
Executive Summary of the Thesis

ByteMatcher: a tool for semantic equivalence of bytecode through
symbolic execution

Laurea Magistrale in Computer Science and Engineering - Ingegneria Informatica

Author: Lorenzo Fratus

Advisor: Prof. Mario Polino

Co-advisors: Armando Bellante, Lorenzo Binosi

Academic year: 2021-2022

1. Introduction
Computer science is at the foundation of mod-
ern society, in which technology plays a crucial
role in every aspect of people’s life. Despite all
the best practices and principles developers fol-
low when producing software, writing bug-free
code on the first try remains an open challenge.
On the other hand, designing tests that correctly
identify every error and vulnerability is a noto-
riously complex task.
Researchers made several attempts to devise so-
lutions to support developers, resulting in au-
tomated tools for test generation and binary
code analysis. Regardless of the excellent perfor-
mance in the respective tasks, these tools have
more than one limitation, leaving some chal-
lenges like the detection of equivalent pieces of
code unsolved.
This thesis presents ByteMatcher, a tool that
employs the dynamic analysis technique known
as symbolic execution to decide on the seman-
tic equivalence of two bytecodes (fragments of
compiled programs). This work takes inspira-
tion from the implementation of Angr [4] and
improves it by introducing, among other things,
a fully-symbolic memory model. This model
represents the machine’s state and can handle

memory operations on symbolic values without
concretization or path splitting.
On top of that, ByteMatcher implements an
algorithm to handle input-dependent loops by
producing a reusable summary of their bodies
from just a handful of iterations. The intro-
duction of a summary limits the path explo-
sion problem that is still today a concern for
symbolic execution. During the process of loop
summarization, ByteMatcher can also detect
specific indicators in the memory model of the
program under execution that may hint at a pos-
sible buffer overflow vulnerability.
Lastly, this thesis gives its main contribution
with a mechanism to compare two bytecodes’
execution and predict whether they are seman-
tically equivalent. Semantic equivalence is the
ability of two pieces of code (differing from each
other) to produce the same effects on the state
of a machine upon execution.
The experimental evaluation results of the first
implementation of ByteMatcher are positive.
The data supports ByteMatcher’s ability to
recognize semantically equivalent bytecodes cor-
rectly and shows that it can detect specific types
of vulnerabilities correlated to buffer overflows.
Overall, the experiments demonstrate the valid-

1



Executive summary Lorenzo Fratus

ity of the techniques presented in this research
and the approach used to condense them into
a single tool for symbolic execution. The col-
lected data can lead the way for future research
to improve the performance of the current im-
plementation and enhance it with new features.
To summarize, the main contributions of this
thesis are:

• ByteMatcher, a tool for symbolic execu-
tion with a fully-symbolic memory model.

• A technique for the summarization of input-
dependent loops.

• An approach to decide on the semantic
equivalence of two bytecodes.

• A mechanism to detect (possible) buffer
overflows based on dynamic analysis.

2. Approach
ByteMatcher offers two main functionalities
to developers and security experts one to test
the semantic equivalence of bytecodes, the other
to detect (possible) buffer overflows. Both need
to analyze code dynamically through symbolic
execution. ByteMatcher employs Angr [4],
a state-of-the-art symbolic executor, to simulate
the code. This solution allows focusing on the
design of algorithms that customize particular
aspects of the Angr’s behavior rather than im-
plementing it from scratch.

2.1. Symbolic Execution
To correctly implement its functionalities,
ByteMatcher submits every bytecode to a
step of exploratory analysis before even starting
its execution. This exploration constructs the
Control Flow Graph (CFG) of the bytecode to
extract information on looping paths. In partic-
ular, ByteMatcher is interested in each loop’s
entry and exit addresses and uses this data to
guide the symbolic execution step.
The bytecode is lifted into an Intermediate Lan-
guage (IL) that provides an abstraction over
architecture-specific details, allowing the execu-
tor to symbolically execute code originally com-
piled for any processor in the same way.
Figure 1 provides a high-level representation
of the division of the tasks inside of Byte-
Matcher. These three main components in-
teract at different levels during the symbolic ex-
ecution to obtain the best outcome possible from
the code simulation.

ByteMatcher

Executor 

LoopSummary ExecutorState 

Figure 1: High-level overview of Byte-
Matcher’s main components.

Executor This is the entry point of Byte-
Matcher and the only component interacting
with the developers. It receives the bytecode
and performs the exploratory analysis on it. It
also functions as an orchestrator during the sym-
bolic execution phase. It keeps track of all the
execution paths that still need to be explored
and decides which one to simulate at each step.

ExecutorState This component represents
the machine’s state at any point during sym-
bolic execution. It implements a fully-symbolic
memory model divided into registers and mem-
ory and tracks every operation modifying the
machine’s state. This component also acts as
an interface to Angr’s symbolic executor. In-
deed, it implements function handlers that the
symbolic executor uses to outsource the simula-
tion of particular instructions. Besides the oper-
ations accessing the state, it handles conditional
branches and function calls implementing origi-
nal algorithms. Two notable cases are symbolic
loops, managed with a unique algorithm imple-
mented by LoopSummary, and function calls that
ByteMatcher handles according to the unin-
terpreted function theory by building a finger-
print used as the return value of the function.

LoopSummary This component handles
a particular case of conditional branches.
Input-dependent loops represent one of the
leading open challenges of symbolic execution.
For this reason, this component implements
a variation of the approach presented in [2]
that uses symbolic execution to estimate the
number of iterations and produce a reusable

2



Executive summary Lorenzo Fratus

logical summary of the loop. The summary
is cached and used by Executor whenever it
encounters a loop to update the ExecutorState.

At the end of the symbolic execution, Byte-
Matcher reconciles all the diverging execution
paths in a single ExecutorState using a
custom approach to merge memory models ob-
tained from the execution of different (related)
branches. This unique data structure contains
the logical description of the state of every
single register and memory address after the
execution of the bytecode, parametric in the
initial state.

2.2. Semantic Equivalence
To test the semantic equivalence of two byte-
codes, developers can ask ByteMatcher to
compare the results of their execution (in the
form of ExecutorState objects). Developers
can also control the sensitivity of the comparison
by selecting one of four equivalence levels that
affect the behavior of ByteMatcher. Differ-
ent equivalence levels might result in different
predictions. Because of this, it is crucial to se-
lect the right equivalence level for the context of
the bytecodes’ application.
The algorithm performing the comparison im-
plements an original technique devised during
this research. This technique consists in ex-
tracting the logical formula describing the fi-
nal state of (almost) every register and memory
address from the first ExecutorState and test-
ing it against its counterpart from the second
ExecutorState. These formulas are fed into a
Satisfiability Modulo Theories (SMT) solver to
check whether they are compatible. Two formu-
las are compatible if there is no assignment of
inputs in the initial state (common to both exe-
cutions) that produces a different concrete value
for that register or memory address. Two byte-
codes are semantically equivalent only if all tests
produce a positive result.

2.3. Buffer Overflow Detection
Developers can instruct ByteMatcher to re-
port the detection of (possible) buffer over-
flow vulnerability during the symbolic execution
phase. ByteMatcher provides this function
through another original technique that analyzes
all the operations that change the content of the

memory during the execution of a symbolic loop.
The loop summarization algorithm takes note of
all those instructions that update the content of
the memory based on a symbolic pointer. When-
ever ByteMatcher uses a loop summary, if it
cannot concretize the address of the target of a
write operation, it flags it as odd behavior, trig-
gering the action to report this possible vulner-
ability to the developer. This technique works
on the reasonable assumption that write opera-
tions with symbolic pointers are dangerous since
their target might be user-controlled. This is es-
pecially problematic in the context of symbolic
loops where also the number of iterations might
be controllable. Since ByteMatcher analyzes
out-of-context bytecodes and not entire binaries,
detecting an overflow does not guarantee that
the bytecode is vulnerable in real scenarios.

3. Experimental Validation
The trials outlined in the following want to
prove the validity of the current implementa-
tion of ByteMatcher concerning two particu-
lar claims:

1. ByteMatcher can correctly recognize the
semantic equivalence of two bytecodes using
dynamic analysis techniques.

2. ByteMatcher can detect and report
(possible) buffer overflow vulnerabilities
when symbolically executing a bytecode.

Testing these claims requires designing two tri-
als, each employing test cases from different
source datasets tailored to the trial’s require-
ments. Both trials use the same testing plat-
form implemented in Python to extract the test
cases from the test datasets, execute them using
ByteMatcher, and report the outputs. Each
test case is independent of the rest of the dataset
by design so that the platform can work on fixed-
size batches of random test cases instead of the
whole dataset. This strategy allows the plat-
form to interleave the execution of test cases
from both trials. Moreover, the platform im-
mediately records the output of a test (result or
error) on file so that the execution can restart
without losing the tests completed up to that
point if a failure occurs.
The experiments of each trial run on a ma-
chine with 8 cores (2×2GHz quad-core CPUs),
16 GB of RAM, and 32 GB of disk. The op-
erative system of the machine is a 64-bit ver-

3



Executive summary Lorenzo Fratus

sion of Ubuntu (5.15.0-58-generic). The test-
ing platform exploits all the machine cores to
perform up to 8 test cases in parallel thanks to
the multiprocessing library that instantiates
a managed pool of workers. Each worker can
consume up to 180 seconds of CPU time and 4
GB of memory. These limits, selected empiri-
cally, are the ones that minimize the number of
errors while keeping a reasonable execution time
for each batch. If the worker exceeds any thresh-
old, its task is aborted with a TimeoutError or
a MemoryError, respectively.

3.1. Semantic Equivalence
The execution of each test case to validate the
first claim incorporates two steps:

1. Execute two bytecodes from the test
dataset with the default configuration.

2. Compare the results of the two executions
using the default equivalence level (Lite).

This trial comprises two experiments using a dif-
ferent test dataset to cover the full spectrum of
possible results.

Dataset The source dataset for this trial con-
tains bytecodes extracted from a list of 431
C++ projects (inherited from [1]) compiled for
the x86_64 architecture using four optimiza-
tion flags: -O0, -O2, -O3, and -Os. The source
dataset includes 61 124 bytecodes, with four
variants each.
For the first experiment, test cases only compare
pairs of bytecodes from the same function. This
first test dataset contains 366 744 test cases.
The second experiment instead requires compar-
ing pairs of bytecodes that are supposedly differ-
ent. In order to rule out the possibility of com-
paring equivalent bytecodes, the script excludes
couples with the same name or with a perfectly
matching bytecode. In this case, the number of
test cases is limited to 366 744 to match the size
of the previous test dataset.

Results The total number of test cases exe-
cuted for the first experiment is 129 726. Of
those, 97 169 (74.90%) result in a prediction
from ByteMatcher. TimeoutError accounts
for 94.08% of the errors, while MemoryError is
responsible only for 1.07% of them.
The second experiment produced 80 411 pre-
dictions from the 123 762 test cases executed

(64.97%). TimeoutError accounts for 94.79%
of the errors, while MemoryError is responsible
only for 0.24% of them.
The threshold limiting the processor time (180
seconds) was empirically proven not to influ-
ence the outcome. The data points to the loop
summarization algorithm as the leading cause of
TimeoutError since only 0.12% and 0.13% of the
results of the experiments report the execution
of at least one symbolic loop.
Among the features that ByteMatcher re-
ported along with its prediction, only one
presents a clear correlation with the output of
the first experiment. In particular, the Has
Calls feature (true if the test reports at least one
function call) has a correlation score of −0.81,
highlighting that the uninterpreted function the-
ory might introduce errors across versions of the
same bytecode.
Table 1 shows the confusion matrix obtained
by comparing ByteMatcher’s prediction (P)
with the ground truth (T). This analysis dis-
cards some of the results from the first exper-
iment in favor of an aggregate result dataset
balanced in terms of ground truth distribu-
tion. Therefore, the analysis considers 160 822
test cases, half from each experiment. Com-
paring the content of the columns, it appears
that ByteMatcher performs better in tasks
that involve non-equivalent bytecodes (experi-
ment 2). The most likely explanation for this
behavior is that, as known, some of the tech-
niques employed by ByteMatcher introduce
approximations that make it easy to find dis-
crepancies when comparing the execution of two
bytecodes independently of the ground truth.

T

EQ NE

P EQ 56 006 5 892

NE 24 405 74 519

Table 1: Confusion matrix of the first trial.

Table 2 provides additional insight into the per-
formances of ByteMatcher by presenting the
most commonly used statistical indicators com-
puted with the same inputs as the confusion
matrix. The high precision score and the non-
spectacular recall are compatible with the feel-

4



Executive summary Lorenzo Fratus

ing that the ByteMatcher performs better
in the test cases from the second experiment.
Indeed, according to the results, it is more
prone to misclassify equivalent bytecodes as non-
equivalent rather than the opposite. The F1-
score, which is lower than 80%, is a further en-
dorsement of this trend.
On a positive note, the data reveals a reason-
ably good accuracy of 81.16%. This metric is
the most straightforward performance measure
that, when computed on a set of results explic-
itly constructed to present the same number of
equivalent and non-equivalent bytecodes, pro-
vides a realistic measure of the performance of
ByteMatcher. The value of this score gives
reassurance on the techniques presented in this
research and certifies that, in most situations,
ByteMatcher provides the correct prediction.

Accur. Prec. Recall F1

81.16% 90.48% 69.65% 78.71%

Table 2: Statistics of the first trial.

To summarize, this trial proves that Byte-
Matcher can detect the semantic equivalence
of two bytecodes, employing dynamic analysis
techniques and symbolic execution. The results
of this trial are satisfying but leave room for im-
provement. In particular, the data show that
the loop summarization algorithm should be the
focus of further research.

3.2. Buffer Overflow Detection
In addition to validating the second claim, this
trial wants to discover which classes of vul-
nerabilities, classified according to the CWE
standard, trigger a response in ByteMatcher.
This trial is composed of only one experi-
ment. Each test case instructs ByteMatcher
to abort the execution with a BuffOverflow-
Exception whenever it reaches a state that
might hint at a buffer overflow vulnerability.
The result of each test case is a boolean flag
stating whether the symbolic execution ended
with a BuffOverflowException.

Dataset This trial analyzes binaries from the
DARPA’s CGC qualifying event. In particular,
the programs come from a GitHub repository [3]
that holds the source code of the challenges and

provides, among other tools, a script to compile
them in binary form automatically. The compi-
lation process results in a pool of 116 challenge
binaries built for the x86_64 architecture using
the -O3 optimization flag. This dataset contains
25 032 different bytecodes. Each CGC program
includes a README file containing the list of vul-
nerabilities affecting the binary. This trial fo-
cuses on the following classes of vulnerabilities:
CWE-119, CWE-120, CWE-121, CWE-122, CWE-787,
and CWE-788. The trial uses the output of the
test cases to understand which combination is
recognized by ByteMatcher.

Results ByteMatcher produced a predic-
tion for 21 717 of the 25 032 test cases composing
the test dataset (86.76%). Like in the previous
trial, TimeoutError contributes to the major-
ity of the total number of errors (85.64%), while
the occurrences of MemoryError are irrelevant
(0.03%). The considerations made for the first
trial on the nature of the errors still hold.
ByteMatcher predicts 56 out of a total of 116
binaries as vulnerable. ByteMatcher’s pre-
diction for a binary is positive (vulnerable) if at
least one of the functions of that binary trig-
gers a BuffOverflowException. However, only
some functions can contribute to the prediction.
The analysis must exclude standard C library
functions because they introduce a bias in the
statistical results by triggering the recognition
without being inherently vulnerable.
The statistical analysis considered multiple clas-
sifiers representing different ground truths to
cope with each binary having more than one
vulnerability. In total, from 6 classes of vul-
nerabilities, the analysis obtained 63 classifiers.
Table 3 presents the confusion matrix for the
top-performing classifier C1. The ground truth
for the classifier C1 says that a binary is vul-
nerable if it presents at least one vulnerability
among: CWE-119, CWE-120, CWE-121, CWE-787,
and CWE-788.

T

EQ NE

P EQ 37 19

NE 20 40

Table 3: Confusion matrix of the second trial.

5



Executive summary Lorenzo Fratus

False positives amount to 16.38%, which is less
than expected considering that ByteMatcher
analyzes functions without context. On the
other hand, the best guess to explain the 17.24%
of false negatives is that the misclassification
happens on functions with vulnerabilities out-
side of symbolic loops or connected to a variable
not recognized by the current implementation of
the summarization algorithm. Other than that,
the statistics outlined in Table 4 support the
original claim. ByteMatcher can correctly
predict the presence or absence of a vulnerability
2 out of 3 times (66.38% of accuracy), making it
a discrete classifier.

Accur. Prec. Recall F1

66.38% 66.07% 64.91% 65.49%

Table 4: Statistics of the second trial.

To summarize, this trial demonstrates that
ByteMatcher can recognize (possible) buffer
overflows during the symbolic execution of a
bytecode. The results are incredibly encourag-
ing and open the way to developing new solu-
tions to improve this functionality.

4. Conclusions
This thesis presented the research and the efforts
behind the implementation of ByteMatcher,
a tool for symbolic execution that mixes different
existing techniques and new approaches to de-
termine the semantic equivalence of bytecodes.
A preliminary analysis of the state of the art
revealed four main challenges that symbolic ex-
ecutors face: the memory model, the interaction
with the environment, the explosion of the state
space, and the resolution of sets of complex sym-
bolic constraints.
The development of ByteMatcher tried to
distill the best solutions from past research and
to mix them with new approaches to obtain a
symbolic executor that could dynamically an-
alyze bytecodes and recognize semantic equiv-
alence. Among those solutions stands a fully-
symbolic memory model which tracks both reg-
isters and memory addresses, handling symbolic
operations without the need for concretization
and without branching the execution path.
The focal point of ByteMatcher’s implemen-

tation was an original approach to compare
fully-symbolic memory models resulting from
the execution of different bytecodes and de-
cide on semantic equivalence. ByteMatcher
also implements a technique to produce sym-
bolic summaries of loops. Loop summaries rep-
resent the best solution to avoid infinite execu-
tion paths without a reduction of the complete-
ness of the analysis. Other relevant techniques
included a methodology to exploit the loop sum-
marization to detect (possible) buffer overflows
in the bytecode and an algorithm to produce fin-
gerprints for function calls.
Two sets of experiments (trials) provided data
to support the validity of the techniques imple-
mented in ByteMatcher. Both trials showed
positive results and provided exciting insights
into ByteMatcher’s implementation. Ulti-
mately, the trials pointed out a few sides of
ByteMatcher that need improvement, the
most prominent of which is the summariza-
tion algorithm. Nevertheless, ByteMatcher
proved to be a fresh approach to binary analy-
sis and deserves to be the subject of further re-
search to refine the implemented techniques and
introduce new functionalities.

References
[1] Lorenzo Binosi. Recognition of inlined

binary functions from template classes.
Master’s thesis, Politecnico di Milano,
2019/2020.

[2] Patrice Godefroid and Daniel Luchaup. Au-
tomatic partial loop summarization in dy-
namic test generation. In Proceedings of
the 2011 International Symposium on Soft-
ware Testing and Analysis, ISSTA ’11, page
23–33, New York, NY, USA, 2011. Associa-
tion for Computing Machinery.

[3] GrammaTech. CGC Challenge Binaries,
2014. (accessed: 01-04-2023).

[4] Yan Shoshitaishvili, Ruoyu Wang, Christo-
pher Salls, Nick Stephens, Mario Polino,
Andrew Dutcher, John Grosen, Siji Feng,
Christophe Hauser, Christopher Kruegel,
and Giovanni Vigna. Sok: (state of) the art
of war: Offensive techniques in binary anal-
ysis. In 2016 IEEE Symposium on Security
and Privacy (SP), pages 138–157, 2016.

6


	Introduction
	Approach
	Symbolic Execution
	Semantic Equivalence
	Buffer Overflow Detection

	Experimental Validation
	Semantic Equivalence
	Buffer Overflow Detection

	Conclusions

