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Abstract

CLOUD computing is now the de-facto standard for the deployment of
complex and scalable applications and systems at scale. In the last
few years, cloud computing applications shifted from the mono-

lithic architecture to a more flexible microservice-based architecture with
the so-called cloud-native ecosystem. This shift allowed to separate con-
cerns among different development teams, increased the scalability of the
cloud applications and allowed to develop, test, and deploy each function-
ality almost independently from the rest of the system. Cloud-native ap-
plications fostered even more the growth of cloud computing and, for this
reason, cloud providers have to manage an unprecedented amount of appli-
cations for a huge amount of users. This trend poses new challenges in the
management of data-centers. In particular, the expected energy usage of
data-centers will reach 8% of the whole energy consumption of the world
by 2030. Moreover, power consumption represents 20% of the Total Cost
of Ownership (TCO) of a data-center. If we consider that the CPU is cur-
rently the most power-hungry component of a server, there is the need to
optimize how cloud applications are executed within cloud infrastructures
to keep the cloud-computing growth sustainable.

Within this context, the goal of this thesis work is the design and devel-
opment of power management techniques able to sustain the performances
requested by cloud-native applications and workloads while reducing as
much as possible the power consumption such applications generate. Given
the complexity that microservice-based applications bring, we decided to
design a fully automated system to manage power consumption and perfor-
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mance leveraging the Observe Decide Act (ODA) autonomic control loop.
This allowed us to focus on how to measure and monitor in a fine grain
way performance and power consumption, on how to allocate power and
performance, and on how to actuate the control decisions defined by the
ODA loop. Within this thesis, we designed a fully black-box approach
to attribute power consumption, measure resource usage, and monitor net-
work performance. Such black-box approach imposes less overhead on the
monitored applications than the state of the art in the field and provides less
than 5% relative error for most of the collected metrics. We leveraged these
metrics to define reactive control policies able to maintain CPU usage and
latency near a user-specified target. Then, we enforced in a timely and pre-
cise way the power budgets derived by the performance constraints. The
CPU usage ODA loop allows reducing by 25% on average the power con-
sumption with a 5% Service Level Agreement (SLA) violation on average.
The latency-aware ODA loop allows reducing by 37.13% on average the
power consumption with a control error of 12.5% and of 1.5ms on average.

Finally, we explored how to improve energy efficiency of microservice-
based applications by introducing heterogeneous architectures, merging to-
gether the elasticity of cloud-native applications and the performance and
energy-efficiency of Field Programmable Gate Arrays (FPGAs). The re-
sults are: (1) an improvement in the FPGAs time utilization while maintain-
ing the performance of the applications and (2) power savings w.r.t. a pure
software system implementing the same functions. This work represents
an interesting initial study and paves the way for more extensive research
work on how to accelerate microservices and cloud-native workloads.

II



Sommario

IL cloud computing rappresenta lo standard di fatto per il deployment di
applicazioni e sistemi complessi e scalabili di grand dimensioni. Ne-
gli ultimi anni le applicazioni cloud sono passate dall’architettura a

monolite a un’architettura più flessibile basata su microservizi, dando vi-
ta al cosiddetto ecosistema cloud-native. Questa evoluzione ha permesso
di separare le responsibilità dei diversi team di sviluppo, ha aumentato la
scalabilità delle applicazioni cloud e ha permesso di sviluppare, testare e
fare deploy di ogni funzionalità in maniera quasi indipendente dal resto del
sistema. Questa evoluzione ha favorito ancora di più la crescita del cloud
computing e, per questo motivo, i cloud provider si trovano oggi a gesti-
re una quantità sempre maggiore di applicazioni per un numero enorme di
utenti. Questa tendenza pone nuove sfide nella gestione dei data-center.
In particolare, il consumo di energia previsto per i data-center raggiunge-
rà l’8% dell’intero consumo energetico mondiale entro il 2030. Inoltre, il
consumo di energia rappresenta ad oggi il 20% del costo totale di proprietà
di un data-center. Se consideriamo che la CPU è attualmente il componente
che consuma più energia in un server, è necessario ottimizzare il modo in
cui le applicazioni vengono eseguite all’interno di queste infrastrutture per
mantenere sostenibile la crescita del cloud computing nel tempo.

In questo contesto, l’obiettivo di questo lavoro di tesi è la progettazione
e lo sviluppo di tecniche di gestione dei consumi in grado di sostenere le
prestazioni richieste dalle applicazioni e dai carichi di lavoro cloud-native
riducendo il più possibile il consumo di potenza generato da tali applicazio-
ni. Data la complessità introdotta dalle applicazioni a microservizi, abbia-
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mo deciso di progettare un sistema completamente automatizzato per gesti-
re il consumo di energia e le prestazioni sfruttando il concetto di Observe
Decide Act (ODA) loop. Questo ci ha permesso di concentrarci su come
misurare e monitorare a grana fine le prestazioni e il consumo di potenza, su
come allocare potenza e prestazioni, e su come attuare le decisioni definite
dal sistema ODA. In questa tesi abbiamo progettato un approccio comple-
tamente black-box per attribuire il consumo di potenza a ciascun elemento
del sistema, misurare l’utilizzo delle risorse e monitorare le prestazioni del-
la rete. L’approccio di monitoraggio proposto impone meno overhead alle
applicazioni rispetto allo stato dell’arte nel campo e garantisce meno del 5%
di errore relativo per la maggior parte delle metriche raccolte. Abbiamo poi
sfruttato queste metriche per definire politiche di controllo reattivo in grado
di mantenere l’utilizzo della CPU e la latenza vicino a un target specifica-
to dall’utente. Quindi, abbiamo applicato in modo tempestivo e preciso i
budget di potenza derivati dai vincoli di performance. L’ ODA loop basato
sull’utilizzo della CPU consente di ridurre in media del 25% il consumo
di potenza con una violazione media del 5% dei Service Level Agreements
(SLAs). L’ODA loop basato sulla latenza consente invece di ridurre in me-
dia del 37,13% il consumo di potenza con un errore di controllo del 12,5%
e di 1,5ms in media.

Infine, abbiamo esplorato la possibilità di migliorare l’efficienza energe-
tica delle applicazioni basate sui microservizi tramite l’uso di architetture
eterogenee, unendo l’elasticità delle applicazioni cloud-native e le presta-
zioni e l’efficienza energetica dei Field Programmable Gate Array (FPGA).
I risultati sono: (1) un miglioramento del tempo di utilizzo degli FPGA
mantenendo allo stesso tempo le prestazioni delle applicazioni e (2) una ri-
duzione dei consumi di potenza rispetto ad un sistema puramente software
che implementa le stesse funzioni. Questo lavoro rappresenta un interes-
sante studio iniziale e apre la strada a lavori di ricerca più approfonditi su
come accelerare microservizi e carichi di lavoro cloud-native.
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CHAPTER1
Introduction

1.1 Cloud computing landscape

Since the first launch of Amazon Web Services (AWS) in 2006, cloud com-
puting continuously evolved and grew towards what it is today: the de-
facto standard solution to develop, deploy, and maintain complex systems
and services at scale. Applications baked by cloud computing infrastruc-
tures offer scalable services to a variable amount of users with fast re-
sponse times, supporting both latency-critical workloads as well as batch
workloads. The cloud computing service offering is usually organized in
three main categories: Infrastructure as a Service (IaaS), Platform as a Ser-
vice (PaaS), and Software as a Service (SaaS). IaaS offers virtualized re-
sources to be consumed on-demand, from compute resources (e.g. Virtual
Machines (VMs), containers, serverless functions) to storage and network-
ing. PaaS usually offers run-time execution environments where applica-
tions are managed automatically by the cloud provider. Finally, SaaS offers
ready-to-go applications that can be accessed from a user interface.

Within the first decade of cloud computing, most of the cloud applica-
tions were designed with the classical three-tier architecture, which is com-
posed of a presentation layer, an applicative layer, and a data storage layer.

1



Chapter 1. Introduction

The applicative layer handled the HyperText Transfer Protocol (HTTP) re-
quests coming from the presentation layer, computed some operations fol-
lowing the application logic, and retrieved or stored some results from the
data storage layer. All the operations performed by the applicative layer
were executed within a single unit, forming the so-called monolithic archi-
tecture. Within this context, monolithic applications hide their complexity
within this single unit. Unfortunately, scalability strategies are limited to
vertical scaling of computing resources and, depending on how the appli-
cation was designed, low to moderate horizontal scaling. Moreover, new
releases require to build and test the whole application.

To overcome these limitations, in the last few years, cloud computing
applications shifted from monolithic architectures to microservice-based
ones. The microservice architectural style [46] is an approach that allows
building an application as a suite of small and loosely-coupled services
communicating with each other through lightweight networking mecha-
nisms. This shift allowed to separate concerns among different develop-
ment teams, increased the horizontal scalability of cloud applications and
decoupled the deployment cycle of any given functionality. Unfortunately,
the microservice architectural style moved the complexity that was previ-
ously hidden inside the monolith to the network layer, increasing the diffi-
culty to build and manage complex and efficient applications at scale. Such
complexity can lead to microservice dependency graphs that are almost un-
readable without the help of observability tools and to environments that
can be operated only with the extensive use of automation.

From a technology perspective, Docker and Kubernetes are the main
building blocks of the so-called cloud-native applications. According to the
Cloud Native Computing Foundation (CNCF), "Cloud native technologies
empower organizations to build and run scalable applications in modern,
dynamic environments such as public, private, and hybrid clouds. Contain-
ers, service meshes, microservices, immutable infrastructure, and declara-
tive Application Programming Interfaces (APIs) exemplify this approach."
[1]. Docker containers leverage kernel-level virtualization implemented
with Linux namespaces and cGroups to limit visibility and provide re-
source isolation between microservices. On top of Docker, Kubernetes or-
chestrates resources across a cluster of machines, managing the containers’
life-cycle and scaling them depending on performance needs. Kubernetes
implements microservices as pods, where a pod is a group of containers
providing a single functionality.

Cloud-native applications developed with the microservice pattern typ-
ically have a high degree of heterogeneity, as microservices can leverage
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different languages, different run-time environments, and different storage
databases. They also show a high degree of co-location, as many microser-
vices can be hosted within a single server. Finally, given that they usually
provide a user-facing service, their fundamental performance metric is the
request’s latency.

1.2 Cloud computing and power consumption

The development of cloud-native tools and techniques combined with the
ability to exploit virtually infinite resources on-demand fostered the adop-
tion of the cloud computing model. To sustain this growth, cloud providers
are continuously increasing their offering by consolidating workloads, ex-
panding the available data-centers, and building new ones. Of course, these
efforts are increasing the number of available machines that, in turn, will in-
crease the energy required to run them. As a consequence, according to [4],
the energy usage of data-centers will reach ' 8% of the total energy con-
sumption of the world by 2030. To make this growth sustainable, we need
to carefully improve the energy efficiency of the data-center components.

Energy usage currently represents 20% of the TCO of a data-center [34]
and a relevant portion of the energy usage is devoted to servers. As of
today, the CPU represents one of the most power-hungry components of
a server [12], and, as such, a thorough optimization process of the appli-
cation performances’ from a power consumption perspective is required.
Unfortunately, modern servers are not energy proportional, meaning that
their performance does not grow linearly w.r.t. their energy usage [13]. If
we consider continuous batch workloads running on dedicated Warehouse
Scale Computer (WSC) systems, it has been proved that the average utiliza-
tion of the system is around 75% [12]. However, this percentage drastically
decreases in the more common scenario where a mix of several types of
workloads (e.g. batch plus on-line applications) run in such systems. In
this case, the utilization varies between 10% and 50% [12]. To reduce the
TCO in this last case it is important to improve the energy efficiency at low
and moderate paces.

1.3 Challenges and contributions

It is clear that there exists a trade-off between performance and power con-
sumption of cloud-native applications executed onto cloud infrastructures.
Although a simple power-capping approach might be tempting, the effects
that this activity might have on the performance of cloud-native applica-
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tions are devastating. According to Brutlag [24], increasing the latency of
the responses of the Google search service from 100ms to 400ms reduces
the number of searches per user from -0.2% to -0.6%. Such reduction per-
sists for some time even if the latency is restored to the original value.
For these reasons, any system that wants to reduce the power consumption
of cloud-native applications should keep into account performances as the
main aspect to protect.

Within this context, the goal of this thesis work is the design and de-
velopment of power management techniques able to sustain the perfor-
mances requested by cloud-native applications and workloads while reduc-
ing as much as possible the power consumption such applications generate.
Given the complexity of cloud-native applications and environments, an
automated approach is required. In particular, we exploited the Observe
Decide Act (ODA) control loop [54], which is an autonomic methodology
that enables the applications to adapt their behavior depending on their state
and on the observations of the surrounding environment. Such methodol-
ogy poses many challenges that we addressed throughout the development
of this thesis work:

1. how we can measure the behavior of cloud-native applications and the
environment in terms of performance and power consumption;

2. how we can define performance throughout cloud-native applications
and how we can define meaningful performance targets;

3. how we can effectively and precisely reduce power consumption while
preserving performances of the running workloads.

The first challenge deals with observability and with the ability to achieve
self-awareness. Unlike many other previous techniques [3,35,48,53,54,56],
we decided to tackle this challenge with a black-box approach. This means
that we observe and obtain knowledge of the application components with-
out instrumenting the workloads. Although this approach poses some limi-
tations in the kind of information we can collect, it provides huge flexibility
as any future application component can be observed and monitored out-
of-the-box without modifications.

The second challenge deals with the correct definition of what perfor-
mance is for a cloud-native application and encompasses both the Observe
and the Decide phases of the ODA control loop. In particular, we exper-
imented with two different performance metrics: CPU usage and average
latency. On the one hand, CPU usage is typically defined by application
developers as a performance constraint within Kubernetes [2]. However,
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setting CPU requirements correctly for each component is hard, thus there
is room to optimize how the allocated CPU is used by the application com-
ponents. On the other hand, latency is a performance constraint understand-
able both from developers as well as final users, as it defines the quality
of the user experience. Moreover, latency allows using queuing theory to
guarantee performance during execution.

Finally, the third challenge deals with how to enforce performance con-
straints to save power. Such challenge involves both the Decide and the Act
phase of the ODA control loop. Within this thesis, we experimented with
heuristic control based mainly on basic queuing theory and with fast and
accurate power actuation, represented by Running Average Power Limit
(RAPL). Within this context, RAPL is our source of information for power
consumption as well as for power actuation.

Given the challenges described so far, the main contributions of this
thesis can be summarized as follows:

• We designed and implemented DEEP-mon, which is a dynamic and
energy efficient power monitor able to attribute power consumption
and performance metrics to each container running on a given host.
DEEP-mon leverages kernel features like extended Berkeley Packet
Filter (eBPF) to avoid user-code instrumentation. The proposed ap-
proach is accurate and increases the system power consumption of
0.90%, representing a low overhead that is the current state of the art
in the field.

• We designed and implemented a monitoring methodology able to cap-
ture network activity and its performance without instrumenting the
user code. We integrated such methodology within DEEP-mon, im-
proving at the same time the power attribution mechanism, to provide
a unified view of the running applications, generating and analyzing
the graph of all the network activities between containers deployed
in a multi-node Kubernetes cluster. The resulting tool monitors for
each container its CPU usage, power consumption, instruction retired,
cycles, cache references, cache misses, network bandwidth, average
network latency, and network latency percentiles (from 50th to 99th).
Results show an overall measurement error that is below 5% for al-
most all metrics with a lower overhead w.r.t. similar approaches in the
state of the art.

• We developed HyPPO, a Hybrid Performance-aware Power capping
Orchestrator. HyPPO implements an ODA control loop that builds
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upon the data we collect with DEEP-mon to maintain a given level
of performance while reducing power consumption. In particular, we
manage CPU usage, which is commonly set as a constraint by appli-
cation developers to each container in a Kubernetes cluster. HyPPO
acts by applying a hardware power cap with RAPL and controlling
the increase in CPU usage up to the level specified by the application
developers. This approach allows reducing by 25% on average the
power consumption with an average SLA violation of 5%.

• We developed PRESTO, a latency-aware power capping system for
cloud-native microservices. PRESTO implements an ODA control
loop that exploits the power and performance data collected with DEEP-
mon to maintain an average latency requirement while saving power.
The latency requirement is split across all the microservices of the
cloud-native application through queuing theory and a graph analysis
that allows to precisely attribute service times to be enforced to each
microservice. PRESTO leverages the same RAPL actuator of HyPPO
and reduces the power consumption of 37.13% on average with a con-
trol error of 12.5% and of 1.5ms on average.

Moreover, we explored how we can improve the energy efficiency of
cloud-native applications by bringing heterogeneous architectures equipped
with FPGAs within this context. We explored this research opportunity
with BlastFunction, which is an FPGA-as-a-Service system in the context
of cloud-native applications able to share FPGAs among many serverless
functions (or Docker containers). BlastFunction improves FPGAs time uti-
lization while maintaining the performance of the applications and at the
same time saving power w.r.t. a pure software system implementing the
same functions.

1.4 Thesis outline

The outline of this thesis work fairly resembles the list of contributions pre-
sented above. Chapter 2 explores our first efforts towards the definition of
a black-box power monitoring methodology for cloud-native applications
backed by Docker and Kubernetes. Chapter 3 integrates the power attribu-
tion methodology defined in the previous chapter with an extensive black-
box performance and network monitoring methodology. Chapter 4 shows
the results we obtained by managing the CPU usage of cloud-native ap-
plications with the goal of reducing power consumption. Chapter 5 shows
instead how we defined an ODA control loop able to derive the performance
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constraints of each microservice starting from a single latency requirement
expressed for the entry-point of the cloud-native application. Finally, Chap-
ter 6 describes our efforts towards the definition of an infrastructure able
to manage accelerated microservices towards performance improvement as
well as power-efficiency improvement of cloud-native applications.

How to read this thesis

There is no need to go through all the chapters to fully understand the work
done, as all the chapters are self-contained. If you are interested in the
black-box monitoring methodology described in this thesis work, Chapter
2 provides an in-depth view of how we performed power attribution for
each microservice, while Chapter 3 gives a comprehensive view of the ap-
proach and focuses more on network performance monitoring. If instead
you are interested in the overall autonomic methodology and the ODA con-
trol loop, Chapter 4 and Chapter 5 provide details on how we implemented
such methodology in the case of CPU usage and average latency respec-
tively. The two chapters can be read in no specific order and provide also
a brief overview of the monitoring features used to implement the Observe
step. Thus, it is not necessary to read Chapter 2 and Chapter 3 to fully un-
derstand them. Finally, if you are only interested in the FPGA-as-a-Service
system for accelerated microservice and serverless computing, it is suffi-
cient to go through Chapter 6, as it is fully self-contained.
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CHAPTER2
A black-box power monitoring

methodology for container-based
environments1

2.1 Introduction

Energy efficiency and energy proportionality are becoming important as-
pects in the context of large scale computer systems [66]. Improvements in
power consumption have been identified as a critical goal for reducing the
Total Cost of Ownership (TCO) of a data center [17,52], which has been in-
creasingly affected by provisioning costs deriving from power supply. Re-
source utilization inside the data center should be monitored and managed
to avoid underutilization and to reduce inefficiencies from the single thread
of an application to the entire cluster. For this reason, power and energy
measurements become then necessary to provide a full picture of the sys-

1The work presented in this chapter was published in [23], for which Rolando Brondolin developed the
whole methodology, most of the implementation, most of the experimental evaluation, and the whole paper
writing. c©2018 IEEE. Reprinted, with permission, from: Rolando Brondolin, Tommaso Sardelli, and Marco D
Santambrogio. Deep-mon: Dynamic and energy efficient power monitoring for container-based infrastructures.
In Parallel and Distributed Processing Symposium Workshops, 2018 IEEE International, pages 676–684. IEEE,
2018.
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tem behavior and to enable power-aware computing for the next generation
of data centers. In this context, several previous works addressed power
awareness, measuring power and performance metrics at several layers of
the stack (as in [67]).

Given that the Central Processing Unit (CPU) is currently the largest
contributor to server power consumption [12], precisely accounting power
consumption of each workload running in the system may help to under-
stand how the data center is behaving and may provide hints on how to
optimize the running applications. In order to do so, there is the need for a
monitoring tool able to capture the variety of current workloads, especially
in case of different applications co-located on the same physical machine.
At the same time data should be gathered keeping the pace of quickly evolv-
ing workloads and must be as fine-grained as possible.

Previous work on the subject [16,43,98] has started to address this prob-
lem in different contexts. In particular, HaPPy [98] addressed the problem
of HyperThread-aware estimation and power attribution, using CPU perfor-
mance counters (e.g. instruction retired, unhalted clock cycles) to attribute
to each thread its power consumption. However, all this was done in a con-
text of static workloads, pinning threads to logical CPUs that were known
in advance. A different approach was adopted by XeMPower [43], which
collects power and Performance Monitoring Counter (PMC) traces starting
from context switches of virtual tenants (i.e. VMs) managed by the Xen
Hypervisor. This approach enables to dynamically monitor and measure
the power consumed by each tenant. Unfortunately, XeMPower sends raw
data from the hypervisor level to the user-space one at each context switch,
impacting on the performance of the virtual tenants.

All these approaches addressed VMs and standalone applications, how-
ever, in the last few years application containers gained interest both in
cloud computing and in High Performance Computing (HPC) fields, thank
to Singularity [50]. In this context, to the best of our knowledge, a system-
atic HyperThread-aware power monitoring approach for application con-
tainers is still missing.

Our work addresses all these limitations in order to generalize the pro-
cess of collecting metrics to quantify the power consumption of single ap-
plications. DEEP-mon is able to assign precise information about power
consumption to each thread running on a system, without any previous
knowledge regarding the characteristics of the application and without any
kind of workload instrumentation. Moreover, the monitoring tool is able to
aggregate data for threads, application containers and hosts. The proposed
methodology is designed to minimize the overhead of the monitoring solu-
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tion, making its impact on the monitored applications negligible.
The results obtained open the way for a wide set of applications exploit-

ing the capabilities offered by the monitoring tool, from power (and hence
cost) metering of new software components deployed in the data center to
fine grained power capping and power-aware scheduling and co-location.
In this context, we are evaluating power and performance trade-offs in a
distributed environment managed by Kubernetes [25], where containers are
spread and replicated on a cluster of machines.

The rest of this chapter is organized as follows: Section 2.2 covers the
related works, from monitoring tools to on how power measurements can
be used at a fine grain level, Section 2.3 describes the proposed approach
towards per thread and per container power attribution and monitoring, Sec-
tion 2.4 shows the experimental evaluation of the monitoring tool, while
Section 2.5 concludes the chapter and depicts some future work.

2.2 Related Work

The problem of power consumption in the data centers and its impact on
the Total Cost of Ownership (TCO) has been addressed by different works
in the last decade. An initial study of the impact of energy costs has been
proposed by Fan et al. [42], where power usage characteristic of large col-
lections of servers has been analyzed for a period of six months for different
classes of applications. With their work they estimated that the more under-
utilized a facility is, the more expensive the cost of building the data center
becomes in terms of fraction of the TCO. However, during the design activ-
ity of the datacenter, peak power consumption must be taken into account,
even if the data center will be under-utilized for certain periods of time.
This is fundamental, as short period of peak power consumption generated
by software components can on rare occasions cause the entire data center
infrastructure to breach the safety limits.

This problem is addressed by Bhattacharya et al. in [19], which high-
lights the importance of power capping techniques in mitigating under-
utilization as well as power limits violations, while also showing their lim-
itations and possible improvements. We think that in these contexts, hav-
ing a precise, fast and lightweight power monitoring agent providing fine-
grained and real-time information is of paramount importance.

Several works tried to estimate power at different levels of the data cen-
ter. One recent example is the work proposed by Maranthe et al. in [67].
This work proposed to integrate several probes at cluster level, rack level,
node level and at the system level. Moreover, they carried out an analysis
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of the efficiency of thermal and power management for a large scale data
center using the proposed monitoring components. Our work relies on a
different set of power measurements, as [67] does not cover per application
power monitoring and attribution. However, our work is complementary
to [67], as it can be integrated in a wider set of monitoring tools to perform
better analysis at different levels of the stack.

Moving from data center power monitoring to a more fine grained mon-
itoring scenario, there has been significant research into estimating power
consumption for single applications from performance counters. One of
the first works was done by Bellosa et al. [16], where they used an ex-
ternal power meter and found a correlation between measured power con-
sumption and CPU performance counters such as unhalted clock cycles,
instructions retired and cache hits/misses. However, this work addresses
only coarse-grained power measurements using and external probe since
Intel RAPL was not yet available at the time. More recent work can be
found in Power Containers [88] where a per request power accounting so-
lution was proposed but without taking into account the difficulties posed
by Hyper Thread (HT) in precise energy attribution.

Such problem has been addressed by HaPPy [98] using a methodology
that proportionally assigns power consumption to logical cores belonging
to physical CPU cores, based on the number of weighted unhalted clock
cycles measured for each logical core. HaPPy measures then the power
consumption of each workload pinning the threads on fixed logical cores,
thus knowing in advance workloads and resource assignments. DEEP-mon
builds upon this work reversing the proposed methodology and account-
ing weighted cycles for each thread instead of logical CPUs. This is done
as soon as a context switch happens, making the methodology resilient to
time-shared CPUs.

A more generic approach, but within a different context, has been pro-
posed by Ferroni et al. in XeMPower [43]. In this work they developed
a monitoring solution for the Xen hypervisor that precisely accounts hard-
ware events to Xen domains. XeMPower also enables attribution of CPU
power consumption to individual tenants. One of the main drawbacks of
the proposed methodology is related to the data transfer between the probes
and the monitoring agent. XeMPower moves raw PMC traces at each vC-
PUs context switch, thus creating overhead for the virtual tenants managed
by Xen. Our approach solves the overhead issue by aggregating the raw
PMC traces as soon as possible in kernel, moving to user space just the ag-
gregated data. XeMPower was then used to enable per-tenant power mod-
els [44] through a black-box methodology called MARC [45] that mod-
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Figure 2.1: Overall infrastructure of the proposed monitoring system on two servers (S1
and S2) with kernel level data collection through BPF, user-space monitoring agent
that collects RAPL measurements and BPF data and back-end infrastructure with data
visualization and power monitor APIs.

els power consumption using PMC traces, identifying different working
regimes at which a server operates and generating a model for each regime
with model identification theory.

All these approaches can be applied not only for VMs or standard appli-
cations, but also for application containers. In the last few years the interest
on this technology rose, and some works started to appear about power con-
sumption metering and management, in particular for Docker containers2.
Piraghaj et al. [84] proposed a framework and algorithm for energy effi-
cient container consolidation in cloud data centers. Their work focuses on
consolidation, and tests were carried out with CloudSim [27]. Of course,
to implement the proposed methodology on real systems, a thorough mon-
itoring activity of containers power consumption is necessary.

Finally, DockerCap [9] proposed an ODA loop able to cap power con-
sumption of the system, assigning resources to each co-located container
to guarantee the requested SLA. DockerCap leverages Linux perf to read
RAPL measurements, obtaining a coarse-grain and low frequency view of
the containers power consumption. Our work increases visibility and time-
liness of the measurements while introducing negligible overhead.

2.3 Proposed approach

Power awareness is the first step towards the mitigation of data center power
usage inefficiencies. To enable this feature, the data center should be aug-

2https://www.docker.com
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mented with power monitoring tools. In order to achieve good visibility
on data centers power usage, it is necessary to put in place not only power
grid monitors, but also monitors able to trace power consumption at the sin-
gle machine level. Unlike performance monitors (either at system level or
at application level), power monitoring requires specialized hardware (e.g.
external power monitors like WattsUp power meter [94]) or hardware inter-
faces (like Intel RAPL [86]) that are able to measure the power consumed
instantaneously by the components of the system.

In order to provide new tuning knobs for autonomic schedulers and or-
chestrators, and given that a non negligible part of the power consumption
is related to CPU tasks [12], there is the need for a fine grain power monitor-
ing tool able to attribute power consumption to each thread and application
running in the system. This kind of power attribution was tackled in the past
by several works like [88] and [98], either not considering Symultaneous
Multi-Threading (SMT) effects in the attribution or not narrowing down
the proposed approach to the actual runtime power monitoring. Moreover,
power attribution becomes a really complex task when we consider highly
co-located environments, in particular when we consider dockerized ap-
plications. Docker and application containers are becoming increasingly
popular not only in cloud computing, but also in HPC scenarios [36] (e.g.
with the Singularity project [50, 63, 97]), as they allow to build stable and
predictable running environments and allow to isolate applications in the
system sharing only the Linux kernel implementation. In this context, to
the best of our knowledge, a systematic approach to attribute power con-
sumption to each application container running in a highly co-located envi-
ronment is still missing.

DEEP-mon is a reliable and lightweight power monitoring solution for
Linux threads and application containers designed to: 1) provide precise
attribution of selected hardware events and power consumption to each
thread and container, 2) be agnostic with respect to the running work-
loads, scheduling policies and resource mapping and usage, 3) add neg-
ligible overhead in the running system.

The monitoring tool is divided in three main components, as shown in
Figure 2.1: 1) a kernel-level code that collects and aggregates performance
counters data for each thread leveraging eBPF [15, 73]; 2) a user-space
agent that collects the aggregated data, adding RAPL measurements and
further aggregating for each container in the system; 3) a back-end appli-
cation that collects the metrics coming from each agent in a cluster and
processes the time-series data to show them to the user and to make them
available to power-aware schedulers via APIs.
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Figure 2.2: Power consumption of EP, MG and CG benchmarks from NPB with HT or
without HT from 1 physical core to 10. HT experiments pin two threads on two logical
cores mapped onto a single physical core

In the next sections, we will provide a detailed overview of on how
to attribute power consumption to each thread and of each component of
DEEP-mon, analyzing the trade-offs that we encountered during the design
and development of the tool.

2.3.1 Per-thread power attribution

Intel RAPL interface and external power meters provide just a coarse grain
measurement about the power consumption of a server. RAPL, which was
introduced in Intel processors since the Sandy Bridge architecture, is able
to measure the power consumption of cores, package and DRAM for each
processor in a server. Starting from this ability, we want to attribute power
consumption measurements to each thread depending on its usage of the
processor.

Recent works show that there is a strong correlation between power con-
sumption and PMCs [17], in particular with UNHALTED_CORE_CYCLES
(0.99 linear correlation, as pointed out in [98]). From this evidence, we
built our methodology starting from the work done in HaPPy [98] towards
a per-thread power attribution that is HT aware and agnostic with respect to
the running workloads and their assignment of resources. In fact, the goal
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of DEEP-mon is to attribute power consumption even with CPUs that are
time-shared across several workloads.

HT is the Intel implementation of SMT that allows to share the re-
sources of a physical core, enabling two hardware threads to run simul-
taneously on the same core. The hardware threads are seen as logical cores
by the Linux Operating System (OS), which can then schedule processes
on each of them. When the resources of a physical core are shared across
two different processes through HT, the power consumption derived from
the execution of these threads will be different with respect to running the
same threads on two different physical cores. Figure 2.2 shows the power
consumption of three benchmarks of the NAS Parallel Benchmark (NPB)
suite when their threads are pinned on different physical cores or on logi-
cal cores belonging to the same physical one. The figure shows on the X
axis the number of physical cores, while on the Y axis we show the power
consumption measured with RAPL. For the no HT experiments, we run N
threads corresponding to N physical cores, while for the HT experiments
we run 2N threads corresponding to N physical cores to measure the impact
of two threads in HT with respect to just one thread per physical core. The
benchmarks were run on a Dell PowerEdge r720xd equipped with 2x Intel
Xeon E5-2680 v2 (10 cores + HT @ 2.80GHz), 380GB of RAM and with
Ubuntu Linux 16.04 and kernel version 4.13. This first experiment shows
that when executing threads on two logical cores mapped on the same phys-
ical core, the power consumption is ' 1.15 with respect to just one thread
executing on that same physical core. This ratio, denoted as HTr, gives us
some hints on how to attribute power consumption among threads execut-
ing in the system, as we have to discriminate between execution of threads
on logical cores or on physical ones.

To attribute power to threads, our model leverages the measurements
of Intel RAPL core and of the UNHALTED_CORE_CYCLES performance
counter. We collect also INSTRUCTION_RETIRED and threads execution
time to assess the performance of the workloads throughout their execution.
UNHALTED_CORE_CYCLES are measured for each logical core and for
each physical core to account also for the execution of two threads on the
same core through HT. For a given thread T1, we denote CycleTA1 as the
number of unhalted core cycles where the thread executed alone on a phys-
ical core, while CycleTO1 represents the number of unhalted core cycles
when there is overlapping between two threads co-running on the same
physical core via HT. Remembering the ratio HTr described before, we
can compute the weighted cycles that can be used to attribute power con-
sumption to threads as shown in Equation (2.1).

16



2.3. Proposed approach

CyclesTW1(t, s) =
N∑
i=0

CycleTA1(s, i) (2.1)

+
HTr
2
·

M∑
j=0

CycleTO1(s, j)

In this equation, for each discrete observation interval t and for a given
socket s, the number of weighted cycles for thread T1 is the sum of two
different contribution: in the first one we have the sum of the cycles mea-
sured during the N execution periods in which the thread run alone, in the
second one we have the sum of the cycles measured during the M execu-
tion periods in which the thread was co-running on the same physical core
via HT, weighted by the HTr ratio and divided by 2 to equally divide the
overlapping cycles among the two threads. In this context an execution pe-
riod is defined as the time between context switches on the physical core
where the thread is scheduled.

Starting from Equation (2.1), we can now attribute the power measured
by RAPL for our thread T1 following Equation (2.2), where |K| is the
cardinality of the set K of threads running in the server in a given period of
time and |S| is the cardinality of the set S of sockets in the system.

PT1(t) =

|S|∑
s=0

(
RAPLcore(t, s) ·

CyclesTW1(t, s)∑|K|
k=0CyclesTWk

(t, s)

)
(2.2)

Starting from this result, the next sections will provide details on how
we implemented power attribution for each thread and container running in
the system.

2.3.2 Kernel level data acquisition

The power attribution model described in Section 2.3.1 needs a precise
measurement of the performance counter values generated by each thread.
Moreover, the monitoring tool should measure also the execution periods
where two threads are running on the same physical core via HT. From the
Linux OS perspective, on a logical core is either scheduled a thread or the
idle process. Transitions between threads are identified by context switch
events, as each time a thread is going to be scheduled on a logical core, the
old context is saved and substituted with the one required for execution. If
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Figure 2.3: Monitoring agent structure: the BPF code communicates with the agent via
the thread map and the configuration map and stores data about cores in the processor
topology map. The agent collects data from BPF and RAPL and updates the internal
thread table also with containers data. The runtime manager selects also the new
aggregation window length, updates the selector for the new measure and sends the
sample to the back-end when it is ready.

we are able to observe context switches, then we can measure precisely the
performance counters for each thread.

Instead of developing a custom loadable kernel module or manually in-
strumenting the kernel, as it was done with the hypervisor code in [43], our
approach leverages a different mechanism at the heart of the Linux kernel:
eBPF [15, 73]. eBPF is a kernel level VM that runs in its extended version
in every Linux distribution since kernel 3.15. The main advantage of the
recent versions of eBPF stands in the ability to do Just In Time (JIT) com-
pilation of well-formed codes that can get access to different events inside
the Linux kernel. In order to guarantee the termination of the eBPF pro-
grams no loops are allowed, as well as backward jumps. In order to do JIT
compilation and execution of eBPF code, at the time of writing, each eBPF
program can have at most 4096 lines of eBPF assembly code and can allo-
cate at most 512 bytes of stack. To ease the development of the monitoring
tool, we leveraged the BPF Compiler Collection (BCC) tools [14], which
allow to manage eBPF codes and to dynamically load and compile them,
as well as managing the interconnection between the user-space agent and
the kernel level VM.

We leveraged eBPF to observe Linux tracepoints [64], in particular the
sched_switch and the sched_process_exit ones to observe context switch
and process exit respectively. We do not observe process creation (e.g.
clone, fork, execve) to reduce the impact on the monitored system, as each
thread that need to execute and that will consume a certain amount of power
has to do a context switch. Again, to lower the impact of the monitoring
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tool we used tracepoints instead of Linux Kprobes even if tracepoints are
less flexible, as Kprobes introduce more overhead in the system.

eBPF programs, when loaded in the VM, allow to communicate with
an external application with several interfaces such as bpf_perf_buffers and
bpf_maps: bpf_perf_buffers are used to send raw data from the kernel level
VM to a user-space application when the data is generated, bpf_maps, in-
stead, are key value maps that allow to send aggregated data to a user-space
application asynchronously. Given that the rate of context switch events is
really high, in particular in case of overloaded systems, we decided to ag-
gregate events and performance counters inside the VM. Figure 2.3 shows
the data structures of the bpf_maps used for DEEP-mon and the commu-
nication scheme between the VM and the user-space agent, as well as the
structure of the monitoring agent. The eBPF program shares with the user-
space agent a configuration map, the thread map with performance counters
data and a processor topology map, which hosts data about the running PID
and the partial measurements of the performance counters for each HT core
in the system.

Algorithm 1 details how we collect cycles measurements for a given
thread. Instruction retired and execution time are collected just for the run-
ning thread that did the context switch. The eBPF code executes on the
same hardware thread and in the context of the thread that generated the
observed event, sched_switch in this case. The code is divided in two sec-
tions: at first we look at the thread that is exiting from execution, then
we look at the new thread being scheduled on a given hardware thread.
Let us consider two HT cores mapped on the same physical thread. Each
time a context switch happens on one of the two HT cores, the delta UN-
HALTED_CORE_CYCLES at the hardware thread level is measured for
the thread who did the context switch. At the same time, the delta UN-
HALTED_CORE_CYCLES at the core level is measured for both threads
(when the second one is not the idle process). This last measure is updated
at first for the thread that did the context switch, then it is temporarily stored
on the other HT core and accounted to the co-running thread at its next
context switch. In this way, when a context switch happens, we can apply
Equation (2.1) to compute the weighted cycles. This data is continuously
updated until the user-space application read the data from the bpf_maps.
After this step, we act on the starting thread reserving some space for it in
the thread map and resetting the counters for the new measurement. Finally,
when a thread finishes execution through the sched_process_exit event, we
simply remove it from the thread map and we reset all the counters related
to it in the processor topology map.

19



Chapter 2. A black-box power monitoring methodology for
container-based environments

Algorithm 1 BPF pseudo code for cycles measurement
1: procedure SCHED_SWITCH(switch_args, thread_cycles, core_cycles, instruction_retired)
2: //exiting thread
3: HT_id← bpf_get_smp_processor_id()
4: socket← topology[HT_id].socket_id
5: //cc stands for core cycles
6: ∆cc← 0
7: scc← 0
8: sib_id← topology[HT_id].sibling_id
9: sibling_PID ← topology[sib_id].running_pid

10: old_PID ← switch_args.old_PID
11: new_PID ← switch_args.new_PID
12:
13: if sibling_PID > 0 & & old_PID > 0 then
14: ∆scc← core_cycles− topology[sib_id].core_cycles
15: topology[sib_id].∆cc← topology[sib_id].∆cc + ∆scc
16: topology[sib_id].core_cycles← core_cycles
17:
18: ∆cc← core_cycles− topology[HT_id].core_cycles
19:
20: //tc stands for thread cycles
21: ∆tc← thread_cycles− topology[HT_id].thread_cycles
22: weighted_cycles = ∆tc + HTr

2
· (∆cc + topology[HT_id].∆cc)

23: old_weighted← thread_map[old_PID].weighted_cycles
24: thread_map[old_PID].weighted_cycles[socket]← old_weighted + weighted_cycles
25:
26: //entering thread
27: if new_PID not in thread_map then
28: add_new_thread(switch_args)
29: topology[HT_id].running_pid← new_PID
30: topology[HT_id].thread_cycles← thread_cycles
31: topology[HT_id].core_cycles← core_cycles
32: topology[HT_id].∆cc← 0
33: return

2.3.3 User space power attribution

The user-space agent of DEEP-mon is in charge of setting up the eBPF
program and attributing power consumption to each thread and container.
Figure 2.3 shows the block diagram of the agent, which is detailed in three
main components: bpf-collector, thread-table and runtime-manager. Bpf-
collector handles the eBPF code, extracting data on a regular time basis.
Then, for each thread collected from the bpf_maps, Equation (2.2) is ap-
plied. RAPL measurements are extracted at each time window using the
intel_rapl module. At this point, the user-space agent updates the thread-
table and for each new thread finds the proper folder in the /proc folder of
the Linux OS to read the cgroup ID. From the cgroup ID we can then iden-
tify which thread belongs to which container, further aggregating the mon-
itoring data. When the agent collected all the data for each container into
a sample, the runtime-manager selects the time window length for eBPF

20



2.3. Proposed approach

Algorithm 2 time window length selection pseudo code
1: procedure TIME_WINDOW_SELECTION(sched_switch_count, old_window_length)
2:
3: switch_per_second_per_core← sched_switch_count

#HT _cores·old_window_length

4:
5: if switch_per_second_per_core < 100 then
6: return 4s
7: else if switch_per_second_per_core < 200 then
8: return 3s
9: else if switch_per_second_per_core < 200 then

10: return 2s
11: else
12: return 1s

data extraction and manages the communication between the agent and the
monitoring back-end through Intel Snap3.

Algorithm 2 shows how we select the dynamic window length used by
the user-space agent to collect data from eBPF. In case of highly CPU in-
tensive workloads where the number of threads are similar to the number
of available HT cores, few context switch events are generated by the ap-
plications. In this case, the aggregated performance counters collected by
eBPF can be accounted in the wrong time window, as the execution period
length of the workloads can increase spanning two different time windows.
Given that the frequency of context switch events can vary during the moni-
toring activity, we change the aggregation window lenght of the eBPF code
at runtime to avoid imprecise measurements.

One last thing to notice about the monitoring system is that with BCC
the agent is not allowed to send commands directly to the eBPF code, but it
can just update data on the bpf_maps and wait for an event on the kernel VM
to propagate it. For this reason and to avoid spurious reads of the thread
map we introduced the selector flag shown in Figure 2.3 and we doubled
some of the fields of the thread map. Before reading data on the bpf_maps,
the user-space agent flips the flag so that the eBPF code can start writing on
the cells of the map that the agent is not reading. The timestamp is always
checked for each thread so that the eBPF code can notice if the selector flag
changed more then once from a context switch to another.

2.3.4 Cluster level metric aggregation

The monitoring back-end is the component responsible for the final data
aggregation. Each agent connects to this component and sends samples
on a regular time basis. Given that the agents adopt a push model to send

3http://snap-telemetry.io
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data to the back-end, no checks on the connections are done at this level.
When a sample arrives at the back-end, the raw power and performance
measurements are unpacked and used to build metrics that are segmented
depending on container, host and cluster organization. In this context, the
agent collects data about Kubernetes status and about Kubernetes PODs
through Intel Snap plugins. These metrics are used to further aggregate the
metrics in logical views that can be used for data visualization or as input
for power-aware schedulers.

2.4 Experimental results

To enable power awareness in production systems, the overhead of the mon-
itoring agents should be negligible. To this aim, in this Section we want to
evaluate the proposed monitoring tool and its impact on the monitored sys-
tem. On the one hand we are interested in the performance loss derived
from the monitoring activity, while on the other hand we want to assess the
impact of the tool on the overall power consumption. In Section 2.4.1 we
will describe the experimental setup and the benchmark we selected for the
evaluation while in Section 2.4.2 and Section 2.4.3 we will show the results
for the performance overhead and the overall power consumption overhead
analysis.

2.4.1 Experimental setup

We evaluated the proposed approach on a Dell PowerEdge r720xd equipped
with 2x Intel Xeon E5-2680 Ivy Bridge with 10 cores each (20 HT) clocked
at 2.80GHz and with 380GB of RAM. The evaluation platform represents
a recent mid-range server. The host OS is an Ubuntu Linux OS 16.04 with
kernel 4.13 and eBPF support enabled. Each workload runs inside a Docker
container, with Docker runtime version 1.13.1. All the experiments are
carried out with HT enabled without pinning the threads on any core, and
we measure power with Intel RAPL both for our monitoring tool and for
the power consumption overhead experiments.

To evaluate DEEP-mon, we selected three benchmarks from the NAS
Parallel Benchmark (NPB) suite [11] version 3.3.1 [40], Embarassingly
Parallel (EP), Multi Grid (MG) and Conjugate Gradient (CG):

• Embarassingly Parallel (EP) is a kernel that generates pairs of Gaus-
sian random deviates and is a benchmark highly CPU intensive and
CPU bound;
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• Multi Grid (MG) is a memory intensive benchmark that performs
a simplified multi grid calculation, it requires highly structured long
distance communication and it tests both short and long distance data
communication;

• Conjugate Gradient (CG) is a mixed CPU and memory intensive
workload that performs an approximation to the smallest eigenvalue of
a large, sparse, symmetric positive definite matrix through a conjugate
gradient method.

All the benchmarks of NPB were run using the maximum amount of log-
ical cores available. Moreover, to have a complete picture of the pro-
posed approach, we leveraged also three benchmarks from the phoronix
test suite [61] to stress the tracepoint mechanism that triggers the aggrega-
tions performed by our eBPF code:

• pts/apache is a test of the Apache Benchmark program on an Apache2
web server that measures how many requests per second the web
server is able to sustain when stressed with 1,000,000 requests with
100 requests performed concurrently;

• pts/nginx is a test of the Apache Benchmark program on an Nginx
web server that measures how many requests per second the web
server is able to sustain when stressed with 2,000,000 requests with
500 requests performed concurrently;

• pts/postmark simulates small-file testing similar to what is done by
mail and web servers, performing 25,000 transactions with 500 files
simultaneously with file sizes that ranges from 5 to 512 kilobytes.

This last set of benchmarks are related to cloud computing applications,
in contrast with the HPC benchmarks of the NPB suite. We decided to use
both benchmark classes to evaluate the proposed approach with application
containers in all the possible scenarios in which they are currently used.

2.4.2 Performance overhead

In this first set of experiments we are interested in evaluating the impact
of DEEP-mon on the performance of the benchmarks, as the overhead of
the monitoring system should be as low as possible. To this aim, we ex-
ecuted the benchmarks described in Section 2.4.1 30 times each and we
collected data about the execution time of both classes of benchmarks and
the benchmark score provided by the Phoronix test suite.

23



Chapter 2. A black-box power monitoring methodology for
container-based environments

EP MG CG
benchmark

0

200

400

600

800

1000
ex

ec
ut

io
n_

tim
e 

(s
)

w/ agent
w/o agent

(a) Execution time (in seconds) of EP, MG and CG of the NPB suite, where the agent
introduces an overhead of 0.4%, 4.2% and 3.8% respectively.
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(b) Execution time (in seconds) of pts/apache, pts/nginx and pts/postmark, where the over-
head introduced by DEEP-mon is 3.1%, -2.05% and 0.4%.

Figure 2.4: Average and 95% confidence interval of the benchmarks execution time when
running with and without the DEEP-mon agent (lower is better). Figure 2.4(a) shows
execution time of the NPB benchmarks, while Figure 2.4(b) shows execution time of
the Phoronix test suite benchmarks.

Figure 2.4 details the execution time for both the classes of benchmarks
comparing two different configurations: 1) the agent is running and moni-
toring the benchmarks power consumption, 2) the agent is not running. As
we can see from the HPC-class benchmarks shown in Figure 2.4(a), the
overhead of the monitoring agent is quite negligible in all the test cases.
The tool increases the execution time of EP, MG and CG of 0.4%, 4.2%
and 3.8% respectively. As for EP, the result is justified by the fact that the
benchmark performs almost no synchronization and thus it rarely performs
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Figure 2.5: Average benchmark scores with 95% confidence interval for pts/apache, pt-
s/nginx and pts/postmark. The overhead of the monitoring agent is 3.3% for pts/a-
pache, 0.3% for pts/nginx, 0.4% for pts/postmark.

context switches. In this case, the monitoring impact is extremely low. As
for MG and CG, their activity is more dependent on partial results of other
threads. For this reason, context switches count increase, increasing the
overhead as well. However, even in this case the impact of the monitoring
tool is still low.

As for the cloud computing class of benchmarks, the graph of Figure
2.4(b) shows again good performance in terms of execution time overhead.
In this context, pts/apache shows an increase in the execution time of 3.1%,
pts/nginx of −2.05% and pts/postmark of 0.4%. A surprising result in
this case is represented by pts/apache, which generates ' 200.000 context
switches per second: even with this load on the eBPF code, the overhead in
terms of execution time remains under 5%. Moreover, in this experiment,
pts/postmark execution time remains almost unchanged. This happens be-
cause the benchmark continuously executes reads and writes on disk with-
out performing many context switches. Finally, when the agent is running,
pts/nginx reduced its execution time. This is due to the uncertainty of the
workload, that shows high variability from one run to another. The results
of Figure 2.4(b) are confirmed for the benchmark scores, highlighted in
Figure 2.5. As we can see, the benchmarks perform almost identically for
pts/nginx and pts/postmark, while there is a slight difference for pts/apache.
Moreover, the agent does not introduce uncertainty in the performance of
the benchmarks, as the 95% confidence interval tends to the average value.

Given that the pts/nginx exposed a variable behavior in Figure 2.4(b),
we decided to investigate it further to better understand the agent impact.
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Table 2.1: Per thread average latency, requests per second, transfer rate and worst case
99th percentile tail latency among 30 runs of nginx stressed by wrk.

configuration nginx 20 threads with wrk 20 threads
latency # requests transfer rate 99th latency

w/o agent 41.62 ms 8793 req/s 141.08 MB/s 1130.0 ms
w/ agent 38.35 ms 8720 req/s 140.17 MB/s 1100.0 ms

Table 2.2: Power consumption average and variance for the benchmarks, with monitor-
ing overhead. The average overhead for HPC workloads is 0.90%, while for cloud
workloads is 1.74%.

benchmark w/o agent w/ agent overhead
µ σ2 µ σ2

EP 152.00 W 1.53 154.38 W 0.47 1.56%
MG 130.58 W 7.11 131.81 W 4.05 0.93%
CG 126.71 W 1.02 126.99 W 0.99 0.22%

pts/apache 63.17 W 0.43 65.11 W 0.22 2.98%
pts/nginx 56.45W 1.87 56.76 W 3.03 0.45%

pts/postmark 34.15W 0.16 34.76 W 0.03 1.80%

We tested nginx with wrk4, setting nginx concurrency level to 20 threads,
while the wrk stress tool was set to 20 threads to have a CPU utilization
of ' 1. In Table 2.1 we present the per thread average latency, number of
requests per second, transfer rate and the worst case 99th percentile latency
generated by 30 runs of the experiment. As we can see, this results shows
again that the overhead generated by our agent is negligible. In particular,
the 99th percentile tail latency measurement is pretty close, meaning that
even in the worst case, the monitoring tool does not affect the execution of
the benchmark.

2.4.3 Power consumption overhead

We run the same set of experiments described in Section 2.4.1 with the same
configurations to assess the impact of the agent also in terms of power con-
sumption. We observed the overall power of the test server with perf and
we measured power consumption with RAPL core. The result of this anal-
ysis are shown in Table 2.2. In this case we measured the overhead as the
increment of power consumption of the server when running a benchmark
with our agent with respect to running that same benchmark alone.

The power consumption of the benchmarks shows a quite variegated
scenario. On the one hand, the HPC benchmarks tends to consume as much
power (and CPU) as possible, with EP consuming more than the others be-
cause there are few synchronizations points and wait periods. On the other

4https://github.com/wg/wrk
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hand, the cloud workloads consume less, as the benchmarks stress the net-
work latency and throughput of some web applications and the latency and
throughput on files for a mail server. The overhead of the agent is 0.90%
for the HPC workloads, while became 1.74% for the cloud workloads.

Overall, the power consumption of the monitoring agent is low, and the
difference between the two classes suggests that this overhead is limited
in all cases and becomes negligible when the utilization of the server in-
creases. Pts/apache and CG are the most stressful workloads for the agent,
both inducing a performance overhead equal or higher than 3%. When it
comes to the server total power consumption, they are behaving in the op-
posite way: with CG the overhead is at most 0.24%, while with pts/apache
it becomes 2.98%. This happens, again, because CG has a CPU utilization
' 1, while with pts/apache, the CPU usage drops down to ' 0.20.

Finally, if we consider the impact on power consumption for HPC work-
loads, XeMPower [43] obtained an overhead of ' 1%, while our approach
behaves slightly better with 0.90% of overhead. This result shows that
the aggregation of PMCs inside the eBPF VM reduced the overhead on
the overall system power, even if threads context switches are more fine
grained than vCPU context switches. This headroom allowed us to intro-
duce data collection about Kubernetes and to send data to the back-end still
having comparable results with XeMPower, which simply aggregates by
Xen domain and stores the data on disk.

2.5 Conclusion and future work

In this chapter we presented a novel approach for the attribution of power
consumption to threads and application containers running in a Linux OS.
The proposed approach is detailed in three different stages: 1) kernel-level
data acquisition code, for which we leveraged eBPF and BCC tools, 2)
user-space per-thread power attribution, that aggregates performance and
power consumption data also for application containers, and 3) cluster level
metric aggregation, which generates metrics that can be used by power-
aware schedulers and orchestrators.

The experimental evaluation shows that our approach has a negligible
impact on the performance of the workloads and on the overall power con-
sumption. Moreover, our solution is designed to overcome the limitations
of the previous works, in particular HaPPy [98] and XeMPower [43], in
terms of time-shared CPUs support and monitoring overhead respectively.

One of the main issues we encountered during the development of the
monitoring tool is related to eBPF. Even if eBPF allowed us to ease the
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development of the performance counters data extraction, its limitations re-
duces the applicability of our approach. The maximum amount of assembly
instructions and the limited stack size allowed us to test our approach only
on a dual-socket server at most, as more cores in the system would saturate
the eBPF stack. To mitigate this issue, as a future work, we will explore the
improvement of the eBPF mechanism both at the eBPF application layer
and at the kernel level, tuning and modifying the kernel VM.
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CHAPTER3
Towards a unified view of the cluster state1

3.1 Introduction

As we discussed in Chapter 1, the microservice architectural style com-
bined with the proper technological tools allowed to move away from the
standard monolithic pattern of legacy workloads. However, the complex-
ity that was previously hidden inside the monolithic application moved as
well, abruptly increasing the pressure on the network layer. With the grow-
ing complexity of deployments, it is becoming fundamental to monitor and
measure the performance of microservices at scale to assess their func-
tionality and to detect performance issues as soon as they appear in the
system. Such issues may arise in several layers of the cluster’s stack and
can affect network performance, system performance, and resource usage.
Moreover, as discussed in [47], microservices interact with CPU architec-
tures differently w.r.t. monolithic workloads and these kinds of interactions
can be captured by monitoring performance counters. If we leverage data

1The work presented in this chapter was published in [21], for which Rolando Brondolin developed the
whole methodology, the whole implementation, the whole experimental evaluation, and the whole paper writing.
Rolando Brondolin and Marco D Santambrogio. A black-box monitoring approach to measure microservices
runtime performance. ACM Transactions on Architecture and Code Optimization (TACO), 17(4):1-26, 2020.
DOI: https://doi.org/10.1145/3418899
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about performance counters, system performance, network performance,
and power consumption it is then possible to spot bottlenecks, improve
performance, and increase energy efficiency. For these reasons, monitor-
ing should take into account all these aspects, focusing on pure software
performance metrics as well as on architectural ones.

Within this context, several works [55, 69] addressed the monitoring is-
sue for Linux servers and in general for physical hosts and virtual machines.
However, they lack the ability to drill down at the container level. Many
commercial tools [35, 79] and open-source tools [3] overcame this limita-
tion by instrumenting application code. Finally, [39, 89, 95] retrieve data
using a black-box approach, however, they only provide metrics about the
high-level performance of the applications, neglecting the low-level met-
rics needed to monitor how the workloads are exploiting the underlying
architecture.

In this chapter, we present a novel black-box approach to monitor mi-
croservices at scale in the context of Docker containers managed by a Ku-
bernetes orchestrator. The goal is to build a unified view of a microservice-
based application from low-level architectural metrics to network perfor-
mance. For this reason, the main contributions of this chapter are:

• The design of a monitoring methodology based on eBPF [15, 73] that
collects data about network activity (e.g. number of requests, bytes
sent and received, average latency, and from 50th to 99th percentile la-
tency) for each Docker container, Kubernetes pod, and physical host;

• The integration and expansion of DEEP-mon (that we first described
in Chapter 2) to measure network metrics, application performance
metrics (e.g. CPU usage, execution time), and low-level performance
metrics (e.g. cycles, Instruction Retired (IR), cache references, cache
misses, and power consumption);

• The design of a metrics collection system that retrieves metrics from
a set of monitoring agents, groups them depending on container, pod,
service, and host, and provides a graph view and analysis of the mon-
itored Kubernetes cluster that encompasses performance, power con-
sumption and network activity of each microservice.

Within this chapter, we demonstrate how the proposed methodology gener-
ates less overhead on the monitored benchmarks w.r.t. similar approaches
in the state of the art. At the same time, we are able to guarantee a rea-
sonable accuracy over the measurements the monitoring system performs.
Finally, we show a study of performance and power consumption of one
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application of the DeathStarBench [47] benchmark suite, discussing the
possible trade-offs between optimizing power consumption and maintain-
ing the performance of the applications.

The rest of this chapter is organized as follows: Section 3.2 analyzes the
related works in the field with a focus on power, performance and network
traffic monitoring in microservices and cloud-based environments. Sec-
tion 3.3 describes the proposed solution to monitor microservices behavior
from the low-level eBPF module to the remote metrics collection system.
Section 3.4 shows the experimental results we obtained with the proposed
monitoring approach in terms of overhead and precision of the collected
metrics. Section 3.4 derives also insights on how the benchmarks behaved
during the experimental campaign thanks to our monitoring service. Fi-
nally, Section 3.5 draws the conclusion of the chapter and derives future
works.

3.2 Related Work

According to the CNCF Cloud Computing Landscape [33], observability of
cloud-native applications can be divided into three main areas: monitoring,
logging, and tracing. Within this thesis work, we focus on monitoring mi-
croservices power and performance. Monitoring cloud applications allows
capturing the run-time behavior of the system, enabling a thorough analysis
of the collected data and highlighting performance issues that can lead to a
poor end-user experience. Here we provide a brief view of the state of the
art for power monitoring as well as application performance and network
performance monitoring.

3.2.1 Power monitoring

Power consumption can be measured at different levels of the data-center
stack, from the power grid level arriving to the thread level in a single host.
In the last few years, some works focused on fine-grain power monitoring,
from VMs to containers, to threads. One of the first works in this area is
represented by Bellosa et al. [16]. Within this work, the authors found a
first correlation between the power consumption of the server and some
hardware performance counter measuring data at the level of the whole
machine. At the VM level, a notable work is represented by XeMPower
[43]. XeMPower allows to precisely attribute power consumption to each
VM in a given host with low overhead on the system. The tool monitors
both RAPL and various performance counters that are traced at the context
switch of the Xen vCPUs. Power Containers [88] works at the per-request
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level but does not take into account HT. This last aspect was taken into
account by HaPPy [98] with a proportional power attribution at the thread
level based on RAPL [86] and cycles.

Moving to containers and microservices, Piraghaj et al. [84] proposed
a framework and algorithm for energy-efficient container consolidation in
cloud data centers. DockerCap [9] proposes an ODA loop to cap power
consumption while assigning resources to guarantee a SLA. Power moni-
toring in this context is done through RAPL at the socket level.

3.2.2 Application performance monitoring and network performance
monitoring

To monitor hardware performance counters, two main tools are available:
Linux perf [37] and PAPI [77]. Linux Perf is a performance tool that can
measure performance counters, tracepoints, hardware, and software events
and it can provide statistical profiling of the entire system performance.
PAPI, instead, is a library to collect performance counters from within the
monitored application. Linux perf is the standard tool for performance
counter profiling, and, for this reason, we decided to use perf arrays within
the eBPF code to retrieve them.

As for application performance monitoring, several works exist in the
state of the art, both at the academic level as well as at the commercial
level. For what concerns commercial and open source tools, here we de-
scribe briefly the most relevant. Sysdig [89] is a performance monitoring
tool that collects data about processes, containers and Kubernetes clusters
without instrumenting the user code. Sysdig introduces a kernel driver with
several buffers that collect and analyze all the system calls to provide met-
rics about CPU usage, memory usage, network I/O and file I/O. Although
our tool does not collect memory usage and file I/O, with Sysdig we are
not able to collect low-level performance metrics and latency percentiles.
Weave scope [95] collects data only about CPU usage and network connec-
tions without latency measures with eBPF and builds a network topology
graph on top of it. Datadog [35] instruments the applications with custom
integrations. Network analysis is performed through eBPF and it is based
on Weave scope, however, it does not account for latency measures but just
for bandwidth. Finally, Prometheus [3] is an open-source project within
the CNCF that provides APIs to instrument the user code, a time-series
database, and a visualization interface to show the metrics.

If we consider instead the research works in the field, one of the first
works is represented by Ganglia [69], which is a distributed monitoring sys-
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tem for clusters and grids typically used in HPC. Another interesting work
is Nagios [55], which is an open-source monitoring tool for grid comput-
ing. Both Ganglia and Nagios focus on host metrics and grid metrics and do
not take into account application-related metrics. Moving to microservice-
aware research works, Noor et al. [80] designed a monitoring framework
that can work in a multi-cloud, multi-virtualization, and multi-microservice
setting. The authors retrieve microservice’s performance from the Linux
OS, group everything by microservice and expose the data through a REST
interface. Although this work measures data at the microservice level, net-
work performance is not considered. Pina et al. [83] instead focuses mainly
on monitoring the network performance without user code instrumentation.
To avoid instrumentation they introduce infrastructural components that are
used by the application such as the API gateway, the service discovery and
the load balancers. Unfortunately, these components are not mandatory in
a microservice environment: our approach can retrieve the network metrics
without instrumenting them. Chang et al. [30] specifically target Kuber-
netes and collect metrics about CPU usage, Memory usage, and Quality of
Service (QoS) violation metrics. The proposed approach reads aggregate
resource usage data from the Linux OS as [80] and retrieves network per-
formance by stressing the applications with Apache jMeter2. Although this
approach obtains network metrics similar to the one we provide, jMeter is
extremely invasive w.r.t. the performance of the applications.

Another class of interesting work focuses on pure network performance
monitoring. Ntopng [38] is a system for network traffic monitoring and
characterization. It is mainly based on libpcap and tcpdump [90] and pro-
vides a Lua based scripting engine as well as a web server to observe net-
work traffic and a data exporter. Ntopng can work efficiently with 10GbE
networks without performance loss. The work of Deri et al. [39] is a Ku-
bernetes and container-aware runtime security tool that leverages eBPF to
gather connections’ open and close events. It works both with Transfer
Control Protocol (TCP) and User Datagram Protocol (UDP) and retrieves
data exchange with Ntopng. The work of Deri et al. uses different Linux
kprobes and tracepoints w.r.t. our work obtaining similar information. Un-
fortunately, given that the scope of [39] is on network security, no infor-
mation about accuracy and overhead is provided. The work of Cinque
et al. [32] provides a tool for network traffic analysis that accompanies
a system for log collection that involves application instrumentation. Its
MetroFunnel component is based on pcap and can pinpoint abnormal ser-
vice operation with small overhead on the performance of the applications.

2https://jmeter.apache.org
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Figure 3.1: Overall infrastructure of the proposed monitoring system with kernel level
data collection through BPF, user-space monitoring agent that collects metrics and
Docker and Kubernetes data, and back-end infrastructure with data visualization,
monitor APIs, and graph analyzer.

Finally, ConMon [76] monitors functions inside adjacent containers. Pas-
sive monitoring uses tools like tcpdump, while active monitoring injects
network traffic to test the response of the workloads.

Among the reviewed state of the art so far, none of the described works
was able to combine monitoring data on resource usage, application perfor-
mance, network performance and application power consumption to pro-
vide a unified view of the application. A work that comes close to it is
Seer [48]. Seer leverages application performance, resource usage, host
power consumption and network tracing data to build a neural network
model able to predict QoS violations across a cluster of microservices.
Our work focuses more on data acquisition rather than performance pre-
dictions. Moreover, our work requires no instrumentation of the user code,
while Seer tracing system requires a hook on the code that performs net-
work operations. Another work in this area is Rusty [68], which uses power
consumption and performance counters to predict the behavior of low level
metrics of dockerized workloads. We believe that our approach can be used
within Rusty to integrate also network performance in the prediction frame-
work.

3.3 Monitoring infrastructure

Within this chapter, we propose a generalized black-box monitoring ap-
proach to measure the performance of cloud-native applications. We cur-
rently focus on microservices deployed with Docker containers and man-
aged by a Kubernetes orchestrator, although the proposed methodology can
be adapted to other container engines as well as orchestrators. For each
container, we collect data about low-level performance (e.g. IR, cycles,
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cache references, cache misses, and power consumption), application per-
formance (e.g. CPU usage and total execution time), and network perfor-
mance (e.g. number of connections, number of requests, bytes sent and
received, average latency, and from 50th to 99th percentile latency). We
designed the proposed monitoring tool following three main principles:
transparency, performance, and accuracy. Transparency means to moni-
tor cloud-native applications without requiring user intervention in terms
of configurations and user-code instrumentation. Performance means to in-
troduce the least overhead possible on the monitored applications and to
use as few resources as possible on the monitored hosts. Finally, accuracy
means to retrieve metrics in the most precise way without data loss.

Figure 3.1 shows the main components of the monitoring infrastruc-
ture: kernel-level instrumentation, user-space agent, and remote monitor-
ing backend. For each host, we deploy a kernel-level instrumentation layer
implemented with eBPF [15, 73]. On top of the kernel-level instrumen-
tation, we run a user-space monitoring agent that periodically collects the
metrics and enriches them with information about threads, processes, con-
tainers and Kubernetes pods and services. Once the monitoring sample is
ready, the monitoring agent sends it to the remote backend each second.
At this point, the backend computes and stores the metrics in a time-series
database and builds the connection graph between pods. Finally, a user
interface visualizes the metrics.

3.3.1 Monitoring agent

Starting from the principles depicted in Section 3.3, our goal is to build
a monitoring system able to observe applications without code instrumen-
tation, without providing significant impact on performance, and with the
highest accuracy possible. Unfortunately, to avoid code instrumentation,
we need to resort to the OS to retrieve the data that we need. The com-
mon way to collect data about the running workloads without instrumenting
them is to develop a custom kernel module [89]. However, this is usually
a time consuming and error-prone task. To overcome this limitation, we
resorted to eBPF, which is a kernel-level VM that runs inside the Linux
kernel. eBPF allows to do JIT compilation of C code that can get access
to different events inside the Linux kernel. The kernel-level VM enforces
security measures to prevent system instability: for instance, to load an
eBPF program, a user needs to have privileged access to the host system.
Moreover, the kernel-level VM accepts only codes that do not have loops,
that have at most 4096 eBPF assembly instructions, and that do not use
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more than 512 bytes of stack. These measures are adopted to avoid infinite
loops and to limit the footprint on performance and memory usage of the
eBPF programs. Within this context, to ease the development process, we
leveraged the BCC [14] tools to compile, load, and manage eBPF codes
at run-time. BCC provides a wrapper to an LLVM compiler that is able
to compile C code to eBPF assembly, a set of helper functions in C for
the eBPF programs, and a set of helper functions for python codes. These
last helper functions allow to load and remove eBPF programs and perform
R/W operations on eBPF data structures accessible both from the python
code as well as from the eBPF code.

The peculiarities of eBPF and BCC allows us to design monitoring tools
with the following general approach: (1) extract metrics from data as soon
as the data is generated, (2) move metrics only in aggregated form to limit
the impact on the overall system, (3) correlate metrics coming from differ-
ent hosts without coordination among distributed agents. Previous works
that leverage custom kernel modules are not able to provide aggregation
at the kernel-level due to security and performance issues, and, as such,
they encounter performance and accuracy degradation when the monitored
system is overloaded.

Starting from the general approach, we designed two different eBPF
programs able to collect performance data and network data respectively.
These two programs react to Linux tracepoints and kprobes that are specific
to the data the monitoring tool has to collect. Once the eBPF VM receives
an event from the Linux kernel, the event is passed to the proper program
that processes it and stores the output on a hash map that can be accessed
by a user-space agent. All the processing activity on the single event is
performed within the eBPF VM and the hash map stores only aggregated
results. This allows avoiding to send the raw events from kernel-space to
user-space, reducing the user-space agent load that can otherwise result in
high overhead and data loss in case of system saturation. At this point,
the only goal the user-space agent has is to enrich the aggregated data with
context information from Docker and Kubernetes and then send all the data
to a remote backend to achieve cluster-level visibility.

Power and performance monitoring

Within Intel processors, HTs belonging to the same core share some re-
sources. This means that executing two threads on different cores has a dif-
ferent impact on the system’s power consumption than executing the same
two threads on two HTs that share the same core. To perform the power
attribution, we expanded and improved the work presented in Chapter 2.
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Figure 3.2: Power and performance monitoring structure: the BPF code sends metrics
to the agent leveraging the thread map and stores partial results within the processor
topology map. The user space agent iterates over the thread map to collect the metrics
and correlate cycles with RAPL power measurements. Thread metrics are stored inside
the thread table ready to be sent to the backend via the runtime manager.

In particular, Chapter 2 show that there is a strong correlation between cy-
cles and RAPL core power consumption and that there is a ratio (of 1.1 for
Sandy Bridge and Ivy Bridge) that can be used to weight cycles to perform
a fair attribution of power consumption across threads. We denote this ratio
as HTr and we derive the weighted cycles in Equation (3.1).

CyclesWT
(t, s) = CycleAi

(s, t) +
HTr
2
· CycleOi

(s, t) (3.1)

The weighted cycles for a given thread i on a given socket s during the
observation time t is the sum of two contributions: (1) the cycle measure-
ments CycleAT

(s, i) when no threads are running in the sibling HT; (2) the
cycle measurements CycleOT

(s, j) when there is a thread running in the
sibling HT. This second contribution is scaled by the HTr ratio divided by
2 to avoid accounting twice for the same cycles measurements on the two
sibling threads.

To attribute the power consumption to a thread i for a given observation
interval t, it is sufficient to divide the power consumption measured with
RAPL by all the weighted cycles of all the threads K that run in a given
time interval t. This result can be then multiplied by the weighted cycles of
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thread i. This operation should be performed for each socket, as shown in
Equation (3.2).

Pi(t) =
∑
s∈S

(
RAPLcore(t, s) ·

CyclesWi
(t, s)∑

k∈K CyclesWk
(t, s)

)
(3.2)

To perform power and performance monitoring, we need to track con-
text switches to monitor how threads are scheduled and executed on the
host processor. Context switch events are exposed with a tracepoint by the
Linux kernel and with eBPF, we can attach to it to know when a thread
starts its execution and when it ends. In this way, we can measure the
execution time and performance counters and we can collect data to at-
tribute power consumption. Figure 3.2 shows the main components of the
kernel-level data acquisition for low level and application-related perfor-
mance metrics. The eBPF virtual machine communicates with the user-
space agent with two hash maps: thread map and processor topology map.
The former stores the aggregated metrics for each thread observed in the
system, while the latter works as a scratchpad for each HT to keep partial
results during the observation. The configuration map, instead, stores the
amount of context switch observed and the selector field used to switch be-
tween two memory areas: one is used by the eBPF code to write metrics,
while the other is used by the user-space agent to retrieve the metrics.

Figure 3.3 shows the events flow during metric collection for power and
performance metrics with two threads. When a thread has to be executed
on a given HT (HT 1 in the case of Figure 3.3), the scheduler performs a
context switch that is captured by our monitoring tool. Each context switch
provides information about the new thread (e.g. thread ID, command, pri-
ority) as well as the old thread. Once the context switch arrives, we measure
cycles, IRs, cache references, and cache misses on the HT that is going to
host the thread using the eBPF perf maps. We then store these data along
with the timestamp to the processor topology map (step 1). Eventually, a
new thread is scheduled on HT 2. In the case of Figure 3.3, we measure the
performance counters for HT 2 and we store them in the processor topology
map (step 2a). To account for the shared execution on the core, we count
also the cycles of HT 1 and we update this information in the processor
topology map (step 2b). When the first thread stops the execution, a new
context switch happens. We measure again the performance counters of HT
1, we account to the thread the difference between the first measurements
and the second ones (step 3a) and we increment the weighted cycles for
thread 1 following Equation (3.1). As we did in step 2b, we account for the
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shared cycles in step 3b. Thread metrics are then stored in the thread map
(step 4). We repeat the same operations for the second thread when it stops
execution (step 5), updating its metrics in the thread map (Step 6). When a
thread exits, a process exit tracepoint triggers the thread removal from the
thread map and the cleaning of the processor topology map for the HT that
was running.

Unfortunately, all these measurements are subject to variability since
context switches depend on how the application is interacting with the sys-
tem. Applications that heavily exploit network communication like user-
facing cloud workloads will be subject to more context switch activity than
applications that focus on batch computations like HPC or BigData work-
loads. To reduce this uncertainty, each second we generate a software event
that is captured by the eBPF code. This event allows computing the metrics
for each running thread without waiting for a context switch, thus having
an updated view of the thread metrics before collecting them in user-space.

Network monitoring

From an OS perspective, networking activity can be captured and analyzed
at different layers of the stack. In particular, the OS handles communica-
tion until layer 4, while layer 7 is handled directly by the applications. To
achieve transparency, we decided to monitor network traffic within the OS
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Figure 3.4: Network transaction over a TCP connection as seen by a client process and a
server process.

at layer 4 (e.g. Transfer Control Protocol (TCP)) trying also to detect plain
text data that can reconstruct layer 7 protocols (e.g. HTTP). To this aim, we
decided to leverage TCP kprobes and tracepoints to capture the entire TCP
payload and to avoid reconstructing the TCP flow. Within this context, we
are mainly interested in network performance metrics like bandwidth and
latency. Once we have the network connection and the TCP payload, the ef-
fort to measure bandwidth is quite low. On the contrary, measuring latency
requires to introduce the concept of network transaction.

As shown in Figure 3.4, a network transaction is a data exchange in
an established TCP connection between a client process and a server pro-
cess where the client initiates the transaction by sending one or more TCP
payloads and the server replies by sending one or more TCP payloads. A
new network transaction begins (and the previous one ends) when the client
process starts again to send one or more TCP payloads after receiving the
TCP payloads sent by the server during the previous transaction. Starting
from a network transaction, we can define two measurements: the server
response time and the transaction Round-Trip Time (RTT). The server re-
sponse time measures the time required by the server to build a response
to a given request, while the transaction RTT measures the time from the
first TCP payload sent by the client to the last TCP payload received by the
client. On the one hand, if we are monitoring a client process, we mea-
sure the transaction RTT. On the other hand, if we are monitoring a server
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stored in the thread table to be sent to the backend via the runtime manager.

process, we measure the server response time.
Figure 3.5 shows the main components behind the kernel-level data ac-

quisition for network metrics. The eBPF code reacts to TCP kprobes like
tcp_set_state, tcp_send_msg, tcp_recv_msg and tcp_cleanup_rbuf and sup-
ports both IPv4 and IPv6 communications. The kernel calls tcp_set_state
function when there is a state change in the TCP socket (e.g. listen, syn sent,
established, closing) and we capture it to track the state of each connection
in the system. Tcp_send_msg is called when the kernel wants to send data
over the TCP connection, while tcp_recv_msg is called when one or more
TCP payloads need to be received. Kprobes and tracepoints can be attached
at function invocation as well as at function return, providing respectively
the input parameters and the return value of the given function. Unfor-
tunately, while tcp_send_msg provides socket data, message content and
message size at function invocation, tcp_recv_msg provides the socket data
and an empty message pointer at function invocation and the amount of data
read at function return. Even if we instrument both invocation and return of
tcp_recv_msg, we will not be able to assign the message size to the connec-
tion as we do not have the socket data at function return. For this reason,
we decided to attach a kprobe also at the invocation of tcp_cleanup_rbuf,
which is a function called mainly by tcp_recv_msg at the end of the mes-
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sage retrieval. Tcp_cleanup_rbuf provides at function invocation both the
socket and the size of the data (but not the message pointer), allowing us
to reconstruct for a given socket the message read (through the message
pointer saved from the tcp_recv_msg kprobe ) and its size.

We record all the information we collect from the kprobes according
to the mechanism of Figure 3.4 in the network transaction map and we
leverage some helper maps to update the state of all the connections in
the system. In particular, Figure 3.5 shows two helper maps: the endpoint
map and the connection map. Each time a connection is established, we
store the endpoints in the endpoint map with information on the endpoint
role (i.e. client or server) to attribute the correct timing when capturing
data exchange between clients and servers. The connection map is used
instead as a scratchpad to keep track of the open connections and to keep
track of the transaction state and flow for each connection. Within this
context, a connection is identified by source IP and port, destination IP and
port, and the HTTP path that we extract from the message payload in case
of plain-text transmission. The network transaction map, instead, stores
for each connection the data about all the transactions recorded in the last
observation interval. In particular, we store the Process ID (PID) of the last
thread that interacted with the connection, the number of transactions, the
amount of bytes received and transmitted, the average latency and a sample
of the latency measures (i.e. 240 items, configurable). Once a transaction
exceeds the size of the latency measures array, a new item is inserted in a
uniformly random position using a reservoir sampling technique. Data in
the network transaction map uses the same selector mechanism described
for the power and performance monitoring activity.

Given that we use source IP, source port, destination IP, destination port,
and HTTP path when available to identify a given connection in our sys-
tem, we may have a lot of connections between the same two endpoints
where the only difference is in the client port. This is particularly true for
HTTP, where each request can require a new connection with new parame-
ters unless the client decides to recycle the already open connections. This
behavior severely affects our data collection system, as we need to generate
a new item in the network transaction map for each connection we track for
just a few network transactions. To avoid network transaction map satura-
tion, we decided to mask the client port in case we track the HTTP protocol
and in case the two endpoints exchange few transactions (currently less
than 10) during the connection lifetime. This trade-off still allows to have
a detailed view of the network activity in terms of granularity of connec-
tions, allows to better use the latency sampling technique and reduces the
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pressure on the network transaction map.

User-space data collection

The user-space agent is the first data aggregation layer in our monitoring
infrastructure. Its main role is to manage the kernel-level instrumentation
and to collect the metrics coming from the maps located in shared memory.
Each second, the user-space agent switches the selector in the configura-
tion maps of the network monitor and of the power and performance mon-
itor and collects the RAPL measurements for power attribution. Then, it
starts iterating over the thread map. For each entry of the thread map, the
user-space agent collects all the metrics (i.e. power consumption, CPU us-
age, execution time, cycles, IR, cache references and cache misses), applies
Equation (3.2) for power attribution and creates an entry in the thread table.
It is worth noticing that the contents of the thread map are not deleted after
data collection as the entries are evicted in the eBPF code when the process
exit tracepoint is called. After the user-space agent finished collecting the
power and performance metrics, it scans the /proc folder to find the cgroup
of each recorded thread. If the cgroup was generated by docker, the user-
space agent creates a container entry in a container table and aggregates
the metrics of all the threads belonging to that cgroup. The threads that do
not have a cgroup are grouped in the container table as other to keep track
of their activity.

When the user-space agent finished building the container table, we
have the list of its PIDs for each container; thanks to this information we can
attribute network transactions to each container. To this aim, the user-space
agent starts to iterate over the network transaction map. For each entry
in the network transaction map, the user-space agent creates a transaction
group object that contains the aggregate network metrics (i.e. transaction
count, byte transmitted, byte received and average latency) and the raw la-
tency samples. From the raw latency samples of each transaction group,
we compute the latency percentiles using DDSketch [70], which is a library
able to compute quantiles and percentiles over large data-sets. Aggregate
network metrics and raw latency samples are grouped by container looking
at the PID list, then we apply again DDSketch to compute the percentiles for
each monitored container. After this step, we clear the network transaction
map to prepare it for the next data collection, whereas endpoint map and
connection map entries are evicted by the eBPF code when the connection
is closed by one of the two endpoints. At this point, the agent connects to
the kube-api-server to retrieve Kubernetes state data (i.e. pods, containers
associated to the pods, services, namespaces, and hosts), packs all these
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data along with the metrics of the container table, and submits the sample
to the monitoring backend.

3.3.2 Cluster view and analysis

The backend is the second data aggregation layer in our infrastructure and
its goal is to provide a cluster-level view and an analysis of the performance
of the monitored applications. Figure 3.6 shows the steps the backend takes
to manipulate the metrics to achieve this goal. Metrics arrive at the REST
collector and are propagated to other components that transform them. The
final output can be consumed from three components: the metric frontend,
the REST endpoint, and the graph endpoint. We will first describe how we
ingest, aggregate and visualize data, then, we will detail how we build and
analyze the graph of microservices.

Data ingestion, aggregation and visualization

We designed the backend to be able to process metrics from different clus-
ters of different users to provide a general service. The REST collector is
the entry point for the metrics that we collect with the monitoring agents
and receives both container metrics and Kubernetes state metrics. Con-
tainer metrics are sent directly to the metric workers, while Kubernetes state
metrics are sent to the k8s workers. Communication with the components
of the backend happens through a queuing system to work asynchronously
and to keep samples in the queues storage to avoid data loss in case of
system saturation.
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The k8s worker takes the new Kubernetes state information and updates
our internal view of the cluster that is stored inside the backend MongoDB3

instance. At the same time, the metric worker takes the container met-
rics and aggregates them depending on the cluster data that we processed
with the k8s worker. In particular, container metrics are aggregated by pod
and by host. Then we add information about the namespace to segment
them appropriately. Network transaction group metrics follows also the
metric worker step. Once the metric worker finished processing the sam-
ple, it sends everything to the influx loader, which prepares the data and
stores them inside the backend InfluxDB4 instance. At this point, the met-
rics are ready to be consumed by the backend endpoints: metric frontend,
REST endpoint and graph endpoint. For the metric frontend, we leveraged
Grafana5 to directly query the time-series database to show the data, al-
though the system is general enough to support other dashboard frontends
(e.g. [72]). The REST endpoint provides metrics that can be used to control
the performance of the observed workloads. Finally, the graph endpoint
computes and analyzes the interactions between microservices.

Graph analysis

Once we processed and grouped the metrics depending on the different
layers of the infrastructure, we can build a graph that allows analyzing the
behavior of the microservices in a distributed scenario. In particular, we are
interested in:

1. the distributed interactions between microservices,

2. the ability of microservices to promptly respond to the user requests,

3. how the performance of the distributed system components constraint
the overall performance of the system.

The first step to obtain this information is to build the graph, where we
consider pods as microservices. For each transaction group (TCP or HTTP)
we have the connection information that allows to link microservices and
we have the transaction group performance metrics. We query the Mon-
goDB instance to get the list of pods and the list of hosts in the cluster with
their IP addresses and we query InfluxDB to get the transaction groups data.
We then use JGraphT [78] to build the graph, where pods and hosts are the
vertices, while the connections between them are the edges.

3https://www.mongodb.com
4https://www.influxdata.com/products/influxdb-overview/
5https://grafana.com
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Figure 3.7: View of the social network application (DeathStarBench) while reading a
home timeline: the graph shows the client, a Nginx reverse proxy, two pods that man-
age the home timeline and a redis database. Between client and reverse proxy we have
only one edge as the client is outside the monitored machines.

One of the issues we found when building the graph is represented by
the network manipulation performed by the Kubernetes Container Network
Interface (CNI) plugin. In particular, Kubernetes CNI plugins like calico6

and flannel7 route packets leveraging IPTables and Destination Network
Address Translation (DNAT). This means that the IP addresses of the pods
and the destination IPs may be different. This happens because Kubernetes
implements the service concept within the cluster. A pod usually cannot
connect directly to another pod because it does not know its destination ad-
dress. Instead, it uses the address of a known service endpoint. The service
implements a round-robin layer 4 load balancer that internally translates
the IP address of the service with the IP address of the pod selected for that
connection. The translation is done at the IPTables layer without sending
out network packets, meaning that we do not have visibility of the server
endpoint when we look at the client-side connection. To solve this issue,
we store in the backend the service IPs to translate back the IP addresses of
the pods. Of course, in the case of multiple server pods behind the service,
we connect the client pod to all the server pods, but only when there is a
server connection that links back the server pod to the client pod. An exam-
ple of the resulting graph showing the distributed interactions between pods
can be seen in Figure 3.7. The graph shows a DeathStarBench [47] social
network benchmark stressed with a read home timeline workload. Connec-
tions between pods are represented by multiple pairs of edges, where each
pair has an edge going from the client to the server and an edge going from
the server to the client (both with the related metrics).

The graph is the starting point for two analysis that helps in under-
standing the behavior of the system. At the vertex level, we can analyze

6https://www.projectcalico.org
7https://github.com/coreos/flannel
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the performance metrics we collect to understand which pod represents a
bottleneck. If we consider the graph as an open model, we can analyze
the asymptotic bounds on performance thanks to operational analysis [62].
Open models with infinite customers that can arrive at any given time do
not have a pessimistic bound on response time. However, we can look at
the throughput bound, trying to estimate the load of each pod and deriving
the maximum throughput that the system is able to sustain before saturation
and as such before response time starts to increase abruptly. All the quan-
tities are evaluated as average values and we consider as arrival rate of the
system λ(t) the sum of the arrival rates generated by elements of the graph
that are outside the distributed application. To correctly perform the op-
erational analysis, we modified the equations provided in [62] to properly
model multithreaded workloads co-located on the same multicore proces-
sor, as the original equations consider only single core processors serving
one workload each.

Equation (3.3) shows how we compute the utilization Ui(t) of each pod
i for a given time t. In Equation (3.3) we scale the CPU_usagei(t) of pod i
by the minimum between the number of threads of the pod and the number
of cores of the host machine to obtain a value that falls in the range [0..1]
bounds included.

Ui(t) =
CPU_usagei(t)

min(#coresj,#threadsi)
(3.3)

Then, we compute the service demand Di(t) for each pod i for a given
time t. The service demand indicates how much time a job stays inside a
given pod. In our case, Di(t) is the ratio between the pod utilization and
the arrival rate λ(t).

Di(t) =
Ui(t)

λ(t)
(3.4)

Finally, we compute the estimated arrival rate of saturation λsat(t) of the
overall distributed application at a given time t by taking the inverse of the
maximum service demand Dmax(t). The arrival rate of saturation λsat(t) is
a theoretical bound that indicates which microservice is close to throughput
saturation in a given time and can be used to decide whether it is necessary
to scale that microservice to sustain the load of all the incoming customers.

λsat(t) =
1

Dmax(t)
(3.5)

If instead, we look at the edge level, we can find the critical path be-
tween the entry-points of the distributed application and its pods. To do so,
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we resorted again to JGraphT. We modified the graph structure, pruning the
edges by selecting only the server edges with maximum latency percentiles
(we can choose the weight among 50th, 75th, 90th, and 99th percentile la-
tency). From this graph, we take the entry-points, which are all the vertices
without outgoing edges and we compute the widest path from each entry
point to each vertex in the graph. From this set of widest paths, we select
the one with the highest score as the critical path.

3.4 Evaluation

In this section, we evaluate the proposed monitoring approach. First, we as-
sess the accuracy of the monitoring approach for all the metrics we collect
w.r.t. a set of tools that can represent a golden standard for the measure-
ments (Section 3.4.2). Then, we evaluate the cost of data collection. In
particular, we compare our work with state of the art tools that are able to
collect a similar set of metrics (Section 3.4.3). Finally, we leverage our tool
to analyze some applications of the DeathStarBench benchmark suite [47].

3.4.1 Experimental setup

Hardware platform

We evaluated the proposed approach on a small cluster composed of two
Dell PowerEdge r720xd servers, each one equipped with 2x Intel Xeon
E5-2680 Ivy Bridge with 10 cores each (20 HT) clocked at 2.80GHz and
with 380GB of RAM. The hardware platform represents a recent mid-range
setup. The host OS is a Ubuntu Linux 16.04 with kernel 4.15 with eBPF
enabled. On each machine, we installed Docker Community Edition with
version 18.06.2 and Kubernetes with version 1.17.3. All the experiments
were carried out with HT enabled.

Benchmarks and goals of the experimentation

We leverage a different set of workloads to evaluate different aspects of
the proposed approach. We centered our evaluation on the DeathStarBench
benchmark suite [47]. At the time of writing, DeathStarBench provides im-
plementations for Kubernetes environments for the social-network bench-
mark and the media-microsvc benchmark. The social-network benchmark
is composed of an Nginx web server that works as an entry point for many
other microservices. Each microservice covers a particular functionality
of a social network deployment like user management, post management,
social graph management, URL shorten and advertising, read and write
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Table 3.1: Experimental setup for the social-network benchmark and the media-microsvc
benchmark. For each workload we show the number of pods involved and the request
rates for low, medium, and high configurations.

benchmark workload # pods low λ(t) mid λ(t) high λ(t) duration
social-network compose post 21 300 req/s 400 req/s 500 req/s 120 s
social-network read home timeline 5 5000 req/s 6000 req/s 8000 req/s 120 s

media-microsvc compose review 27 250 req/s 300 req/s 350 req/s 120 s

timeline, contents management, search. The benchmark deploys many
database instances (e.g. MongoDB, Redis, and Memcached) to support
each microservice functionality, where there is no shared database instance
between microservices. The social-network benchmark provides two work-
loads, one that simulates users reading their home timeline and one that
simulates users composing posts. The media-microsvc benchmark, instead,
implements a media reviewing, renting ,and streaming platform. This appli-
cation is composed of identification services (users and movies), a review
composition service, a page composition service, services for users and re-
views consultation, and a video streaming service. As in the social-network
application, the microservices store data within databases and in-memory
stores like MongoDB, Redis, and Memcached. The media-microsvc bench-
mark provides one workload that simulates users composing reviews. These
two applications are able to effectively resemble the interactions between
microservices in a complex deployment, and, as such, they can provide
interesting insights on how to monitor them. Table 3.1 shows how we con-
figured the benchmarks: for each workload, we test 3 different levels of
intensity named low, mid, and high. We used these configurations to evalu-
ate the overhead and the network metrics accuracy of the proposed solution.

To evaluate the accuracy of the low-level measurements, the execution
time, the CPU usage, and the power consumption metrics, we leveraged
three micro-benchmarks from the NPB suite [11]. Although they are not
commonly referred to as representative of microservices, they provide sta-
ble benchmarks to evaluate the measurement mechanisms (particularly for
low-level metrics). Here we provide details about the benchmarks selected
from the NPB suite:

• EP is a kernel that generates pairs of Gaussian random deviates and is
a benchmark highly CPU intensive and CPU bound;

• MG is a memory-intensive benchmark that performs a simplified multi
grid calculation, it requires highly structured long-distance communi-
cation and it tests both short and long-distance data communication;

49



Chapter 3. Towards a unified view of the cluster state

• CG is a mixed CPU and memory intensive workload that performs an
approximation to the smallest eigenvalue of a large, sparse, symmetric
positive definite matrix through a conjugate gradient method.

Before resorting to the NPB benchmarks, we tested the accuracy of the
low-level metrics with the two aforementioned benchmarks of the Death-
StarBench benchmark suite. To do so, we selected the perf [37] tool to pro-
vide the golden standard for the performance metrics. Although perf can
attribute metrics to each running cGroup, the overhead generated heavily
affected the execution of the benchmarks (+12.93%, +14.6%, and +9.16%
perf overhead w.r.t. our solution for read home timeline, compose post, and
compose review workloads respectively). This prevented us to compare the
results obtained with perf w.r.t. our solution when executing the tools sepa-
rately. Unfortunately, it is not possible to run the tools concurrently, as perf
resets the counters after reading them.

3.4.2 Metrics accuracy

We leveraged both the NPB and the three DeathStarBench workloads to
assess the accuracy of each metric we collect. In particular, we used the
NPB with problem size C and 40 threads to measure the accuracy of cycles,
IR, cache references, cache misses, execution time, and CPU usage on a
multi-socket server. We leveraged perf as a golden standard for cycles, IR,
cache references, and cache misses, while the Linux tool time was used
as the golden standard for execution time and CPU usage. We then used
the NPB with problem size C also to assess whether the power attribution
mechanism described in Section 3.3.1 provides good results. Finally, to
measure the accuracy of the latency metrics (i.e. average latency, request
count, byte transmitted, 50th, 75th, 90th, and 99th percentile) we monitored
the workloads described in Table 3.1 and we compared our results with
what we obtained from the load generator. We run each experiment 20
times.

Performance metrics

Figure 3.8 shows the Relative Error (RE) between our measurements and
the golden standard results for the cycles, IR, cache references, cache misses,
execution time, and CPU usage metrics. EP metrics gave us a result that is
always below 4% in RE. For CG and MG, the maximum RE is near 5% for
the cache references and cache misses metrics (and IR for MG), while the
cycles metric has a RE below 4.5%. Finally, execution time has a RE below
3% for all experiments and CPU usage has a RE near 2% for EP and CG,
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Figure 3.8: Relative Error of cycles, IR, cache references, cache misses, execution time,
and CPU usage of our tool w.r.t. the golden standard measured on 30 runs of EP, MG,
and CG. Bars show 95% confidence interval.

Table 3.2: Average execution times (with 95% confidence interval) and overhead of the
monitoring tool for the three NPB applications with problem size C and 40 threads
each.

monitor no monitor overhead
EP 6.947s ± 0.004 6.950s ± 0.003 -0.05%
CG 21.116s ± 0.140 20.207s ± 0.192 4.49%
MG 8.435s ± 0.051 8.303s ± 0.038 1.59%

while MG has a RE of 3.56%. The results we obtained allow us to say that
the monitoring tool is accurate on those metrics considering the goal of the
proposed approach, that is monitoring and not profiling. We can find the
reasons for the RE values on the different overheads posed by the golden
standard tool and our implementation. As we can see from Table 3.2, our
tool has a negligible impact on EP, while MG and CG have overheads that
are comparable with the RE values shown in Figure 3.8. Moreover, our
tool does not compute metrics on process exit, as these metrics are not ac-
tionable anymore. In particular, if the monitoring tool is used in a control
loop to act on the monitored system, when a process exits the control loop
cannot act anymore on the process as its effects are no longer visible.
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Table 3.3: Execution time, Energy, and Power consumption values (with 95% confidence
interval) of EP and MG (10 threads each) when executed in isolation or in co-location
with a fully disjoint set of cores.

configuration exec time (s) energy (J) power (W) time delta energy delta power delta power scaled (W) power scaled delta

EP co-location 25.06s ± 0.13 1168.23 ± 11.45 46.62 ± 0.43 7.09% -9.30% -15.30% 49.93 -2.87%isolation 23.40 ± 0.12 1288.08 ± 15.86 55.04 ± 0.55 51.40

MG co-location 16.79 ± 0.09 736.33 ± 9.33 43.84 ± 0.47 21.23% -15.78% -30.54% 53.16 2.10%isolation 13.85 ± 0.10 874.33 ± 6.20 63.12 ± 0.23 52.07

Power consumption metrics

Table 3.3 shows the results of EP and MG for what concerns the power
attribution metrics. Unfortunately, a golden standard for power attribution
in case of workloads co-location does not exist. Within this context, we can
try to evaluate if power attribution provides reasonable results using the
NPB micro-benchmarks, although formal correctness cannot be verified.
We configured EP and MG to run with 10 threads and we pinned them to
a disjoint set of HT of the first socket of the test server: 10 EP threads on
5 cores and 10 MG threads on the other 5 cores. Then, we run the two
benchmarks in co-location as well as in isolation. We decided to not use
CG because the benchmark has a higher execution time w.r.t. EP and MG
and most of its execution would have happened in isolation.

As we can see from Table 3.3, both benchmarks show an increase in
execution time and a decrease in total energy consumed when running in
co-location. It is clear that co-location increase contention and slows-down
the access to shared resources, however, if we compute the scaled power
consumption (i.e. we compute the power consumption of a benchmark run
in a given configuration using its energy and the execution time of the other
configuration), we can see that the difference between the power consump-
tion of the two configurations is of'2% both for EP and MG. This happens
as both EP and MG are compute-bound micro-benchmarks and their oper-
ations are regular. This means that changing their pace can change almost
linearly the execution time and the energy.

Network metrics

Figure 3.9 shows the results we obtained running the workloads of Table
3.1 and comparing the network metrics collected by our solution with the
ones gathered by our golden standard: wrk2. Looking at the results related
to average latency, requests count, and bytes sent by the workloads (shown
in Figure 3.9(a)), we can see that the proposed tool is able to measure them
with an error that is less than 5% on average. The 95% confidence inter-
val shows that the worst case for this set of metrics is represented by the

52



3.4. Evaluation

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

average latency request count bytes sent

R
el

at
iv

e 
Er

ro
r %

compose review low
compose review mid
compose review high
compose post low
compose post mid
compose post high
read home timeline low
read home timeline mid
read home timeline high

(a) Average RE between our tool and wrk2 for avg latency, requests
and bytes transmitted.
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(b) Average RE between our tool and wrk2 for 50th, 75th, 90th, 99th percentile latency.

Figure 3.9: Average RE between our tool and wrk2 for network performance metrics for
the 3 workloads with different amount of requests. Bars show 95% confidence interval.

53



Chapter 3. Towards a unified view of the cluster state

compose post workload with the bytes sent metric, where the error falls in
the range 5% ± 3.08%. Part of these errors are due to the different mea-
surement mechanism: wrk2 measures the metrics on the client-side within
the application, while our monitoring tool measures them within the ker-
nel on the server-side. These errors are limited, as the proposed tool is
able to compute those metrics considering all the requests and not just a
subset. Figure 3.9(b) shows instead the measurement error for the latency
percentiles, which are computed from a reservoir of 240 items collected
each second for each open connection. Before looking at Figure 3.9(b), it
is fundamental to keep in mind that the results are computed for a single
HTTP endpoint and with a single client sending all the requests to stress test
the data collection system. In a more general setting, the requests sent to
the workloads of Table 3.1 would have been generated by multiple clients.
In this case, our tool would have been able to create multiple reservoirs,
one for each TCP connection and one for each HTTP endpoint requested
by each client, increasing the accuracy. In general, it is always possible to
increase the reservoir size, although it is necessary to evaluate the trade-off
between accuracy and measurement overhead. Looking at Figure 3.9(b),
for what concerns the compose review workload, the worst case error is
2.35% on average for the 99th percentile metric for the high configura-
tion. The compose post workload, instead, has the errors on all the metrics
below 3.5% on average except for the 75th percentile of the high configu-
ration, where the error is 5.97% on average. For what concerns these two
workloads, the reservoir sampling is behaving in a good way, providing
samples that are representative of the requests performed by wrk2. The
read home timeline workload instead, shows a different behavior. While
for the for 50th, 75th, and 90th percentile latency metrics the errors shown
in Figure 3.9(b) stays below 3.5% on average, the 99th percentile latency
shows errors of 22.17% for the low configuration, 26.61% for the mid con-
figuration, and 60.70% for the high configuration. This error is due to the
sampling activity performed by our tool. In particular, the read home time-
line workload generates for each second requests for the high, mid, and low
configurations that are respectively 33, 25, and 20 times higher w.r.t. the
number of samples collected each second by our tool. The 99th percentile
metric becomes unreliable with this load level.

To investigate to which extent our tool can be effectively used to measure
the 99th percentile latency, we run the read home timeline workload with
an increasing number of requests (up to 16 times the size of the reservoir)
and we show the measurement errors in Figure 3.10. We report also the
50th, 75th, and 90th percentile latency for completeness. As we can see
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Figure 3.10: Average RE between our tool and wrk2 for 50th, 75th, 90th, 99th percentile
latency for the read home timeline workload with different amount of requests (from
1 to 16 times w.r.t. the capacity of the samples reservoir).Bars show 95% confidence
interval.

from Figure 3.10, the proposed tool is able to measure the 99th percentile
latency up to 16 times the reservoir size with an error that is always below
3% on average. When we increase the load further, as shown in Figure
3.9(b), such measure becomes unreliable.

To demonstrate that the main source of uncertainty in the quality of the
measurements is the number of requests collected each second for each
connection, we tested the workloads of Table 3.1 in a more variable setup.
In particular, we added a 10ms ± 5ms normally distributed delay on all the
network requests performed by wrk2 and the workloads using the Linux
tool tc. The results of this experiment are shown in Figure 3.11. Here we
report only the high configuration, as the workloads in the three configu-
rations behaved in the same way. As we can see from Figure 3.11(a), the
errors for the average latency, request count, and bytes sent are limited and
always below 2% on average. We obtained the same behavior for 50th,
75th, 90th, and 99th percentile latency (shown in Figure 3.11(b)) with an
error always below 1.5%, even with the read home timeline workload. The
reason why we obtained this result is twofold. On the one hand, the delay
reduced the number of processed requests per second, allowing the tool to
build a more comprehensive view of the performance of the workloads. On
the other hand, the way in which we perform the measure is able to account
for all the network delays and errors of the TCP protocol, thus providing
very accurate results.
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(a) Average RE between our tool and wrk2 for avg latency, requests
and bytes transmitted.
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(b) Average RE between our tool and wrk2 for 50th, 75th, 90th, 99th percentile latency.

Figure 3.11: Average RE between our tool and wrk2 for network performance metrics
for the 3 workloads (high configuration) with network delay of 10ms ± 5ms normally
distributed. Bars show 95% confidence interval.
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3.4.3 Agent overhead

Monitoring activity should be carried out without imposing too much over-
head on the monitored applications. Within this section, we will evaluate
the overhead of the proposed monitoring tool w.r.t. other two similar state
of the art solutions: Weave scope [95] and Sysdig cloud [89]. We selected
Weave scope as a baseline because it monitors just CPU, memory usage
(by scanning /proc), and the number of open connections between pods.
Its overhead should be always lower than the one we introduce in the sys-
tem, as Weave scope does not monitor performance counters and network
transactions. Sysdig cloud, instead, is a monitoring tool that measures re-
source usage, network I/O, and file I/O using system calls captured by a
kernel module that sends to user-space all the raw system call traces. To
have a fair comparison, we disabled all the metrics that Sysdig cloud col-
lects and we do not collect, with the only exception of file I/O, as some of
the network operations can be performed with file-related system calls with
a network File Descriptor (FD) as a parameter [20]. We measured the over-
head of our approach leveraging the workloads detailed in Table 3.1. The
overhead is computed as the increase in latency of the network requests of
the benchmarks, obtained by wrk2 from the average latency measurement
and the 50th, 75th, 90th, and 99th percentile latency measurements. We
deployed each application on the two test machines using Kubernetes and
we pinned each pod to a given machine to avoid too much noise in the re-
sulting data. Each test was executed 20 times and here we show average
results with 95% confidence interval.

Although the testing setup is small, it can be considered a relevant setup
as the overhead of the proposed monitoring tool depends only on the instru-
mentation performed through eBPF. The instrumentation adds execution
time to the network operations performed by the benchmarks and to the
context switches the OS performs during execution. For this reason, if we
consider a microservice benchmark executed on a small cluster w.r.t. the
same benchmark with the same amount of containers executed on a larger
one, the smaller cluster is a far more challenging environment. This hap-
pens because the number of network requests captured by our tool remains
the same across the two setups, but in the small cluster setup the pressure
on our monitoring tool is higher as the network requests and the context
switches are not spread across many monitoring agents but are instead con-
densed into few ones.

Figure 3.12 shows the normalized overhead w.r.t. a no monitor execu-
tion of the compose post workload of Weave scope, our solution, and Sysdig

57



Chapter 3. Towards a unified view of the cluster state

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

avg 50p 75p 90p 99p avg 50p 75p 90p 99p avg 50p 75p 90p 99p

no
rm

al
iz

ed
 o

ve
rh

ea
d

weave scope monitor sysdig cloud
low mid high

Figure 3.12: Normalized overhead (with 95% confidence interval) w.r.t. no monitored
execution of weave scope, our solution, and sysdig cloud while running the compose
post workload for three different workload levels.
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Figure 3.13: Normalized overhead (with 95% confidence interval) w.r.t. no monitored
execution of weave scope, our solution, and sysdig cloud while running the compose
review workload for three different workload levels.

cloud for the three levels of the benchmark we described in Table 3.1. The
results of Figure 3.12 confirms that Weave scope provides very low over-
head in all configurations. Our solution is able to outperform Sysdig cloud
in all the configurations in all cases, providing an overhead of ' 10% at
most, obtained the mid configuration. The 95% confidence interval shows
that the execution of our tool was sufficiently regular across all the runs.

Figure 3.13 shows the normalized overhead w.r.t. a no monitor execu-
tion of the compose review workload of Weave scope, our solution, and
Sysdig cloud for the three levels of the benchmark we described in Table
3.1. This experiment shows an interesting behavior w.r.t. the previous one.
In general, our solution always outperforms Sysdig cloud also in this case,
but it is also able to outperform Weave scope in terms of impact on the
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Figure 3.14: Normalized overhead (with 95% confidence interval) w.r.t. no monitored
execution of weave scope, our solution, and sysdig cloud while running the read home
timeline workload for three different workload levels.
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Figure 3.15: Normalized overhead (with 95% confidence interval) w.r.t. no monitored
execution of weave scope, our solution, and sysdig cloud while running the read home
timeline workload over the social network benchmark with more connections (500 in-
stead of 100) and less requests per second (2000 req/s for high, 1500 req/s for mid,
1000 req/s for low).

average latency and on the 99th percentile latency of the three workload
configurations. On the contrary, Weave scope behaves better in the 50th,
75th, and 90th percentile latency.

Figure 3.14 shows the normalized overhead w.r.t. a no monitor execu-
tion of the read home timeline workload of Weave scope, our solution, and
Sysdig cloud for the three levels of the benchmark we described in Table
3.1. In this case, our solution behaved unexpectedly: Sysdig cloud was
able to outperform it in all cases for all configurations. It is worth noticing
that the overhead introduced by our solution w.r.t. a no monitor execution
is, in the worst case, of 0.2 ms on the average network latency metric and
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2ms in the 99th percentile latency metric. To investigate further this result,
we increased the number of parallel connections (from 100 to 500) and we
reduced the number of requests per second (2000 for high, 1500 for mid,
1000 for low). The idea is to reduce the request per connection ratio to
assess the overhead on the requests themselves and the connection setup.
Figure 3.15 shows the result of this new experiment. Our solution behaves
better than Weave scope and Sysdig cloud in all the cases except the 50th
percentile latency metric for the low and mid configuration. This result
is extremely important as it shows that our solution behaves better in case
of many parallel connections, which is far more common w.r.t. what we
presented in Figure 3.14.

3.4.4 Benchmark study

To give an overview of the insights we can provide, we decided to stress
test the social network benchmark with a compose post workload with
10000R/s divided across 60 connections. We configured the graph anal-
ysis to retrieve the last connection data of each pod in a time interval of 5
seconds and we report the output data in Table 3.4 for what concerns the
operational analysis and in Figure 3.16 for what concerns the critical path.
We do not report the entire graph due to space limits.

Although we loaded the benchmark with 10000R/s, the system can re-
spond only to 1576R/s. To investigate the source of this bottleneck, we
resorted to the operational analysis formulas described in Section 3.3.2. As
we can see from Table 3.4, the compose-post-redis pod is almost saturated
with a Ui(t) equal to 96.9%. Moreover, compose-post-redis is responding
to 11138 R/s coming from the other pods in the application. If we apply
equation (3.5) to this case, we find that λsat(t) is 1626 R/s, which is ex-
tremely close to the current λ(t). If we take another look at Table 3.4,
we can see that the application entry-point represented by nginx-thrift and
most of the other application components have very low utilization, mean-
ing that a strategy to replicate the compose-post-redis database could solve
the bottleneck. Another interesting insight that we can obtain from Ta-
ble 3.4 is that the average latency of nginx-thrift is higher w.r.t. most of
the other containers within the microservice application. This happens as
nginx-thrift serves as an entry-point and reverse proxy for the other pods
of the application. For this reason, its latency is affected by the latency of
the pods it has to connect to in order to build a full response that is sent to
the client as a response to an HTTP request. Such connections may hap-
pen in parallel or sequentially depending on the data dependencies of the
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Table 3.4: Example output of the operational analysis with pod name, utilization, arrival
rate of each pod, maximum arrival rate for each pod, power consumption, number of
threads, and HTTP and TCP average latency for a DeathStarBench social network
benchmark loaded with 10000 R/s with 60 open connections. Arrival rate 1576 R/s,
estimated saturation arrival rate 1626 R/s.

pod name Ui(t) % λi(t) max λi(t) power (W) # threads average latency
HTTP (ms) TCP (ms)

compose-post-redis 96.90% 11138 11493.57 7.40 1 - 1.36
user-timeline-redis 7.00% 1348 19249.45 1.03 1 - 0.01
social-graph-service 5.56% 401 7210.87 7.43 8 - 0.57
nginx-thrift 5.53% 1571 28365.00 13.41 32 39.34 19,27
social-graph-redis 5.14% 596 11574.56 0.55 1 - 0.08
user-memcached 4.06% 1288 31663.31 3.37 8 - 0.00
write-home-timeline-rabbitmq 3.03% 741 24401.31 3.55 15 - 0.23
text-service 2.53% 1461 57553.38 8.48 231 - 27.39
user-mention-service 2.51% 2845 113337.91 7.98 61 - 4.87
compose-post-service 2.36% 2899 122493.18 17.27 296 - 13.76
user-timeline-service 1.51% 471 31116.93 4.33 14 - 0.53
post-storage-service 1.46% 714 48796.94 4.40 24 - 0.52
url-shorten-service 1.08% 1420 130699.35 4.23 112 - 13.07
unique-id-service 0.83% 879 105375.93 3.75 62 - 12.67
media-service 0.81% 777 94905.51 3.40 62 - 12.49
user-timeline-mongodb 0.51% 962 188029.60 2.17 30 - 0.16
post-storage-mongodb 0.28% 481 168390.95 0.92 26 - 0.24
url-shorten-mongodb 0.25% 537 214770.44 1.12 46 - 0.20
user-service 0.19% 480 242366.64 1.76 60 - 16.12
user-mongodb 0.16% 537 318997.27 1.01 49 - 0.13
social-graph-mongodb 0.14% 228 152210.67 0.35 22 - 0.21

application. Finally, Table 3.4 shows also that the most utilized pod in the
application is not the one with the highest power consumption. Solving the
bottleneck could change the power profile of the system: this aspect should
be considered when building applications that aim to be efficient in terms
of performance, resource usage, and power consumption.

To further analyze the relations between pods in the social network ap-
plication, we found the critical path between the entry-point and all the
other pods. We configured the graph to have as edge weights the 90th per-
centile latency of the connection that is represented by the given edge. Of
course, two pods may have multiple connections between one another, how-
ever, given that we are using a percentile latency, we decided to prune the
graph by taking the slowest edge connecting each pair of pods. Figure 3.16
shows the critical path with the chain of connections from the entry-point
to the last pod in the path. As we can see, within the chain we have also
the same compose-post-redis pod that we found out to be the bottleneck of
the application. Solving the bottleneck means that the increased amount
of requests will affect all the pods in the chain, and, for this reason, it is
fundamental to verify whether the pods in the chain will be able to sustain
the new load.
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wrk2

nginx_thrift

90p = 37.64ms, 
 lambda = 1571.0R/s, 

 POST /wrk2-api/post/compose

text_service

90p = 37.02ms, 
 lambda = 25.0R/s

user_mention_service

90p = 13.44ms, 
 lambda = 25.0R/s

compose_post_service

90p = 33.03ms, 
 lambda = 473.0R/s

compose_post_redis

90p = 1.37ms, 
 lambda = 212.0R/s

Figure 3.16: Critical path example of the DeathStarBench social network loaded with
10000 R/s with 60 open connections. Edge weights are the 90th percentile latency.
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3.5 Conclusion and future work

In this chapter, we proposed a novel black-box monitoring approach to
build a unified view from the architectural level to the application perfor-
mance level of a microservice-based application. The proposed approach
leverages eBPF to generate the metrics at the kernel level to transparently
build a view that aims to be accurate and with low overhead on the moni-
tored applications. We showed how we collect data about resource usage,
performance counters, power consumption and network performance with-
out instrumenting the user code. We then used such data to analyze the
microservice-application w.r.t. its interaction with the external world as
well as w.r.t. the internal connections and dependencies. The experimental
campaign showed that the proposed approach is reasonably accurate w.r.t.
its goal, which is performance monitoring. We also showed how the pro-
posed approach can introduce less overhead in the monitored application
w.r.t. a solution that is based on similar technologies but with a different
data extraction strategy.

As a future work, the proposed approach will be integrated with more
data sources to build a complete view of the monitored applications. In
particular, monitoring file and disk I/O will allow detecting bottlenecks that
depend on the performance of the disks. Moreover, we will introduce pre-
dictive models w.r.t. the measured latency to detect in advance bottlenecks
that will saturate the capacity of the system. This will allow a timely reac-
tion when such situation occurs.
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CHAPTER4
Performance-aware power capping for
cloud and containerized applications 1

4.1 Introduction

Inside cloud environments we can find several classes of workloads, from
interactive services to batch workloads. On the one hand, interactive ser-
vices have to be extremely reactive to the user input, which have arrival
rates usually unpredictable. This characteristic usually makes them latency
sensitive and latency critical. On the other hand, batch workloads should
execute in a fast way to compute data that can be accessed by the interactive
services, and in the end by the final users.

In this context, power consumption is a fundamental aspect that can not
be neglected: on the one hand, power consumption is accounted for the 20%
of the TCO [34] of a data-center, while, on the other hand, cloud servers
are energy inefficient at low and medium loads. If we consider continuous
batch workloads running on dedicated WSC systems, it has been proven

1The work presented in this chapter was published in [5], for which Rolando Brondolin developed part of
the methodology, part of the implementation, and part of the paper writing. c©2018 IEEE. Reprinted, with per-
mission, from: Marco Arnaboldi, Rolando Brondolin, and Marco Domenico Santambrogio. Hyppo: Hybrid
performance-aware power-capping orchestrator. In 2018 IEEE International Conference on Autonomic Comput-
ing (ICAC), pages 71–80. IEEE, 2018.
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Figure 4.1: Representation of the opportunity gap for the Apache benchmark. The graph
shows that the workload under utilizes the resources requested by it (e.g. 500% of the
CPU, equivalent to 5 cores), presenting a gap that can be exploited in order to improve
energy proportionality.

that the average utilization of the system is around 75% [12]. However,
this percentage drastically decreases in the more common scenario where
a mix of several types of workloads (e.g. batch plus on-line application)
run in such systems. In this case the utilization varies between 10% and
50% [12]. In order to reduce the TCO in this last case it is important to
improve the energy efficiency at low and moderate paces.

Several works were proposed in the literature to cope with this issue
[65, 74]. These techniques usually exploit either resource consolidation in
order to turn off un-utilized machines or delay techniques like idle injec-
tion, in order to force the activation of the deep sleep mode on the servers.
Unfortunately, these techniques are not applicable for most of the cloud
workloads. On the one hand, consolidation is not always effective when
dealing with highly variable interactive workloads because load spikes can
saturate the resources and increase latencies and execution times. On the
other hand, cloud and interactive workloads should be able to serve each re-
quest with a response time of tens of milliseconds at most: this prevents to
batch requests to introduce sufficiently long idle periods to be able to save
power. In this context, to the best of our knowledge, an autonomic system
able to manage performance and power consumption of cloud workloads
running in Docker containers in a distributed environment is still missing.
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In this chapter, we propose HyPPO, a Hybrid Performance-aware Power-
capping Orchestrator that tackles performance requirements and power op-
timization of workloads in Kubernetes [25] and Docker [41] based environ-
ments. Our research work aims to tackle the new challenges introduced by
the variable nature of cloud workloads, exploiting fine grain Dynamic Volt-
age and Frequency Scaling (DVFS) techniques and considering power con-
sumption as a control variable in order to achieve energy proportionality.
We present an orchestrator based on a distributed ODA control loop able to
enforce a power cap while being aware of how this impacts the performance
of the running workloads. In particular we aim to exploit the opportunity
gap that cloud workloads intrinsically present, as shown in Figure 4.1. The
proposed methodology is designed to be as extensible as possible. Our goal
consist in improving energy proportionality of different kind of container-
ized workloads running in a Kubernetes cluster [18]. This is achieved by
reducing power consumption while respecting the given SLA, defined as
the CPU request assigned to each container in their configuration.

The rest of the chapter is organized as follows: Section 4.2 presents re-
lated work on hybrid power capping in containerized infrastructures; Sec-
tion 4.3 describes the proposed approach based on a distributed ODA con-
trol loop and details its components; Section 4.4 shows the experimental
evaluation of the proposed orchestrator, while Section 4.5 concludes the
chapter and derives the future work.

4.2 Related Work

Achieving energy proportionality in virtualized and/or containerized data-
center environments has become a major topic for researcher, increasing
the number of works proposed in this field. An interesting work in this
direction is the one presented by Piraghaj et al. in [84]. They proposed a
framework and an algorithm for energy efficient container consolidation in
cloud data-centers. The developed framework was designed for working
in a virtualized environment, in which the containers were running inside
VMs deploying Docker. They defined the SLA as the workload requested
CPU utilization and modelled the optimization as a minimization operative
research problem. The function to minimize in this case was the overall
power consumption of the data-center. Under this perspective, our hybrid
orchestrator chooses a greedier approach, minimizing the power consump-
tion per node. Finally, the authors evaluated the proposed methodology
only through simulation via CloudSim [27]. That allowed the author to
design and to integrate in the proposed framework any kind of monitoring
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task.
Another work trying to achieve energy proportionality in a virtualized

environment is the one proposed by Arnaboldi et al. with their XeMPUPiL
orchestrator [6]. The authors developed an orchestrator based on a ODA
control loop able to reduce power consumption in a pure Xen2 virtualized
environment. The results were achieved thanks both to resource consolida-
tion at VM level and power capping through RAPL at system level. Even in
this case the problem was defined as an operative research task. In the pro-
posed solution the SLA can be defined under two different perspective: 1)
a power budget that can not be violated and under which we want to max-
imize the performance and 2) a minimum performance requirement under
which it is possible to minimize the power consumption. In both cases the
term performance refers to the number of IR that the workloads returned in
a time window. This lets the proposed approach to work only with batch
workloads. Furthermore, the authors required to instrument the hypervisor
in order to perform both the monitoring and actuation tasks of the proposed
ODA approach.

For what concerns works regarding containerized infrastructures, As-
naghi et al. [9] proposed a methodology to minimize power consumption
in a Docker environment based on a ODA control loop. The described
methodology consisted in different control policy. These were achieve
through monitoring the performance via parsing perf 3 in order fed data to a
Proportional Integral (PI) controller and finally, to actuate the obtained con-
figuration via CPU Quota and C-groups. In terms of precision, the monitor-
ing and acting stage of the DockerCap approach represent the main bottle-
neck for the methodology, not allowing to export the approach on multiple
nodes. In fact, the tests were conducted only in single node mode.

Finally, an outstanding work in the field of achieving energy proportion-
ality in WSC is the one proposed by Lo et al. in [66]. They characterized
the behaviour of two On-Line Data Intensive (OLDI) application running
in Google clusters: search and memkey. Thanks to this first step they were
able to identify the opportunity gap that are going to exploit in order to
reduce power consumed by such workloads. To do so they exploited the
PEGASUS controller, a dynamic multi layer bang-bang one, in order to
fine-grain enforce the power cap at server level via RAPL. The method-
ology is designed to respect a SLA defined on the admissible maximum
latency that such workloads should provide. The results were gathered on
the Google production clusters and showed that the methodology was able

2https://www.xenproject.org/
3https://github.com/torvalds/linux/tree/master/tools/perf
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to achieve significant energy proportionality with negligible SLA violation.
The only drawback consisted that the proposed approach were tested only
for services composed by homogeneous tasks. All the described works
represent a starting point from which the development of our solution takes
inspiration in order to overcome the aforementioned limitations.

4.3 Methodology

Modern data-centers TCO is composed of several expenditures, from build-
ings to servers and maintenance. One of the most important operative costs
of a datacenter is represented by power consumption, which can impact for
18%− 20% of the TCO [34]. The correct management of power consump-
tion at run-time then becomes a key feature for modern data-centers, allow-
ing to reduce energy waste and as such reducing energy bills in the long
run. Of course, setting the power consumption of a system disregarding the
performance of the applications running on it introduces performance is-
sues that will lead to SLA violations. A different approach that can be used
towards the goal of improving the energy efficiency in containerized envi-
ronments could be the opposite: try to guarantee performance requirements
and applications SLAs while optimizing power usage in an energy propor-
tional fashion. In this sense, energy proportionality is defined as the ability
of a system to be energy efficient in all possible working conditions, and in
particular in the typical operating region. This property was introduced by
L.A. Barroso [13] in 2007 and is the key concept behind HyPPO, which ap-
plies it transparently w.r.t the applications: this is done because the system
should be able to autonomously monitor and adapt itself towards perfor-
mance and power goals.

Overall, HyPPO is an autonomic orchestrator that manages workloads in
a distributed environment backed by Kubernetes. The main goal of HyPPO
is to guarantee performance required by the containers while optimizing
power usage of the workloads on the physical servers. In this context,
the performance requirement of each container is expressed as resource
requests and limits, which is a feature already supported in the description
of pods in kubernetes. What HyPPO adds is a hybrid [99] power-aware re-
source management that allows to reduce power usage when containers are
under-utilizing their resources. The hybrid feature of HyPPO means that
to guarantee performance and optimize power we leverage hardware tech-
niques such as Intel RAPL [86] and at the same time software techniques
to control how the power budget is allocated.

Figure 4.2 shows the overall architecture of HyPPO: it is composed by
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Kubernetes master

Centralized performance 
and power monitor

HyPPO observe HyPPO act

HyPPO decide

Kubernetes worker

HyPPO observe HyPPO act

POD PODETCD Kube API server

Figure 4.2: HyPPO ODA loop: we observe the status of each server, centralizing power
and performance metrics. Then, the decision phase computes a new strategy towards
the system goals, which is enforced by the actuators.

several actors, all belonging to an ODA loop structure. At first, HyPPO col-
lects data from physical hosts connected to the Kubernetes cluster. In this
context we are interested in performance metrics (e.g. CPU usage, PMCs
measurements) and power measurements at the finest grain possible. All
these data are then moved from each host to a centralized performance and
power monitor, which is able to aggregate metrics having cluster visibility.
Then, the Decide component takes this information when needed and elab-
orates a new strategy tailored for the cluster and its performance goals. The
outcome of this step is then passed to the Act phase, which enforces the
new strategy. The system is then able to converge given that each applied
decision is observed again, leading to a new strategy towards the system
goals. In this context, we designed HyPPO having two goals in mind:

1. monitor and guarantee measurable SLAs, as the autonomic system
behavior should be understandable and accountable w.r.t. business
and technical objectives,

2. build a low latency ODA loop, as a fast response in case of sudden
load spikes can reduce the SLA violations.

In the next Sections, we will describe how autonomic energy proportion-
ality can be applied in distributed container-based environments. In Section
4.3.1 we will cover how we Observe workloads and extract informations
used by the Decide phase described in Section 4.3.2. Finally, Section 4.3.3
will describe how we Act to adapt the system towards the desired goals.
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4.3.1 Observe: power and performance monitoring

The first activity that should be performed to achieve energy proportionality
is to make the system aware of how it is behaving in terms of power con-
sumption and energy. To this aim we leveraged DEEP-mon, the monitoring
tool described in Chapter 2, for which we provide a brief description here.
DEEP-mon is a lightweight performance and power monitoring tool based
on BCC [14] and eBPF [15, 73]. DEEP-mon collects IR and cycles PMCs,
CPU usage and execution time at each context switch using Linux trace-
points [64], collecting data for each thread in the system and aggregating
for each running container. Cycles measurements are weighted depending
on HT usage and are used to segment power measurements collected with
Intel RAPL [86]. DEEP-mon collects also the status of the Kubernetes
cluster using Intel Snap4 plugins, sending all the data to a remote back-end
on a regular time basis. In order to monitor the entire Kubernetes cluster,
one containerized instance of the DEEP-mon agent is deployed for each
physical server through a Kubernetes DaemonSet.

The monitoring back-end is composed of several stages. At first, the
monitoring data arrives at the Collector. DEEP-mon sends two kind of sam-
ples to the collector: 1) Kubernetes cluster state with container names and
2) performance and power monitoring metrics. The former data is stored
in MongoDB for a later use, while the latter are instead unpacked inside
the metrics workers. In this stage, the backend takes the metrics segmented
by container and aggregates them by pod, by namespace and pod, by host
and pod and, finally, by host, namespace and pod. These new set of metrics
are then passed to the Influx loader, which stores the time series data into
the InfluxDB database. Two other components then access the time series
database: the metrics frontend and the REST endpoint. The former is a web
dashboard which queries the database to obtain real-time monitoring data
while the latter is a REST service that exposes the APIs used by the De-
cide phase. Among the others, the REST endpoint exposes APIs to gather
CPU usage, Power consumption, IR, cycles, execution time and Kubernetes
requests and limits, segmenting these metrics by container and host.

4.3.2 Decide: performance-aware power allocation

The Decide stage is the "thinking" component of our orchestrator. The
process of taking a decision is composed by three steps: retrieving infor-
mation, exploiting such data to take a decision and finally, communicating

4http://snap-telemetry.io
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the outcome to the actuator agents. All of them are done by implementing
a proportional controller exposing an API to the actuators.

The first step is achieved by exploiting the REST endpoint exposed by
the monitoring backend in a polling fashion (the poll rate is defined in the
configuration of the controller). In detail, the controller asks for three kinds
of information: 1) container CPU request and limits, 2) container power
consumption and 3) container CPU usage. The first set of informations
is rearranged in order to create a dictionary containing, for each user in
the system, a map indicating which is the requested CPU usage for each
container, thus defining the SLA to be respected. Then, the second kind
fo information is aggregated on a per node basis in order to create a map
representing the power consumption for each node in the cluster. Finally,
the last information is exploited in order to perform the controlling task,
hence taking the final decision the will be communicated.

The second task of this stage is the controlling policy itself. As already
mentioned, the controller is implemented in a proportional fashion. Its duty
lies in defining the power limit for each node where the controlled contain-
ers are running. This behavior is achieved through Equations (4.1) and
(4.2). Equation (4.1) represents how the power cap for a given node n is
computed, where powern is the power limit for the n-th node of the cluster,
powern,c is the power consumed by the c-th container running on the n-th
node.

powern = Pidle +
C∑
c=0

(powern,c + i(c)) (4.1)

Equation (4.1) defines the power for the n-th node as the sum of the idle
power Pidle and the sums of all the powers consumed by the c-th container
running on the n-th node, plus a contribute i(c). The contribution can be
positive or negative and is expressed in Equation (4.2), where cpu_requestc
represents the CPU request expressed for the c-th container, cpu_usagec
represent the actual CPU consumption for the c-th container and P repre-
sents a proportional factor that can be defined in controller configurations.
Each container CPU usage data point passes through the controller repre-
sented by Equations (4.1) and (4.2). In this way, it contributes positively
or negatively to the total power consumption of the node on which the con-
tainer is actually running.

i(c) =

{
(cpu_usagec − cpu_requestc) ∗ P if ∃cpu_usagec
0 if 6 ∃cpu_usagec

(4.2)

The P parameter was chosen after several experiments and represent the
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pace at which the controller tries to fill the opportunity gap. It is defined
in the configuration file of the controller as 10000 mW (10W). In case a
container does not have a defined cpu_request, according to Equations
(4.1) and (4.2), it will contribute to the total power of the node only for
the amount it consumes, since the proportional contribute will be 0. In this
way, thanks to the proportional controller, it will be possible to exploit the
opportunity gap. Once the gap is discovered, Equation (4.2) introduces a
negative contribute which results in a stricter power cap on the node. This
reduced power cap will influence the amount of CPU utilized by the work-
load, increasing it. Obviously this behavior will be true only for data inten-
sive workload. For what concerns batch workloads the behaviour will be
different and presented in Section 4.4. Finally, the last task of the Decide
stage is carried out by a REST endpoint exposed by the controller, provid-
ing in this way a set of APIs exploitable by the actuator in order to impose
the decided power limits for each nodes. This is achieved by delivering the
decide stage inside a deployment in the kube-system namespace. To let its
APIs be accessible from the actuators in a preconfigured way, the controller
is wrapped in a Kubernetes service. This allow to expose the APIs to the
cluster on a fixed URL and port. The actuators are able to sent requests to
the controller via a GET HTTP request to the decide endpoint.

4.3.3 Act: enforcing power allocation

The Act stage is where the output of the decide stage is put in practice. The
decision consists in enforcing a power cap on the node. This task is carried
out by the actuators running on each node of the Kubernetes cluster. In
order to define a power cap for the node we leveraged the RAPL interface,
which provides a set of counters providing energy and power consump-
tion information. The measurements provided by RAPL are obtained by a
software model based on the PMCs developed by Intel. It has been proved
that such measurements match the ones obtained through analog power me-
ters [87]. RAPL provides a way to set power limits on processor packages
and DRAM. This will allow a monitoring and control program to dynami-
cally limit maximum average power, to match its expected power budget.

In RAPL, platforms are divided into domains for fine grained reports
and control. A RAPL domain is a physically meaningful domain for power
management. They are commonly divided in 4 kinds of domain: 1) DRAM,
2) PPO (i.e. core devices), 3) PP1 (i.e. uncore devices), and 4) Package,
which is a domain comprehending both PP0 and PP1. We leveraged the
Package domain, since we are using CPU usage as control variable in the
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Figure 4.3: Bits organization inside the MSR_RAPL_POWER_UNIT

decide stage. RAPL exposes an interface for each domain that is exploitable
by the developers in order to access this technology. This interface consists
in five sub-interfaces:

1. Power Limit. Interface to specify power limit and its fine tuning such
as the time window.

2. Energy Status, Interface to retrieve information about the power con-
sumption.

3. Performance Status. It provides information about the effect due to
the power limit. This interface is optional.

4. Power Info. It provides information about the range of parameters
describing a given domain, such as min-power, max-power etc. This
interface is optional.

5. Policy. It is used in order to describe a policy on how to divide budget
between sub-domains in a parent domain. This interface is optional.

In our actuator we targeted the first two, since they allow to set the
power cap and subsequently to check it is correctly enforced. These in-
terfaces are accessible through three non-architectural Model Specific Reg-
isters (MSRs): 1) the Power Unit MSR shown in Figure 4.3, 2) the Package
Power Limit MSR shown in Figure 4.4, and 3) the Package Energy status
MSR. We exploit the first two in order to retrieve the units of measure used
in the systems and then to enforce the power cap defined in the retrieved
units. What we read from the RAPL_POWER_UNIT MSR is the Power
Unit value contained in bits 3:0. Power is measured in Watts and expressed
in "number of power units" inside the Package Energy Status register. This
value is an unsigned integer. As default it is set to 001b. This value indi-
cates that each power unit represents an increment of 1/8 Watt [51]. This
information is used to transform the power limit retrieved by the REST end-
point exposed by the controller. According to the Equation (4.3) defined by
Intel manual [51]:

unitInWatts[WATTS] =
1

2PU
(4.3)
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Figure 4.4: Bits organization inside the MSR_RAPL_POWER_LIMIT

where PU are the power units retrieved by the MSR. Equation (4.3) can be
rearranged in Equation (4.4) in order to represent a power cap expressed in
Watts in a power cap expressed in power units.

powerUnits = powerCap[Watt] · 2PU (4.4)

This result is written in bits 14:0 of the MSR represented in Figure 4.4 in
order to enforce the power cap on the package.

The actuator behavior can be summarized as follow: in a polling fashion
an actuator queries the decide endpoint about the power limit to enforce on
the node where its deployed. Once a valid response by the controller is
retrieved, the actuator transforms the power cap expressed in Watts to one
expressed in power unit by reading the power unit MSR and applying Equa-
tion (4.4). Finally, the obtained value is written in the Package Power Limit
MSR of each core of the system. In order to have an actuator running on
each node of the Kubernetes cluster, they are delivered inside a DaemonSet
as the monitoring agents. In order to provide the actuator container with
the access to the RAPL MSRs, it is defined as Privileged in the DaemonSet
configuration file and the folder /dev/cpu is mounted in it, enabling read
and write of the MSRs.

4.4 Evaluation

To enable power efficiency in the workload orchestration, the orchestrator
must provide some gains in terms of power, trying to reduce the opportunity
gap without violating the CPU request assigned to the container. Finally,
the orchestrator components impact on the system should be negligible. In
Section 4.4.1 we are going to introduce the system on which the orches-
trator was evaluated, the benchmark used and how they were configured in
containers. In Section 4.4.2 we are going to presents the obtained results in
terms of power savings and opportunity gap reduction.
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4.4.1 Experimental setup

We evaluated the proposed methodology on a cluster of homogeneous ma-
chines, composed by two Dell PowerEdge r720xd equipped with 2x Intel
Xeon E5-2680 Ivy Bridge with 10 cores each (20 HT) clocked at 2.80GHz
and with 380GB of RAM. The evaluation platforms represent a recent mid-
range servers. The host OS is an Ubuntu Linux OS 16.04 with kernel 4.13
and eBPF support enabled. Kubernetes version 1.10 was installed directly
on the two nodes. Each workload runs inside a Docker container with a
CPU request of 5 CPUs and a limit of 10 CPUs, with Docker runtime ver-
sion 1.13.1. All the experiments are carried out with HT enabled without
pinning the threads on any core, and we measure power, workloads CPU
usage and performance counters data with DEEP-mon. The Kubernetes
pods5 affinity was set in order to prioritize the containers scheduling on the
slave node. To evaluate our orchestrator we leverage six benchmarks from
the phoronix test suite [61], version 7.6. In detail we tested our methodol-
ogy with:

• pts/apache-1.6.1 is a test of the Apache Benchmark program on an
Apache2 web server that measures how many requests per second a
given system can sustain when carrying out 1,000,000 requests with
100 requests being carried out concurrently;

• pts/fio-1.4.0 is an advanced disk benchmark that depends upon the
kernel’s AIO access library. The test was executed using the exam-
ples/net.fio file included in the suite

• pts/nginx-1.1.0 is a test of the Apache Benchmark program on a Ng-
inx web server that measures how many requests per second a given
system can sustain when carrying out 2,000,000 requests with 500 re-
quests being carried out concurrently;

• pts/postmark-1.1.0 simulates small-file testing similar to the tasks
endured by web and mail servers and performs 25,000 transactions
with 500 files simultaneously with the file sizes ranging between 5
and 512 kilobytes;

• pts/dbench-1.0.0 Dbench is a benchmark designed within the Samba
project, containing only file-system calls for testing the disk perfor-
mance and 48 instances trying to perform them concurrently;

• pts/iozone-1.8.0 tests the hard disk drive / file-system performance. It
performs reads and writes in chunks of 512kB over 4GB of data.

5www.kubernetes.io/docs/concepts/workloads/pods/pod/
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The measured CPU usage will be expressed in terms of %. In particular,
the 100% will represent the fully utilization of a single core in the system.
Thus, the maximum amount reachable in our test environments is 4,000%.
This is due to the fact that each node provides 40 cores. This is also the
reason why the CPU request for the containers is defined as 500%, since
each container running a benchmark presents a CPU request of 5 cores.

4.4.2 Experimental results

The first set of experiments consisted in the evaluation of how good are
we at exploiting the opportunity gap in different workloads. The obtained
results are shown in Figure 4.5. It is possible to notice that in workloads
where the stress is mainly on the CPU, like pts/Apache in Figure 4.5(a),
we are able to exploit the opportunity gap, while violating the defined CPU
request of the container at maximum the 5% of the time. Despite the pt-
s/nginx benchmark is similar to the pts/apache one, they differ in the crucial
aspect of scaling, since the former is bounded in the number of threads (2 as
we can see from 4.5(c)). This allow to reduce the power consumed by the
workload even without an increase in terms of CPU utilization. This hap-
pens because currently the HyPPO actuation mechanism does not consider
workload parallelism, which is an aspect that should be taken into account
when designing workload request and limits.

For what concerns the pts/dbench workload shown in Figure 4.5(e), we
can notice that from the beginning (blue continuous line) it requires more
than the requested CPUs. Before the beginning of the benchmark, the sys-
tem is in idle state (the only containers utilizing CPU are the ones of Ku-
bernetes system and the ones of our orchestrator), so the power cap defined
by the controller and enforced on the node is the minimum possible. Once
the benchmark starts, due to the node power configuration, it requires more
CPU than the requested one. Our orchestrator discovers that according to
Equation (4.2) and introduces a positive contribute to the power cap for the
node. In this way, with a less strict power cap on the system, the work-
load can achieve its target performance. The same behavior happens in the
switch between the first and the second stage of the pts/dbench benchmark,
since there is an idle period in between the two.

Finally, for what concerns the other three benchmarks shown in Figures
4.5(b), 4.5(d) and 4.5(f) there is no clear exploitation of the opportunity
gap, since these workloads are strongly dependent on the performance of
the disks and IO peripherals. In particular, it is possible to notice that for
what concerns pts/fio benchmark, our orchestrator introduce a delay in the
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Figure 4.5: The graphs represent the CPU usage percentage of the different benchmarks.
100% represent a single core fully utilized. A system with 40 cores has at most 4,000%
CPU usage. The CPU request is set at 5 CPUs (black line, 500%). The blue continuous
line shows the CPU usage without power capping. The red dotted line shows the CPU
usage measured with the proposed hybrid orchestrator running.
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completion of the task. This depends on the nature of the fio benchmark,
which is a batch workload. In the case of batch workloads our orchestrator
tends to delay their execution in order to save power. In a real production
environment the set of workloads running in a Kubernetes cluster is a mix
of batch workloads (throughput oriented) and traffic intensive service (re-
sponse oriented). This is why we conducted tests also on batch workloads
in order to obtain a full concept of the behavior of the proposed orchestrator.

In Figure 4.6 it is represented the power consumed by the workloads
expressed in mW. For what concern CPU dependent applications like pt-
s/apache and pts/nginx in Figure 4.6(a) and Figure 4.6(c), the power gain
is significant. If we consider the joint behavior of CPU usage and power
of the pts/apache workload (Figure 4.5(a) and 4.6(a) respectively), we can
see that the CPU usage increases despite the power consumption decreases.
This happens as the power capping technique applied to all the workloads
leverages Intel RAPL, which is able to precisely set a power cap for a given
socket. To enforce this power cap, RAPL applies fine grain DVFS, which
reduces the frequency of the cores. Of course the amount of work that pt-
s/apache has to perform does not change, however, each request takes more
time to be executed, increasing the CPU usage accordingly and slightly in-
creasing the overall execution time of the benchmark. This is fine if we
consider parallel and interactive workloads, as their goal is to complete re-
quests as fast as possible and then free the CPU. However, if we consider
CPU intensive workloads, applying this technique leads to an increased
overall execution time, which could lead to an increase in the overall en-
ergy consumption.

Figure 4.6(e) shows how the orchestrator tries to save power for pts/d-
bench. When the workload begins, the power cap of the system is set to
the minimum possible since nothing is actually running. This leads to an
increase in terms of CPU utilization as we notice in Figure 4.5(e). The
controller discovers this behavior and it consequently decides to increase
the power budged allowing the workload to run at its best. Once the first
part of the dbench benchmark terminates, the same behavior happens due
to the idle period that exists between the two parts of the benchmark. This
also points out that our controller requires almost 10s to take a decision and
enforcing it in the worst case scenario. This is mainly due to the polling
communication strategy that we adopted in order to let the three compo-
nents of the orchestrator communicate. The polling time-outs are the main
contributors to this delay. This amount can be reduced in the future, since
we are planning to shift to a pub/sub communication strategy, where the
delay will be mainly introduced by the computation time required by the
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Figure 4.6: The graphs represent the power consumption expressed in mW, of the different
benchmarks. The blue continuous line represents the case in which the benchmark
power consumed is measured in a system with no power cap enforced. Instead, the red
dotted line represents the case in which the benchmark power consumed is measured
in a system with the proposed hybrid orchestrator running.
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Figure 4.7: Power consumption in the case of multi containers running in a Kubernetes
pod. In this case two pts/apache container were executed concurrently. In blue contin-
uous the power consumed in the case no power cap is enforced in the system. In red
dotted the power consumed in case the hybrid orchestrator mange the power cap.

three components instead of the communication time.
For what concerns the pts/fio workload presented in Figure 4.6(b), we

are able to save power at the cost of delaying the completion of the work-
load. Finally, we obtain the same power consumption on the pts/iozone
benchmark, since it does not significantly exploit cores resources, but its
boundary is on memory. Finally, for what concerns pts/postmark and pt-
s/iozone benchmark we are able to save power since we cap core resources
instead of DRAM ones, which are the most utilized by these workloads.

The second set of experiments aimed to study and validate the behaviour
of the proposed orchestrator in case of multiple running containers. The ob-
tained results are reported in Figure 4.7, representing the power consump-
tion of a pod composed by two containers each of them running an instance
of the pts/apache benchmark. In this case we can observe that the power
consumed is almost doubled with respect the case in which a single con-
tainer running pts/apache was deployed in the system. Even in this case our
orchestrator discover an opportunity gap in both the container that can be
exploited. This results in power savings, while the CPU utilization behavior
becomes similar to the one showed in Figure 4.5(a), for both the containers.

The last set of measurements was conducted in order to discover the im-
pact of the proposed hybrid orchestrator on the system under two different
perspectives: power consumed and CPU utilized. The results are reported
in Table 4.1.

From Table 4.1 it is possible to notice that all the components of the
orchestrator present a negligible impact in terms of CPU utilized in the sys-
tem, even if considering the standard deviation. The same assertion held
true analyzing the power consumed by the Controller and Actuator com-
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Table 4.1: The mean and the standard deviation of the CPU utilized and power consumed
by the elements composing the proposed hybrid orchestrator.

CPU [%] Power [mW]

Component µ σ2 µ σ2

Monitor 12,97 7,32 2536,20 3028,69
Controller 0,61 1,08 44,27 295,29
Actuator 0,13 0,14 15,28 145,76

ponents. Instead, the Monitor component consume slightly more, but still
a negligible amount considered in the overall picture, as shown in Chap-
ter 2. The huge standard deviation in all the reported measurements it is
mainly due to the nature of the different workloads. Since workloads that
will require to adjust the power cap often due to their behavior will require
more interventions coming from the three components. On the other hand,
applications requiring less adjustments will leave the Controller and Actua-
tion components in an idle state, waiting for significant notification coming
from the Monitoring components. This also explains the reason why this
last component is the most expensive one, since among the three, it is the
one that is always required to be active all the time, independently by the
state of the system.

4.5 Conclusion and future work

In this chapter we presented a novel hybrid performance-aware power-
capping orchestrator enabling better energy proportionality in a distributed
containerized environment governed by Kubernetes. The described method-
ology does not require any kind of instrumentation of Docker, Kubernetes
and the workloads running in the cluster. The proposed approach is based
on an ODA control loop strategy composed by three stages: 1) the moni-
toring task performed by the DEEP-mon agents, 2) a controller in charge
to reduce power consumption while respecting the define SLA, and 3) the
actuation performed by the actuator agents, in charge to enforce the power
cap on the single nodes exploiting RAPL interfaces. The results obtained
during the experimental evaluation show that our approach is able to con-
sume less power in almost all the adopted benchmarks with a negligible
impact on the system.

Although the work proposed in this chapter is able to reduce power
consumption of cloud workloads depending on their CPU requirements,
more can be done to optimize such workloads and to improve the HyPPO
methodology. The actuation scheme proposed in this work strongly de-

82



4.5. Conclusion and future work

pends on Intel RAPL, and even if it does not reduce the applicability of the
methodology with other CPU architectures and vendors, it does not con-
sider workload parallelism. Future work will introduce thread affinity as a
tuning knob to idle cores and to address also workloads with limited paral-
lelism.
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CHAPTER5
Latency-aware power capping for cloud

and containerized applications 1

5.1 Introduction

Within the previous chapters we discussed how to measure microservices
performance, as well how to attribute power consumption to each of them
in a transparent way. Then, we started to analyze how to leverage such
data to modify the behavior of the system, and in particular to keep the
CPU near a target value defined by the developers for each microservice.
Within this chapter we want to move forward by defining a different and
more comprehensive approach.

As discussed in Chapter 1, cloud-native applications are usually hetero-
geneous, highly co-located and latency-sensitive. To manage power and
performance for this kind of applications, we need to take into account all
these aspects. Heterogeneity means that we need to take into account that
each microservice is different from the others, with different workloads,

1The work presented in this chapter was published in [22], for which Rolando Brondolin developed the
whole methodology, the whole implementation, the whole experimental evaluation, and the whole paper writing.
c©2020 IEEE. Reprinted, with permission, from: Rolando Brondolin, and Marco Domenico Santambrogio.

PRESTO: a latency-aware power-capping orchestrator for cloud-native microservices. In IEEE International
Conference on Autonomic Computing and Self-Organizing Systems (ACSOS), pages 11–20. IEEE, 2020.
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different loads, and different roles. Co-location means that on the same
physical server we may find microservices with different power profiles
and different performance requirements. Finally, latency-sensitivity means
that they privilege latency w.r.t. throughput. Given all these characteristics,
we need to manage latency directly if we want to reduce power consump-
tion in a meaningful way.

Within this context, this chapter focuses on the design of a power cap-
ping orchestrator able to manage power consumption while keeping the
performance of the workloads near a predefined latency SLA. As already
presented in the previous chapters, this work focuses on microservices ex-
ecuted within Docker containers and managed by a Kubernetes cluster. We
decided to pursue this goal with a black-box approach to avoid any kind of
instrumentation of the target workloads, as well as of the orchestrators and
the run-time environments.

Several works addressed this challenge in the last few years. The most
notable examples are PEGASUS [66], Rubik [59], and Copper [56]. PE-
GASUS [66] provides a feedback control loop to manage latency SLAs
at scale for OLDI applications and actuates by reducing power consump-
tion with RAPL [86]. Rubik [59] introduces a statistical model to manage
latency-critical workloads along with batch workloads without degrading
tail latency. Finally, Copper [56] provides a control scheme to manage
power consumption with RAPL providing guarantees on performance re-
quirements. Unfortunately, they lack some aspects concerning the problem
at hand. PEGASUS does not consider the heterogeneity of workload com-
ponents within the same server. Rubik leverages DVFS that, according
to [56], is now difficult to integrate with current hardware. Finally, Cop-
per [56] instruments each workload component to monitor performance and
requires to explicitly set the latency goal for each one.

Given the current research opportunities, in this chapter, we present
PRESTO. PRESTO takes into account microservices co-location and het-
erogeneity, provides a fully black-box approach that avoids modifying the
user code, and leverages modern power capping techniques. In particular,
the contributions of this chapter are the following:

• the design and development of a graph-based analysis to attribute ser-
vice time requirements to each microservice in the cluster starting
from a latency SLA that is enforced at the cluster entry-point level,

• the design and development of an ODA control loop able to monitor
latency and power consumption, define service time goals based on the
observed metrics, transform such goals in power budgets, and enforce

86



5.2. Related Work

them to all the machines in the cluster through the RAPL hardware
power-capping interface.

The proposed methodology reduces the power consumption of the target
workloads by 37.13% on average with a control error that is below 12.5%
and below 1.5 ms on average.

The rest of this chapter is organized as follows: Section 5.2 describes
the main related works in the field, with a focus on microservice and Ku-
bernetes based solutions. Section 5.3 details the step we followed to build
PRESTO and its components. Section 5.4 shows the experimental result
we obtained with PRESTO using the DeathStarBench suite [47]. Finally,
Section 5.5 concludes and derives future work.

5.2 Related Work

Several works in the past addressed the challenge of minimizing power con-
sumption while keeping workloads performance near a certain SLA. If we
consider latency as a SLA, the fundamental aspects to take into account are
the definition of the correct latency target as well as the ability to main-
tain the target latency. Brutlag [24] showed that increasing the latency of a
Google web search reduces the number of searches performed by each user
from 0.2% to 0.6%. Although 0.2% seems negligible, at the Google scale it
causes the loss of millions of searches per day with durable effects on user
satisfaction. For this reason, business-critical application developers should
carefully tailor the requested performance, while a power management sys-
tem should be designed to precisely track those performance requirements.

For what concerns power management with latency guarantees, here we
provide a brief view of the main works in the field.

PowerNap [74] is an energy-conservation approach that eliminates ex-
pensive idle state with near-zero power idle states leveraging server usage
traces. The authors showed that servers used for user-facing workloads typ-
ically have CPU usage below 30% or even below 10% in some cases. For
this reason, the authors defined a scheme to sleep servers and activate them
without significant degradation on the response time of the applications.
This approach can no longer be used in the case of OLDI workloads [75],
where coordinated full-system active low-power modes provide better re-
sults.

Rubik [59] is a fine-grain DVFS scheme for latency-critical workloads
that adapts voltage and frequency depending on a statistical model of the
application performance. Rubik works at a sub-millisecond granularity,
however, latency requirements must be explicitly set to all the applications
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being controlled. Moreover, according to [56], software DVFS is going to
be replaced by hardware interfaces like RAPL [86].

PEGASUS [66] is a feedback-based controller that improves the energy
proportionality of WSC. It adapts latency without violating SLAs and uses
RAPL as an actuation system. Although PEGASUS provides interesting
results with a single latency requirement for the whole cluster, it focuses on
WSC, thus it does not support heterogeneity of workloads within the same
server.

Copper [56] is a control scheme based on Kalman filtering that man-
ages the performance of applications while reducing power consumption
to achieve the requested performance. Performances are indicated as ex-
ecution times and the adaptive controller approximates the non-linearities
involved in this kind of power management technique. Copper is simple
and reliable, but it needs to instrument the applications with the Heartbeats
library [53]. Our approach, instead, does not need to instrument the appli-
cations’ code.

To better analyze the current state of the art, here we provide the main
works on power management with general performance guarantees in the
context of microservices and application containers. Seer [48] is a per-
formance debugging tool that employs deep learning to analyze the per-
formance traces of all the microservices running in a cluster to provide
predictions about SLA violations. The approach of this paper is extremely
interesting for our case, as predicting the microservices’ performance can
improve the quality of the control activity and can further reduce the power
consumption.

The work of Piraghaj et al. [84] is a framework for energy-efficient con-
tainer consolidation in cloud data-centers. Containers are executed inside
VMs and the goal is to minimize the overall power consumption guaran-
teeing a SLA. This work provides interesting insights using CPU usage as
SLA, which unfortunately does not fully describe the applications’ perfor-
mance from the end-user perspective.

Dockercap [9] is an ODA control loop to manage power consumption
guaranteeing a defined level of CPU usage within Docker containers. Per-
formances are monitored parsing the output of various monitoring tools like
perf [37], while control and actuation are limited to the single node level.
Our approach scales to systems composed of several machines, supporting
latency instead of CPU usage as the main performance metric.

The work of Townend et al. [91] studies the integration of Kubernetes
clusters in the more complex data-center system, building a scheduler for
the container orchestrator that takes into account both software and hard-
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ware models. Their approach reduces power from 10% to 20%. Our ap-
proach does not add components in the Kubernetes cluster, instead, it pro-
vides power capping after scheduling decisions.

Power Shepherd [60] leverages both RAPL and a CPU quota mecha-
nism to actuate in a distributed fashion over a cluster of compute nodes. It
differentiates between ideal, usable and unusable states for the application
performance and moves the cluster power budget across the various servers
to boost performance when needed. The authors state that Power Shep-
herd does not provide good results in the case of underutilized servers. Our
power capping approach, instead, is mainly designed to work on medium
to low server utilization, while it releases the power cap in case of high
utilization.

5.3 System design

PRESTO is a power capping orchestrator whose goal is to reduce the power
consumption of each server belonging to a Kubernetes cluster while main-
taining a predefined SLA for the running cloud-native application. We de-
cided to focus on microservices average latency as the target performance
metric as it allows to express easily the performance the system should be
able to achieve at any given time both from the developer perspective as
well as from the end-user perspective. To have full control of the perfor-
mance of each component, previous solutions required to set a latency goal
for each of them. However, most of the microservice-based applications
react to external inputs and show connected components that depend on
each other operations [47]. For this reason, PRESTO allows setting just
one latency requirement that will be translated dynamically and at run-time
to latency requirements for all the components. The automatic definition of
latency goals for each application component allows optimizing the power
usage of each server when the application is underutilizing its resources,
meaning that we will be able to slow down the application until its la-
tency will be near the target SLA. To support this capability, we designed
PRESTO following three main principles:

1. Autonomicity, as the proposed system should be able to operate with
the least external intervention possible;

2. Performance, as microservices support business-critical applications
and, as such, their functionality should not be compromised by power-
saving systems;

3. Transparency, as workload components may vary frequently, and, as
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Figure 5.1: PRESTO ODA control loop: we observe latency and power consumption of
each Kubernetes pod in each server, centralizing metrics in a remote backend. Metrics
are then passed to the Graph analyzer, which, starting from a latency requirement,
defines the service times of each container. Then, the Power controller defines the
power budget allocated to each server, which is enforced by the RAPL actuators.

such, the use of PRESTO should not be limited to just a small set of
instrumented workloads.

Figure 5.1 shows the main components of PRESTO, highlighted in green.
From now on we will refer to microservices as pods, as they are the ba-
sic unit of work of Kubernetes and are defined as a collection of Docker
containers providing a single functionality. To support autonomicity, we
designed the proposed system leveraging the concept of ODA control loop.
For each second, PRESTO observes the behavior of each pod running in
each physical server without instrumenting the user code, supporting trans-
parency. The Monitor component collects metrics about resource usage
(e.g. CPU), low-level performance metrics (PMC like cycles, IR, cache ref-
erences, and cache misses), power consumption (for each container, pod,
and physical host), network latency (e.g. average latency and from 50th
to 99th percentile latency), and network bandwidth. All these metrics are
sent to the Power and performance monitor backend, which groups them
depending on the pod, the service, and the namespace. Metrics are then
sent to the Graph analyzer, which is the first step in the Decide phase.
The Graph analyzer builds a graph of the pods starting from their network
connections and, given a latency requirement for the cluster entry-point,
derives the network times and the service times each pod should provide at
the next time interval to guarantee the performance principle. The Power
controller, which is the second step in the Decide phase, takes the service
times defined at the previous step and computes the power budget to be al-
located to each physical server. Finally, the RAPL act components actuate
for each host in the cluster the allocated power budget.

In the next sections, we will detail each step, starting from the monitor-
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ing tool in Section 5.3.1. Section 5.3.2 details how we define the service and
network times starting from the single latency requirement. Then, Section
5.3.3 describes the heuristic control we perform to define the power budget,
which is actuated on the system with the RAPL act component described
in Section 5.3.4.

5.3.1 Power and performance monitoring

To observe the behavior of the cluster we resorted to the monitoring tool
described in Chapter 3, for which here we provide the aspects that are rele-
vant for this Chapter. The monitoring tool computes the fine-grain attribu-
tion of power consumption for each Docker container and Kubernetes pod.
It operates by measuring PMC values with eBPF [73], aggregating such
values at the kernel level and exporting one sample to a user-space agent.
The sample represents how the CPU was used in the last second by all the
threads running in the system. RAPL core power values are then attributed
proportionally to each thread using the weighted cycles measurement. This
allows accounting for the concurrent execution of threads in HTs, which
show a different power profile w.r.t. isolated execution on different physical
cores [98]. Metrics are then aggregated by container within the user-space
agent and then by pod, service, and namespace inside a remote backend.

To enforce a latency requirement we first need to measure the network
performance of each pod. Given that our goal is to let the user express a
single requirement for the whole application, we also need to study the
interactions between pods. Thus, we need to track the network perfor-
mance across all the connections performed by the pods with the external
world and between each other. To solve this issue, we leveraged eBPF
to track all the network operations performed by the pods (both IPv4 and
IPv6). In particular, we instrumented the network stack leveraging the fol-
lowing Linux kprobes: tcp_set_state, tcp_send_msg, tcp_recv_msg, and
tcp_cleanup_rbuf. We use tcp_set_state to detect changes in the connection
status. We use tcp_send_msg and tcp_recv_msg kprobes to track incom-
ing and outgoing TCP communications, while tcp_cleanup_rbuf is used to
gather the data size read by a previous tcp_recv_msg kprobe invocation.

All the kprobes we used provide just raw data about the network con-
nection, its endpoints and the data size exchanged over TCP. To compute
the network latency we resorted to the concept of network transaction. A
network transaction is an exchange of data between a client and a server
within a TCP connection, where the client starts by sending one or more
messages and the server replies to them. A new transaction starts (and the
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client server
TCP message(s)

TCP message(s)

b

a

c

ba cClient transaction Server transaction Server time

Figure 5.2: Example of a network transactions over a TCP connection.

previous one ends) when the client starts again to send messages after the
reply from the server. The latency of a request is the time elapsed from the
first to the last message in the transaction. Figure 5.2 shows an example
of a network transaction, where we have highlighted the execution time of
such transaction from the client perspective and the server perspective. The
time elapsed between the last client message and the first server message
is the time required to create the response and we denoted it as server time
(which is different from the service time if, to build the response, the server
has to communicate with other application components).

Following the network transaction mechanism, we collect metrics for
each network connection, where each connection is characterized by its
source IP, its source port, its destination IP, and its destination port. When
the connection is a plain HTTP connection, we collect the HTTP endpoint
in place of the client port. We differentiate between client transaction and
server transaction to collect different transaction times, as shown in Figure
5.2. Within the eBPF code, for each connection, we collect the bandwidth,
the average latency and a sample of all the network latencies (currently a
reservoir sampling of 240 items per second, configurable). On the user-
space side of the monitoring agent, we collect those metrics and we com-
pute the 50th, 75th, 90th, and 99th percentile latency and we send all the
data to the remote backend. The connection data, as well as the perfor-
mance data and the power consumption data, are used to build a graph of
all the network interactions between pods and all the network interactions
between the external world and the pods.
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5.3.2 Graph-based service time estimation

The graph generated in the previous step is analyzed every 2 seconds in the
graph analyzer component, which is deployed in the remote backend. If we
focus on synchronous applicative protocols (e.g. HTTP, Remote Procedure
Call (RPC) over TCP), for each pod we may find two different kind of
queues: the TCP protocol queues and the client application queues. On the
one hand, the TCP protocol queues provide too low-level information to be
effectively used in the control of the average latency from the microservice
perspective. On the other hand, client application queues are not available
for the clients out of the cluster and in general cannot be accessed due to
the transparency principle.

Given these limitations, we defined the average latency of a given pod i
according to Equation (5.1). The latency of a pod is the sum of its average
service time and the average time necessary to obtain a response from the
pods connected to pod i (denoted by the set dPODi that contains the down-
stream pods of pod i). For each pod j connected to pod i, the time necessary
to obtain a response from j starting from i is the sum of the average latency
of j and the network time needed to reach it. Given that not all the down-
stream pods are always involved in the computation of the response of pod
i, we weight each contribution by a factor denoted as αj .

Li(t) = Si(t) +
∑

j∈dPODi

αj(t) ·
(
Lj(t) +Nij(t)

)
(5.1)

Figure 5.3 helps us to understand how to design the αj factor. First
of all, we decided to have αj as a function of time t, as the usage of the
downstream pods can change depending on the loads and on the different
requests coming to pod i. As we can see from Figure 5.3, pod i has 3
downstream pods (j1, j2, and j3), each one with a client connection and
a server connection. Both connections are denoted by an average arrival
rate and an average latency. For a given pair of connected pods (i, j), the
network timeNij(t) can be computed as the difference between the average
client latency and the average server latency. This is because on the client-
side we measure from the first client request to the last server response for
each transaction, while on the server-side we measure just the server time
without the network overhead. At this point, two main cases may arise
(other cases are a combination of the two):

1. for each request coming to pod i, all the downstream pods are invoked
to build the response of pod i,
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Figure 5.3: Graph of microservices where pod i has a fan-out of 3 pods, each one with its
own arrival rates, service times and network times.

2. for each request coming to pod i, just one downstream pod is invoked
to build the response of pod i.

In the first case, the arrival rate of each downstream pod will match the
arrival rate of pod i. For this reason, to weight correctly the impact of
each downstream pod, the sum of all the αj(t) for pod i should be equal to

1
|dPODi| . On the contrary, in the second case, the sum of the arrival rates of
the downstream pods will match the arrival rate of pod i. Thus, the sum of
all the αj(t) for pod i should be equal to 1.

To enforce this behavior over the αj(t) factor, we need to use the number
of requests that are handled by pod i and by the downstream pods. In par-
ticular, we can denote λsrvi(t) and λsrvj(t) the sum of all the server requests
handled respectively by pod i and pod j. We can do the same for the client
requests, where, for instance, λclti(t) is the sum of all the requests gener-
ated by pod i as a client to all the downstream pods. Starting from these
values, we define αj(t) fo a given pod j as in Equation 5.2, where αj(t)
is the product of two different contributions. The first contribution is the
ratio between the requests served by pod i to other pods (λsrvi(t)) and the
client requests generated by pod i to the downstream pods. This contribu-
tion weights the impact of pod iw.r.t. the rest of the pods in the application.
The second contribution is the ratio between the number of requests served
by pod j to other pods (λsrvj(t)) and the client requests generated by pod
i to the downstream pods. This second contribution weights the impact
of the downstream pod j w.r.t. the requests performed by pod i to all the
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downstream pods.
If the pods are behaving as in case 1, the first contribution will weight
1

|dPODi| , while the second contribution will weight 1
|dPODi| as well. If we

sum up the αj(t) we will obtain 1
|dPODi|2 |dPODi| times, which will lead

to the expected 1
|dPODi| . If, instead, we are in case 2, the first contribution

will fall down to 1, while the second contribution will lead to 1
|dPODi| when

the αj(t) factors are summed up for pod i.

αj(t) =
λsrvi(t)

λclti(t)
·
λsrvj(t)

λclti(t)
=
λsrvi(t) · λsrvj(t)

λclti(t)
2

(5.2)

Once we defined the effects of αj(t), we can estimate the latency of the
whole microservice-based application to then try to enforce the new latency
target. To do so, we need to solve Equation (5.1) for a given entry-point.
Figure 5.4 shows an example of a microservice-based application graph
where vertices and edges are pods and client connections respectively. The
internet vertex represents all the client endpoints outside of the cluster. The
first pod in the path that starts from the internet vertex is our entry-point,
for which we define the average latency of the microservice application.
We can then explore the graph with a breadth-first search. Within this ex-
ploration, we compute a new factor that we denote βi(t) that keeps into
account the path each request should follow from the entry-point, where i
is a pod in the application. In the case of multiple visits of the same pod i,
we select the highest βi(t) among the visits to enforce a harder requirement
on the final average latency. After the exploration of the graph, we can es-
timate the latency at the entry-point as in Equation (5.3). Having computed
βi(t) factors, the latency at the entry-point Lout(t) is just the sum of two
contributions. On the one hand, we have the sum of the service times of
all the pods i multiplied by βi(t) (this first contribution can be summarized
as the total service time of the application Sout(t)). On the other hand, we
have the sum of the network times Nij(t) between all pod pairs (i, j) that
are connected by an edge of the graph, multiplied by the highest available
αj(t) (this second contribution can be summarized as the total network time
of the application Nout(t)).

Lout(t) =
∑

i∈POD

(
βi(t) · Si(t)

)
+
∑

(i,j)∈C

(
αj(t) ·Nij(t)

)
(5.3)

Once we have the estimation of the entry-point latency, we can compute
the requirements each pod should satisfy to meet a given SLA. Unfortu-
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Figure 5.4: Abstract representation of a microservice application. Vertices are pods,
edges are connections. Each pod has a α coefficient associated according to Equation
(5.2). β coefficients are computed following a breadth-first search of the graph starting
from the internet vertex, which is outside of the cluster.
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nately, we are not able to control the network times, thus, we will focus on
the service times of each pod to enforce the latency requirement. Within
this context, if we define the target latency SLA as Lout, the service time
Si(t + 1) for a given pod i can be computed according to Equation (5.4).
This equation simply scales the last value of the service time Si(t) by the ra-
tio between the expected service time and the current service time Sout(t).
The expected service time is computed as the difference between the la-
tency target Lout and the current network latency Nout(t).

Si(t+ 1) = Si(t) ·
Lout −Nout(t)

Sout(t)
(5.4)

5.3.3 Latency-aware reactive control

Once we computed the service time each pod should guarantee at the next
time interval, we can then try to enforce it through the power controller. We
designed a heuristic controller, placed inside the cluster as a normal pod,
that reacts to changes in the arrival rate of the application and to changes
in the enforced service times. We decided to resort to the utilization based
Little’s law to translate the enforced service time into a requested utiliza-
tion. To do so, for each physical server k in the Kubernetes cluster, for each
second, we select the pod that has maximum utilization, as shown in Equa-
tion (5.5). We target the pod with maximum utilization because, otherwise,
if we increase too much the power cap, such pod will be the first to saturate
reducing the performance in an uncontrolled way.

Uc(k, t) = max
i∈POD

(Ui(k, t)) (5.5)

Starting from the candidate utilization Uc(k, t) we define the control er-
ror over the utilization as in Equation (5.6). We define this error as the
difference between the current candidate utilization Uc(k, t) and the target
utilization that this pod should achieve, according to the Little’s law.

eu(k, t+ 1) = Uc(k, t)− λc(t) · Sc(t+ 1) (5.6)

We then define the latency error of the overall latency application ac-
cording to Equation (5.7). The latency error is the absolute value of the
percentage error between the target average latency Lout and the current
average latency Lout(t).

el(t) =

∣∣∣∣Lout − Lout(t)

Lout

∣∣∣∣ (5.7)
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Starting from the utilization error and the latency error we define the
candidate power budget of server k as in Equation (5.8). The candidate
power budget Pc(k, t+1) is the sum of the current core power consumption
of the server P (k, t) and the actionable power Pact(k, t) multiplied by the
utilization error eu(k, t + 1) and the latency error el(t). The actionable
power Pact(k, t) is the power consumption generated by the pods that can
be controlled by PRESTO.

Pc(k, t+ 1) = P (k, t) + eu(k, t+ 1) · el(t) · Pact(k, t) (5.8)

Finally, we define the final power budget for server k as in Equation
(5.9). The power budget P (k, t + 1) is equal to Pc(k, t + 1) if the current
latency of the microservice-based application Lout(t) is less than 2 · Lout,
otherwise the maximum power budget Pmax(k) for the server is enforced.
This condition is necessary to let the system to move away from the equi-
librium in case of violation of the SLA requirement.

P (k, t+ 1) =

{
Pmax(k) Lout(t) > 2 · Lout

Pc(k, t+ 1) otherwise
(5.9)

5.3.4 RAPL-based power allocation

Once the power controller has computed the power budgets for all the
servers in the Kubernetes cluster, it makes this data available through a
REST interface. Each RAPL act pod is executed as a Kubernetes Daemon-
Set on each host. To enforce the power cap, each pod is executed in priv-
ileged mode and we mount the /dev/cpu folder to get access to the MSR
files. The RAPL act pod retrieves the data coming from the controller and
transforms the power cap expressed in Watt into power units by reading the
power unit MSR and applying the relative formula described in the Intel
manual [51]. Then, the power budget is enforced on the package domain
by writing on the proper MSR.

5.4 Evaluation

Within this Section, we evaluate the performance of PRESTO w.r.t. the
ability to keep the average latency of the applications near the latency tar-
get and wr.t. the power savings that this activity can generate. Section 5.4.1
will detail the experimental setup we built to validate the proposed method-
ology, while Section 5.4.2 will describe the results obtained w.r.t. power
savings and performance of the applications.
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Table 5.1: Experimental setup for the social-network benchmark and the media-microsvc
benchmark. For each workload we show the number of pods involved and the requests
rate for low, medium, and high configuration.

benchmark workload # pods low λ(t) mid λ(t) high λ(t) duration
social-network compose post 21 300 req/s 400 req/s 500 req/s 300 s
social-network read home timeline 5 5000 req/s 6000 req/s 8000 req/s 300 s

media-microsvc compose review 27 250 req/s 300 req/s 350 req/s 180 s

5.4.1 Experimental setup

The experimental campaign was conducted on a small cluster composed
of two Dell PowerEdge r720xd equipped with 2x Intel Xeon E5-2680 Ivy
Bridge with 10 cores each (20 HT) clocked at 2.80GHz and with 380GB
of RAM. The host OS is an Ubuntu Linux 16.04 with kernel 4.15, eBPF,
Docker 18.06.2 community edition, and Kubernetes v1.17.4. We tested
the proposed methodology with two benchmarks from the DeatStarBench
benchmark suite [47], an open-source2 suite of microservice-based bench-
marks. We chose the social-network and the media-microsvc benchmark
because, at the time of writing, those benchmarks have a supported Kuber-
netes distribution. The social-network benchmark represents a small social-
media application with microservices deputed to user management, user
timeline management, home timeline management, post composition, me-
dia storage, social graph management, search, and URL shortening. When
needed, microservices store data inside MongoDB3 servers, Redis4 servers,
and Memcached5 in-memory stores. The media-microsvc benchmark, in-
stead, implements a media reviewing, renting and streaming platform and
is composed of identification services (users and movies), a review compo-
sition service, a page composition service, services for users and reviews
consultation, and a video streaming service. Also, the media-microsvc
benchmark leverages MongoDB, Redis, and Memcached data stores. Both
benchmarks combine an HTTP front-end with a Thrift-based RPC system
between pods and TCP connections to data stores.

Table 5.1 shows how we set-up the tests for the experimental campaign.
The social-network benchmark provides two different workloads: on the
one hand, we have scripts for the post composition, while, on the other
hand, we can read the home timeline of each user in the system. The media-
microsvc benchmark, instead, has just the compose review workload. For

2https://github.com/delimitrou/DeathStarBench
3https://www.mongodb.com
4https://redis.io
5https://memcached.org
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each workload, we set 3 different arrival rates, identified as low, mid, and
high. For the compose post we set 300 req/s, 400 req/s, and 500 req/s for
low, mid, and high respectively. For the read home timeline workload, we
set 5000 req/s, 6000 req/s, and 8000 req/s for low, mid, and high respec-
tively. Finally, for the compose review workload we set 250 req/s, 300
req/s, and 350 req/s for low, mid, and high respectively. The workloads for
the social-network benchmark were run for 5 minutes, while the workload
of the media-microsvc benchmark was run for 3 minutes. For what con-
cerns the compose post and the compose review workloads, unfortunately,
we were not able to push the benchmarks over 10 and 4 parallel connections
each because of a race condition in the UniqueID microservice.

For each workload and each arrival rate, we perform 30 runs of the ex-
periment both for the workload equipped with PRESTO, as well as the un-
constrained workload (denoted as alone). Each run is executed thanks to a
wrk26 load generator that is launched from a third machine identical to the
previous two. For each run, we collect the average latency, the power con-
sumption, the energy usage throughout the experiment, and the percentile
latencies of the workload. The experimental results are presented in Section
5.4.2.

5.4.2 Experimental results

Table 5.2 shows a synthetic view of the results we obtained running the
experiments described in Section 5.4.1. If we consider the compose post
workload, we can see that the unconstrained run generated an average la-
tency of 10.08ms, 9.27ms, and 8.83ms for the low, mid, and high arrival
rates respectively. Given the average latency showed by the benchmark, we
decided to bring the latency target to 13ms, which represents an increase of
'40% w.r.t. the normal behavior of the workload. Table 5.2 shows that the
proposed methodology was able to increase the average latency, with a RE
of -16.44%, -13.21%, and 14.69% for the low, mid, and high arrival rates
respectively. Although the RE is not negligible, the difference between
the latency target and the achieved latency is bounded to '2.6ms. Within
this context, PRESTO was able to reduce power consumption by 7.01%,
35.15%, and 23.99% for the low, mid, and high arrival rates.

If we look at the read home timeline workload, we can see that the un-
constrained execution has an average latency of '2ms. In this case, we
decided to bring the target latency to 8ms, which is a 5x increase on aver-
age latency. Table 5.2 shows that PRESTO was able to increase the average

6https://github.com/giltene/wrk2
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Table 5.2: Experimental results for the 3 workloads with 3 different arrival rates for each
workload. Table reports the average latency when the benchmark is not constrained,
the latency target, the average latency achieved by PRESTO, the latency difference, the
latency relative error, and the power savings w.r.t. the not constrained execution.

configuration λ(t) alone avg latency latency target avg latency ∆ latency relative error power saving

compose post
low 300 req/s 10.08 ms 13 ms 15.66 ms -2.66 ms -16.44% 7.01%
mid 400 req/s 9.27 ms 13 ms 15.25 ms -2.25 ms -13.21% 35.15%
high 500 req/s 8.83 ms 13 ms 11.43 ms 1.57 ms 14.69% 23.99%

read home timeline
low 5000 req/s 1.92 ms 8 ms 9.04 ms -1.04 ms -11.15% 46.26%
mid 6000 req/s 1.89 ms 8 ms 10.22 ms -2.22 ms -21.65% 42.52%
high 8000 req/s 2.10 ms 8 ms 10.62 ms -2.62 ms -24.52% 42.69%

compose review
low 250 req/s 9.72 ms 15 ms 14.54 ms 0.46 ms 5.94% 43,93%
mid 300 req/s 10.24 ms 15 ms 15.51 ms -0.51 ms -2.70% 47.53%
high 350 req/s 10.32 ms 15 ms 14.83 ms 0.13 ms 2.14% 45.09%

Averages (on absolute values) 1.50 ms 12.49% 37.13%

latency also in this case, with a RE of -11.15%, -21.65%, and -24.52% for
the low, mid, and high arrival rates respectively. Again, if we look at the
difference between the latency target and the achieved latency, we can see
that it is bounded to '2.6ms also in this case. If we consider instead the
power savings, we can see that PRESTO reduces the power consumption
of 46.26%, 42.52%, and 42.69% for the low, mid, and high arrival rates.

Finally, Table 5.2 shows also the results for the compose review work-
load. In this case, the benchmark exposes an average latency of'10ms and
we enforce a less strict latency target: 15ms. Within this case, the proposed
methodology achieves a RE that is below 6% in all cases, with power sav-
ings that goes from 43.93% for the low arrival rate, to 47.53% for mid and
45.09% for high.

Although we obtained good results on the power savings side, the RE
exposed by PRESTO is not negligible in some cases. This is mainly due
to the actuation mechanism. Given that we leverage RAPL, the power cap
enforced is valid for all the cores in the system. This is taken into account
by the controller that defines the power cap depending on the pod with
the highest utilization within each physical server. However, this poses
some challenges: first of all, the pod with the highest utilization within a
server often works near its saturation, thus, small and frequent changes in
the power cap lead to high oscillations of the performance of the pod. To
solve this issue, we decided to change the power cap of the server only if
the new power cap has a difference of at least 1W. This, of course, results
in the possibility to reach the equilibrium at a value that is slightly higher
or smaller than the target latency. Read home timeline and compose post
exposes this behavior, although it is bounded to '2.6ms, while compose
review reaches the equilibrium with a smaller error.

To further analyze the results we obtained, Figure 5.5 shows the power
consumption of the three workloads executed with and without PRESTO.
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(a) Compose post power consumption with arrival rate of 300 req/s, 400
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(b) Read home timeline power consumption with arrival rate of 5000 re-
q/s, 6000 req/s, and 8000 req/s.
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(c) Compose review power consumption with arrival rate of 250 req/s,
300 req/s, and 350 req/s.

Figure 5.5: Comparison of power consumption of the 3 workloads with different arrival
rates. Error bars represent 95% confidence interval. Lower is better.
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(b) Percentile latencies obtained with PRESTO.

Figure 5.6: Box plots of the percentile latency (50th, 75yh, 90th, and 99th) of the compose
post workload with 400 req/s across 30 runs.

Figure 5.5(a) shows the power consumption of the compose post workload
for different arrival rates. As we can see, the difference between the power
consumption increased from low to mid, but then slightly reduces from mid
to high. This is because in the low case PRESTO hits the minimum of the
RAPL actuator for one server, which is set to 30W. Then, in the high case,
power savings decrease because the controller sets a slightly lower latency
w.r.t. the target. In Figure 5.5(b) the power consumption for the read home
timeline workload is reported. This workload is the one that has the highest
power consumption among the three analyzed workloads. As we can see,
the power consumption increases for both the unconstrained execution as
well as for PRESTO when we increase the arrival rate. Power savings for
this case remain similar among the different arrival rates. Finally, Figure
5.5(c) shows the power consumption of the compose review workload for
the different arrival rates that we described in Table 5.1. Here we can see a
slight increase in power consumption for both the unconstrained execution
as well as the one managed by PRESTO. This is because the increase in
the arrival rate is less steep w.r.t. the other cases. Again, the power savings
remain fairly similar across the different runs, indicating a system that is
stable and that can control the performance accurately within this case.

To better analyze the effects of PRESTO on performance, we decided
to collect data also on the latency percentile provided by the workloads
during the experiments. In particular, we leverage the uncorrected latency
measurements of wrk2. Here we report only the box plots for all the work-
loads we analyzed for the mid arrival rate case, as similar considerations
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(b) Percentile latencies obtained with PRESTO.

Figure 5.7: Box plots of the percentile latency (50th, 75yh, 90th, and 99th) of the read
home timeline workload with 6000 req/s across 30 runs.

can be made for the other configurations. Figure 5.6 shows the 50th, 75th,
90th, and 99th percentile latency for the compose post workload for the
unconstrained execution (Figure 5.6(a)) and the one managed by PRESTO
(Figure 5.6(b)). The power capping imposed by PRESTO increased not
only the average latency but also all the latency percentiles. In particular,
we can see that the average and the median of the 50th percentile are in
line with the latency target, while the other latency metrics increase with
similar paces w.r.t. the unconstrained ones. As expected, PRESTO slightly
increases the variability of the latency results due to the reactive control
activity. Similar considerations can be made for the latency percentiles of
the read home timeline workload (shown in Figure 5.7). Within this case,
however, the 50th percentile is always higher than the latency target (except
for one outlier). This is due to the lower latency of the workload w.r.t. the
compose post one and the 5x latency increase required by the latency target
that poses more challenges in the control activity. The variability induced
by PRESTO is lower w.r.t. the compose post case, because the workload
involves fewer microservices, as indicated in Table 5.1. Finally, Figure 5.8
shows the results for the compose review workload. As we can see, the 50th
percentile and the 75th percentile latency metrics are below the latency tar-
get. This indicates that the average latency is heavily affected by the tail
latency. Within this case, PRESTO correctly increases the average latency,
modifying the latency percentiles accordingly without abrupt changes in
the application behavior.
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(b) Percentile latencies obtained with PRESTO.

Figure 5.8: Box plots of the percentile latency (50th, 75yh, 90th, and 99th) of the compose
review workload with 300 req/s across 30 runs.

5.5 Conclusion and future work

Within this chapter, we presented PRESTO, a latency-aware power capping
orchestrator specifically designed to manage the heterogeneity of work-
loads based on microservices. The proposed ODA control loop is based on
the transparency, performance, and autonomicity principles, and provides
a fine-grain monitoring tool combined with a graph-based analysis of the
running workloads, a reactive and heuristic controller, and a fast actuation
based on RAPL. The proposed approach reduces the power consumption of
37.13% w.r.t. an unconstrained execution, with a RE in the control activity
that is 12.49% on average. The absolute error on average remains below
1.50ms. Future works will extend the proposed methodology by adding
tuning knobs like CPU quota and pinning, by introducing prediction mech-
anisms within the controller and by improving the resiliency of the system
in case of diurnal traffic patterns.
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CHAPTER6
Future directions: accelerating

microservices to improve power efficiency1

6.1 Introduction

Compute intensive workloads may require performance that current CPUs
are not able to provide and, for this reason, heterogeneous computing is
becoming an interesting solution to continue to meet SLAs in the cloud.
Within this context, in addition to GPU-enabled instances, cloud vendors
offer FPGA-based compute instances (directly as in AWS F1 instances2 or
through managed services like Catapult [28] and Brainwave [31]). FPGA-
based algorithms, if well designed, provide an optimal performance-per-
Watt ratio w.r.t. current CPUs. For this reason, FPGAs are good candidate
architectures to continue to improve the energy efficiency of cloud data-
centers and infrastructures. Cloud workloads such as web search [85], im-
age processing [7], database operations [82], neural network inference [96],

1The work presented in this chapter was published in [10], for which Rolando Brondolin developed part of
the methodology, part of the experimental evaluation, and the whole paper writing. c©2020 IEEE. Reprinted,
with permission, from: Marco Bacis, Rolando Brondolin, and Marco D Santambrogio. Blastfunction: an fpga-
as-a-service system for accelerated serverless computing. In Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2020, pages 852–857. IEEE, 2020.

2https://aws.amazon.com/ec2/instance-types/f1/
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and many others can benefit from the use of FPGAs to timely react to the
end-users’ requests.

To exploit FPGAs at their best in the cloud, hardware accelerators should
be designed to meet latency requirements while optimizing throughput [28].
Requests from the outside network can come at unpredictable rates and they
usually cannot be batched, and for this reason minimizing latency becomes
fundamental. Moreover, the unpredictability of the requests can lead to
an underutilization of the FPGAs, thus reserve one FPGA for each service
that needs it will result in a waste of resources. From a cloud provider per-
spective, a possible solution would be to share the FPGA across different
tenants to improve its time utilization.

Within this context, the serverless computing paradigm can be lever-
aged to share an FPGA at a fine-grain level with other tenants to improve
its time utilization. Serverless computing [58] is an architectural pattern
for cloud applications where server management is delegated to the cloud
provider. Each application functionality is deployed by the user as a func-
tion and scheduled, executed, scaled, and billed depending on the exact
need of the moment. In this way, cloud-native applications can benefit
from FPGAs to accelerate compute-intensive workloads such as neural net-
work inference, web searches, and image processing in a seamless way. To
support these goals, in this chapter we propose BlastFunction, a distributed
and transparent FPGA sharing system for the acceleration of microservices
and serverless applications in cloud environments. We decided to focus on
a time sharing approach to maximize the devices’ utilization (in terms of
accelerator execution time) and optimize the use of devices from the cloud
provider perspective. The contribution of BlastFunction are:

• the design and implementation of a scalable system enabling multi-
tenancy for cloud FPGAs in containerized and serverless environment,

• the design and implementation of a transparent layer that allows in-
tegrating applications and hardware accelerators written in OpenCL
without code rewriting.

The rest of this chapter is organized as follows: Section 6.2 describes the
State of the Art in the field, Section 6.3 details the design and implemen-
tation of BlastFunction, Section 6.4 evaluated the proposed design, while
Section 6.5 draws the conclusion of this chapter.
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6.2 State of the Art

Here we present the analysis of the State of the Art of interest for this
work, focusing on the integration of FPGAs in cloud environments. We
classified the literature by communication method, sharing mechanism and
computational model.

The first distinction among the analyzed works is the communication
method used to access the shared or virtualized device. In particular, we
classified works focusing on PCIe-Passthrough, Paravirtualization, API
Remoting and Direct Network Access. PCIe-Passthrough is the lowest-
level method available, as it works by directly connecting a single VM
or container to the FPGA device. This communication level is used by
the AWS F1 instances. With Paravirtualization the requesting application
VM is connected to a host device driver which virtualizes the access to the
resources. This mechanism is used by pvFPGA [93]. The API Remoting
mechanisms is the most used in the analyzed state of the art [8,57,71,100],
and it works by defining a custom API to remotely access the device. It al-
lows multiple applications to control the shared device and to perform both
space and time sharing. A special API Remoting technique is represented
by the work in [81], as in this case the system exposes a microservice for
each accelerator, and not a general API for the entire system. Finally, Direct
Network Access is used by Catapult [29]. This method works by exposing
the FPGA through its network interface, thus enabling a low-latency access.

The second classification of the works analyzed is based on the shar-
ing mechanism, and, in particular, we distinguish between space-sharing
and time-sharing. Space-Sharing [8,26,100] employs FPGA virtualization
through the use of Partial Dynamic Reconfiguration (PDR) or Overlays to
run multiple accelerators on the same FPGA, which are used by different
applications. Space-sharing allows to use the entire resources on the de-
vice (in terms of logic blocks), but requires careful handling of the acceler-
ators to minimize the reconfiguration time. Time-Sharing [29,57,71,81,93]
works by multiplexing multiple requests from different applications on the
same accelerator in the FPGA board. In this case, the challenge is to effi-
ciently schedule the incoming requests to minimize latency on the applica-
tion side and managing memory accesses to fit in the I/O bandwidth.

The last classification is related to the computational model: we dis-
tinguish between batch and service based nature, where the batch/service
terms are related to how the FPGAs are seen by the system. In a Batch
System [8, 26, 93, 100], the workloads (and the connection to the FPGA)
are seen as limited in time. Therefore the scheduling and allocation of
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Figure 6.1: High Level Overview of BlastFunction components (Remote Library in green,
Device Manager in blue, and Accelerator Registry in red) and their connections.

workloads are computed based on the lifetime of each job. In Service-
Based [29, 57, 71, 81] systems, instead, the FPGAs are continuously work-
ing by receiving and processing requests from the system or the application.
Works such as [81] directly expose the underlying FPGA accelerator as a
standalone service.

Within the analyzed literature, BlastFunction leverages API Remoting
techniques in a transparent way with OpenCL, focusing on Time-Sharing
of FPGAs for Service-Based workloads like micro-services and serverless
functions.

6.3 System design

BlastFunction is an FPGA sharing system for the acceleration of microser-
vices and serverless applications in cloud environments. The system allows
multiple applications to concurrently execute kernels on the same FPGA
without changing the underlying host code. This is achieved leveraging
OpenCL as the accelerators’ runtime support system. The system allocates
the available devices as requested by the applications leveraging runtime
metrics collected by the system itself.
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Figure 6.1 shows the main components of BlastFunction: the Remote
OpenCL Library, the Device Manager and the Accelerators Registry. The
Remote OpenCL Library allows the client application (either microservice
or serverless function) to integrate with BlastFunction; it is a custom im-
plementation of OpenCL that transparently abstracts the remote device ac-
cess protocol and the communication with the Accelerators Registry and
the Device Managers. Each Device Manager is connected to a FPGA in
the system and provides the time-sharing mechanism. It exposes a service
to remotely access the device functionalities, providing isolated access for
multiple application containers. Finally, the Accelerators Registry is the
central controller of the system. It tackles the allocation and reconfigu-
ration of the available devices using runtime performance metrics. We use
network protocols like gRPC3 for control and shared memory for data trans-
fers between the Remote OpenCL Library and the Device Manager. Data
exchange between the Accelerators Registry and the other components is
done through gRPC.

BlastFunction integrates with other external components to reach its
goals. The Cloud Orchestrator (Kubernetes [25] in our case) is used by the
Accelerators Registry to control the cluster resources and their allocation to
the nodes. The Gateway is the serverless (OpenFaaS4) system’s endpoint,
which forwards the requests to the functions and handles autoscaling.

6.3.1 Remote OpenCL Library

The Remote OpenCL Library is a custom implementation of an OpenCL
host library developed to integrate the applications with BlastFunction and
to isolate them from the execution of the hardware accelerator. In partic-
ular, the Remote OpenCL Library implements most of the methods used
to control an FPGA accelerator and can be linked both statically and dy-
namically to the application. The Remote OpenCL Library implements a
central router component, which keeps the list of the available platforms. In
particular, it gets the address of the selected Device Manager (or managers
if multiple addresses are provided) and creates a connection to it through
gRPC.

The system allows for both synchronous/blocking OpenCL calls to the
remote runtime as well as asynchronous/non-blocking calls. Both the syn-
chronous and asynchronous flows are designed with asynchronous events.
An event in the system is composed by a set of subsequent asynchronous
calls to the device manager service, a state machine to control the steps that

3https://grpc.io/
4https://www.openfaas.com/
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Figure 6.2: OpenCL Remote Library Architecture, highlighting the steps performed in the
asynchronous flow (dotted lines represent asynchronous responses).

the event must follow and an OpenCL status for the event that is updated
while the event is processed. In this way, the remote library supports event
polling (e.g. clWaitForEvents, clGetEventInfo) like the standard OpenCL
specification. We will explain the asynchronous flow by following Fig-
ure 6.2, which shows the main components of the Remote Library.

When the Remote library receives an asynchronous OpenCL call like a
clEnqueueReadBuffer from the application (step 1), it creates an event (step
2) and performs a first asynchronous request through the network stack
(step 3). The request encapsulates a tag, which is the pointer to the newly
created event. When the device manager responds (step 4), the network
runtime pushes the tag into the completion queue of the client. Then, the
connection thread pulls the tag and retrieves the corresponding event (step
5). The thread then calls the event state machine and updates its state and
the OpenCL event status (step 6). Finally, the application is notified when
the event changes the OpenCL status (step 7). For instance, to perform the
clEnqueueReadBuffer function, the event state machine contains 4 states.
The INIT state sends the call metadata (buffer size, buffer id, offset); the
FIRST step waits for the command to be enqueued by the manager; the
BUFFER step actually sends the buffer data when the manager is available,
and the COMPLETE step signals the call completion.

6.3.2 Device Manager

The Device Manager shown in Figure 6.3 controls and manages a single
board inside BlastFunction. In particular, along with the Remote OpenCL
Library, it is the basic block of the sharing mechanism presented in this
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Figure 6.3: Device Manager Architecture, with the command queue methods flow high-
lighted (dotted lines represent asynchronous responses).

work, allowing many services to access the FPGA concurrently. The De-
vice Manager separately controls each client’s resources pool to enforce
isolation between multiple clients.

There are two kind of methods exposed by the service: context and in-
formation methods, and command-queue methods. The context and infor-
mation methods are executed synchronously as they do not involve exe-
cution on the FPGA. This group of requests includes the creation (on the
client side) of kernels, the creation of platforms and contexts, the request
of information related to the device and the buffer management requests.
The board reconfiguration request represents the only exception in this
group, as it blocks the execution of other operations to reprogram the board
with the given bitstream. The other group of requests is represented by
command-queue methods, which are composed by operations that must be
executed in the order decided by the client application and might require
to use the FPGA exclusively. An example is the kernel execution request,
which might be interleaved with buffer reads and writes on one or multiple
queues. For this kind of requests, if any operation is received or executed
in the wrong order by the Device Manager, the results of the execution will
change breaking the application consistency.

To ensure the in-order execution of command-queue methods, the De-
vice Manager employs multi-operation tasks. We define a task as the
atomic unit of execution of BlastFunction, composed of a sequence of op-
erations that should execute atomically on the FPGA. Whenever the De-
vice Manager receives a command-queue call (step 1 in Figure 6.3), the
requested operations are added to the task related to that particular client
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(step 2). After that, if the client sends a flush command (either by calling a
blocking method or clFinish/Flush/EnqueueBarrier), the current task is sent
to the central queue of the manager (step 3). Once the task arrives to the
central queue of the manager, a worker thread pulls and executes it on the
FPGA in a First-In-First-Out order (step 4). Each operation in the task is
linked with a OpenCL event and when the operation is completed the event
is notified to the caller (step 5). In this way, the client is notified punctually,
even if the operations are executed in groups.

For what concerns data exchange with the Remote OpenCL Library, the
Device Manager allows two different mechanisms: network based (using
gRPC) or shared memory. The Device Manager employs gRPC if the client
application is not on the same node, or if it is not possible to create a shared
memory area. Although gRPC is a powerful protocol for data exchange
over network, we found performance issues utilizing it locally due to serial-
ization overhead and due to multiple data copies. For this reason we limit its
use whenever possible, leveraging instead shared memory. This improves
performance and reduces additional data copies (from four to one) at the
cost of having the client function together with the device manager on the
same node with enough permissions. We still need one data copy to main-
tain full OpenCL compatibility, as a direct access to the shared memory
would require to define additional functions not available in the OpenCL
specification.

6.3.3 Accelerators Registry

The Accelerators Registry is the master component of the system: it regis-
ters functions and devices, it aggregates performance metrics, it allocates
devices to functions and it validates reconfiguration operations. The Reg-
istry offers two endpoints, each backed by a different service. The Devices
Service collects and manages information about the devices (e.g. platform,
configured bitstream and connected instances). The Functions Service con-
tains data about the serverless functions (e.g. identifier, location, device,
created instances).

Data collected through the Device and Functions Services are integrated
by the Metrics Gatherer, which receives Device Managers performance
metrics from a Prometheus5 service. Data like the FPGA time utilization
(defined as the time spent by the device computing OpenCL calls in a given
amount of time) are used to improve allocation of functions.

To match function instances and available devices, the Registry per-
5https://prometheus.io
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Algorithm 3 Devices allocation algorithm
1: procedure ALLOCATE(instance, devs,metrics_order,metrics_filters)
2: devs← filterby_compatibility(devs, instance.devicequery)
3: devs← filterby_metrics(devs,metrics_filters)
4: devs← orderby_metrics_and_acc(devs,metrics_order)
5: i← 0
6: if not_compatible(devs(i)) then
7: while not_redistributable(devs(i)) do
8: i← i + 1

9: if i < len(devs) then
10: chosen_device← devs(i)
11: else
12: raise error ”device not found”

13: instance.devs← {chosen_device}
14: if instance.node == ”” then
15: instance.node← chosen_device.node
16: return

forms an online allocation algorithm when a new instance is created. To do
so, the Registry integrates with Kubernetes to intercept function creation
and deletion in the cluster. When the cluster notifies the creation of a new
function, the allocation algorithm patches the notified operation (e.g. adds
environment variables, volumes for shared memory and forces the host al-
location). The allocation algorithm is presented in Algorithm 3. It takes as
input the function instance that must be matched, all the available devices in
the system and a list of metrics to be taken into account. First, the procedure
filters the devices based on their compatibility with the application requests
(in terms of vendor, platform and accelerator) and the performance metrics
(e.g. filtering out highly utilized devices). The devices are then sorted by
metrics and by accelerator compatibility to ensure an optimal and consistent
allocation. The metrics priority can be chosen depending on the system and
applications SLA (e.g. device utilization, connected functions, latencies).
The accelerator compatibility instead checks if the device should be recon-
figured by looking at the currently configured bitstream. When compatible
accelerators are missing, the algorithm checks which workloads can be re-
distributed to other compatible devices. If at least one device is found, it
is flagged for reconfiguration and the Registry allocates it to the requesting
function instance.

When a reconfiguration is required, BlastFunction checks the redistribu-
tion of instances and then migrates them with the Kubernetes API if neces-
sary. In particular, when a function instance sends a reconfiguration request,
the Registry verifies the allocation of the requesting function instance and
checks if the device needs to be reconfigured. In that case, it deletes all
the functions connected to that device. Kubernetes creates new instances
before deleting the previous ones: in this way the Registry can patch and
schedule them on a different node.
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6.4 Experimental evaluation

The goals of the experimental campaign are to assess whether BlastFunc-
tion introduces an acceptable overhead (Section 6.4.1) and if it can improve
device’s time utilization (Section 6.4.2) w.r.t. the maximum theoretical per-
formance scenario represented by a native execution that has direct access
to the FPGAs. Moreover, we would like to understand whether the FPGA-
based applications improve the performance-per-Watt ratio w.r.t. a stan-
dard CPU execution (Section 6.4.3). We leveraged three accelerated cloud
functions available in the State of the Art: the Sobel edge detector and
the Matrix Multiply (MM) kernel from the Spector benchmark suite [49]
and PipeCNN [92], which is an open-source implementation of an FPGA
accelerator for Convolutional Neural Networks (CNNs). This benchmark
calls several kernels iteratively with multiple parallel command queues to
compute the CNN output. According to the Spector benchmark, we syn-
thesized the Sobel edge detector (also called Sobel operator) with 32 × 8
blocks, 4 × 1 window with no SIMD applied and a single compute unit,
as it results in the best latency performance. For MM, we found from [49]
that the best design is with 1 compute unit, 8 work items for each unit, and
a completely unrolled block of 16 × 16 elements. Finally, we synthesized
PipeCNN with AlexNet as in [92].

The experimental platform is composed of three nodes. The master node
(node A) contains a 2.80Ghz Intel R© Xeon R©W3530 CPU, with 8 threads
(4 cores) and 24GB of DDR3 RAM. Each worker node (nodes B and C)
is equipped with a 3.40Ghz Intel R© CoreTM i7-6700 CPU, with 8 threads
(4 cores) and 32GB of DDR4 RAM. Each node is connected to the lo-
cal network through a 1Gb/s ethernet link. Each node contains a Terasic
DE5a-Net FPGA board with an Intel R©Arria 10 GX FPGA (1150K logic
elements), 8GB RAM over 2 DDR2 SODIMM sockets and a PCI Express
x8 connector (version 3 for the workers, version 2 for the master).

6.4.1 System overhead

We evaluated the system overhead on a single node, deploying one in-
stance of the Device Manager with a Docker Container connected to the
FPGA. The host code was deployed on another Docker Container on the
same node. Our system leverages the local virtual network stack + shared
memory and PCI Express, while Native execution needs PCI Express only.
We run each test by increasing the input and output size to see the impact
of the Remote Library communication mechanism (both gRPC and shared
memory) and the Device Manager queue. We tested each input size 40
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times averaging results and waiting 200ms after each call to have indepen-
dent measures. We skip PipeCNN here because it does not allow to change
the input size. Results are presented in Figure 6.4.

Figure 6.4(a) shows the RTT for a write-read operation (first write, then
read synchronously) with total size from 1KB to 2GB for Native, Blast-
Function and BlastFunction with shared memory. The pure gRPC imple-
mentation ("BlastFunction" in Figure 6.4(a)) shows a total latency of four
times w.r.t. the Native execution. This is due to protobuf overheads and
3 copies of the data buffers. The shared memory implementation ("Blast-
Function shm" label) shows an improvement in terms of latency and over-
head, with a maximum overhead of 155ms when transferring 2GBs. Most
of the overhead is composed by the single memory copy operation, while a
smaller part (∼ 2ms) is given by the gRPC control signals, which are used
in both systems.

Figure 6.4(b) shows the latency measurements for the Sobel operator. In
all cases, the kernel has a linear behaviour w.r.t. the input size. The Native
RTT starts from 0.27ms with a 10×10 image (800 bytes sent and received),
up to 14.53ms for the largest image (1920 × 1080 pixels, read/write of
∼ 8MB). BlastFunction starts with a overhead of 2.46ms and reaches
24ms with the largest image. BlastFunction shm, instead, has a constant
∼ 2ms overhead w.r.t. Native in all the experiments.

Figure 6.4(c) shows the latency measurements for the MM kernel. The
MM accelerator is compute-intensive and the execution overhead between
the Native and remote execution is low for both communication systems
(still remaining lower in the shared memory system). The Native runtime
shows a minimum RTT of 0.45ms for the smallest matrices (16×16 in both
input and output matrices), but quickly rises up to 3.571s (for 4076× 4096
matrices). As in the Sobel results, both BlastFunction and BlastFunction
shm show a minimum RTT of ∼ 2ms given by the control signals. Blast-
Function then reaches a maximum of 3.675s, while BlastFunction shm
stops at 3.588s, which is only 17ms more than Native.

The results of Figure 6.4 show that the overall impact of our system de-
pends on the complexity and operational intensity of the accelerator. When
the majority of the execution time is spent in kernel execution the overall
overhead is low (as in the MM example with a relative overhead of 0.27%
for shared memory). Instead, with lower operational intensity, the I/O la-
tency impacts more on the task even in the shared memory case (as in Sobel
with a relative overhead of 24.04%). This derives from the fact that the Na-
tive system does not execute any additional data copy, while BlastFunction
needs at least one copy to maintain full OpenCL compatibility.
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Use-Case Configuration 1st 2nd 3rd 4th 5th

Sobel
Low load 20 rq/s 15 rq/s 10 rq/s 5 rq/s 5 rq/s
Medium Load 35 rq/s 30 rq/s 25 rq/s 20 rq/s 15 rq/s
High Load 60 rq/s 50 rq/s 35 rq/s 30 rq/s 15 rq/s

MM
Low load 28 rq/s 21 rq/s 14 rq/s 7 rq/s 7 rq/s
Medium Load 49 rq/s 42 rq/s 35 rq/s 28 rq/s 21 rq/s
High Load 84 rq/s 70 rq/s 49 rq/s 42 rq/s 21 rq/s

AlexNet Medium load 6 rq/s 3 rq/s 3 rq/s 3 rq/s 3 rq/s
High Load 9 rq/s 9 rq/s 6 rq/s 6 rq/s 3 rq/s

Table 6.1: Tests configurations overview, showing how many requests per second were
sent to each function for each benchmark.

.

6.4.2 FPGAs time utilization

To test the FPGAs utilization, we run a set of multi-application, multi-node
experiments. The goal is to check if BlastFunction is able to increase the
FPGAs time utilization and the number of total requests served without sig-
nificant losses for the single tenant. Here we leverage BlastFunction with
shared memory, wrapping each benchmark in a OpenFaaS function both for
Native and BlastFunction. For each experiment (Sobel, MM and PipeCNN
with AlexNet) we deployed 5 identical functions for BlastFunction, while
we could deploy only 3 functions in the Native scenario (one for each de-
vice). We tested each function using Hey6 (a tool for HTTP load testing),
running the experiments multiple times with one connection per function
and collecting data about latency and FPGA utilization. Table 6.1 shows
all the configurations used for the BlastFunction runtime, while for the na-
tive scenario we consider only the first 3 columns as only 3 functions can
be deployed during these tests.

We show the per-function results for Sobel in Table 6.2. The results are
divided by scenario (BlastFunction vs Native), configuration, and tested
function. In the low load configuration both runtimes keep up with the
target throughput with latency between 20-30ms. Results are in line with
the overhead results, with BlastFunction improving device’s utilization. In
the medium load configuration BlastFunction has better latency for sobel-
1, sobel-2 and sobel-3 and the other two functions effectively increases the
board’s time utilization. Finally, in the high load configuration, BlastFunc-
tion still improved the overall FPGAs time utilization with comparable la-
tency results for sobel-1 and sobel-3. However, Node A saturated in both

6https://github.com/rakyll/hey

119



Chapter 6. Future directions: accelerating microservices to improve power
efficiency

Type Configuration Function Node Util. Latency Processed Target

BlastFunction

Low Load

sobel-1 B 21.95% 21.43 ms 17.25 rq/s 20.00 rq/s
sobel-2 A 22.57% 24.23 ms 15.00 rq/s 15.00 rq/s
sobel-3 C 13.22% 19.01 ms 10.00 rq/s 10.00 rq/s
sobel-4 A 7.49% 31.98 ms 5.00 rq/s 5.00 rq/s
sobel-5 B 6.48% 27.16 ms 5.00 rq/s 5.00 rq/s

Medium Load

sobel-1 B 40.95% 19.45 ms 32.93 rq/s 35.00 rq/s
sobel-2 A 39.40% 23.62 ms 26.30 rq/s 30.00 rq/s
sobel-3 C 32.85% 18.28 ms 24.98 rq/s 25.00 rq/s
sobel-4 A 29.85% 26.99 ms 19.98 rq/s 20.00 rq/s
sobel-5 B 18.76% 22.94 ms 14.97 rq/s 15.00 rq/s

High Load

sobel-1 B 60.31% 18.95 ms 49.58 rq/s 60.00 rq/s
sobel-2 A 39.15% 32.05 ms 26.63 rq/s 50.00 rq/s
sobel-3 C 45.75% 17.82 ms 34.96 rq/s 35.00 rq/s
sobel-4 A 38.44% 22.56 ms 26.11 rq/s 30.00 rq/s
sobel-5 B 18.39% 21.74 ms 15.00 rq/s 15.00 rq/s

Native

Low Load
sobel-1 A 30.41% 25.02 ms 19.49 rq/s 20.00 rq/s
sobel-2 B 19.74% 21.50 ms 14.74 rq/s 15.00 rq/s
sobel-3 C 13.73% 24.34 ms 9.75 rq/s 10.00 rq/s

Medium Load
sobel-1 A 51.48% 26.04 ms 33.11 rq/s 35.00 rq/s
sobel-2 B 37.19% 23.33 ms 27.95 rq/s 30.00 rq/s
sobel-3 C 34.22% 23.48 ms 24.23 rq/s 25.00 rq/s

High Load
sobel-1 A 58.10% 26.77 ms 38.36 rq/s 60.00 rq/s
sobel-2 B 54.69% 23.95 ms 41.80 rq/s 50.00 rq/s
sobel-3 C 44.81% 24.75 ms 32.61 rq/s 35.00 rq/s

Table 6.2: Multi-function test results for the Sobel acceleator in terms of average latency,
FPGA time utilization (overall maximum 300%) and processed/target requests.

cases as it is not able to keep-up with the target throughput. Regarding the
requests throughput, Native has a difference w.r.t. the target of 2.25% in
the low load configuration, 5.23% and 22.22% for the medium and high
load conditions respectively. BlastFunction has instead averages of 5.01%,
4.67% and 19.85% respectively. Although BlastFunction supports more
load, the response of the two systems are still comparable.

Table 6.3 shows the aggregate results for MM. We do not show the de-
tailed results for brevity as similar considerations can be made. The Native
scenario presents a higher difference between target and processed requests
w.r.t. BlastFunction, with slightly higher latencies and a similar utilization.
The average difference for BlastFunction is of 0.04%, 0.05% and 1.22% for
the low, medium and high load configurations. Meanwhile, Native reaches
3.97% with a low load, 15.19% and 39.97% in medium and high load con-
ditions.

Finally, we show the aggregate results for AlexNet with the PipeCNN
accelerator in Table 6.4. Because of the low number of requests that the
accelerator is able to serve, we decided to test only two configurations,
with medium and high load conditions. The results show that Native has
an average latency of 94.29ms for medium load and 91.74ms for high load,
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Type Configuration Utilization Latency Processed Target

BlastFunction Low Load 43.49% 12.55 ms 76.96 rq/s 77 rq/s
Medium Load 98.53% 11.57 ms 174.90 rq/s 175 rq/s
High Load 144.18% 10.69 ms 262.73 rq/s 266 rq/s

Native Low Load 50.87% 21.12 ms 60.49 rq/s 63 rq/s
Medium Load 103.22% 22.81 ms 106.84 rq/s 126 rq/s
High Load 122.97% 24.25 ms 121.85 rq/s 203 rq/s

Table 6.3: Multi-function test aggregate results for MM in terms of average latency, FPGA
time utilization (overall maximum 300%) and processed/target requests.

Type Configuration Utilization Latency Processed Target

BlastFunction Medium Load 124.68% 132.89ms 17.88 rq/s 18 rq/s
High Load 202.08% 124.52ms 29.81 rq/s 33 rq/s

Native Medium load 96.22% 94.29ms 11.91 rq/s 12 rq/s
High Load 189.82% 91.74ms 23.57 rq/s 24 rq/s

Table 6.4: Multi-function test aggregate results for PipeCNN (AlexNet) with average la-
tency, FPGA time utilization (overall maximum 300%) and processed/target requests.

while BlastFunction presents a higher latency (132.89ms for medium and
124.52ms for high load). This difference derives from the concurrent ac-
cess to the device with long execution times, which raise the probability of
having a request waiting for the previous one to complete. Regarding the
difference between sent and processed requests, we have 0.63% for Blast-
Function and 0.68% for Native in medium load conditions, while in high
load conditions Native behaves better (1.79% vs 9.64%). However, in both
configurations, sharing allows BlastFunction to reach a higher utilization
and number of processed requests.

6.4.3 Power consumption

To test the improvements provided by the FPGAs over the power consump-
tion of the system, we instrumented the test machines with a Watts up power
meter [94]. We then run the Sobel and MM applications both on the CPU
as well as on the FPGA, loading them with 10,000 requests, where each run
has different input sizes. Again, here we skip PipeCNN as we are not able
to change the input size among the various experiments.

Figure 6.5 shows the results in terms of performance and performance-
per-Watt for the Sobel filter (Figures 6.5(a) and 6.5(b) respectively). As for
pure performance, with the only exception of input size 256x256, we can
see that when we increase the input size, the FPGA-based Sobel filter is
able to process more requests per second w.r.t. the software one. Of course,
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(a) Performance in req/s with varying input sizes. (b) Normalized performance-per-watt values with
varying input sizes.

Figure 6.5: Sobel filter performance in req/s and normalized performance/W (higher is
better).

(a) Performance in req/s with varying input sizes. (b) Normalized performance-per-watt values with
varying input sizes.

Figure 6.6: Matrix multiplication performance in req/s and normalized performance/W
(higher is better).

increasing the input size means increasing also the transfer time. This, in
turn, leads to a decrease in the number of requests per second that both
implementations are able to deliver. If we look at Figure 6.5(b), we can see
that the performance-per-Watt ratio increases when we increase the input
size. In particular, in the case of the smallest input size, we can see that the
performance-per-Watt ratio of the two implementations is close, while the
FPGA reaches a 2.75x improvement with the largest input size we tested.

Figure 6.6 shows the results in terms of performance and performance-
per-Watt for the MM kernel (Figures 6.6(a) and 6.6(b) respectively). Within
this case, we can see that the hardware implementation outperforms the
software one even in the case of input size 256x256. However, the perfor-
mance speed-up decreases while increasing the input size after reaching a
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peak. This is because MM is a memory-bound algorithm and it reaches the
memory bandwidth limits earlier on the FPGA than on the CPU. This be-
havior can be seen also in Figure 6.6(b), where the performance-per-Watt
ratio is always higher w.r.t. the CPU one, but it increases up to 20.5x before
decreasing due to reaching the memory bandwidth limit.

6.5 Conclusion and future work

We presented BlastFunction, a distributed FPGA sharing system for the
acceleration of microservices and serverless applications in cloud envi-
ronments. The proposed system design is based upon the goals of multi-
tenancy and scalability, with a focus on the transparency of the resulting
software library. BlastFunction adds limited overhead and reaches higher
utilization and throughput w.r.t. native execution thanks to device sharing.
Moreover, it shows that the FPGAs can be effectively used to improve not
only the performances, but also the performance-per-Watt ratio of the ac-
celerated cloud workloads.

Future work will address the integration with AWS F1 and its APIs to
provide autoscaling of nodes depending on system load, as well as mech-
anisms to support space-sharing alongside the BlastFunction time-sharing
capability.
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CHAPTER7
Conclusion

Within this thesis work, we presented our efforts towards the design and
development of power management techniques able to sustain the perfor-
mances requested by cloud-native applications while reducing as much as
possible the power consumption such applications generate. To achieve
these goals we resorted to autonomic techniques like the ODA control loop
to Observe power and performance behavior of heterogeneous and highly
co-located workloads, Decide how to give power budgets to workloads de-
pending on performance constraints, and Act to reach such performance
constraints while reducing power consumption.

Chapter 2 presented our first approach towards the definition of a black-
box power and performance monitoring methodology. We attributed power
consumption to each microservice depending on the architectural charac-
teristics of each microservice and we started to collect metrics about CPU
usage and low-level performance. Then, we integrated and improved such
data collection system with network performance monitoring in Chapter 3.
The resulting monitoring approach provides a unified view of the Kuber-
netes cluster state, analyzing performance, saturation limits and the graph
of interconnections between all the microservices in the cluster.

Then, we leveraged all the metrics we collected to manage power and
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performance of cloud-native applications. Chapter 4 presented a CPU-
based ODA control loop able to maintain each microservice near the CPU
usage defined by the application developer while at the same time reducing
power consumption. Chapter 5, instead, leverages a higher level target: ap-
plication latency. The Resulting ODA loop keeps the given average latency
of the whole application by computing requirements for all its components
and reactively enforcing them.

Finally, Chapter 6 shows a different approach towards the improvement
of power efficiency of cloud-native applications. In particular, we explored
how to merge together cloud-native infrastructures with accelerated cloud-
native workloads. The result is a system able to improve the performance
and the performance-per-Watt ratio w.r.t. CPU-based microservices and
improve utilization of FPGAs by sharing resources.

Limitations and future work of each component of this thesis are dis-
cussed in their respective chapters. In a more broader view, the future
work of this thesis revolves around the design of a fully integrated sys-
tem, where power management systems can cooperate at different levels
of the data-center stack towards a truly green cloud. Taking into account
also server components other than CPUs (e.g. disks, network cards, mem-
ories) will enable to extract even more power savings by analyzing access
patterns and by improving current optimization strategies. Specialized re-
sources like FPGAs should be then exploited extensively to improve power
efficiency of compute-intensive cloud-native workloads. Then, the intro-
duction of power and performance-aware ODA control loops will help in
the optimization process at the infrastructure level. Finally, coordination
with power grids and other power-management systems will provide the
best strategy towards the sustainable management of cloud-computing in-
frastructures.
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