
POLITECNICO DI MILANO
DEPARTMENT OF ELECTRONIC, INFORMATION AND BIOENGINEERING

DOCTORAL PROGRAMME IN INFORMATION TECHNOLOGY

REMOTE BIOMETRIC SIGNAL PROCESSING

BASED ON DEEP LEARNING USING SPAD
CAMERAS

Doctoral Dissertation of:
Marco Brando Mario Paracchini

Supervisor:
Prof. Marco Marcon
Co-supervisor:
Prof. Federica Villa
Tutor:
Prof. Maurizio Magarini
The Chair of the Doctoral Program:
Prof. Barbara Pernici

2020 – XXXIII





Acknowledgments

Innanzitutto vorrei ringraziare il professor Marco Marcon che non solo mi
ha guidato e seguito in questi tre anni di dottorato ma che mi supporta da
più di sei anni, cioè da quando mi affidai a lui per la mia tesi magistrale. Gli
sono grato sia a livello accademico per avermi dato la possibilità di lavorare
a molti progetti interessanti, sia a livello umano per la gentilezza, i consigli
e il supporto che mi ha sempre offerto.

Ringrazio anche la professoressa Federica Villa per avermi dato la pos-
sibilità di intraprendere il percorso di dottorato. La ringrazio anche per
avermi accolto per tre anni nel suo ufficio, condividendo con me la sua
esperienza e la sua simpatia.

In aggiunta vorrei ringraziare anche la professoressa Binaghi e il pro-
fessor Milani per gli utili consigli forniti al fine di migliorare il presente
lavoro. Inoltre ringrazio tutte le persone dentro e fuori l’università che mi
hanno accompagnato e aiutato in questo percorso.

Sono anche grato a tutta la mia famiglia, a partire dai miei genitori, che
mi hanno sempre supportato nel mio percorso universitario.

Il ringraziamento più grande va a Rossella per aver trascorso con me tutti
i momenti, dai più alti ai più bassi, che si sono susseguiti in questi ultimi
tre anni. Un ulteriore ringraziamento va sempre a lei per aver coronato i
momenti di inizio e fine del mio percorso di dottorato con la nascita di due
bambini meravigliosi, Leonardo (13/11/2017) ed Andrea (12/10/2020). In
particolare ringrazio Leonardo per essere un bambino eccezionale e per
darmi sempre un motivo per essere orgoglioso.

Acknowledgments will be in Italian since all the people I want to thank primarily speaks this language.

1





Abstract

REMOTE PhotoPlethysmoGraphy (rPPG) allows the extraction of car-
diac information just by analyzing a video stream of a person
face. In this work the adoption of Single-Photon Avalanche Diode

(SPAD) cameras for rPPG applications is investigated in order to exploit
the higher sensitivity of the SPAD sensors. In particular, a rPPG applica-
tion in an automotive environment is proposed in order to monitor, in a
non invasive fashion, the driver’s health state and potentially avoid acci-
dents caused by acute illness states. In order to compensate for the SPAD
camera’s low spatial resolution, a novel facial skin segmentation method,
based on a deep learning architecture, is proposed. This method is able to
precisely associate a skin label to each pixel of a given image depicting a
face even when working with low resolution grayscale face images (64x32
pixel) and is able to work in presence of general environment condition re-
garding illumination, facial expressions, object occlusions and regardless
of the gender, age and ethnicity of the subject. Moreover, some metrics
were developed in order to monitor the dependability of the heart rate esti-
mation and detect situations where an optical solution, such as rPPG, could
fail. Finally, a rPPG application has been developed able to run in real time
on a small ARM device equipped on a car. After receiving data from the
SPAD camera, it is able to extract the heart signal and analyze it in order to
constantly monitor the driver’s health condition.
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CHAPTER1
Introduction

Being able to constantly check, in real time and without any contact, the
health condition of a person could have a significant impact in many dif-
ferent situations. Possible applications include fitness assessments [103],
medical diagnosis [103] and driver monitoring [130]. The act of ex-
tracting biomedical information analysing a video stream is called re-
mote PhotoPlethysmoGraphy (rPPG) or imaging PhotoPlethysmoGraphy
(iPPG) [103]. This is an evolution of contact PPG, a technique introduced
in early 20th century that is nowadays commercially and clinically imple-
mented in order to monitor the cardiac activity. The basic concept of PPG
is placing a light emitter and a light receiver in contact of the subject skin
and analysing the light intensity variation in order to estimate information
about the cardiac activity. This is possible since the light intensity fluctua-
tions that could be observed with a PPG device are caused by the periodic
passage of blood in the vessel underneath the skin which changes how the
light is reflected and transmitted by the subject’s skin. On the other hand,
rPPG aims at conducting the same analysis in a remote way without making
any physical contact with the subject. As stated above, the benefit of using
rPPG are numerous in many different situations and in particular this could
have a significant impact in the automotive industry. The possibility of con-
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Chapter 1. Introduction

stantly check the driver’s heart state could be extremely useful especially if
this could be achieved without distracting or disturbing the driver. A com-
putational unit equipped on the car that is able to extract a rPPG signal and
analyze it in real time in order to consistently monitor the driver’s cardiac
activity could be pivotal in many situations. For example, these data could
be used to enable particular features of the vehicle, such as autonomous
driving, that could take control of the vehicle itself and avoid car accidents
by simply safely parking the car in case of detected driver sickness or al-
tered emotional state. With the evolution of smart cars this could become
an important on board safety feature. In addition to that, all the acquired
biometric parameters could also be transmitted to a cloud based system in
order to constantly monitor the health conditions and the emotional state
of the driver, for example for automatically activating health services or
live remote assistance in case of necessity. Moreover the biometric data
could also be exploitable for other purposes, such as for example, by insur-
ance company in order to check the driver’s health state in case of car ac-
cidents and/or automotive companies, in order to evaluate driving comfort
and conditions. For all these motivations, many automotive companies are
researching on rPPG and the task of developing an rPPG automotive system
was an important part of project DEIS. This was a H2020 project that ran
from 2017 to 2020 which has the purpose to develop methods in order to
asses the dependability of many Cyber-Physical Systems. On the described
automotive related task Politecnico di Milano jointly worked with General
Motors and Ideas & Motion.

1.1 Problem statement and objectives

The main goal of this work is to develop a rPPG system able to estimate
numerous biomedical measurements in real time and in a dependable fash-
ion. Moreover, this work explores the possibility of adopting a SPAD (i.e.
Single-Photon Avalanche Diode) array camera instead of traditional RGB
camera, as done in the majority of publications in the rPPG field [103], [93].
SPAD cameras are capable to detect even a single photon [13], have ex-
tremely high frame rate [14] and have proved their usefulness in a very
large range of applications [15], such as 3D optical ranging (LIDAR) [15],
Positron Emission Tomography (PET) [5] and many others. In rPPG ap-
plications SPAD’s high precision could be useful in measuring accurately
the fluctuations in the light intensity reflected by the skin produced by the

http://www.deis-project.eu/
https://www.gm.com/
https://www.ideasandmotion.com/
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1.2. Thesis overview and contributions

blood flow. On the other hand, the main drawback of using a SPAD sen-
sor is their low spatial resolution due to technical limitations. In order to
overcame this problem and use as much spatial information as possible, an
ad-hoc deep learning based method is proposed. This is one of the first
work in which Deep Learning methods are used in this field, being the
adoption of this kind of techniques very recent in rPPG, the first publica-
tions started in 2019 [12], [57], [95]. Moreover, all the other rPPG methods
based on deep learning completely substitute the classical signal processing
techniques with data driven ones using end-to-end networks. On one hand,
the use of an end-to-end deep learning model has proven to achieve state
of the art results on many computer vision tasks such as image segmenta-
tion, object detection, and many others [31]. On the other hand, this kind
of methods required a massive amount of training data in order to learn
how to extract heart related information directly from video frames and
no prior domain knowledge is incorporated. This make the performance
of these methods tightly linked to the training dataset and potentially un-
able to generalize in different setting conditions. Moreover, the complete
substitution of classical signal processing techniques developed using solid
theoretical backgrounds (signal filtering, Fourier transform, etc.) with data
driven ones could lead to non-optimal solutions. For the best of our knowl-
edge no prior work has been done in trying to combine traditional and deep
learning based signal processing in this field. Lastly, in all the considered
studies the cameras used are traditional RGB cameras. The main aim of
this study is to validate the effectiveness of performing rPPG using SPAD
camera, in particular in low illumination conditions, coupled with a deep
learning technique in order to compensate for the low spatial resolution of
Single-Photon cameras. Adopting a SPAD camera could also be benefi-
cial in the use of the propose rPPG system in uncontrolled environments in
which there could be sudden light variations (for example, if this technol-
ogy is used in order to monitor a driver, this could happen in tunnel or in
presence of car light reflexes). In this kind of scenarios, the best strategy in
order to remove this high frequency noise is oversampling and SPAD cam-
eras are the best one in this field [14]. Finally, since the rPPG estimation of
biomedical measures is related to optical signals that could be affected or
masked by noise some dependability evaluation metrics are also proposed.

1.2 Thesis overview and contributions

The rest of this work is organized in chapter tackling problems, such as
pulse signal extraction using SPAD camera, skin segmentation on low res-
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olution grayscale images, which are preparatory and necessary in order to
develop a SPAD based rPPG system that will be described in the last chap-
ter. In particular, the rest of the work is organized as follow:

CHAPTER 2 proposes an extensive overview on the PPG and rPPG state
of the art describing the two techniques and analysing the different
between them. Moreover a particular focus is directed to deep learn-
ing methods in general and their particular use in the rPPG field criti-
cally describing also the possible drawbacks hidden behind using such
methods.

CHAPTER 3 describes SPAD cameras highlighting their usefulness in
rPPG applications. In particular the scope of this chapter is to in-
vestigate the possibility of using SPAD cameras in rPPG application
and evaluate their performances in respect to RGB cameras. In or-
der to achieve that, a set of experiments have been conducted on still
subjects acquired in controlled conditions in order to:

· Select the best wavelength for performing rPPG with SPAD cam-
era.

· Compare the rPPG estimations obtained using SPAD camera and
the ones that could be obtained using traditional RGB cameras.

Five different metrics are also introduced in order to evaluate the ex-
perimental results.

CHAPTER 4 has the scope to propose an automatic method with the aim
of solving the task of detecting skin pixels in grayscale low resolution
face images, as the one obtained using a SPAD array camera. Since
the facial skin detection problem is very specific, very few data are
available for this specific problem. For this reason, a complex transfer
learning approach is described in which an ad-hoc developed Con-
volutional Neural Network (CNN) model was trained starting from a
colorization problem.

CHAPTER 5 introduces a modification of the CNN described in the pre-
vious chapter. In particular this new version is able to solve the prob-
lem of detecting skin pixels in grayscale low resolution face images
efficiently and in real-time even when run on hardware with limited
computing capabilities. The Convolutional Neural Network model de-
scribed in Chapter 4 is optimized and modified in order to adapt to the
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computational requirement. Also in this case, a transfer learning ap-
proach is adopted in order to exploit the knowledge already present in
the first network.

CHAPTER 6 has the goal to introduce a rPPG system that, making use
of a SPAD camera and an single-board ARM computer, is able to
estimate biometric parameters, such as Heart Rate, in real time and
in a dependable way. A rPPG pipeline is proposed making use of
the SPAD camera, described in Chapter 3, the deep learning based
method for facial skin segmentation, described in Chapter 5, and tra-
ditional signal processing techniques in order to estimate biometric
parameters.

CHAPTER 7 draws the conclusions of the presented work, highlighting
its major contributions and the possible paths for future works that
could be carry on inside this field.
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CHAPTER2
Related Works

Contact photoplethysmography (PPG) is a simple technique that traces
back to the 1930s [36]. Using this approach blood volume changes related
to the pulsating nature of circulatory systems [107] are measured using
light. In more recent years, starting from 2008, it was demonstrated [114]
that PPG could be performed remotely (i.e. rPPG) using ambient light as
the optical source and, since then, many studies focused on the extraction
of heart rate using cameras were published [24,27,46,82,93,94,111,115].
Some surveys on the state of the art of this field could be found in [103],
[71], [122] and [34]. More recent works [12], [95], [57] explored the possi-
bility of using deep learning techniques in rPPG applications. In the rest of
this chapter an overview on PPG and rPPG systems will be described with
a focus on the adoption of deep learning techniques in this particular field.

2.1 Photoplethysmography

The term "plethysmography" is commonly used in the medical field and
describes the action of registering and measuring ("grapho") the increase
("pletysmos") of volume in an organ or living body [51]. In 1930s [36]
the idea of using light ("photo") for measuring this volume changes was
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Figure 2.1: PPG using transmitted light Figure 2.2: PPG using reflected light

firstly introduced giving birth to the term "PhotoPlethysmoGraphy" (PPG).
Although the term PPG does not specify what kind of volume variation is
observed, nowadays PPG is strongly connected to the study of blood vol-
ume changes in blood vessels [17]. The basic form of PPG requires only a
few electrical components: a light source, used to illuminate the skin, and
a light detector, needed to measure the small light variation produced by
the blood flowing in the vessels [17]. PPG could be performed exploiting
reflected light or transmitted light, as shown in Fig. 2.1 and Fig. 2.2 re-
spectively. In the first case, the tissue to analyse, a finger in the example
shown in Fig. 2.1, is placed in between the light source and light detec-
tor; the light rays are propagated through the subject’s finger and the light
intensity recorded by the detector is related to the amount of blood in the
vessels in each sampling time. On the other hand, PPG could be performed
in reflection mode placing the light receiver and light source side by side,
as in Fig. 2.2. The lights penetrate the first layer of skin (the penetration
depth depends on the light wavelength [8]) and reaches the blood vessels,
a portion of it is reflected back impacting on the light sensor. Also in this
case, the intensity of the light received by the sensor is correlated to the
amount of blood in the vessel in each sampling time. Although the use of
transmitted light could lead to relatively good signal, the measurement site
may be limited since the PPG system must be placed in body locations in
which transmitted light can be detected [109]. Fingertip and earlobe are the
preferred monitoring positions since a sufficient amount of transmitted light
could be detected; however, these sites have limited blood perfusion [109]
and moreover fingertip sensor interferes with daily activates. On the other
hand, systems using reflected light could be adopted in various body po-
sitions. However, reflection-mode PPG is affected by motion artifacts and
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Figure 2.3: Differences between electrical cardiac signal and PPG pulse signal.

pressure disturbances [109].
The pulse signal extracted using PPG consists of two different compo-

nents: the "AC" component, relative to the pulsative nature of the signal,
and the "DC", which is relative to the average blood volume in the tis-
sue [6]. Although the DC component, which more precisely is quasi-DC
since it varies slowly over time, carries important information on the respi-
ration [3], vasomotor activity [43] and vasoconstrictor waves [6], Traube-
Hering-Mayer (THM) waves [6] and also thermoregulation [100], the ma-
jority of PPG systems focused more on the study of the AC component.
For this reason, PPG is commonly used nowadays in order to monitor
the heart activity and in particular the cardiac cycle. The latter is de-
fined as the sequence of events that takes place between two consecutive
heartbeats [108], [80]. The cardiac cycle is composed by two consecutive
phases: the ventricular diastole, i.e. the relaxation phase, and the ventricu-
lar systole, i.e. the contraction stage [80]. During the first phase the blood
pressure in the vessels decrease whilst after the contraction the blood is
pumped outside of the heart thus being distributed in the body through the
vessel increasing their pressure [80]. There are many other methods and de-
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vices that could perform heart monitoring like Photoplethysmography [80],
for example Electrocardiogram (ECG). On the other hand, PPG is based
on the analysis of pulse signal, which represents the variation of the light
intensity reflected (or transmitted, depending on the sensor’s position) from
the skin due to the transition of blood in vessels. Although the pulse signal
is different from the electric one generated by the heart activity, due to their
own natures, the two are strongly related. Obviously, as can be observed
from Fig. 2.3, due to a mechanical delay of approximately 200 ms [123]
which also depends on the body part used to extract the pulse signal, they
are not synchronized but, on the other hand, they show the same trend since
the pressure wave frequency correspond to the heart beating. Therefore,
by analysing the pulse signal it is possible to retrieve the Heart Rate (HR).
Further analysis on pulse signal could lead to Heart Rate Variability (HRV)
estimation. In particular, the tachogram, which is a chart reporting time
on the abscissa and time interval between two consecutive R waves on the
ordinates [67], could be retrieved from the pulse signal. Moreover, the
tachogram representation in the frequency domain presents two different
main components that are commonly called Low Frequency component
(LF) and High Frequency component (HF) and the ratio between this two
quantities is a measure of the simpatho-vagal balance, or rather gives a
quantitative information about the functioning and the activation of the au-
tonomic nervous system [67]. Finally the peak of the HF component in a
normal subject at rest corresponds to the respiration frequency [67]. For
these reasons, performing a spectral analysis of the tachogram could lead
to the following information: Heart Rate, LF/HF balance and Respiration
Rate.

Studies in the field of PPG started in 1936 with the first experiments of
two separate research groups which developed similar instrumentation in
order to monitor the blood volume changes in rabbit ear after drugs admin-
istration [6], [17]. In the following year, Hertzman and his team, published
the first paper describing the adoption of a PPG technique to a human pa-
tient in order to monitor the blood volume changes in their fingers [36]. In
this paper reflected light was used and in the following year the same team
was able to validate the clinical utility of PPG comparing estimations ob-
tained using it with ones gathered by monitoring simultaneously the same
patient adopting mechanical plethysmography. An example of one of the
early PPG system, proposed in [37], is depicted in Fig. 2.4. Although in
the following years (1940 [38]) the same research team was able to develop
an electronic system able to split AC and DC components, this technology
was abandoned for a long period shortly after. The main reason behind it
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Figure 2.4: One of the first PPG system proposed in 1938 [37].

was the limited advancement in lighting technology [6]. As a matter of fact,
the power battery light used in these preliminary studies had a very wide
spectrum and was not optimized for this specific task. Moreover, using
this kind of torch, constant light intensity could not be guaranteed [6]. In
more recent years, the developments in semiconductor technology, i.e. light
emitting diodes (LED), photodiodes and phototransistors, coupled with the
need of non-invasive and low-cost cardiovascular monitor devices helped
re-establishing PPG [6]. Nowadays PPG is used in both clinical and com-
mercial devices. In particular, in recent years, the wearable devices market
is on the rise and among the different categories on the wearable technol-
ogy market, pervasive health monitoring applications are ranked the fastest
growing segments due to the overwhelming need to monitor chronic dis-
eases and aging populations [29]. Not only this kind of devices are able
to provide input to fitness tracking applications but also monitor important
physiological parameters, such as Heart Rate, Heart Rate Variability, glu-
cose measures, blood pressure readings and many others. The development
of this kind of wearable devices started approximately in 2001 with the cre-
ation of a smart PPG ring [89] and continuous to this day with ear, forehead
and wristband devices [29]. One of the most recent smart watch devices is
depicted in Fig. 2.5 where in the back PPG light emitters and sensors could
be noticed.

PPG is not the only method existing in order to estimate heart related
information. The other conventional method used nowadays in clinical op-
erations is ECG [58]. This technology is considered to be one of the oldest
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Figure 2.5: Rear view of a modern commercial wearable device (smartwatch) equipped
with a PPG system.

diagnostic tools still used in medicine today with first recordings dating
back as early as 1903 [58]. ECG uses conductive electrodes attached to the
patient’s body in a predefined and standardised configuration in order to
detect and record the difference in the electric potential between different
electrodes generated by the electric activity of the cardiac muscles [58]. Al-
though fixed-on-body electrodes are reliable and give good signal quality,
there are several disadvantages in using this method. The main drawbacks
are related to the direct contact of sensors and patient skin. This method
could be perceived as uneasy or annoying. Moreover could not be adopted
in many situations (infants, patients with skin allergy and so on). Elec-
trodes misplacement could also cause faulty measurements [58]. Modern
alternative heart activity monitoring methods include HR from speech [74],
thermal imaging [19], optical vibrocardiography [81], Doppler radar [113]
and capacitively coupled ECG [87]. Although all of these methods are
remote (i.e. they do not require contact with the subject) some of them
are unreliable, require expensive hardware and/or expose the subject to mi-
crowave/ultrasound radiation [58]. The other remote method commonly
used to estimate information about the cardiac activity is called remote PPG
and its the main focus of this work. Its principles and development will be
described in the following section.
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2.2 Remote photoplethysmography

There are a number of terms used in the literature to describe this class of
approaches. The most common ones are: remote PPG (rPPG), non-contact
PPG (ncPPG), imaging PPG (iPPG) and PPG imaging (PPGi/PPGI) [71].
For consistency the term rPPG will be used exclusively in the rest of this
work in order to refer to this approach. The basic idea behind this class
of methods is to perform PPG without contact with the subject, thus in-
creasing the distance between subject-sensor and subject-light source. In
a typical setting the subject face is acquired by the camera and using re-
flected light the fluctuations of the light intensity received related to the
subject cardiovascular system are measured. The time varying amount of
blood in the subject vessels causes the light modulation [122]. This cardio-
vascular related modulation in the reflected intensity light is experimentally
observed and more than a theoretical reason have been proposed [122]. The
first one is the conventional theory behind contact PPG so that the intensity
light variation is a direct measurement of the periodically changing vessels’
cross-sections [78]. The second theory is based on the assumption that vis-
ible light is not able to penetrate down to pulsating arteries [122]. Accord-
ing to this theory [101], the deformation of the larger arteries, caused by
the blood volume changes, causes a cyclic deformation of the skin tissue
above them [52]. Finally a third theory, which is not alternative to the first
two but complementary, links the pulsating nature of the observed signal to
ballistocardiographic effects [122]. Both local and global movements (for
example, respectively, tilting due to small arteries and head movement due
to the aorta’s blood injection) contribute to the creation of the pulse sig-
nal [16], [79]. The discussion on the theoretical nature of the pulse signal
is still open.

In 2008 one of the first rPPG work was published [114]. This publica-
tions show that a video captured with a common RGB camera is enough
to obtain a plethysmographic signal whence measuring HR and respiration
rate. In the following years many publications in this field emerged. Typical
setups for validating rPPG involve the use of a low-cost RGB camera, and
devices used to obtained ground truth values for HR, HRV and respiration
rate, such as ECG. In these experiments the face of the subject is recorded.
Typically, the subject is asked to stand still in front of the camera. Different
subject positions have been explored in different works: in [86] and in [24]
for example, the subjects were asked to sit still in front of the camera at a
distance of 1-2 meters. In [46] a two step approach was adopted; firstly the
subjects were asked to rest lying horizontally then they were asked to stand
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up, thus seeing the modulation of the sympatho-vagal balance. In [82] the
differences between the supine position and the sitting position was investi-
gated. In the majority of these setups the distance kept between the subject
and the camera varies from 30 cm to 1 meter and the illumination used
is commonly ambient light, with exception like in [24] in which a profes-
sional studio illumination was used and in [82] in which a low amplitude
fluctuation lamp was used. Results in the extraction of parameters of inter-
est were compared with signals extracted by different devices. Particular
attention is paid to the choice of the camera and the camera settings like
frame rate and resolution. The choice of the camera is critical as long as it
is a single device used to extract all the biological signals mentioned above.
Cameras used in literature are commonly CCD (Charge Coupled Device)
cameras: some studies use webcam integrated in laptop [86, 112], while
others record video using compact-cameras or giga-Ethernet-cameras [46].
The resolution of these devices varies around 640x480 pixels, but is enough
to extract the signal. All these cameras are RGB cameras so the output is
composed by 3 channels, red, green and blue, and the depth resolution is
8-bit per channel. Particular attention is commonly paid to acquisition fre-
quency but different works provide different values: in [86] 15 fps were
used, while others acquire at 20 to 120 fps. Very few works studied the
relationship between heart rate estimation accuracy and frame rate. Ex-
perimental results reported in [10] showed that the effects of lowering the
acquisition frame rates to 60 and 30 fps does not introduced observable
differences in heart rate estimation accuracy, while others [70] noticed that
in other related tasks, like estimating heart rate variability, this could have
a remarkable impact. Once the setup has been established the aim is to
extract the biological signals from the video and compare them to signals
coming from the other devices.

Several algorithms were developed in order to extract heart rate, heart
rate variability and respiration rate. As described in Sec. 2.1, the waveform
of the signal extracted from a camera is completely different from the one
extracted using an ECG, but there is a strong correlation in the frequencies
and in the relative time position of particular features like peaks or zero-
crossing. Usually the video records the face of the subject and a Region
Of Interest (ROI) is selected in each frame. There are several ways to de-
termine this ROI. The easiest one considers a region by manually choosing
the pixels of the image corresponding to the skin of the subject [93, 94].
In this kind of choice typical ROIs are rectangles and the selected portion
of the face are forehead and cheeks. Other approaches are based on face
recognition and tracking [4,86]. In these cases two different methodologies
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were developed: the first one adopt a face detection algorithm and the fore-
head region is obtained with fixed proportion while novel works focuses
on the detection of skin pixels [4, 27]. Once the ROI is selected, the signal
extracted is given by the mean of the value of all the pixels in the region.

The output given by the camera is divided in 3 channels: red, green and
blue. This is due to the Bayer filter placed on the sensors of the camera.
Different approaches have been proposed: some consider single channel,
while other consider a combination of the different channels. The easiest
method explained in literature takes into account the information embedded
only in the green channel. For example, in [82] 3 different signals coming
from the R,G and B channels were considered. Results reported in [82]
show that the cardiac signal is present in all the 3 signals, with the G com-
ponent having the highest amplitude, so the G component was chosen in
the rest of the study in order to obtain the cardiac information. Also the
study conducted in [94] arrived to the conclusion that G channel contains
enough information recommending the use of the single G channel in order
to reduce computational costs and to implement online analysis. A com-
pletely different approach was used in [24] in which all the channels are
considered in order to remove movement artifacts; the results of this study
show that the pulsatility of the signal varies in respect to the wavelenght
of the light considered. In particular, it exhibits its maximum in green and
the in minimum red, so a ratio of normalized green and red would make
a motion robust pulse signal. Further development lead to the usage of
all the three channels and in particular their differences in order to obtain a
chrominance signal. This returned good signal and robustness to motion ar-
tifacts. A similar approach was followed in [46] in which the chrominance
model was adopted coupled with zero-phase component analysis (ZCA).
A combination between chrominance model and independent component
analysis (ICA) on the three channels was also adopted in order to extract a
robust signal. ICA was also used in [86]. ICA and ZCA works similarly:
given independent signals these algorithms detect all the components that
are present in all channels and clearly separates them. In these studies the
inputs are the three channel and these algorithms are capable to reject mo-
tion and noise components and to extract he pulse wave. Once the channel
or the combination of channels is selected the extraction of HR, HRV and
Respiration Rate (RR) can be developed.

After extracting the signal, the majority of the proposed methods apply
some data filtering techniques in order to remove noises due to electronic
interference and quick movements. Since these filters usually are band-pass
filters, also slow components are removed from the signal; these compo-
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nents are due to slow movements of the subject during acquisition, but also
to slow and small variations in illumination. The signal searched has fre-
quency components between 0.4 and 2 Hz so the band-pass filter showed in
most of the studies has passband between 0.4 and 4 Hz to avoid introduc-
tion of processing artifacts. Most recent publication developed an adaptive
bandpass filters, which dynamically changes the cut-off frequencies based
on previously estimated HR [72].

Once the signal has been denoised and filtered, the rest of the analysis is
dedicated to find the signal frequency components. In order to achieve this
result a Discrete Fourier Transform (DFT) is performed, leading to find the
peak corresponding to HR. Further analysis lead to the extraction of HRV,
but, in order to obtain this information, it is necessary to detect the peaks in
the previously elaborated signal. In order to perform this analysis, a record-
ing period of at least 5 minutes and a subject at rest with paced breathing
are required. In [82] this setup was used in order to assess the practicability
and the feasibility of a non-contact rPPG method based on video recording
of the human face for analyzing HRV, comparing the results for RR data
and HRV parameters with those obtained simultaneously using a validated
standard heart rate device.

All the studies compared the obtained results with a signal extracted us-
ing medical devices such as ECG or contact PPG sensors. Tasli et al. [111]
underlined that after detrending and filtering operations on the video signal,
the error on the estimation of HR is around 3% and stated that the main lim-
itation of his method is observed under poor lighting conditions. De Hann
et al. [24] demonstrated that rPPG provided pulse rate in 92% good agree-
ment with a contact PPG sensor. De Hann et al. encountered problems
in the choice of illumination and in motion artifacts that ruined the signal.
For what concern the HRV calculation, Moreno et al. [82] explained that
the main encountered problems were facial movements and illumination
changes.

A standard rPPG pipeline is depicted in Fig. 2.6. As can be observed
the rPPG pipeline could be divided in two consecutive steps: the signal
extraction part, which focus on the processing of the video stream in order
to obtain the pulse signal, and the signal processing one which analyses the
pulse signal in order to obtained the biometric parameters estimation.

2.3 Deep learning

The term "Deep Learning" (DL) relates to a class of Machine Learning
(ML) algorithms that raised in popularity (also on general media) in recent
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Figure 2.6: Example of a traditional rPPG pipeline.

years. Since 2012 [60] DL based methods where able to outperform classi-
cal ML algorithms in almost any field they were applied [31], from image
classification [60], speech recognition [118], autonomous vehicles [119],
drug discovery [20], medical diagnosis [2] and many others [31], [127].

The problem of Artificial Intelligence (AI) is tightly connected to the
history of information since could be traced back to 1842 [73], many
years before the first working physical computer was ever created. Arti-
ficial Intelligence is a broad term that contain, but is not restricted to, ML
which is the problem of solving tasks without, or limiting, the use of hard-
coded knowledge and instead extracting significant pattern directly from
row data [31]. Extracting complex patterns from raw data, that are typi-
cally affected by a plethora of different factors, such as noise, intrinsic and
extrinsic variability, large dimensionality, etc., is generally a hard task. For
this reasons the first proposed class of ML algorithms, which in many ap-
plication fields were the state of the art until very recent years [106], uses
a mix of learned and hard coded knowledge. In particular, expert knowl-
edge was transferred into the algorithm by adopting an engineered feature
extraction step that was able to treat the raw data by preprocising them in
order to extract a-priori relevant information. This operation, called fea-
ture extraction, made the learning part of traditional ML algorithms much
easier. On the other hand, DL based methods directly work on raw data
essentially merging the feature extraction and feature analysis stages into a
single trainable end-to-end phase [31]. This has the benefit of not relying
at all on external knowledge and letting the algorithm select (learn) the best
data representation directly analysing the data. Clearly this choice comes
with costs that directly affect the complexity of the model (number of pa-
rameters to be trained), the sample size of required data, the computational
complexity of the training process (both hardware and software) and many
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others.

While deep learning is a term that gained popularity only in recent years,
the idea behind it could traced back to 1940s [31]. As matter of fact the
terms DL, Artificial Neural Networks (ANN), Cybernetics, Connectionism
and some others are just the re-branding of the same idea during its 80 years
of history. It all started with the theoretical development of biological learn-
ing [69] and the first proposed models that tried to mimic the human brain
functionalities by modelling a biological neuron [31] using linear models.
In the 60s some algorithms were proposed in order to train this kind of
linear models on real data, one example is the Perceptron [92]. In the 70s
and 80s, again drawing inspiration from the brain biology, nonlinear func-
tions were added to these models in order to increase their representation
power [31]. During the same years scientists begun to realise that the prob-
lem of realising accurate biological neural model would be much harder
to realise. In particular, since it is impossible to monitor a large number
of neuron during their activity such models could not be validated. More-
over, starting from the 80s it was proven numerous times that simpler model
could outperform more biological oriented ones in many tasks. For all these
reasons, nowadays deep learning methods do not have the ambition of re-
producing exactly biological neural structures, which are currently studied
by neuroscience, but simply uses the latter to gather inspirations. A typi-
cal example of this is the introduction of Convolutional Neural Networks
(CNN) [62] which was inspired by mammalian visual system. During the
90s the backpropagation algorithm was introduce, which is still to this days
the predominant method used to train a neural network method. In the years
2000s the creation and development of bigdata and powerful GPU greatly
help the evolution of neural networks into deep learning models. In particu-
lar, the creation of large datasets such as ImageNet [25] and CIFAR-10 [59]
both created in 2009 and containing 3.2 million and 6 thousand samples re-
spectively, made possible the development of deep model architectures with
increasing number of parameters. For example, LeNet-5 [62], proposed in
1998, was composed by 60k parameters, AlexNet [60], from 2012, had
60M parameters while VGG-16 [102], proposed in 2015 reached 138M pa-
rameters. On the other hand, the training step of such massive models could
not be accomplished without the parallel development of computationally
more powerful GPUs. Thanks to these development neural network models
were able to grow in size and depth increasing their representation power
in order to be able to solve more and more tasks with higher and higher
precision [31]. Nowadays deep learning based methods are the state of the
art in a plethora of different applications, especially in the computer vision
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field, and an increasing number of companies, such as Facebook, Google,
Microsoft, Baidu and Apple are investing more and more in this field [31].

2.3.1 The use of deep learning in rPPG

While machine learning techniques are widely used in contact PPG applica-
tions [28], very recent works [12, 57, 95] explored the opportunity of using
deep learning methods also in rPPG applications.

In [12], published in 2019, authors propose the adoption of an end-to-
end deep learning method to be applied directly on video stream returning
an HR estimation. The authors adopted a Neural Network based on 3D
convolutional layers [49]. These are convolutional layers which works on
3D data, 2 dimensions being related to space (i.e. image) plus 1 for time.
The complete architecture is composed by a single 3D convolutional layer
composed by 32 kernels of 58x20x20. A 3D max pooling follows the con-
volutional layer. Rectified linear unit (ReLU) is employed as an activation
function. An additional dropout operation has been introduced to regular-
ize the CNN. The final output of the CNN part is then flattened and passed
to a fully connected module with a hidden layer that includes 512 neurons.
The hidden layer is connected to the 76 output neurons: 75 for the pulse
rates (in a range between 55 to 240 bpm at regular intervals of 2.5 bpm)
plus an extra "No PPG" class for cases in which an estimation could not be
performed. The activation functions for the first and second (output) dense
layers are, respectively, ReLU and softmax functions. As for the convolu-
tional layer, a dropout operation is implemented to improve regularization.
Only a very limited number of datasets that comprise high-quality and un-
compressed facial recordings with reference physiological measurements
(e.g., heart rate from ECG or contact PPG) are currently available. Many
of them contains compressed videos (MANHOB-HCI [105], COHFACE
dataset [39]) while the sampling size of other is unfeasible for deep learn-
ing training (UBFC-RPPG [11]). For this reason the authors of [12] heavily
relay on synthetic data, generated try to mimicking the statistics of real PPG
signals.

The work presented in [57], also published in 2019, proposed another
deep learning based rPPG method with the aim of estimating average HR.
In this case a set of signals, which are time series of red, green, and blue
color components averaged over certain regions in the facial area (cheeks,
forehead, nose, etc.), were used as the network inputs. A traditional convo-
lutional neural network followed by two fully connected layers were used.
In particular, the size of input data sample size is (18x64), where the 1st di-
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Figure 2.7: Example of a fully deep learning based rPPG pipeline.

mension is for color signal channels, 3 three channels signal extracted in 6
locations, the 2nd is for discrete time. Being the input bidimensional, a stan-
dard convolution network could be applied as if it were a single-channel im-
age. Due to relatively large kernels and, therefore, quick reducing of tem-
poral information through the convolutional layers of the network, pooling
layers were not adopted in order to avoid double reducing. The architecture
contains five 2D convolution layers followed by two fully connected layers,
using ReLU activations after each layer. Batch Normalization and dropout
layers were also adopted. Multiple outputs of this network correspond to
different possible HR values inside the 40-125 range, with constant step.
This method was trained and tested with proprietary video sequences ac-
quired using 3 different cameras.

Finally, the authors of [95], published in 2020, propose the use of two
consecutive deep learning modules in order to estimate average HR directly
from a video stream. The two methods are called Front-End (FE) and Back-
End (BE). FE has the purpose of improving the interpretability of subtle
color changes of facial videos, while BE estimates HR from output of FE.
FE is also divided in two consecutive steps, one able to select relevant ROI
and one used to extract the pulse signal. The first one is the adoption of
a state of the art neural network for object detection [64] trained to detect
relevant ROI inside a face image. A simple convolution network is then
used to extract and enhance the quality of the pulse signal. Two refiner net-
works, were also adopted in order to asses the quality of intermediate and
final output of FE. These two refiners are adversarially learned to under-
stand the distribution of high quality RoIs and extracted color signals from
RoIs. BE is obtained with three-fully connected layers that estimate the
average HR from the signal received from FE. The MANHOB-HCI [105]
coupled with a proprietary dataset were used for training and testing. Real
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Figure 2.8: Example of an rPPG pipeline mixing deep learning signal extraction and
classical signal processing.

time performances were achieved using a GeForce GTX 1080 GPU.
All these works completely substitute the classical signal processing

techniques with deep learning ones using an end-to-end network, as in [12]
and [57], or by using two consecutive neural networks, as in [95]. A rep-
resentation of this kind of methods is depicted in Fig. 2.7. On one hand,
the use of an end-to-end deep learning model has proven to achieve state
of the art results on many computer vision tasks such as image segmen-
tation, object detection, and many others. On the other hand, this kind of
methods required a massive amount of training data in order to learn how
to extract heart related information directly from video frames and no prior
domain knowledge is incorporated. This make the performance of this kind
of methods tightly linked to the training dataset and potentially unable to
generalize in different setting conditions. A possible solution to the scarcity
of training data could be the adoption of transfer learning techniques but,
due to the peculiarity of the rPPG task, extremely few datasets exist for
similar problems. Moreover, the complete substitution of classical signal
processing techniques developed using a solid theoretical background (sig-
nal filtering, Fourier transform, etc.) with data driven ones could lead to
non-optimal solutions. Moreover even than some of this work claim to
achieve realtime performances as [95] they require powerful GPU. For the
best of our knowledge no prior work has been done in trying to combine
traditional and deep learning based signal processing in this field. An ex-
ample of the rPPG pipeline proposed in this work is depicted in Fig. 2.8.
Lastly, in all the considered studies the cameras used are traditional RGB
cameras.
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CHAPTER3
Performing rPPG using SPAD cameras

SCOPE & AIMS: The scope of this chapter is to investigate the possi-
bility of using SPAD cameras in rPPG application and evaluate their
performances in respect to RGB cameras.

METHODS: Two experiments have been conducted on still subjects ac-
quired in controlled conditions in order to select the best wavelength
for performing rPPG with SPAD camera and compare its estimations
with the one that could be obtained using traditional RGB cameras.
Five different metrics have been introduced in order to evaluate the
experiment results.

RESULTS: The best performance are achieved using 550 nm light but rea-
sonable results are also achieved using near infrared light (850 nm).
SPAD cameras are able to achieve comparable results in respect to
RGB cameras in heart rate estimation and slightly superior accuracy
in estimation of the tachogram and respiration rate.

PUBLICATIONS: The main part of this chapter was published as a jour-
nal paper [133] and a conference paper [130].
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3.1 Problem description

In rPPG applications SPAD’s high precision could be vary useful in ac-
curately measure the intensity variations of the light reflected by the skin,
caused by the blood flowing underneath it. The work presented in this
chapter has the aim of exploring the possibility of performing rPPG us-
ing a SPAD camera to compute HR, HRV and RR. In order to evaluate
the performances of SPAD camera in a rPPG task two experiments are de-
scribed in this chapter. The first of the two experiments has the aim of
comparing the rPPG estimation obtained with a SPAD camera using light
with different wavelength. In order to find the optimal optical wavelength,
different optical filters were used in order to find out which wavelength
results in containing the highest information related to pulse wave. In par-
ticular, ten different optical filters starting from 400 nm, blue light, up to
850 nm, infra-red light, with 50 nm steps, were used for this comparison.
This wavelengths range was chosen in order to match the spectral range of
the SPAD camera. The main goal of this experiment is selecting the light
component that simultaneously is able to penetrate the first layer of skin
and carries the most amount of information and is efficiently detected by
the SPAD camera. The second experiment on the other hand, is performed
in order to compare the rPPG results that could be achieved with a SPAD
camera in respect to the one obtainable using a traditional camera. For both
experiments measurements are performed on a sat still subject in front of
the camera with the artificial illumination directed on its face. The values
of the pixels inside a manually obtained ROI are averaged resulting in a
pulse wave which represents the raw signal that is processed in order to
estimate HR, HRV and RR. In order to evaluate the results of both these
experiments five parameters were considered: single beat detection, heart
rate estimation, tachogram estimation, LF/HF estimation and respiration
rate estimation. Moreover, in order to perform and validate biometric mea-
surements with a SPAD camera and compare it to estimation that could be
obtained from a traditional RGB camera, a portable ECG device was used
for reference.

The rest of this chapter is organized as follow: in Sec. 3.2 all the devices
used in order to collect the experimental data are described, including the
SPAD camera. Subsequently, in Sec. 3.3 the two experiments are described,
including the setup and the evaluation metrics definition. Following this, in
Sec. 3.4 all the signal processing techniques used in order to obtain from the
acquired raw data the evaluation of each metric are described. Moreover, in
Sec. 3.5 the results obtained on the experimental collected data are reported.
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Finally, in Sec. 3.6, the conclusions of this chapter are drawn.

3.2 Materials

In this section all the devices uses in order to collect the experimental data
described in Sec. 3.3.1 and Sec. 3.3.2 are described.

3.2.1 SPAD camera

Due to their design SPADs are photodetectors able to reveal even a single
photon [121]. Considering a biased p-n junction, on which a bias voltage
greater than the breakdown voltage is applied VA > VB. A single inci-
dent photon impacting in the depletion layer causes the creation of pair of
electron and hole. The electric field is so high that each of this electric
charges, that would be normally eliminated by recombination, are accel-
erated so much that instead of recombining could impact against an atom
causing ionization (i.e. the creation of another pair of electron-hole). In this
positively-looped process each charge creates even more electrical charges
generating a a self-sustaining avalanche [121]. Due to this process using a
SPAD a single incident photon impacting in the depletion layer is able to
trigger a macroscopic current (in the milliamp region); this means that from
a single-photon event a digital output is obtained. After the photon has been
seen, the avalanche is then stopped in order to avoid unnecessary power dis-
sipation due to the avalanche itself, and to rearm the SPAD making it able to
see another photon; in order to achieve these targets a dedicated hardware
is implemented. A simple solution is the use of a properly sized resistor in
series with the SPAD: after a photon-event the parasitic capacitance of the
photodetector is discharged, the resistor has the task to reload the capacitor
in the way to rearm the SPAD. This gives a simple but slower way to obtain
our proposals. A better solution is the use of an Active-Quenching Circuit
(AQC) [23] that provides a faster quenching in a smaller area respect to the
previously mentioned solution. When a photon triggers the avalanche, the
AQC powers down the SPAD in order to rearm it, this gives an holdoff time
during which the photodetector is completely blind. This period can be
made adjustable, short holdoff periods (in the order of 20 ns) are required
in applications where high photon fluxes are present at the cost of high af-
terpulsing [7] (i.e. the retriggering of the SPAD due to a trapped charges of
the previous avalanche), instead much longer holdoff periods are required
when weak signals are present or when afterpulsing can heavily affect the
measurement and so its reliability.
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Figure 3.1: SPC3 SPAD camera commercialized by Micro Photon Devices (MPD) for
single-photon counting applications.

Counting, timing and other applications

A simple use of the SPAD is counting photons: a counter is added at the
output of the photodetector and each photon increases the counter value by
one. This behavior can be compared to a conventional pixel of a camera that
integrate the light signal over the time. The advantaged of using SPAD in
this way is the single-photon resolution of the integrated signal. This tech-
nology is currently applied in the observation of fluorescence [30], spec-
troscopy [76], night vision [97], driver assistance [116] and other fields. A
more advanced use is the Time-Of-Flight (TOF) measurements, in which a
pulsed illuminator provides a pulsed signal to the target. Due to the pres-
ence of background light, in order to have a reliable measure, many rep-
etitions are needed in such a way as to realize a histogram containing the
arrival time of the photons. Once the peak has been found the TOF measure
is concluded. TOF measurements done in this way can be used to map 3D
places in dark conditions or to realize LIDAR [66] (Light Detection and
Ranging) systems in not heavily illuminated conditions or with a proper
Field of view (FOV) and proper optical filters.
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Figure 3.2: Block diagram (left) and micrograph (right) of the 64 x 32 SPAD array chip
in an high-voltage CMOS 0.35 µm technology.

SPC3 SPAD Camera

The camera used in this project is based on a SPAD array developed by Po-
litecnico di Milano [14]. The whole camera has been developed and com-
mercialized by Micro Photon Devices (MPD) and belongs to the SPC3
SPAD camera series . In Fig. 3.1, a picture of the SPC3 camera is shown.
As reported in the diagram in Fig. 3.2, the matrix is composed by 32×64
pixels, each pixel produces an unsigned 9-bit integer output and contains
a 30 µm SPAD, the AQC, counters and the memories. The camera, con-
nected through USB 3.0 interface, can be used in counting mode and it is
capable to reach 96 kframe/s, which, for the purpose of this project, is more
than enough. To recover part of the efficiency lost due to the low, 3%, fill
factor of the pixel (because of to the presences of electronics in the pixel)
the matrix has been equipped of microlenses that provide a partial enhance-
ment of performances (80% equivalent fill-factor for parallel light beams).
This camera has the maximum Photon Detection Efficiency (PDE) of about
50% at around 400 nm, the readout is completely parallel for all the 2048
pixels of the matrix that makes it possible to realize a global shutter. An-
other important metric for SPAD cameras is the detector intrinsic noise,
called Dark Counting Rate (DCR). Dark counts are the triggering events
that are not associated to photons but related to other kind of generations
(as the thermal one), this parameter affects the signal to noise ratio in low
signal regimes. In this project the camera has been used at 100 fps, consid-
ering that the SPC3 SPAD has the dark count around 100 cps (counts per
seconds), DCR is completely negligible.

An FPGA is used to readout the camera, to sum consecutive frames in

http://www.micro-photon-devices.com
http://www.micro-photon-devices.com/Products/Photon-Counters/SPC3
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Figure 3.3: eMotion Faros 180◦ on the right and electrodes positioning on the left

order to reduce the final frame-rate increasing the counts depth up to 16-bits
and to transfer the data to PC through the USB 3.0 interface. In order to
acquire at 100 fps the camera is set to continuous acquisition mode; in this
mode a start command is given externally (from the computational unit)
and the frames are acquired and stored in the FPGA internal memory, used
as a buffer. Each frame is obtained summing in the FPGA the results of
500 acquisitions each obtained with an exposure time of 20 µs in order to
collect all the incident photons and at the same time avoid saturation issues
and increase the dynamic range of the internal counters.

3.2.2 Other materials

In this section a small description for each devices adopted for the experi-
ments described in Sec. 3.3.1 and Sec. 3.3.2 is reported.

ECG measuring device

A contact ECG measuring device is used in our experiments in order to ob-
tain a reference ground-truth measure of the cardiac activity. The adopted
device is the eMotion Faros 180◦, IP54 depicted in the left part of Fig. 3.3.
This device acquires data from three surface electrodes, placed as shown in
the right part of Fig. 3.3, thus giving three ECG traces, one for each deriva-
tion. It is equipped also whit highly sensitive triaxial accelerometers, col-
lecting information on movements in all directions. This functionality was

https://www.blindsight.de/product-page/emotion-faros-180-sensor
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Figure 3.4: Basler acA1920-48gc GigE RGB camera

exploited during the data acquisition phase to increase the synchronicity be-
tween the different sensors by hitting it at the beginning of the acquisition
in order to obtain a clear peak in accelerator data and consider this point as
the start of the acquisition. This ECG measuring devices is programmable
by a user interface where acquisition frequency of both accelerometers and
electrocardiogram can be selected; in this study a frequency of 250 Hz for
ECG and 400 Hz for accelerometers has been chosen.

RGB camera

The adoption of a state of the art RGB camera is critical in comparatively
evaluating the performance of a SPAD camera for rPPG applications. After
a careful study a Basler GigE RGB model acA1920-48gc was chosen. This
small camera, shown in Fig. 3.4, can reach up to 50 fps with global shutter
and a resolution of 1920 × 1200 px. The camera sensor is built in CMOS
technology with a pixel depth of 10 bits. One of the main advantages of
this camera is its easiness of controlling it via software using the Ethernet
cable to connect it with the PC; as a matter of fact frame rate, exposure time
and synchronization are fully programmable. The lens mount is C-mount,
as the SPC3 SPAD camera used, thus making easy to share the same lenses
and optical filters, making more fair the comparison between the two. The
sensor dimension is quite similar to the SPAD one being 9.2×5.8 mm with
a single pixel size of 4.8× 4.8 µm.

Respiration measuring device

The study presented in this chapter has also the purpose to investigate the
possibility of obtaining respiration information using a SPAD camera. In

urlhttps://www.baslerweb.com/en/products/cameras/area-scan-cameras/ace/aca1920-48gc/
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Figure 3.5: Respiration measuring device.

order to evaluate this capability ground-truth respiration information are
needed. This are obtained using a device developed by electronic labora-
tory of Polimi shown in Fig. 3.5. This device is mainly composed by a
thermistor that must be positioned under the nostril able to measure tem-
perature changes during normal breath. An amplification circuit is adopted
in order to obtain a stable signal and the acquired data are collected using
an Arduino interfaced with a PC via Matlab. The thermistor used is an
Negative Temperature Coefficient (NTC) resistor with a resistance at room
temperature of 10 kΩ. This kind of resistors decrease rapidly their resis-
tance when temperature is increasing, thus, if positioned under the nostril,
the collected data clearly show a breathing wave. The main frequency com-
ponent of this wave is the respiration rate. To obtain a more stable signal, a
low pass filter is implemented by means of a capacitance before the ampli-
fier and by implementing an integrative feedback, acting as both low pass
filter and amplifier. The output of the device is connected to an Arduino
that converts analog values into digital in order to be processed.
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3.3 Methods

In this section two experiments will be described conducted with the aim
of selecting the best light wavelength component in order to perform rPPG
using a SPAD camera and compare the use of this kind of camera and tradi-
tional ones for this specific task. Moreover, all the signal processing tech-
niques used will be described in the following section.

3.3.1 Exp. 1 - Wavelength selection

The first experiment tackles the problem of determining which illuminant
wavelength is optimal in performing rPPG using the SPAD camera. For the
sake of finding the optimal optical wavelength, different optical filters were
used in order to find out which wavelength results in containing the high-
est information related to pulse wave. In particular physical optical filters
were put in front of the lens so just the selected light component would be
captured by the sensor. Ten different optical filters starting from 400 nm,
blue light, up to 850 nm, infra-red light, with 50 nm steps, were used for
this comparison. This wavelengths range was chosen in order to match the
spectral range of the SPAD camera. Each one of these optical filters im-
plements a bandpass filters centered around each specific wavelength with
a Full Width at Half Maximum (FWHM) of 40 nm. In this first setup five
subjects had been recorded using all filters, each cardiac activity was also
monitored using a portable ECG recorder (Faros 180). Recording sessions
were always taken in resting conditions, i.e. subjects seated and facing the
camera avoiding head movement, and each acquisition lasted for 10 min-
utes. In order to obtain a wide spectrum in the light source, different kinds
of illuminants were considered and tested: finally an incandescent lamp
was chosen, which emission spectrum is shown in Fig. 3.6. Acquisition
frequencies were set at 100 Hz and 250 Hz for the SPAD camera and the
Faros ECG respectively.

3.3.2 Exp. 2 - SPAD and RGB cameras comparison

After selecting the best illumination wavelength another experiment was set
up in order to compare the accuracy in rPPG applications of the SPAD cam-
era versus a traditional RGB camera. To achieve this goal a Basler GigE
RGB camera was employed. In particular, the model of the chosen camera
is acA1920-48gc which is a microcamera that can reach up to 50 fps with

http://ecg.biomation.com/faros.htm
https://www.baslerweb.com/en/products/cameras/area-scan-cameras/ace/aca1920-40gc/
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Figure 3.6: Incandescent lamp emission spectrum.

global shutter and a resolution of 1920× 1200 pixels with a CMOS sensor.
Sensor dimensions are 9.2 mm x 5.8 mm with pixel size of 4.8µm×4.8µm.
In order to perform the comparison between RGB and SPAD cameras, three
subjects had been recorded using both cameras and the Faros portable ECG
for 10 minutes each at resting conditions. SPAD and RGB cameras were
put very close to each other (side by side) at an approximate distance of 50
cm from the subject’s face. Lenses were chosen in order to record the en-
tirety of each subject face from both cameras. In this way, the same frontal
view could be obtained from both acquisition devices. The 550 nm optical
filter was mounted on the SPAD camera since it produces the best results
in the wavelength selection experiment, as will be described in Sec. 3.5.1.
The same incandescent lamp as the former experiment was used also in
this case. Acquisition frequencies were set at 100 Hz, 50 Hz and 250 Hz
for the SPAD and RGB cameras and the Faros ECG respectively. For each
acquisition, the two cameras were synchronized via software.

3.3.3 Evaluation metrics

In order to quantitatively evaluate the results of experiments described in
the previous subsections, 5 different parameters are introduced and consid-
ered. For each one of them, a brief description and definition is given in
the following paragraphs. A complete description of the signal processing
methods adopted to evaluate these metrics are described in Sec. 3.4.
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Single beat detection The first parameter considered is the accuracy in
the single beat detection, which represents the capability of the acquired
signal to produce an average wave shape recognizable as an heart beat
(qualitative evaluation) and with a small standard deviation (quantitative
evaluation). Exploiting a reference groundthrout ECG tack, all the time po-
sition of the QRS complexes were determined using the Pan-Tompkins al-
gorithm [84]. A segmentation of the pulse signal is then obtained in which
each element represents a signal portion relative to a specific heart beat.
Therefore, after resampling each segmented heart beat wave in order to
have the same amount of sampling points, each pulse wave was normalized
using L2 norm. A complete description of the signal processing involved
in this metric evaluation is given in Sec. 3.4.2

Heart rate The second metric chosen is the computed HR estimation.
The average HR error is defined as the absolute difference between the
average HR estimation obtained from the SPAD signal and the one obtained
from the ECG trace (considered as ground truth). In Sec. 3.4.3 a description
is reported on how the HR is estimated from the pulse signal.

Tachogram The third considered figure of merit is the tachogram es-
timation error. The tachogram estimation error is calculated using the
Root Mean Squared Error (RMSE) between the tachogram estimated with
the SPAD signal and the one obtained with the ECG groundthruth. The
processing steps performed for the tachogram estimation are described in
Sec. 3.4.4.

LF/HF The spectrum of the thacogram presents two different main com-
ponents that are commonly called Low Frequency component (LF) and
High Frequency component (HF). The ratio between this two quantities
is a measure of the sympatho-vagal balance [98]. These two components
are defined as the integral of the spectrum in the following ranges of fre-
quency: LF from 0.04 to 0.15 Hz, while HF from 0.15 to 0.4 Hz. The forth
considered metric is the LF/HF estimation error and it is calculated as the
percent error between the LF/HF ratio obtained staring from SPAD rPPG
signal and the ECG track respectively. A complete description of the signal
processing involved in this metric evaluation is given in Sec. 3.4.5

Respiration Rate The HF component of the tachogram is also know
as respiratory band [98] and in particular, the peak of the HF component
in a normal subject at rest condition correspond to the respiration fre-
quency [18]. The last metric introduced in order to chose the best illumi-
nation wavelength is the respiration rate estimation error calculated as the
absolute error between the respiration rate obtained with the SPAD signal
and the one form the ECG expressed as breaths per minute. The processing
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steps performed in order to estimate the respiration rate are described in
Sec. 3.4.6.

3.4 Signal processing

In this section all the signal processing steps adopted in order to evaluate
the experimental metric introduced in the previous section are described.

3.4.1 Signal preparation

All experiments are conducted with still subjects so the optical signals
(SPAD and RGB camera) are extracted by selecting manually a Region
Of Interest (ROI) area of the subject forehead. The pixel intensity inside
these regions have been averaged in order to create the signals. Both the
signal extracted by the SPAD and RGB cameras were firstly filtered with a
Butterworth bandpass filter with bandwidth between 0.4 Hz and 4 Hz, and
then averaged in windows of 5 samples, thus the resulting signal had an ef-
fective sampling frequency of 20 Hz. All the signals were then resampled
in order to have the same number of samples and the same time references.

3.4.2 Signal segmentation

The following section describes the method applied in order to identify each
heart beat in the signal extracted by the SPAD camera. For each signal, after
applying the preprocessing step described in Sec. 3.4.1, the first 30 seconds
and the last 30 seconds were removed. This operation was necessary in
order to remove movement artifacts at the beginning and at the end of the
acquisition, and consider only the steady state of the recorded subject. The
aim of this step is to segment each signal into all the heart beat sections
present. This is done in order to quantitatively and qualitatively evaluate
the average pulse wave shape.

In order to perform the heart beat segmentation the ECG signal was
used. In particular, the ECG track was used in order to detect regions of the
signal between two consecutive QRS complexes so a complete beat was
present. In order to do so, the following procedure was implemented: a
window between 120 and 180 seconds in both ECG and pulse wave sig-
nals was considered. Inside this window the sample position of all the QRS
complexes in the ECG track were determined using the Pan-Tompkins al-
gorithm [84] while in the pulse wave, the position of the maxima was deter-
mined by searching for signal peaks. Subsequently, the difference between
the positions of all the detected QRS complex and the nearest maxima in the
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Figure 3.7: Heart beat segmentation algorithm example. Top picture: original pulse wave
and QRS complex time position. Bottom picture: Synchronization alignment between
pulse wave maxima and QRS complex time position. Black dashed lines represent
estimated segmentation time. Blue: rPPG signal. Red, green: QRS complex time
positions.

pulse wave was computed and averaged, in order to find the mean distance
between the same beats in the two signals. This average allow to translate
the pulse wave and obtain a better synchronization of the two signals, and
also it allowed to consider the distance between two consecutive QRS com-
plex, that depends on the heart rate (top Fig. 3.7). Once the signals were
perfectly matched a shift of half average beat was applied. Then the whole
pulse signal and ECG track were segmented in pieces corresponding to the
time interval between two consecutive QRS complex.

As shown in Fig. 3.7, rPPG signal was segmented between two black
dashed lines which time position was estimated as described above. This
segmentation allow us to evaluate the characteristic shape of each beat of
the pulse wave. In particular all the beat shapes extracted from the same
signal were normalized using the L2 norm and resampled, if necessary, in
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Figure 3.8: Gray: all the segmented beats in the pulse wave. Blue: average pulse wave
beat. Red: standard deviation of all the beats in the pulse wave signal. Upper panel
shows an example of optimal beat shape, while lower panel shows a signal with very
few information about heart activity.
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Figure 3.9: Red: power spectral density of ECG signal; Blue: power spectral density of
pulse wave extracted from SPAD camera.

order to obtained comparable signal pieces. This normalized signal seg-
ments were than averaged, using point-wise median, in order to estimate an
average beat shape. The difference between each beat and the median was
performed. Considering the distribution of the calculated errors, the beats
giving an error out of the 90th percentile of the error distribution were elim-
inated and not considered in the definition of the shape of the beat, since
they were probably due to motion artifacts.

In before applying the average, uninformative signal segments (i.e.
which standard deviation from the median beat were higher than a thresh-
old) were discarded. In Fig. 3.8, the segmented heart beat pulse wave, from
two different acquisitions, are plotted (the blue lines represent the mean
pulse wave shape). The upper panel shows an optimal result in which the
average beat is clearly related to the heart activity and the point-wise stan-
dard deviation is small. On the other hand, the lower panel shows a signal
in which a pulse shape is not recognizable.

3.4.3 Average heart rate estimation

The second metric taken into consideration in the evaluation of the experi-
ment performed is the heart rate accuracy. To achieve this result, after the
bandpass filtering of the camera signal and the high pass filtering, over 0.4
Hz, of the ECG track needed to remove slow trends of the signal due mainly
to movement artifacts, a Fast Fourier Transform (FFT) was performed. The
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HR estimation was then performed by selecting the frequency correspond-
ing to the maximum of the signal in the frequency domain. The ideal result
would show a perfect matching between the heart rate calculated from ECG
and the one calculated from the pulse wave. An example of result is illus-
trated in Fig. 3.9. As it can be seen in the figure, the maximum frequency
component of both pulse wave and ECG track is the same and in partic-
ular is at 0.95 Hz, resulting in 57 beats per minute (bpm), physiological
value for a resting subject. The accuracy in the determination of heart rate
is calculated as the absolute difference in the number of beats per minute,
between the rPPG estimation and the ground-truth value obtained from the
ECG track.

3.4.4 Tachogram estimation

The third metric introduced in the experiments evaluation is the error in
the tachogram estimation. For this task the original sampling frequency
of the rPPG signal, 100 Hz, was considered in order to have an improved
time resolution. As explained in Sec. 3.1, heart rate variability is impor-
tant for many reasons: the mean value of the tachogram coincide with
the heart rate, its frequency components contains information on respira-
tion rate and, above all, information on the health of the autonomic ner-
vous system. This kind of information is commonly extracted from an
ECG, due to the typical shape of the QRS complex that make it easy to
detect with high accuracy each heart beat and its temporal position. The
aim of the presented method was to calculate a tachogram starting from a
pulse wave, mechanical phenomenon, that resulted as similar as possible
to the tachogram calculated from an ECG, electrical phenomenon. More-
over, it must be taken into account that the present study aims to extract a
tachogram starting from a remote-photoplethysmography, without contact
with the subject, thus adding movement and environmental artifacts. The
tachogram estimation is tightly connected to finding all the pulse maxima
inside the signal. All the processing steps described in the next paragraphs
aims at detecting all maxima that represent each heart beat in the pulse
wave.

Once the signal was filtered and processed, a first round of maxima de-
tection was performed. In particular, the signal was scanned in search of
local maxima imposing a minimum temporal distances between consec-
utive maxima and considering as peaks only local maxima that exceed a
certain treashold. The temporal distance threshold was set to 75% of the
inverse of estimated heart rate while the minimum peak height was set as
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Figure 3.10: Example of a first round of maxima detection. A missed beat could be no-
ticed.

50% of the maximum peak in respect to the signal baseline. The temporal
difference between consecutive detected local maxima position represent a
first estimation of the RR-intervals. Once the maxima had been found, the
average of RR intervals was calculated. This operation gave information
about the average distance between two consecutive maxima. The average
was used to adjust the temporal threshold and perform a second round of
searching the maxima on all the pulse wave with the constrain that there
must be a maximum inside a window as wide as the calculated RR average.
Fig. 3.10 shows an example of the results obtained adopting the first round
of maxima detection. In this case a beat is missed, and Fig. 3.11 shows the
effects of the second round, detecting the missed beat and correcting the
tachogram. As a result of this first part of the method a raw tachogram was
calculated.

After applying the steps described above, the obtained tachogram could
presented two main situation of error: in one case it could occur that a beat
was missed and the tachogram presents a large peak with respect to the
baseline; in the other, it could also happen a small peak was mistakenly con-
sidered as a maximum, resulting in a peak under the baseline, and the con-
sequently compensation error due to the method searching for the following
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Figure 3.11: Second round of maxima detection. The missed beat is correctly detected.

Figure 3.12: Example of the effect on the tachogram of two peaks mistakenly detected
as one. Blue: rPPG tachogram before refinement application. Red: ECG tachogram.
Green: rPPG tachogram after refinement application.

maximum after the previously calculated average RR interval skipping the
real maximum, resulting in a high peak over the baseline. Examples of
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Figure 3.13: Example of the effect on the tachogram of incorrect peak detection and
following compensation error. Blue: rPPG tachogram before refinement application.
Red: ECG tachogram. Green: rPPG tachogram after refinement application.

these two situations are showed in Fig. 3.12 and Fig. 3.13. In particular
Fig. 3.12 shows the former situation, a non-detected beat resulting in a high
peak in the tachogram, while Fig. 3.13 shows the latter situation, where
two consecutive peaks were mistakenly detected returning an unexpected
minimum followed by a large maximum.

In order to detect one of the two described situations, the estimated
tachogram is scanned and for each tachogram point i a local average be-
tween the four previous consecutive RR intervals was calculated (eq. 3.1).

RRavg =
1

4

5∑
k=2

RR(i− k) (3.1)

If the considered tachogram value, RR(i), is greater than the previous one,
RR(i − 1), multiplied by a fixed threshold, Tr, it means one of the two
possible situation described is present (eq. 3.2).

RR(i) > RR(i− 1)× Tl (3.2)

If this value is also higher than the local average multiplied for another
threshold (eq. 3.3), a single beat was missed.

RR(i) > RRavg × Th (3.3)

In this case this element is split in two equal values, in order to maintain
the time position of all the following tachogram points. Otherwise if this
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value is not significantly higher than the average (eq. 3.4), the second case
happened, so a small RR was detected followed by an extremely high RR
interval.

RR(i) ≤ RR(i− 1)× Th (3.4)

In this case the current element is summed with the previous one, the results
was divided by two and this new value is assigned to replace the value of
both of them.

RRnew =
RR(i) +RR(i− 1)

2
RR(i− 1) = RRnew RR(i) = RRnew

(3.5)

Finally, in order to evaluate the error between the tachogram calcu-
lated starting from the ECG and the one extracted from the camera, both
tachograms were resampled with a higher sampling rate. The optimal result
obtained with these operations is shown in Fig. 3.14, where the tachogram
extracted from the signal of the remote photoplethysmography is almost
the same as the one calculated by the ECG track. Quality of the algorithm
is based on the root mean square error calculated between the tachogram
extracted by the rPPG and the ECG.

RMSE(RRrPPG, RRECG) =

√∑n
i=1(RRrPPG(i)−RRECG(i))2

n

3.4.5 LF/HF estimation

As already illustrated in Sec. 3.1, the estimation of the sympathovagal bal-
ance, given by the ratio of the low frequency (LF) and the high frequency
(HF) components of the tachogram, is particularly important in many ap-
plication. These two components, which give information on the activa-
tion status of orthosympathetic and parasympathetic nervous system, could
change heavily passing from a resting to a standing condition. Studies
demonstrated that tachograms extracted from ECG and PPG are almost
the same in resting condition, while present great differences in standing
condition. These great differences affect mainly the LF components, while
the HF components present almost the same values. For this reason, as
described in Sec. 3.3.1 and Sec. 3.3.2, the chosen setup for both the ex-
periments considered the subject in resting condition, thus a comparison
between the spectrum of the rPPG tachogram and the ECG tachogram is
achievable.
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3.4. Signal processing

Figure 3.14: Red: tachogram extracted from the ECG track; Blu: tachogram extracted
from SPAD camera video.

Figure 3.15: Red: PSD calculated from ECG tachogram; Blue: PSD calculated from
rPPG tachogram.

In order to obtain HF and LF components a simple FFT was performed
on both ECG and rPPG tachogram. LF is computed as the area under the
curve between 0.04 Hz and 0.15 Hz, while HF is calculated as the inte-
gral between 0.15 Hz and 0.4 Hz. The error is calculated as the differ-
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Figure 3.16: Red: PSD calculated from ECG tachogram; Blue: PSD calculated from
SPAD tachogram; Green: PSD calculated from ECG tachogram; Black: PSD calcu-
lated from respiration data.

ence between the LF and HF values obtained staring from ECG track and
SPAD rPPG signal respectively. An example of optimal result is shown in
Fig. 3.15, where the overlapping between the blue and red line is clearly
visible.

3.4.6 Respiration rate estimation

The last metric considered is the error in the respiration rate estimation.
This estimation was achieved by performing a FFT on the tachograms and
selecting the frequency that corresponds to the spectrum maximum. Since
the respiration frequency varies considerably in a long period, analysing the
spectrum of a tachogram obtained on a long period (e.g. ten minutes) would
result in a PSD with different peaks, each one related to the respiration
frequency observed in different periods of the acquisition. Therefore, the
recorder signals were cut in windows of one minute so that the respiration
rate observed could be considered constant and a comparison was made
between all the one-minute window. An example of optimal result is shown
in Fig. 3.16.
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Table 3.1: Standard deviations for the single beats detection for each acquisition.

Wavelength [nm]
400 450 500 550 600 650 700 750 800 850

Sbj 1 0.13 0.15 0.22 0.09 0.13 0.22 0.17 0.22 0.13 0.13
Sbj 2 0.13 0.11 0.12 0.10 0.14 0.15 0.16 0.15 0.14 0.12
Sbj 3 0.14 0.13 0.10 0.11 0.12 0.18 0.21 0.17 0.16 0.19
Sbj 4 0.15 0.12 0.13 0.12 0.15 0.21 0.20 0.20 0.14 0.13
Sbj 5 0.15 0.12 0.12 0.09 0.12 0.15 0.16 0.14 0.11 0.10
Avg. 0.14 0.13 0.12 0.11 0.13 0.18 0.18 0.18 0.14 0.13

3.5 Evaluation results

In this section results obtained by performing the two experiments de-
scribed in Sec. 3.3 are reported.

3.5.1 Exp. 1 - Wavelength selection

Heart beat estimation

Since the evaluation of the first metric has a qualitative component, the
average beat shapes obtained for three subjects are shown in Fig. 3.17 ,
Fig. 3.18 Fig. 3.19, Fig. 3.20, and Fig. 3.21, , respectively for subject 1, 2,
3, 4 and 5. In each figure each subplot is relative at the results obtained
with each filter at different wavelengths. In particular, each beat shape is
reported in gray and the blue line represents the point-wise median. The
red intervals represent the standard deviation for each sampling point. As
can be observed qualitatively for some wavelength the beat shape is not
recognizable (e.g. 650 nm) while for other the pulse wave is clearly visible
(500 nm, 550 nm and 850 nm). From a quantitative point of view, stan-
dard deviations for all the subjects and all the wavelengths are reported in
Tab. 3.1. As can be observed the 550 nm wavelength is generally able to
produce more precise results.

Heart rate

Tab. 3.2 reports the result in the average heart rate estimation. As can be
observed estimations obtained using 500 nm and 550 nm achieve the best
results since the mean absolute error is less then 2 bpms for both wave-
lengths. Particular attention should be paid to the results obtained while

Remark, in some tables, reported N.A. values mean that the original signal carried so little information about
the pulse wave that the analysis could not be performed.
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Chapter 3. Performing rPPG using SPAD cameras

Figure 3.17: Average beat shape for subject 1 for each one of the wavelengths. Each beat
shape is reported in gray and the blue lines represent the average. The red intervals
represent the standard deviation for each sampling point. Values on the y axes refer to
normalized amplitudes.

using 850 nm light; excluding some outlier results, using this wavelength
good results could achieve and this could be useful in situations in which
an active visible illumination could not be possible to use.
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3.5. Evaluation results

Figure 3.18: Average beat shape for subject 2 for each one of the wavelengths. Each beat
shape is reported in gray and the blue lines represent the average. The red intervals
represent the standard deviation for each sampling point. Values on the y axes refer to
normalized amplitudes.

Tachogram

In Fig. 3.22 the tachogram extracted from the SPAD camera (blue lines) and
from the portable ECG device (red lines) are reported for all the acquisitions
of one of the experiment subjects. As can be observed, all the estimated
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Figure 3.19: Average beat shape for subject 3 for each one of the wavelengths. Each beat
shape is reported in gray and the blue lines represent the average. The red intervals
represent the standard deviation for each sampling point. Values on the y axes refer to
normalized amplitudes.

SPAD tachograms correctly have the ground truth line as the mean value.
In particular, the one obtained with the filter at 550 nm wavelength is the
one with the lowest fluctuations. In Tab. 3.3 the complete RMSEs between
the estimated curves and the ground truth ones are reported. In case of
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3.5. Evaluation results

Figure 3.20: Average beat shape for subject 4 for each one of the wavelengths. Each beat
shape is reported in gray and the blue lines represent the average. The red intervals
represent the standard deviation for each sampling point. Values on the y axes refer to
normalized amplitudes.

subject 4 and 5, in the acquisition at 700 nm the algorithm couldn’t detect
enough beats due to the noisiness of the signal, thus it was impossible to
extract the tachogram. As can be observed the lowest errors are reached
while using the 550 nm wavelength filter.
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Figure 3.21: Average beat shape for subject 5 for each one of the wavelengths. Each beat
shape is reported in gray and the blue lines represent the average. The red intervals
represent the standard deviation for each sampling point. Values on the y axes refer to
normalized amplitudes.

LF/HF

Furthermore in Tab. 3.4 the HF/LF ratio percent errors are reported. As can
be observed from Fig. 3.23, performing rPPG using the SPAD camera, and
the tachogram estimation techniques described in Sec. 3.4.5, could retrieve
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Table 3.2: Errors calculated as absolute differences between heart rate obtained from
ECG track and SPAD pulse signals.

Wavelength [nm]
[bpm] 400 450 500 550 600 650 700 750 800 850
Sbj 1 0 2 4 1 3 7 4 2 1 0
Sbj 2 27 41 0 0 0 9 32 22 50 24
Sbj 3 18 1 3 2 14 15 12 17 9 18
Sbj 4 0 0 0 1 2 12 N.A. 6 1 0
Sbj 5 4 6 3 0 3 1 N.A. 1 0 0
Avg. 9.8 10.0 2.0 0.8 4.4 8.8 16.0 9.6 12.2 8.4

Table 3.3: Errors calculated as mean square error (MSE) between tachogram obtained
from ECG track and SPAD pulse signals.

Wavelength [nm]
[s] 400 450 500 550 600 650 700 750 800 850

Sbj 1 0.10 0.04 0.08 0.03 0.07 0.11 0.10 0.07 0.06 0.03
Sbj 2 0.05 0.07 0.03 0.07 0.23 0.22 0.23 0.15 0.09 0.06
Sbj 3 0.09 0.07 0.06 0.03 0.08 0.17 0.17 0.15 0.10 0.28
Sbj 4 0.07 0.05 0.05 0.03 0.07 0.21 N.A. 0.18 0.11 0.07
Sbj 5 0.12 0.10 0.14 0.02 0.08 0.30 N.A. 0.12 0.05 0.05
Avg. 0.09 0.07 0.07 0.04 0.11 0.20 0.17 0.13 0.08 0.10

Table 3.4: HF/LF RMSE between the SPAD estimation and the ECG ground truth one.

Wavelength [nm]
400 450 500 550 600 650 700 750 800 850

Sbj 1 1.6 1.5 1.1 1.3 2.1 1.6 1.7 1.2 1.3 1.5
Sbj 2 0.3 0.4 1.2 0.5 0.9 0.9 0.5 0.6 0.3 0.3
Sbj 3 1.0 1.7 1.4 1.3 1.8 4.2 1.2 2.8 2.5 3.3
Sbj 4 1.3 1.2 1.8 0.8 1.1 1.9 N.A. 1.5 1.8 1.7
Sbj 5 1.2 0.8 2.5 0.1 0.5 1.4 N.A. 0.8 0.6 0.6
Avg. 1.1 1.1 1.6 0.8 1.3 2.0 1.1 1.4 1.3 1.5

some information on a relatively hard task as remotely obtaining informa-
tion about the simpatho-vagal balance. In particular, the best results are
achieved at the 550 nm wavelength with a average RMSE of 0.8, which is
a state of the art result as reported in [32].
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Figure 3.22: Tachogram estimation results obtained for subject 1 for all the tested wave-
lengths. Blue: tachogram extracted by pulse wave; Red: tachogram calculated using
ECG track.

Respiration rate

Lastly in Tab. 3.5 the respiration rate errors are reported. As can be ob-
served, the respiration rate could be estimated with a high accuracy using all
the different wavelengths reaching the best results while using the 550 nm
optical filter.
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Figure 3.23: Tachogram spectrum estimation results obtained for subject 1 for all
the tested wavelengths. Blue: tachogram spectrum extracted by pulse wave; Red:
tachogram spectrum calculated using ECG track.

3.5.2 Exp. 2 - SPAD and RGB cameras comparison

Heart rate

As reported in Sec. 3.3.2, in order to evaluate the accuracy in determina-
tion of heart rate expressed in beats per minute, the maximum of the power
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Table 3.5: Respiration rate errors between the SPAD estimation and the ECG ground
truth one.

Wavelength [nm]
[bpm] 400 450 500 550 600 650 700 750 800 850
Sbj 1 0.4 0.3 0.4 0.2 0.4 0.7 0.5 0.4 0.3 0.3
Sbj 2 0.4 0.2 0.4 0.0 0.2 0.3 0.4 0.1 0.3 0.1
Sbj 3 0.3 0.5 0.1 0.1 0.7 0.4 0.7 0.8 0.6 0.5
Sbj 4 0.3 0.1 0.3 0.5 0.4 0.5 N.A. 0.6 0.6 0.4
Sbj 5 0.4 0.7 0.4 0.3 0.2 0.7 N.A. 0.2 0.6 1.1
Avg. 0.36 0.36 0.32 0.22 0.38 0.52 0.53 0.42 0.48 0.48

Table 3.6: Average errors in determination of heart rate in one-minute windows.

Error [bpm] SPAD RGB
Sbj 1 0.0 0.0
Sbj 2 0.2 0.2
Sbj 3 0.2 0.2
Avg. 0.1 0.1

spectral density of each device was calculated for each one-minute window
and the difference between the maxima of each camera and the ECG was
calculated. As the first and the last minute of the acquisition were removed
in order to avoid motion artifacts and consider the subjects under static
conditions, 8 one-minute windows were considered. The errors, calculated
in each windows as the absolute difference in heart rate determination be-
tween the devices for each subject, were averaged in order to find the av-
erage error in detection of heart rate. An example of one-minute windows
spectrum is reported in Fig. 3.24. Heart rate estimation results are shown
in Tab. 3.6. The table shows that the developed setup and signal processing
allow a high accuracy in the determination of the heart rate, showing an av-
erage error lower than 0.2 bpm. It is important to notice that the resolution
is limited to 1 bpm due to the temporal length of the considered window (1
min).

Tachogram

The tachogram metric is obtained by computing the root mean square error
between the tachogram obtained from the SPAD and the one from ECG,
and between the tachogram of the RGB camera and the ECG.

The deviations calculated over the entire tachograms are reported in
Tab. 3.7. From that table, for two subjects (Sbj1 and Sbj2) results are equiv-
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Figure 3.24: Example of heart rate estimation in a one-minute window using RGB and
SPAD camera. It could be noticed that both cameras are able to estimate a HR of 49
bpm in this window, that exactly match the heart rate calculated with the ECG track.

Figure 3.25: Tachogram estimation obtained for subject 1 using signal extracted by SPAD
camera (blue), RGB camera (green) and Faros 180 (red).

alent in terms of accuracy, while for the third subject the SPAD camera
returns better results, because of a beat missing in the RGB tachogram es-
timation. The tachogram estimation for subject 1, using signal extracted by
SPAD camera (blue), RGB camera (green) and Faros 180 (red), is shown
in Fig. 3.25
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Table 3.7: Mean square error between tachogram extracted from cameras and ECG.

RMSE [ms] SPAD RGB
Sbj 1 2 2
Sbj 2 0.8 0.7
Sbj 3 0.6 6
Avg. 1.1 2.9

Figure 3.26: Example of respiration rate calculation, computed as the FFT of the
tachogram of the signals from the three devices compared with the FFT of the signal
measured with the respiration measurement device.

Respiration rate

Finally the respiration rate measurement accuracy was calculated. Respira-
tion rate was obtained by performing an FFT on the previously calculated
tachogram. As breath is a non-autonomic action, the breathing frequency
can vary significantly during the 10 minutes acquisition For this reason it
was decided to divide the tachogram in windows of thirty seconds, in order
to see less variations in the frequency an better focus on the accuracy of
one clear respiration rate. Graphical results are shown in Fig. 3.26. Tab. 3.8
shows the RMSE in the respiration rate estimation obtained with this ex-
periment, by using the SPAD camera and traditional RGB camera. A slight
improvement could be observed by performing rPPG using a SPAD cam-
era.
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RMSE [breath in 10 min] SPAD RGB
Sbj 1 1.0 0.6
Sbj 2 1.1 1.8
Sbj 3 0.5 0.7
Avg. 0.9 1

Table 3.8: Average errors in respiration rate calculation. Errors calculated as mean
square errors between the measurements taken with the breathing sensor and the three
devices.

3.6 Discussion and conclusions

In this chapter the possibility of performing rPPG using a SPAD camera to
compute HR, HRV and RR had been investigated. The working principle
and reason behind the use of SPAD cameras had been discussed in Sec. 3.1.
In this work two experiments have been set up, performing measurements
on a subject sat still in front of the camera with the artificial illumination
directed on its face. The values of the pixels inside a manually obtained
ROI were averaged resulting in a pulse wave. This was the starting sig-
nal that was processed in order to estimate HR, HRV and RR. In order to
evaluate SPAD based rPPG five parameters were considered: single beat
detection, heart rate estimation, tachogram estimation, LF/HF estimation
and respiration rate estimation. In order to perform and validate biometric
measurements with a SPAD camera and compare it to estimation that could
be obtained from a traditional RGB camera, a portable ECG device was
used for reference. One of the two experiments conducted (experimental
setup described in Sec. 3.3.1) had the aim of comparing the SPAD rPPG
performance using light with different wavelength. As can be observed
from results reported in Sec. 3.5.1, 550 nm light (i.e. green light) is able to
achieve the better results. Many parameters influence this result, in particu-
lar the most significant are light penetration depth in the tissues [8], absorp-
tion coefficient of the oxygenated hemoglobin [126], SPAD efficiency [13]
and illumination power. Light below 500 nm is mostly reflected by stratum
corneum, which is the most external skin layer, which being not reached by
blood does not contain any information on pulse wave. Concerning light
between 600 nm and 750 nm, the absorptivity of oxygenated hemoglobin
is very low, thus reducing the modulation in rPPG signal. Therefore, only
wavelengths between 500 nm an 600 nm and between 750 nm and 900 nm
are able to carry useful signal. As a matter of fact, as shown from the re-
sults reported in Sec. 3.3.1, the best performance are achieved using 550
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nm light but reasonable results are also achieved using near infrared light
(750 nm to 850 nm). This is promising results since many scenarios could
be imagined in which the use of non-visible light could be preferred (e.g.
in the automotive field an rPPG system could be used in order to monitor
the health state of the driver).

The second experiment (described in Sec. 3.3.2) was conducted in or-
der to compare the rPPG SPAD based performance with the one obtainable
using traditional RGB cameras. As can be observed in a normal light sce-
nario, as reported in Sec. 3.5.2, SPAD cameras are able to achieve compa-
rable results in respect to RGB cameras in heart rate estimation and slightly
superior accuracy in estimation of the tachogram and respiration rate.
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CHAPTER4
Skin Detection on SPAD Camera

SCOPE & AIMS: The scope of this chapter is to propose an automatic
method with the aim of solving the task of detecting skin pixels in
grayscale low resolution face images, as the one obtained using a
SPAD array camera.

METHODS: Since the facial skin detection problem is very specific, very
few data are available for this specific problem. For this reason a trans-
fer learning approach was adopted in the training phase. In particular,
a Convolutional Neural Network model was trained starting from a
method originally proposed to solve a colorization problem.

RESULTS: A new dataset is proposed and made publicly available in or-
der to tackle the skin detection problem. A novel model was trained
in a transfer learning framework. Quantitative and qualitative results
show the proposed method adequately solves the skin detection prob-
lem.

PUBLICATIONS: The main part of this chapter was published as a jour-
nal paper [132].
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4.1 Problem description

Skin detection is an important preliminary task in a wide range of im-
age processing problems and in particular remote PhotoPlethysmoGraphy.
Many rPPG applications [93] estimate the face regions in which to extract
the signal using a combination of classical face detection methods, such
as [117], and fixed proportions in order to select specific parts of the face,
e.g. typically the forehead. This procedure is not optimal since the skin in
preselected parts of the face could not be visible due to occlusions of hair,
wearable objects or other elements. Furthermore skin segmentation based
on a predefined template suffers from errors of the face detection phase
and/or due to intrinsic variance of face shapes. Moreover due to the high
variability of the subject pose, motion blur, age, ethnicity, hair, facial hair,
wearable objects, etc., the first step of a rPPG application (i.e. selecting
the face region in which to extract the signal) is not trivial and errors in
this step could heavily compromise the final hearth rate estimation. The
majority of rPPG applications [93] utilize a standard RGB camera, based
on CMOS or CCD technologies, in order to acquire the video stream. The
goal of this chapter is to propose a skin detection algorithm able also to
work when applied to images acquired using SPAD cameras. The high pre-
cision of SPAD cameras is useful in measure accurately the skin intensity
fluctuations produced by the blood flow. On the other hand, due to the com-
plexity of the SPAD sensor, this kind of cameras has a very small spatial
resolution, 64x32 in [14], and produces grayscale intensity image, since the
low spatial resolution does not allow the use of Bayer filters.

In this chapter we propose an automatic method, based on deep learn-
ing, with the aim of solving the task of detecting skin pixels in face images.
Furthermore, for the aforementioned reasons, the proposed method is de-
signed to work with low resolution grayscale images such the one obtained
using a SPAD array camera [14]. The rest of the chapter is organized as
follows: in Sec. 4.1.1 a brief state of the art review on skin detection is
reported highlighting the peculiarity of the problem addressed in this work;
in Sec. 4.2 the proposed method is described while in Sec. 4.2.3 the training
procedure exploiting transfer learning is illustrated; qualitative and quanti-
tative results are shown in Sec. 4.3 and finally in Sec. 4.4 the contributions
of this work are highlighted.

4.1.1 State of the art

The skin detection problem is usually tackled using color information and
exploiting the fact that skin-tone colors share some common properties de-
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fined in particular color spaces [54]. After applying the optimal color space
transformation it is possible to define rules to discriminate between skin
pixels and other materials. Since these kinds of methods are based on color
information, they obviously require color images (RGB) to be applied to.
As stated in Sec. 4.1, due to the choice of developing a method able to work
with SPAD camera output (grayscale), this class of methods could not be
applied in this specific problem. Moreover, they have no way to discrimi-
nate between the face and other body parts and this could be a problem in
rPPG in which, due to the blood flow dynamic in the body, different body
parts could carry different information (i.e. time-shifted signal). An exten-
sive review of color based skin segmentation methods could be find in [50].
Some skin detection methods able to work with grayscale images exist,
e.g. [96], but they achieve good results only working with high resolution
images since they learn local texture characteristics.

Another problem, related to the one described in Sec. 4.1, is face pars-
ing or face segmentation, which is the problem to analyze an input image
of a face and densely segment it in different regions corresponding to dif-
ferent face parts and the background [125]. This is performed by labeling
pixels in a dense fashion, i.e. to each pixel a label is assigned. In recent
years, many deep learning methods have been proposed in order to solve
this kind of problems, e.g. [65], [83] and [125], exploiting the promising
results achieved by neural network based methods in semantic segmenta-
tion [33]. Even though this problem is very similar to the one tackled in
this paper (e.g. this last could be view as a simplified segmentation prob-
lem with just two classes, i.e. skin and other) some differences exist in the
definition of the two problems. In fact, in face parsing methods, wearable
objects such as glasses and sunglasses, or facial hair are not separated from
the face region in which they are present, making this kind of methods not
suitable for the skin detection problem. Moreover, methods such the ones
proposed in [125] and [65] work on high resolution color images. To the
best of our knowledge no other method specifically designed to solve the
skin detection problem on low resolution grayscale images exists in the
state of the art.

4.2 Methods

As described in Sec. 4.1.1, deep learning based methods represent the state
of the art for segmentation problem and they usually require a massive
amount of data. On the other hand, due to the uniqueness of the skin detec-
tion problem, the amount of data available is very limited. For this reason
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a transfer learning [85] procedure was adopted. In particular, a coloriza-
tion network [9] was adapted for the skin detection task. The main reason
behind the choice of exploiting a colorization method as a starting point
for the proposed network is the empirical observation that a method of this
kind applied to a grayscale image that depicts a face correctly colorize each
skin pixel with the proper skin color. This means that the network must
have learned a way to discriminate between skin pixels and pixels that de-
picts other objects. Furthermore, both the skin detection problem described
in Sec. 4.1, and the colorization problem share the same kind of input, i.e.
grayscale image. Moreover collecting training data in order to train a col-
orization network is trivial and the problem could be seen as a self super-
vised one. The driving idea is to propose slight changes to the colorization
network in order to be able to transfer as much knowledge as possible from
the colorization task to the skin segmentation one and then use a fine tuning
approach.

4.2.1 Colorization network

As stated in Sec. 4.2 due to unavailability of labeled data, the approach
chosen in order to create a skin detection method was modifying, adapting
and retraining a preexisting network. The chosen network is a colorization
network presented in [9]. The purpose of this network is to assign colors to
grayscale input images. In particular, given an input image, of size H×W ,
represented in CIE L*a*b* color space [90], whose only the luminance (L*)
component is known, XL ∈ RH×W×1, the colorization method is used in
order to generate the remaining channels and obtaining X̃ ∈ RH×W×3, the
corresponding color image [9]. Especially, the colorization neural network
is used in order to approximate the colorization function F :

F : XL → (X̃a, X̃b) (4.1)

Where X̃a and X̃b are respectively the a* and b* channels of X̃.

Network architecture

The author of [9], following the work presented in [44], propose to use a
CNN composed by two different branches in order to reconstruct the a*b*
starting from L*. In this work [9], the auxiliary branch is obtained using
Inception-ResNet-v2 network (referred as Inception in the rest of the chap-
ter) [125], a widely used CNN architecture, in order to analyze the input
image and retrieve relevant information [9]. The complete network archi-
tecture could be found in Fig. 4.1. As can be observed from this figure, the
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Figure 4.1: An overview of the deep learning based colorization method combining CNN
and Inception-ResNet-v2 proposed in [9].

grayscale input image is analyzed jointly by a costume cascade of convo-
lutional layers (i.e. Encoder) that extract low and mid-level features and by
the additional parallel branch represented by the Inception network which
extract high-level features. After vectorizing the Inception output, all the
features extracted in parallel are then merged in the fusion layer. Lastly the
decoder part of the network analyses the merged feature in order to produce
the desired output (estimated a* and b* components). Inputs are scaled in
order to obtain values in the [−1, 1] range for avoiding convergence prob-
lems in the learning phase.

The main branch (i.e. Encoder-Decoder) follows the classical imple-
mentation of an autoencoder. In particular in the encoder stage, 8 con-
voulutaionl layers with 3 × 3 kernels are applied on the H × W input,
using a stride of 2 in the first, third and fifth layers in order to obtain a
H/8 × W/8 × 512 feature representation. In the parallel branch the In-
ception network (without the top classification layers) is applied in order
to extract a 1001 × 1 × 1 representation of the input image containing
high level semantic information of the image such as "underwater", "in-
door scene", etc. [9]. In the fusion layers the results coming form the two
parallel branches are merged into a single layer by replication and concate-
nation. In particular, the feature vector obtained form the Inception branch
is replicated (HW/8)2 times and attaches it to the feature volume outputted
by the encoder along the depth axis, following the approach introduced and
described in [45]. By replicating the feature vector and concatenating it
several times the semantic information is uniformly distributed among all
spatial regions of the image. An additional convolution layer is then applied
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Table 4.1: Colorization network architecture [9]. Blue layers are used for transfer learn-
ing.

Encoder Decoder

Layer Kernels Layer Kernel
Conv. (str. 2x2) 64x3x3 Conv. 128x3x3
Conv. 128x3x3 Upsamp. 2x2
Conv. (str. 2x2) 128x3x3 Conv. 64x3x3
Conv. 256x3x3 Conv. 64x3x3
Conv. (str. 2x2) 256x3x3 Upsamp. 2x2
Conv. 512x3x3 Conv. 32x3x3
Conv. 512x3x3 Conv. 2x3x3
Conv. 256x3x3 Upsamp. 2x2
Fusion
Conv. 256x1x1

on the fused feature vector in order to obtain a H/8 ×W/8 × 256 output.
Lastly, following a classical autoencoder architecture [31], a decoder stage
is applied to the obtained H/8×W/8×256 layer alternating convolutional
layers and up-sampling in order to obtained the desired H ×W × 2 output
containing the input color information. A complete representation of the
main branch network topology is described in Tab. 4.1.

Training procedure

The training procedure described in [9] is straight forward since the net-
work illustrated above is then trained minimizing the mean square error be-
tween the groundtruth color values (i.e. a*b* components) and the ones
estimated by the network over all the pixels in a given training image.
The chosen minimization algorithm is Adam Optimizer [56] with an initial
learning rate set to η = 0.001. The colorization network has been trained
on a subset of ImageNet [25] containing approximately 60’000.

Results

This approach produces high quality colorized images, the authors per-
formed a survey on 41 users asking to guess if a set of images were col-
ored correctly, resulting in some recolored images classified as real up to
80% of the time and in general 45.87% of users miss-classified one or more
recolored images as original [9].
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4.2.2 Skin detection network architecture

As described in Sec. 4.1 the goal of this chapter is to introduce a method
that is able given a grayscale image to label each pixel of it as depicting
skin or not. In order to do so a deep learning method is introduced with the
purpose of approximating a function called F defined as:

F : X→ Y (4.2)

Where X is the input image and Y is the method output having the same
dimension of the input (number of rows and columns) and containing real
values in the real interval [0, 1] which for each pixels represent the estimated
probability of having skin in that particular location of the input image. In
particular, the described method is introduces in order to solve the relaxed
skin detection problem, which expresses the problem of assigning a prob-
ability value to each pixel instead of a binary output. The needed binary
output is then obtained by applying a fixed threshold to the continuous out-
put.

As outlined above, the colorization network presented in [9] is based on
a convolutional autoencoder with an auxiliary parallel branch. This addi-
tional branch is used to extract a vectorized high level representation of the
image semantic. This vector is then merged to the encoded representation
of the main branch before performing the decoding part. In particular, this
operation is performed to help the colorization method better understand
the scene depicted in the input image, in order to colorize more precisely
a large variety of objects and scenes. On the other hand, this auxiliary
branch is totally unnecessary in the case that the input images are a-priori
known to contain just a single human face. Even if its role was crucial
in the [9] approach, in the proposed skin detection network this additional
branch was completely removed, providing us with a suitable architecture.
Another major difference between the proposed network topology and the
one proposed in [9] resides in the output layer dimension. In particular, for
each given grayscale input image, the original colorization network outputs
a two channels image relative to the a* and b* channels of the L*a*b* [90]
color representation of the image. On the other hand, as described above,
the proposed network needs to output a single channel image with each
pixel value ŷij ∈ [0, 1]. This is achieved substituting the last activation
function with a sigmoid function. In particular, for each pixel of the output
image, its value represents the probability attributed by the network of the
input image having a skin pixel in that particular location. As reported in
Fig 4.2, the encoding part of the network is composed by 8 convolutional
layers, with 3x3 kernels and ReLu activation functions, and 3 max pooling
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Figure 4.2: Proposed network topology. The green layers and the last one are trained
from scratch while for the blue ones the knowledge is transferred from the colorization
network. The number under each layer indicate the dimension of its output (number of
filters).

layers in order to reduce the spatial dimension in the last encoding layer to
1/8 of the original input dimension. On the other hand, the decoding part
is composed by 6 layers with 3x3 kernels and ReLu activation functions
(except the last one, which is a sigmoid function in order to output values
in ∈ [0, 1]) coupled with upconvolutional layers to increase back the spatial
dimension to the input one.

As can be observed by comparing the architecture of the colorization
network proposed in [9], reported in Fig. 4.1 with the skin detection one
represented in Fig. 4.2, the two methods share a large portion of their struc-
ture. In particular, the encoder topology is identical with the exception of
the removal of the last hidden layer due to the less complexity of the faced
task. As said above, the feature extractor additional branch, represented
by the Inception network was removed and consequently the fusion layer.
The decoder part is similar but simplify both for the simplicity of the skin
detection task in respect to the colorization one, and for the uselessness in
the transfer learning framework since this layers, i.e. the final ones, are the
ones closer related to each task. In Fig 4.2 the layers colored in blue are
the ones trained propagating the colorization network knowledge while the
other ones are trained from scratch. The central ones (with output depth 256
and 128) need to be trained with no prior information due to the removal of
the colorization fusion layer. The next two have input and output shapes as
in [9] so their weights value is propagated. Finally, the last ones, since are
introduced to solve the skin detection problem, are randomly initialized.
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4.2.3 Training procedure

As stated in Sec. 4.2, the training procedure, adopted to estimate the optimal
network parameters, is based on a transfer learning approach. In particu-
lar, using the general definition given in [63], transfer learning is the act of
exploiting the knowledge acquired for solving a particular learning task Ts
in a particular domain Ds, called source, while trying a to solve a different
task Tt in a different domainDt, called target, with Ts 6= Tt andDs 6= Dt. In
our case, the source problem is represented by the colorization task while
the skin detection represents the target. In order to fatherly increase the
probability of successfully implement transfer learning the source task was
slightly modify in order to move closer to the target one. In particular
instead of solving the colorization problem for any kind of input images
only images depicting human faces had been chosen. This implies that, the
colorization network described in Sec. 4.2.1 instead of being trained on a
generic image dataset, such as Imagenet [25] as done in [9], needs to be
trained on an appropriately chosen dataset. The same loss function and op-
timization algorithm as the ones described in the original work were used,
i.e. mean square error, between the ground truth color image and the one re-
constructed by the network, and Adam Optimizer [56] respectively; further
information on the colorization network training are reported in Sec. 4.2.1.

The dataset Labeled Face in the Wild (LFW) [42] was chosen in order
to perform the colorization training step. This is a public benchmark for
numerous computer visions tasks related to human faces. Although this
dataset does not contain an equal number of samples for each ethnic sub-
groups it was considered appropriate especially for the pretraining process.
It contains more than 13,000 images of faces collected from the web [42].
All the images in this dataset are obtained in an uncontrolled environment
with variations in lighting, pose and in presence of occlusions so the names
"Faces in the wild". Some example of images contained in LFW are re-
ported in Fig. 4.3. In order to increase the number of samples the horizontal
flipped version of each image was added, doubling the sample size reach-
ing over 26,000 images (in this case horizontal flipping is a safe techniques
given the symmetry of a human face). Even if this number is less then the
number of training samples used in [9] considering that the task is more
limited it is enough to train the face colorization network.

In order to perform the colorization network training step, the colored
images were used as the desired ground truth output while a grayscale rep-
resentation of them were used as the network input. The model was trained
exploiting the implementation described in the original paper [9] which is
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Figure 4.3: Samples of images extracted from the Labeled Face in the Wild [42] dataset
and used to train the colorization network.

implemented using synergistically Keras [22] and Tensorflow [1]. After
performing the training of the face colorization method, the shared lay-
ers between the two networks (the ones colored in blue in Fig 4.2) were
frozen (i.e. set to not trainable) and their weights value set to the corre-
sponding one obtained from the colorization training step described above.
The other ones were randomly initialized. The network was trained using
Keras [22], with Tensorflow [1] as backend, with the Adam Optimization
algorithm [56] and a learning rate of 0.0005. The loss function and the
datasets used are described in Sec. 4.2.3 and Sec. 4.2.4 respectively. After
a sufficient amount of epochs, 50, a fine tuning step was finally performed
in which all the layers were trained on the whole dataset and using the same
training conditions, for an additional 100 epochs on the same training set.
The following list recap the adopted transfer learning training procedure.

Transfer learning training procedure

1. The colorization architecture described in Sec. 4.2.1 was trained using
a set of more than 26,000 face images.

2. The initial training of the skin detection method described in Sec. 4.2.2
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was performed on data described in Sec. 4.2.4 keeping frozen the val-
ues of layers weight shared with the face colorization network.

3. The complete skin detection network was trained with a smaller learn-
ing rate in order to fine tune the network performances.

Loss function

The loss function is a key component in the training phase. In particular
different choice of it could steer the optimized method to a particular di-
rection selecting some characteristics instead of others. On the other hand,
the mean square error could be sufficient in order to train the network to
perform the skin segmentation task. Furthermore, considering the main
motivation that drives the building of this network (i.e. the rPPG applica-
tion described in Sec. 4.1), false negative and false positive errors should
not equally weighted in the computation of the loss function. In particular,
in order to estimate the heart rate of a subject, it is not strictly necessary to
consider all visible skin pixels whilst, on the other hand, labeling as skin a
pixel depicting other tissues or materials could have an important negative
impact on the final estimation. For this reason, given a predicted mask ŷ
obtained applying the proposed network to an input grayscale image x hav-
ing a ground truth mask y with elements yij ∈ {0, 1}, we define the loss
function as:

E(ŷ, y) =
∑
ij

(yij − ŷij)2(α · yij + (1− α)(1− yij)) (4.3)

Where α ∈ [0, 1] is a parameter introduced in order to make E asymmetric.
We choose a value for α smaller than 0.5, e.g. 0.4, in order to penalize false
positive errors (i.e. ŷij = 1 with yij = 0).

4.2.4 Dataset creation

To the best of our knowledge, there was no dataset available specifically
created for the purpose of solving the facial skin segmentation problem.
Some skin detection dataset exists, e.g. [110], but they feature images with
multiple people and annotations with other body parts. This made them
related to a task substantially different in respect to the problem defined in
Sec. 4.1, which made them not usable for this particular problem. Moreover
the number of images in this dataset is extremely low, e.g. 78 images are
present in [110], and insufficient to train deep learning methods. For this
reason, we choose to adapt two already existing datasets, proposed for other
purpose, i.e. MUCT [77] and Helen [124], consisting of RGB face images
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annotated with landmark locations, in order to produce facial grayscale im-
ages associated with skin masks. In particular, both datasets provide diver-
sity in lighting, pose, age and ethnicity of the subjects. Moreover, the ones
appertaining to the MUCT dataset are acquired in a controlled environment
whilst the Helen ones are captured in the wild. A more detailed description
on the processing performed on the two dataset is described in the follow-
ing sections (Sec. 4.2.4 and Sec. 4.2.4 for the MUCT and Helen datasets
respectively).

MUCT dataset

As described in [77], the MUCT dataset consists of 3755 images (each one
with a resolution of 640x480 pixels) captured from 276 subjects. Each
image depicts a single face with a homogeneous blue background and it
is associated with the pixel coordinates of 76 manually annotated facial
landmarks. This dataset includes students, parents attending graduation
ceremonies, high school teachers attending a conference, and employees
of the University Of Cape Town university such as cleaners and security
personnel [77]. A wide range of subjects was photographed, with approxi-
mately equal numbers of males and females, and a cross section of ages and
races [77]. During the photo acquisition, in order to increase the dataset
variety, five different camera views and three different lighting sets were
used. It’s one of the most used benchmark dataset for facial landmark detec-
tion [77], [131], especially with images taken in controlled conditions. The
landmarks provided are relative to the lower face contour, eyes, eyebrows,
nose and mouth. Starting from these landmark positions, for each image, a
mask is produced considering a filled polygon shape with corners given by
the jaw/chin contour points and the eyebrows upper contour. The definition
of these landmarks is identical as the 68 points used in XM2VTS [75], plus
4 extra points around each eye [77]. The position of landmarks obscured
by hair or glasses was estimated by the human landmarker while those that
were obscured, in three-quarter view, behind the nose or side of the face
were marked as unavailable [77]. Finally, for each image, the position of
all landmarks were carefully checked by a third party [77].

Adapting MUCT to the skin problem

In Fig. 4.4 all the major steps performed in order to adapt the MUCT dataset
to the facial skin detection task are reported. In particular in Fig. 4.4 (a) the
original data in the MUCT dataset are represented (image coupled with 76
facial landmarks). In Fig. 4.4 (b) the first step is represented in which, ex-
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Figure 4.4: Steps involved in the adaptation of the MUCT dataset. (a) Original data
in MUCT (image and landmarks). (b) Face region. (c) Eyes, eyebrows and mouth
removal. (d) Forehead addition. (e) Facial Hair removal. (f) Glasses removal. Phases
(e) and (f) are executed only on male and people wearing glasses respectively.

ploiting the labeled coordinate of each of the 67 landmarks, all the facial
region is selected. Subsequently in Fig. 4.4 (c) the position of the eyes’,
eyebrows’ and mouth’s contours are easily estimated, using the correspond-
ing landmarks position. These regions are then consequently removed from
the mask being not related to facial skin. Unfortunately, as in the majority
of facial landmark datasets (e.g. PUT [53] and BioID [48]), no upper face
contour annotation is provided in this dataset (skin/hair contour). In order
to extend the obtained skin masks to the forehead region the second step
reported in Fig. 4.4 is performed. In particular, a color similarity method
has been used, exploiting the RGB channels information. It is important to
notice that the color information is indeed available in this preprocessing
step involved in the creation of the dataset but is not available in the net-
work training step. In particular, a rectangular region above the eyebrows
is considered; each pixel in that region is then clusterized in 3 different sets
using a K-means algorithm and adopting the Euclidean distance in the RGB
space. In other words, only the pixels belonging to cluster S are added to
the skin mask, where S is defined as:

S = arg min
i=1,2,3

‖Cs −Ci‖2 (4.4)

Where Cs ∈ R3 is the average RGB color value in the skin region found
in the first step and Ci ∈ R3 are the centroids of the K-means clusteriza-
tion for each of the three clusters, i = 1, 2, 3. This operation is performed
so the pixel belonging to the hair or other occluding objects are rejected.
The results of this step is depicted in Fig. 4.4 (d). This method, being au-
tomatic and based on color similarity, inevitably introduces some errors in
the pixel labeling and produces worse results compared to manual anno-
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tation, which is unfortunately unavailable due to the large dataset sample
size. The next operation described in Fig. 4.4 (e) regards the removal of
beard and facial hair from the skin region. Since in the original dataset
facial hair is not labeled, in order to remove it from the mask a similar ap-
proach to the one adapted for the forehead region is performed considering
the lower part of the face region. This operation is performed only on male
subjects since the gender labels are available in the MUCT dataset. Lastly,
in this dataset, a binary information on the presence of glasses is provided
although their position inside the image is not available. In order to remove
the glasses region from the mask the third stage in depicted in Fig. 4.4 (f) is
performed. In particular, two rectangles of fixed size and centered around
the eyes are subtracted from the mask. All the images in the MUCT dataset
are processed with the described method and for each one of them the cor-
responding skin mask is created.

Helen dataset

The Helen dataset [61] features 2330 high quality, real world photographs
of a large variety of people. These dataset was introduced in 2002 gathering
images from Flickr using specific general search terms, such as "portrait",
"boy", etc. [61]. Using an automatic face detection method high resolution
images were generated centered around each found face. The faces with
insufficient pixel resolution were discarded. The kept images were cropped
around each face obtaining more than 2000 pictures with varying resolution
resolution (from less than 1 Mpixel up to 12 Mpixel). The Helen dataset
is composed by 2000 training images and 330 additional testing images
which do not include any subject from the training dataset [104]. Multiple
annotations using this dataset were proposed over the years [61], [124] us-
ing different densely annotated facial landmarks configurations. Moreover
it has been used for face parsing works [104] in which an accurate face
segmentation annotation for different part of the face has been provided.
In this particular, the authors of [104] automatically generated ground truth
eye, eyebrow, nose, inside mouth, upper lip, and lower lip segments using
similar techniques to the ones described in Sec. 4.2.4. Since this automatic
segmentation methods could lead to some labeling errors, in order to pro-
vide more fair results, the authors of [104] manually annotated a subset of
the 300 test images.

72



4.2. Methods

Adapting Helen to the skin problem

The masks needed for the skin segmentation problem are simply built com-
bining different segmentation regions given in [104]. Unfortunately, in the
Helen dataset many images feature more than one visible face while just
one face is annotated in each image. Training our skin detection method on
this data could compromise its performances due to a not consistent anno-
tation. In order to avoid this problem a simple state of the art face detector
algorithm [117] is run on each image included in the dataset. Since even in
presence of multiple faces the ground-truth annotation is always related to
just one of faces a new image was created cropping the original images in a
region centered around the annotated face. This step, being performed au-
tomatically, introduces inevitably some errors. Lastly, also in this dataset,
a facial hair annotation is unavailable and the same method used for the
MUCT dataset was implemented in order to remove beard regions from the
masks.

Complete dataset

The complete dataset is built merging the two datasets obtained as described
above resulting in roughly 6000 grayscale face images (converted from the
original RGB images) each associated with a skin labeling mask. More-
over, in order to better approximate the test conditions (images coming
from low spatial resolution devices, such as SPAD cameras) the grayscale
images were downsampled to 64x64 adding black border if necessary. The
training/testing data split was obtained selecting 100 images (50 for each
original dataset, randomly selected from MUCT and selected in the same
way as in [124] for Helen) for building the testing set. In order to ensure fair
skin detection results, all the images belonging to the test set were checked
manually and the annotations were corrected if needed. Subsequently, a
horizontal flipped version of each training image is added in order to per-
form data augmentation. Finally, a validation set is created randomly se-
lecting the 10% of the training set. Some examples of samples drawn from
the final dataset are reported in Fig. 4.5. For example, the first image in the
first row was originally in the MUCT dataset while the second one comes
from the Helen one; the ground truth skin mask is superimposed in pink.

The complete dataset is available for download at the link: https://github.com/marcobrando/
Deep-Skin-Detection-on-Low-Resolution-Grayscale-Images
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Figure 4.5: Example of some images in the created dataset for facial skin detection. The
skin masks are superimposed in pink.
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Figure 4.6: Some examples of results obtained with the face colorization network. The first
raw represents the grayscale input, the second is the image colorized by the network,
the third is the groundtruth color image.

4.3 Results

The proposed method was trained as described in Sec. 4.2.3 using the train-
ing set described in Sec. 4.2.4. In this section some results are reported
highlighting the necessity for the transfer learning approach and the accu-
racy of the obtained method, in Sec. 4.3.2 and Sec. 4.3.3 respectively.

4.3.1 Colorization results

As discussed in Sec. 4.2.3, the required first step in the skin detection net-
work training procedure is training the face colorization. After the face
colorization network, described in Sec. 4.2.2, was trained following the
procedure described in Sec. 4.2.3, the colorization model was run on a
small grayscale facial image testing set, in order to validate qualitatively
its behavior. Some of the obtained results are shown in Fig. 4.6. In partic-
ular, the first raw represents the grayscale test input images, in the second
the images colorized by the network are depicted while in the third one the
groundtruth color images are reported. It can be observed that the model
is able to produce realistic color output especially in the face region, which
is compliant with the goal set in Sec. 4.2.3. These results demonstrate that
the face color auxiliary network is correctly able, not only to detect human
faces inside an image but only to discern, with sufficient precision, different
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Figure 4.7: Loss values during the training. Red lines represent loss values in each epoch
on the training set while blue ones are obtained on the validation one. Dashed lines are
the related to training directly on the skin detection problem with random initialization.

facial parts (such as hairs, eyebrows, mouths, etc.). In almost all the results
reported in Fig. 4.6 the cloths and background color are incorrect since they
are assigned randomly as could be expected due to the randomness of these
elements in uncontrolled conditions. These results are also qualitatively
similar to the ones reported in [9]. No further tests and evaluations where
performed on this step since it represents just the initial step of the training
process and the qualitative results obtained are considered sufficient.

4.3.2 Training with transfer learning

The skin detection network’s learning curves, obtained following the train-
ing procedure described in Sec. 4.2.3, are reported in Fig. 4.7. In particular,
red curves are related to the loss error calculated on the whole training set
while blue ones are obtained on the validation set described in Sec. 4.2.4.
Both values were calculated at the end of each training epoch. As de-
scribed in Sec. 4.2.3, following a transfer learning approach, in the first
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part of the training (first 50 epochs) the majority of the layers are kept
frozen, as described also in Sec. 4.2.2, preserving the weights value in-
herited from the colorization network, trained in a preliminary step as de-
scribed in Sec. 4.2.3. This allow the network to quickly adapt to the skin
detection problem as can be seen in the steep drop in the first part of the
solid red and blue curves reported in Fig. 4.7.

On the other hand, since the colorization and skin detection problems are
related but obviously different, an additional fine tuning step is necessary in
order to further specialize the network to solve the specific skin detection
problem. The effect of the fine tuning is clearly visible in Fig. 4.7, in which
both the solid curves have a sharp decay after the dashed vertical gray line
(fine tuning begin point). The importance of the transfer learning approach
could be also observed in Fig. 4.7, in which the red and blue dashed lines
represents respectively the training and the validation loss obtained with-
out using the colorization network wights as the initialization. In this case
the optimization almost immediately (in just a few epochs) collapses to the
trivial solution of producing a masks with just zero values. The zero output
solution is reached due to the asymmetry introduced in the loss function, as
reported in Sec. 4.2.3. Once the model reaches this local minim point the
training step could not be recovered and the network is not able to converge
to other more interesting solutions. This trivial result is obtained in all the
several training runs executed, regardless of the random initialization and
hyperparameter settings. As can be observed from Fig. 4.7, a two steps
approach, is able to drive the model training to a non trivial solution reach-
ing a more adequate minimum point of the loss function surface. Lastly,
since both the solid lines (validation and training loss) show a stable decay,
no overfitting problems could be observed from the loss and validations
curves.

4.3.3 Skin detection accuracy

After the training process described in Sec. 4.2.3 was completed, the ob-
tained network was run on the test set described in Sec. 4.2.4, obtaining re-
sults able to evaluate the model both qualitatively and quantitatively. These
results are shown in the following subsections.

Quantitative results

The proposed method was tested on the 100 images test set described in
Sec. 4.2.4 resulting in a test loss value of 0.012 obtained between the output
masks (values ∈ [0, 1]) and the ground truth ones (values ∈ {0, 1}). This

77



Chapter 4. Skin Detection on SPAD Camera

Figure 4.8: Skin classification ROC curves obtained with the proposed method on the
complete test set (red), MUCT test subset (green) and Helen test subset (blue).

particular value is close the the validation error obtained in the last epoch
of the training and reported in Fig. 4.7, i.e. last value in the solid blue
line. This shows that the validation set was chosen in a correct way and
represents a correct approximation of the statics of the test set.

ROC curves related to the per pixel skin classification task are reported
in Fig. 4.8. Results on test images originally belonging to the MUCT (green
line) and Helen dataset (blue line) are represented separately. This curves
where obtained by varying the classification threshold (between 0 and 1)
used to binarize the model output. In particular, points in position (0,0)
where obtained using a threshold value equal to 0, points in (1,1) using
a threshold value equal to 1. As can be observed, since the green line is
always above the blue one, the proposed skin detection method achieved the
best results on the test images originally belonging to the MUCT dataset.
This is due to the less variability of the data presented in this dataset, i.e.
controlled conditions while acquiring images, as described in Sec. 4.2.4.
Considering the complete test set curve (red line), the best work point have
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Table 4.2: Comparison between the proposed method and [83] based on intersection over
union and F-score results obtained on MUCT, Helen and complete test set. The second
line show results obtained combining [83] and ground-truth masks in order to exclude
eyes, eyebrows and mouth regions.

IOU F-score
Method MUCT Helen Complete MUCT Helen Complete

[83] 70 56 63 82 71 76
[83] + GT - 62 - - 76 -

Proposed method 78 69 73 87 81 84

a true positive rate (i.e. recall) of 89.8% with just 3.0% of false positive
rate (i.e. fallout). This is achieved thanks to the asymmetrical loss function
defined in Sec. 4.2.3, which penalizes explicitly false positive results.

As explained in Sec. 4.1.1, other methods for facial skin detection on
grayscale low resolution images are rare or no existing. However a quan-
titative comparison between the proposed method and facial segmentation
ones could be made. In particular we selected the state of the art facial
segmentation method proposed in [83] since as ours it can work with oc-
cluded faces and grayscale input images. Due to the difference in the skin
detection and face segmentation problem definition the masks estimated by
the method proposed and [83] are different by design. In particular the
face segmentation method proposed in [83] produces masks that contain
the eyebrow, eye and mouth regions. In order to fairly compare the two
methods we tested also the accuracy of [83] combined with ground-truth
information of these regions. In particular we removed from the mask ob-
tained from [83] the ground-truth mask of the unwanted regions. This could
be done since the positions of those regions were available since they were
used in order to generate the skin dataset (Sec. 4.2.4). The operation of
combining [83] and groundtruth information for eyebrow, eye and mouth
regions assumes a perfect estimation of them by [83]. On the other hand, in
this comparison no groundtruth information was used in order to enhance
the accuracy of the proposed skin detection method. We compared the
three methods (the one proposed by us and the one in [83] not using or us-
ing ground-truth information) adopting the Intersection Over Union (IOU)
and F-score metrics. In particular the F-score, also known as F1 score or
F-measure, is defined as the harmonic mean between precision and recall
which is also equal to:

F1 =
tp

tp + 1
2
∗ (fp + fn)

(4.5)
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Where tp,fp,fn are the true positive, false positive and false negative re-
spectively. On the other hand IOU is a commonly used metric in object
detection tasks and it is defined as:

IOU =
AI

AU

(4.6)

Where AI , AU are respectively the measures of the area of intersection
and union between the ground truth mask and the one estimated by the
considered method; the value 0.78 which correspond to 200 in a 8-bit un-
signed integer representation, was used in order to binarize the proposed
method results. The results obtained are summarized in Tab. 4.2; as can
be observed the proposed method outperforms [83] even when using the
ground-truth information for the eyes, eyebrows and mouth regions. The
proposed method produces more accurate results achieving a IOU of 73%
and an F-score of 84% on the complete test set.

Qualitative results

Some qualitative results with various images originally belonging to the
test set are shown in Fig. 4.9 and Fig. 4.10, where the returned skin mask is
superimposed to the input image using a pink color. Fig. 4.9 reports some
results on images originally belonging to the Helen dataset while Fig. 4.10
shows other results using images initially in the MUCT dataset. As can
be observed, the proposed skin detection method is able to produce qual-
itatively good results even in presence of non frontal faces (e.g. last row
in Fig. 4.10), in-plane rotation (e.g. fifth row second column in Fig. 4.9),
different head shapes and sizes (e.g. second row last column vs first row
third column both in Fig. 4.9), expressions (e.g. forth row first column in
Fig. 4.9), hair occlusions (e.g. second row first column in Fig. 4.9), glasses
(e.g. second row third column in Fig. 4.10) and other wearable objects (e.g.
forth row third column in Fig. 4.9). The beard is not always properly re-
jected, especially if it has an intensity similar to the subject skin (e.g. in
the second row forth column in Fig. 4.9 beard is removed while second
row third column in Fig. 4.10 it is not). This is probably due to some er-
rors introduced in the automatic beard removal step in the training dataset
described in Sec. 4.2.4.

Having a small generalization error [47], is one of the most import fea-
ture of supervised learning methods and it is often overlooked [47]. In par-
ticular, many deep learning methods show very accurate results when tested
on data relatively similar to ones in the training set but fail to maintain the
same performances on new data. For this reason, in Fig. 4.11 some masks
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Figure 4.9: Some qualitative results obtained using images in the test set originally be-
longing to the Helen dataset.

obtained with the proposed method are superimposed to some input images
acquired by the SPAD array camera. These results are particularly promis-
ing since their origin is very different to ones of the images that composed
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Figure 4.10: Some qualitative results obtained using images in the test set originally
belonging to the MUCT dataset.

the training and testing dataset, they are even acquired with a different tech-
nology. As can be seen in Fig. 4.11, the network is able to generalize and
produce good quality results even on images acquired in different condi-
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Figure 4.11: Qualitative results on three face images acquired by the SPAD camera.

tions compared to the training dataset, and even in presence of different
expressions, poses and heavy occlusions. This also demonstrate that over-
fitting was avoided during training since pour accuracy on new data is often
caused by that.

4.3.4 Real time performance

We evaluated the time performance of our method executing it on the test
set described in Sec. 4.2.4 achieving an execution time of 6.6 milliseconds
for each image corresponding to 152 fps. We obtain this result with a Ten-
sorflow [1] implementation of the network and executing it on a Nvidia
Titan Xp® GPU.

4.3.5 Hidden layer output visualization

In Fig. 4.12 a visualization of the knowledge acquired by the network is re-
ported. In particular, Fig. 4.12 visualizes the output of the decoder’s second
hidden layer when the network is run on an image acquired by the SPAD
camera, the same picture on the left in Fig. 4.11. This particular hidden
layer has been chosen due to its relationship with high level features. Al-
though some more sophisticated visualization techniques exist [88], simply
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Figure 4.12: Visual representation of the activations of the second hidden layer in the skin
detection decoder stage when tested on a face image acquired by the SPAD camera.

visualizing each filter output for a particular hidden layer can give informa-
tion on what kind of feature are extracted and used in that specific layer. As
can be observed, after the training is completed, some filters of this layer
specialized in detecting same particular facial features relevant for the skin
detection problem, e.g. eyes (forth and sixth columns on fifth row), the
hair (second column on third row), the background (sixth column on first
and second rows) the face contour (fifth column on first row) and finally
the skin (sixth column on third row, first column on fifth row and fifth col-
umn on seventh row). The information produced by this layer appear to be
redundant increasing the robustness of this method.
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4.4 Discussion and conclusions

In this chapter, we presented a Deep Learning based method proposed in
order to solve the facial skin detection problem on low-resolution grayscale
images, motivated by the use of SPAD cameras in a rPPG application (as
described in Sec. 4.1). The low spatial resolution (64x64 pixels) coupled
with the unavailability of color information (grayscale images) made this
task particularly ambitious. Analyzing the state of the art of similar prob-
lems, in Sec. 4.1.1, we showed the peculiarity of the proposed task and
how, to the best of our knowledge, the method described in this work is
the first being proposed specifically to solve the specific task of facial skin
detection.

Given the similarity between this problem and a semantic segmentation
one, and the good accuracy achieved by neural network methods in this lat-
ter field, a Deep Learning based method was chosen. On the other hand,
these kind of methods need massive amount of data to be trained on. Since
the facial skin detection problem, tackled in his chapter, is very specific
unfortunately only a limited amount of data are available for this specific
problem. For this reason a transfer learning approach was adopted in the
training phase. In particular, the proposed network architecture was cho-
sen in order to have the majority of layers in common with a convolutional
neural network proposed to solve the grayscale images colorization prob-
lem [9]. These apparently different problems are in reality tightly linked
as a colorization method, in order to work on face images, must (implic-
itly) solve the skin detection problem, since it needs this information in
order to color in a correct way pixels depicting skin regions. On the other
hand, since the skin detection problem is only a small sub-task in respect to
the colorization one, the proposed network was significantly simplified, as
shown in Sec. 4.2.2. Further information about the similarities between the
skin detection and colorization problems are described in Sec. 4.2.2.

As discussed in Sec. 4.2.3, in order to exploit the maximum amount of
knowledge possible gathered from the colorization problem, a three step
transfer learning strategy was adopted. Firstly the colorization method was
trained on a large dataset of unlabeled face images. This was done in order
to drive the preliminary method into the specific domain of face image anal-
ysis. The proposed skin detection network was subsequently trained start-
ing from the colorization network weights and minimizing an asymmetric
loss function, described in Sec. 4.2.3, on a novel constructed dataset. This
was done in two consecutive steps in order to train new and already trained
layers at two different speed. In Sec. 4.2.4 the training dataset, containing
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more than 6000 labeled training images and 200 labeled test images, was
described, detailing also all the operations performed in order to adapt the
two existing and freely available datasets (MUCT [77] and Helen [124]) to
the specific skin detection problem.

Lastly in Sec. 4.3.2 the proposed training procedure has been justified
showing that, without using it, it would be not be possible to train the pro-
posed network with the few data available. In particular Fig. 4.7 shows that
the adapted training procedure is able to avoid overfitting since the valida-
tion error does not increase over the training epochs. Moreover, Fig. 4.11
demonstrate that evaluation of the model on new images produces quali-
tatively good results, reiterating the absence of overfitting in the training
process. In addition, in Sec. 4.3.3 some quantitative results were reported
providing accuracy evaluation for the proposed skin detection method and
showing comparisons with a state of the art face segmentation method. In
particular the proposed method is able to outperform [83] in the specific
task of facial skin detection on low resolution grayscale images, even when
GT information where integrated to [83]. Moreover, in Sec. 4.3, many skin
detection outputs were shown for both images acquired in similar condi-
tions with respect to the ones used to built the training set and for images
completely independent from the training set, acquired with the SPAD cam-
era. Both these results show how the proposed method is able to achieve
quantitative and qualitative good results in the skin detection problem even
in presence of different poses, ages, expressions, ethnicity, wearable objects
and other occlusions.

In evaluating the proposed method on multiple test images, it could be
notice that some labelling errors still occurs especially in presence of beard,
glasses and other occlusions. This is due to the fact that the training dataset
was automatically annotated using color similarity to label this kind of oc-
clusions and this inevitably introduces some errors. Moreover, the proposed
solution could also benefit from some more advance deep learning archi-
tectures, such as U-Net [91], exploiting the good starting point achieved
by the presented method. Another idea for future development is to im-
prove the skin detection accuracy considering more than just one frame
since, in many applications including rPPG, a stream of frame is available.
In this case a Recurrent Neural Network (RNN) [31], such as LSTM [40]
and GRU [21], could integrate the current CNN architecture achieving the
required result.

The main part of this chapter was published as a journal article in
Volume 131 on March 2020 (pages 322-328) of Pattern Recognition Let-
ters [132]. Moreover, the complete facial skin dataset created by the author
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of this work and the trained skin detection model are available at the fol-
lowing link https://github.com/marcobrando/Deep-Skin-
Detection-on-Low-Resolution-Grayscale-Images.
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CHAPTER5
Fast skin detection on SPAD camera

images

SCOPE & AIMS: The scope of this chapter is to propose an automatic
method able to solve the problem of detecting skin pixels in grayscale
low resolution face images efficiently and in real-time even when run
on hardware with limited computing capabilities.

METHODS: The Convolutional Neural Network model described in
Chapter 4 was optimized and modified in order to adapt to the com-
putational requirement. A transfer learning approach was adopted in
order to exploit the knowledge already present in the original network.

RESULTS: Quantitative and qualitative results show the proposed method
adequately is able to outperform the accuracy of the method intro-
duced in Chapter 4. Execution time measurements also show that the
proposed method is able to run in real-time on a small single-board
computer.
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5.1 Problem description

As described in Chapter 1, the main contribution of this work is to explore
the possibility of performing rPPG using SPAD camera with the ultimate
goal to have a compact system able to monitor in real time the health con-
dition of the driver in an automotive scenario.

As reported in Chapter 4, skin detection is an important preliminary task
in rPPG applications, especially when the imaging device used is very lim-
ited in spatial resolution, as SPAD cameras are. The Deep Learning based
method described in Chapter 4 is able to achieve good qualitative and quan-
titative results as show in Sec. 4.3.3. Moreover, as reported in Sec. 4.3.4,
this method is able to achieve real-time performances when tested on a
Nvidia Titan Xp® GPU using a Tensorflow implementation. These kinds of
GPU are widely used for computer vision applications and are beginning
to be implemented also in many different industrial area such as for exam-
ple automotive (Mercedes, Tesla, Toyota and many others are producing
cars equipped with them or will do so in the near future). Although these
devices are powerful they are also expensive and there exists scenarios in
which this high computational power is simply not available. Moreover, it
needs to be taken into consideration the fact that self-driving cars need to
solve a plethora of different visual related problems: simultaneous localiza-
tion and mapping (i.e. SLAM) problems, pedestrian detection, road signal
recognition and so on. In addition to that all the other non-visual related
problems constantly need to be addressed (such as actuators management,
energy consumption, processing signals coming from all different sensors,
etc.). For these reasons, it could be useful to have a method able to solve
the skin detection problem that could achieve real time performances even
when running on much more affordable and less powerful hardware. The
main goal of this chapter is to propose and describe a much faster method
able to analyze in real time frames coming from the SPAD camera working
with this limited hardware. Moreover the new method must be connected to
the one described in Chapter 4 in order to exploit the knowledge acquired
by that particular model and must not comprise to much the accuracy in
favor of computational speed.

The rest of the chapter is organized as follows: in Sec. 5.1.1 a brief
description of the hardware used in order to implement the skin detection
method is given; in Sec. 5.2 the proposed method is described explaining
the main component used in Sec. 5.2.1 and its architecture Sec. 5.2.2; in
Sec. 5.2.3 the training procedure that exploit transfer learning is illustrated;

https://www.nvidia.com/en-us/self-driving-cars/partners/
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Figure 5.1: Hardkernel Odroid-XU4 board

qualitative and quantitative results are shown in Sec. 5.3.1; in Sec. 5.3.2
the real time performances of the propose method are shown and finally in
Sec. 5.4 the contribution of this work are highlighted.

5.1.1 Materials

In order to evaluate the time performances of the proposed skin detec-
tion method a Hardkernel Odroid-XU4, depicted in Fig. 5.1, was used.
This is a small but powerful single-board computer equipped with a Sam-
sung Exynos5422 Cortex™-A15 2Ghz and Cortex™-A7 Octa core CPU,
Mali-T628 MP6 GPU and 2Gbyte of RAM. These kind of single board-
computer are commonly used in many other Computer Vision works such
as [134], [128] and [129].

5.2 Methods

In this section the main strategy for reducing the number of parameters of
the network, thus increasing its speed, is described. The complete network
architecture is also described along with the training procedure.

5.2.1 Depthwise separable convolution layers

In order to reduce the network complexity (i.e. the number of parameters),
depthwise separable convolution layers have been adopted. This kind of
layer was firstly introduced in [41] and can drastically reduce the number

https://wiki.odroid.com/odroid-xu4/odroid-xu4
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Figure 5.2: Differences between depthwise separable convolution layers and traditional
convolution ones.

of parameters by substituting each traditional full convolution layer with a
depthwise convolution followed by 1 × 1 convolution called a pointwise
convolution. While a standard convolution in a single step both filters
and combines inputs into new outputs, the depthwise separable convolu-
tion splits this into two consecutive steps, a separate layer for filtering (i.e.
depthwise convolution) and a separate layer for combining (i.e. pointwise
convolution). The differences between this two different kind of convolu-
tion layers are highlighted in Fig. 5.2.

Let F be aDF×DF×M feature map (assumed spatially square for sim-
plicity) which is the input of a traditional convolution layer having as output
a feature map G with the same spatial dimension as F (i.e. stride equal to 1
for simplicity) andN channels, i.e. the dimension of G isDI×DI×N . The
size of the traditional convolution layer’s kernel K is DK ×DK ×M ×N ,
where DK is the spatial dimension of the kernel itself (assumed also to be
square for simplicity) while M and N are defined previously. Following
the definition of convolution, each element of the output feature map G is
then obtained as:

Gk,l,n =
∑
i,j,m

Ki,j,m,n · Fk+i−1,l+j−1,m (5.1)

So the computational cost of a traditional convolution layer is:

CC = DK ·DK ·M ·N ·DF ·DF (5.2)

Where both the number of input and output channels, N and M respec-
tively, the kernel and feature map spatial dimensions, DK × DK and
DF ×DF respectively, appear as multiplicative factors. On the other hand,
by adopting a depthwise separable convolution, the operation of filtering
and combination between channels are splits in two consecutive steps. The
first step, depthwise convolution with one filter per input channel, can be
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represented by the following equation:

Ĝk,l,m =
∑
i,j

K̂i,j,m · Fk+i−1,l+j−1,m (5.3)

where K̂ is the depthwise convolution kernel with size DK ×DK ×M and
it is utilized on F so the mth filter in K̂ is applied to the mth channel of
F to produce the mth channel of the filtered output feature map Ĝ. The
computational cost of a depthwise convolution layer is:

CD = DK ·DK ·M ·DF ·DF (5.4)

It could be notice that in respect to traditional convolution layer, depthwise
convolution layer are much faster since the multiplicative termN is present
in CC but not in CD. On the other hand, while using when using a traditional
convolution layer the output of each channel is determined by all the other
channels, while adopting depthwise convolution the output of each channel
is independent from the other ones. For this reason, the second step is ap-
plied which is just a linear combination the output (pointwise convolution).
The computational cost of the pointwise convolution layer is just:

CP = DF ·DF ·M ·N (5.5)

So the total computational cost of a depthwise separable convolution layers
is obtained summing CD and CP and is equal to:

CS = CD + CP = DK ·DK ·M ·DF ·DF +DF ·DF ·M ·N (5.6)

So the cost reduction of substituting a traditional convolution layer with a
depthwise separable convolution one is calculated as:

CS
CC

=
DK ·DK ·M ·DF ·DF +DF ·DF ·M ·N

DK ·DK ·M ·N ·DF ·DF

=
1

N
+

1

D2
K

(5.7)

Obtaining a huge speed and computational improvement especially when
N and DK are large values.

Obviously being depthwise separable convolution cheaper, in term of
number of parameters, in respect to traditional convolution they are also
less powerful. On the other hand results reported in [41], and many other
recent works such as [26] and [55], have proven that network that uses this
kind of layers can achieve good accuracy results in many different applica-
tions and scenarios.
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Figure 5.3: Skin detection network architecture using depthwise separable convolution
and skip connections. Blue arrows represent depthwise separable convolution while
green arrows represent traditional convolution.

5.2.2 Network architecture

As reported in Fig. 5.3, the architecture of depthwise separable convolution
version of the skin detection network is quite similar to the one proposed
in Chapter 4 but there are two main differences. The first one is that where
blue arrows are shown in Fig. 5.3, the hidden layers are obtained by the
adoption of depthwise separable convolution instead of traditional ones.
This means, as described in Sec. 5.2.1, that each blue arrow represent the
concatenated use of depthwise convolution (with ReLu nonlinear function
and batch normalization as in [41]) and pointwise convolutions (also fol-
lowed by ReLu nonlinear function and batch normalization as in [41]). On
the other hand, green arrows represent convolution layers followed by ReLu
activation functions. The activation function of the last layer, as in the ar-
chitecture described in Chapter 4, is a sigmoid in order to produce output
values between 0 and 1 representing a skin probability map.

The other difference respect to the skin detection network described in
Chapter 4, is in the use of skip connection. Skip connections, firstly intro-
duced in [35], could be implemented in different ways but the basic idea
is to propagate information inside the network by adding connections be-
tween non consecutive layers. This operation has been introduced in order
to help the training stage [35]. These kinds of connections are trivial ones
as adding together the values of two hidden layers (with the same shape,
i.e. spatial size and number of channels) or concatenating them (they must
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have the same spatial size). As can be observed from Fig. 5.3, in the chosen
architecture both these techniques have been used.

The overall shape of the network is quite similar to the one described in
Chapter 4. In particular also in this network a decoder and encoder struc-
ture is adopted. The main difference is in the adoption of skip connection
which makes easier the propagation of the information between these two
consecutive steps. Another difference is the adoption at the end of a very
simple result enhancer part of the network represented by the last two tra-
ditional convolution layers. The main idea behind the adoption of these
layers is to use two small additional layers in order to enhance the accuracy
of the mask obtained after the decoding step by using the more powerful
traditional convolutions. These additional final layers could be viewed also
as denoising layers which are able to adapt the estimated mask by compar-
ing it directly to the original face input (thanks to the concatenation with
the initial layer). The total number of parameters in this model is just 120
thousands while the architecture proposed in Chapter 4 has more than 6.2
millions, this means that the network depicted in Fig. 5.3 is roughly 50
times smaller.

5.2.3 Training procedure

The same skin detection dataset created as described in Chapter 4 was used
in this case. The same training/testing/validation dataset split was adopted
and data augmentation was performed by the means of horizontal flipping.
Since the skin detection problem described in Chapter 4 is identical to the
one faced here, the same custom loss function previously described was
used.

E(ŷ, y) =
∑
ij

(yij − ŷij)2(α · yij + (1− α)(1− yij)) (5.8)

As for the method described in Chapter 4, also in this case, a transfer
learning procedure was adopted. Starting from the trained network ob-
tained as described in Chapter 4 (indicated from this point for simplicity as
ConvNet) , exploiting the similar shapes between the two networks layers,
for each one of the depthwise separable convolution, represented in Fig. 5.3
by blue arrows, an new incremental temporary network was created. In
particular, the first new network was obtained by substituting the first layer
of ConvNet with the first depthwise separable convolution represented in
Fig. 5.3. This operation could be performed since the removed layers and
the added one have the same input and output shape. This first obtained
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hybrid network was then trained for 10 epoch by keeping frozen all the al-
ready trained layers and using a random initialization for the new one. This
operation effectively force the newly introduce layer (with less parameters)
to approximate the behavior of the removed one (with more parameters).
This operation is performed for each depthwise separable convolution layer
described in Fig. 5.3 each time starting from the previously obtained net-
work and substituting the corresponding layer (or layers) with the new one.
This process smoothly transform the original ConvNet into the one reported
in Fig. 5.3, with the exception of the two last traditional convolution lay-
ers. Since these two do not have corresponding ones in ConvNet, they are
simply added at the end using random initialization. The last step of the
training procedure is the introduction of the additive skip connections and
a final optimization of all the layers for an additional 50 epochs. The net-
work was trained using Keras [22], with Tensorflow [1] as backend, with
the Adam Optimization algorithm [56] and a learning rate of 0.0005. The
transfer learning operations described above are summarized below.

Training procedure
1. Starting from the trained ConvNet, each depthwise separable convo-

lution layer is introduce incrementally in order to substitute the corre-
sponding traditional layer performing the following operations.
For each depthwise separable convolution layer do:

(a) Substitute the corresponding traditional convolution layer with
the new depthwise separable convolution one

(b) Froze the value of all the other layers
(c) Train for 10 epochs

2. Add the last two convolution layers and the skip connections and train
the whole model for 50 epochs.

5.3 Results

The proposed method was trained as described in Sec. 5.2.3 using the train-
ing set described in Sec. 4.2.4. In this section some results are reported
highlighting the accuracy of the obtained method.

5.3.1 Skin detection accuracy

After the training process described in Sec. 5.2.3 was completed, the ob-
tained network was run on the test set described in Sec. 4.2.4, obtaining re-

96



5.3. Results

Figure 5.4: Skin classification ROC curves obtained with the method described in Chap-
ter 4 (ConvNet in green), the method that uses depthwise separable convolution but no
skip connections (SepConvNet in blue) and the one that makes use of both (ResSep-
ConvNet in red).

sults able to evaluate the model both qualitatively and quantitatively. These
results are shown in the following subsections.

Quantitative evaluation

ROC curves related to the per pixel skin classification task are reported in
Fig. 5.4. In this image three different skin detection methods are compared.
The first one is the one described in Chapter 4, called ConvNet and repre-
sented by the green line, the second one is very similar to the one described
in Sec. 5.2.2 but without skip connection, indicated as SepConvNet and
represented by the blue line, while the third one is the complete network as
described in Sec. 5.2.2 that makes use of both depthwise separable convolu-
tion and skip connection and trained as described in Sec. 5.2.3 (ResSepCon-
vNet in red). A random classifier is also reported as the gray dashed lines.
As can be observed, both the red and blue lines are always above the green
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Table 5.1: Comparison between the method described in Chapter 4 (ConvNet), the method
in [83] with or without using ground-truth information, and the two method that make
use of depthwise separable convolution layers (with or without residual connections,
ResSepConvNet and SepConvNet respectively).

IOU F-score
Method MUCT Helen Complete MUCT Helen Complete

[83] 70 56 63 82 71 76
[83] + GT - 62 - - 76 -

ConvNet 78 69 73 87 81 84
SepConvNet 77 71 74 86 83 85
ResSepConvNet 83 79 81 90 88 89

line, so in the per pixel skin classification task of both the smaller models
(SepConvNet and ResSepConvNet) are able to reach higher true positive
rates fixing the same false positive rate as the original model (ConvNet).
This is an important results that shows that not always a larger model, that
have a much higher approximation capability, is able to outperform models
with less parameters. By reducing the dimension of parameter space, the
training optimization algorithm was able to find a better local minimum in
respect to the one fund in Chapter 4. Fig. 5.4 also show the importance
of skip connections which are able to further increase the accuracy of the
proposed method. By analyzing the ROC curve related to the best model
(ResSepConvNet, red line in Fig. 5.4) it could be noticed that 90% of true
positive rate (i.e. recall) is reached with just 1% of false positive rate (i.e.
fallout), and 95% of true positive rate correspond to roughly 2% of false
positive rate.

Moreover, the SepConvNet and ResSepConvNet have been quantita-
tively compared using the Intersection Over Union (IOU) and F-score
metrics already described in Sec. 4.3.3. Results obtained are reported in
Tab. 5.1, in order to produce this results the best work point (i.e. classifica-
tion threshold) for each model was selected from Fig. 5.4. In this table re-
sults related to the method described in [83] are also reported. Moreover the
second line is related to the same method enhanced with ground truth infor-
mation for eyebrow, eye and mouth regions as explained in Sec. 4.3.3. The
performance of the method described in Chapter 4 are reported in the third
row. Both IOU and F-score results are reported for the complete test set
and images of it originally belonging to the MUCT and Helen datasets, as
explained in Sec. 4.3.3. As can be observed from Tab. 5.1, and as expected
from the results shown in Fig. 5.4, ResSepConvNet outperforms SepCon-
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Figure 5.5: Collection of skin masks obtained using the model ResSepConvNet on test
images. For each image the corresponding mask is superimposed in pink color.
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Table 5.2: CPU Execution time comparison.

ConvNet ResSepConvNet

FPS 12.4 15.8

vNet, ConvNet and [83], using or not ground truth information, reaching a
IOU of 81% and an F-score of 89% on the complete test set.

Qualitative evaluation

Fig. 5.5 reports the results obtained on the test set described in Sec. 4.2.4.
As can be observed, the model is able to achieve good quality results on all
the input images shown. In particular, the model is always able to correctly
locate the image avoiding also to annotate as skin the mouth, eyes and eye-
brows regions. Moreover, glasses and sunglasses are correctly removed
from the skin region as can be observed in the last result of the second row
and second-last image in the third row. Beard and facial hair are also re-
moved from the skin mask as can be observed from the second-last image
in the third-last row. Comparing this results to the ones reported in Fig. 4.9
and Fig. 4.10 is another indication on the superiority in term of accuracy of
the model described in Sec. 5.2.2 in respect to the one described in Chap-
ter 4.

5.3.2 Real time performance

In order to evaluate the time performances of ResSepConvNet and ConvNet
in limited computational power scenario the Odroid X-U4 ARM board de-
scribed in Sec. 5.1.1 was used. In particular, a simple C++ program was
created in order to evaluate the effective FPS required to run each model.
This program make use of the library frugally-deep which is able to load a
Keras model and run predictions using it. Results in term of frames per sec-
onds are reported in Tab. 5.2. As can be observed ResSepConvNet is 30%
faster than ConvNet while tested on Odroid ARM A15 CPU. Although this
difference is significant it seems apparently smaller than expected given the
considerable differences between the parameters number of the two mod-
els. The difference in the two network topology must be taken into ac-
count, considering that ConvNet is a simple straightforward convolutional
network while in ResSepConvNet skip connection are present which in-
crease the network complexity regardless the number of parameters. The

https://github.com/Dobiasd/frugally-deep
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Figure 5.6: Visual representation of the activations of the hidden layer that follows the
second skip connection in the ResSepConvNet when tested on a face image acquired
by the SPAD camera.

difference is still significant especially in applications which must run with
at least 10 FPS since the adoption of ResSepConvNet could save time that
could be dedicated to other tasks.

5.3.3 Hidden layer output visualization

In Fig. 5.6 a visualization of the knowledge acquired by the ResSepCon-
vNet network is reported. In particular, Fig. 5.6 visualizes the output of
the activations of the hidden layer that follows the second skip connection
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in the ResSepConvNet when the network is run on an image acquired by
the SPAD camera, the same picture used to generate in Fig. 4.12. This
particular hidden layer has been chosen due to its relationship with high
level features and for being the equivalent of the one used in order to gen-
erate Fig. 4.12. As can be observed, after the training is completed, as
for Fig. 4.12 and also in this case, some filters of this layer specialized
in detecting same particular facial features relevant for the skin detection
problem, e.g. eyes (fifth column on second row), the hair (seventh column
on forth row), the background (first column on first row).

5.4 Discussion and conclusions

In this chapter, we presented a Deep Learning based method proposed in
order to solve the facial skin detection problem on low-resolution grayscale
images, motivated by the use of SPAD cameras in a rPPG application. As
discussed in Sec. 5.1, a model that could run in real-time on hardware with
limited computational power could be useful in many situations. In partic-
ular in the automotive domain even if more powerful GPU based computa-
tional power is available, having a compact dedicated solution to the rPPG
problem solution could be the ideal scenario in order to not overload the
main computational unit.

In order to achieve this goal a new Deep Learning based model for solv-
ing the skin detection problem have been proposed. This method is able
to work in presence of low spatial resolution (64x64 pixels) coupled with
the unavailability of color information (grayscale images) as the method
described in Chapter 4. The main difference between the two methods is
the adoption of depthwise separable convolution layer. As described in
Sec. 5.2.1, these kinds of layers are obtained splitting the operation per-
formed in a traditional convolution layer with two consecutive steps of spa-
tial filtering and channel combination. In the same section we show also
how and why this decoupling is able to drastically reduce the number of pa-
rameters. Moreover, the complete network architecture has been described
in Sec. 5.2.2 highlighting the choice made in order to maximally increase
the similarity with the one described in Chapter 4 and the usage of skip
connections.

As discussed in Sec. 5.2.3, in order to exploit the maximum amount of
knowledge possible gathered from the skin detection method described in
Chapter 4, an incremental transfer learning strategy was adopted. Starting
from the model described in Chapter 4 exploiting the similarity between the
two networks, traditional convolution layers are one by one incrementally
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substituted with depthwise separable ones. Ten epochs of training are per-
formed between every substitution. This operation effectively force the new
layers, with smaller amount of parameters, to approximate the much larger
traditional ones. An additional 50 epochs of training were then applied on
the complete network.

Furthermore in Sec. 5.3.1 the proposed model was tested in both pre-
cision and real time performance. In particular Fig. 5.4 shows that the
proposed method is able to outperform the much larger one described in
Chapter 4 also in the skin detection accuracy. This is probably due to the
reduced number of parameters that increased the easiness for the optimiza-
tion algorithm to converge to a better minimum of the loss function. Fig. 5.5
also shows some qualitative results highlighting the precision of the model
in selecting the face region discarding parts not related to the skin. Lastly
in Sec. 5.3.2 the time performances of the method proposed and one de-
scribed in Chapter 4 are compared. In particular the proposed method is
able to achieve realtime performance even when run on a limited compact
single-board computer such as the Odroid XU-4.
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CHAPTER6
Dependable SPAD based rPPG application

SCOPE & AIMS: The main goal of this chapter is to introduce a rPPG
system that, making use of a SPAD camera and an single-board ARM
computer, is able to estimate biometric parameters, such as Heart
Rate, in real time and in a dependable way.

METHODS: A rPPG pipeline is proposed which make use of a Deep
Learning based method for facial skin segmentation and traditional
signal processing techniques in order to estimate biometric parame-
ters.

RESULTS: A set of experiments has been conducted highlighting the ac-
curacy of this method and the beneficial impact of using a Deep Learn-
ing skin segmentation methodology coupled with traditional signal
processing.

PUBLICATIONS: The main part of this chapter was published as a jour-
nal paper [133] and a conference paper [130].
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6.1 Problem description

Being able to constantly check, in real time and without any contact, the
health condition of a person could have a significant impact in many dif-
ferent situations. Possible applications include fitness assessments [103],
medical diagnosis [103] and driver monitoring [130]. The aim of this chap-
ter is to propose a method able to estimate the aforementioned biomed-
ical measurements in real time and in a dependable fashion. Moreover,
this work explores the possibility of adopting a SPAD (i.e. Single-Photon
Avalanche Diode) array camera instead of traditional RGB camera, as done
in most publications in this field, e.g. [103], [93]. In rPPG applications
SPAD’s high precision can accurately measure the intensity variations of
the light reflected by the skin, caused by the blood flowing underneath it.
Conversely, the main drawback of using a SPAD sensor is their low spatial
resolution due to technical limitation. In order to overcome this problem
and use as much spatial information as possible, an ad-hoc deep learning
based method is proposed. Finally, since the rPPG estimation of biomed-
ical measures is related to optical signals that could be affected by noise
some dependability evaluation metrics are also proposed.

More recent publications, i.e. in 2008 [114], show that PPG could
be performed remotely (i.e. rPPG) using ambient light as the optical
source. Many other rPPG focused studies were published shortly after
[24, 46, 82, 93, 94, 115]. Some surveys on the state of the art of this
field could be found in [71, 103, 122] and [34]. While machine learn-
ing techniques are widely used in contact PPG applications [28], recent
works [12, 57, 95] explored the opportunity of using deep learning meth-
ods also in remote PPG applications. All these works completely substitute
the classical signal processing techniques with deep learning ones using an
end-to-end network, as in [12] and [57], or by using two consecutive neural
networks, as in [95]. On one hand, the use of an end-to-end deep learning
model has proven to achieve state of the art results on many computer vi-
sion tasks such as image segmentation, object detection, and many others.
On the other hand, this kind of methods required a massive amount of train-
ing data in order to learn how to extract heart related information directly
from video frames and no prior domain knowledge is incorporated. This
make the performance of this kind of methods tightly linked to the train-
ing dataset and potentially unable to generalize in different setting condi-
tions. Moreover, the complete substitution of classical signal processing
techniques developed using a solid theoretical background (signal filtering,
Fourier transform, etc.) with data driven ones could lead to non-optimal
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Figure 6.1: A concept illustration of the rPPG based driver monitoring system developed
inside the DEIS project.

solutions. For the best of our knowledge no prior work has been done in
trying to combine traditional and deep learning based signal processing in
this field. Lastly, in all the considered studies the cameras used are tradi-
tional RGB cameras.

One of the main aim of this study is to validate the effectiveness of per-
forming rPPG using SPAD camera coupled with a deep learning technique
in order to compensate for low spatial resolution of Single-Photon cameras.
On the other hand, the final goal is to develop a rPPG system for an automo-
tive use case. In particular exploiting, the capability of SPAD camera, the
propose system was developed in order to remotely monitor the health state
of the driver. The idea is to develop an application that could run in real
time on a computational unit equipped on the car that is able to extract the
pulse signal and analyze it in real time in order to consistently monitor the
driver’s health condition. These data could then be used to enable particular
features of the vehicle, such as autonomous driving, that could take control
of the vehicle and avoid some accident in case of detected driver sickness or
altered emotional state. All the acquired parameters could also be transmit-
ted to a cloud based system in order to constantly monitor the health con-
dition and the emotional state of the driver, for example for automatically
activating health service or live remote assistance in case of necessity. An
example of this application is depicted in Fig. 6.1. This task was a part of a
H2020 project that ran from 2017 to 2020 called DEIS, which purpose was
to develop methods in order to asses the dependability of Cyber-Physical

http://www.deis-project.eu/
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Figure 6.2: The proposed rPPG system tested in a driver simulator developed by General
Motors.

Systems. On the described automotive related tasks Politecnico di Milano
jointly worked with General Motors and Ideas & Motion.

The rest of this work is organized as follow: in Sec. 6.2 the hardware
and software components of the proposed method are described. Following
that, in Sec. 6.3 a set of experiments are described in order to evaluate the
proposed method and experimental results are reported. Lastly, in Sec. 6.4
the conclusions of the this work are discussed.

6.2 Methods

A complete system was developed in order to solve the rPPG problem de-
scribed in Sec. 6.1. In particular in Sec. 6.2.1 a complete overview on
the hardware involved in the system is described while in the following
Sec. 6.2.2 and Sec. 6.2.3 all the software processing is described.

6.2.1 System overview

The complete rPPG system is shown in Fig. 6.2. In particular the SPAD
camera in the center of Fig. 6.2 is recording the driver’s face and it is con-
nected to the on board computational unit shown in the bottom right of the

https://www.gm.com/
https://www.ideasandmotion.com/
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Figure 6.3: The proposed rPPG method. The frame stream coming from the SPAD camera
is firstly analysed with a Neural Network that generates a signal further processed with
classical techniques.

picture (which was developed by Ideas & Motion). Around the camera lens
hood a ring light illuminator is mounted. This is composed by two circular
stripes of 5 LEDs each. The emitted light spectrum is in the Infra Red (IR)
range (in order not to distract the driver) and their intensity is controlled
by the on-borad PC. In particular, there a feedback loop was implemented
between the illuminator and the camera in which the LED receive current
is adjusted in order to keep the received intensity in the SPAD working
range. Moreover the maximum illumination power of this device was set
to reach no more than 20W/m2 of that is the limit for eye safety for the
considered wavelength, i.e Maximum Permissible Exposure (MPE). The
computational unit was also connected to a small monitor that is able to
show in real time the driver’s current HR, the illumination power and the
results of dependability checks described in Sec. 6.2.4.

6.2.2 Signal extraction

The signal extraction phase is composed by two components (facial skin
detection and signal creation) which are depicted as the first two steps in
Fig. 6.3. In particular, although the SPAD acquisition frame rate is set
to 100 Hz, the deep learning skin detection method is executed at 10 Hz
on key-frames obtained by averaging 10 consecutive frames. This is done
mainly for computational reasons and in order to reduce acquisition noise
(further detail on SPAD sensors noise could be found in [13]).

Skin detection

The majority of rPPG applications [93] make use of face detection methods
in order to localize specific regions of the subject face where the pulse
signal is extracted. In the proposed system a Convolutional Neural Network
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is used instead. In particular the chosen architecture and training procedure
are described in Chapter 5. The chosen network has a U-shape [91] and
takes a low resolution grayscale image as an input (exactly the same kind of
frames produced by the SPAD camera, 64× 64) and produces as an output
a single channel image, with values between zero and one. In particular,
these represent for each pixel the estimated probability of depicting a skin
region. As shown in Chapter 5, this method is robust to occlusions and,
by considering all the visible facial skin surface, overcomes the problem of
selecting a-priori a restricted skin region (that could be easy occluded).

As reported in Chapter 5, the first part of the network (i.e. Encoder)
is composed by 6 consecutive depthwise separable convolution layers, us-
ing 3x3 kernels, coupled with ReLu non linear activation functions. In this
phase, 3 of the 6 depthwise separable convolution use a stride of 2 in order
to obtain in the last encoding layer a tensor with 1/8 of the original input
spatial dimension. Conversely, the second part (i.e. Decoder) is constitute
by 3 depthwise separable convolution layers using 3x3 kernels and ReLu
activations. These are coupled with upconvolutional layers introduced in
order to increase back the spatial dimension to the input one. As illustrated
in Fig. 5.3, additive skip connections are used in order to better propagate
information between the encoding and decoding parts. The decoding output
is concatenated with the input image and two additional standard convolu-
tion layers used for denoising, using 3x3 kernels. For this two layers the
first activation function is ReLu and the last one uses a sigmoid function in
order to obtain output values in the desired range, i.e [0,1].

Signal pre-processing

For each frame acquired, once the relative skin detection output is avail-
able, a binary skin mask is obtained by comparing the skin detection output
to a fixed threshold. This value was obtained as the best working point by
looking at ROC in Fig. 5.4 in which 90% of true positive rate and just 1%
of false positive rate are reached. The raw pulse signal is then obtained by
averaging the intensity value of all the pixels inside the binary skin mask.
The values respectively below and above the 5th and 95th percentiles are
removed before computing the average in order to exclude possible outlier
values that could be caused by errors in the skin detection step. Fig. 6.4
shows the effect on removing outlier values before computing the sampling
mean. In this example, the original data (represented by the histogram in
red) are obtained from a skin mask that could obtain some false positive er-
ror; in particular, values near the main central peak represent grayscale true
positive values while the other smaller peak besides are related to bright-
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Figure 6.4: Distribution tails removal effect on computed sample mean. Original data in
red, obtained data after tails removal in green.

ness value of other objects (hair, wearable objects, background) that are
mistakenly attributed to the skin. As can be observed from the figure, if
the distribution tail are not removed the sample mean is heavily influenced
by the outlier and does not correspond to the mean of just the pixel related
to the skin. As can be seen from Fig. 6.4, by using fixed percentile some
values related to true positive are removed from the average computation.
This does not cause any particular problem since the number of samples on
which computing the average is not affected excessively. Some other possi-
bilities such as clusterization algorithms or distribution fitting could lead to
more accurate results but on the other hand would increase the excessively
the computational load. The in time concatenation of the obtain average
results in the creation of the pulse signal.

Moreover, in order to remove considerable jumps from the pre-
processed pulse signal due to the skin mask variations, the operation il-
lustrated in Fig. 6.5 is performed. In particular an offset value is removed
before concatenating the new values to the pulse signal. Furthermore, the
maximum signal buffer size has been set to 6000 which correspond to one
minute of observations sampled at 100Hz. This has been done for the sake
of increasing the estimations’ stability by obtaining them on a sufficiently
long period of time without increasing excessively their latency. Finally,
in order to increase the application’s stability if the skin mask could not be
calculated for a small interval of time (1 second) the gap created in the sig-
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Figure 6.5: Signal pre-processing opearation. The original signal (in red) could be af-
fected affected by abrupt jumps due to the skin mask recomputation. The denoised
signal, in green, is obtained removing them.

nal is easily filled using linear interpolation between adjacent know signal
values. This operation is performed in order to maintain time consistency
in the signal and to increase the overall method stability even if small errors
could occur in the one minute time frame.

6.2.3 Signal processing

After the signal has been extracted, the signal processing step is performed
in order to extract relevant information from the obtained pulse signal.

Filtering

A bandpass Butterworth filter is applied to the signal obtained as described
in Sec. 6.2.2. The filter bandwidth is between 0.4 Hz and 4 Hz which
is equivalent to 24 bpm and 240 bpm. In particular the chosen filter has
reals zeros in -1 and 1 and reals poles in 0.824 and 0.966. This is mainly
done in order to cut out any other signal having a frequency very distant
from a possible HR. A zero-phase filtering approach is used in this stage,
in particular the filter is applied in the time domain to the signal then the
returned filtered signal is reversed in time and the filter is applied again.
The resulting filter is then flipped back to the original time direction.
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Average heart rate estimation

In order to estimate the average heart rate from the camera signal, the fol-
lowing two operations are performed. Firstly, after applying the preprocess-
ing steps described in Sec. 6.2.2, the first and last half seconds are removed
from the original signal. This is done in order to remove transient effects
that could be caused by the filter in the begin and end part of the signal.
Since the following operations are performed in the frequency domain and
since the length of the portion removed is much smaller than the total sig-
nal length, this operation do not compromise the final heart rate estimation.
The power spectrum of the pulse signal is obtained applying a Fast Fourier
Transform (FFT) on the filtered signal. Finally, in order to estimate the av-
erage Heart Rate, the frequency related to the peak of the power spectrum
is chosen.

6.2.4 Dependability processing

Being rPPG an optical method it could be affected by optical alterations.
In particular, some scenarios could occur in which the pulse signal could
be masked by much stronger noise due to many different sources. The two
main scenarios that we identified are the presence of subject head periodic
movements and background pulsating light.

Periodic head movements

The estimation of the main pulse signal frequency could be affected by
periodic head movements. In particular, such movements are in the HR
frequency band and could mask the true HR frequency altering the rPPG
HR estimation. For this reason, a visual based method able to detect peri-
odic head movements have been developed. The first step of this method
is to keep track of the head position for each analyzed frame. In order to
do this, for each key-frame, the central skin mask point is tracked averag-
ing the coordinates of the skin mask itself. An example of face position
data gathered with an oblique periodic motion is reported in Fig. 6.6; in
particular each red dot is the obtained position of the head central point in
a particular frame inside the time frame considered. Although this simple
method could introduce some errors, in particular in case of face rotation,
it’s suitable for a real time implementation due to its low computational
cost. Once the two (vertical and horizontal coordinates) time varying vari-
ables, x and y, related to the pixel position of the face has been estimated,
a Principal Component Analysis (PCA) is used in order to combine this

113



Chapter 6. Dependable SPAD based rPPG application

Figure 6.6: Each red dot represents the face central pixel position in the considered time
frame. The green axis are the computed principal components.

information into a single signal. In particular, the two position column vec-
tors are stored into a matrix X = [x y]. The average of each column of
matrix X is then shifted to zero just by subtracting x̄ and ȳ, the empirical
averages, to each element of the first and second column respectively. The
PCA is then applied to obtained zero mean matrix X̄ by the use of Singular
Value Decomposition (SVD):

[U S V] = SVD(X̄) (6.1)

Where in particular the matrix V represents the PCA projection matrix.
The data in the new PCA cohordinate system are subsequently obtained as:

X̂ = X̄V (6.2)

In particular, the PCA is used to find the principal axes that compose the
movement and the coordinates are projected to the principal component.
After this operation only the first column of X̂ is kept which represents the
values over time on the principal axes that compose the movement. As can
be observed from Fig. 6.6, the first principal component is the one on which
the variance is maximized, while the other one is just the perpendicular one
since the data live in a bidimensional space. Fig. 6.7 shows the values
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Figure 6.7: First principal component values over time.

assumed in the first principal component over time using the same data
reported in Fig. 6.6. This process creates a 1D time varying signal on which
FFT is applied in order to estimate its main frequency. Its signal power
spectrum is then used in order to estimate a score defined as the percentage
of the area below the peak in respect to the total area below the power
spectrum graph (Fig. 6.8). In particular, the area under the peak is defined
as the area below the graph between the interval defined by the two points
respectively on the left and right of the peak in which the curve value reach
25% of the peak one. Ideally, in presence of periodic head movement, a
single peak would be visible in the power spectrum so the score would
be very close to 100% (its maximum value). On the other hand, if the
peak would not be clearly visible in the power spectrum (due to noise) the
score would be much lower. The periodic head movement is then detected
using the aforementioned movement related score, in particular checking
if the score value is greater a fixed threshold, optimized during a training
procedure. In this way periodic head movements could be detected.

Pulsating light

Another possible situation in which the rPPG method could lead to incor-
rect results is in presence of strong pulsating ambient light in the same
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Figure 6.8: Dependability score definition. Both periodic head movement and pulsating
light scores are defined as the ratio between area under peak (blue) and total area
(black)

typical band of the HR. This situation could occur, for example, while driv-
ing in a tunnel; in this case the intensity of the light that illuminates the
driver’s face varies in time in respect to the distance of the closest lamp.
In this situation the ambient light fluctuations would add up to the ones re-
lated to the heart activity in the observed pulse signal and, if the first ones
are strong enough, would mask the HR related information. As for the pe-
riodic movement detection an auxiliary signal is needed in order to detect
this situation. In particular, an additional environmental intensity signal is
extracted averaging the value of background pixels. These are defined as
the pixels of the image outside the detected skin mask. The background
signal power spectrum is then extracted via FFT. Also in this case a score
is defined as the area below the main peak divided by the total area below
the power spectrum graph (i.e. the total power). The score obtained is then
used in order to detected pulsating ambient light comparing its value to a
fixed threshold, optimized during a training procedure.
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Figure 6.9: Three different regions considered in the Deep Learning based signal extrac-
tion evaluation. On the left the region obtained from the DL skin detection algorithm.
In the center the forehead region obtained with classical methods. The third region is
the subtraction of the second from the first one.

6.3 Results

In the following session two experiments will be described. The first one
has been conducted in order to evaluate the impact of introducing a Deep
Learning based method in the signal extraction stage while the second one
is related to the impact of the dependability checks introduced.

6.3.1 Deep learning based signal extraction

In order to test the advantage of using a deep learning skin detection al-
gorithm instead of a classical face detection method, a specific experiment
has been performed. In particular the heart rate estimation obtained with
the method described in Sec. 6.2.3 has been compared to the one obtained
with a classical rPPG approach, as the one in [94]. In classic rPPG an
optimal face region (usually the forehead) is detected by applying fixed
proportion to a bounding box obtained with classical face detection meth-
ods (e.g. [117]). In order to test the differences between the two methods
three signals have been extracted and analysed with the same processing
described in Sec. 6.2.3. In particular one signal has been obtained using
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the proposed skin detection algorithm (using the region depicted in the first
panel of Fig. 6.9) while another one was extracted exploiting classical face
detection method such as [117]. This is an accurate and efficient method
for object detection widely used in many Computer Vision applications. It
is a strong classifier build upon a cascade of weak classifiers based on Haar
features. These rectangular features are able to compare different parts of a
grayscale image, using different patterns, simply summing and subtracting
the pixel value of the image in particular regions. In order to perform the
feature evaluation step in an efficient fashion (constant in time), the origi-
nal image is analysed only once in order to create an integral image. The
integral image is defined as an image in which each pixel value is equal to
sum of the pixel values in the area above and to the left of the considered
pixel.

Since the SPAD camera output has a very small spatial resolution (
32×64 ) the output frames are scaled by a factor of 10 before applying the
face detection algorithm, using bicubic interpolation. A border padding of
50 pixel is also added in order to detect faces very near the image borders or
partially outside of them. The ROI coordinates are then accordingly scaled
back to the original resolution and the signal is extracted from the original
resolution frames. As in [94], the face detector is coupled with a face track-
ing algorithm. In particular, if the face was already detected in the last iter-
ation a tracking algorithm is used instead of the face detection one. Firstly
same features are detected inside the face region returned by the detection
algorithm on the previous frame, using the Shi’s and Tomasi’s "Good Fea-
tures to Track" algorithm [99]. Consequently, these features are tracked
forward to the current frame using the Kanade-Lucas-Tomasi (KLT) algo-
rithm [120]. From the previous and current pixel positions of the tracked
points a 2D rigid transformation (homography) is estimated and the face
bounding box is transformed accordingly. From the bounding box contain-
ing the driver’s face a Region Of Interest (ROI) centred around the subject
forehead is calculated using fixed proportions. This ROI is depicted in the
second panel of Fig. 6.9.

Lastly, an additional signal has been extracted by removing from the
skin binary mask the forehead region obtained as described above, the
obtained region is depicted in the last panel of Fig. 6.9. This was done
in order to test the scenario in which the forehead region is unavailable,
for example in case of occlusion due to hair presence of wearable objects.
Two sequences with two different subjects (one male and one female) were
recorded while driving in a car simulator. The SPAD camera, equipped
with a 850 nm optical filter, was mounted approximately at 50 cm from the

118



6.3. Results

Table 6.1: Comparison of hearth rate estimation between signal extracted with deep
learning based facial skin detection (Skin) versus classical face detection method
(Foreh.).

Skin Foreh. Skin w/o Foreh.
[bpm] RMSE std RMSE std RMSE std
Sbj 1 2 1.4 2 1.4 2 1.4
Sbj 2 1.4 0 1.4 1.4 1.4 0
Avg. 1.7 0.7 1.7 1.4 1.7 0.7

subject’s face and the active infrared illumination described in Sec. 6.2.1
was used. The grand truth heart rate values was obtained with the Faros
ECG device.

Experimental results

Results are reported in Tab. 6.1. As we can observe, the use of the proposed
skin detection method performs as well as using classical face detection
methods. In addition to that, the proposed method has the benefit of work-
ing also in situations in which the forehead skin intensity is not available,
as can be observed from the last row of the table.

6.3.2 Dependability checks evaluation

The dependability checks described in Sec. 6.2.4 have been evaluated ex-
perimentally in two different set of acquisitions. For each one of the two
checks two sequences, with two subjects (one male and one female), were
recorded while using the same driving simulator described above. Also
in this case, the SPAD camera, equipped with the 850 nm optical filter,
was mounted approximately at 50 cm from the subject’s face. In the two
sequences recorded in order to test the ambient pulsating light, an incan-
descent lamp was used. This external light source was modulated at a fre-
quency of 60 Hz and was turned on with a random delay from the record
starting and the delay in the detection time (using the algorithm described
in Sec. 6.2.4) was recorded. On the other hand, in order to test the periodic
head movement detection the external light source was not used and instead
the subject was asked to start moving periodically their head left to right at
a fixed frequency of approximately 1 Hz. Also in this case, the detection
time of the periodic head movement was recorded.
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Experimental results

In all the 4 tested sequences the optical noise injected was correctly de-
tected. In particular the delay detection for pulsating light has been of
13 seconds and 15.5 seconds for periodic head movements. This delays
were expected due to the 1 minute signal window used and described in
Sec. 6.2.2.

6.4 Discussion and conclusions

The work presented in this chapter describes a rPPG system based on
SPAD camera. A detailed description of the system hardware is given in
Sec. 6.2.1. In Sec. 6.2.2, the adoption of a Deep Learning based method
for facial skin segmentation has been illustrated. In particular the main mo-
tivation for utilizing a segmentation method was to be able to use all the
possible pixel surface related to the heart activity. As a matter of fact, us-
ing a traditional forehead region adopted in many rPPG systems [94], given
the very low spatial resolution of SPAD cameras, would result in selecting
very few pixel for the pulse signal estimation. Results reported in Sec. 6.3.1
shows a slight increment in heart rate estimation accuracy while using the
deep learning skin segmentation method instead of forehead region obtain
with traditional computer vision techniques. More importantly, this experi-
ment highlight how the rest of the skin region detected by the Deep Learn-
ing method, excluding the forehead region, still carries pulse information
and this method could achieve good quality results even in presence of oc-
clusions (e.g caused by the presence wearable objects or hair) that could
make the forehead region unavailable.

Moreover the proposed system is able to perform dependability checks
in order to detect anomaly situations. In particular, since the rPPG biomed-
ical parameters estimation is performed exclusively using optical infor-
mation two scenarios were evaluated in which the pulse signal could be
masked by other signals. The two scenarios that we identified are the pres-
ence of subject head periodic movements and background pulsating light.
As a matter of fact, the periodic movement of the subject head could lead to
the masking of the pulse signal with the one created by the light reflections
introduced to the periodic movement. Moreover, the frequency of this kind
of periodic movement is typically in the heart rate range. In this situation
the pulse signal could be mistaken to the movement one and this could lead
to false heart rate estimation. On the other hand, also the presence of pul-
sating ambient light with strong intensity could lead to the masking of the
pulse signal. In Sec. 6.2.4 two different methods were described in order to
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detect these situations and in Sec. 6.3.2 two experiments are conducted in
order to test the precision of the introduced methods. Results shows that in
all the acquired test sequences both the anomalies (pulsating ambient light
and periodic head movements) were correctly detected.
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CHAPTER7
Conclusions

The main achievement of this work is the development of a rPPG system
able to estimate numerous biomedical measurements in real time and in
a dependable fashion adopting a SPAD camera as the imaging sensor and
using deep learning jointly with traditional signal processing in order to
achieve the biometric estimations. In particular, after introducing the prob-
lem in Chapter 1 and presenting the state of the art in this field in Chapter 2,
the use of the SPAD camera for rPPG has been discussed in Chapter 3. In
Chapters 4 and 5 the development of a deep learning skin segmentation for
low resolution grayscale images has been described. Finally in Chapter 6
the overall rPPG system jointly adopting SPAD camera and Deep Learning
has been introduced. In the following section an in-depth discussion of the
major achievements of each chapter will be described.

7.1 General discussion and conclusions

In this session a discussion of all the major achievements reached in each
chapter will be described.

Chapter 2
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In this chapter an overview of the state of the art on the PPG and rPPG sys-
tems and methods has been discussed analysing also the different between
them. Moreover a particular focus has been given to Deep Learning meth-
ods in general and their particular use in the rPPG field. As described, the
adoption of deep learning methods in rPPG is very recent and the current
work represent one of the first attempting in this direction. All the other
works adopting deep learning in rPPG, completely substitute the classical
signal processing techniques with data driven ones using an end-to-end ap-
proach. On one hand, the use of an end-to-end deep learning model has
proven to achieve state of the art results on many computer vision tasks.
On the other hand, this kind of methods required a massive amount of train-
ing data in order to learn how to extract heart related information directly
from video frames and no prior domain knowledge is incorporated. This
make the performance of this kind of methods tightly linked to the train-
ing dataset and potentially unable to generalize in different setting condi-
tions. Moreover, the complete substitution of classical signal processing
techniques developed using a solid theoretical background (signal filtering,
Fourier transform, etc.) with data driven ones could lead to non-optimal
solutions. Moreover even than some of this work claim to achieve realtime
performances as [95] they require powerful GPU. For the best of our knowl-
edge no prior work has been done in trying to combine traditional and deep
learning based signal processing in this field. Lastly, in all the considered
studies the cameras used are traditional RGB cameras and to the best of our
knowledge no prior work explored the possibility of using SPAD cameras
for rPPG applications.

Bullet point achievements:

· PPG is widely used in commercial and clinical devices.

· Many rPPG systems have been developed in recent years.

· SPAD cameras has never been used in this field.

· Deep Learning has been used in rPPG starting 2019 implementing
end-to-end solutions.

Chapter 3

In this chapter the possibility of performing rPPG using a SPAD camera to
compute HR, HRV and RR had been investigated. The working principle
and reason behind the use of SPAD cameras had been discussed in Sec. 3.1.
In this work two experiments have been set up, performing measurements
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on a subject sat still in front of the camera with the artificial illumination
directed on its face. The values of the pixels inside a manually obtained
ROI were averaged resulting in a pulse wave. This was the starting sig-
nal that was processed in order to estimate HR, HRV and RR. In order to
evaluate SPAD based rPPG five parameters were considered: single beat
detection, heart rate estimation, tachogram estimation, LF/HF estimation
and respiration rate estimation. In order to perform and validate biometric
measurements with a SPAD camera and compare it to estimation that could
be obtained from a traditional RGB camera, a portable ECG device was
used for reference. One of the two experiments conducted (experimental
setup described in Sec. 3.3.1) had the aim of comparing the SPAD rPPG
performance using light with different wavelength. As can be observed
from results reported in Sec. 3.5.1, 550 nm light (i.e. green light) is able to
achieve the better results. Many parameters influence this result, in particu-
lar the most significant are light penetration depth in the tissues [8], absorp-
tion coefficient of the oxygenated hemoglobin [126], SPAD efficiency [13]
and illumination power. Light below 500 nm is mostly reflected by stratum
corneum, which is the most external skin layer, which being not reached by
blood does not contain any information on pulse wave. Concerning light
between 600 nm and 750 nm, the absorptivity of oxygenated hemoglobin
is very low, thus reducing the modulation in rPPG signal. Therefore, only
wavelengths between 500 nm an 600 nm and between 750 nm and 900 nm
are able to carry useful signal. As a matter of fact, as shown from the re-
sults reported in Sec. 3.3.1, the best performance are achieved using 550
nm light but reasonable results are also achieved using near infrared light
(750 nm to 850 nm). This is promising results since many scenarios could
be imagined in which the use of non-visible light could be preferred (e.g.
in the automotive field an rPPG system could be used in order to monitor
the health state of the driver).

The second experiment (described in Sec. 3.3.2) was conducted in or-
der to compare the rPPG SPAD based performance with the one obtainable
using traditional RGB cameras. As can be observed in a normal light sce-
nario, as reported in Sec. 3.5.2, SPAD cameras are able to achieve compa-
rable results in respect to RGB cameras in heart rate estimation and slightly
superior accuracy in estimation of the tachogram and respiration rate.

Bullet point achievements:

· It is possible to perform rPPG using SPAD cameras.

· Light with 550 nm wavelength performs best in implementing rPPG
using a SPAD camera.
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· It is also possible to achieve good quality results using light with 850
nm wavelength, which can be preferable in some scenarios being in-
frared light.

· SPAD cameras are able to achieve comparable to slightly superior re-
sults in respect to RGB cameras in rPPG estimations.

Chapter 4

In this chapter,a Deep Learning based method was proposed in order to
solve the facial skin detection problem on low-resolution grayscale images.
The low spatial resolution (64x64 pixels) coupled with the unavailability of
color information (grayscale images) made this task particularly ambitious.
Analyzing the state of the art of similar problems, in Sec. 4.1.1, we showed
the peculiarity of the proposed task and how, to the best of our knowledge,
the method described in this work is the first being proposed specifically to
solve the specific task of facial skin detection.

Given the similarity between this problem and a semantic segmentation
one, and the good accuracy achieved by neural network methods in this lat-
ter field, a Deep Learning based method was chosen. On the other hand,
these kind of methods need massive amount of data to be trained on. Since
the facial skin detection problem, tackled in his chapter, is very specific
unfortunately only a limited amount of data are available for this specific
problem. For this reason a transfer learning approach was adopted in the
training phase. In particular, the proposed network architecture was cho-
sen in order to have the majority of layers in common with a convolutional
neural network proposed to solve the grayscale images colorization prob-
lem [9]. These apparently different problems are in reality tightly linked
as a colorization method, in order to work on face images, must (implic-
itly) solve the skin detection problem, since it needs this information in
order to color in a correct way pixels depicting skin regions. On the other
hand, since the skin detection problem is only a small sub-task in respect to
the colorization one, the proposed network was significantly simplified, as
shown in Sec. 4.2.2. Further information about the similarities between the
skin detection and colorization problems are described in Sec. 4.2.2.

As discussed in Sec. 4.2.3, in order to exploit the maximum amount of
knowledge possible gathered from the colorization problem, a three step
transfer learning strategy was adopted. Firstly the colorization method was
trained on a large dataset of unlabeled face images. This was done in order
to drive the preliminary method into the specific domain of face image anal-
ysis. The proposed skin detection network was subsequently trained start-
ing from the colorization network weights and minimizing an asymmetric
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loss function, described in Sec. 4.2.3, on a novel constructed dataset. This
was done in two consecutive steps in order to train new and already trained
layers at two different speed. In Sec. 4.2.4 the training dataset, containing
more than 6000 labeled training images and 200 labeled test images, was
described, detailing also all the operations performed in order to adapt the
two existing and freely available datasets (MUCT [77] and Helen [124]) to
the specific skin detection problem.

Lastly in Sec. 4.3.2 the proposed training procedure has been justified
showing that, without using it, it would be not be possible to train the pro-
posed network with the few data available. In particular Fig. 4.7 shows that
the adapted training procedure is able to avoid overfitting since the valida-
tion error does not increase over the training epochs. Moreover, Fig. 4.11
demonstrate that evaluation of the model on new images produces quali-
tatively good results, reiterating the absence of overfitting in the training
process. In addition, in Sec. 4.3.3 some quantitative results were reported
providing accuracy evaluation for the proposed skin detection method and
showing comparisons with a state of the art face segmentation method. In
particular the proposed method is able to outperform [83] in the specific
task of facial skin detection on low resolution grayscale images, even when
GT information where integrated to [83]. Moreover, in Sec. 4.3, many skin
detection outputs were shown for both images acquired in similar condi-
tions with respect to the ones used to built the training set and for images
completely independent from the training set, acquired with the SPAD cam-
era. Both these results show how the proposed method is able to achieve
quantitative and qualitative good results in the skin detection problem even
in presence of different poses, ages, expressions, ethnicity, wearable objects
and other occlusions.

Bullet point achievements:

· A labeled facial skin dataset has been built and made publicly avail-
able.

· A transfer learning approach was successfully implemented exploiting
knowledge from an apparently unrelated task in order to overcome the
scarcity of training data.

· A CNN for skin segmentation on low resolution grayscale facial im-
ages have been developed, achieving good accuracy.

Chapter 5
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In this chapter, we presented a Deep Learning based method proposed in
order to solve the facial skin detection problem on low-resolution grayscale
images in real-time. As discussed in Sec. 5.1, a model that could run in
real-time on hardware with limited computational power could be useful
in many situations. In particular in the automotive domain even if more
powerful GPU based computational power is available, having a compact
dedicated solution to the rPPG problem solution could be the ideal scenario
in order to not overload the main computational unit.

In order to achieve this goal a new Deep Learning based model for solv-
ing the skin detection problem have been proposed. This method is able
to work in presence of low spatial resolution (64x64 pixels) coupled with
the unavailability of color information (grayscale images) as the method
described in Chapter 4. The main difference between the two methods is
the adoption of depthwise separable convolution layer. As described in
Sec. 5.2.1, these kinds of layers are obtained splitting the operation per-
formed in a traditional convolution layer with two consecutive steps of spa-
tial filtering and channel combination. In the same section we show also
how and why this decoupling is able to drastically reduce the number of pa-
rameters. Moreover, the complete network architecture has been described
in Sec. 5.2.2 highlighting the choice made in order to maximally increase
the similarity with the one described in Chapter 4 and the usage of skip
connections.

As discussed in Sec. 5.2.3, in order to exploit the maximum amount of
knowledge possible gathered from the skin detection method described in
Chapter 4, an incremental transfer learning strategy was adopted. Starting
from the model described in Chapter 4 exploiting the similarity between the
two networks, traditional convolution layers are one by one incrementally
substituted with depthwise separable ones. Ten epochs of training are per-
formed between every substitution. This operation effectively force the new
layers, with smaller amount of parameters, to approximate the much larger
traditional ones. An additional 50 epochs of training were then applied on
the complete network.

Furthermore in Sec. 5.3.1 the proposed model was tested in both pre-
cision and real time performance. In particular Fig. 5.4 shows that the
proposed method is able to outperform the much larger one described in
Chapter 4 also in the skin detection accuracy. This is probably due to the
reduced number of parameters that increased the easiness for the optimiza-
tion algorithm to converge to a better minimum of the loss function. Fig. 5.5
also shows some qualitative results highlighting the precision of the model
in selecting the face region discarding parts not related to the skin. Lastly
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in Sec. 5.3.2 the time performances of the method proposed and one de-
scribed in Chapter 4 are compared. In particular, a C++ implementation of
the proposed method is able to achieve real-time performances even when
run on a limited compact single-board computer such as the Odroid XU-4.

Bullet point achievements:

· A custom deep learning method was developed exploiting depth-wise
separable convolution layers.

· Even if this method is significantly smaller than the one proposed in
Chapter 4, is able to outperform it in term of skin detection accuracy,
proving that not always greater amount of parameters correspond to
superior models.

· The proposed CNN is able to run in real-time on a CPU of a single
board computer such as the Odroid XU-4.

Chapter 6

The work presented in this chapter described a rPPG system based on
SPAD camera. A detailed description of the system hardware is given in
Sec. 6.2.1. In Sec. 6.2.2, the adoption of a Deep Learning based method
for facial skin segmentation has been illustrated. In particular the main mo-
tivation for utilizing a segmentation method was to be able to use all the
possible pixel surface related to the heart activity. As a matter of fact, us-
ing a traditional forehead region adopted in many rPPG systems [94], given
the very low spatial resolution of SPAD cameras, would result in selecting
very few pixel for the pulse signal estimation. Results reported in Sec. 6.3.1
shows a slight increment in heart rate estimation accuracy while using the
deep learning skin segmentation method instead of forehead region obtain
with traditional computer vision techniques. More importantly, this experi-
ment highlight how the rest of the skin region detected by the Deep Learn-
ing method, excluding the forehead region, still carries pulse information
and this method could achieve good quality results even in presence of oc-
clusions (e.g caused by the presence wearable objects or hair) that could
make the forehead region unavailable.

Moreover the proposed system is able to perform dependability checks
in order to detect anomaly situations. In particular, since the rPPG biomed-
ical parameters is performed exclusively using optical information two sce-
narios were evaluated in which the pulse signal could be masked by other
signals. The two scenarios that we identified are the presence of subject
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head periodic movements and background pulsating light. As a matter of
fact, the periodic movement of the subject head could lead to the masking
of the pulse signal with the one created by the light reflections introduced
to the periodic movement. Moreover, the frequency of this kind of periodic
movement is typically in the heart rate range. In this situation the pulse
signal could be mistaken to the movement one and this could lead to false
heart rate estimation. On the other hand, also the presence of pulsating
ambient light with strong intensity could lead to the masking of the pulse
signal. In Sec. 6.2.4 two different methods were described in order to de-
tect this situation and in Sec. 6.3.2 two experiments are conducted in order
to test the precision of the introduced methods. Results shows that in all
the acquired test sequences both the anomalies (pulsating ambient light and
periodic head movements) were correctly detected.

Bullet point achievements:

· A SPAD based rPPG system has been proposed.

· The adoption of the CNN skin segmentation method proved to be able
to achieve good quality results and to be more robust to occlusions in
respect to a traditional face detection algorithm.

· The adopted dependability checks proved to be able to detect situa-
tions in which an optical method such as rPPG could fail improving
the reliability of results obtained with this method.

7.2 Directions for future work

The presented work, being one of the pioneering work in adopting deep
learning in rPPG application and the first one in using SPAD camera in this
field, have many different promising directions for future work.

Training dataset In evaluating the skin segmentation method on multiple
test images, it could be notice that some labelling errors still occurs
especially in presence of beard, glasses and other occlusions. This
is due to the fact that the training dataset was automatically anno-
tated using color similarity to label this kind of occlusions and this
inevitably introduces some errors. The adoption of an accurate hand-
labeled training dataset surly could increase this method precision.

Time-dependent skin segmentation method The implemented skin seg-
mentation method could also benefit from some more advance deep
learning architectures, developed for working with a stream of frame.
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In this case a Recurrent Neural Network (RNN) [31], such as
LSTM [40] and GRU [21], could integrate the current CNN archi-
tecture achieving the required result.

HR Deep Learning estimation Some part of the classical signal process-
ing techniques could be substituted with deep learning based method.
In particular, the pulse signal analysis could be performed by a CNN.
The monodimensional signal could be transformed to 2D using spec-
trogram representation, or gammatonegram [68], and fed to a standard
CNN architecture. This method is already used in sound signal anal-
ysis [68] and its adoption in this field could tested against classical
signal processing.
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