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Abstract

Spontaneous Raman (SR) spectroscopy is a powerful label-free optical spectroscopy tool
to measure vibrational spectra of molecules, providing a unique signature exploitable for
the identification of the different chemical species in heterogeneous samples. SR allows
one to acquire the full spectrum covering the whole Raman active region, shining the
sample with a quasi-monochromatic laser beam. However, SR suffers from low scattering
cross-sections, preventing high acquisition speeds. Coherent anti-Stokes Raman scattering
(CARS) overcomes this limitation, as it exploits third-order non-linear optical processes
that coherently excite the vibrational modes of the investigated sample. The narrowband
CARS signal derives from the interaction of the sample with two spatially and tempo-
rally synchronized picosecond pulses, namely pump and Stokes, and detects a specific
vibrational mode blue-shifted with respect to the generating beams. Broadband CARS
(B-CARS) combines a narrowband pump beam with a broadband Stokes beam, probing
multiple vibrational transitions at the same time, detected with a spectrometer.
This thesis presents an innovative B-CARS set-up, based on a fiber laser system that
we use to generate a narrowband pump beam and a broadband Stokes beam via super-
continuum (SC) generation in bulk media. The work is organized as follows: Chapter
1 introduces CARS processes; Chapter 2 gives a theoretical derivation of the equations
involved in CARS processes and SC generation. Chapter 3 describes the B-CARS set-up
and the experimental results that I obtained during my thesis and the post-processing
algorithms used to extrapolate relevant chemical information. We demonstrated that our
set-up allows us to perform ultrabroadband CARS microscopy and spectroscopy, through
two and three-color CARS, covering the whole Raman active region (500-3100 cm−1). We
performed high-speed spectroscopy (<1 ms/spectrum) on solvents, subcellular acids and
solid-state crystals in excellent agreement with SR spectra. We then validated our system
imaging plastic beads and biological samples collecting hyperspectral data at high acqui-
sition speed in a raster-scanning fashion. Through data processing, we demonstrated that
our system enables us to derive concentration maps highlighting the different chemical
species in unlabeled samples.
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Abstract in lingua italiana

L’effetto Raman spontaneo (SR) è un potente strumento di spettroscopia ottica label-free
che permette di misurare gli interi spettri vibrazionali delle molecole illuminando il cam-
pione con un fascio laser quasi-monocromatico. Questi spettri possono essere associati in
modo univoco alle specie chimiche in campioni eterogenei, permettendone l’identificazione.
Tuttavia, SR soffre di basse sezioni d’urto di scattering, che impediscono il raggiungimento
di velocità di acquisizione elevate. Il Coherent anti-Stokes Raman scattering (CARS)
supera questo limite, poiché sfrutta processi ottici non lineari del terzo ordine che ecci-
tano coerentemente i modi vibrazionali del campione studiato. Il segnale CARS a banda
stretta deriva dall’interazione del campione con due impulsi, detti pompa e Stokes, con
durata nell’ordine dei picosecondi, sincronizzati spazialmente e temporalmente, e rileva
uno specifico modo vibrazionale. Il segnale risultante ha una lunghezza d’onda minore
dei fasci incidenti. Il CARS a banda larga (B-CARS) combina un fascio di pompa a
banda stretta con un fascio di Stokes a banda larga, sondando più transizioni vibrazionali
contemporaneamente, e viene rilevato con uno spettrometro.
Questa tesi presenta un set-up B-CARS innovativo, basato su un sistema laser in fibra,
utilizzato per generare un fascio di pompa a banda stretta e un fascio di Stokes a banda
larga attraverso la generazione di luce supercontinua (SC) in un cristallo. Il lavoro è or-
ganizzato come segue: il Capitolo 1 introduce i processi CARS; il Capitolo 2 fornisce una
derivazione teorica delle equazioni coinvolte nei processi CARS e nella generazione di SC.
Il Capitolo 3 descrive il set-up B-CARS e i risultati sperimentali ottenuti durante la tesi,
nonché gli algoritmi di post-processing utilizzati per estrapolare le informazioni chimiche.
Abbiamo dimostrato che il nostro set-up permette di eseguire microscopia e spettroscopia
CARS a banda ultra larga, attraverso two e three-color CARS, coprendo l’intera regione
Raman (500-3100 cm−1). Abbiamo effettuato misure di spettroscopia ad alta velocità
(<1 ms/spettro) su solventi, acidi subcellulari e cristalli, in ottimo accordo con gli spettri
ottenuti tramite SR. Abbiamo poi eseguito l’imaging di sfere di plastica e campioni bio-
logici, acquisendo dati iperspettrali ad alta velocità. A seguito dell’elaborazione dei dati,
abbiamo dimostrato che il nostro set-up consente di ricavare mappe di concentrazione che
evidenziano le diverse specie chimiche in campioni privi di labelling.



Parole chiave: Microscopia Broadband CARS, Two e three-color CARS, Generazione
di supercontinuo, Imaging ad alta velocità, Algoritmi di post-processing.
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1| Introduction

1.1. Historical introduction

In 1928, C.V. Raman, together with K.S. Krishnan, observed for the first time the in-
elastic scattering of an electromagnetic field from vibrating molecules in liquids. This
process was named Raman effect by one of its discoverers [1]. Even though the potential
application for molecular spectroscopy was clear from the beginning, it was not until the
invention of laser in 1960s that its technical implementation became possible. After that,
the Raman effect became one of the most popular ways to perform molecular analysis.
However, the main drawback of this technique is the slowness of data acquisition, due
to its incoherent nature, which prevents fast imaging. A solution to this problem arose
in 1962, when the first Coherent Raman effect, namely Stimulated Raman Scattering
(SRS), was serendipitously discovered by Eckhardt [2]. This breakthrough was made pos-
sible once again by the invention of the ruby-laser [3], since high flux density, of the order
of 108 W/cm2, which can be achieved only through stimulated emission of radiation, are
needed to induce Coherent Raman effects. Shortly afterwards, thanks to the study of
nonlinear wave mixing performed by Yajima and Takatsuji in 1964 [4] and by Maker and
Terhune in 1965 [5], a new four-wave mixing process that could be made resonant with a
molecular vibration was discovered. This process took the name of Coherent anti-Stokes
Raman scattering (CARS). Both stimulated Raman scattering (SRS) and CARS light-
matter interaction processes have been extensively discussed and exploited in the context
of nonlinear optical spectroscopy since this early period and up to the early 1980s [6–11].
In 1982, the first implementation of CARS in the context of imaging was reported by
Duncan, who developed the first CARS microscope using a non-collinear geometry [12].
The first biological applications of CARS imaging arose in 1999, when Xie’s group devel-
oped a novel CARS microscope characterised by a collinear geometry of two laser beams
and raster scanning at near-infrared wavelengths [13]. The use of collinear geometry and
near infrared wavelengths greatly simplified the instrumentation and the biocompatibility,
triggering many applications and innovations. While CARS microscopes were invented in
the early 1980s, it was only in 2007 that the first SRS microscope was developed [14], since
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only after the invention of sophisticated detection instruments, such as lock-in amplifier, it
was possible to measure SRS signals at reasonable pixel dwell times. In 2008, Xie’s group
reported a high-speed SRS microscope for biological imaging [15]. Nowadays, Coherent
Raman scattering microscopy is a potent method for revealing the chemical mechanisms
within living cells and functional materials.

1.2. Introduction

Nowadays, optical microscopy is one of the most exploited methods to perform imaging
of biological samples. This powerful technique allows one to visualize morphological de-
tails in cells and tissues up to the micrometer scale [16]. Optical microscopy offers high
resolution and it does not need sample fixation, allowing one to work on unprocessed
specimens or in vivo. However, in biological samples, it is often necessary to introduce
probes to distinguish what is interesting (signal) from what is not (background). Fluo-
rescence microscopy is the quintessential example, as it aims to reveal only the objects
of interest in an otherwise black background. Fluorescence imaging has taken the lead
in microscopy used for biology because of its inherent selectivity. Organic chemists have
developed countless fluorescent probes during the past few decades, enabling the labeling
of almost any component of biological systems that can be imaged [17].

Fluorescence microscopy features a superb sensitivity up to the single-molecule limit
thanks to the use of exogenous (such as dyes or semiconductor quantum dots [18]) or
endogenous (such as fluorescent proteins [19]) markers. However, the addition of flu-
orescent markers inevitably perturbes the sample, especially when small molecules are
analyzed, since in this case the size of the probes is often bigger than the investigated sys-
tem and interferes with its biological functions [20]. Furthermore, fluorescent microscopy
suffers from two intrinsic limitations [21]: photobleaching and phototoxicity [22]. Cells are
particularly vulnerable to phototoxicity [23], especially with short-wavelength light stimu-
lation, which is further worsened by reactive chemical species produced by the fluorescent
probes under illumination.

These factors make intrinsic, label-free imaging approaches necessary for a wide range
of issues in the biological sciences and biomedicine. These methods don’t require the
inclusion of any fluorescent molecules. Every element of a biological sample, such as
a cell or tissue, has a vibrational spectrum that represents its molecular structure and
offers an endogenous unique signature that can be used for identification of its chemical
constituents. The vibrational transitions are directly resonant with mid-infrared (MIR)
wavelengths (λ = 3-20 µm). Vibrational absorption microscopy [24] exploits this kind



1| Introduction 3

of light to retrieve the vibrational information. However, the required long wavelengths
have a limited penetration depth due to water absorption, and low spatial resolution
[20]. Spontaneous Raman (SR) microscopy overcomes these restrictions, since it uses
visible or near-infrared (NIR) light, which offers far higher penetration depth and spatial
resolution than its MIR equivalent [25]. SR exploits quasi-monochromatic laser light at
frequency ωP (pump frequency) in the visible or near-infrared (NIR) to excite a molecule
to a virtual state, from which it relaxes to the ground state emitting a photon with
lower energy at frequency ωS (Stokes frequency) 1. As depicted in fig. 1.1a, the Stokes
frequency, ωS = ωp−Ω, is red shifted in frequency and carries the vibrational information
at frequency Ω. The resulting vibrational spectrum (fig. 1.1b) consists in a superposition
of peaks, each representing a specific chemical bond. Each vibrational spectrum could
be divided into three main regions: the fingerprint region (500-1800 cm−1), that has a
higher number of peaks and is considered to be the most informative one since many
contributions from proteins and nucleic acids can be observed in this interval, the silent
region (1800-2800 cm−1), that has no peaks, and the carbon-hydrogen (C-H) stretching
region (2800-3100 cm−1).

1If the molecule is already in a vibrational state, after a further excitation due to the pump beam,
it relaxes to the ground state emitting an anti-Stokes photon at frequency ωAS = ωp + Ω. However,
performing imaging of biological samples at room temperature (considering a Boltzmann distribution
of the population among the vibrational levels), the anti-Stokes signal is much weaker than its Stokes
counterpart, since the ground level is much more populated than the other vibrational states. The Stokes
signal is thus preferred.
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(a) Jablonsky diagram of Sponta-
neous Raman.

(b) Raman vibrational spectrum.

Figure 1.1: (a) Schematic of energy levels involved in Spontaneous Raman. Graph taken
from: [20]. (b) Example of Raman vibrational spectra, highlighting the fingerprint region
and the relevant biological peaks. Graph taken from: [26]

Analyzing a Raman spectrum it is possible to chemically identify many biomolecules
contained in cells and tissues [27, 28]. SR can distinguish between normal and malignant
states in skin, bladder, and gastric tissues, rat fibroblast cells, human bone, and human
epithelial cells from a number of organs. It can also detect biochemical abnormalities in
radioirradiated cells [20]. Furthermore, there are numerous encouraging reports of the
diagnostic efficacy of this technique in cancer research [26, 29–34].

However, as a result of the very low scattering cross section of SR microscopy, which is
around 10-12 orders of magnitude lower than the absorption cross section of molecules, a
weak, incoherent signal is released isotropically from the irradiated material. This involves
several consequences:

• It is challenging to distinguish the weak inelastically scattered SR light from the sam-
ple fluorescence, which creates a broad baseline to be removed using post-processing
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techniques;

• It is difficult to use SR to investigate diluted species, due to the low signal-to-noise
ratio (SNR);

• Image acquisition periods are too long due to the lengthy integration times needed
(seconds or even minutes to generate Raman spectra with a satisfactory SNR) and
thus prevents real-time imaging of dynamical processes in living cells or tissues.

Coherent Raman Scattering (CRS) [35, 36] overcomes these limitations exploiting third-
order nonlinear optical processes which allow generating a signal higher than the SR one
up to a factor of 107. These processes rise when two ultrashort light pulses, pump (at
ωP ) and a red-shifted Stokes (at ωS), interact with a medium simultaneously. When the
difference between the two frequencies, Ω = ωP − ωS matches a vibrational frequency of
the sample, a collective molecular oscillation is induced in the focal volume. Unlike in the
SR process, the molecules in this case vibrate coherently, emitting a coherent and stronger
signal, which propagates along a phase-matched direction, making it also easier to detect.
Many advantages come from CRS with respect to SR or fluorescence microscopy:

• CRS produces a significantly stronger signal than SR microscopy due to a coherent
superposition of the vibrational responses from the excited oscillators, which enables
substantially faster imaging speeds;

• Unlike fluorescence microscopy, which uses fluorophores and stainings, CRS is a
label-free microscopy which allow for the study of unperturbed cells and tissues;

• It normally operates without population transfer into the molecule’s electronic ex-
cited states, limiting the photobleaching of biological substances;

• Similar to multi-photon fluorescence microscopy [37], CRS is a nonlinear microscopy
technique and the signal is only created in the focal volume, demonstrating 3D
sectioning capacity without the requirement for any physical confocal apertures
[38];

• In comparison to the visible range, excitation in the NIR (700-1200 nm) has the
benefit of having relatively low light absorption by tissues in vivo and reduced light
scattering by turbid media, making it possible to investigate thick tissues at higher
penetration depths (typically in the 0.1-1 mm range) [20]. Reduced phototoxicity
and tissue damage are also other advantages of shifting the wavelength of the beams
toward infrared.

The most relevant CRS implementations are Coherent anti-Stokes Raman scattering
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(CARS)[12, 13, 39] and Stimulated Raman Scattering (SRS)[14, 15, 40].

Figure 1.2: Schematic of energy levels involved in SRS, CARS and non-resonant back-
ground (NRB). Graphs taken from: [20].

In fig. 1.2 the Jablonski diagrams of SRS, CARS and non-resonant background (NRB)
are reported. In the SRS process, coherent interaction with the sample drives stimulated
emission from a virtual state to the probed vibrational state, which causes a Stokes-field
amplification (stimulated Raman gain, SRG) and a concurrent pump-field attenuation
(stimulated Raman loss, SRL). In the CARS process, the vibrational coherence is read by
an encounter with a probe beam at frequency ωPR, producing coherent radiation at the
anti-Stokes frequency ωAS = ωPR+Ω (usually, ωPR = ωPU is used so that ωAS = ωPU+Ω).

Both CARS and SRS have benefits and downsides. SRS is superior to CARS in terms
of molecular contrast and quantification. Particularly, since the SRS intensity is directly
proportional to the imaginary part of the resonant third order susceptibility, it exhibits
linear dependance to the analyte concentration and a spectral lineshape directly compa-
rable to the SR signal allowing for the simple application of spectral data bases created
for spontaneous Raman data to SRS [41]. However, SRS signal is read on top of the orig-
inal pump or Stokes beams, calling for modulation transfer techniques, which are quite
complicated in their implementation.
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By contrast, due to the presence of a non-resonant background (NRB) deriving from a
four wave mixing process, which interferes with the resonant signal, CARS spectral line
shape results distorted and the peaks are shifted in position. Sophisticated algorithms like
Kramers-Kronig or Maximum-Entropy method and expensive calculations are required to
extract the pure vibrational information that can be compared to the SR spectrum [42].
On the other hand, implementing CARS into standard laser scanning microscopes is more
feasible since neither laser modulation of one of the lasers nor special detectors and so-
phisticated frequency-selective amplifiers like lock-in amplifiers (LIA) or tuned amplifiers
(TAMP) are needed [41]. Moreover, a higher-order nonlinear dependence on the exci-
tation laser intensity makes the spatial resolution of CARS microscopy possibly higher,
and high resolution imaging systems appear feasible [43]. Since CARS and SRS present
advantages and disadvantages, both are actively being researched in light of potential
uses.

Extremely high acquisition speeds have already been demonstrated for both CARS and
SRS, reaching the video-rate [44, 45], in the single-frequency regime. In this regime, pump
and Stokes pulses are characterized by a narrow bandwidth, covering few wavenumbers
(which is the typical width of Raman peaks), and a picosecond duration. The difference
in frequency Ω = ωP − ωS matches a specific vibrational transition, allowing to track the
presence of specific molecules, with rather isolated Raman peaks. However, the single-
frequency technique does not allow to identify or distinguish different species in complex
systems such as biological samples, since the spectral information is incomplete and several
biological peaks are overlapped. The best way to overcome these limits is broadband
CRS microscopy. The main goal of broadband CRS microscopy is to retain the same
amount of information given by SR, but at higher acquisition speed, comparable to its
single-frequency counterpart. Two possible modalities to implement this technique are
available:

• Hyperspectral CRS: in this case narrowband pulses are exploited and the frequency
detuning is rapidly scanned to build a complete SRS/CARS spectrum;

• Multiplex CRS: in this case one of the pulses presents a broad bandwidth, allowing
to stimulate several vibrational modes at the same time.

The last configuration will be analyzed and experimentally exploited in the following. In
multiplex broadband CARS, a broadband Stokes pulse and a narrowband pump pulse
are used to shine the sample. Their interaction populates several vibrational levels, as
can be seen in fig. 1.3 (a). Afterwards, another interaction with the pump beam, which
is characterized by a longer temporal duration (in the picosecond regime), excites the
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system to a multitude of virtual levels. Finally, the system goes back to the ground
state, emitting the CARS signal. It is remarkable that the bandwidth of the pump beam
determines the spectral resolution, therefore, it is desirable to keep it in the order of few
wavenumbers. On the contrary, in SRS, the vibrational signature can either be detected
as a frequency-dependent Stokes amplification (SRG) or as a frequency-dependent pump
attenuation (SRL). One can then choose to either resort to a narrowband pump and a
broadband Stokes signal (SRG detection, fig. 1.3 (b),(d)), or a narrowband pump and a
broadband Stokes signal (SRL detection, fig. 1.3 (c),(e)).

Figure 1.3: Schematic of energy levels and fields involved in: (a) broadband CARS; (b)
SRS with broadband Stokes; (c) SRS with broadband pump. Pump/Stokes spectra and
nonlinear signals for the cases of (d) broadband Stokes and (e) broadband pump. [20].

In the literature, several multiplex B-CARS microscopy setups have been realized. The
majority work in the C-H region [46], due to the higher concentration of oscillators.
Despite improvements in the detection systems, there are still problems in the acquisi-
tion of Raman spectra in the fingerprint region, since the signal in this area is much
weaker. Some application of multiplex B-CARS setups covering the fingerprint region
have been realized[47–51]. In order to successfully probe the most informative spectral
area, supercontinuum light must be generated and exploited as a broadband Stokes pulse.



1| Introduction 9

Supercontinuum generation is usually achieved in a tapered fiber [52] or a photonic crystal
fiber (PCF) [53, 54].

The detection of the signal can be performed in various ways:

• Exploiting a time-domain Fourier transform approach [55–57]. Hashimoto et al.
achieved the record speed of 24000 spectra/s [56];

• Using frequency combs [58]. Ideguchi et al. managed to perform high-speed mea-
surement (3400 spectra/s);

• Detecting the signal in the frequency domain [47], simply using a spectrometer
dispersing the anti-Stokes components and a CCD. This approach is limited by the
CCD readout time, which is around 1 ms.

In this thesis, an innovative experimental configuration for multiplex ultra-broadband
CARS with supercontinuum (SC) generation in bulk media is described and the experi-
mental results are shown.

SC in bulk media represents a more compact, reliable, easy-to-use, and alignment-insensitive
approach. It exhibits exceptional long-term stability that approaches that of the pump
laser source itself, strong mutual correlations between the intensities of its spectrum com-
ponents, and low pulse-to-pulse fluctuations, as demonstrated by Dubietis et al.[59]. With
this innovative approach, we managed to cover the entire Raman-active region, from 500
to 3100 cm−1. We reached high-speed detection, being able to acquire more than 1000
spectra/s, when performing spectroscopy on solvents, subcellular acids and solid state
materials, such as Lithium Niobate. We then performed imaging of plastic beads, testing
imaging capability of the setup, and biological samples.

The work is organized as follows:

• In chapter 2 we will start from the theoretical derivation of the propagation equa-
tion of light in media. We will proceed analyzing the non linear processes up to
the third order. Afterwards, we will describe the coherent Raman scattering phe-
nomena, dwelling on CARS, analyzing in particular B-CARS, Two and three colors
CARS, time-delayed CARS and Epi-CARS. Finally, we will describe supercontin-
uum generation techniques, especially in bulk media.

• In chapter 3 we will introduce the experimental set-up. Then, we will characterize
the sources exploiting frequency resolved optical gating (FROG). We will describe
the data processing, analyzing in particular the noise reduction, the NRB removal
techniques and the Multivariate curve resolution (MCR) algorithm. Finally, we
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will show the experimental results obtained applying our setup on several samples.
In particular, spectroscopy on solvents, subcellular acids and Lithium Niobate and
imaging of plastic beads and biological samples will be shown. Both Two and three-
color CARS spectra will be analyzed and a time-delayed CARS measurement will
be shown as a proof of concept.
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In this chapter the basic theory regarding the studied processes is presented. We will start
from the Maxwell equations, describing the propagation of pulses in linear media. After-
wards, we will analyze the non-linear optical processes up to the third order, describing
the coherent Raman scattering phenomena in details, dwelling on CARS. Finally, super-
continuum (SC) light generation will be described, pointing out the advantages of SC
generation in bulk media.

2.1. Linear optics

2.1.1. Propagation equation

In order to study the optical processes described in the next sections, it is necessary to
start from Maxwell’s wave equations, aiming to derive the propagation equation of light
in vacuum or in dielectric media. Maxwell’s equations read:



∇ ·D = ρ,

∇×E = −∂B
∂t

,

∇ ·B = 0,

∇×H =
∂D

∂t
+ J .

(2.1a)

(2.1b)

(2.1c)

(2.1d)

Where D is the electric displacement field, ρ is the net free charge density, B is the
magnetic induction field, E is the electric field, H is the magnetic field and J is the
conduction current density.

In addition to the Maxwell equations, we shall consider the constitutive equations as well:

{
D = ϵ0E + P ,

B = µ0(H +M ),

(2.2a)

(2.2b)
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Where P is the polarization field, namely the volumetric density of electric dipole mo-
ments, while M is the magnetization field, that is the volumetric density of magnetic
dipole moments [60].

Exploiting the Maxwell equations, it is possible to derive the magnetic field from the
electric one and viceversa. Hence, it is enough to focus on just one of the two. In
particular, the electric field propagation equation will be derived.

Starting from (2.1b), we vectorially multiply both sides by the nabla operator ∇, obtain-
ing:

∇× (∇×E) = −∇× (
∂B

∂t
), (2.3)

Hence, considering that the ∇ operator and ∂
∂t

commute, since there is no relationship
among space and time derivatives, we can write (2.3) as:

∇× (∇×E) = − ∂

∂t
(∇×B), (2.4)

Whence, substituting (2.2b), (2.4) becomes:

∇× (∇×E) = − ∂

∂t
[∇× (µ0H + µ0M )] = −µ0

∂

∂t
(∇×M)− µ0

∂

∂t
(∇×H), (2.5)

Now, exploiting (2.1d), and substituting it in (2.5), we obtain:

∇× (∇×E) = −µ0
∂

∂t
(∇×M)− µ0

∂

∂t

[
J +

∂D

∂t

]
, (2.6)

We can now proceed substituting (2.2a) in (2.6) finding:

∇× (∇×E) = −µ0
∂

∂t
(∇×M )− µ0

∂J

∂t
− µ0

∂2

∂t2
[ϵ0E + P ], (2.7)

Knowing that ϵ0µ0 =
1
c2

, where c is the speed of light, and reorganizing the terms in (2.7),
we find:

∇× (∇×E) +
1

c2
∂2E

∂t2
= −µ0

∂

∂t
(∇×M)− µ0

∂J

∂t
− µ0

∂2P

∂t2
, (2.8)
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Equation (2.8) represents the exact propagation equation in a medium, where three differ-
ent source terms can be identified. It is now possible to introduce some approximations,
in order to solve the propagation equation[60].

We can safely consider ∂
∂t
(∇ × M) ≈ 0, which is a valid approximation for the non-

magnetic materials, or when the magnetization does not change abruptly in space and
time.

Furthermore, we shall assume ρ ≈ 0 (no net free charges approximation). This approxima-
tion is valid until the electrons are not separated from the corresponding atoms. In order
to introduce this approximation in the propagation equation we shall further develop the
left-hand side of (2.8) with the well known relation:

∇× (∇×E) = ∇(∇ ·E)−∇2E (2.9)

Where, substituting (2.2a) in (2.1a), reorganizing the terms and considering the no net
free charges approximation we find:

∇ ·E =
ρ−∇ · P

ϵ0
≈ −∇ · P

ϵ0
(2.10)

Introducing (2.9) and (2.10) in the propagation equation for non magnetic media we
obtain:

−∇2E +
1

c2
∂2E

∂t2
= −µ0

∂J

∂t
− µ0

∂2P

∂t2
+∇

[
∇ · P
ϵ0

]
, (2.11)

We can proceed further considering homogeneous media, where refractive index does
not show significant discontinuities. Through this approximation we can consider the
polarization almost constant in space for the spatial scale considered, then: ∇ · P ≈ 0

We can now introduce this approximation in (2.11) obtaining the propagation equation
for homogeneous, non-magnetic media, with no free charges:

−∇2E +
1

c2
∂2E

∂t2
= −µ0

∂J

∂t
− µ0

∂2P

∂t2
, (2.12)

Now, since we will consider mainly dielectric media at moderate powers (not enough to
ionize the electrons), the conduction current density is almost equal to zero: J ≈ 0.

Therefore, applying this last approximation and changing the signs in (2.12), we obtain
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the approximated propagation equation for homogeneous non-magnetic media at low-
moderate powers:

∇2E − 1

c2
∂2E

∂t2
= µ0

∂2P

∂t2
, (2.13)

In many cases other approximations could be introduced, such as non-birefringent media.
In this kind of media the linear polarization of the electric field is preserved throughout
the entire propagation, allowing to discard the vectorial nature of the fields:

{
E = E(r, t),

P = P (r, t)

(2.14a)

(2.14b)

Then, introducing (2.14) in (2.13) we find the scalar propagation equation, namely:

∇2E − 1

c2
∂2E

∂t2
= µ0

∂2P

∂t2
, (2.15)

The last approximation which can be introduced is the Plane Wave Approximation
(PWA). This approximation is particularly useful to understand the behaviour of light
in matter, however, it is not applicable to the vast majority of real-life cases. Due to
the Plane Wave Approximation, the electric field can be considered constant all over a
plane perpendicular to the propagation direction, which can be considered along the z-
axis without loss of generality, in this way the Laplacian operator can be significantly
simplified as follows:

∇2E =
∂2E

∂x2
+
∂2E

∂y2
+
∂2E

∂z2
=
∂2E

∂z2
, (2.16)

Within this approximation, we can apply (2.16) to (2.15) and the propagation equation
can be written as:

∂2E

∂z2
− 1

c2
∂2E

∂t2
= µ0

∂2P

∂t2
, (2.17)

2.1.2. Linear Polarization

The polarization P appears in the propagation equation as a source term. It is linked to
the the medium in which the light propagates and affects the incoming electric field. It
can be divided in a linear, P (L), and a non-linear, P (NL), terms as:
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P = P (L) + P (NL), (2.18)

The polarization is defined as the volumetric density of dipole moments, however, in a
macroscopic picture, it can be described by means of the electric susceptibility χ. We can
now focus on the linear polarization, which is a valid approach for moderate intensities,
where only P (L) plays a role. The components of the linear polarization can be written
as:

PL
i (r, t) = ϵ0

∫
dx′ dy′ dz′

∫ +∞

−∞
dt′χij(r, r

′, t, t′)Ej(r
′, t′), (2.19)

With i = {x, y, z} and j = {x, y, z} and where the integral in space is performed over the
whole space. Note that the Einstein notation has been used in (2.19).1 It is possible to
observe that the polarization depends linearly on the electric field, but it is weighted by the
susceptibility χ, which generally has a tensorial nature. Indeed, every component of the
electric field contributes to every component of the polarization. Before plugging (2.19)
in the propagation equation, some approximations are needed. In the next sections, we
will consider media with the following characteristics:

1. Isotropic;

2. Time-invariant;

3. Homogeneous.

Considering only isotropic (and so non birefringent) media allows us to discard the ten-
sorial nature of the susceptiblity. Moreover, for time-invariant and homogeneous media,
the susceptibility can be further simplified as: χ(r, r′, t, t′) = χ(r − r′, t− t′). The linear
polarization can be written as:

P L(r, t) = ϵ0

∫
dx′ dy′ dz′

∫ +∞

−∞
dt′χ(r − r′, t− t′)E(r′, t′), (2.20)

The polarization is the convolution in space and time of the electric field component of the
light pulse with the susceptibility function. If we neglect the spatial dependence (which
is valid in the plane wave approximation) of χ and the vectorial nature (as we did before)
(2.20) is further simplified:

1Whenever an index is repeated in an expression, such as j in (2.19), a sum over that index is
performed.
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PL(t) = ϵ0

∫ +∞

−∞
dt′χ(t′ − t)E(t′), (2.21)

We can now plug (2.21) in the propagation equation (for simplicity the last form of the
propagation equation, that is (2.17), is considered):

∂2E

∂z2
− 1

c2
∂2E

∂t2
= µ0ϵ0

∂2

∂t2

∫ +∞

−∞
χ(t− t′)E(t′) dt′. (2.22)

The source term can be rewritten as a convolution in time, defined as:

∫ +∞

−∞
f(t′ − t)g(t′) dt′ = f(t) ∗ g(t), (2.23)

Therefore, taking into account (2.23) in (2.22), we find:

∂2E

∂z2
− 1

c2
∂2E

∂t2
= µ0ϵ0

∂2

∂t2
[χ(t) ∗ E(t)] . (2.24)

2.1.3. Helmoltz equation

In order to further proceed in the analysis, it is necessary to introduce the Fourier trans-
form and some of its properties. Given a function in time f(t), the Fourier transform of
f(t) is defined as:

F (ω) = F {f(t)} =

∫ +∞

−∞
f(t)e−iωt dt, (2.25)

While the anti-transform reads as follows:

f(t) = F−1 {F (ω)} =

∫ +∞

−∞
F (ω)e+iωt dω

2π
, (2.26)

The following properties hold [60]:

F
{
dnf

dtn

}
= (iω)nF (ω), (2.27)
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F
{∫ +∞

−∞
f(t− t′)g(t′) dt′

}
= F {f ∗ g} = F{f}F{g} = F (ω)G(ω), (2.28)

F(f(t)g(t)) = F(f) ∗ F(g) = F (ω) ∗G(ω), (2.29)

We can apply the Fourier transform (2.25) to both sides of (2.24) obtaining:

F
{
∂2E

∂z2
− 1

c2
∂2E

∂t2

}
= µ0ϵ0F

{
∂2

∂t2
[χ(t) ∗ E(t)]

}
. (2.30)

Applying (2.27) and (2.28), to (2.30) we find:

∂2F{E}
∂z2

− 1

c2
(iω)2F{E} =

1

c2
[(iω)2F{χ}F{E}]. (2.31)

Where we also considered the well known relation: ϵ0µ0 = 1
c2

. Introducing: Ẽ(z, ω) =

F{E(z, t)} and χ̃(ω) = F(χ(t)), it is possible to rewrite (2.31) as:

∂2Ẽ

∂z2
+
ω2

c2
Ẽ = −ω

2

c2
Ẽχ̃. (2.32)

Finally, reorganizing the terms in (2.32), retrieving the Helmoltz equation:

∂2Ẽ

∂z2
+

(1 + χ̃)ω2

c2
Ẽ = 0. (2.33)

In order to solve the Helmoltz equation (2.33), it is useful to introduce the dielectric
function ϵr(ω):

ϵr(ω) = 1 + χ̃. (2.34)

Where ϵr(ω) is linked to the wavenumber k(ω) by means of the relation:

k2(ω) =
ω2

c2
ϵr(ω). (2.35)

Furthermore, since the dielectric function is linked to the refractive index n(ω) by the
relation ϵr(ω) = n2(ω), the wavenumber can also be written as:
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k(ω) =
ω

c
n(ω). (2.36)

Introducing (2.34) and (2.35) in (2.33) we obtain:

∂2Ẽ

∂z2
+ k2(ω)Ẽ = 0. (2.37)

We found a harmonic oscillator equation (eq. (2.37)), which has two different solutions in
the exponential form:

Ẽ1(z, ω) = Ẽ1(0, ω)e
−ik(ω)z, (2.38)

Ẽ2(z, ω) = Ẽ2(0, ω)e
+ik(ω)z. (2.39)

Equations (2.38) and (2.39) represent the forward and backward propagation respectively.
Let us consider only the forward propagation. Starting from (2.38), we can find the
solution of the propagation equation in linear, isotropic, homogeneous, time-invariant
media applying the Fourier anti-transform (2.26) as follows:

E(z, t) = F−1
{
Ẽ1(z, ω)

}
=

∫ +∞

−∞
Ẽ1(0, ω)e

i[ωt−k(ω)z] dω

2π
. (2.40)

2.1.4. Propagation of pulses

In the previous calculations, we applied the Plane Wave Approximation. However, in
the following, the propagation of pulses in media will be considered. A pulse can be
represented as follows:

E(z, t) = A(z, t) cos[ω0t− k0z + ϕ(z, t)], (2.41)

This is called envelope representation of a pulse, where A(z, t) is the envelope, cos[ω0t−
k0z + ϕ(z, t)] is the carrier, ω0 is the central frequency, k0 is the central wavenumber,
defined as k0 = ω0

c
n(ω0), and ϕ(z, t) is the phase. The resulting shape is depicted in

fig. 2.1.
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Figure 2.1: Envelope representation of a gaussian pulse.

Assuming ϕ(z = 0, t) = 0, (2.41) at z = 0 can be written as:

E(z = 0, t) = A(z = 0, t) cos[ω0t], (2.42)

Since E(z = 0, t) is a real function, the following property of the Fourier transform holds:

Ẽ(0,−ω) = Ẽ∗(0, ω), (2.43)

We can now proceed performing the Fourier transform of (2.42):

Ẽ(0, ω) = F {A(0, t) cos(ω0t)} = F {A(0, t)} ∗ F {cos(ω0t)} , (2.44)

Where we used the property (2.29). Let us consider the Fourier transform of cos(ω0t):

F {cos(ω0t)} =
δ(ω − ω0) + δ(ω + ω0)

2
, (2.45)

Where δ is the Dirac delta. The following property of the Dirac delta holds:

f(x) ∗ δ(x− x0) = f(x− x0), (2.46)

Exploiting (2.46) and knowing (2.45), we can rewrite (2.44) as:

Ẽ(0, ω) =
Ã(0, ω − ω0) + Ã(0, ω + ω0)

2
, (2.47)



20 2| Theory

Where Ã(0, ω) = F{A(z = 0, t)}. Taking into account (2.43), we can write:

Ã(0, ω − ω0) = Ã∗(0, ω + ω0), (2.48)

Therefore, due to (2.48):

Ã(0, ω − ω0) + Ã(0, ω + ω0) = 2Re{Ã(0, ω − ω0)}, (2.49)

Assuming that the bandwidth in frequency of Ã(0, ω) is much smaller compared to ω0

and considering (2.49) we can rewrite (2.40) as:

E(z, t) = Re

{∫ +∞

0

Ã(ω − ω0) exp[i(ωt− k(ω)z)]
dω

2π

}
. (2.50)

Let us consider the wavenumber k(ω). Since Ã(0, ω) is different from zero only close to
ω0, we can expand k(ω) in ω0 as follows:

k(ω) = k(ω0) +

(
dk

dω

)
ω0

(ω − ω0) +
∞∑
n=1

βn
n!

(ω − ω0)
n, (2.51)

Where the following definitions hold:

1. Phase velocity vph, defined as: 1
vph

= k(ω0)
ω0

,

2. Group velocity vg, defined as: 1
vg

=
(
dk
dω

)
ω0

,

3. Group velocity dispersion (GVD) β2, defined as: β2 =
(

d2k
dω2

)
ω0

,

4. Third order dispersion (TOD) β3, defined as: β3 =
(

d3k
dω3

)
ω0

.

Therefore, we can develop (2.51) as:

k(ω) =
ω0

vph
+

(ω − ω0)

vg
+

1

2
β2(ω − ω0)

2 +
1

6
β3(ω − ω0)

3 + . . . , (2.52)

In order to understand the role of the phase and group velocity, we can stop at the first
order (that is the group velocity term) in (2.52) and plug it in (2.50), obtaining:

E(z, t) = Re

{∫ +∞

0

Ã(ω − ω0) exp

[
i

(
ωt− ω0z

vph
− (ω − ω0)z

vg

)]
dω

2π

}
. (2.53)
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Then, we can sum and subtract ω0t in the exponential in (2.53), and subsequently take
out of the integral the terms which do not depend on ω:

E(z, t) = Re

{∫ +∞

0

Ã(ω − ω0) exp

[
i

(
ωt− ω0t+ ω0t−

ω0z

vph
− (ω − ω0)z

vg

)]
dω

2π

}
=

= Re

{∫ +∞

0

Ã(ω − ω0) exp

[
i

((
t− z

vg

)
(ω − ω0) + ω0

(
t− z

vph

))]
dω

2π

}
=

= Re

{
exp

[
iω0

(
t− z

vph

)]∫ +∞

0

Ã(ω − ω0) exp

[
i

((
t− z

vg

)
(ω − ω0)

)]
dω

2π

}
,

(2.54)

Let us define ω′ = ω − ω0, so dω′ = dω. We can rewrite (2.54) as:

E(z, t) = Re

{
exp

[
iω0

(
t− z

vph

)]∫ +∞

−ω0

Ã(ω′) exp

[
i

((
t− z

vg

)
ω′
)]

dω′

2π

}
, (2.55)

Since Ã(ω′) is different from zero only close to ω′ ≈ 0, we can extend the lower limit of
the integral from −ω0 to −∞ without changing the result. In this way (2.55) becomes:

E(z, t) = Re

{
exp

[
iω0

(
t− z

vph

)]∫ +∞

−∞
Ã(ω′) exp

[
i

((
t− z

vg

)
ω′
)]

dω′

2π

}
=

= Re

{
exp

[
iω0

(
t− z

vph

)]
F−1

{
Ã(ω′)

}
t′=t−z/vg

}
,

(2.56)

Where F−1
{
Ã(ω′)

}
t′=t−z/vg

is the Fourier anti-transform in t − z/vg. Finally, defining

the group delay τg as τg = z
vg

and the phase delay τph as τph = z
vph

we can write (2.56) as:

E(z, t) = A(t− τg) cos[ω0(t− τph)] (2.57)

In general τg ̸= τph, and this results in a slippage of the optical carrier with respect to
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the envelope. Let us define the Carrier-Envelope Phase Offset (CEP) in order to quantify
this mismatch:

CEP : ∆Ψ = ω0(τg − τph) (2.58)

2.1.5. Group velocity dispersion

The goal of this section is to understand the role of the Group velocity dispersion and its
effects on the propagation of a pulse trough a medium. Hence, we will start from (2.50),
developing k(ω) to the second order (namely, the GVD term):

E(z, t) = Re

{∫ +∞

0

Ã(ω − ω0) exp

[
i

(
ωt− ω0z

vph
− (ω − ω0)z

vg
− 1

2
β2z(ω − ω0)

2

)]
dω

2π

}
.

(2.59)

Let us consider a Gaussian pulse as the simplest case of pulse:

E(z, t) = E0 exp

[
− t2

2τ 2p

]
cos(ω0t), (2.60)

The intensity of the Gaussian pulse can be calculated from (2.60) obtaining:

I(z, t) = I0 exp

[
− t2

τ 2p

]
, (2.61)

Where τp is a constant related to the temporal duration ∆tFWHM (where FWHM stands
for Full Width at Half Maximum, as it can be seen in fig. 2.2) by means of the relation:

∆tFWHM = τp
√

2 ln(2), (2.62)

Which could be easily derived putting the right-hand side of (2.61) equal to I0/2.
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Figure 2.2: Gaussian pulse and its full width at half maximum in time.

An example of gaussian pulse is reported in fig. 2.2, where the FWHM in time has been
highlighted. In order to plug the Gaussian pulse in (2.50), it is necessary to calculate the
Fourier transform of its envelope:

F
{
E0 exp

[
− t2

2τ 2p

]}
= τp

√
2π exp

(
−
ω2τ 2p
2

)
= Ã(ω), (2.63)

Therefore, substituting ω with ω − ω0 in (2.63), we find:

Ã(ω − ω0) = τp
√
2π exp

(
−
(ω − ω0)

2τ 2p
2

)
, (2.64)

We can now plug (2.64) in (2.59), obtaining:

E(z, t) = Re

{∫ +∞

0

E0τp
√
2π exp

(
−
(ω − ω0)

2τ 2p
2

)
exp

[
i

(
ωt− ω0z

vph
− (ω − ω0)z

vg
− 1

2
β2z(ω − ω0)

2

)]
dω

2π

}
. (2.65)
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We can now define a new quantity: τ̃ 2p ≡ τ 2p + iβ2z. Therefore (2.65) becomes:

E(z, t) = Re

{∫ +∞

0

E0τp
√
2π exp

(
−
(ω − ω0)

2τ̃ 2p
2

)
exp

[
i

(
ωt− ω0z

vph
− (ω − ω0)z

vg

)]
dω

2π

}
.

(2.66)

We can now sum and subtract ω0t in the exponential in (2.66) and define ω′ = ω−ω0, as
we did in (2.54), finding:

E(z, t) = Re

{
exp

[
iω0

(
t− z

vph

)]∫ +∞

−ω0

Ã(ω′) exp

[
i

(
ω′

(
t− z

vg

))]
dω

2π

}
. (2.67)

It is possible to observe that the integral in (2.67) represents the Fourier anti-transform of
Ã(ω′) (where τp was substituted by τ̃p), centered in t′ = t− z

vg
. Therefore, we can proceed

as follows:

F−1
{
Ã(ω′)

}
∝ F−1

{
exp

[
−
ω′τ̃ 2p
2

]}
∝ exp

[
− t′

2τ̃p
2

]
(2.68)

After some calculations, (2.68) becomes:

F−1
{
Ã(ω′)

}
∝ exp

[
−

t′2τ 2p
2[τ 4p + β2

2z
2]

]
exp

[
− iβ2zt

′2

2[τ 4p + β2
2z

2]

]
(2.69)

Plugging (2.69) in (2.67) and taking only the real part, we obtain a Gaussian pulse
described by:

E(z, t) ∝ exp

[
−
(t− z

vg
)2

2τ 2p (z)

]
cos

[
ω0

(
t− z

vph

)
+
z(t− τg)

2

2LDτ 2p (z)

]
. (2.70)

Where, in eq. (2.70), LD ≡ τ2P
β2

is the dispersion length and τ 2p (z) ≡ τ 2p

[
1 +

(
z

LD

)2
]

is

related to the pulse duration depending on the position z. In conclusion, we found out that
a Gaussian pulse maintains the Gaussian shape during the propagation in a medium with
second order dispersion β2. However, the pulse duration ∆tFWHM , calculated using (2.62),
changes during the propagation as:
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∆tFWHM = τp(z)
√
2 ln(2) = τp

∣∣∣∣∣∣
√

1 +

(
z

LD

)2√
2ln(2)

∣∣∣∣∣∣ (2.71)

We can distinguish two extreme cases in (2.71):

1. z ≪ LD ⇒ τp(z) ≈ τp

2. z ≫ LD ⇒ τp(z) ≈ τpz

LD
= |β2|z

τp

Therefore, for distances much smaller than the dispersion length, the pulse duration is
almost constant. However, for greater distances, the pulse duration increases with z. A
representation of a gaussian pulse before and after propagation is depicted in figure 2.3.

Figure 2.3: Envelope of a gaussian pulse before and after propagation.

Furthermore, in the latter case, the smaller is the initial duration, the faster it will increase:
shorter pulses are more "fragile", that is, they tend to broaden in time in a faster way.

Another consequence of the presence of the second order dispersion is the frequency
chirp. In order to visualize this phenomenon we can calculate the instantaneous frequency,
defined as: ωi(t) ≡ dϕ

dt
, where ϕ is the phase of the pulse, which is the argument of the

cosine in (2.70). Proceeding with the calculation we find:

ωi(t) =
d

dt

[
ω0

(
t− z

vph

)
+
z(t− τg)

2

2LDτ 2p (z)

]
= ω0 +

z(t− τg)

LDτ 2p (z)
(2.72)

Depending on the sign of β2, two types of dispersion are defined:

1. β2 > 0: ordinary or normal dispersion,
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2. β2 < 0: anomalous dispersion.

We can assume for instance β2 > 0 (hence LD > 0) distinguishing two cases in (2.72):

1. t < τg ⇒ ωi(t) < ω0

2. t > τg ⇒ ωi(t) > ω0

Thus, as reported in figure 2.4, the red components of the pulse (that is, the part with
the lower instantaneous frequency) arrive before the blue ones (the opposite outcome is
expected in case of anomalous dispersion), this effect is called positive chirp (or negative
chirp for anomalous dispersion).

(a) Pulse with positive chirp. (b) Pulse with negative chirp

Figure 2.4: Representation of Gaussian pulses in time with positive (a) and negative (b)
chirp respectively. It can be seen that different colours arrive at different times.

We can reach the same conclusion from another point of view: analyzing τg(ω), that is
the group delay depending on the frequency:

τg(ω) = z
dk

dω
= z

[
1

vg(ω0)
+ β2(ω − ω0)

]
= τg(ω0) + zβ2(ω − ω0) (2.73)

Also analyzing (2.73), we can observe that, for ordinary dispersion, τg(ω) < τg(ω0), if
ω < ω0, hence, the red components arrive before the blue ones (for the blue components
τg(ω) > τg(ω0), since ω > ω0).

2.1.6. Dispersion compensation

As we have seen in the previous sections, a pulse is modified while propagating in a
medium. It is possible to describe the pulse before and after propagation in a medium in
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the spectral domain with the following expression:

ẼOUT (ω, z) = ẼIN(ω, z = 0)e−ik(ω)z, (2.74)

Where we can expand k(ω) in (2.74) as we did in (2.52), finding:

k(ω)z = ω0τph + (ω − ω0)τg(ω0) +
1

2
D2(ω − ω0)

2 +
1

6
D3(ω − ω0)

2 + . . . , (2.75)

Where in (2.75) we defined the Group Delay Dispersion (GDD) D2 as: D2 ≡ zβ2, while
D3 ≡ zβ3. During the propagation in a medium, the GDD increases leading to a growth
in pulse duration. Since for many applications it is crucial to have short pulses, several
techniques based on optical compressors have been developed to counteract dispersion.
In particular, in order to compensate for the GDD introduced by a medium, an optical
compressor should introduce an additional phase term ϕcomp compensating for ϕ(ω, z) =
k(ω)z such that Dcomp

2 = −D2, and, to compensate for the third order dispersion, Dcomp
3 =

−D3. In figure 2.5 the conceptual scheme of an optical compressor is reported.

Figure 2.5: Conceptual scheme of an optical compressor.

There are several ways to build an optical compressor, such as diffraction gratings, spatial
light modulators, chirped mirrors and prisms. The last method will be described in detail,
since it will be exploited experimentally in section 3.1.

The most common configuration is depicted in figure 2.6, where two prisms are placed in
anti-parallel configuration and are followed by a mirror.

Figure 2.6: Scheme of a prism compressor.
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The incoming beam impinges on the first prism at the Brewster angle, in order to minimize
the reflection. Then, the different wavelengths are separated due to the dependence of the
prism refractive index on the wavelength: nprism(λ). Different colours exit the first prism
at different angles and then exit the second prism traveling again in parallel paths. During
the propagation through the prism material the beam experiences normal dispersion.
On the other hand, the angular dispersion between the prisms introduces anomalous
dispersion. Increasing the distance between the two prisms, the anomalous dispersion can
be greater than the positive dispersion introduced by the material, allowing to introduce
a negative GDD [61]. It is also possible to tune the Dprisms

2 introduced changing the
insertion of one of the two prism without modifying the colours propagation.

Once the various colours are separated by the be prisms, they need to be recollimated in
a single spot. This can be done placing a mirror after the second prism. The GDD is also
doubled in this way.

The GDD introduced by the prism compressor at Brewster angle is [62]:

Dprisms
2 = − λ30

πc2

{
4L cos θ

(
dn

dλ

)2

λ0

− 2L′ sin θ

[(
d2n

dλ2

)
λ0

+

(
2n0 −

1

n3
0

)(
dn

dλ

)2

λ0

]}
,

(2.76)

Where L is the apex-to-apex distance between the prisms, while L′ is the geometric path
of the beam inside the prisms, θ(λ) is the angle between the various wavelength and the
reference ray, which is the path followed by the central wavelength λ0, n is the refractive
index of the prism material.

Generally the angle θ is small, therefore the first term dominates, giving rise to Dprisms
2 <

0. Also Dcomp
3 could be retrieved [62]:

Dprisms
3 ≃ − 2λ40

π2c3

{
6L cos θ

(
dn

dλ

)2

λ0

− 1

2
L′sinθ

[(
d2n

dλ2

)
λ0

]}
, (2.77)

Also in this case the first term dominates giving a negative Dprisms
3 .
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2.2. Non-Linear optics

In the previous section we have considered linear optics. This picture is valid at low-
moderate intensities. We could define an approximate threshold taking into account the
peak intensity Ipeak of the pulse, which is the intensity at the maximum of the envelope.
Hence, for Ipeak ≲ 108∽9 W

cm2 , the matter responses in a linear way. However, if 108∽9 W
cm2 <

Ipeak < 1013 W
cm2 , the matter response becomes non-linear and can be described through a

perturbative approach [60]. In this case, the polarization has two main components (see
eq. (2.18)): P = P (L) + P (NL), where P (L) represents the linear polarization, described
in the previous section, while P (NL) is the non-linear one, and can be further developed
as the sum of many components with different order of non-linearity:

P (NL) =
∞∑
n=2

P (n) = P (2) + P (3) + . . . . (2.78)

For higher intensities it is necessary to take into account the quantum nature of matter
and solve the Shrödinger equation, finding the dipoles and calculating the polarization as
the average of them, but this is out of the scope of this section.

2.2.1. Envelope propagation equation in Non-linear media

In section 2.1.1 we found, after some approximations, the propagation equation (2.17),
which is valid for linear media. The goal of this section is to extend the propagation
equation to non-linear media, and to consider the pulsed regime. To do this, the envelope
only will be taken into account.

Starting from eq. (2.17), it is possible to take into account the non-linearity of media,
simply writing the polarization as the sum of a linear and a non-linear part, obtaining:

∂2E

∂z2
− 1

c2
∂2E

∂t2
= µ0

∂2P (L)

∂t2
+ µ0

∂2P (NL)

∂t2
, (2.79)

In order to proceed with the calculation, it is necessary to introduce the two-dimensional
Fourier transform and its properties. It is defined as:

F̂ (k, ω) = F2 {f(z, t)} =

∫ ∞

−∞

∫ ∞

−∞
f(z, t)e−i(ωt−kz)dtdz, (2.80)

While the two-dimensional Fourier anti-transform is defined as:
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f(z, t) = F−1
2

{
F̂ (k, ω)

}
=

∫ ∞

−∞

∫ ∞

−∞
F̂ (k, ω)ei(ωt−kz) dωdk

(2π)2
, (2.81)

The properties (2.27), (2.28) still hold. Furthermore, it can be demonstrated that:

F2

{
dnf(z, t)

dzn

}
= (−ik)nF2 {f(z, t)} , (2.82)

We can now apply (2.80) to (2.79), exploiting properties (2.27), (2.28) and (2.82), obtain-
ing:

−k2Ê(k, ω) + ω2

c2
Ê(k, ω) = −µ0ω

2P̂ (L)(k, ω)− µ0ω
2P̂ (NL)(k, ω), (2.83)

Where Ê(k, ω) = F2 {E(z, t)} and P̂ (L),(NL)(k, ω) = F2

{
P (L),(NL)(z, t)

}
. Let us consider

equations (2.32) and (2.34), where we implicitly wrote the Fourier transform of the linear
polarization as2:

P̂ (L)(k, ω) = ϵ0 [ϵr(ω)− 1] Ê(k, ω), (2.84)

Therefore, considering (2.84), we can simplify (2.83) finding the propagation equation
with bidimensional Fourier approach in non-linear media, namely:(

ω2ϵr(ω)

c2
− k2

)
Ê(k, ω) = −µ0ω

2P̂ (NL)(k, ω), (2.85)

It should be pointed out that k is not the wavenumber of the propagating wave, but the
spatial frequency, which is independent from the temporal one for propagation in non-
linear media. Let us now consider the pulsed nature of the propagating waves, writing
both the electric field and the non-linear polarization as the product of an envelope and
a carrier:

E(z, t) = Re
{
A(z, t)ei(ω0t−k0z)

}
, (2.86)

P (NL)(z, t) = Re
{
B(z, t)ei(ω0t−kpz)

}
, (2.87)

2In this case, even if the expression is formally equivalent to the one found in (2.32), the bidimensional
Fourier transform is considered, therefore the symbol ˆ. . . instead of ˜. . . is used.
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Where the central wavenumber of the non-linear polarization kp is different from k0 in
general. Let us now apply the Fourier bidimensional transform to (2.86) and (2.87):

F2 {E(z, t)} = Â(k − k0, ω − ω0), (2.88)

F2

{
P (NL)(z, t)

}
= B̂(k − kp, ω − ω0), (2.89)

We can now proceed from (2.85) with the following calculations:

(
ωn(ω)

c
− k

)(
ωn(ω)

c
+ k

)
Ê(k, ω) = −µ0ω

2P̂ (NL)(k, ω), (2.90)

In equation (2.90), we can distinguish forward and backward propagation. It is possible
to introduce a further approximation to get rid of the backward propagation term, namely
the Slowly Varying Envelope function Approximation (SVEA). Since the envelope does
not vary significantly over the period of the carrier, we can safely say that the frequencies
and the wavenumbers of the pulse are centered in (ω0, k0) and do not deviate too much:

(
ωn(ω)

c
+ k

)
≈

(
ω0n(ω0)

c
+ k0

)
= 2k0, (2.91)

Therefore, taking (2.91) into account and applying the same reasoning to the right-hand
term of (2.90) we find:

(
ωn(ω)

c
− k

)
Ê(k, ω) = −µ0ω

2
0

2k0
P̂ (NL)(k, ω), (2.92)

Then, defining k̃(ω) = ωn(ω)
c

in (2.92), and considering k0 = ω0n(ω0)
c

, we get:

(
k̃(ω)− k

)
Ê(k, ω) = − µ0ω0c

2n(ω0)
P̂ (NL)(k, ω), (2.93)

Since the pulse is centered in k0, we can expand k̃(ω) in (2.93) as:

k̃(ω) = k0 +
(ω − ω0)

vg(ω0)
+

N∑
n=2

βn(ω − ω0)
n

n!
, (2.94)

We can now substitute (2.88), (2.89) and (2.94) in (2.93), obtaining:
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[
(ω − ω0)

vg(ω0)
+

N∑
n=2

βn(ω − ω0)
n

n!
− (k − k0)

]
Â(k − k0, ω − ω0) = − µ0ω0c

2n(ω0)
B̂(k − kp, ω − ω0),

(2.95)

We can now apply the two-dimensional Fourier anti-transform (2.81) to both sides of (2.95)
finding:

∫ +∞

−∞

∫ +∞

−∞

[
(ω − ω0)

vg(ω0)
+

N∑
n=2

βn(ω − ω0)
n

n!
− (k − k0)

]
Â(k − k0, ω − ω0)e

i(ωt−kz) dkdω

(2π)2
=

=

∫ +∞

−∞

∫ +∞

−∞
− µ0ω0c

2n(ω0)
B̂(k − kp, ω − ω0)e

i(ωt−kz) dkdω

(2π)2
,

(2.96)

Let us change the variables as follows: ω′ ≡ ω − ω0, k′ ≡ k − k0 and k′′ ≡ k − kp.
Equation (2.96) becomes:

∫ +∞

−∞

∫ +∞

−∞

[
ω′

vg(ω0)
+

N∑
n=2

βnω
′n

n!
− k′

]
Â(k′, ω′)ei[ω

′t−(k′+k0)z]
dk′dω′

(2π)2
=

=

∫ +∞

−∞

∫ +∞

−∞
− µ0ω0c

2n(ω0)
B̂(k′′, ω′)ei[ω

′t−(k′′+kp)z]
dk′′dω′

(2π)2
,

(2.97)

Let us now define ∆k ≡ kp − k0, and multiply both sides of (2.97) for the imaginary unit
i and rearrange the terms as follows:

∫ +∞

−∞

∫ +∞

−∞

[
iω′

vg(ω0)
+

N∑
n=2

i(i)−nβn(iω
′)n

n!
− ik′

]
Â(k′, ω′)ei[ω

′t−k′z]dk
′dω′

(2π)2
=

=

∫ +∞

−∞

∫ +∞

−∞
− µ0ω0c

2n(ω0)
e−i∆kzB̂(k′′, ω′)ei[ω

′t−k′′z]dk
′′dω′

(2π)2
,

(2.98)

Let us now apply the Fourier two-dimensional transform to (2.98), considering the prop-
erties (2.27), (2.28) and (2.82), and rearrange the terms:
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∂A

∂z
+

1

vg(ω0)

∂A

∂t
+

n∑
n=2

1

n!
βn(−i)n−1∂

nA

∂tn
= − iµ0ω0c

2n(ω0)
e−i∆kzB (2.99)

Equation (2.99) represents the Envelope propagation equation for short laser pulses prop-
agating in non-linear media [63], where the non-linearity is included in the term B, rep-
resenting the envelope of the non-linear polarization.

2.2.2. Third order non-linear processes

Let us now focus on the third order non-linear optical processes3. Among these, Coherent
Raman Scattering are of particular interest for the following sections and will be analyzed
in further detail.

In order to describe these phenomena, the third order polarization should be taken into
account:

P
(3)
i (t) = ϵo

∫ +∞

−∞
dt′

∫ +∞

−∞
dt′′

∫ +∞

−∞
dt′′′χ

(3)
ijkl(t

′, t′′, t′′′)

Ej(t− t′)Ek(t− t′ − t′′)El(t− t′ − t′′ − t′′′)

(2.100)

Applying some approximations discussed in appendix A.1, we can simplify (2.100) as:

P (3) = ϵ0χ
(3)E3(t), (2.101)

Where χ(3) is the third order susceptibility of the propagation medium. Let us now
introduce an incoming electric field defined as:

E(t) = A1 cos(ω1t+ ϕ1) + A2 cos(ω2t+ ϕ2) + A3 cos(ω3t+ ϕ3), (2.102)

The third order non-linear polarization could be calculated substituting (2.102) in (2.101),
finding:

P (3) = ϵ0χ
(3) [A1 cos(ω1t+ ϕ1) + A2 cos(ω2t+ ϕ2) + A3 cos(ω3t+ ϕ3)]

3 , (2.103)

Performing the calculations, 22 different terms can be found oscillating at different fre-
quencies. Oscillating, the polarization acts as a source giving rise to radiation at the same

3An analysis of the second order non-linear processes can be found in appendix A.1
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frequency. The 22 terms can be classified in the following way:

• 3 terms at the original frequencies ω1, ω2 and ω3, which give rise to the Optical Kerr
effect,

• 3 terms at the third harmonics 3ω1, 3ω2 and 3ω3, which is called Third Harmonic
Generation (THG),

• 6 terms at 2ωi + ωj, with i ̸= j,

• 6 terms at 2ωi − ωj, with i ̸= j,

• 1 term at ω1 + ω2 + ω3,

• 3 terms at ωi + ωj − ωk, with i ̸= j ̸= k,

Therefore, a wave at a different frequency is obtained as an output. The whole process
could be seen as an interaction among four wave. For this reason, third order phenomena
are also called Four Wave Mixing (FWM) processes [63].

2.2.3. Propagation equation for Four Wave Mixing

In section 2.2.1 we ended up with the expression (2.99), which represents the envelope
propagation equation in non-linear media. We would like to apply this equation to the
FWM phenomena. Let us define the incoming electric field in the exponential form as:

E(t, z) =
1

2

{
A1(t, z)e

i(ω1t−k1z) + A2(t, z)e
i(ω2t−k2z)+

+A3(t, z)e
i(ω3t−k3z) + A4(t, z)e

i(ω4t−k4z) + c.c.
} (2.104)

Where the expression c.c. stands for complex conjugate.

Figure 2.7: Conceptual scheme of the interaction between light and matter considering
third order non-linear processes in the FWM frame.

Let us now assume ω1 + ω3 = ω2 + ω4, and let us focus on the terms oscillating at the
same frequencies as the incoming waves. Substituting (2.104) in (2.99) we find, after some
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calculations, that the third order polarization term oscillating at frequency ω1, namely
P

(3)
ω1 reads:

P (3)
ω1

(t, z) =
ϵ0χ

(3)

4
3A2(t, z)A4(t, z)A

∗
3(t, z)e

i[(ω2−ω3+ω4)t−(k2+k4−k3)z + c.c., (2.105)

The same reasoning could be applied to all the other terms oscillating at the original
frequencies, obtaining:



P (3)
ω1

(t, z) =
3ϵ0χ

(3)

4
A2(t, z)A4(t, z)A

∗
3(t, z)e

i[ω1t−(k2+k4−k3)z + c.c.

P (3)
ω2

(t, z) =
3ϵ0χ

(3)

4
A1(t, z)A3(t, z)A

∗
4(t, z)e

i[ω2t−(k1+k3−k4)z + c.c.

P (3)
ω3

(t, z) =
3ϵ0χ

(3)

4
A2(t, z)A4(t, z)A

∗
1(t, z)e

i[ω3t−(k2+k4−k1)z + c.c.

P (3)
ω4

(t, z) =
3ϵ0χ

(3)

4
A1(t, z)A3(t, z)A

∗
2(t, z)e

i[ω4t−(k1+k3−k2)z + c.c.,

(2.106a)

(2.106b)

(2.106c)

(2.106d)

From (2.105), we found that the envelope of P (3)
ω1 can be written as:

B(t, z) =
3ϵ0χ

(3)

4
A2(t, z)A4(t, z)A

∗
3(t, z), (2.107)

We can now plug (2.107) in (2.99) and develop the calculation for the wave at frequency
ω1. Therefore, the propagation equation becomes:

∂A1

∂z
+

1

vg(ω1)

∂A1

∂t
+

n∑
n=2

1

n!
βn(−i)n−1∂

nA1

∂tn
= − iµ0ω1c

2n(ω1)

3ϵ0χ
(3)

4
A2A4A

∗
3e

−i(k2+k4−k3−k1)z,

(2.108)

Let us define kp ≡ k2 + k4 − k3, and ∆k = k1 − kp. We can proceed rewriting (2.108) as:

∂A1

∂z
+

1

vg(ω1)

∂A1

∂t
+

n∑
n=2

1

n!
βn(−i)n−1∂

nA1

∂tn
= −i3ω1χ

(3)

8cn(ω1)
A2A4A

∗
3e

i∆kz, (2.109)

Where we exploited the relation ϵ0µ0 = 1
c2

. Let us neglect the dispersion term for sim-
plicity and extend the same reasoning to the other frequencies. Plugging the envelope of
the polarization written in (2.106) and proceeding with analogous calculation we find:
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

∂A1

∂z
+

1

vg(ω1)

∂A1

∂t
= −if1A2A4A

∗
3e

i∆kz

∂A2

∂z
+

1

vg(ω2)

∂A2

∂t
= −if2A1A3A

∗
4e

−i∆kz

∂A3

∂z
+

1

vg(ω3)

∂A3

∂t
= −if3A2A4A

∗
1e

i∆kz

∂A4

∂z
+

1

vg(ω4)

∂A4

∂t
= −if4A1A3A

∗
2e

−i∆kz,

(2.110a)

(2.110b)

(2.110c)

(2.110d)

Where we made use of fi, defined as fi ≡ 3ωiχ
(3)

8cn(ωi)
. It is possible to observe that the set of

equations (2.110) represents the propagation equation for four wave mixing phenomena
(neglecting dispersion for simplicity), which are characterized by the direct dependence
on the term χ(3), which will be analyzed in detail in the following.

2.3. Coherent Raman Scattering Processes

In this section, coherent Raman scattering processes will be analyzed in detail, dwelling
on CARS.

2.3.1. Molecular resonances

The simplest way to describe a molecule interacting with an electromagnetic field is to
model the system as a mass attached to a spring characterized by stiffness k, as depicted
in fig. 2.8. Through this picture it is possible to give an intuitive explanation of Raman
scattering [64].
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Figure 2.8: Mass-spring system. x0 is the equilibrium position, while x is the relative
displacement. Adapted from [64].

The system described above gives rise to a harmonic oscillator, which is an ideal object
whose temporal oscillation is a sine wave with constant amplitude and with a frequency
that is solely dependent on the system parameters. Let us consider a mass attached to a
spring and set vertically, subjected to gravity and let us write the equation describing its
center of mass:

mg − kx0 = 0, (2.111)

In which, x0 represents the equilibrium position. It is possible to study the displacement
x of the center of mass with respect to x0. Exploiting the principle of energy conservation,
the following expression is found:

d2x

dt2
+ ω2

0x = 0, (2.112)

In which ω0 =
k
m

is the resonant frequency. Let us introduce a damping force experienced
by the mass, directly proportional to its velocity and to a damping coefficient γ. We can
modify equation (2.112) adding this term finding:

d2x

dt2
+ 2γ

dx

dt
+ ω2

0x = 0, (2.113)

Since we would like to model the interaction with the electromagnetic field, we need to
introduce a driving force oscillating periodically. Hence we define F (t) = F0 cos(ωt),
where F0 represents the amplitude, while ω is the angular frequency. Introducing the
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driving force F (t), equation (2.113) becomes:

d2x

dt2
+ 2γ

dx

dt
+ ω2

0x =
F (t)

m
, (2.114)

Let us move to the complex exponential notation, where F (t) = F0e
−iωt and x(ω, t) =

x(ω)e−iωt, which allows us to perform the temporal derivatives. Therefore, plugging these
expressions in (2.114) we find:

(−ω2 − 2iγω + ω2
0)x(ω)e

−iωt =
F0e

−iωt

m
, (2.115)

Analyzing (2.115), we can find the solution x(ω):

x(ω) =
F0/m

ω2
0 − ω2 − 2iγω

, (2.116)

Getting close to resonance (ω ≈ ω0) and for small damping coefficient (γ ≪ ω0), (2.116)
can be approximated as a complex Lorentzian function [64]:

x(ω) =
−F0/(2mω0)

(ω − ω0) + iγ
, (2.117)

2.3.2. Vibrational modes

In the previous section we modeled a molecule as a single mass attached to a spring. This
led to equation (2.116), which describes the movement of the mass varying the frequency
of the driving force. Let us now generalize the model in order to describe the vibrational
modes of a molecule. A vibrational mode is a periodic motion of the atoms of a molecule
relative to each other, such that the center of mass remains still, an example is reported
in fig. 2.9. Every mode is characterized by a certain resonance frequency ΩR

Figure 2.9: Water vibrational modes. Adapted from [64].

A molecule constituted of n atoms with a non-linear geometry presents 3n−6 vibrational
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modes. If the molecule is linear, then the number of vibrational modes is 3n−5, therefore,
a diatomic molecule has just one vibrational mode, the stretching one. Let us now model
a diatomic molecule as a system constituted by two point masses, respectively m1 and m2,
connected by a spring. We will assume that the equilibrium distance between the point
masses is x0 and the resonant frequency is ΩR. We will also assume that the diatomic
molecule taken into account is polar and presents an asymmetric distribution of charges,
in particular the atom m1 will have a charge +q, while the atom m2 will have a charge
−q. The model is shown in fig. 2.10.

Figure 2.10: Model of a diatomic molecule: two charged masses attached to a spring.
Adapted from [64].

Let us consider the interaction with an electric field E(t), characterized by an angular
frequency ω. The field will generate a Lorentz force FLorentz = qE0e

−iωt acting on the
atoms of the molecule. We can write a formula analogous to (2.114):

d2x

dt2
+ 2γ

dx

dt
+ Ω2

Rx =
FLorentz(t)

µ
, (2.118)

In which µ is the reduced mass: µ = m1m2/(m1 +m2), and where the damping term γ

represents the radiation loss of the oscillating dipole. Equation (2.118) can be solved (as
we solved (2.114)), finding the approximated solution:

x(ω) =
−FLorentz/(2µΩR)

(ω − ΩR) + iγ
, (2.119)

The presence of an asymmetric distribution of charges in the molecule induces a dipole
moment p, which can be expressed as p = qd, where d is the vector displacement between
the atoms, directed from the negative to the positive charge. If we consider a macroscopic
medium, constituted by an ensemble of N diatomic molecules modelled as above, all
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subjected to the same electric field E(t), the charge displacement of every molecule will
contribute to the total polarization of the medium, which can be calculated as the sum
of all the single dipole moments:

P (ω) = Nqx(ω), (2.120)

Let us now define the linear electronic susceptibility as:

P (ω) = ϵ0χ
(1)(ω)E(ω), (2.121)

Comparing formulas (2.120) and (2.121), and plugging in (2.119), we find the expression
of the linear susceptibility χ(1)(ω):

χ(1)(ω) =
− Nq2

(2ϵ0µΩR)

(ω − ΩR) + iγ
, (2.122)

Expression (2.122) describes the vibrational contribution from the molecule to the sus-
ceptibility of the medium. The real part is related to the medium dispersion and it has an
antisymmetric shape with respect to the resonance frequency, while the imaginary part is
related to the medium absorption and it is characterized by a Lorentzian shape, centered
in ΩR. The width of the Lorentzian peak of Im

(
χ(1)

)
is directly proportional to the

damping constant γ. The real and imaginary parts are schematically depicted in fig. 2.11.

Figure 2.11: Graph of the the real and imaginary parts of the linear susceptibility.
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For diluted media, the refractive index can be calculated from Re
(
χ(1)

)
as:

n(ω) = n0 −
Re

[
χ(1)(ω)

]
2n0

, (2.123)

In which n0 is the mean refractive index of the medium. On the other hand, the absorption
coefficient α(ω), can be calculated from Im

(
χ(1)

)
as:

α(ω) =
2π

λ0n0

Im
[
χ(1)(ω)

]
, (2.124)

Where α(ω) is expressed in cm−1 and can be found in the Lambert-Beer law, describing
the reduction of light intensity in a medium due to absorption of light, as:

I(L) = I0 exp(−αL), (2.125)

It is possible to exploit this feature of media in order to measure the resonance frequen-
cies of the vibrational modes, performing a spectroscopy of the analyzed medium. This
technique is called IR absorption spectroscopy and allows one to identify and quantify
absorption bands corresponding to different molecular species in a sample.

2.3.3. Spontaneous Raman Scattering

The main phenomena arising from light-matter interaction are absorption and scattering.
In the first case, the light energy is retained by the molecule for a certain amount of time,
while in the second case the light is instantaneously scattered in a different direction. The
vast majority of the scattered photons preserve the original frequency, thus this process
is called elastic (or Rayleigh) scattering, since the energy of the light photon is preserved.
Nevertheless, a small portion of the photons is inelastically scattered, and change the
energy, propagating at a difference frequency with respect to the original one. This
phenomenon is called Raman scattering. In order to understand the Raman effect, let us
consider again the diatomic molecule described in the previous section. Before we assumed
that the molecule was polar, that is it presented an asymmetric charge distribution on the
two atoms. In this part we will drop this assumption. However, even though a molecule
is not polar, it will have a polarizability α depending on the intramolecular distance x.
Let us assume the molecule is vibrating at the resonance frequency ΩR. The fluctuations
of the interatomic distance with respect to the equilibrium position can be described as:
x(t) = xf cos(ΩRt), where xf is the amplitude fluctuations. Assuming the displacement
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amplitude is small, we can perform a Taylor expansion of the polarizability with respect
to the equilibrium position:

α(t) = α0 +

(
∂α

∂x

)
0

x(t), (2.126)

The dipole moment induced by an electric field oscillating at ωp, E(t) = E0cos(ωpt), can
be calculated as:

p = ϵ0α(t)E(t), (2.127)

Let us now plug the expression of the polarizability (2.126) in (2.127):

p = ϵ0

[
α0 +

(
∂α

∂x

)
0

xf cos(ΩRt)

]
E0 cos(ωpt), (2.128)

We can proceed with the calculations from (2.128) finding:

p = ϵ0α0E0cos(ωpt) +
ϵ0
(
∂α
∂x

)
0
E0xf

2
cos[(ωp − ΩR)t] +

ϵ0
(
∂α
∂x

)
0
E0xf

2
cos[(ωp + ΩR)t],

(2.129)

Let us analyze eq. (2.129). The first term, oscillating at the same frequency of the incoming
field corresponds to the Rayleigh scattering. In this case the photons are simply scattered
by the molecule without any exchange of energy. The second term is oscillating at angular
frequency ωS = ωp − ΩR and describes a red-shifted scattering known as Raman Stokes
scattering. In this case the molecule absorbs part of the energy of the light and is promoted
from ground state to a vibrationally excited state. Consequently, the outgoing photons
present a lower energy with respect to the incoming one. The third term represents the
Raman anti-Stokes scattering and oscillates at ωAS = ωp + ΩR. In this case the molecule
goes from the excited state to the ground one, releasing energy. The outgoing photons
have a higher energy with respect to the incoming ones, therefore they are blue-shifted in
frequency. The different types of scattering are schematically depicted in fig. 2.12 making
use of Jablonsky diagrams.
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(a) Rayleigh scattering. (b) Stokes Raman scattering. (c) Anti-Stokes Raman scat-
tering.

Figure 2.12: Jablonsky diagrams of (a) Rayleigh scattering, (b) Stokes Raman scattering,
(c) anti-Stokes Raman scattering. The solid lines represent the fundamental state |f⟩ and
the vibrational state |v⟩, while the dashed one is a virtual state. |f⟩ and |v⟩ are separated
by the resonance frequency ΩR.

At thermal equilibrium, atomic level populations are described by the Boltzmann distribu-
tion (2.130), which gives the probability that a system will be in the i-th state depending
on the energy of the level ϵi and on the temperature:

pi ∝ e−ϵi/kT , (2.130)

Therefore, the population of the excited level is lower than the one at ground state, and
they become equal at infinite temperature. Thus, since to observe anti-Stokes scattering
we need the molecule to be in the excited state, we expect a lower signal with respect
to the Stokes scattering, unless the temperature is really high. This has been proved
experimentally. In order to be Raman active, a vibrational mode has to affect the po-
larizability, therefore, the selection rule can be expressed as:

(
∂α
∂x

)
0
̸= 0. Similarly to

IR absorption spectroscopy, Raman spectroscopy enables to identify the vibrational levels
and measure their energy analyzing the spectral distance of the Raman peaks with respect
to the Rayleigh scattering peak, as shown in fig. 2.13.
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Figure 2.13: Scattered light from a molecule with a single vibrational mode at frequency
ΩR. From the left, the Stokes, Rayleigh and anti-Stokes scattering can be seen.

If a molecule presents inversion symmetry, its modes can be either Raman active and
not IR active or vice-versa. In particular, symmetric modes with respect to the inversion
symmetry are only Raman active, while anti-symmetric ones are only IR active. The
main advantage of Raman spectroscopy with respect to IR absorption spectroscopy is
that the former allows to reach sub-micron resolution, since shorter wavelengths can be
used to excite Raman scattering. However, the cross section of Raman scattering is rather
poor: the order of magnitude is around 10−30 cm2 (while the cross section of single photon
absorption fluorescence can reach 10−16 cm2).

2.3.4. Vibrational spectrum

In the previous section we considered a simple diatomic molecule, characterized by a sin-
gle vibrational mode. However, real molecules are often constituted of more than two
atoms and present several modes of vibration. Therefore, the Raman scattering gives
rise to a spectrum characterized by many peaks, which allows one to distinguish different
molecules. The study of the Raman scattering spectrum is called Raman spectroscopy.
In order to perform it, the sample is illuminated by a laser beam, also called ’pump’ at
a certain frequency ωP . Then, the outcoming radiation is measured through a spectrom-
eter, filtering the Rayleigh scattered light and taking into account only the inelastically
scattered one. Since the Stokes and anti-Stokes spectra carry the same spectral informa-
tion, the former is generally preferred due to the higher intensity. Raman spectroscopy
is a powerful technique, which is becoming increasingly popular among biologists [26]. A
Raman spectrum can be regarded as a phenotype of a biological system because it pro-



2| Theory 45

vides an overall molecular vibrational profile, containing Raman bands for major cellular
building blocks, such as proteins, nucleic acids, lipids, and carbohydrates [65]. This allows
to distinguish different parts of a biological sample without using any stain or marker.
A biological Raman spectrum can be divided into three main regions: the ‘fingerprint’
region that contains essential bio-information and can be seen as a fingerprint of a cell
(400 - 1800 cm−1); the ‘silent’ region that usually does not involve vibrational modes
contributed by biomolecules formed of naturally occurring isotopes and can involve bands
contributed by stable isotopes or triple bonds (1800-2700 cm−1); the high-wavenumber
region that is specifically contributed by the stretching vibrations of CH groups, pre-
dominantly from lipids and proteins (2700-3200 cm−1). The main benefits of employing
Raman micro-spectroscopy in biological studies are high spatial resolution, the ability to
identify aqueous materials, intrinsic and label-free characterisation, non-contacting and
non-destructive analysis, quick preparation, and small sample volume.

Figure 2.14: Raman spectrum of a human cell, demonstrating various bands representative
of cellular constituents. Graph taken from [65].

As it can be seen in fig. 2.14, the Raman intensity depends on the Raman shift. It can
be calculated as:

Raman shift =
ΩR

2πc
=

(ωP − ωS)

2πc
= λ−1

P − λ−1
S , (2.131)

Where λP and λS are respectively the pump and Stokes wavelengths.
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2.3.5. Coherent Raman Scattering

In the previous section we highlighted that the main limitation of Raman spectroscopy
is the rather low cross-section. Therefore, in order to obtain a vibrational spectrum,
a considerable amount of time is needed to reach an acceptable signal to noise ratio.
Coherent Raman scattering (CRS) allows to solve this problem gaining a factor of 107 in
efficiency as compared to spontaneous Raman scattering. Let us consider an incoming
electric field, constituted by two waves, denominated pump and Stokes, respectively with
frequency ωP and ωS:

E(z, t) = AP e
i(ωP t−kpz) + ASe

i(ωSt−ksz) + c.c., (2.132)

The interference between the two fields generates a beating with frequency Ω = ωP −ωS.
If the beating frequency Ω matches the frequency of a vibrational mode, ΩR = Ω, then
the normal mode enters in resonance with the wave beating.

Let us consider again the diatomic molecule modelled as a harmonic oscillator, described
by the expression (2.114). Let us find the expression of the force F (t) evaluating the
derivative of the energy W necessary to create a dipolar moment p(t) = ϵ0α(t)E(t). The
energy of a dipole in an electric field is:

W =
1

2
⟨p(z, t) ·E(t)⟩ = 1

2
ϵ0α(t)

〈
E2(z, t)

〉
, (2.133)

Where the intensity term ⟨E2(z, t)⟩ is calculated considering as:

〈
E2(z, t)

〉
= APA

∗
Se

i(Ωt−Kz) + c.c., (2.134)

Where we considered the electric field in (2.132). The brackets ⟨. . . ⟩ represent the time
average over one optical period. We can now plug (2.134) in (2.133) and perform the
derivative with respect to the intermolecular distance obtaining:

F (t) =
dW

dx
= ϵ0

(
∂α

∂x

)
0

[
APA

∗
Se

i(Ωt−Kz) + c.c.
]
, (2.135)

Let us plug (2.135) in the expression of the driven harmonic oscillator (2.114), and look
for a solution of the form:

x(z, t) = x(Ω)ei(Ωt−Kz) + c.c., (2.136)
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Near the resonance, the molecular vibration amplitude is:

x(Ω) =
−
(

ϵ0
2µΩR

) (
∂α
∂x

)
0
APA

∗
S

(Ω− ΩR) + iγ
, (2.137)

Therefore, if the beating frequency Ω gets close to the resonance frequency ΩR, the vi-
bration amplitude of the molecule x(Ω) grows inducing non-linear effects.

Let us now calculate the induced polarization as the sum of the induced dipole moments
in the medium:

P (z, t) = Np(z, t) = Nϵ0

[
α0 +

(
∂α

∂x

)
0

x(z, t)

]
E(z, t), (2.138)

We can now distinguish two terms from (2.138):

1. the linear polarization P (L), directly proportional to the electric field and oscillating
at the same frequency: P (L) = Nϵ0α0E(z, t)

2. The non-linear polarization P (NL):

P (NL) = Nϵ0

(
∂α

∂x

)
0

[
x(Ω)ei(Ωt−Kz) + c.c.

] [
AP e

i(ωP t−kP z) + ASe
i(ωSt−kSz) + c.c.

]
,

(2.139)

We can now perform the calculations developing (2.139) finding four terms radiating at
different frequencies. In particular we find:

1. A term oscillating at frequency ωAS = 2ωP − ωS:

P (ωAS) = Nϵ0

(
∂α

∂x

)
0

x(Ω)AP e
−i(2kP−kS)z, (2.140)

2. A term oscillating at frequency ωCS = 2ωS − ωP :

P (ωCS) = Nϵ0

(
∂α

∂x

)
0

x∗(Ω)ASe
−i(2kS−kP )z, (2.141)

3. A term oscillating at frequency ωP :

P (ωP ) = Nϵ0

(
∂α

∂x

)
0

x(Ω)ASe
−ikP z, (2.142)
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4. A term oscillating at frequency ωS:

P (ωS) = Nϵ0

(
∂α

∂x

)
0

x∗(Ω)AP e
−ikSz, (2.143)

The polarization oscillating at different frequencies act as the source of different processes.
P (ωAS) gives rise to the Coherent anti-Stokes Raman scattering (CARS), P (ωCS) to the
Coherent Stokes Raman scattering (CSRS), while P (ωP ) and P (ωS) are the source of
Stimulated Raman scattering.

(a) Coherent anti-Stokes Ra-
man scattering.

(b) Coherent Stokes Raman
scattering.

(c) Stimulated Raman scat-
tering.

Figure 2.15: Jablonsky diagrams of (a) Coherent anti-Stokes Raman scattering (CARS),
(b) Coherent Stokes Raman scattering (CSRS), (c) Stimulated Raman scattering.

CRS processes arise from the third order non-linear polarization4, and can be seen as
four-wave mixing phenomena.

2.3.6. The CARS process

Among the coherent Raman scattering processes, the Coherent Anti-Stokes Raman scat-
tering (CARS) will be described in detail. It can be generated exploiting two pulses cen-
tered at different frequencies, namely the pump pulse at frequency ωP and the Stokes pulse
at frequency ωS. The intensity must be high enough to stimulate third order non-linear
processes, as described in section 2.2.2. Therefore, the third order non-linear polarization
oscillating at frequency ωAS can be written as5:

4A second order dependence on the electric fields can be seen in the expression of x(Ω), reported
in (2.137), while the third is explicitly expressed in (2.140), (2.141), (2.142), (2.143).

5Equation (2.144) is a generalized form of eq. (2.106), where the tensorial nature of the third order
susceptibility is taken into account.
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Pi(r, ωAS) =
3ϵ0
4

∑
j,k,l

χ
(3)
ijklEPj

(r)EPk
(r)E∗

Sl
(r) (2.144)

In which i, j, k, l = {x, y, z}. The Raman scattered light can be depolarized with respect to
the incident one. To take into account this process, let us define the Raman depolarization
ratio ρR as:

ρR =
IR(⊥)

IR(∥)
, (2.145)

Where IR(∥) is the Raman intensity polarized as the pump, while IR(⊥) is perpendicular
to it. The depolarization ratio is a number between 0 and 3

4
, depending on the vibrational

mode stimulated. If we consider isotropic media, without any one-photon transition at
ωP or ωS, it can be proved [64] that P (r) can be expressed in terms of the tensor element
χ
(3)
xxyy and the Raman depolarization ratio as:

P (r, ρR;ωAS) =
3ϵ0
2
χ(3)
xxyy

{
[EP (r) ·E∗

S(r)]EP (r)+

ρR
1− ρR

[
E2

Px
(r) + E2

Py
(r) + E2

Pz
(r)

]
E∗

S(r)
}
,

(2.146)

Several considerations could be pointed out:

• if the pump and Stokes beams are linearly polarized in the same direction, the
non-linear polarization is collinear with them,

• on the other hand, if the pump and Stokes fields are linearly polarized in mutually
perpendicular directions (thus, EP (r) · E∗

S(r) = 0), the induced polarization is
aligned with the Stokes beam and the totally polarized Raman bands, characterized
by ρR = 0, can not be stimulated,

• If ρR = 0, the polarization is collinear with the pump field, and maximized for
EP (r) ∥ E∗

S(r),

For simplicity, in the following we will assume that ρR = 0 and that the pump and Stokes
fields are linearly polarized in the same direction.

Therefore, the polarization oscillating at the anti-stokes frequency is described by the
expression (2.106d) assuming the following condition:

ω1 = ω3 = ωP , ω2 = ωS, ω4 = 2ωP − ωS = ωAS, (2.147)
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Thus, the induced non-linear polarization giving rise to the CARS signal reads as:

PωAS
=

3ϵ0χ
(3)(ωAS)

4
A2

PA
∗
Se

i[ωASt−(2kP−kS)z] + c.c., (2.148)

Where we discarded the vectorial nature since we will consider collinear geometry in
the following. We can now substitute the expression of the polarization (2.148) in the
propagation equation (2.110) and move to the local time frame finding the following
propagation equation:

dAAS

dz
= − 3iωAS

4cn(ωAS)
χ(3)(ωAS)A

2
PA

∗
Se

−i∆kz, (2.149)

Where ∆k = 2kP − kS − kAS. Let us now evaluate the CARS signal amplitude, after
propagating over a distance L in a medium, integrating (2.149):

AAS(L) =

∫ L

0

dAAS

dz
dz = − 3iωAS

4cn(ωAS)
χ(3)(ωAS)A

2
PA

∗
SL sinc

(
∆kL

2

)
ei

∆kL
2 , (2.150)

Where the function sinc(x) = sin(x)/x. We can now calculate from (2.150) the intensity
of CARS IAS knowing that I ∝ |A|2:

IAS(L) ∝ |χ(3)|2L2 sinc2
(
∆kL

2

)
I2P IS, (2.151)

Equation (2.151) represents the expression of the CARS signal coming out of a medium
with length L. Several considerations can be made:

1. The signal depends quadratically on the pump intensity and linearly on the Stokes
one. Therefore, increasing the pump intensity is more beneficial to enhance the
signal.

2. The signal depends quadratically6 on the width of the medium L. Thus, it is
hard to get signal from thin samples. The same reasoning could be applied to the
concentration of scatterers: if it is close to zero, small variations of concentration
are hardly detected due to the square dependence on it.

3. In order to get high intensity, the phase matching condition should be respected,
6The quadratic dependence of the CARS signal is due to its quadratic dependence on χ(3), which will

be introduced in subsection section 2.3.7
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namely:

∆k = 2kP − kS − kAS ≃ 0, (2.152)

Where the wave vectors can be written as:

kP =
nPωP

c
, kS =

nSωS

c
, kAS =

nASωAS

c
, (2.153)

Where ni = n(ωi). Due to the material dispersion, in general nP ̸= nS ̸= nAS,
and the phase matching condition is not satisfied. However, in condition of tight
focusing, which can be assumed in microscopy, ∆kL is approximately equal to zero.
Therefore, since limx→0 sinc(x) = 1, the CARS intensity can be written as:

IAS(L) ∝ |χ(3)|2L2I2P IS. (2.154)

4. The CARS intensity depends on |χ(3)|2. In the next section we will find the expres-
sion of the third order susceptibility and then we will describe the consequences of
the dependence on its modulus square.

2.3.7. Resonant and non-resonant contribution to CARS

In the previous section the CARS process has been described analyzing the four-wave
mixing propagation equation generating a signal oscillating at ωAS. Let us now describe
this phenomenon looking at the Jablonsky diagrams reported in fig. 2.16.
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(a) Resonant Coherent anti-Stokes
Raman scattering.

(b) Non-resonant Coherent anti-Stokes
Raman scattering.

Figure 2.16: Jablonsky diagrams of (a) Resonant Coherent anti-Stokes Raman scatter-
ing (Resonant CARS), (b) Non-resonant Coherent anti-Stokes Raman scattering (Non-
resonant CARS).

As we can see, there are two different processes giving rise to a signal at frequency ωAS.
In the first case, a molecule is excited to a virtual level by the pump electric field. Then,
stimulated by the Stokes field, it relaxes to a vibrational level. Subsequently, it is excited
again by the pump field, reaching a new virtual state. Finally, it relaxes to the ground
state emitting an electromagnetic wave at frequency ωAS. This contribution is called
Resonant CARS, and it carries information about the energy of the vibrational state,
which can be calculated as E|v⟩ = ℏΩR = ℏωAS − ℏωP . The other contribution is called
Non-Resonant CARS. In this case, after the molecule is excited by the pump field, reaching
an intermediate virtual state, it interacts with the pump field again, reaching a new virtual
state. Afterwards, stimulated by the Stokes field, it relaxes to the ground state emitting
a Stokes and an anti-Stokes waves. In this last process there is no interaction with
the molecule vibrational state, indeed, it originates from the instantaneous electronic
response of the medium. Both the contributions appear in the expression of the third
order susceptibility, which can be written as the sum:

χ(3) = χ
(3)
R + χ

(3)
NR, (2.155)
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Far from electronic resonances, the non-resonant susceptibility χ(3)
NR is real and constant.

On the other hand, the resonant part χ(3)
R is characterized by a real and an imaginary

part and is related to the vibrational modes. Comparing the expression (2.140) of the
polarization we found in section section 2.3.5 and expression (2.148), found in section
section 2.3.6, we obtain that:

χ
(3)
R =

4

3APA∗
S

N

(
∂α

∂x

)
0

x(Ω) (2.156)

We can plug in (2.156) the expression of x(Ω) found in (2.137) obtaining:

χ
(3)
R =

aV IB

(Ω− ΩR) + iγ
, (2.157)

With aV IB = − 2Nϵ0
3µΩR

(
∂α
∂x

)2
0
, a negative number which represents the oscillator strength of

the molecular vibration. We implicitly assumed that there is only one vibrational mode,
however, expression (2.157) can be easily extended to a complete vibrational spectrum
with M different modes describing the third order susceptibility as:

χ
(3)
V IB =

M∑
i=1

aV IB,i

(Ω− ΩRi
) + iγi

+ χ
(3)
NR (2.158)

Where χ(3)
R =

∑M
i=1

aV IB,i

(Ω−ΩRi
)+iγi

represents the resont part in (2.158). For simplicity, in the
following it will be considered just one vibrational mode. Let us now consider the CARS
signal intensity and its dependence on the square modulus of χ(3):

IAS ∝
∣∣χ(3)

∣∣2 ∝ ∣∣∣χ(3)
R + χ

(3)
NR

∣∣∣2
∝

∣∣∣χ(3)
R

∣∣∣2 + ∣∣∣χ(3)
NR

∣∣∣2 + 2Re
[
χ
(3)
R + χ

(3)∗
NR

]
∝

∣∣∣χ(3)
R

∣∣∣2 + ∣∣∣χ(3)
NR

∣∣∣2 + 2χ
(3)
NRRe

[
χ
(3)
R

]
,

(2.159a)

(2.159b)

(2.159c)

Where in the last passage we considered that χ(3)
NR is real. Analyzing (2.159c), it is possible

to observe that the CARS intensity is the sum of three different contributions:

1. A resonant contribution, given by the term
∣∣∣χ(3)

R

∣∣∣2. This term contains the in-
formation regarding the vibrational modes and it is meaningful in spectroscopy
applications.

2. A non-resonant contribution, given by the term
∣∣∣χ(3)

NR

∣∣∣2. This term is almost constant
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in the spectral domain if far from electronic resonances.

3. In the last term, 2χ
(3)
NRRe

[
χ
(3)
R

]
, the resonant and non-resonant parts are mixed

together giving rise to a heterodyne contribution.

The CARS signal can be seen as an interference between two waves, one generated by
the resonant contribution, and the other by the non-resonant one. As a result of this
interference, the last term appears. The CARS spectrum appears distorted with respect
to the Spontaneous Raman spectrum due to the contributions of the second and third
terms of the equation, which give rise to the so called Non-resonant Background (NRB).
A representation of the different contributions to the CARS signal is reported in fig. 2.17.

Figure 2.17: Anti-Stokes signal in the spectral domain: the contributions from the reso-
nant, non-resonant and heterodyne terms are highlighted.

The NRB modifies the resonant signal red-shifting the maximum of the peaks, and makes
it appear a minimum blue-shifted with respect to the Raman peak. Decreasing the ratio
between the resonant and the non-resonant part of the third order susceptibility, the
CARS signal is progressively more distorted, as it can be seen in fig. 2.18.
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(a)

(b)

(c)

Figure 2.18: CARS signal varying the ratio between the resonant and the non-resonant
contributions, respectively with (a) |χ(3)

R |
|χ(3)

NR|
= 2, (b) |χ(3)

R |
|χ(3)

NR|
= 0.5, (c) |χ(3)

R |
|χ(3)

NR|
= 0.2.

The NRB signal shows some differences with respect to the resonant one.

1. At resonance, the NRB is dephased with respect to the resonant contribution.

2. Since the resonant contribution arises from the population of a vibrational level,



56 2| Theory

it will have a population time in the order of the nanoseconds and coherence time
tipically in the order of the picoseconds. On the other hand, the NRB arises from
electronic contribution, in which only virtual levels are populated. The virtual
electronic levels show an extremely short coherence time, in the order of hundreds
of femtoseconds.

Since only the resonant term is carrying information regarding the vibrational modes and
therefore is the only meaningful part for spectroscopic applications, it is generally desired
to remove the NRB from the CARS signal.

2.3.8. Broadband CARS

In the previous sections, the CARS process has been described considering narrowband
picosecond pump and Stokes beams. This regime, called single-frequency regime, allows
to reach extremely high acquisition speeds, up to the video-rate [44, 45]. However, the
information content is strongly reduced with respect to SR, since the narrowband pulses
allow one to probe a single vibrational transition. Broadband CARS represents the so-
lution to this problem, since it allows to reach an information content comparable to SR
spectroscopy retaining the high-speed acquisition, as shown in fig. 2.19.

Figure 2.19: Comparison between SR and CARS techniques in terms of imaging speed
and information content. Adapted from [20].

Despite numerous advancements in the detection systems that have increased speed and
broadened spectral coverage, many B-CARS systems are built to capture Raman spectra
only in the CH-stretching region [46] (2800 - 3100 cm−1), a spectral range with a high
density of oscillators. Accurate identification within chemically heterogeneous biological
samples is difficult due to the rather vague spectral information in this region. The
low wavenumber spectral area, commonly referred to as the "fingerprint", on the other
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hand, exhibits sharp and identifiable peaks that offer excellent biological specificity [66].
The fingerprint region, however, has lower Raman signals, necessitating either longer
integration times or greater average Stokes and pump beam powers to achieve a high
enough SNR. The biological samples that were scanned might be harmed as a result of
these restrictions. Furthermore, the Raman peaks in the fingerprint area have narrow
linewidths and are spectrally crowded, necessitating the technical achievement of both
high spectral resolution (down to 10 cm−1) and extensive spectral coverage.

In the literature, a number of B-CARS microscopy setups covering the fingerprint region
have been described. While some of them (the so-called hyperspectral CARS method
[67]) take use of the quick frequency tuning of one of the two narrowband beams, mul-
tiplex CARS [47–51] aims to simultaneously measure the entire spectrum, including the
fingerprint and the CH-stretching regions.

In multiplex CARS, the pump and Stokes frequencies are provided by a single ultra-
broadband laser [68, 69] or by combining a narrowband pump with a broadband Stokes
achieved through supercontinuum generation in a tapered fiber [52] or a photonic crystal
fiber (PCF) [53, 54]. There are several ways to implement multiplex B-CARS detection:
some are based on a time-domain Fourier transform approach [55–57] or use frequency
combs [58], while others detect the signal in the frequency domain. In the frame of time-
domain Fourier transform approach, Hashimoto et al. [39] reached the record acquisition
speed of 24000 spectra/s covering the whole fingerprint region (200-1500 cm−1). Exploting
a multiplex approach, Camp et al. [47] managed to obtain ultrabroadband CARS signal
(500-3500 cm−1) with a pixel exposure time of 3.5 ms.

In the following chapter, we will describe a novel method for B-CARS that uses an ampli-
fied femtosecond ytterbium laser system operating at a 2-MHz repetition rate to produce
pulses at 1035 nm with significantly more energy (at the µJ level) than conventional sys-
tems, typically operating at 40 or 80 MHz. This opens up two important benefits. The first
is the potential to produce ultrabroadband red-shifted Stokes pulses that cover the entire
relevant spectral region area (500-3100 cm−1) exploiting supercontinuum (SC) generation
[70] in a bulk crystal as opposed to PCFs, as was previously reported in literature. SC
in bulk media represents a more compact, reliable, easy-to-use, and alignment-insensitive
approach. It has outstanding long-term stability that is comparable with that of the pump
laser source itself, significant mutual correlations between the intensities of its spectral
components, and low pulse-to-pulse variations [59].

The lowered repeatition rate is the second benefit. On the one hand, a repetition rate of 2
MHz allows for a 0.5-µs temporal delay between two pulses, giving the system more time
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to dissipate thermal energy and lessening photothermal damage [71]. On the other hand,
for a given average power at the focus, constrained by sample degradation, more pulse
energy leads to higher peak intensity, which, due to the non-linear nature of the optical
effect, provides a stronger B-CARS signal. Therefore, higher SNR and/or acquisition
speed can be reached, without sacrificing sample integrity.

The B-CARS signal is generated overlapping the narrowband pump pulse and the broad-
band Stokes pulse, obtained through SC generation. In this way, several vibrational
modes are stimulated simultaneously allowing to obtain a ultrabroad CARS vibrational
spectrum. The resolution is provided by the narrowband pump, therefore, it is beneficial
to shrink its spectrum, but still preserving a pulse duration of around 1ps to successfully
excite the modes of vibration.

An example of B-CARS signal obtained experimentally is reported in fig. 2.20:

Figure 2.20: Example of experimentally measured B-CARS signal from Ethanol, spanning
from 500 cm−1 to 3100 cm−1.

It can be observed that the obtained spectrum covers both the fingerprint and the C-H
stretching regions. The resonant and non-resonant contributions are both present, indeed
the shape of the spectrum is different from the SR ones (an example of SR spectrum is
reported in fig. 2.14). In order to retrieve the expected Lorentzian peaks, it is necessary
to perform post-processing algorithms, which will be explained in section 3.3.

2.3.9. Two-color and three-color CARS

In section 2.3.7, we described the CARS process through the Jablonsky diagram in
fig. 2.16a, however, in the Broadband CARS frame, two different processes can be dis-
tinguished depending on the order of interactions with the pump and Stokes pulses. In
two-color CARS, the first interaction between light and matter is with a pump photon,
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promoting the molecule to a virtual level, subsequently, the molecule, stimulated by the
Stokes photon, decays reaching a vibrationally excited level. In the B-CARS picture, due
to the broad spectrum of the Stokes pulse, many levels can be reached. Then, another
pump photon acts as a probe, exciting the molecule to other virtual levels. Finally, the
molecule decays emitting an anti-Stokes photon, giving rise to the CARS signal.

On the other hand, in three-color CARS, the first interaction is with a Stokes photon
(which acts as a pump), which excites the molecule to a virtual level. Then, due to
another interaction with the Stokes pulse, it decays to a vibrational level. Therefore,
it is possible to observe this process only if the Stokes spectrum is broad and if all the
colors arrive almost simultaneously, in order to allow two interaction with the same pulse
(intra-pulse excitation). Subsequently, as in two-color CARS, a pump photon acts as a
probe; the molecule reaches another virtual level and then decays emitting an anti-Stokes
photon. The two processes are schematically shown in fig. 2.21.

(a) Two-color CARS. (b) Three-color CARS.

Figure 2.21: Jablonsky diagram of (a) Two-color and (b) Three-color CARS. Adapted
from [47].

In the three-color process, the source of the first two interactions is the same (intrapulse
excitation), namely the Stokes pulse. Therefore, the excitation profile is determined by
the permutations of available frequencies (energies) of light. Since the highest number of
permutations is for closely spaced frequencies, the three-color excitation profile increases
with decreasing wavenumber [47]. This makes three-color CARS particularly suitable for
stimulating Raman transitions in the fingerprint region.

2.3.10. Time-delayed CARS

The difference in origin between resonant and non-resonant signals in CARS suggests a
straightforward method for discriminating between the two contributions. The first two
fields in vibrationally resonant CARS produce coherence in the medium. In the condensed
phase, this coherence often lasts for picoseconds. Contrarily, the NRB is extremely short-
lived, with the biggest contribution lasting only as long as the excitation pulse [72].
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Since the non-resonant contribution has a coherence time much shorter than the resonant
one, it is possible to isolate the resonant contribution increasing the delay between the
second and third interactions between light and matter. This technique is called Time-
delayed CARS (T-CARS).

In order to excite two-color CARS, there must be pump photons before and after the
Stokes ones, therefore, a complete overlapping of the two pulses is needed. Thus, it is
not possible to introduce a delay between the second and third interactions. On the
other hand, three-color CARS is particularly suitable for realizing T-CARS. Indeed, the
overlapping between the two pulses is not needed, since the pump pulse acts simply as a
probe, and a certain delay is allowed. However, to obtain this result, it is necessary to
compress the Stokes pulse and to avoid any temporal overlap between the pulses, since
this would give rise to an unwanted non-resonant contribution. The main advantage of
T-CARS is the physical NRB removal. Therefore, the obtained spectra are comparable to
the SR ones without the need of post-processing. However, since the NRB also allows the
amplification of the CARS signal, removing it reduces the sensitivity and consequently
the acquisition time is increased.

2.3.11. Epi-detected CARS

In eq. (2.154) we found that the CARS signal is proportional to the square of the thickness
of the illuminated sample. In order to obtain this result, it has been necessary to assume
that the phase matching condition was satisfied, namely ∆kL = 0, in which ∆k =

2kP − kS − kAS. This approximation is generally valid for microscopy, since the tight
focusing condition in achieved. However, till now we implicitly considered the forward
propagating signal (F-CARS). If we took into account the backward propagating signal,
even in tight focusing condition, the phase matching would not be possible. A scheme of
a microscope able to detect both F-CARS and E-CARS is depicted in fig. 2.22.
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Figure 2.22: Scheme of E-CARS and F-CARS experimental set-up.

For backward propagating CARS, also called epi-detected CARS (E-CARS), the intensity
can be calculated as [73]:

IAS(L) ∝ |χ(3)|2L2 sinc2
(
|∆k|L

2

)
I2P IS, (2.160)

In this case, the only way to get |∆k|L ≃ 0 is with L ≃ 0. Let us consider a thin sample
immersed in a solvent. Since the F-CARS signal is proportional to L2, the solvent signal
will overwhelm the one of the sample, due to Lsample ≪ Lsolvent. On the other hand, the
E-CARS signal of the solvent will be strongly reduced since the phase matching condition
is not respected, while the sample’s one will remain almost equal, since |∆k|Lsample ≃ 0

is realized in both directions. Therefore, epi-detected CARS allows to enhance the signal
to noise ratio of small scatterers with respect to the background signal coming from the
solvent [73].

If the dispersion of the refractive index is negligible (nS ≃ nP ≃ nAS ≃ n), it is possible
to give an estimate of the critical thickness Lcrit over which the E-CARS signal drops.
Considering that the first zero of sinc(x) is for x = π, the required condition to have a
relevant E-CARS signal is: |∆k|L ≪ π. For epi-detected CARS, assuming a collinear
geometry:

|∆k| = 2kAS =
4nπ

λAS

, (2.161)

Hence, applying the condition |∆k|L≪ π to eq. (2.161), we get E-CARS if:
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L≪ λAS

4n
, (2.162)

Thus, the epi-detected signal coming from sub-wavelength scatterers is enhanced with
respect to the background coming from the solvent.

2.4. Supercontinuum generation

In this section, the non-linear optical processes giving rise to supercontinuum (SC) gen-
eration will be described. SC generation in bulk media will be analyzed in further detail.

2.4.1. Self Phase Modulation

In section 2.2.3, the four-wave mixing (FWM) phenomena have been described by means
of the propagation equations. The goal of this section is to analyze in further detail one
of the most common processes that arises during propagation, namely the Self Phase
Modulation (SPM). In order to describe it, we assume the condition of degenerate FWM,
which is characterized by the relation ω1 = ω2 = ω3 = ω4 ≡ ω0. Therefore, since also
k1 = k2 = k3 = k4, we find that ∆k = 0, thus, the process is always phase matched. Let
us consider an incoming electric field, in this case written as:

E(t, z) = Re
{
A(t, z)ei(ω0t−k0z)

}
, (2.163)

Let us now plug (2.163) in one of the propagation equations (2.110) (which are equivalent
in case of degenerate FWM):

∂A

∂z
+

1

vg(ω0)

∂A

∂t
= −i3ω0χ

(3)

8cn(ω0)
|A|2A, (2.164)

Till now, we described the pulses propagation in the laboratory frame, that is, we made
use of the set of spatio-temporal coordinates x, y, z, t. In many cases, it is beneficial to
move to the local time frame, where the time is centered on the peak of the pulse. The set
of spatio-temporal coordinates becomes: x, y, z, T , where T is defined as: T ≡ t− z

vg(ω0)
,

where ω0 is the central frequency of the pulse. Moving to the local time frame, it is
necessary to change the partial derivative in space and time as follows:

∂

∂t
⇒ ∂

∂T

∂

∂z
⇒ ∂

∂z
− 1

vg(ω0)

∂

∂T
(2.165)
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Thus, making use of (2.165), we can rewrite (2.164) as:

∂A

∂z
+ iγ|A|2A = 0, (2.166)

Where γ is defined as γ ≡ 3ω0χ(3)

8cn(ω0)
. Let us now solve the equation (2.166) considering the

following Ansatz:

A(z, T ) = A(z = 0, T )eiϕ(z,T ), (2.167)

Let us calculate the spatial derivative of the Ansatz (2.167):

∂A

∂z
= i

dϕ

dz
A(z, T ), (2.168)

We can now plug (2.167) and (2.168) in (2.166) obtaining:

iA
dϕ

dz
+ iγ|A|2A = 0, (2.169)

Simplifying the equation we obtain:

dϕ

dz
= −γ|A|2, (2.170)

It is possible to observe that there are no changes in the envelope during propagation,
since |A(z, T )|2 = |A(z = 0, T )|2. We can exploit this relation to solve (2.170), obtaining:

ϕ(z, T ) = −γ|A(z = 0, T )|2z, (2.171)

Therefore, the solution of equation (2.166) is:

A(z, T ) = A(z = 0, T )e−iγ|A(z=0,T )|2z, (2.172)

In conclusion, in case of propagation of pulses in third-order non-linear materials, where
the dispersion has been neglected for simplicity, the envelope does not change, while the
phase varies proportionally to the modulus square of the envelope at z = 0. Since the
phase is modulated proportionally to the pulse itself, this phenomenon is called Self Phase
Modulation [60].
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The propagating electric field can be written as:

E(z, T ) = Re
{
A(z = 0, T )ei[ω0t−k0z−γ|A(z=0,T )|2z]

}
, (2.173)

Where the phase in (2.173) is Φ(z, T ) = i[ω0t − k0z − γ|A(z = 0, T )|2z]. Let us now
evaluate the instantaneous frequency:

ω(z, T ) =
dΦ

dt
= ω0 − γz

d

dt
|A(z = 0, T )|2, (2.174)

Analyzing (2.174), we can draw some conclusions. Firstly, during the propagation, the
pulse is chirped, namely, different frequencies arrive at different times, in particular:

1. For T < 0, ω(T ) < ω0,

2. For T > 0, ω(T ) > ω0

Therefore, the chirp introduced by SPM is similar to the one introduced by positive GVD,
in which the red components arrive before the blue ones.

Secondly, while going through the material, the spectrum of the pulse is broadened. Both
the described feature can be seen in fig. 2.23

Figure 2.23: Pulse subjected to Self phase modulation: above, pulse intensity profile;
below, variation of the instantaneous frequency. Adapted from [74].
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2.4.2. Optical Kerr effect

The spatial counterpart of Self Phase Modulation is called Optical Kerr Effect. This
phenomenon has the same origin of SPM, but can be analyzed from a different point
of view. Let us assume the same initial conditions as the previous section, namely:
degenerate Four Wave Mixing, so ω1 = ω2 = ω3 = ω4 ≡ ω0, where ∆k = 0, and an
incoming electric field described by (2.163).

Given these conditions, the third order polarization is described by one of the four equa-
tions in (2.106). We can write it, plugging in the electric field envelope and considering
the degenerate FWM condition:

P (3)
ω0

(z, t) =
3ϵ0χ

(3)

4
|A|2Aei(ω0t−k0z) + c.c., (2.175)

Let us now take into account also the linear polarization, since both P
(3)
ω0 and P (1) are

oscillating at ω0. The linear polarization simply reads as:

P (1)(z, t) = ϵ0χ
(1)E(z, t) = ϵ0χ

(1)Aei(ω0t−k0z) + c.c., (2.176)

Subsequently, the overall polarization oscillating at ω0 can be found summing (2.175)
and (2.176):

Pω0(z, t) = ϵ0χ
(1)Aei(ω0t−k0z) +

3ϵ0χ
(3)

4
|A|2Aei(ω0t−k0z) + c.c., (2.177)

Expression (2.177) can be rewritten as:

Pω0(z, t) = ϵ0

[
χ(1) +

3ϵ0χ
(3)

4
|A|2

]
E = ϵ0χE, (2.178)

Where, in (2.178), χ is the generalized susceptibility, defined as:

χ = χ(1) +
3χ(3)

4
|A|2, (2.179)

We can now generalize the relation n2
0 = ϵr = 1+χ(1), in which n0 is called the unperturbed

refractive index, to the new expression of χ found in (2.179). Therefore, we can calculate
the refractive index as:

n2 = 1 + χ = 1 + χ(1) +
3χ(3)

4
, (2.180)
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Proceeding with the calculations from (2.180), we find:

n =

√
1 + χ(1) +

3χ(3)

4
= n0

√
1 +

3χ(3)

4n2
0

|A|2, (2.181)

We can safely assume that 3χ(3)

4n2
0
|A|2 ≪ 1, since it represents a small correction with respect

to the unperturbed refractive index n0. Thus, we can simplify (2.181) obtaining:

n ≃ n0 +
3χ(3)

8n0

|A|2, (2.182)

Let us take into account the expression of the intensity:

I(z, t) =
1

2
cϵ0n0|A|2, (2.183)

From (2.183), we find:

|A|2 = 2I

cϵ0n0

, (2.184)

We can now plug (2.184) in (2.182) finding:

n ≃ n0 +
3χ(3)I

4cϵ0n2
0

, (2.185)

Analyzing (2.185), it is possible to define a new quantity, namely n2, as:

n2 =
3χ(3)

4cϵ0n2
0

, (2.186)

Finally, the Optical Kerr Effect is a correction of the refractive index dependent on the
intensity of the pulse, and proportional to n2, which is related to the third-order suscepti-
bility of the material. Taking into account also the transverse profile of the pulse, starting
from (2.185), and plugging in (2.186), we find:

n(t, r) = n0 + n2I(t, r), (2.187)

In order to understand the consequences of the Optical Kerr Effect on the propagation of
the pulse, let us write the expression of the electric field of a pulse, taking into account
the refractive index written in (2.187), and exploiting the relation with the wave number
k = ωn

c
:
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E = Re {A exp [i (ω0t− kz)]} = Re
{
A exp

[
i
(
ω0t−

ωn0

c
z − ωn2

c
zI

)]}
, (2.188)

We can extract the phase in (2.188) as:

Φ(t, z) = ω0t−
ωn0

c
z − ωn2

c
zI, (2.189)

Thus, the instantaneous frequency can be obtained deriving (2.189) in time:

ωi =
dΦ

dt
= ω0 −

ω0n2

c
z
dI

dt
, (2.190)

Equation (2.190), represents an expression analogous to (2.174), where the phase of the
pulse changes due to the presence of the pulse itself. Therefore, the Optical Kerr Effect
and the Self Phase Modulation are the same phenomenon, from two different perspectives.

Besides the temporal variation of the frequency, which has been analyzed in detail in the
previous section, we can now evaluate the spatial consequence of the Kerr effect. Starting
from (2.188), we can write the electric field in a slightly different manner, highlighting
the accumulated phase, ϕ, over propagation:

E = Re {A exp [i (ω0t− kz)]} = Re {A exp [iω0t− iϕ]} , (2.191)

In (2.191) ϕ reads as:

ϕ =
ω0

c
(n0 + n2I(t, r)) , (2.192)

Hence, the accumulated phase over z is directly proportional to the intensity of the pulse.
Let us take into account a gaussian-like pulse, where at r = 0 we find the maximum
intensity, while it decreases at the periphery. In this case, propagating in a third-order
non-linear material, the central part of the pulse will experience a higher accumulated
phase with respect to the periphery. Therefore, the material will behave as a lens, causing
a focusing of the incoming light. Since the variation of the refractive index, which causes
the lens-like behaviour, is due to the intensity profile itself, this phenomenon is called Self
Focusing. A schematic representation of this phenomenon is depicted in fig. 2.24.
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Figure 2.24: Schematic representation of Self-focusing. From the left, refractive index
behaviour depending on the radial coordinate; χ(3) material with propagation along the
z-axis highlighting the focusing of the beam.

An excessive focusing could lead to an optical damage of the medium. However, Self Fo-
cusing is counterbalanced by a defocusing effect due to the generation of plasma, discussed
in the next section.

2.4.3. Propagation of pulses in plasma

The self-focusing stage is a runaway effect in the sense that as the beam self-focuses, the
intensity increases and so does the self-focusing effect. However, the beam cannot focus
to a singularity; the beam collapse at the nonlinear focus is arrested by the multiphoton
absorption and ionization, producing an energy loss and generating free electron plasma,
which further absorbs and defocuses the beam [74].

In this section, the generation of plasma and its defocusing effect will be analyzed. Let us
start with a simplified picture, which allows us to have a straightforward picture of the
defocusing capability of plasma.

Let us assume that a plane wave is travelling through a medium characterized by the
presence of plasma, which is an ensemble of positive or negative charges not bound.
We will assume that only the electrons move inside the plasma, while the ions can be
considered still. This approximation takes the name of Born-Oppenheimer approximation,
and it is valid since, for the same electric field, electrons move thousand of times faster
than ions due to the difference in mass at equal charge. Let us start from the propagation
equation (2.12), in which we can now consider the plane wave approximation. Unlike how
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we assumed in subsection 2.1.1, here the term µ0
∂J
∂t

can not be neglected, since there are
free charges, and consequently there is a conduction current. Therefore, we obtain:

∂2E

∂z2
− 1

c2
∂2E

∂t2
= µ0

∂J

∂t
, (2.193)

In which the conduction current can be written as:

J = −eNev, (2.194)

In which, e = 1.6 · 10−19C is the absolute value of the electron charge, Ne is the electron
density in the medium and v is the electron velocity. Let us now calculate the time
derivative of the conduction current (2.194):

∂J

∂t
= −eNe

∂v

∂t
= −eNea, (2.195)

Where a is the electron acceleration. In equation (2.195) we implicitly assumed that
the electron density remains the same over time, but we will relax this condition in the
following. The electron acceleration can be calculated as:

a =
Fe

me

=
−eE
me

, (2.196)

Plugging (2.196) in (2.195) we find:

∂J

∂t
=
e2Ne

me

E, (2.197)

Let us now plug (2.197) in (2.193):

∂2E

∂z2
− 1

c2
∂2E

∂t2
=
e2Neµ0

me

E, (2.198)

Subsequently, the temporal Fourier transform is applied to (2.198), with Ẽ(z, ω) =

F {E(z, t)} and the Fourier property (2.27) is used, obtaining:

∂2Ẽ

∂z2
+
ω2

c2
Ẽ =

e2Neµ0

me

Ẽ, (2.199)
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Let us define the plasma frequency ωp ≡
√

Nee2

ϵ0me
. We can write equation (2.199) as:

∂2Ẽ

∂z2
+
ω2 − ω2

p

c2
Ẽ = 0, (2.200)

Comparing (2.200) with the Helmoltz equation (2.33) and knowing (2.36), we can deduce
that the refractive index in plasma is:

np =

√
1−

ω2
p

ω2
, (2.201)

Therefore, the larger is Ne the smaller is the refractive index np.

Till now we took into account plane waves propagating in a medium with a fixed density
of free electrons Ne. We would like to extend the reasoning to the propagation of pulses,
considering also the time-dependence of the free-electron density. We will make two
approximations:

1. For every atom/molecule, only one electron can be detached.

2. Recombination among electrons and ions is neglected.

It is possible to prove that, even in this case, (2.197) is valid if we substitute the fixed
electron density Ne with ne(t) defined as:

ne(t) = N

[
1− exp

(
−
∫ t

∞
w(t′)dt′

)]
, (2.202)

Where, in equation (2.202), N is the density of atoms before the interaction and w(t) is
the ionization rate. The latter depends on the intensity as7:

w(t) ∝ In, (2.203)

Where, in equation (2.203), n is the number of photons to be absorbed in order to ionize
the atoms. Therefore, taking into account also the definition of plasma frequency, we get:

∂J

∂t
=
e2ne(t)

me

E = ϵ0ω
2
p,p(t)E, (2.204)

7We are implicitly assuming that we are in the multiphoton ionization regime, which is valid for
Keldish parameter γ ≪ 1. The Keldish parameter is calculated as γ =

√
Ip
2Up

, where Ip is the ionization
potential and Up is the ponderomotive energy.
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Where the subscript "p,p" stands for "pulse, plasma". Equation (2.204) is formally equiv-
alent to (2.197), therefore the same reasoning could be applied, retrieving:

np,p =

√
1−

ω2
p,p

ω2
, (2.205)

Unlike in (2.201), in (2.205) the electron density is not fixed, but depends on the ionization
rate.

It is possible to observe that, since the ionization of electrons is caused by the pulse
intensity, which is higher in the center, the center of the pulse experiences a smaller
refractive index with respect to the periphery. Thus, the plasma acts as a defocusing lens,
in which the accumulated phase is lower in the center.

2.4.4. Supercontinuum generation in bulk materials

In the previous sections, many non-linear phenomena have been described. When a high-
intensity pulse propagates in a transparent medium, many of these processes are stim-
ulated simultaneously, giving rise to a complex coupling between spatial and temporal
effects. Eventually, a massive spectral broadening, preserving the spatial characteristics,
can be induced. This phenomenon takes the name of Supercontinuum (SC) generation
in bulk materials. The physical picture of SC generation in transparent bulk media
could be understood in the framework of optical filamentation. Optical filamentation
stems from the interplay between self-focusing, Self-Phase Modulation and multiphoton
absorption/ionization-induced free electron plasma. In particular, the self-focusing in-
duced by the Kerr effect is counteracted by the defocusing due to the propagation through
plasma, generated by the pulse itself [75]. This interplay leads to the appearance of a
stable structure called optical filament, that is able to propagate over extended distances
much larger than the typical diffraction length while keeping a narrow beam size without
the help of any external guiding mechanism. In fig. 2.25, the interplay between self-
focusing (fig. 2.25 (a)) and defocusing due to plasma (fig. 2.25 (b)) giving rise to optical
filamentation (fig. 2.25 (c)) are shown.
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Figure 2.25: Schematic illustration of the filamentation process. (a) Self-focusing of a laser
beam by optical Kerr effect. (b) Defocusing of the beam by the plasma. (c) Illustration
of the collapse of the beam on itself by the Kerr effect leading to the ionization of the
media with the consequent formation of a filament. Adapted from [76].

During the propagation, the pulse spectrum is broadened by the Self Phase modulation,
as explained in section 2.4.1, and by the chromatic dispersion, which arises from the
mismatch of GVD for different wavelengths. Furthermore, since new frequencies are
generated, three-wave mixing processes are now possible, such as SFG or DFG8, which
give rise to a further broadening of the spectrum.

In the temporal domain, a pulse splitting can be observed. Due to the different spectral
broadening induced by SPM on the two sides of the pulse, as can be seen in fig. 2.23,
the leading front is centered on a lower frequency with respect to the trailing one. In
case of normal GVD, lower frequencies propagate at higher velocity, thus, the leading
front will travel faster than the trailing one, splitting the pulse in two. Moreover, for the
same reason, a self-steepening of the two sub-pulses can be observed, originating from the
different velocities of the sub-pulses peaks and tails. This last process induces a sharp
intensity gradient in the temporal profile of the sub-pulses. As soon as the initial pulse
splits, the spectrum is greatly broadened [74], as it can be seen experimentally and from
numerical simulation, such as figure 2.26:

8Described in appendix A.1.
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Figure 2.26: Top: numerically simulated temporal dynamics of 100 fs laser pulses propa-
gating in a sapphire crystal with the input wavelengths of 800 nm in normal GVD medium.
Bottom: corresponding spectral dynamics. Adapted from [74].
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3.1. Experimental set-up

Figure 3.1: Picture of the experimental set-up.

The experimental set-up, shown in fig. 3.1, is based on a laser source (Monaco 1035,
Coherent): a fiber-based Ytterbium pulsed laser system offering a wide range of output
powers, till a maximum of 60 W, repetition rates, from 1 to 50 MHz and pulse durations,
with a central wavelength at λ0 = 1035 nm and a spectral bandwidth of 10 nm. A scheme
of such set-up is depicted in fig. 3.2.
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Figure 3.2: Scheme of the experimental set-up. Legend: HWP: half-wave plate; PBS:
polarizing beam splitter; L1: 7.5 cm lens; L2: 7.5 cm lens; LPF: long pass filter; DM:
dichroic mirror; SPF: short pass filter; L3: 3.5 cm lens.

For the experiments performed, a total output optical power of ≈ 5 W, a pulse duration
of ≈ 268 fs and a repetition rate of 2 Mhz have been chosen.

The combination of a half-wave plate (HWP) and a polarizing beam splitter (PBS) allows
to divide the initial beam into two replicas and to distribute the power in the two branches
as desired.

The first replica passes through an etalon, which shrinks the bandwidth, generating nar-
rowband pump pulses. The narrowband pump beam features ≃ 1.1 nm Full Width at half
maximum, which for λ0 = 1035 nm, gives a bandwidth in wavenumbers of approximately
10 cm−1. It is crucial to have a narrowband pump pulse since its spectral bandwidth,
together with the spectral resolution of the grating used to disperse the light after the
microscopy unit, sets the spectral resolution in the CARS spectra. On the other hand,
shrinking the bandwidth, the pulse duration increases due to the Fourier principle. It is
important to keep the pulse duration in the order of 1 ps, in order to excite the molecular
vibration in a impulsive way.

The other replica propagates through another HWP-PBS system, allowing to tune the
intensity. Then, an iris allows to control the divergence of the beam, which is then focused
by a 75 mm lens in a 10-mm-thick YAG crystal. The pulse energy of ≃ 1.5µJ is enough for
Supercontinuum generation in the near-infrared. Then, a second 75 mm lens ricollimates
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the beam without changing the spot-size. Afterwards, a long pass filter (LP1050 or
LP1200, Thorlabs depending on the experiment) selects the red shifted lobe of the SC
(1050/1200-1600 nm), filtering out the fundamental. A picture of the SC generation is
shown in fig. 3.3.

Figure 3.3: Picture of the SC generation stage.

The choice of the filter, and consequently of the Stokes bandwidth, depends on the ex-
periment. Using LP1050 only the two-color spectrum is detected, while LP1200 is used
to detect both two-color and three-color CARS. This second replica will be used as the
Stokes pulse.

The optical path through the objectives and through the YAG crystal introduce a positive
chirp characterized by a GDD ≃ 8000 fs2. In order to compensate for this, a SF-11 prism
compressor is employed with an apex-to-apex distance of 61 cm. A folding geometry was
used in order to make the experimental set-up more compact. The goal of this part is
to compensate in advance for the dispersion introduced by the microscope afterwards.
Therefore, a negative GDD just after the prism compressor is desired. It can be observed
that it is not necessary to compress the pump pulse because the initial duration is high
enough to make the temporal broadening negligible, since, as explained in section 2.1.5, the
longer is the pulse, the less the group velocity dispersion broadens it in time. Furthermore,
the pump pulse spectrum is narrow, and the measured pulse duration (≃ 1 ps, see section
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3.2) is already close to the transform-limited one.

The spatiotemporal superposition of the two beams is realized using a dichroic mirror
(Di02-R1064-25x36, Semrock) and a manual delay line mounted on the pump beam path.

Finally, the beams enters in a home-built confocal microscope (depicted in fig. 3.4) con-
stituted of a pair of 100× air objectives (Olympus LCPLN100XIR, NA=0.85).

(a) Scheme of confocal nonlinear microscope detecting
BCARS signal.

(b) Scheme of bright-field configuration.

Figure 3.4: Home-built confocal microscope. (a) Configuration exploited to detect the
CARS signal, (b) configuration used to perform bright-field microscopy.

The pump and Stokes pulses are focused on the sample plane, then the E-CARS signal is
recollimated by the first objective, while the F-CARS signal propagates through a second
objective, identical to the first one. In both cases, the pulses go through a short pass
filter (SP1000, Thorlabs), which selects the wavelengths below 1000 nm, filtering out
pump and Stokes pulses while transmitting the CARS signal, since the last is centered at
shorter wavelengths. Afterwards, the CARS signal is focused by a 3.5 cm lens (L3) on a
spectrometer (Acton SP2150, Princeton Instrument), with a 600 gr/mm grating, which
separates the different wavelengths. Then, the various frequencies reach a high-speed
back-illuminated CCD Camera (BLAZE, Teledyne Princeton Instruments), characterized
by an image area of 100 × 1340 pixels. The configuration described is used to perform
high speed imaging in a raster scanning fashion. The sample is placed on a stepper
motor controller which moves at constant speed on one axis and generates a trigger
signal. Simultaneously, the CCD acquires a CARS spectrum at every trigger, performing a
binning over the 100 rows, providing 1340 spectral points. The same procedure is repeated
over many pixels, giving rise to an hyperspectral image. Every image is constituted of a
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three-dimensional (N ×M × 1340) matrix, where the first two dimensions represent the
spatial axis, while the third dimension represents the spectral points.

The same microscope allows us to perform bright-field microscopy as well. In this case, a
LED is used as light source, then a system composed by a lens, two objectives and another
lens gives rise to a pseudo-Kohler illumination system. Finally, a camera (Thorcam,
Thorlabs) in the image plane allows us to retrieve a wide-field image of the sample.

3.2. Sources characterization

In order to characterize the light sources used for the experiments, we employed a spec-
trometer (Avantes) and a non-collinear SHG-FROG set-up, described in section 3.2.1.

3.2.1. Frequency Resolved Optical Gating

Working with light in the pulsed regime, it is often needed to know the time duration, the
shape and the spectrum of the pulses. There are several techniques which can be used to
characterize them, however, when the pulse duration is in the order of tens or hundreds
of fs this kind of measurement becomes challenging. Among the available techniques,
frequency resolved optical gating [77] (FROG) is particularly robust and allows a complete
characterization of a pulse, in particular, it allows to retrieve the electric field in time E(t).
Before describing the experimental set-up, the iterative approach exploited to find an
unknown function f(t), which represent the electric field E(t), is described. A conceptual
scheme can be found in figure 3.5.

Figure 3.5: Conceptual scheme of the iterative algorithm used in FROG measurements.

Given an unknown function f = f(t) and a known1 gate function g = g(t− τ), where τ is
the delay, let us define the gated function as: fgated(t, τ) = f(t)g(t− τ). The spectrogram

1The gating function could also be unknown, therefore this requirements will be relaxed in the following
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of the gating function can be calculated as:

S(ω, τ) = |Ft {fgated(t, τ)} |2, (3.1)

Where, in (3.1), Ft is the time Fourier transform. Knowing the spectrogram S(ω, τ),
which can be experimentally measured, it is possible to retrieve the unknown function
f(t) with the following iterative method:

1. An initial guess fg(t) is hypothesized.

2. Then, it is multiplied by the gating function obtaining fgated(t, τ) = fg(t)g(t− τ).

3. Subsequently, the time Fourier transform is performed, finding the spectrogram
F̃gated(ω, τ).

4. The amplitude of F̃gated is modified, in order to impose the right amplitude, which
is the one of the spectrogram S(ω, τ) measured experimentally exploiting (3.1),
finding: F̃ ′

gated =
F̃gated

|F̃gated|

√
S(ω, τ).

5. Afterwards, the inverse Fourier transform is performed, obtaining: f ′
gated(t, τ) =

F−1
{
F̃ ′
gated

}
.

6. Since we know that the gated function is the product of the unknown function f(t),
which is independent of the delay τ , and the known gating function g(t − τ), the
following property holds:∫ +∞

−∞
fgated(t, τ)dτ =

∫ +∞

−∞
f(t)g(t− τ)dτ = f(t)

∫ +∞

−∞
g(t− τ)dτ, (3.2)

Therefore, f(t) could be retrieved from the integral in (3.2) as:

f(t) =

∫ +∞
−∞ f(t)g(t− τ)dτ∫ +∞

−∞ g(t− τ)dτ
, (3.3)

Thus, since f ′
gated is an estimate of the real fgated, we can apply (3.3) as:

f ′(t) =

∫ +∞
−∞ f ′

gated(t, τ)dτ∫ +∞
−∞ g(t− τ)dτ

, (3.4)

7. Finally, we can substitute the initial guess fg(t) with f ′(t) and iterate till conver-
gence.

Let us now describe the experimental setup which allows to perform such measurements.
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The scheme of such set-up is reported in figure 3.6.

Figure 3.6: Conceptual scheme of the experimental set-up used to perform SHG-FROG.

There are many ways to implement a FROG set-up, such as polarization-gating FROG
[78] or Self-diffraction FROG [79], which offer reliable results but are cumbersome to
implement. On the other hand, Non-collinear Second Harmonic Generation FROG (Non-
collinear SHG-FROG) offers the best trade-off between robustness and practical imple-
mentation, and therefore will be discussed and performed experimentally. As we can see
in fig. 3.6, the pulse, which is described by the electric field in time E(t), is splitted by
a first beam splitter, generating two copy of the same pulse. Subsequently, one of the
two copies is delayed by a quantity τ through a delay line (a set of two mirrors which
can be moved in space), and is therefore described by E(t − τ). Finally, the two copies
of the pulse are focused by mean of a concave mirror in a χ(2) crystal, generating second
harmonic of the two beams2. The set-up depicted in figure 3.6 is balanced: both the
copies of the pulse go through the same amount of glass. Furthermore, a curved mirror
instead of a lens is used to focus the beams, reducing the introduced dispersion. If the
pulses are overlapping in time and space, the Sum frequency generation (SFG) can be
stimulated (the green horizontal arrow depicted in figure 3.6). Only the SFG is selected
through an iris and it is analyzed with a spectrogram.

From subsection A.1, we know that the electric field of the SFG is proportional to the
product of the electric fields of the summing waves, therefore we can write:

ESF (t, τ) ∝ E(t)E(t− τ), (3.5)

Thus, ESF (t, τ) represents the gated function fgated in the scheme described above, while
2Second order non-linear optical phenomena, such as Second Harmonic generation (SHG) or Sum

frequency generation (SFG) are described in appendix A.1
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E(t) and E(t − τ) are respectively f(t) and g(t − τ). Substituting (3.5) in (3.1), we
measure the spectrogram as:

S(ω, τ) = |F {ESF (t, τ)}|2 ∝
∣∣∣∣∫ +∞

−∞
E(t)E(t− τ)e−iωtdt

∣∣∣∣2 , (3.6)

In which, moving the delay line in the experimental set-up, the time delay τ can be
changed. Unlike before, the gating function E(t − τ) is unknown, however, it can be
shown that the iterative procedure described above can be applied anyway. The main
advantage of Non-collinear SHG-FROG is that it does not have any background, since
the SF is generated only when the pulses are overlapping in time. Furthermore, we
expect a symmetric spectrogram S(ω, τ) with respect to τ , as it can be observed in the
spectrogram in fig. 3.7 experimentally measured and reported as an example. This feature
offers an additional way to check whether the measurement is performed correctly.

Figure 3.7: Example of spectrogram experimentally measured. The incoming pulse has
central wavelength at 1035 nm and its duration is 1 ps.

Before performing the iterative analysis, it is also possible to have an estimate of the pulse
duration analyzing S(ω, τ). Integrating S(ω, τ) over the frequencies, we obtain the energy
of the SF pulse depending on the delay τ :

USF (τ) ∝
∫ +∞

−∞
|ESF |2dt =

∫ +∞

−∞
|E(t)|2|E(t− τ)|2dt, (3.7)

Exploiting the relation between electric field and intensity I(t) = 1
2
cϵ0|E(t)|2, we can
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write (3.7) as:

USF (τ) ∝
∫ +∞

−∞
I(t)I(t− τ)dt = CI(τ), (3.8)

In which CI(τ) is the intensity autocorrelation function. Knowing CI(τ) and measuring
its full width at half maximum ∆τCI

, and making an assumption on the shape of the
pulse, it is possible to get an estimate of the pulse duration ∆tpulse and of the intensity
profile I(t). In particular:

1. If I(t) is a gaussian function, then ∆τCI
=

√
2∆tpulse,

2. If I(t) is a sech2 function, then ∆τCI
= 1.55∆tpulse,

3. If I(t) = e−t/τpH(t), where H(t) is the Heavyside function, then ∆τCI
= 2∆tpulse,

Performing this kind of measurement on the spectrogram in figure 3.7 and assuming it
has a sech2 shape, we find the intensity profile depicted in figure 3.8 and a pulse duration
equal to 1 ps.

Figure 3.8: Intensity profile of the pump pulse obtained integrating the spectrogram over
the wavelenghts.

The main drawback of SHG-FROG is that, since both the spectrogram S(ω, τ) and the
intensity auto-correlation CI(τ) are symmetric with respect to the introduced delay τ , we
do not get any information about the sign of the chirp of the pulse. A simple way to check
whether the pulse presents positive or negative dispersion, is to repeat the measurement
making the pulse pass through a piece of glass. In this way some positive group delay
dispersion (GDD) is introduced. If ∆tpulse increases, then the initial GDD is positive,
while if it decreases, the initial GDD is negative.
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3.2.2. Pump pulse characterization

Let us begin with the characterization of the pump pulse before the etalon.

(a) Spectrogram of pump pulse before etalon. (b) Intensity autocorrelation in time of pump
pulse before etalon.

Figure 3.9: FROG characterization of pump pulse before the etalon: (a) Spectrogram of
the SFG of the two replicas arising in the FROG set-up, Colorbar: intensity in arbitrary
units. (b) Intensity autocorrelation in time, fitted with a sech2 and highlighting the
FWHM. The SFG was obtained focusing the beams on a 1 mm-thick BBO crystal.

As it can be seen in fig. 3.9a, the SFG is centered at ≃ 517.5 nm, which corresponds
to half of the fundamental wavelength. The measured pulse duration, assuming a sech2

shape3, is 288 fs. Therefore, before passing through the etalon, the pump pulse has a
duration slightly longer than the initial one (268 fs), this difference is due to the passage
through the HWP and the PBS, which introduce positive dispersion. Let us proceed with
the pump pulse after the etalon.

3This will be assumed in all the FROG measurements shown. The link between the pulse duration
∆tpulse and the intensity autocorrelation FWHM ∆τCI is: ∆τCI = 1.55∆tpulse
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(a) Spectrogram of pump pulse after etalon. (b) Intensity autocorrelation in time of pump
pulse after etalon.

Figure 3.10: FROG characterization of pump pulse after the etalon: (a) Spectrogram of
the SFG of the two replicas arising in the FROG set-up, Colorbar: intensity in arbitrary
units. (b) Intensity autocorrelation in time, fitted with a sech2 and highlighting the
FWHM. The SFG was obtained focusing the beams on a 1 mm-thick BBO crystal.

In this case the pulse duration is equal to 1.06 ps. An increase of the time FWHM was
expected, since, narrowing the spectrum, the temporal duration increases, as stated by the
Fourier principle. The pulse spectrum after the etalon was measured with a spectrometer.
The result is reported in fig. 3.11.

Figure 3.11: Pump pulse spectrum after the etalon. The dashed line highlights the half
of the peak.

It can be observed that the bandwith of the pulse is narrow, namely, its FWHM is equal
to 1.28 nm. With this bandwidth, a spectral resolution of ≈ 10 cm−1 can be reached.
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3.2.3. Stokes pulse characterization

Let us proceed with the characterization of the Stokes pulse. In particular, the spectrum
of the SC was measured with a spectrometer and a FROG analysis of the broadband pulse
before and after compression was performed.

As we can see in fig. 3.12, in which the spectrum of the Stokes pulse is shown, Supercon-
tinuum generation in YAG greatly broadens the bandwidth, reaching almost 1600 nm.
The sharp decrease of intensity at 1050 nm is due to the presence of the LPF, employed to
filter out the fundamental (when the LPF1200 is used, the sharp decrease results shifted
to 1200 nm).

Figure 3.12: Stokes pulse spectrum after SC generation and LPF. The measurement is
performed with a spectrometer (Avantes), with an integration time equal to 1 ms and
averaging over 10000 spectra.

We can now move to the SHG-FROG analysis before compression, depicted in fig. 3.13.
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(a) Spectrogram of Stokes pulse before com-
pression.

(b) Intensity autocorrelation in time of Stokes
pulse before compression.

Figure 3.13: FROG characterization of Stokes pulse before compression: (a) Spectrogram
of the SFG of the two replicas arising in the FROG set-up, Colorbar: intensity in arbitrary
units. (b) Intensity autocorrelation in time, fitted with a sech2 and highlighting the
FWHM. The SFG was obtained focusing the beams on a 300 µm-thick BBO crystal. A
thinner crystal, with respect to the pump pulse measurements, is needed to satisfy the
phase matching condition for a broader bandwidth.

Before compression, the Stokes pulse duration reaches 315 fs and it is characterized by a
positive GDD introduced by the propagation through several optical elements (two PBS,
two HWP and the YAG crystal). The microscope objectives will introduce a further
group delay dispersion, approximately 5000 fs2. The overall positive GDD, considering
all the optical elements in the beam path, is equal to 8000 fs2 at the sample plane. Since
the pulse spectrum is particularly broad, with a bandwidth ≃ 500 nm, the Stokes pulse
is particularly sensitive to GDD and would reach a FWHM in time of more than 3 ps
without compression. Therefore, a compression is necessary.

It can be observed in the spectrogram shown in fig. 3.13a that S(λ, τ) ≃ 0 for λ < λcut =

525 nm, due to the presence of a LPF with a cut-off at λLPF = 2λcut = 1050 nm.

The goal of the compression is to add a negative GDD to compensate in advance for the
dispersion introduced by the objectives and by the other optical elements, in order to
reach GDD≃ 0 at the sample plane. In fig. 3.14, the FROG measurement of the Stokes
pulse after compression is shown.
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(a) Spectrogram of Stokes pulse after compres-
sion.

(b) Intensity autocorrelation in time of Stokes
pulse after compression.

Figure 3.14: FROG characterization of Stokes pulse after compression: (a) Spectrogram of
the SFG of the two replicas arising in the FROG set-up, Colorbar: intensity in normalized
units. (b) Intensity autocorrelation in time, fitted with a sech2 and highlighting the
FWHM. The SFG was obtained focusing the beams on a 300 µm-thick BBO crystal.

The pulse duration after compression, and before the microscope, is 300 fs, which is similar
to the one measured before compression. However, in this case the prism compressor
introduced a negative GDD of −8000 fs2, which is calculated plugging the prism material
(SF-11) and the apex-to-apex distance (61 cm) in eq. (2.76). Therefore, the total GDD
is negative before the microscope. In order to verify it, the same measurement has been
repeated adding a piece of glass: this optical element adds a positive GDD simulating
the one introduced in the microscope. We expect a strong decrease in the pulse duration,
since the GDD gets close to zero. In fig. 3.15 this measurements is shown.
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(a) Spectrogram of Stokes pulse after compres-
sion and propagation through glass.

(b) Intensity autocorrelation in time of Stokes
pulse after compression and propagation
through glass.

Figure 3.15: FROG characterization of Stokes pulse after compression and propagation
through glass: (a) Spectrogram of the SFG of the two replicas arising in the FROG set-up,
Colorbar: intensity in arbitrary units. (b) Intensity autocorrelation in time, fitted with a
sech2 and highlighting the FWHM. The SFG was obtained focusing the beams on a 300
µm-thick BBO crystal.

After propagating through a normally dispersive medium, the Stokes pulse results com-
pressed in time, with a pulse duration of 57 fs. Thus, the hypothesis of negative GDD after
the prism compressor is confirmed, and we expect a similar pulse duration at the sample
plane. It can be observed that a pre-pulse and a post-pulse appear, respectively at the
leading and trailing front of the pulse intensity autocorrelation, and they can be observed
in the spectrogram as well, fig. 3.15a, for positive and negative times. The presence of
these anomalies is due to the double reflection inside the piece of glass, which gives rise to
a replica of the Stokes pulse, causing an unexpected SFG at positive and negative delays.
Since the autocorrelation in non-collinear SHG-FROG should be symmetric with respect
to the time delay, any asymmetry should be traced back to experimental inaccuracies.

3.3. Data processing

3.3.1. Noise reduction through singular value decomposition

Due to the high acquisition speed of data in CARS microscopy, the random noise floor
could be problematic, especially for imaging applications. Furthermore, it could distort
the lineshape of the peaks, reducing the effectiveness of NRB removal algorithms. Several
methods allow the reduction of noise in a measured spectrum, such as moving-mean
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techniques or Fourier transform based approaches. In this work we use singular value
decomposition (SVD) since it can be applied directly to hyperspectral images, performing
a simultaneous denoising of all the spectra contained in the data matrix. Starting from an
acquired image, characterized by spatial dimensions n×m and by s spectral components,
the first step is a reshaping of the data set, in order to have a bidimensional matrix A

with s rows and l = n×m columns. Afterwards, SVD is applied to the matrix, which is
rewritten as:

A = USV H , (3.9)

A schematic representation of (3.9) is reported in fig. 3.16.

Figure 3.16: Schematic representation of SVD decomposition.

In which the H-superscript indicates the Hermitian transpose; U and V are unitary
matrices whose columns are the left and right singular vectors, respectively. In particular,
U is an s× s matrix and is composed of spectral basis vectors, while, V is a l× l unitary
matrix and is composed of spatial basis vectors. S is a s× l rectangular diagonal matrix
whose entries are non-negative real numbers, known as singular values, denominated λi,
where the subscript i indicates the row (or the column) of the singular value. Moreover,
since the initial matrix A is real, the Hermitian transpose of V is equal to the transpose
V T . The SVD decomposition can be thought as a decomposition of the A matrix in a
weighted, ordered sum of contributes, each represented by λi. The first singular values
represent the highly spatio-spectral coherent contribute, while, increasing the order i, the
lower coherent parts can be found. From the spectral point of view, the lower i-s give the
low-frequency terms, while the higher ones correspond to the high-frequency contributions.
Therefore, setting to zero all the singular values over a certain i, we remove the singular
vector with the least spatio-spectral coherence. Since the noise is characterized by a
complete randomness in space and by a high-frequency in spectra, removing the λi with
high i, we are effectively denoising the data [80]. After having set to zero all the λi, for
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i > ifilter, changing the matrix S to Sfiltered, the denoised matrix Adenoised can be found
as:

Adenoised = USfilteredV
T . (3.10)

3.3.2. NRB removal algorithms

In section 2.3.7 the resonant and non-resonant contributions to the CARS signal have
been analyzed. For spectroscopic applications, only the resonant one is meaningful, thus,
the NRB should be removed in order to obtain a vibrational spectrum, characterized
by Lorentzian peaks. Several physical techniques could be implemented in order to re-
move the NRB before acquisition, such as Time-resolved CARS [81] or Box-CARS [82].
However, the NRB actually amplifies the weak Raman signal, enabling high-sensitivity
detection, thus, its physical removal leads to weaker signals, lower SNRs, and greater
experimental complexity. Therefore, numerical methods aiming at removing the non-
resonant part after acquisition have been developed. These methods can be divided in
two main classes: the ones based on the maximization of entropy (Maximum Entropy
method: MEM) [83] and the ones relying on phase retrieval through Kramers-Kronig
(KK) relations [84].

In section 2.3.6 it has been shown that the CARS intensity depends directly on the
modulus squared of the third-order non-linear susceptibility χ(3). In (2.159c), the relation
has been developed finding that:

IAS ∝
∣∣∣χ(3)

R

∣∣∣2 + ∣∣∣χ(3)
NR

∣∣∣2 + 2χ
(3)
NRRe

{
χ
(3)
R

}
, (3.11)

The relevant spectral information are contained in the first term of the right-hand side
of (3.11). It is also known that the resonant susceptibility χ(3)

R is a complex number, where
the real part presents a dispersive shape, while the imaginary part presents a Lorentzian
shape. On the other hand, the non-resonant susceptibility χ(3)

NR is real if far from electronic
resonances. It could be demonstrated that knowing the phase φ(ω) of χ(3) allows to get the

same spectral information embedded in
∣∣∣χ(3)

R

∣∣∣2. Therefore, both MEM and KK methods

aim at retrieving the phase of χ(3).

Let us proceed with the description of the Maximum Entropy method. The MEM hy-
pothesis states that any inferences made from incomplete data should be consistent with
maximized entropy of the associated probability distribution, given the constraints of the
known information. This hypothesis can be applied to compute a power spectrum S(ν)
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associated with discrete measured data [83]. This could be applied to model the CARS
lineshape as:

S(ν) =

∣∣∣∣∣ β

1 +
∑M

k=1 ak exp(−2πikν)

∣∣∣∣∣
2

≡
∣∣∣∣ β

AM(ν)

∣∣∣∣ (3.12)

Where, in (3.12), ν is the frequency, normalized to run from 0 to 1 over the experimental
range, A and β are complex coefficients, and M is the number of correlation coefficients
used in reconstructing the spectrum. M can be as high as the number of spectral points
(N); however, the higher order coefficients represent primarily noise, so that typicallyM ≤
N/2 is used. The coefficients ak and β can be found solving the Toeliptz equation (3.13):


C0 C∗

1 · · · C∗
M

C1 C0 · · · C∗
M−1

...
... . . . ...

CM CM−1 . . . C0




1

a1
...
aM

 =


|β|2

0
...
0

 (3.13)

Where ∗ denotes the complex conjugate and Ck are the discrete Fourier transform of
the CARS spectrum at a discrete set of normalized frequencies νn = n/N , with n =

0, 1, . . . , N , calculated as:

Ck = N−1

N−1∑
n=0

S(νn)exp(2πikνn), (3.14)

Substituting the values of the coefficients ak and β (which are found solving (3.13), tak-
ing (3.14) into account) in eq. (3.12), it is possible to find AM(ν), from which the spectral
phase ϕCARS can be retrieved as:

ϕCARS(ν) = arg[AM(ν)], (3.15)

This result is obtained directly from the measured spectrum, however, in (3.15), the NRB
contribution has not been taken into account yet. Indeed, the measured spectral phase
can be written as:

ϕCARS(ν) = φvib(ν) + ψnrb(ν), (3.16)

Where, in (3.16), φvib(ν) contains the vibrational spectrum information, while ψnrb(ν) is
introduced by the presence of NRB. The NRB phase term can be calculated applying the
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same procedure to a reference spectrum acquired from models materials, such as coverslip
glass. Eventual reference deviations from the actual NRB are assumed to contribute to a
slowly varying baseline that can be subtracted.

Let us move to the phase retrieval method exploiting Kramers-Kronig (KK) relations.
According to the KK connection, a function, f(ω), has an explicit, causal relationship
between its real and imaginary components. As a result, if just the real (or imaginary)
component is known, the imaginary (or real) component can be determined. In CARS
spectroscopy, neither the real nor the imaginary part of χ(3) is directly accessible. However,
there is an explicit connection between the complex norm of the function and the phase
if the function is square integrable [84]:

ln (|f(ω)|) = −H̃ {ϕ} , (3.17)

ϕ = H̃ {ln (|f(ω)|)} , (3.18)

In which H̃ is the Hilbert transform. In order to calculate it, the complex modulus of the
function or its phase over an infinite frequency range should be known. However, since
only a portion of the spectrum can be effectively measured, a windowed version of the
Hilbert transform, H̃w, is exploited. H̃w is defined as:

H̃w {f(x);ωa, ωb} =
P
π

∫ ωb

ωa

f(x′)

x− x′
dx′, (3.19)

Where ωa and ωb are the limits of the covered spectral range. P is the Cauchy principal
value.

As long as two conditions are met:

1. The Raman peaks contained within this window are not impacted by those outside
of the window

2. Any electronic resonances, encompassed in the non-resonant susceptibility χ(3)
NR, are

far from the resonant ones (as it is normally the case with infrared stimulation),

the Hilbert transform is related to its windowed version (3.19) by the relation:

H̃w

{
1

2
ln

∣∣χ(3)
∣∣2} ≃ H̃

{
1

2
ln

∣∣χ(3)
∣∣2}+ ϵ(ω), (3.20)
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where ϵ(ω) is an additive error term. Let us consider the CARS signal intensity, ICARS.
In section 2.3.6 we wrote it in terms of the pump and Stokes intensities, however, it could
also be written in term of electric fields as:

ICARS(ω) =
∣∣{[ES(ω)⊗ EP (ω)]χ

(3)(ω)
}
∗ EP (ω)

∣∣2 ≡ |C̃st|2|χ̃(3)|2, (3.21)

Where, in (3.21), ⊗ and ∗ are the cross-correlation and the convolution operators re-
spectively. The correlation between pump and probe fields can be defined as Cst =

[ES(ω)⊗ EP (ω)], and is called the coherent stimulation profile. Assuming a spectrally
narrow pump, an effective stimulation profile C̃st and an effective non-linear susceptibility
can be introduced as:

C̃st(ω) ≡
[Cst(ω) ∗ EP (ω)]∫

EP (ω)dω
, (3.22)

χ̃(3)(ω) ≡ χ(3)(ω) ∗ EP (ω), (3.23)

Therefore, performing the windowed Hilbert transform (3.19) of the logarithm of the
CARS signal intensity (3.21), taking into account (3.20) and applying the property (3.18),
we find:

ϕCARS = H̃w

{
1

2
ln (ICARS(ω))

}
≃ ϵ(ω) + H̃w

{
1

2
ln

∣∣∣C̃st(ω)
∣∣∣2}+ H̃

{
1

2
ln

∣∣χ̃(3)(ω)
∣∣2} ,
(3.24)

Applying again the Hilbert transform property (3.18) to (3.24), we find:

ϕCARS ≃ ϵ(ω) + H̃w

{
1

2
ln

∣∣∣C̃st(ω)
∣∣∣2}+ arg

[
χ
(3)
R + χ

(3)
NR

]
, (3.25)

Where the arg operator extracts the phase. The measured phase contains several con-
tributes: the error ϵ, due to the use of the windowed version of the Hilbert transform, the
contribution from the effective stimulation profile, and from both the resonant and non-
resonant parts of the susceptibility. If it was possible to measure the NRB intensity INRB,
we could apply the windowed Hilbert transform to the ratio ICARS/INRB, obtaining:
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ϕCARS/NRB = H̃w

{
1

2
ln

(
ICARS(ω)

INRB(ω)

)}
≃ ϵ(ω) + H̃w

{
1

2
ln

∣∣∣C̃st(ω)
∣∣∣2}+

−
[
ϵ(ω) + H̃w

{
1

2
ln

∣∣∣C̃st(ω)
∣∣∣2}]+ arg

[
χ
(3)
R + χ

(3)
NR

]
− arg

[
χ
(3)
NR

]
≃

arg
[
χ
(3)
R + χ

(3)
NR

]
,

(3.26)

Where in the last passage of (3.26) we implicitly assumed that, since we are generally far
from electronic resonances, χ(3)

NR is real. Using the ratio of the CARS and NRB intensities
as our signal, the complex spectrum can be written as:

ICARS/NRB =

√
ICARS(ω)

INRB(ω)
exp iϕCARS/NRB ≃ |χ̃(3)|

|χ̃(3)
NR|

exp iarg
[
χ
(3)
R + χ

(3)
NR

]
, (3.27)

The Raman-like spectrum can be extracted as the imaginary part of ICARS/NRB in (3.27):

Im
{
ICARS/NRB

}
=
Im

{
χ
(3)
R (ω)

}
∣∣∣χ(3)

NR

∣∣∣ , (3.28)

Where the imaginary part of the third-order non-linear susceptibility contains the infor-
mation regarding the vibrational spectrum. Therefore, the retrieved spectrum is directly
proportional to the spontaneous Raman one, scaled by the non-resonant component.

The described method relies on a precise measurement of the non-resonant background.
However, up to now, no approach has been found to measure the non-resonant contribu-
tion alone. Typically, the CARS signal coming from a material without Raman signature,
such as glass or water, is used as a reference. However, this leads to a multiplicative
complex error which should be taken into account.

Let us consider the reference measurement, Iref , instead of INRB, which are linked by
the multiplicative relation: Iref (ω) = ξ(ω)INRB(ω), where ξ is assumed to be real and
positive.

Let us calculate the phase of the ratio ICARS/Iref , similarly to what we did in eq. (3.26):

ϕCARS/ref = H̃w

{
1

2
ln

(
ICARS(ω)

ξ(ω)INRB(ω)

)}
≃ ϕCARS/NRB + H̃w

{
1

2
ln

(
1

ξ(ω)

)}
︸ ︷︷ ︸

ϕerr

, (3.29)
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As we did in (3.27), we can calculate the imaginary part of the spectrum obtained as the
ratio ICARS/ref = ICARS/Iref , where we use Iref instead of INRB:

Im
{
ICARS/ref

}
=

√
1

ξ(ω)︸ ︷︷ ︸
Aerr(ω)

√
ICARS(ω)

INRB(ω)
sin

[
ϕCARS/NRB + ϕerr

]
(3.30)

From eq. (3.29) and eq. (3.30), it can be seen that using a reference instead of the real
NRB leads to an amplitude (Aerr) and a phase (ϕerr) error. Aerr and ϕerr are linked by
the relationship:

lnAerr(ω) = −H̃ {ϕerr(ω)} ,

ϕerr(ω) = H̃ {lnAerr(ω)} ,
(3.31)

Where the Hilbert transform property (3.18) has been used. However, since the Hilbert
transform of a constant is equal to zero, there is an ambiguity in eq. (3.31). In particular,
if ξ(ω) is multiplied by a constant α, the phase error remains the same:

ϕerr(ω) = H̃
{
ln

1

αξ(ω)

}
= H̃

{
ln

1

ξ(ω)

}
. (3.32)

The phase and amplitude distortions can be solved following two main steps:

1. Remove phase error via detrending ϕCARS/ref and correct part of the amplitude
error exploiting the relationship in (3.31),

2. Correct for scaling errors, related to the constant α, and for the use of the windowed
version of the Hilbert transform in step 1, leading to ϵerr. The second step is
performed via unity centering of the phase corrected spectrum [84].

Let us begin with the first step. The phase ϕCARS/ref (ω) is qualitatively similar to a
Raman-like spectrum, since peaks extend positively over a baseline. However, the slowly-
varying phase error ϕerr causes a slowly-varying deviation from the zero baseline. There-
fore, isolating the erroneous baseline allows to find ϕerr. Using traditional baseline de-
trending methods, ϕerr(ω) can be extracted from ϕCARS/ref (ω) and removed. Moreover,
using eq. (3.31), part of the amplitude error can be corrected. The two corrections can be
implemented multiplying the retrieved spectrum ICARS/ref by a complex phase-correction
multiplier. The phase corrected spectrum Ipc reads as:
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Ipc = ICARS/ref

 1

exp
[
−H̃w {ϕerr(ω)}

] exp [−iϕerr(ω)]

 =

=

√
ICARS(ω)

Iref (ω)
exp iϕCARS/ref

 1

exp
[
−H̃w {ϕerr(ω)}

] exp [−iϕerr(ω)]

 ,

(3.33)

Let us proceed implementing the second step. In eq. (3.32) we saw that retrieving
Aerr from ϕerr leads to an ambiguity related to the scaling constant α. Furthermore,
in eq. (3.33), H̃w was used instead of H̃ , causing a window-effect error ϵerr(ω):

H̃ {ϕerr(ω)} = H̃w {ϕerr(ω)}+ ϵerr(ω), (3.34)

To finalize the error correction, one needs to account for the Aerr ambiguity and ϵ(ω).
Both of these variables can be found by examining the real component of the phase-
corrected spectrum in eq. (3.33). Since the real component of eq. (3.27) is unity centered,
which means that

〈
|χ̃(3)|/|χ̃(3)

NR| cosϕCARS/NRB

〉
= 1, any alteration of the mean of the

real component in eq. (3.33) is caused by the presence of the scaling constant α, thus,
one could measure this mean and normalize Ipc by this value. Nevertheless, ϵerr might
give this mean a frequency-dependent component. Using numerical means, though, one
can find a slowly varying centerline and normalize the phase-corrected spectrum, thus
removing α and ϵerr in one step. Finally, a rescaled, phase-corrected, complex spectrum
Ipc,sc may be calculated as:

Ipc,sc =
Ipc(ω)

⟨Re {Ipc(ω)}⟩ (ω)
=

|χ̃(3)|
|χ̃(3)

NR|
exp iϕCARS/NRB, (3.35)

Comparing eq. (3.35) with eq. (3.27) it can be seen how the NRB can be removed from
the CARS signal even using a reference measurement of the non-resonant background in
the Kramers-Kronig relations [84].

In conclusion, it has been proven how, starting from a measured CARS signal, it is
possible to retrieve the vibrational Raman-like spectrum, removing the NRB through
phase retrieval, exploiting two possible methods, namely the Maximum Entropuy method
and the Kramers-Kronig relations.
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3.3.3. Multivariate curve resolution

In section 3.1 we described the experimental set-up and how it is capable of providing
hyperspectral images. A great advantage of this kind of images is that they allow to distin-
guish different chemical species thanks to different features in their vibrational spectrum.
However, the Raman peaks are often overlapped, especially in biological sample, hence
visualizing the image at a specific Raman shift is usually not enough to get a satisfactory
contrast between different chemical species. Several methods have been developed to ex-
ploit the spectral information in order to provide chemical maps. We can divide them
into two groups: unsupervised and supervised methods, based on their key distinctions.
For unsupervised algorithms, no prior knowledge about the pure components is needed.
Therefore, to find the separate spectral components, the program initially uses data min-
ing. Contrarily, supervised approaches require the spectrum profiles of pure components
or a portion of the chemical concentration maps, which makes the data processing a linear
fitting or segmentation problem in order to produce chemical maps.

Unsupervised methods allow to study unknown samples, since no knowledge a priori is
needed to perform the analysis. This feature makes them suitable for diagnostic purposes.
Among the unsupervised methods, MCR has been proven to show the best results [85] and
it was used in this work. MCR is a nonnegative matrix factorization (NMF) algorithm
aiming to decompose a hyperspectral image into chemical concentration maps. It can be
applied to both raw CARS data or to data-set where the NRB was removed. We can
define the initial hyperspectral image as a n ×m × s matrix, where n and n correspond
to the spatial dimensions x and y, while s is the spectral dimension. MCR assumes
that the spectral data are a linear combination of k pure components with nonnegative
concentrations, thus, the initial matrix can be expressed as:

D = CST + w, (3.36)

Where D ∈ Rn·m×S is the raster-transformed 2D data matrix of the initial hyperspectral
images, C ∈ Rn·m×k contains the concentration map of the pure components, S ∈ Rk×s

represents the spectral profiles of the components and w is related to the noise in measure-
ments. MCR aims at finding the concentration and spectral matrices C and S solving the
inverse problem in eq. (3.36). Matrices C and S can be found exploiting an Alternating
Least Square (ALS) algorithm. ALS solves the inverse problem alternating two steps:

1. Fixes S and finds the optimal C,

2. Fixes C and finds the optimal S,
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The optimization is performed iteratively minimizing the Frobenious norm ∥D − CST∥2

under the non-negative constraints C ≥ 0 and S ≥ 0. As a result, neither the calculated
abundance maps nor the resultant spectra may have negative values. The convergence
criterion used is that the change in percentage of standard deviation of residuals between
two successive iterative cycles reaches the predefined constraint value, often set at 0.1 %.
Compared to other factorization techniques, MCR analysis has the benefit that the results
can be meaningfully interpreted as nonnegative abundance maps and spectral intensities
[85].

3.4. Experimental results

3.4.1. Broadband CARS on solvents

In this subsection the experimental result of Broadband CARS on solvents are shown. The
samples were sandwidched between two 170 µm glass coverslips. The set-up described
in section 3.1 allows us to obtain broadband two-color and three-color CARS spectra
(depending on the filter used on the Stokes pulse and on the compression introduced by
the prism compressor) covering a wide wavelength range (780-992 nm), which corresponds
to the interval in wavenumbers 470-3330 cm−1. When the LPF at 1050 nm is used, two
and three-color CARS signals overlap. In this case, we reduced the time compression
through the prisms compressor, increasing the time duration of the Stokes pulse. Thus,
since different colors arrive at different times, we prevent intra-pulse excitation, exciting
only the two-color signal.
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(a) Two-color B-CARS raw data from
DMSO in wavelengths.

(b) Two-color B-CARS raw data from
DMSO in wavenumbers.

Figure 3.17: Raw Two-color B-CARS data from DMSO acquired with a pixel dwell time of
0.8 ms, 1250 spectra-per-second. The data are shown in (a) wavelength and (b) wavenum-
bers.

In fig. 3.17 the raw data of two-color B-CARS on DMSO are shown. The spectrum is
converted in wavenumbers by means of the relation (2.131). Afterwards, the non-resonant
background is removed from the B-CARS spectra through phase retrieval exploiting the
Kramers-Kronig method described in section 3.3.2. Since it is not possible to acquire the
real NRB, a reference measurement is performed on a glass coverslip. The result of such
measurement is shown in fig. 3.18a.

(a) Reference NRB. (b) B-CARS data from DMSO after NRB
removal.

Figure 3.18: (a) Non-resonant background reference signal from a glass coverslip, averaged
over 10000 acquisitions. (b) CARS spectrum of DMSO after NRB removal. Pixel dwell
time: 0.8 ms, Spectra per second: 1250.
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As we can see in fig. 3.18, after the NRB removal, the spectrum is constituted of a series of
Lorentzian peaks over a zero-baseline. Since the KK method for phase retrieval is based
on the ratio between the CARS and NRB intensities, when the NRB signal gets close to
zero, the retrieved CARS spectrum in such region can not be considered meaningful, since
all the fluctuations are enhanced. Therefore, is usually necessary to cut part of the final
spectra to have only significant results. In fig. 3.19, the two-color CARS spectra before
and after NRB removal of DMSO, Toluene, Ethanol, Methanol, Isopropanol and Acetone
are shown. Moreover, in order to validate the results, a comparison with Sponaneous
Raman (SR) spectra4 has been also performed.

(a) Two-color B-CARS before and after NRB removal and SR spectra from DMSO.

(b) Two-color B-CARS before and after NRB removal and SR spectra from Toluene.

4SR spectra are measured with a home-built set-up, presented in appendix B.1, with an integration
time of 5 s. Moreover, an average over five measurements is performed, in order to increase the SNR.
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(c) Two-color B-CARS before and after NRB removal and SR spectra from Ethanol.

(d) Two-color B-CARS before and after NRB removal and SR spectra from Methanol.
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(e) Two-color B-CARS before and after NRB removal and SR spectra from Isopropanol.

(f) Two-color B-CARS before and after NRB removal and SR spectra from Acetone.

Figure 3.19: Two-color B-CARS spectra of solvents before and after non-resonant back-
ground removal through phase retrieval and comparison with SR spectra. The spectra
acquired are respectively from: (a) DMSO; (b) Toluene; (c) Ethanol; (d) Methanol; (e)
Isopropanol; (f) Acetone. Integration time: 0.8 ms, Spectra per second: 1250.

The spectra were acquired setting the CCD exposure time at 0.8 ms, which is the minimum
allowed by the detector electronics. The raw spectra (blue lines in fig. 3.19) show the
characteristic distortion of the lineshape due to the interference between resonant and
non-resonant contributions. After the NRB removal, the spectra (red lines in fig. 3.19)
show a great accordance with SR spectra both in spectral position of the peaks and
relative amplitude. In this case, no denoising methods were applied. All the solvents
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show peaks in both the fingerprint and the C-H stretching regions. It can be observed a
great accordance with the SR spectra, proving that our set-up is capable of performing
reliable spectroscopies.

The same measurements were repeated increasing the time-compression of the Stokes
pulse, reaching 57 fs duration at the sample plane, and changing the LPF filtering out
the Stokes spectrum, in particular, the wavelength of the LPF was moved from 1050 to
1200 nm. In this way, the minimum Raman shift which can be excited through two-color
CARS can be calculated as:

RSmin = λ−1
P − λ−1

S,min, (3.37)

Since the minimum lambda in the Stokes pulse, due to the presence of LPF1200, is equal
to 1200 nm, eq. (3.37) gives RSmin = 1329 cm−1. Therefore, below 1329 cm−1, the signal is
given by three-color CARS. The spectra with the contribution of both two and three-color
CARS are shown in fig. 3.20 and fig. 3.21.

Two-colorThree-color

Figure 3.20: Two and three-color B-CARS spectra before and after NRB removal and
spontaneous spectrum of DMSO. Dashed line: 1329 cm−1. Integration time: 1.2 ms,
Spectra per second: 833
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Two-colorThree-color

Figure 3.21: Two and three-color B-CARS spectra before and after NRB removal and
spontaneous spectrum of Toluene. Dashed line: 1329 cm−1. Integration time: 1.2 ms,
Spectra per second: 833.

It can be seen that the raw CARS spectrum has a different shape. The Three-colours
signal is characterized by an increasing intensity for lower wavenumbers, since the number
of intrapulse permutation is higher for low Raman shifts. Also in this case, after having
applied KK phase retrieval algorithm, an optimum agreement with the SR spectra can
be appreciated.

3.4.2. Broadband CARS on subcellular acids

After having assessed the performance of the system on solvents, we proceeded acquiring
biologically relevant data. In particular, subcellular acids were investigated. In this case,
a drop of the samples was placed on a 170 µm glass coverslip. The experiments were
performed with a LPF at 1050 nm filtering the Stokes pulse, therefore, only two-color
CARS contribution can be seen. The spectra of Palmitoleic, Arachidonic, Linoleic, Oleic
and Docosahexonic acids were acquired and are shown in fig. 3.22. The investigated acids
are fatty acids (FA), that is aliphatic monocarboxylic acids derived from or contained in
esterified form in an animal or vegetable fat, oil or wax [86]. Palmitoleic acid is a mo-
nounsaturated FA present in all tissues, but in higher concentrations in the liver [87, 88].
Arachidonic acid is a polyunsaturated acid present in the phospholipids of cellular mem-
branes in the body and is abundant in the brain, muscles and liver [89]. It also constitutes
5-15% of the total FAs in most mammal tissue membrane phospholipids [90]. Linoleic
acid is an essential polyunsaturated acid occurring in cell membranes and used in the
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biosynthesis of Arachidonic acid [89]. Oleic acid is the most prevalent monounsaturated
FA in nature. It is found in the phospholipids that make membranes, cholesterol esters,
and wax esters [91]. Docosahexonic acid is a polyunsaturated FA especially concentrated
in the grey matter of the brain and in the rod outer segments of the retina [92].

(a) B-CARS before and after NRB removal and SR spectra from Palmitoleic Acid.

(b) B-CARS before and after NRB removal and SR spectra from Arachidonic Acid.
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(c) B-CARS before and after NRB removal and SR spectra from Linoleic Acid.

(d) B-CARS before and after NRB removal and SR spectra from Oleic Acid.
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(e) B-CARS before and after NRB removal and SR spectra from Docosahexonic Acid.

Figure 3.22: Two-color B-CARS spectra of subcellular acids before and after NRB re-
moval through phase retrieval and comparison with SR spectra. The spectra acquired are
respectively from: (a) Palmitoleic Acid; (b) Arachidonic Acid; (c) Linoleic Acid; (d) Oleic
Acid; (e) Docosahexonic Acid. BCARS integration time: 20 ms, 100 averages. Spectra
per second: 50.

The spectra were acquired setting the CCD exposure time at 20 ms and an average
over 100 measurements have been performed. A higher integration time with respect to
solvents measurement was necessary since the intensity of the signal was much lower.
The average over many measurement allowed to reach a remarkable SNR. An optimum
agreement with the SR spectra can be observed, especially in spectral position.

FAs show three characteristic spectral regions in the fingerprint region of the Raman
spectrum: 1060-1090 and 1110-1180 cm−1 due to the ν(C-C) stretching vibrations; ≈1300
cm−1, due to δ(CH2) twisting vibrations; 1400-1500 cm−1, caused by δ(CH3) or δ(CH2)
deformations, respectively [89]. Analyzing the differences among the spectra in these re-
gions allows to distinguish the different acids. Furthermore, intense band can be seen at
1640-1675 cm−1 and at 2800-3000 cm−1 due to the C=C and C-H stretching respectively.
The C-H stretching region differs from one acid to another and can be successfully ex-
ploited to distinguish the various species. It can also be further divided in three parts:
2800-2888 cm−1 which is due to CH2 groups; 2909-2967 cm−1, caused by the CH3 groups
[93]; an additional feature at ≈ 3000 cm−1 related to =C-H moieties which can be seen
only in unsaturated FA [89].
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3.4.3. Broadband CARS on crystals

B-CARS has gained particular interest in the biomedical field. However, it could be
successfully exploited to assess solid state materials as well. In this field, CARS has been
used to analyze mainly low-dimensional materials so far. In particular, studies on carbon
nanotubes [94, 95], graphene [96–98], and hexagonal boron nitride have been performed
[99]. Only recently, BCARS has been exploited to asses single-crystal samples by Hempel
et al. [100]. In this section, we present an analysis of a single-crystal sample of Lithium
Niobate (LN), a ferroelectric crystal frequently employed, particularly in integrated optics,
electro-optic modulators, and nonlinear optics [101–105], since it is simple to alter the
crystal structure to produce ferroelectric domains. The two-color B-CARS of LN in
forward and backward directions are shown in fig. 3.23 and fig. 3.24.

Figure 3.23: Forward BCARS spectra of LiNbO3. Integration time: 0.8 ms, Spectra per
second: 1250.
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Figure 3.24: Backward BCARS spectra of LiNbO3. Integration time: 0.8 ms, Spectra per
second: 1250.

The forward and backward detected spectra present some unexpected differences. Since
there are no subwavelength scatterers in the uniform crystal sample, the backward CARS
signal should simply be due to a backreflection of the forward one. Therefore, we expected
similar spectra with different intensities. However, the Raman peaks are in different po-
sitions. The explanation of such phenomenon is beyond the scope of this work. However,
we proved that B-CARS spectroscopy can be successfully applied to solid state crystals.

3.4.4. Broadband CARS imaging on test sample

In order to test the ability to distinguish different chemical species, an heterogeneous test
sample has been investigated. A mixture of 10-µm polystyrene (PS) and 8-µm polymethyl-
methacrylate (PMMA) beads were immersed in DMSO and sandwidched between two 170
µm glass coverslips. Figure 3.25 shows the single-pixel raw two-color B-CARS spectra
correspondent to the three different species in the sample.
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Figure 3.25: Raw two-color B-CARS spectra of the different chemical species before NRB
removal. Integration time: 0.8 ms, Spectra per second: 1250.

In this case, only the fingerprint region is shown, since analyzing the main peaks of the
constituents in this spectral area allows us to successfully distinguish them. In particular,
it can be observed a characteristic peak at 667 cm−1 for DMSO, at 810 cm−1 for PMMA,
and at 1001 cm−1 for PS. The acquisition of the raw CARS spectra was repeated for 100
× 95 pixels in a raster scanning fashion, as explained in section 3.1, obtaining a hypercube
with dimensions 100 × 95 × 1340, where the last dimension corresponds to the spectral
points. These images were acquired with 0.8 ms pixel dwell time, achieving the high-speed
acquisition rate of 1250 spectra per second.

The raw CARS images shown in fig. 3.26 are centered at a specific spectral point, corre-
sponding to the wavenumber of the main peak of the different species.
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(a) CARS image centered at 667 cm−1.

(b) CARS image centered at 810 cm−1. (c) CARS image centered at 1001 cm−1.

Figure 3.26: Raw CARS images of test sample at specific wavenumbers, corresponding
to the main peaks of the constituents: (a) 667 cm−1, highlighting DMSO, (b) 810 cm−1,
highlighting PMMA, (c) 1001 cm−1, highlighting PS. Scale bars: 20 µm. Pixel dwell time:
0.8 ms, Spectra per second: 1250.

Afterwards, we applied an SVD algorithm to the hypercube to reduce the noise of the
spectra, as explained in section 3.3.1. Then, we performed a KK phase retrieval in order
to isolate the resonant signal. Subsequently, trough an MCR-ALS analysis, we obtained
a concentration map of the three components. With this information we generated a
false-color image of the sample, shown in fig. 3.27.
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Figure 3.27: False-colours image of test sample obtained through MCR-ALS of B-CARS
spectra after NRB removal. Different colours correspond to different chemical species in
the sample: yellow for DMSO, red for PMMA beads, blue for PS beads. Scale bar: 20
µm.

The chemical constituents have been successfully distinguished without using any initial
guess or prior knowledge on the spectra. The MCR-ALS algorithm also allowed us to
retrieve the spectral profiles of the constituents, shown in fig. 3.28.
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Figure 3.28: Spectra of the different chemical species obtained through MCR-ALS of B-
CARS spectra after NRB removal.

After NRB removal through KK and MCR-ALS algorithm, the spectra appear comparable
with SR ones, and clearly show the main peaks of the species.

We repeated the experiment on the same type of sample, but changing the LPF applied
on the Stokes pulse. The cut-off wavelength was moved from 1050 to 1200 nm in order
to detect both the two and three-color CARS signals, as explained in section 3.4.1. In
fig. 3.29 the raw CARS spectra of PS, PMMA and DMSO are shown.

Figure 3.29: Raw two/three-color B-CARS spectra of the different chemical species before
NRB removal. Pixel dwell time: 10 ms, Spectra per second: 100.
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In fig. 3.29 it is already possible to distinguish the different peaks of the three species.
Afterwards, SVD denoising, KK phase retrieval and MCR-ALS algorithm were applied.
The resulting false colour image is shown in fig. 3.30.

Figure 3.30: False-colours image of test sample obtained through MCR-ALS of B-CARS
spectra after NRB removal. Different colours correspond to different chemical species in
the sample: blue for DMSO, red for PMMA beads, green for PS beads. Scale bar: 20 µm.

It is possible to observe that the different species are successfully distinguished. MCR-
ALS algorithm also provides the spectra of the different components, which are shown in
fig. 3.31.
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Figure 3.31: Spectra of the different chemical species obtained through MCR-ALS of B-
CARS spectra after NRB removal.

The different peaks can be clearly distinguished, in particular, PS beads show a peak at
1001 cm−1, PMMA beads are characterized by a peak at 810 cm−1, while DMSO has a
peak at 667 cm−1. We can also observe differences in the spectral positions of the peaks
in the C-H stretching region.

In the aformentioned experiments, the forward CARS signal was analyzed. We repeated
the experiment on different samples, analyzing the backward CARS. As it was explained in
section 2.3.11, due to phase matching reasons, the epi-detected CARS signal coming from
the solvent should be critically reduced, while the ones from sub-wavelength scatterers
should retain the same intensity of its forward counterpart. In order to prove this, we
performed some experiments on samples constituted of PS and PMMA beads with <1µm
diameters immersed in DMSO. Unfortunately, due to the low SNR, it was not possible to
obtain relevant results from these analysis. However, we managed to obtain a backward
CARS image of 3 µm PS beads in DMSO, shown in fig. 3.32, obtained performing the
sum over the spectral dimension of the hypercube.
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Figure 3.32: B-CARS image of test sample (3 µm PS beads in DMSO) before NRB
removal. Pixell dwell time: 20 ms, Spectra per second: 50. Scale bar: 20 µm.

In this case, since the dimension of the beads does not respect the condition in eq. (2.162),
we did not expect to see signal. Therefore, the retrieved data can be traced back to
the forward CARS backreflected by the glass coverslip. Indeed, no relevant intensity
differences can be observed between the signal from the solvent and the beads, as shown
in fig. 3.33.

Figure 3.33: Raw B-CARS spectra epi-detected of the different chemical species before
NRB removal.
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3.4.5. Broadband CARS imaging on biological sample

B-CARS has been proved to be a successful way to perform imaging of biological tissues
[47, 66]. In this section, we show the ability of our experimental set-up to execute such
images. Figure 3.34 presents an image of a murine head and neck tissue sample, which
was collected with 10 ms pixel dwell time over a 250 µm × 250 µm area (250 pixels
× 250 pixels). It was obtained from a the raw CARS hypercube (250 × 250 × 1340)
summing over the spectral dimension, before denoising and NRB removal. To perform
the measurement, the sample was sandwidched between two 170 µm quartz coverslips. In
this case, the LPF at 1050 nm was used, therefore, only the two-color CARS signal can
be seen.

Figure 3.34: B-CARS image of a murine head and neck tissue sample, before NRB removal,
obtained summing over the spectrum. Dashed line: portion analyzed through MCR-ALS.
Pixel dwell time: 10 ms, Spectra per second: 100. Scale bar: 40 µm.
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Afterwards, a portion of this image was analyzed applying an SVD noise-reduction and a
KK phase retrieval algorithms5. Finally, an MCR-ALS analysis was performed, obtaining
the spectra and concentration maps of pure components from the sample. The number
of components in the algorithm can be arbitrarly selected. We obtained the best result
fixing it to three, where one of the constituents is simply the glass coverslip, from which
we do not expect any vibrational signature. In fig. 3.35, the false-colour image resulting
from the concentration map is shown, where the parts of biological tissue are depicted in
red and green, while the glass in blue.

Figure 3.35: B-CARS false colour image after NRB removal obtained through MCR-ALS
analysis. Red and green: biological tissue, blue: glass. Scale bar: 20 µm.

The correspondent spectra are shown in fig. 3.36 (only the fingerprint and the C-H stretch-
ing region are shown, since no peaks appear in the spectral region in-between, namely the
silent region). As we expected, in the glass spectrum no vibrational peaks can be seen.
On the other hand, the biological spectrum shows several peaks in the fingerprint region
and a band in the C-H stretching region.

5It can be noticed that the portion of sample above the analyzed one is damaged. This is due to
previous measurements which burnt part of the sample.
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Figure 3.36: B-CARS spectra after NRB removal obtained through MCR-ALS analysis.
Red and green: biological tissue, blue: glass.

The spectrum shows a peak at ≈ 1670 cm−1, which can be traced back to amide I/C = C
stretching in proteins [66], a peak at ≈ 1488 cm−1, due to nucleotides, a band at ≈ 1300
cm−1 due to CH2 deformations[47]. In order to validate the experiment, a result from
Camp et al.[47] has been reported in fig. 3.37, showing a great accordance, especially in
the regions between 1200-1800 cm−1 and 2800-3200 cm−1.

Figure 3.37: B-CARS spectra after NRB removal of different biological specimen. Graph
taken from [47].

Eventually, we performed an analogous experiment, imaging a longitudinal section of
murine spine (vertebrae). Figure 3.38 shows the raw CARS image of such sample, obtained
summing over the spectral dimension of the hypercube. The data were collected with 10
ms pixel dwell time over a 200 × 200 µm area. In this case, both two and three-color
CARS signal were detected, since the LPF1200 was used to cut the broadband spectrum
of the Stokes pulse.
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Figure 3.38: B-CARS image of a murine vertebra, before NRB removal, obtained summing
over the spectrum. Dashed line: portion analyzed through MCR-ALS. Pixel dwell time:
10 ms, Spectra per second: 100. Scale bar: 40 µm.

Subsequently, the dashed portion of fig. 3.38 was analyzed in further detail. We applied
SVD denoising, KK phase retrieval and MCR-ALS algorithms. The number of compo-
nents in MCR-ALS was set to three. We generated a false color image, shown in fig. 3.39,
resulting from the concentration map of the constituent.
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Figure 3.39: B-CARS false colour image after NRB removal obtained through MCR-ALS
analysis. Blue: bone, red: marrow, green: background. Scale bar: 20 µm.

We can clearly see that three different constituents are distinguished in the image. The
correspondent spectra are shown in fig. 3.40.
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Figure 3.40: B-CARS spectra after NRB removal obtained through MCR-ALS analysis.
Blue: bone, red: marrow, green: background.

Analyzing the fingerprint region of the first spectrum (in blue), we can observe an intense
band between 940-980 cm−1, which is associated to phosphate bonds in hydroxyapatite,
a band at ≈ 1250 cm−1, due to the presence of amide III in proteins, a peak at 1440
cm−1, caused by the CH2 in proteins and lipids, and a band at ≈ 1655 cm−1, linked
to amide I in proteins [66]. These spectrum characteristics unambiguously correspond
to bone, which is primarily distinguished by mineral crystals, mostly calcium phosphate
(hydroxyapatite), embedded in an organic protein-rich matrix. The second spectrum (in
red) can be easily distinguished from the first one due to the absence of the band at 940-980
cm−1, indicating the absence of hydroxyapatite, and by the presence of a band at ≈ 790
cm−1, typically assigned to DNA, mainly found in cells. Furthermore, stronger signal can
be seen in the region between 1440-1700 cm−1, indicating a higher concentration of lipids
and proteins. Thus, the red spectrum can be assigned to bone marrow, characterized by
a high cellular fraction, and consequently by an abundance of DNA. The green spectrum
is simply associated to empty regions in the sample. In conclusion, in both the analyzed
samples we were able to distinguish the biological tissue from the background and retrieve
the spectra of the different chemical species. Furthermore, analyzing the murine vertebra,
we successfully recognized the bone and the marrow, separating spatially the constituents.

3.4.6. Time delayed CARS

Eventually, we exploited our set-up to perform time delayed CARS measurements on
DMSO and Toluene. After having temporally synchronized the pulses, we manually in-
troduced some delay between pump and Stokes pulses changing the path length of the
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pump pulse. We measured the two and three-color CARS spectra for different delays.
The results of such measurements are shown in fig. 3.41 and fig. 3.42.

Figure 3.41: Time delay B-CARS DMSO.

Figure 3.42: Time delay B-CARS Toluene.

As explained in section 2.3.7, the resonant contribution in CARS is characterized by a
coherence time in the order of picoseconds, since vibrational levels are populated. On the
other hand, the non-resonant contribution arises from electronic contributions, in which
only virtual levels are populated. The virtual electronic levels show an extremely short
coherence time, in the order of hundreds of femtoseconds. In section 2.3.10, we explained
how increasing the delay between the second and third interaction with the beams it is
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possible to probe only the resonant part, obtaining Lorentzian peaks without NRB 6.
Increasing the delay between pump and Stokes pulses, we expect to see a reduction of
the NRB after few hundreds of femtoseconds. The resonant contribution in two-color
CARS should also decrease, since there should be pump photons before and after the
Stokes pulse, and increasing the delay between the two pulses we are not respecting this
condition. On the other hand, in three-color CARS, the first two interaction are with the
Stokes pulse, therefore, increasing the delay between Stokes and pump, in which the latter
acts only as a probe, we will detect only the resonant signal, which is characterized by
higher coherence time. In both fig. 3.41 and fig. 3.42, we can observe how the NRB and
the two-color CARS signal decrease dramatically increasing the delay. By contrast, the
vibrational peaks at low wavenumbers (in the three-color CARS region) change shape,
going from the distorted shape typical of CARS, to a Lorentzian shape directly comparable
to SR spectra. In conclusion, we were able to perform time delayed CARS measurement,
proving the underlying theory.

6This method is not often applied in spectroscopy and microscopy application because, removing the
non-resonant contribution, we remove also the heterodyne amplification of the CARS signal, consequently
reducing the SNR.
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developments

This master thesis is focused on Broadband Coherent anti-Stokes Raman scattering (B-
CARS) microscopy and spectroscopy. B-CARS microscopy allows one to perform label-
free, non-invasive and non-destructive imaging of biological samples at high-speed ac-
quisition, and it has been applied in the field of biology, medicine and chemistry. The
CARS signal is a third-order non-linear optical process arising from the interaction of
two ultrashort laser pulses at different wavelengths and the sample. The CARS signal
is constituted by a resonant and a non-resonant contributions. The resulting signal is
affected by a non-resonant background (NRB) which distorts the lineshape of the peaks
with respect to the Lorentzian shape obtained through spontaneous Raman spectroscopy.
In order to retrieve the typical Raman vibrational spectra, post processing methods are
typically employed.

In this work, we showed how our home-build experimental set-up allows us to success-
fully execute spectroscopy of different liquid and solid samples and to achieve high-speed
imaging. The light source is constituted by a fiber-based Ytterbium pulsed femtosecond
laser (Monaco, Coherent), providing 268 fs pulses at a rate of 2 MHz, with a wide range of
output powers, up to 60 W. The source is used to generate two beams, pump and Stokes,
with different features, which have been characterized by means of frequency resolved op-
tical gating (FROG). In particular, the pump pulse has a time duration of ≈ 1 ps and is
narrowband, since it passes through an etalon which shrinks the bandwidth reaching ≈ 1.2
nm, setting the spectral resolution at ≈ 10 cm−1. By contrast, the Stokes pulse is broad-
band, since it is generated propagating the laser pulse through a YAG crystal, triggering
supercontinuum (SC) generation. SC generation in bulk media offers many advantages
with respect to other methods (such as SC generation in tapered filters or photonic crys-
tal fibers): it is more compact, reliable, easy-to-use and alignment-insensitive. In this
way, we were able to broaden the Stokes pulse spectrum up to ≈ 1600 nm, covering the
entire Raman active region (500-3200 cm−1). Afterwards, a prism compressor allows us to
reduce the time duration of the Stokes pulse, reaching a time full width at half maximum
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of ≈ 30 fs at the sample plane.

We were able to distinguish two different CARS processes, namely, two-color and three-
color CARS. In the former case, the molecules in the sample are excited by the pump
pulse and reach a virtual level, then, stimulated by the Stokes pulse, they decay to many
vibrational levels. A further interaction with the pump probes the sample, retrieving the
complete vibrational spectrum. On the other hand, in the three-color CARS mechanism,
the first two interactions are impulsively with the Stokes pulse, and the pump pulse acts
simply as a probe in the third interaction. The intensity of three-color CARS depends on
the number of intrapulse permutations exciting a certain vibrational transition. Since it
increases decreasing the wavenumber, this process is particularly suitable to investigate the
fingerprint region (characterized by lower wavenumbers). Two long pass filters (LPF) were
used to set the minimum wavelength of the broadband pulse. If the cut-off wavelength is
set at 1050 nm, the different processes overlap and, since two-color CARS has a higher
intensity, it was the only visible. However, setting the cut-off at 1200 nm, the two-
color CARS can only excite the vibrational transition over ≈ 1330 cm−1. Therefore, in
the range 500-1330 cm−1 the three-color CARS mechanism was clearly distinguishable.
After having acquired a spectrum, we exploited Kramers-Kronig (KK) phase retrieval
algorithms to remove the NRB.

We performed two-color B-CARS spectroscopy, spanning the entire Raman-active region,
on a few solvents: DMSO, Toluene, Ethanol, Methanol, Isopropanol and Acetone. We
acquired the data at high speed (0.8 ms per spectra, limited by the CCD reading time)
obtaining an excellent agreement with the reference spectra, measured with a Spontaneous
Raman set-up in our laboratory. We repeated the measurement on DMSO and Toluene
changing the LPF (moving the cut-off wavelegnth from 1050 to 1200 nm) detecting both
two and three-color CARS getting similar results (in this case the acquisition time was
slightly higher: 1 ms, due to the lower signal-to-noise ratio (SNR)). We proved that
CARS spectroscopy can also be applied to solid state samples, such as Lithium Niobate.
We achieved two-color B-CARS spectroscopy of the whole Raman spectrum on subcellular
acids, in particular: Palmitoleic, Arachidonic, Linoleic, Oleic and Docosahexonic acids.
We found results in optimum agreement with the reference SR spectra. In this case, the
acquisition time was 20 ms per spectrum.

We exploited our experimental set-up also to perform imaging. We acquired hyperspectral
data in a raster scanning fashion moving the sample with a stepper motor. Afterwards, we
applied a singular-value decomposition (SVD) denoising algorithm, a KK phase retrieval
to remove the NRB and finally a multi-variate curve resolution (MCR) analysis, based on
alternating least square (ALS) algorithms, in order to find the vibrational spectra of the
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chemical species in the sample and the relative concentration maps. We applied the afore-
mentioned method on test samples made of PS and PMMA beads immersed in DMSO.
We investigated the fingerprint region detecting the two-color CARS signal distinguishing
clearly the three constituents and generating a false-colour image. We acquired such data
at high-speed, with a pixel dwell time of only 0.8 ms. We repeated the experiment detect-
ing both two and three-color CARS over the entire Raman spectrum obtaining similar
results, but at a lower speed (pixell dwell time: 10 ms). Finally, we demonstrated the
ability of our set-up to perform imaging detecting the backward propagating CARS from
test samples.

We achieved imaging on biological samples, in particular on a murine head and neck
tissue and on a slice of a murine vertebra. In the former case, we detected only the two-
color signal over the entire vibrational spectrum with a pixel dwell time equal to 10 ms,
successfully distinguishing the biological tissue from the background, retrieving biological
spectra in great agreement with the literature. In the latter case, we acquired both the
two and three-color CARS with a pixel dwell time of 10 ms. We managed to clearly
distinguish the bone and the marrow, and to retrieve the relative spectra. We generated
a false-colors image where the various constituents are highlighted in different colors.

Finally, we performed time-delayed CARS on DMSO and Toluene showing a physical way
to successfully remove the NRB.

Referring to current technological needs, the proposed Broadband CARS microscope may
be used to answer urgent biomedical questions, such as senescence and autophagic pro-
cesses related to cancer in human cells. Similarly, histopathology may also benefit from
the advantages provided by the system. In this case, the detection of complex vibrational
features over the entire fingerprint and C-H regions, with high spatial resolution and cov-
ering relevant tissue regions, would help to measure the detailed biochemical composition
of a sample (spectral histopathology), supporting medical doctors in making informed
diagnostic and therapeutic decisions.
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A.1. Second order non-linear processes

Let us consider the second order non-linear optical processes, where the second order
polarization P (2) plays a significant role. In the general case, the components of P (2) are
defined as:

P
(2)
i (t) = ϵo

∫ +∞

−∞
dt′

∫ +∞

−∞
dt′′χ

(2)
ijk(t

′, t′′)Ej(t, t
′)Ek(t, t

′, t′′) (A.1)

Where we neglected the spatial dependence and χ(2)
ijk(t

′, t′′) is the second order non-linear
susceptibility. We made implicit use of the Einstein notation, summing over j and k, which
both represent {x, y, z}. Let us introduce the same approximations exploited in (2.21),
namely isotropic, time-invariant, homogeneous media and let us consider linearly polarized
waves. Thus, we can simplify (A.1), in particular discarding the tensorial nature of χ(2),
obtaining:

P (2)(t) = ϵo

∫ +∞

−∞
dt′

∫ +∞

−∞
dt′′χ(2)(t′, t′′)E(t− t′)E(t− t′ − t′′) (A.2)

In the following, we will also assume that the second order susceptibility depends only on
the instantaneous field, and not on the history of E(t) in time. Therefore,

χ(2)(t′, t′′) = χ(2)δ(t′)δ(t′′), (A.3)

Considering (A.3) and exploiting the property of the Dirac delta (2.46), we can rewrite (A.2)
as:

P (2)(t) = ϵ0χ
(2)E2(t), (A.4)

Let us consider an incoming electric field, made of two components, centered at different
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frequencies ω1 and ω2:

E(t) = E1 cos(ω1t+ ϕ1) + E2 cos(ω2t+ ϕ2), (A.5)

Where ϕ1,2 are the phases. We can now make use of the exponential representation of the
cosine function and write (A.5) as:

E(t) =
1

2

(
E1e

i(ω1t+ϕ1) + E1e
−i(ω1t+ϕ1) + E2e

i(ω2t+ϕ2) + E2e
−i(ω1t+ϕ1)

)
, (A.6)

Where we can define the complex amplitudes as:

Ẽ1 = E1e
iϕ1 , Ẽ2 = E2e

iϕ2 , (A.7)

Then, taking into account (A.7), we can write (A.6) as:

E(t) =
1

2

(
Ẽ1e

iω1t + Ẽ1e
−iω1t + Ẽ2e

iω2t + Ẽ2e
−iω1t

)
, (A.8)

Substituting (A.8) in (A.4) we obtain:

P (2)(t) =
ϵ0χ

(2)

4

{
Ẽ2

1e
2iω1t + Ẽ∗2

1 e
−2iω1t + Ẽ2

2e
2iω2t + Ẽ∗2

2 e
−2iω2t+

+2Ẽ1Ẽ
∗
1 + 2Ẽ2Ẽ

∗
2 + 2Ẽ1Ẽ

∗
2e

i(ω1−ω2)t + 2Ẽ∗
1Ẽ2e

−i(ω1−ω2)t+

+2Ẽ1Ẽ2e
i(ω1+ω2)t + 2Ẽ∗

1Ẽ
∗
2e

−i(ω1+ω2)t,

} (A.9)

Equation (A.9) can be simplified and written as:

P (2)(t) =
ϵ0χ

(2)

2

{
E2

1cos(2ω1t+ 2ϕ1) + E2
2cos(2ω2t+ 2ϕ2)+

+2E12E2cos[(ω1 − ω2)t+ ϕ1 − ϕ2]+

+2E12E2cos[(ω1 + ω2)t+ ϕ1 + ϕ2]+

+2E2
1 + 2E2

2

}
,

(A.10)

In figure A.1, a scheme of the light-matter interaction with a material with χ(2) ̸= 0 is
reported.
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Figure A.1: Conceptual scheme of the interaction between light and matter considering
second order non-linear processes.

The non-linear polarization acts as a source giving rise to terms that oscillate at frequen-
cies different from the incoming ones. It is possible to identify four different phenomena:

1. Second Harmonic Generation (SHG),

2. Difference Frequency Generation (DFG),

3. Sum Frequency Generation (SFG),

4. Optical rectification (OR).

In fig. A.2, the Jablonsky diagrams of the aformentioned phenomena are shown.

(a) Second harmonic
generation.

(b) Difference frequency
generation.

(c) Sum frequency genera-
tion.

(d) Optical rectifica-
tion.

Figure A.2: Jablonsky diagram of second order non-linear processes, respectively: (a)
second harmonic generation, (b) difference frequency generation, (c) sum frequency gen-
eration, (d) optical rectification.
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B.1. Spontaneous Raman set-up

The spontaneous Raman spectra were acquired employing a home-built confocal Raman
microspectroscopy unit in inverted configuration. The light source is a continuous-wave
diode laser (Cobolt AB, Flamenco) centered at 660 nm. The pump beam is delivered to a
commercial inverted microscope (IX73, Olympus Europa SE & Co. KG) with a single edge
dichroic beam splitter (Di03-R660-t1-25x36, Semrock). The pump light is directed onto
the materials via a dry/air 20x objective (MPLFLN20X 20x/0.45 NA, Olympus), which
then collects the backscattered Raman photons and directs them back to the dichroic
beam splitter. The residual pump light is removed through a long-pass (664 nm) edge
filter (LP02-664RU-25, Semrock), which transmits only the Stokes Raman signal. Finally,
the Raman scattered light is focused on the entrance slit of a spectrometer with a lens.
For the spontaneous Raman measurements in the fingerprint region, we used a monochro-
mator (Isoplane160, Princeton instruments) with a grating of 1200 gr/mm equipped with
a front illuminated CCD (PIXIS256F, Princeton Instruments). We performed all the
measurements with an excitation power equal to 50 mW. All the SR spectra shown in
the previous sections were obtained with an integration time of 5 s, averaging over five
measurements. We pre-processed the spectra in order to remove the baseline (due to
fluorescence) employing a polynomial curve with degree 8. The wavenumber axis was
calibrated using tabulated Raman peaks of ethanol and methanol.
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Acronyms

Acronym Meaning

ALS Alternating least square

B-CARS Broadband CARS

CARS Coherent anti-Stokes Raman scattering

CCD Charge-coupled device

CEP Carrier-envelope phase offset

CRS Coherent Raman scattering

CSRS Coherent Stokes Raman scattering

DFG Difference frequency generation

DMSO Dimethylsulfoxid

E-CARS Epi-detected CARS

FA Fatty acid

F-CARS Forward-detected CARS

FROG Frequency resolved optical gating

FWHM Full width at half maximum

FWM Four wave mixing

GDD Group delay dispersion

GVD Group velocity dispersion

HWP Half-wave plate

IR Infrared

KK Kramers-Kronig

LIA Lock-in amplifier

LN Lithium Niobate

LPF Long pass filter

MCR Multivariate curve resolution

MEM Maximum entropy method
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Acronym Meaning

MIR Mid-infrared

NIR Near-infrared

NMF Non-negative matrix factorization

NRB Non-resonant background

OR Optical rectification

PBS Polarizing beam splitter

PCF Photonic-crystal fiber

PMMA Polymethylmethacrylate)

PS Polystyrene

PWA Plane wave approximation

SC Supercontinuum

SFG Sum frequency generation

SHG Second harmonic generation

SNR Signal-to-noise ratio

SPF Short pass filter

SPM Self phase modulation

SR Spontaneous Raman

SRG Stimulated Raman gain

SRL Stimulated Raman loss

SRS Stimulated Raman scattering

SVD Singular value decomposition

SVEA Slowly varying envelope function approximation

TAMP Tuned amplifiers

T-CARS Time-delayed CARS

THG Third harmonic generation

TOD Third order dispersion

YAG Yttrium aluminium garnet
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