates showing dd excitations spectra.
Left. Example of Cu L3 absorption (dashed) and RIXS (solid) spectra of La2CuO4 (LCO)
with σ polarization. One can recognize charge transfer (CT), dd and magnetic excitations
at different energies. A closer look of the mid-infrared energy region is given in the inset.
Right. RIXS spectra for LCO, SCOC, CCO and NdBCO in the same experimental
geometry as left panel for σ and π polarization, displaying how dd spectra constitute a
signature for each material. Figure from [43]

Beyond these noteworthy two, there are many more excitations accessible through
a RIXS measurement. Among them we find phonons (two publications on phonons
which our group recently worked on can be found in Ref.s [47] [48]) , charge transfer
excitations, bimagnons, orbitons, ff transitions, charge order excitations (for an
overview on charge order see Chapter 1) and so on, as thoroughly explained in [18].
This makes RIXS an extremely versatile experimental technique for the investigation
of the intertwined properties of quantum materials.
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3 Data and model

As anticipated, the project at the core of this thesis arises as a follow-up and further
development of the exciting and possibly revolutionary findings on charge density
modulations in cuprates, discussed in recent publications such as [1], [2]. In par-
ticular, the hope is that the joint efforts of our research team and the group of
theorists from La Sapienza University lead by Carlo Di Castro, will provide a sig-
nificant breakthrough in the understanding of the physics behind charge order and
its relation with high-Tc superconductors’ exotic phases. More specifically, as in-
troduced in Sect. 1.4, up to this day, scientific literature has broadly reported that
charge modulations in cuprates manifest themselves with the presence of a quite
narrow peak (in reciprocal space, NP), highly temperature-dependent and of static
nature, having null energy loss (as shown in Fig. 3.4). Furthermore this charge order
phenomenon has been reliably proven to compete with superconductivity ([31] [33]
[29]). Interestingly, recent RIXS findings brought to light the existence of a broader
peak (BP), which permeates a much wider portion of cuprates’ phase diagrams, thus
existing at much higher temperatures with respect to previously considered CDW,
and for a larger interval of doping levels [1] [2] [34] [26]. This peak shows conspic-
uous signs of being related to a non-static charge order excitation which has been
called charge density fluctuation (CDF). A CDF broad peak is observed in a wide
range of different cuprates and might as well be central in triggering many of these
material’s peculiar properties.

Early theories, which take in the experimental evidence on these excitations and try
to formulate models able to bring about results and predict further characteristics,
are currently being formulated. In particular, the mentioned team of theoretical
solid-state physicists lead by Carlo Di Castro has produced a mathematical ex-
pression for the narrow and broad peaks related to charge density modulations.
This model relies on the knowledge of a series of physically relevant parameters
to reconstruct the behavior of CDW/CDF as a function of energy and momentum
(coordinates of reciprocal space of cuprates, as discussed in Chapt. 1).

The following work will concentrate on providing a computational analysis of this
model, resorting to a reasonable set of a parameters to produce simulations. I will
then move on with a proper fit of the data in Chapt. 4.
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I will hereby present the experimental data and describe the model itself from a
theoretical standpoint. Throughout all analyses the focus will be kept on attempting
to reproduce as faithfully as possible the experimental evidence, which has been
collected by Giacomo Ghiringhelli’s group through state-of-the-art RIXS technology
on various high quality cuprate samples.

3.1 Experimental data

Experimental data hereby described and utilized has been collected in the period
between January 30th and February 4th at Diamond Light Source (UK) on slightly
overdoped (i.e. p ≈ 0.19) YBCO and BSCCO samples, for more information on
samples used, the reader can go back to Sect.s 1.3.1 and 1.3.2, while the RIXS
process in general terms is described in Chapt. 2. In this specific case the L3

absorption edge of Cu was chosen for the tuning of the incoming photon energy
(2p3/2 - 3d at ≈ 931 eV). In order to generate the data, spectra were acquired
on 8 and 16 different points along respectively (H,H) and (H,0) directions in the
reciprocal lattice of CuO2 planes (for simplicity we will only refer to them as HH
and H0). In our case spectra were acquired with a resolution of ∼ 60 meV which
is approximately twice the best achievable, but it allows us to collect data faster,
and therefore to fetch more of it. Additionally, few ultra-high resolution (HR) (∼
35 meV) spectra were acquired at the momentum value where the CDF intensity
is maximum (namely Qc), this gave us a first approximated estimation of the CDF
energy. The result of this last measurement is shown in Fig. 3.9.

3.1.1 Self absorption correction

During the RIXS scattering process core-level excitations lead to the absorption
of photons and therefore to the attenuation of the signal intensity, as outgoing
photons propagate through the sample. This attenuation is called self absorption
and strongly depends on the scattering geometry. Clearly, correcting spectra for this
extrinsic effect is fundamental in order to make them comparable with each other
when acquired at different angles [18]. For example, if the chosen geometry relies
on a small scattering angle with respect to the parallel to the sample, and a big
(ideally 90◦) incidence angle (i.e. a normal-in grazing-out geometry), this effect is
maximum because outgoing photons have to travel a longer path within the sample
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before being emitted. Vice versa, given a grazing-in normal-out geometry, this effect
is minimized. Self absorption is certainly an issue in our case, considering that our
intensity signals map reciprocal space in 16 and 8 different points along H0 and HH
directions.

Additionally, we have to consider that incoming photons are tuned purposefully to
match the central frequency of an absorption line of the material, let’s say ωcentral.
Hence, the elastically scattered photons will see a much larger absorption cross
section σabs with respect to those scattered at a lower or higher frequency with
respect to the central one, i.e. ω = ωcentral ± ∆ω (see Fig. 3.1), this is the case
for any non-elastic scattering process such as, for example, ligand field excitations
[49]. This means that we also have to use a different self absorption correction for
different spectral regions, which can be done with the aid of XAS spectra providing
the necessary information regarding absorption cross sections as a function of photon
energy.

Moreover, due to the anisotropy of cuprates (i.e. their quasi-bi-dimensional nature),
their absorption is also polarization sensitive. In particular, it is much stronger for
in-plane polarized scattered photons ((a,b) plane) with respect to those polarized
along the so-called c direction: perpendicular to CuO2 planes. Certain phenomena
can indeed rotate the polarization of photons upon scattering, among them we find
all those involving single spin-flips.

To sum up, self absorption coefficients C must be calculated for each point of recip-
rocal space, taking into account geometry, energy and polarization; and then used to
normalize spectra before proceeding to make analyses so that Ieffective = Imeasured/C
(Fig. 3.2 shows the polarization and momentum dependence of C). Quantitative
calculations of self absorption corrections can be found in [49] and [51] where, no-
tably, using the fluorescence signal of a known emission line (measured in the same
scattering geometry), attenuations as high as 20%-25% were found.

3.1.2 dd normalization

Performing a RIXS experiment can take hours, this makes sense when we consider
that we have to collect spectra over hundreds of points for each coordinate of re-
ciprocal space, and then again for several temperature values. During this time
the photon flux reaching the sample can undergo mild oscillations, implying slight
changes in the intensity of the impinging beam. As a consequence, also the scattered
(and detected) intensity will fluctuate.
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Figure 3.1: XAS spectrum at Cu L3 edge in CCO.
Normalized XAS spectra taken at the Cu L3-edge in a CCO film, spectra are recorded
both with the electric field perpendicular (triangles) and parallel (circles) to the CuO2

plane showing the polarization dependence of absorption. The central frequency ωcentral

associated to the highest absorption cross section is indicated by the dashed line, any other
frequency around it will be absorbed less. Figure from [50]

Additionally, we want to be able to compare spectra acquired at different facili-
ties, during different experimental sessions, on different samples (made of the same
material clearly).

These issues call for a normalization standard to bring some degree of universality
to RIXS measurements. A possible approach which is currently being widely used
is that of normalizing spectra with respect to the area underlying the dd transition
related bandwidth. This is reasonable in light of the fact that a predominant por-
tion of the scattered intensity can indeed be traced back to ligand field excitations,
and therefore constitutes a rather stable value to be used for a normalization pro-
cedure (see Fig. 3.3). The overall area below all dd transitions occurring during an
experiment has been proven to be constant with respect to q, even if the intensity
associated to each one single ligand field excitation changes [43].

3.1.3 Energy integration

In the following development of this work, I will choose to perform the fitting of the
CDF peak using intensity-over-momentum signals, namely I(q) curves, and not full
I(q,ω) maps, therefore discarding the information related to the energy dependence
of the charge modulation features. The reasons behind this decision will be detailed
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Figure 3.2: Self-absorption correction factors.
Self-absorption correction factors at q∥ = 0.2 r.l.u. (top panels) and at q∥ = 0.4 r.l.u.
(bottom panels) for both σ and π polarization of the incident and scattered light calculated
from the XAS spectra measured by total electron yield on an AF NBCO sample. Figure
from [49].

in Chapter 4, but this is enough to say that our spectra will need to be integrated
over a given energy range for each point in momentum space, so that:∫ ωmax

ωmin

Iexp(q, ω) dω = Iexp(q)

Overall spectra are collected on a few eV range, whereas the CDF peak is found at
close-to-elastic energies (namely ω0 ≈ 10 meV with few meV FWHM). This means
that it would be enough to integrate the measured intensity signal in ∼ (-25,+25)
meV to capture the most relevant portion of the charge modulation peak. In Fig.
3.4 one can visualize a similar situation, with the difference of it being represented
for static (hence nearly-elastic) CDW instead of CDF. Our HR measurement of a
CDF spectrum is shown in Fig. 3.9. Nevertheless, the spectral region comprised
between -100 meV and -25 meV is quite featureless, thus, keeping in mind that
performing an integration increases noise rejection, we chose to extend the overall
integration window to (-100,+35) meV. This allows us to produce I(q) curves which
truly capture all of the CDF spectral intensity, while at the same time increasing
significantly signal to noise ratio.

After all this processing, data can be imported as tables representing intensity values
for each point in reciprocal space along the chosen direction for the measurement.
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Figure 3.3: dd excitations.
RIXS spectrum of underdoped Nd1.2Ba1.8Cu3O7 as a function of momentum along H0,
comparing the fairly dispersionless dd excitation peaks to the emergence of a quasi-elastic
peak around H ∼ −0.31 r.l.u. (which in this case is attributable to charge order). The
area underlying dd excitations is evidently predominant. Figure from [12].

If the experiment is run for many temperature values, then data is presented in the
form indicated in Fig. 3.5, which is the actual data collected on YBCO (and Bi2212
in Fig. 3.6) used for the fitting in this thesis. Then, such tables can be imported
into a program such as MATLAB®, and plotted as a function of momentum, having
a parametric dependence on temperature, as shown in Fig.s 3.7 and 3.8.

Clearly, Fig.s 3.7 and 3.8 reinforce the fact that the existence of the CDF peak
at incommensurate wave vector Qc ∼ 0.3 r.l.u. is indisputable in both classes of
cuprates. In fact, we can exclude any CDW contribution (NP) thanks to our doping
choice p ∼ 0.19, which is incompatible with the existence of intermediate-range
static density-wave order excitations (as observed in Fig. 1.10) and, in the studied
materials, corresponds to a putative QCP (at zero T) [26] [32]. Also, we notice that
the absolute value of the RIXS measured intensity increases with temperature, even
though this is observed almost solely for the three highest T-values and is a quite
weak effect all along (on both samples). Similarly, the curves FWHM is not heavily
affected by T, being slightly larger at higher temperatures, but again, this is a mild
effect occurring only for the three-four upmost curves. Additionally, we see a sharp
rise in data for approximately q ≤ 0.17 r.l.u. for YBCO and q ≤ 0.15 r.l.u. for
Bi2212, which has nontrivial explanation and will be further discussed in Chapt.
4. Peaks become less sharp with the increase in T, meaning that the curves’ sweep
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Figure 3.4: CDW spectrum.
CDW spectrum as a function of H0 in Bi2Sr2LaCuO6+δ, white dashed lines delineate the
(-30,+30) meV range. Figure from [52].

between their maximum and minimum becomes quantitatively smaller, this could
suggest the presence of a variable background which, again, is not straightforward to
justify and/or model, and of a relevant T-dependence of CDF. This brief overview
allows us to take a first interpretative look at measurements, but will be further
developed in the following work, along with the results of the model analysis.

3.2 The model

The equation that will be implemented for the simulation of the broad peak (BP)
associated to charge density modulations, and in particular of CDF, was developed
in the assumption that RIXS experiments can directly access the charge suscepti-
bility χ(q,ω). In this context, the BP contribution to RIXS spectra is proportional
to the absorptive part of the (retarded) dynamical density fluctuation propagator
[34]. This approach should actually describe both CDW and CDF, but we’re now
mostly interested in the fluctuating modulations, which are the newly discovered
phenomenon at the core of our study. In light of these considerations, the CDF con-
tribution to the low-energy RIXS spectrum is (all following expressions are taken
from [34]):

39



Figure 3.5: Data tables YBCO.
A) Data as a function of temperature [K] along H0; 16 points in 0.15 - 0.45 r.l.u.
B) Data as a function of temperature [K] along HH; 8 points in 0.14 - 0.44 r.l.u.

Isim(q, ω) = Isim(qx, qy, ω) = A · b(ω) · ImD(qx, qy, ω) (3.1)

where
b(ω) =

1

eω/kB ·T − 1

is the Bose distribution, governing the thermal excitation of CDF. A is a con-
stant regulating the intricate interaction between incoming photons and conduction
electrons involved in scattering events. D(q,ω) is taken in the standard Ginzburg-
Landau form of the dynamical density fluctuation propagator, typical of overdamped
quantum critical Gaussian fluctuations [26] [34] :

D(q, ω) =
4∑

n=1

[ω0 + ν · ηn(q)− iω · γ − ω2

Ω
]−1

where ω0 = ν
ξ2

[eV] is the characteristic energy of the fluctuations, and ξ is the cor-
relation length of the excitation. Notably, in this model, ω0 is bound to the FWHM
of intensity profiles through the correlation length, giving ω0 = ν·(HWHM)2 [26]. In
light of the quasi-saturation of FWHM shown by experimental data represented in
Fig.s 3.8 and 3.7, we are lead to believe that ω0 might have slightly growing character
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Figure 3.6: Data tables Bi2212.
A) Data as a function of temperature [K] along H0; 16 points in 0.08 - 0.38 r.l.u.
B) Data as a function of temperature [K] along HH; 8 points in 0.085 - 0.38 r.l.u.

with respect to temperature, saturating below a certain threshold. Nevertheless, the
relation ω0 = ν·(HWHM)2 is only valid in the so-called ”classical regime”, defined
by ω0

γ
≤ T, while at very low temperatures, in the ”quantum regime” identified by

ω0

γ
≥ T, the defining relation of FWHM yields a different condition which is not

straightforward to derive. This means that this reasoning is not rigorous, and while
it can be used to develop a general understanding of the connection between certain
parameters and experimental data, it can not be straightforwardly used to extract
ω0(T) in the whole temperature range under scrutiny.

The value of ν regulates the width of the dispersion relations given that:

ηn(qx, qy) =
1

(2π)2
(4− 2 cos(qx −Qc

x)− 2 cos(qy −Qc
y))

is periodic in reciprocal space, thus producing peaks in all Brillouin zones at well
defined coordinates given by incommensurate wave vectors (±Qc,0), (0,±Qc) defined
in the (qx,qy) plane, which is the reciprocal lattice of the CuO2 planes of cuprates.
This periodicity is shown in Fig. 3.15.

Ω is a frequency cutoff and γ is a Landau-damping factor, only relevant at low tem-
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peratures, influenced by the superconductive transition. γ is believed to model the
time correlation of CDF and is expected to diverge in absence of superconductivity
for T → 0, defining a putative anomalous QCP, being it linked to the divergence of
a time-related correlation parameter, instead of a spatial one.

As described in Sect. 3.1.3, RIXS measurements are occasionally used solely as a
function of momentum, i.e. the quasi-elastic energy integration of inelastic spectra in
a given energy range, so we will need to perform an energy integration. Additionally,
before integrating we should also take into consideration the finite experimental
resolution through a convolution:

R(ω) =
1

σ
√
2π

· e
−ω2

2σ2

such that FWHMR(ω) [meV] = 2
√

2 log(2) · σ.

The expression to be implemented will then be:

Isim(q) =
∫ ωmax

ωmin

[A · b(ω) · ImD(q, ω)] ∗R(ω) dω =

=

∫ ωmax

ωmin

[
A

eω/kB ·T − 1
· Im(

4∑
n=1

[ω0 + ν · ηn(q)− iω · γ − ω2

Ω
]−1)] ∗ [ 1

σ
√
2π

· e
−ω2

2σ2 ] dω

This leaves us with an analytical expression that can well be implemented with
mathematical analysis tools. The physically relevant parameters that we can thus
play with to act on I(q) are ω0, ν, Ω, γ and A.

A theoretical review on quantum critical phenomena can be found in Ref. [53] and
[54].

3.3 Reference parameters

The upcoming work has the purpose of illustrating what the model described in
the previous Section produces by using a mathematical analysis program, which in
our case will be MATLAB®. The following study will therefore give us a descrip-
tion of the functional shape of the RIXS intensity relative to the CDF broad peak
(BP), both in energy (dispersion) and momentum space. This is an interesting and
compelling task in light of the ultimate goal of fitting actual experimental curves.
We must indeed grasp what features the model is capable of producing, how the
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objective function behaves with respect to its variables and, most importantly, how
it responds to changes of physically relevant parameters such as ω0, ν, γ and Ω.

Evidently, if we want to be able to get started, we need a reasonable set of parameters
to begin with: a reference. In these regards, as underlined many times, we should
go back to experimental measurements and try to extract as much information as
possible. This task has indeed already been carried out by the creators of the model,
in collaboration with our research group in Ref.s [34] [55].

Nevertheless, it is quite interesting to understand how a first-approximation esti-
mation of the value of ω0 can be obtained from high resolution (HR) RIXS spectra.
Indeed, ω0 represents the characteristic energy of charge density fluctuations and
can be identified by seeking the energy associated to the signal’s maximum within
the spectrum. As shown in Fig. 3.9, the peak seems to fall around ∼ 10 - 15
meV. Another quite insightful approach which we decided to use to provide a first
evaluation of ω0 is the following:

1. Plot the experimental intensity curves along the direction HH as a function of
temperature, parametrically indexed by momenta values: Iexp(T;HH).

2. In accordance to the assumption that the temperature dependence of the sup-
posed background is ruled by the Bose-Einstein distribution develop the fol-
lowing equation, where n = 1

eω0/kB ·T−1
:

(a) Probability of a Stokes process: B1· (n+1)

(b) Probability of an Antistokes process: B2· n

(c) We can safely assume to have B1 = B2 ≡ B, so that the total probability
is B · (2n+1)

(d) Consider a T-independent, q-dependent offset A(q) so that you can model
Isim(T;HH) = A(q) + B · (2n+1) (where sim stands for simulated).

3. Fit Iexp with Isim and extract a fixed value of ω0.

This procedure is displayed in Fig. 3.10 and produced a value ω0 ∼ 13 meV, abso-
lutely consistent with the amount observed from HR spectra.

Arguably, the A(q) curve in momentum space extracted using this method could
be interpreted as a background which ought to be subtracted from the signal along
both HH and H0 to isolate the CDF-related intensity and provide a better fit; this
will be further discussed in Chapt. 4.
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Regarding ν, we know from the role it plays in the equations, that it acts as a
coefficient regulating the width of the dispersion curves where, in a parabolic ap-
proximation developed in proximity of the CDF peak: ω(q) = ν·(q - Qc)2, hence [ν]
= eV

r.l.u.2
. Previous observations have found an approximated value of ν ≈ 1.4 eV

r.l.u.2
,

which seemed to produce reasonable dispersions [34].

Ω acts as a frequency cut-off for CDF, and quantitative estimations of its value have
found it around ∼ 30 - 60 meV [55], we will start with 30 meV. Parameter γ is a
damping factor and, in our initial analyses, will be kept equal to 1 (ineffective).

The equation to be implemented, as presented in Sect. 3.2 is Eq. 3.1 which, in this
analysis, will be used without the convolution with the experimental resolution in
order to describe exactly what the model results in, the convolution will be added
for the fitting itself in the following chapter.

In order to be able to reproduce the four peaks in two-dimensional reciprocal space
(qx,qy) which are experimentally observed at (±Qc,0), (0,±Qc), and also account for
the energy dependence, we need to simulate I as a three dimensional array: a cubic
matrix. This way, by fixing ourselves at arbitrary values along one of the two q axes
(let’s say qy = 0 r.l.u.), we can visualize the dispersion relation of the CDF peaks,
namely I(qx,ω). Otherwise, by keeping both qx and qy variable and performing a
numerical integration along the third dimension of the array (i.e. the energy dimen-
sion), we obtain

∫ ωmax

ωmin Isim(qx, qy, ω) dω = Isim(qx, qy) (the numerical integration in
MATLAB®, will be carried out using the trapezoidal method). If then also in this
case we fix qy = 0 r.l.u. we obtain the equivalent to experimental measurements
along H0. It should be noted that in doing so we are keeping temperature constant.
If the temperature dependence were to be added as well, the array representing CDF
intensity values would become four dimensional. For the time being we will keep it
fixed and then, when our interest will be in the temperature dependence, we will
iteratively generate the 3D array for different T values, thus using a loop (as done
to generate Fig.s 3.25 and 3.24).

A brief discussion on how different methods used to generate Isim(q) are reflected on
computation times is attached in Appendix A. Clearly, producing these simulations
is quite fast a process, but we must keep in mind that this procedure, or something
similar to it, will later be called recursively by the fitting algorithm, so we should
try to keep it as quick as possible to begin with.

Finally, by fixing the peak position to Qx,y
c = 0.3 r.l.u., and using ω0 = 12.5 meV,

ν = 1.4 eV
r.l.u.2

, Ω = 30 meV, A = 10−3, T = 150 K, γ = 1 we obtain the plots shown
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in figures 3.11 and 3.12. In all following images I indicate the energy loss axis with
”Energy” which corresponds to ω in all equations, and I label ”Intensity” the values
taken by Isim in arbitrary units.

3.4 Dependencies

In Fig.s 3.14 and 3.15, I fixed coordinate qy to 0 and plotted the dispersion relation
produced by Equation 3.1, i.e. intensity values versus qx and ω. We see the curves
disperse in a non-trivial way, generating two main peaks in (±Qc,0) with ω0 in the
neighborhood of 10 meV, and several other features for variable qx positions. In
Fig. 3.15, dispersions are shown to be periodic in reciprocal space (in this case
along qx, but the behavior is analogous along qy). In Fig. 3.13 I sectioned the CDF
dispersion in (Qc,0), thus producing a spectrum in correspondence of the main peak
and I furthermore introduced how experimental resolution affects measurements by
smearing out spectral features which are too small to be resolved, this will lead us
(in Sect. 4.1) to an interesting discussion on how the fitting should be structured.

In the series of figures that follow, from 3.16 to 3.23, I show how deviations from
reference values of parameters ν, ω0, Ω, γ reflect on the correspondent intensity
profile, both in terms of dispersions evaluated along the (qx,0) direction and in
terms of energy-integrated I(qx,qy) curves. In order to isolate the effect of each
parameter, all others are kept constant to reference values indicated shortly above.

Concerning a comparison between the temperature dependence of simulated curves
and that of experimental ones, figures 3.24 and 3.25 show that the match is quite
acceptable as long as we remain far from the peak position (i.e. about a HWHM
away from it). On the other hand, in (±Qc,0), (0,±Qc) the simulation fails to re-
produce the confinement of the intensity maxima upon a rise in T, and generates
a wide excursion which is evidently non-physical. Keeping in mind the effect of ω0

on the amplitude of CDF peaks, as shown in Fig. 3.19, we could expect that the
approximation of keeping this parameter fixed could be misleading. Indeed, from
these results, we might anticipate ω0 to have a growing character with respect to
temperature. In this framework, the T increase would lead to an increase in peak
amplitude, but at the same time the value of ω0 would also rise, thus producing the
opposite effect. The combination of these two is supposedly causing the experimen-
tally observed ”squeeze” of intensity maxima in correspondence of CDF positions in
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reciprocal space. This is also in line with the reasoning developed in Sect. 3.2 while
discussing the temperature dependence of the FWHM of Iexp(q). In these regards,
we shall prepare to fit experimental curves with simulations having variable-in-T
parameters.

This analysis proves that dispersion relations (hence also spectra), and energy-
integrated Isim(qx,qy) curves, show a strong dependence on the studied parameters
in a non-trivial manner. Nevertheless, intensity curves display reasonably realistic
functional shapes if qualitatively compared to experimental observations. We are
thus motivated to move on with the implementation of a fitting routine in the hope of
succeeding in reproducing experimental data quantitatively, while extracting values
of ω0, ν, Ω, γ.
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Figure 3.7: Data plots YBCO.
I(q;T) curves plotted as a function of momentum along H0 (above) and HH (below),
ranging from Tmin = 20 K to Tmax = 290 K. These curves are obtained by integrating
(for each fixed q and T) the quasi-elastic region of RIXS spectra. This region has been
defined as the range [-100 meV, 35 meV], so as to minimize the contribution coming from
the rather strong high-energy phonons (which appear clear in Fig. 3.9). Darker curves
represent data relative to lower temperatures and, vice versa, lighter red curves show
higher-T intensity profiles (relative data in Tab. 3.5).
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Figure 3.8: Data plots Bi2212.
I(q;T) curves plotted as a function of momentum along H0 (above) and HH (below),
ranging from Tmin = 20 K to Tmax = 260 K. These curves are obtained by integrating
(for each fixed q and T) the quasi-elastic region of RIXS spectra. This region has been
defined as the range [-100 meV, 35 meV], so as to minimize the contribution coming from
the rather strong high-energy phonons. Darker curves represent data relative to lower
temperatures and, vice versa, lighter red curves show higher-T intensity profiles (relative
data in Tab. 3.6).
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Figure 3.9: CDF spectrum: High resolution (i.e. ∼ 35 meV) energy-vs-q RIXS maps
measured on the slightly overdoped YBCO thin film. The white horizontal line indicates
the zero energy-loss locus of points, thus highlighting how the charge density fluctuation
peak is found at finite energies (ω0 ≈ 10 meV), suggesting its dynamical character. At
higher energies (i.e. ∼ 50 - 60 meV) especially at high q, we see the breathing-phonons
branch, which we’re currently not interested in.
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Figure 3.10: Bose-like fitting along HH on YBCO sample.
Top panel. Iexp(T;HH) (full lines) vs Isim(T;HH) (dashed lines) parametrized on mo-
menta (lighter red corresponds to higher q along HH).
Bottom panel. Iexp(T;HH) (full lines) vs A(q = HH) (dashed lines) which is set to be
constant in temperature.
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Figure 3.11: Top view: intensity peaks in 2D reciprocal space

Figure 3.12: Top panel. Intensity peaks in 2D reciprocal space.
Bottom panel. Intensity peak section along qx, i.e. the H0 direction.
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Figure 3.13: CDF spectrum in (Qc,0). Simulated spectrum in (Qc,0), hypotheti-
cal experimental resolution of 60 meV, and convolution between the two curves showing
significant smearing out of spectral features.

Figure 3.14: CDF dispersion. Intensity plot in the (qx,ω) plane showing non-trivial
dispersion.
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Figure 3.15: CDF dispersion, top view.
Left panel: Top view, intensity plot in the (qx,ω) plane.
Right panel: Same but plotted on a larger qx interval to show periodicity.
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Figure 3.24: T dependence along HH.
T dependence of I(qx,qy) along HH experimental (left) vs simulated (right). Top panels
show the increase in T through lighter red curves, whereas bottom panels are plots of
I(T) in (0.3,0.3) r.l.u. The temperature dependence (increase) is quite similar among
experiment and simulation given that multiplying constants and backgrounds are still
arbitrarily set: the two sets of curves have a similar excursion between maximum and
minimum.
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Figure 3.25: T dependence along H0.
T dependence of I(qx,qy) along H0 experimental (left) vs simulated (right). Top panels
show the increase in T through lighter red curves, whereas bottom panels are plots of
I(T) in (0.3,0) r.l.u. The temperature dependence (increase) is markedly different among
experiment and simulation since the simulated set of curves has a much wider excursion
between Tmin and Tmax.
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4 The global fit

This chapter constitutes the core of the project that was carried out throughout the
past months, laying roots in the analyses as yet detailed.

As we saw in Chapt. 3, the equations we are using to model charge order excitations
in high-Tc superconducting cuprates produce encouraging simulated RIXS intensity
profiles, characterized by a wealth of effects related to the dependencies to the many
parameters at play. At this point of the analysis, our concern is whether the qual-
itative resemblance between simulated signals and experimental data will actually
materialize into a quantitative match, for a given set of parameters. Moreover, if
that were the case, we would need to discuss the implications of those findings: will
they be physically meaningful? Will they match any expectation and/or previously
known effect? Will they provide new insights, encouraging and directing further
research and developments?

From Sect. 3.1 we know that experimental data is available in the form of a set
of spectra collected for a series of 8 and 16 points in reciprocal space (respectively)
along the HH and H0 directions, measured in the same way for 12 (in Bi2212) and
13 (in YBCO) different temperature values. In such a way, the full set of intensity
values generates a three dimensional collection, i.e. with respect to (ω, T, q = H0)
and (ω, T, q = HH). If we then proceed integrating spectra in a given energy range,
we obtain the RIXS intensity only as a function of momentum, parametrized by
temperature. As we have seen, actual data in this form was presented in tables 3.5
and 3.6.

A fundamental characteristic of our fitting scheme, is that we decided to implement
it in such a way to simultaneously compare data and simulations relative to all
temperatures and momenta. This means that we generate the simulation as an
intensity matrix taking values for all (q,T) combinations, and the fitting function
takes it as a whole and juxtaposes it to experimental data, which is saved in an
analogous manner, and iteratively tries to minimize their difference acting on free
parameters ω0, ν, γ, Ω and a few more I will introduce shortly.
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4.1 The energy dimension

At this point one could argue that, given that we are provided with an equation
(3.1) which is also capable of modeling the energy dependence of the CDF peak, and
given that, before integrating, we have experimental spectra, it could be wiser not to
integrate at all, and instead implement the fitting routine taking into consideration
all three dimensions: ω, T, q. In these regards our main concern is related to
the experimental resolution since, as mentioned, our spectra were acquired with an
energy-resolution of about 60 meV, simply dictated by the trade-off between the
need for a large amount of data (for example on a wider T range) at the highest (i.e.
best) possible resolution, and the limited available beam-time. As unmistakably
shown in Fig. 3.13, the convolution between an experimental resolution of 60 meV
and the CDF spectrum (simulated with reference parameters) leads to a quasi-total
smearing of its spectral features. On the other hand, the integral operation which
we perform over energy has the effect of increasing the noise rejection, so it helps us
generating more reliable q-scans. Also, the energy-integrated measurement in most
cases yields a more reliable representation of the momentum structure of the charge
ordered state, due to fact that the unrelated inelastic part of the spectra usually
evolves very smoothly and can be discarded as background [12]. The question is then
the following: would performing a fit also on the energy dimension, which can not be
fully resolved, add enough information to outweigh the noise-rejection effect which
we get from the integration? This issue has no obvious answer, but one more thing
should be kept in mind: computational cost. Carrying out the fitting simultaneously
over temperature, momentum and energy would imply having a three-dimensional
array of fitting parameters, and it is not straightforward to say that adding a whole
dimension to parameters’ space would result in a solvable problem with a regular pc.
The energy dimension could potentially carry with it a large amount of experimental
points which would need to be simulated, and being the computational cost a fast
growing function of the size of the problem (cfr. Appendix A), the routine could
supposedly either not converge at all or take too long a time. Nevertheless, when
ultra-high resolution spectra will be available in a broad temperature range, it could
be interesting to further develop this work moving on with a fitting along the energy
dimension as well. Furthermore, we should note to our advantage that some of
the energy-related parameters (namely ω0 and γ) have a significant temperature
dependence, so we hope that we will be able to discern their value through the use
of our global fit which acts simultaneously on scans in the 20 - 290 K range.
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4.2 Background

In Sect. 3.1 I highlighted how figures 3.7 and 3.8 show a rise along both H0 and HH,
occurring for approximately q ≤ 0.17 r.l.u. in YBCO and q ≤ 0.12 r.l.u. in BSCCO.
This behavior is not predicted by simulations, as described in Chapt. 3, and is
not expected to be related to charge order phenomena. Evidently, while our model
has been strictly built to reproduce the effect of charge density modulations, during
a RIXS experiment we can not isolate a single phenomenon, and we end up with
features ascribable to unrelated physics as well. Experimental evidence therefore
highlights the presence of this ascent in the proximity of the Γ point in reciprocal
space (center of the Brillouin zone), which is related to the geometry of the CuO2

planes in the sample, but has no straightforward quantitative interpretation. Some
of the hypotheses proposed to account for this rise in the measured intensity are phe-
nomena such as intra-band fermionic (electronic) transitions, inter-band fermionic
transitions allowed by the opening of the superconductive gap, phononic excitations,
bosonic contributions and surface effects. Some of these, and probably more, con-
spire in the generation of the observed background, which is surely q-dependent,
but we do not know if also temperature-related. As mentioned in Sect. 3.3, the il-
lustrated procedure which makes use of a Bose-like dependence of I(T ) along HH to
derive an approximated value of ω0, can also be applied to produce a q-dependent,
T-independent background, which we referred to as A(q). The result emerging from
this approach is shown in Fig. 4.1.

In light of all this, we can move on picking one of the following two approaches:

• Extract a background from experimental data (e.g. A(q), as indicated), sub-
tract it and fit this ”corrected” set of curves with the simulated CDF signal.

• Add ”artificially” a peak to the simulations and fit the ”untouched” data with
the function containing both CDF and background intensity.

There is no explicit way to discern between a correct decision and a wrong one.
Certainly, subtracting some background signal from data requires us to assume that
the amount which we are subtracting is reasonably close to (and not more than) the
unwanted intensity (i.e. the portion related to other phenomena). Conversely, if we
add a peak to the simulation, we can leave its amplitude and width free as fitting
parameters and let the routine adjust their values to match the actual difference from
experimental curves. For this reason, not being confident enough in our quantitative
estimations of the background, we decided to move on with the second method, thus
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Figure 4.1: A(q) vs data along H0.
A(q) background shown as lower dotted line. From left to right: BSCCO and YBCO
samples.

adding a variable peak to the simulated signal and letting the solver compute its
value.

The functional shape of the ”artificial peak” accounting for the background, which
we will refer to as Γ-peak or elastic peak, was chosen with a comparative analy-
sis between Gaussian, Lorentzian and power-law curves, all centered in (0,0) r.l.u.,
performed on a set of points which were obtained on a different sample, but reach
very low momentum values (qmin ≈ 0.01 r.l.u.). For this reason such a measure-
ment provided more details about this phenomenon, which clearly becomes more
intense close to Γ. The residual norms extracted setting side by side fitted curves
and experimental data were then compared and it appeared that the best choice
would either be that of a power-law or a Lorentzian, where the Lorentzian best fits
experimental points for lower q’s, and the power-law curve becomes more accurate
when considering also higher values. This proceeding is illustrated in Fig. 4.2. Such
arguments lead to the choice of the Lorentzian profile as the best candidate to model
the Γ-peak.

This way, not only we decide which functional shape the Γ-peak has with respect
to q, but we also extract a reasonable initial guess for its amplitude and width.
As anticipated, we will then leave these two parameters free to change in following
applications, in order to be able to account for differences in sample, experimen-
tal setup, ecc. Additionally, under the assumption that this background physically
originates from an elastic scattering process, I added an energy-dependent compo-
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Figure 4.2: Top panel. Experimental data vs three different fitting curves, as indicated
in the label. Bottom panel. Squared 2-norm of the residual after the fitting. Below q ≈
0.13 r.l.u. the Lorentzian curve has the smallest residual.

nent to its expression, with Gaussian shape, and width set by the experimental
resolution. Due to this variable-in-energy component the background elastic peak
will need to be added to the CDF simulated intensity before proceeding with the
numerical integration in the energy domain.

Moreover, besides adding a peak centered in Γ (fixed) with variable amplitude and
width, I also added a rigid shift: an offset, constant both in temperature and momen-
tum, equal for H0 and HH. The presence of this baseline is observed in q-scans from
the measured signal at high q values (i.e. q ≈ 0.44 r.l.u.), which is still significant
while both CDF-related intensity and lorentzian peak in Γ have vanished. This new
element can be justified by taking into account all other phenomena, unrelated to
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charge order excitations, which are still present in spectra and get integrated along
with everything else when we perform the energy integration. This rigid up-shift
allowed the routine to get much more accurate fitting results (the residual norm
decreased by a factor ∼ 103).

4.3 Structure of the routine

With respect to the analysis carried out in Chapt. 3, the function implemented for
the fitting routine does not simulate CDF in the whole (H,K) plane. Experimental
data is available as a set of two scans along H0 and HH so, instead of simulating the
phenomenon in the whole 2D reciprocal lattice and then isolating the two cuts, we
can run the simulation solely along H0 and HH in the first place. This drastically
reduces computational cost and therefore allows us to run a much more accurate
fitting. The whole code used for the fitting can be found in Appendix B.

As anticipated in 3.4, the behavior of experimental curves can not be faithfully re-
produced leaving ω0 constant in temperature. Based on those results, we argued that
we might anticipate ω0 to have a growing character with respect to temperature. In
this context, indeed, we said that the T increase would lead to an increase in overall
peak amplitude, but simultaneously the value of ω0 would also rise, thus producing
the opposite effect. The combination of these two is suspected to be causing the
experimentally observed ”squeeze” of intensity maxima in correspondence of CDF
positions in reciprocal space. Moreover, we claimed that being ω0 = ν·(HWHM)2,
the mild temperature dependence of FWHM observed in experimental curves would
support the idea of ω0 being ω0(T). For this reason I decided to leave ω0 completely
free to take different values as temperature changes. The same was done for γ as
well, given that its effect is supposedly much more important at lower temperatures,
where quantum effects become more relevant. This lets the fitting routine adjust
their values in such a way that the residual is minimized, and it also gives us an
expression of those parameters as a function of temperature, allowing us to interpret
their physical meaning and suppose possible implications.

According to these considerations, the set of fitting parameters is actually a 9×13
matrix, where:

PAR(1, T ) = ω0(T )

PAR(2, 1) = Ω
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PAR(3, T ) = γ(T )

PAR(4, 1) = ν

PAR(5, 1) = Qc

PAR(6, 1) = Γ− peak(amplitude)

PAR(7, 1) = Γ− peak(FWHM)

PAR(8, 1) = C (multiplying constant for the CDF intensity)

PAR(9, 1) = rigid shift

Where all other parameters (besides ω0 and γ) only use the first element of each
row. Clearly this adds some computational cost and the routine will need to run
more iterations to obtain a reliable result, but it allows us to achieve a much more
realistic output, and adds fundamental physical insight to the values taken by ω0

and γ. The MATLAB®, function used for the fit is lsqcurvefit which is a non-linear
least square solver in the sense that it seeks coefficients PAR defining:

min∥SIMULATION(PAR, T )− EXP.DATA∥22

through the default trust-region-reflective algorithm [56].

4.4 Fitting results

The results yielded by the fit performed on the BSCCO sample and a plot of Ω, ω0

γ are shown respectively in Fig.s 4.3 and 4.4, whereas the equivalent for the YBCO
sample can be found in Fig.s 4.5 and 4.6. Extracted parameters are indicated in
Tab.s 4.7 and 4.8 together with their temperature dependence.

As one can observe from plots and tables of parameters, data relative to the YBCO
sample was fitted without the peak in Γ. This is justified acknowledging that the
measurement associated to the lowest momentum value was acquired at q ≈ 0.15
r.l.u. and, as it appears clear from the top-right plot in Fig. 4.5, the rise attributed
to the Γ-peak only affects the first experimental point, being already very weakly
contributing at q ≈ 0.17 r.l.u. This means that if we fit this data-set with the
elastic peak as well, the fitting algorithm struggles to find appropriate values for
its amplitude and width, and ends up running an unnecessarily large number of
iterations to produce a result almost identical to that which we otherwise get without
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Figure 4.3: Fitting result and experimental data: BSCCO
Fitting results (left panels) and experimental values (right panels) are shown separately for
H0 (top) and HH (bottom). Higher temperatures are parametrically indicated by lighter
red curves. The light blue dotted line indicates the background, made up of the rigid shift
and the lorentzian peak in Γ.
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Figure 4.4: Extracted temperature dependence of ω0 and γ, and value of Ω in
BSCCO
Note that γ [1] has been multiplied by 10−3 in order to be able to plot it on the same
scale.

considering the peak at all. Additionally, fitted parameters concerning the Γ-peak
turn out to be affected by a huge error, as can be proven acting on initial guesses
passed on to lsqcurvefit: upon wide swings (orders of magnitude) the fitted results
always end up in the proximity of the guess itself, proving that the fitting function
is not actually optimizing their values. Simply put, it does not know what to do
with them. This is luckily not the case for the other parameters, which have more
stringent constraints due to the role they play in determining the functional shape
of Isim(q) curves. Conversely, as shown earlier in Fig. 3.6, on the BSCCO sample
the lowest momentum value is q ≈ 0.08 r.l.u., implying a much more prominent
influence of the elastic peak in the scans, as it occurs in Fig. 4.3. As a consequence,
the fitting routine fails in providing an accurate reproduction of data if the elastic
rise close to Γ is neglected. The light blue dotted line in Fig. 4.3 visually displays
the importance of the background with respect to the CDF fitted profiles.

Concerning ω0 and Ω, Fig.s 4.4 and 4.6 reproduce their temperature dependence
extracted from the fit. Ω is constant by construction and correctly falls at higher
values with respect to ω0, reasonably around few tens of meV. ω0 confirms the sup-
positions made earlier regarding its possibility to be slightly growing with T, thus
producing the ”squeeze-effect” of intensity maxima in Qc. ω0 convincingly shows a
quasi-linear behavior at high T, while slowing its descent at lower T. A rise in ω0
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Figure 4.5: Fitting result and experimental data: YBCO
Fitting results (left panels) and experimental values (right panels) are shown separately for
H0 (top) and HH (bottom). Higher temperatures are parametrically indicated by lighter
red curves. The dark red dotted line indicates the background, made up only of a rigid
shift.
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Figure 4.6: Extracted temperature dependence of ω0 and γ, and value of Ω in
YBCO
Note that γ [1] has been multiplied by 10−3 in order to be able to plot it on the same
scale.
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Figure 4.7: Extracted parameters in BSCCO.
ω0 and γ are shown as a function of temperature, all other parameters are kept constant.
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Figure 4.8: Extracted parameters in YBCO.
ω0 and γ are shown as a function of temperature, all other parameters are kept constant.

also entails a mild increase in I(q)FWHM due to the relation ω0

ν
≈ (HWHM)2 which,

assuming fixed ν, connects values taken by ω0 to the correlation length ξ of these
charge density modulations since, as anticipated in Sect. 1.4, ξ ∼ 1

HWHM
. This

means that if ω0 −−−→
T→0

0 then also HWHM → 0, meaning ξ → ∞ [34]. A divergence
of the correlation length of CDF at null temperature would imply the existence of a
QCP, which would have strong implications on the nature of the pseudogap, mak-
ing the locus of points T∗ (in phase diagrams) the dividing line between two actual
different phases. For a more rigorous explanation of quantum phase transitions the
reader can refer to Ref. [57]. Nevertheless, as anticipated in Sect. 1.4 and shown
in Fig. 3.9, it appears (from spectra) that charge density fluctuations have finite
energy even at very low temperatures, which would imply that they are indeed dy-
namical. This is at the core of the discussion regarding their difference with respect
to ”ordinary” stationary and critical charge density waves. It is quite encouraging to
notice how this saturation effect on the value of ω0 is confirmed by our results (see
Fig.s 4.3, 4.5), even though we should note that, despite showing a reasonable over-
all behavior, ω0 is quantitatively slightly too high with respect to values expected
and observed from HR spectra. Nonetheless, we must always keep in mind that
data used for the fitting was acquired with a resolution of approximately 60 meV,
we then have to restrain ourselves from jumping to conclusions based on few meV
differences, because they are actually quite indistinguishable with our resolution.
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The value of the Landau damping γ is only relevant at low temperatures, in the
”quantum regime” (let us say below Tc), so its fitted temperature dependence at
high T should be disregarded. Actually, the role of γ is believed to manifest itself
when superconductivity is quenched by strong magnetic fields, in which case it is
believed to diverge as T → 0; in this description, it would be the ratio ω0

γ
, (instead

of ω0 alone), that would tend to zero. The divergence of γ would imply the presence
of an anomalous QCP, being it related to the divergence of a temporal correlation
length, rather than a spatial one (i.e. ξ) as it regularly occurs. This is the context
behind the formulation of γ, which is currently purely theoretical and far from being
demonstrated. I anyhow included it in the simulations for completeness.

It is encouraging to notice how fitted curves reproduce faithfully experimental ones,
even in terms of particular features such as gaps between peaks at different tem-
peratures and lines crossings (see Fig. 4.3), showing very little noise, except for
the curve at 20 K in Fig. 4.5. Additionally, it is quite promising to see how the
same function, running on the same algorithm, works very well on both samples
which have a rather different peak shape and position. This is hopefully given by
the fact that parameters taken into consideration by the model are enough to fully
characterize the CDF phenomenon in all cuprate families, providing a fair degree of
universality.

Lastly, I shall note that the fitting routine yielded these results free of constraints.
Only initial guesses were given, as necessarily imposed by the nature of the solver,
but no lower or upper boundaries were set beyond the necessity for all parameters
to be positive amounts. This adds reliability to our results and hints at a fair
level of robustness for the routine itself. On the other hand though, I noticed a
significant dependence of quantitative results to initial guesses, meaning that even if
fitted curves do not display pronounced variations, and still reflect experimental ones
quite accurately, extracted values of ω0, Ω, ν are affected to a noteworthy extent;
nevertheless hardly ever falling outside reasonable intervals. This is likely given
by the large number of fitting parameters required by our equations, which unlocks
degrees of freedom for the solver and lowers confidence on each single result alone. In
light of this, it might be interesting, were this possible, to ascertain some parameters
through independent experiments to then fix them and run the simulation on fewer
remaining ones.

The faithful and quantitative match, both in terms of temperature dependence and
curve shape (in q-space) between fitted curves and modeled ones along both H0 and
HH, is surely stimulating. It calls for more measurements to be made in order to
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gain further physical insight into charge order excitations phenomena, and sustain
the mutual beneficial interplay between theory and experiment through adjustments
of models and the availability of higher resolution measurements.

78



Conclusions and future
perspectives

These results have helped us shed light onto the phenomenon of short-ranged dynam-
ical charge density fluctuations occurring in high-Tc superconducting cuprates. As
highlighted, CDF are ubiquitous to all cuprate families and they occur in a broad
area of these materials’ phase diagrams. We studied them in slightly overdoped
YBCO and BSCCO where they are predominant, in order to be able to isolate them
as best as we could, this was deemed the best possible approach in order to find a
suitable correspondence with the theoretical model at hand.

Experimental evidence proved that the existence of the broad peak associated to
CDF in the 20 - 290 K temperature range is indisputable, thus underlying its inherent
difference from well known medium-ranged static CDW, which tend to ’steal the
spotlight’ more often than not.

A comprehensive analysis of all parametric dependencies of the model underlined its
potential suitability for the description of these charge excitations through promising
qualitative matches, justifying further interest in developing quantitative relations.

Then, once a rigid offset and an elastic peak in Γ were added to the simulations,
in order to account for unrelated phenomena entailing a non-negligible contribution
to RIXS spectra, the theoretical model we used provided very encouraging results
being able to reproduce the quasi-elastic intensity curves in momentum space along
both H0 and HH to a very satisfying extent in the whole considered temperature
range.

It remains unknown whether this match would be equally accurate if the fit was
carried out over each single spectrum, thus also using all the information encoded in
the energy-loss dimension. As indicated in Sect. 4.1, this would require the acquisi-
tion of ultra-high resolution spectra over a broad range of temperatures, and would
inevitably lead to a considerable increase in computational cost. Nevertheless, were
this technically possible, it would be an extremely interesting further development
for this work. Additionally it should be reminded that this fitting relies on the
assumption that RIXS experiments are able to directly access the charge suscepti-
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bility χ(q,ω) of cuprates, and this could be an approximation to be revised if more
accurate expressions of RIXS cross sections came along for future elaborations.

Moreover, the very short correlation length of charge density modulations responsi-
ble for the BP -corroborated by our results on ω0- pointed out that, as proposed by
recent studies ([1], [26], [34]), they could very well be the key channel mediating the
isotropic scattering of other mobile carriers. Indeed, as proposed in the mentioned
Ref.s, the pervading presence of CDF above T∗, could suggest a relation of causality
with the linear-in-T dependence of the resistivity of cuprates in their normal state,
thus supposedly explaining the microscopic mechanism behind the strange-metal
phenomenology. Actual first quantitative calculations carried out in this direction
seem to go along well with observed behaviors and properties [26].

It is safe to say that the discovery of these novel charge density modulations has
strong implications on our current understanding of the underlying mechanisms
behind the behavior of several phases of cuprate high-Tc superconductors, although
still highlighting our lack of a comprehensive knowledge on these topics. This work
focused on providing evidence that a phenomenological description of CDF can be
reliably instrumental to the formulation of theoretical models, which in turns can
yield insightful predictions, enforcing a mutually beneficial relation between theory
and experiment, in a virtuous loop.
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A Appendix: computation times

In order to exemplify the decision-making process used for the practical implemen-
tation of equation 3.1 and of the fitting routine itself I present here a brief reasoning
regarding computation times. All results presented in Chapt. 4 and ?? demanded
no longer than a couple minutes to compute, even though I should note that time
differences of up to a factor of two were noticed running the same program on dif-
ferent (but still quite performing) portable computers. This means that the issue
of computation time is not a major concern in our case, even though few-minutes
cutbacks can still ease the program development process significantly. This being
said, it remains conceptually important not to write an overly redundant code. This
brief reasoning also has the purpose of raising awareness on how small changes can
heavily reflect on the final result in terms of duration. Particular prudence should
be exercised in case, working on future developments, one decided to extend the
fitting to the energy dimension as well, thus not only using quasi-elastic I(q) curves,
but whole I(q,ω) spectra. In that case a whole new dimension would be added to
parameters’ space, certainly resulting in long delays.

Without moving on with such drastic changes, I hereby present the difference be-
tween two possible approaches for the simulation of intensity curves which are then
passed on to the fitting routine. This passage will be iteratively called by the fitting
algorithm lsqcurvefit until convergence is reached, and therefore needs to be as brief
as possible. This function needs to return a matrix containing simulated intensity
values as a function of vectors q and T with size equal to the experimental one, i.e.
[length(H0) + length(HH)] × length(T). One possibility is thus to use command
[Q, W, temp] = meshgrid(q,ω,T) to generate three-dimensional arrays Q, W, temp,
and use them to create I(q, ω,T) directly as a 3D array itself, then integrating along
dimension 2 (which, as indicated, corresponds to an energy integration) one ends up
with Imesh(q,T). The other possibility is using a loop-based function which, at each
kth iteration, computes two-dimensional Iloop(q,ω,T(k)), integrates along dimension
2, thus resulting in a vector, which can then be saved as a column in Iloop(q,T(k)).
At iteration number k = length(T) a full Iloop(q,T) will be ready to be returned
to the nonlinear solver. Each discussed procedure accounts for one single iteration
relatively to the fitting.
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This two approaches clearly result in the same output, but they do so with a quite
significant duration difference. I calculated the computation time of each method as
a function of the length n of q and ω defining the sizes of the simulation which, in this
case, are kept equal. Figure A.1 shows the result, underlying the non equivalence of
the two approaches.

Performing a polynomial fitting of the two curves, we find that computation times
grow quasi-quadratically in both cases, with functional shapes:

tmesh(n) ≈ 5.57 · 10−7n2.254

tloop(n) ≈ 3.52 · 10−7n2.254

With the loop-based algorithm outperforming the meshgrid-based one. This was
indeed the approach chosen to produce the simulations in this thesis. Furthermore,
considering that the routine discussed in Chapt. ?? and shown in Appendix B works
with n = 90, I calculated the average gain over many iterations as:

t%gain ≡ tmesh(90)− tloop(90)

tmesh(90)
≈ 37%

which is certainly a significant improvement considering that this difference will
likely be reflected onto the total time required by the routine to carry out the
fitting.

As I said, this is only one of the multiple adjustments and refinements that can be
put in place, and it is surely not the only factor contributing to the overall com-
putation time. One possibility moving forward could be generating the momentum
dependent part of the simulation only along experimental H0 and HH, instead of
using a theoretical q consisting of 90 points and then extracting only those corre-
sponding to H0 and HH in the end. n ≈ 102 could still be used for ω to guarantee
a reliable result from the numerical integration.
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Figure A.1: Computation time analysis.
Top panel. Duration of each scheme plotted as a function of the dimension of q and ω.
Yellow and purple lines show polynomial fittings.
Bottom panel. Same as above but zoomed in on the first few points, the black line cuts
plots at n = 90, which is the dimension used for the fit on BSCCO.
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B Appendix: fitting code
(BSCCO)

1 clear
2 close all
3 clc
4

5

6 % "sizee" defines the dimension "n = 2*sizee" for the
simulations

7 sizee = 45 ;
8

9 % Integration window (energy)
10 w_min = -0.1 ;
11 w_max = 0.035 ;
12

13

14 %% Import data
15

16 % Define momentum range to be used
17 % maximum range is h0=0.15-0.45 and hh=0.14-0.43
18

19 h0min = 0.08 ;
20 h0max = 0.45 ;
21

22 hhmin = h0min ;
23 hhmax = h0max ;
24

25 % Import all
26 I_hh_imported = importfile_hh_5("/Users/pietrocamisa/

Desktop/Tesi Magistrale/Dati Bi2212/Integrali Bi2212.
xlsx", "HH", 2, 9);

27 I_h0_imported = importfile_h0_5("/Users/pietrocamisa/
Desktop/Tesi Magistrale/Dati Bi2212/Integrali Bi2212.
xlsx", "H0", 2, 17);

28

29 T_v = [20,35,50,65,80,95,110,140,170,200,230,260] ;
30

31 h0 = I_h0_imported(:,1) ;
32 hh = I_hh_imported(:,1) ;
33
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34 h0i = find( abs(h0-h0min) == min(abs(h0-h0min)) ) ;
35 h0e = find( abs(h0-h0max) == min(abs(h0-h0max)) ) ;
36

37 hhi = find( abs(hh-hhmin) == min(abs(hh-hhmin)) ) ;
38 hhe = find( abs(hh-hhmax) == min(abs(hh-hhmax)) ) ;
39

40 % Select only experimental data in the specified range
41 h0 = I_h0_imported(h0i:h0e ,1) ;
42 I_h0_exp = I_h0_imported(h0i:h0e ,2:end) ;
43

44 hh = I_hh_imported(hhi:hhe ,1) ;
45 I_hh_exp = I_hh_imported(hhi:hhe ,2:end) ;
46

47 clear I_h0_imported
48 clear I_hh_imported
49

50 % Define matrix of experimental data
51 I_exp = [I_h0_exp; I_hh_exp] ;
52

53 %% Simulation of CDF
54

55 fun = @(PAR,T_v) Simulation_5_loop(PAR,T_v,sizee ,h0,hh,
w_min ,w_max) ;

56

57 %% Fit
58

59 tic
60

61 f_eval = 15e3 ;
62 f_iter = 5000 ;
63 f_tol = eps ;
64 f_step = eps ;
65 f_optimality = eps ;
66

67 % Initial guess
68 PAR0 = [12.5*ones(1,length(T_v)) ; ... % w0
69 35*ones(1,length(T_v)) ; ... % OMEGA
70 1*ones(1,length(T_v)) ; ... % gamma
71 1.4*ones(1,length(T_v)) ; ... % ni
72 0.3*ones(1,length(T_v)) ; ... % qc
73 1*ones(1,length(T_v)) ; ... % amplitude

GP
74 0.08*ones(1,length(T_v)) ; ... % fwhm_gp
75 1.2*ones(1,length(T_v)) ; ... % C
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76 0.015*ones(1,length(T_v)) ]; % offset
77

78 % Lower boundary for positivity
79 lb = [ 0*ones(1,length(T_v)) ; ... % w0
80 0*ones(1,length(T_v)) ; ... % OMEGA
81 0*ones(1,length(T_v)) ; ... % gamma
82 0*ones(1,length(T_v)) ; ... % ni
83 0*ones(1,length(T_v)) ; ... % qc
84 0*ones(1,length(T_v)) ; ... % amplitude

GP
85 0*ones(1,length(T_v)) ; ... % fwhm_gp
86 0*ones(1,length(T_v)) ; ... % C
87 0*ones(1,length(T_v)) ]; % offset
88

89 options = optimoptions('lsqcurvefit', 'FunctionTolerance'
,f_tol) ;

90 options.MaxFunctionEvaluations = f_eval ;
91 options.MaxIterations = f_iter ;
92 options.StepTolerance = f_step ;
93 options.OptimalityTolerance = f_optimality ;
94

95 [PAR,resnorm ,residual ,exitflag ,output ,lambda ,J] =
lsqcurvefit(fun,PAR0 ,T_v,I_exp ,lb,[],options) ;

96

97 t = toc ;
98

99 %% Plots
100

101 my_plot_5(PAR,T_v,sizee ,h0,hh,I_exp ,w_min ,w_max) ;
102

103 fprintf('\nSquared norm of the residual : %d\n\n',resnorm)
;

104 fprintf('\nComputation time : %d\n\n',t) ;

Listing B.1: Main script

1 function I_h0_imported = importfile_h0_5(workbookFile ,
sheetName , startRow , endRow)

2 %% Input handling
3

4 % If no sheet is specified , read first sheet
5 if nargin == 1 || isempty(sheetName)
6 sheetName = 1;
7 end
8

87



9 % If row start and end points are not specified , define
defaults

10 if nargin <= 3
11 startRow = 2;
12 endRow = 17;
13 end
14

15 %% Setup the Import Options
16 opts = spreadsheetImportOptions("NumVariables", 13);
17

18 % Specify sheet and range
19 opts.Sheet = sheetName;
20 opts.DataRange = "A" + startRow(1) + ":M" + endRow(1);
21

22 % Specify column names and types
23 opts.VariableNames = ["VarName1", "VarName2", "VarName3",

"VarName4", "VarName5", "VarName6", "VarName7", "
VarName8", "VarName9", "VarName10", "VarName11", "
VarName12", "VarName13"];

24 opts.VariableTypes = ["double", "double", "double", "
double", "double", "double", "double", "double", "
double", "double", "double", "double", "double"];

25

26 % Import the data
27 I_h0_imported = readtable(workbookFile , opts , "UseExcel",

false);
28

29 for idx = 2:length(startRow)
30 opts.DataRange = "A" + startRow(idx) + ":M" + endRow(

idx);
31 tb = readtable(workbookFile , opts , "UseExcel", false);
32 I_h0_imported = [I_h0_imported; tb]; %#ok<AGROW >
33 end
34

35 %% Convert to output type
36 I_h0_imported = table2array(I_h0_imported);
37 end

Listing B.2: Import experimental data along H0 from spreadsheet in Fig. 3.8.

1 function I_hh_imported = importfile_hh_5(workbookFile ,
sheetName , startRow , endRow)

2 %% Input handling
3

4 % If no sheet is specified , read first sheet
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5 if nargin == 1 || isempty(sheetName)
6 sheetName = 1;
7 end
8

9 % If row start and end points are not specified , define
defaults

10 if nargin <= 3
11 startRow = 2;
12 endRow = 9;
13 end
14

15 %% Setup the Import Options
16 opts = spreadsheetImportOptions("NumVariables", 13);
17

18 % Specify sheet and range
19 opts.Sheet = sheetName;
20 opts.DataRange = "A" + startRow(1) + ":M" + endRow(1);
21

22 % Specify column names and types
23 opts.VariableNames = ["VarName1", "VarName2", "VarName3",

"VarName4", "VarName5", "VarName6", "VarName7", "
VarName8", "VarName9", "VarName10", "VarName11", "
VarName12", "VarName13"];

24 opts.VariableTypes = ["double", "double", "double", "
double", "double", "double", "double", "double", "
double", "double", "double", "double", "double"];

25

26 % Import the data
27 I_hh_imported = readtable(workbookFile , opts , "UseExcel",

false);
28

29 for idx = 2:length(startRow)
30 opts.DataRange = "A" + startRow(idx) + ":M" + endRow(

idx);
31 tb = readtable(workbookFile , opts , "UseExcel", false);
32 I_hh_imported = [I_hh_imported; tb]; %#ok<AGROW >
33 end
34

35 %% Convert to output type
36 I_hh_imported = table2array(I_hh_imported);
37 end

Listing B.3: Import experimental data along HH from spreadsheet in Fig. 3.8.

1
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2 function I_th = Simulation_5_loop(PAR,T_v,sizee ,h0,hh,
w_min ,w_max)

3

4 I_th_h0 = zeros(length(h0),length(T_v)) ;
5 I_th_hh = zeros(length(hh),length(T_v)) ;
6

7 % Loop in temperature: T_v stands for T_vector
8 for i = 1 : length(T_v)
9

10 e = 1.60217662e-19 ; % [C]
electron charge

11 kb = 1.38064852e-23 ; % [(m^2kg)
/s^2K] Boltz const

12

13 n = 2*sizee ;
14

15 q = linspace(-0.5,0.5,n) ;
16 w = linspace(-0.2,0.2,n)' ;
17 [Q,W] = meshgrid(q,-w) ; % "-w" because the equations we

use consider a positive sign for antistokes
18

19 h0_ = zeros(1,length(h0)) ;
20 hh_ = zeros(1,length(hh)) ;
21 intensity_h0 = zeros(length(h0),1) ;
22 intensity_hh = zeros(length(hh),1) ;
23

24 % Energy resolution
25 coeff = 2*sqrt(2*log(2)) ;
26 fwhm_w = 0.06 ; % [eV]
27 sig_w = fwhm_w/(coeff) ;
28 resol = 1/(sig_w*sqrt(2*pi)) * exp(-W.^2 / (2*(sig_w)^2))

;
29

30 w0 = PAR(1,T_v == T_v(i))/1e3 ;
31 OMEGA = PAR(2,1)/1e3 ;
32 gamma = PAR(3, T_v == T_v(i)) ;
33 ni = PAR(4,1) ;
34 qc = PAR(5,1) ;
35

36 % Gamma peak
37 amp_GP = PAR(6,1)/1e3 ;
38 fwhm_GP = PAR(7,1) ;
39 GP = (amp_GP/pi) * ((fwhm_GP/2)./(Q.^2 + (fwhm_GP/2).^2))

.* resol ;
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40 C = PAR(8,1)/1e7 ;
41

42 eta1_h0 = (4 - 2*cos(2*pi*(Q-qc)) - 2*cos(2*pi*(0))) / (2*
pi)^2 ;

43 eta2_h0 = (4 - 2*cos(2*pi*(Q+qc)) - 2*cos(2*pi*(0))) / (2*
pi)^2 ;

44 eta3_h0 = (4 - 2*cos(2*pi*(Q)) - 2*cos(2*pi*(0+qc))) / (2*
pi)^2 ;

45 eta4_h0 = (4 - 2*cos(2*pi*(Q)) - 2*cos(2*pi*(0-qc))) / (2*
pi)^2 ;

46

47 eta1_hh = (4 - 2*cos(2*pi*(Q-qc)) - 2*cos(2*pi*(Q))) / (2*
pi)^2 ;

48 eta2_hh = (4 - 2*cos(2*pi*(Q+qc)) - 2*cos(2*pi*(Q))) / (2*
pi)^2 ;

49 eta3_hh = (4 - 2*cos(2*pi*(Q)) - 2*cos(2*pi*(Q+qc))) / (2*
pi)^2 ;

50 eta4_hh = (4 - 2*cos(2*pi*(Q)) - 2*cos(2*pi*(Q-qc))) / (2*
pi)^2 ;

51

52

53 D_h0 = ( w0 + ni*eta1_h0 - 1i*W*gamma - W.^2/
OMEGA ).^-1 + ...

54 ( w0 + ni*eta2_h0 - 1i*W*gamma - W.^2/
OMEGA ).^-1 + ...

55 ( w0 + ni*eta3_h0 - 1i*W*gamma - W.^2/
OMEGA ).^-1 + ...

56 ( w0 + ni*eta4_h0 - 1i*W*gamma - W.^2/
OMEGA ).^-1 ;

57

58 D_hh = ( w0 + ni*eta1_hh - 1i*W*gamma - W.^2/
OMEGA ).^-1 + ...

59 ( w0 + ni*eta2_hh - 1i*W*gamma - W.^2/
OMEGA ).^-1 + ...

60 ( w0 + ni*eta3_hh - 1i*W*gamma - W.^2/
OMEGA ).^-1 + ...

61 ( w0 + ni*eta4_hh - 1i*W*gamma - W.^2/
OMEGA ).^-1 ;

62

63 D_i_h0 = imag(D_h0) ;
64 D_i_hh = imag(D_hh) ;
65

66 b = (exp((e*W)/(kb*T_v(i))) - 1).^-1 ;
67
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68 I_h0 = D_i_h0 .* b ;
69 I_hh = D_i_hh .* b ;
70

71 I_h0_conv = conv2(resol(:,1),1,I_h0 ,'same') ;
72 I_hh_conv = conv2(resol(:,1),1,I_hh ,'same') ;
73

74 I_h0_conv = C * I_h0_conv + GP ;
75 I_hh_conv = C * I_hh_conv + GP ;
76

77 % Energy integration
78 w_index_max = find(abs(w-w_max) == min(abs(w-w_max))) ;
79 w_index_min = find(abs(w-w_min) == min(abs(w-w_min))) ;
80

81 scan_h0 = trapz(I_h0_conv(w_index_min:w_index_max ,:)) ;
82 scan_hh = trapz(I_hh_conv(w_index_min:w_index_max ,:)) ;
83

84 for j = 1 : length(h0) % Extracts only points of q
corresponding to experimental values: h0

85

86 [~,h0_(j)] = find( abs(q-h0(j)) == min(abs(q-h0(j)
)) ) ;

87 intensity_h0(j) = scan_h0(h0_(j)) ;
88

89 if j <= length(hh) % Extracts only points of q
corresponding to experimental values: hh

90

91 [~,hh_(j)] = find( abs(q-hh(j)) == min(abs(q-hh(j)
)) ) ;

92 intensity_hh(j) = scan_hh(hh_(j)) ;
93

94 end
95 end
96

97 I_th_h0(:,i) = intensity_h0 ;
98 I_th_hh(:,i) = intensity_hh ;
99

100 end
101

102 I_th = PAR(9,1) + [I_th_h0 ; I_th_hh] ;
103

104 end

Listing B.4: Generation of the simulated intensity matrix

1
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2 function I_th_sub = Simulation_5_sub(PAR,T_v,sizee ,h0,hh,
w_min ,w_max)

3

4 I_th_h0 = zeros(length(h0),length(T_v)) ;
5 I_th_hh = zeros(length(hh),length(T_v)) ;
6

7 for i = 1 : length(T_v)
8

9 e = 1.60217662e-19 ; % [C]
electron charge

10 kb = 1.38064852e-23 ; % [(m^2kg)
/s^2K] Boltz const

11

12 n = 2*sizee ;
13

14 q = linspace(-0.5,0.5,n) ;
15 w = linspace(-0.2,0.2,n)' ;
16 [Q,W] = meshgrid(q,-w) ;
17

18 h0_ = zeros(1,length(h0)) ;
19 hh_ = zeros(1,length(hh)) ;
20 intensity_h0 = zeros(length(h0),1) ;
21 intensity_hh = zeros(length(hh),1) ;
22

23 % Energy resolution
24 coeff = 2*sqrt(2*log(2)) ;
25 fwhm_w = 0.05 ; % [eV]
26 sig_w = fwhm_w/(coeff) ;
27 resol = 1/(sig_w*sqrt(2*pi)) * exp(-W.^2 / (2*(sig_w)^2))

;
28

29 w0 = PAR(1,T_v == T_v(i))/1e3 ;
30 OMEGA = PAR(2,1)/1e3 ;
31 gamma = PAR(3, T_v == T_v(i)) ;
32 ni = PAR(4,1) ;
33 qc = PAR(5,1) ;
34 C = PAR(8,1)/1e7 ;
35

36 eta1_h0 = (4 - 2*cos(2*pi*(Q-qc)) - 2*cos(2*pi*(0))) / (2*
pi)^2 ;

37 eta2_h0 = (4 - 2*cos(2*pi*(Q+qc)) - 2*cos(2*pi*(0))) / (2*
pi)^2 ;

38 eta3_h0 = (4 - 2*cos(2*pi*(Q)) - 2*cos(2*pi*(0+qc))) / (2*
pi)^2 ;
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39 eta4_h0 = (4 - 2*cos(2*pi*(Q)) - 2*cos(2*pi*(0-qc))) / (2*
pi)^2 ;

40

41 eta1_hh = (4 - 2*cos(2*pi*(Q-qc)) - 2*cos(2*pi*(Q))) / (2*
pi)^2 ;

42 eta2_hh = (4 - 2*cos(2*pi*(Q+qc)) - 2*cos(2*pi*(Q))) / (2*
pi)^2 ;

43 eta3_hh = (4 - 2*cos(2*pi*(Q)) - 2*cos(2*pi*(Q+qc))) / (2*
pi)^2 ;

44 eta4_hh = (4 - 2*cos(2*pi*(Q)) - 2*cos(2*pi*(Q-qc))) / (2*
pi)^2 ;

45

46

47 D_h0 = ( w0 + ni*eta1_h0 - 1i*W*gamma - W.^2/
OMEGA ).^-1 + ...

48 ( w0 + ni*eta2_h0 - 1i*W*gamma - W.^2/
OMEGA ).^-1 + ...

49 ( w0 + ni*eta3_h0 - 1i*W*gamma - W.^2/
OMEGA ).^-1 + ...

50 ( w0 + ni*eta4_h0 - 1i*W*gamma - W.^2/
OMEGA ).^-1 ;

51

52 D_hh = ( w0 + ni*eta1_hh - 1i*W*gamma - W.^2/
OMEGA ).^-1 + ...

53 ( w0 + ni*eta2_hh - 1i*W*gamma - W.^2/
OMEGA ).^-1 + ...

54 ( w0 + ni*eta3_hh - 1i*W*gamma - W.^2/
OMEGA ).^-1 + ...

55 ( w0 + ni*eta4_hh - 1i*W*gamma - W.^2/
OMEGA ).^-1 ;

56

57 D_i_h0 = imag(D_h0) ;
58 D_i_hh = imag(D_hh) ;
59

60 b = (exp((e*W)/(kb*T_v(i))) - 1).^-1 ;
61

62 I_h0 = D_i_h0 .* b ;
63 I_hh = D_i_hh .* b ;
64

65 I_h0_conv = conv2(resol(:,1),1,I_h0 ,'same') ;
66 I_hh_conv = conv2(resol(:,1),1,I_hh ,'same') ;
67

68 I_h0_conv = C * I_h0_conv ;
69 I_hh_conv = C * I_hh_conv ;
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70

71 % Energy integration
72 w_index_max = find(abs(w-w_max) == min(abs(w-w_max))) ;
73 w_index_min = find(abs(w-w_min) == min(abs(w-w_min))) ;
74

75 scan_h0 = trapz(I_h0_conv(w_index_min:w_index_max ,:)) ;
76 scan_hh = trapz(I_hh_conv(w_index_min:w_index_max ,:)) ;
77

78 for j = 1 : length(h0)
79

80 [~,h0_(j)] = find( abs(q-h0(j)) == min(abs(q-h0(j)
)) ) ;

81 intensity_h0(j) = scan_h0(h0_(j)) ;
82

83 if j <= length(hh)
84

85 [~,hh_(j)] = find( abs(q-hh(j)) == min(abs(q-hh(j)
)) ) ;

86 intensity_hh(j) = scan_hh(hh_(j)) ;
87

88 end
89 end
90

91 I_th_h0(:,i) = intensity_h0 ;
92 I_th_hh(:,i) = intensity_hh ;
93

94 end
95

96 I_th_sub = PAR(9,1) + [I_th_h0 ; I_th_hh] ;
97

98 end

Listing B.5: Generate intensity matrix without background for subtraction

1

2 function my_plot_5(PAR,T_v,sizee ,h0,hh,I_exp ,w_min ,w_max)
3

4 % Return the simulation evaluated with the parameters
extracted from the fit

5 I_th = Simulation_5_loop(PAR,T_v,sizee ,h0,hh,w_min ,w_max)
;

6

7 fontsize = 13 ;
8 ylimit = [0.01, 0.06] ;
9 xlimit = [0.05, 0.4] ;
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10

11 figure('name','Simulations vs Data')
12

13 % Fitting along h0
14 subplot(2,2,1)
15 for i = 1 : length(T_v)
16 hold on; box on
17 plot(h0,I_th(1:length(h0),i),'linewidth',1,'Color', [

T_v(i)/T_v(end) 0 0.33 ] ) ;
18

19 end
20 if size(PAR ,1) > 7
21 I_th_sub = Simulation_5_sub(PAR,T_v,sizee ,h0,hh,w_min ,

w_max) ;
22 BGR = I_th(1:length(h0),1)-I_th_sub(1:length(h0),1)+

PAR(9,1) ;
23 plot(h0,BGR,'--','linewidth',2) ;
24 else
25 plot(h0,PAR(7,1)*ones(length(h0),1),'--','linewidth'

,2) ;
26 end
27 hold off
28 xlabel('H0 [r.l.u.]') ;
29 ylabel('Intensity [arb. units]') ;
30 xlim(xlimit) ;
31 ylim(ylimit) ;
32 set(gca, 'FontSize', fontsize) ;
33

34

35 % Experimental data along h0
36 subplot(2,2,2)
37 for i = 1 : length(T_v)
38 hold on; box on
39 plot(h0,I_exp(1:length(h0),i),'linewidth',1,'Color', [

T_v(i)/T_v(end) 0 0.33 ] ) ;
40 end
41 hold off
42 xlabel('H0 [r.l.u.]') ;
43 ylabel('Intensity [arb. units]') ;
44 xlim(xlimit) ;
45 ylim(ylimit) ;
46 set(gca, 'FontSize', fontsize) ;
47

48
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49 % Fitting along hh
50 subplot(2,2,3)
51 for i = 1 : length(T_v)
52 hold on; box on
53 plot(hh,I_th(length(h0)+1:end,i),'linewidth',1,'Color'

, [T_v(i)/T_v(end) 0 0.33 ] ) ;
54

55 end
56 if size(PAR ,1) > 7
57 I_th_sub = Simulation_5_sub(PAR,T_v,sizee ,h0,hh,w_min ,

w_max) ;
58 BGR = I_th(1+length(h0):end ,1)-I_th_sub(1+length(h0):

end ,1)+PAR(9,1) ;
59 plot(hh,BGR,'--','linewidth',2) ;
60 else
61 plot(hh,PAR(7,1)*ones(length(hh),1),'--','linewidth'

,2) ;
62 end
63 hold off
64 xlabel('HH [r.l.u.]') ;
65 ylabel('Intensity [arb. units]') ;
66 xlim(xlimit) ;
67 ylim(ylimit) ;
68 set(gca, 'FontSize', fontsize) ;
69

70

71 % Experimental data along hh
72 subplot(2,2,4)
73 for i = 1 : length(T_v)
74 hold on; box on
75 plot(hh,I_exp(length(h0)+1:end,i),'linewidth',1,'Color

', [T_v(i)/T_v(end) 0 0.33 ] ) ;
76

77 end
78 hold off
79 xlabel('HH [r.l.u.]') ;
80 ylabel('Intensity [arb. units]') ;
81 xlim(xlimit) ;
82 ylim(ylimit) ;
83 set(gca, 'FontSize', fontsize) ;
84

85 % omega_0 versus OMEGA_BAR
86 w0 = PAR(1,:)*1e-3 ;
87 OMEGA = PAR(2,1)*1e-3*ones(1,length(T_v)) ;
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88 gamma = PAR(3,:)*1e-3 ;
89

90 figure('name','Omega')
91 plot(T_v,w0,'linewidth',2) ;
92 hold on; box on
93 plot(T_v,OMEGA ,'linewidth',2) ;
94 plot(T_v,gamma,'linewidth',2) ;
95 xlabel('T [K]') ;
96 ylabel('Energy [eV]') ;
97 legend('\omega_0','\Omega','\gamma\cdot10^{-3}','FontSize'

,15) ;
98 hold off
99

100 end

Listing B.6: Produce plots displayed in figures 4.3 and 4.4
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