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Abstract

In this work an ab-initio approach for studying materials in the framework of cavity QED
is presented. In a cavity, the coupling between light and matter can reach the strong
regime, which means that the system is described by a mix of the electronic states de-
scribing the matter and the Fock states describing the electromagnetic field. Such states
are called dressed or polaritonic states. Indeed, polaritons are quasi-particles associated
with the propagation of light in matter and are described as a mix of electronic and pho-
tonic states.
While molecules and finite systems have been deeply studied in the strong light-matter
coupling regime, much less has been done for crystals/solids. Such systems are charac-
terized by a greater physical and computational complexity compared to finite ones. The
software proposed in this work attempts to tackle these complexities, on one hand by hav-
ing at its core a programming language highly optimized for numeric computation and by
being specifically designed to run on high performance computers, and on the other hand
by the fact that it is tailored to polaritonic properties of periodic cavity-matter systems
and it is designed on top of Density Functional Theory which is the workhorse approach
for the ab-initio description of condensed matter systems. After describing the theoretical
model and the implementation, we use the code to study both finite and period systems.
In particular, we show the emergence of polaritons in the strong coupling regime and how
the linear optical response of prototype crystals is modified by the photons confined in
the cavity. Finally, we show that it is possible to modify the fundamental properties of
materials, for instance by opening a gap in Graphene using chiral light.
The software is released under the TDDFT code Octopus, with the name of QED Solver.
This thesis work was carried out at the Max Planck Institute for the Structure and Dy-
namics of Matter (Hamburg, Germany), in particular in the Theory Department directed
by Prof. Dr. Angel Rubio.

Keywords: Cavity QED, Strong light-matter coupling, Polaritons, HPC, Parallel Pro-
gramming





Abstract in lingua italiana

In questo lavoro di tesi è presentato un metodo ab-initio per studiare i materiali in cavità
ottiche, nell’ambito dell’elettrodinamica quantistica. In una cavità, l’accoppiamento tra
la luce e la materia è intenso, ciò implica che il sistema è descritto da un’unione degli
stati elettroni (descriventi il materiale) e degli stati di Fock (descriventi il campo elet-
tromagnetico). Questi sono definiti come stati vestiti, o polaritonici. I polaritoni sono
quasi particelle associate alla propagazione della radiazione nella materia, e sono descritti
parzialmente dagli stati elettronici e parzialmente da quelli fotonici.
Se da un lato le molecole (e in generale i sistemi non periodici) sono stati a lungo studiati
nell’ambito dell’accoppiamento forte tra luce e materia, dall’altro non molto è stato fatto
per i solidi e i cristalli. Questi ultimi sono caratterizzati da una grande complessità, sia
per la fisica che avviene al loro interno sia per la complessità computazionale richiesta per
simularli. Il software sviluppato in questo lavoro di tesi si propone di affrontare queste
complessità, da un lato utilizzando un linguaggio di programmazione ottimizzato per prob-
lemi numerici, oltre che un design specifico per computer ad alte prestazioni, dall’altro
descrivendo le proprietà polaritoniche dei sistemi periodici partendo dalla density func-
tional theory, cavallo di battaglia per la descrizione ab-initio dei sistemi di fisica dello stato
solido. In questo elaborato, dopo aver descritto il modello teorico e l’implementazione del
codice, il software viene applicato per studiare sia sistemi periodici che non periodici
(molecole). In particolare, si evidenzia la formazione dei polaritoni nel regime di accop-
piamento forte e in che misura la cavità modifica la risposta del materiale agli impulsi
ottici. Mostriamo infine che è possibile modificare le proprietà del materiale, aprendo per
esempio un gap nel Grafene mediante l’uso di luce polarizzata circolarmente.
Il presente software è rilasciato come parte del codice TDDFT Octopus, sotto il nome di
QED Solver.
Il presente lavoro di tesi è stato svolto presso il Max Planck Institute for the Structure
and Dynamics of Matter (Amburgo, Germania), in particolare nel dipartimento di teoria
diretto da Prof. Dr. Angel Rubio.
Parole chiave: QED in cavità ottiche, forte accoppiamento luce-materia, polaritoni,
HPC, programmazione in parallelo
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1

Introduction

Since the very beginning of mankind, being able to create tools and engineer new mate-
rials has been a central theme in societies. As an example, the first known evidence of
metal smelting date back to 8000 years ago and the first production of superior metals
(like Bronze, which is an alloy made of Copper and Tin) started years later [1]. From
those early attempts to control the mixing of atoms, as scientific discoveries were made
and technology progressed, we have always improved the ability to control how elements
combine. However, it is not until the last century that this quest for control over the
ordering of nature improved exponentially. Thanks to the development of Quantum The-
ories (starting from the Schrodinger equation in 1925) and of technology, we became able
to engineer materials at the nanoscale level. Arguably, the most advanced manipulations
of the nanoscale structures are reached in the semiconductors used in electronics (where
recently it was possible to fabricate transistors with a 2nm channel [2]) and optics for
the generation of laser light [3]. Usually it is possible to reach those results by means
of varying doping concentration or mechanical stress or strain. These latter modify the
bonds between atoms (in terms of length and orientation), which lead to a variation in
the electronic structure due to symmetry breaking. However, that is not the only way
in which one can modify the microscopic properties of materials, but one could also use
light [4]. Light-matter interaction phenomena have been studied for a long time, but as
will be discussed in this work, to be able to modify the properties of materials one has to
reach a strong coupling between light and matter. This only became possible in the last
century thanks to the invention and description of the laser [5], and to its improvements.
However, focusing high-intensity laser light on a material to reach strong coupling is po-
tentially destructive, as the optical power in a small spot would be so high that the matter
would begin to melt. To overcome this limitation, one can place the material inside an
optical cavity to reach the strong coupling. This allows a photon to be trapped in the
cavity for a long time, which allows it to interact multiple times with material [6]. Being
able to achieve strong coupling with a low-intensity field or just exploiting the quantum
fluctuations of light, opens many possibilities for controlling materials even at equilibrium
[6]. This allows for instance to generate and control excitonic states [7, 8], to enhance ex-
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isting properties like ferroelectricity or electron-phonon coupling [9, 10] or to induce new
properties and phases in the material [6]. Moreover, one could also dynamically break the
symmetries to change the band structure, allowing to open gaps [4, 11] and change the
topology of the material (Floquet engineering [12]). One final phenomenon that is worth
mentioning is the induction or the enhancement of the superconductivity [13, 14]. All
these exciting possibilities are made possible by the strong coupling light-matter interac-
tion, which mixes the electronic and photonic states, to generate the so-called polaritons
[15, 16]. As it will be explored later, they are quasi-particles associated with the prop-
agation of light in matter. In some applications it is also possible to mix the phonon
states, thus generating the phonoriton states [17]. The latter will not be discussed in
this work. As it was mentioned, polaritons arise from the mixing of the electronic and
photonic states, which means they have to be combined at the level of the Hamiltonian
of the system. This means that one has to start from the known states of the matter and
of the radiation field, and then couple them through the QED Hamiltonian.
In this work, a tool for computing the polaritonic states arising from materials in optical
cavities is presented. We use a quantum description of both the matter (using Slater
determinants built from the single-particle states calculated using Density Functional
Theory) and of the radiation field (using Fock states). After defining and solving the
QED Hamiltonian on that basis, we use the obtained polaritonic states to compute re-
sponse functions in the framework of linear response theory. This allows studying how
the states are modified and also to see interesting features such as the opening of a gap
in the band structure of Graphene. The significance of this work lies in the fact that
while finite systems coupled to cavity light have been studied in detail, not much has
been done for periodic systems. This is due to the big computation cost that comes from
building and diagonalizing the matrix representation of the QED Hamiltonian for those
systems. The software presented in this work is designed to deal with such complexity,
thanks to the fact that it was written in a programming language highly optimized for
numeric computation (Fortran 90) and to the fact that parallelization techniques were
used to allow the software to run on supercomputers.
The present work is organized as follows, first the theoretical framework is presented,
starting from the quantization of the electromagnetic field and the description of the
electronic states, then QED and finally the concept of polaritons is discussed. Subse-
quently, the approximations and assumptions are introduced, and a first formulation of
the QED matrix is given. Then, the implementation and the characteristics of the code
are described. Finally, the software is applied to three different systems and the obtained
results are discussed.
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Since physicists started studying radiation fields, the theme of their interaction with mat-
ter has always been a central problem, starting from the first laws on the static description
of the electric and magnetic field, then through Maxwell’s equations, the semi-classical
and finally the modern full quantum light-matter interaction theories.
In this chapter we give an introduction to the coupling between light and matter in the
framework of second quantization. We start by describing the quantization of the electro-
magnetic field. This step is necessary to move on from the semi-classical theories (where
the electromagnetic field was treated classically) to the theory of Quantum Electrody-
namics (QED). Subsequently, we describe the behavior of electrons in solids, firstly by
deriving the mean-field equations and then by introducing Density Functional Theory
(DFT). As the last step, Slater determinants are explored as well as the formalism of sec-
ond quantization, which will be used in the following sections. Then we introduce QED
by deriving the Hamiltonian for light-atoms coupling and by describing the different op-
eration regimes. Finally, we introduce the concept of polariton as a quasi-particle arising
from the propagation of light in matter.

1.1. Quantization of the EM field

The electromagnetic field is fully described by the well-known Maxwell’s equations. If we
formulate them in free space, they have the following form:

∇ ·E = 0

∇×E = −∂B
∂t

,

∇ ·B = 0,

∇×B = µ0ϵ0
∂E

∂t

(1.1)

(1.2)

(1.3)

(1.4)

and their solution is a linear combination of plane waves. Despite the classical formulation
of Maxwell’s equation can describe most of the phenomena we observe, others require a
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quantum description [18]. Among them we can acknowledge the spontaneous emission,
and in general every phenomenon that involves a beam of light with a strongly reduced
number of photons (up to a single photon) requires the quantization of the electromag-
netic field. To quantize the field we will follow the steps of Dirac’s Canonical Quantization
Protocol [19], which states that one should first write the Hamiltonian of the field in terms
of classical conjugated variables, then substitute them with the quantum operator and fi-
nally impose the commutation relations. The classical Hamiltonian of the electromagnetic
field is

H =
1

2

∫ [
ϵ0E (r, t) ·E (r, t) +

1

µ0

B (r, t) ·B (r, t)

]
dV (1.5)

To deal with it, it is more convenient to reformulate Maxwell’s equations in terms of the
vector potential A and the scalar potential ϕ, and then to use the expressions for E and
B in (1.5). We have that

B = ∇×A

E = −∇ϕ− ∂A

∂t

(1.6)

(1.7)

If we substitute (1.6), (1.7) into Maxwell’s equations, we get the field equations that
describe the vector potential. Before showing them, one should note that the solution
to these equations do not change if we substitute A and ϕ with A′ and ϕ′, such that
A = A′ −∇Ξ and ϕ = ϕ′ + ∂Ξ

∂t
. This is known as Gauge transformation, and the scalar

function Ξ is known as the gauge function. Since the gauge function is arbitrary, we can
choose it so that we have ∇ ·A = 0 and ϕ = 0 that is the Coulomb gauge. Under these
assumptions, the field equation for the vector potential becomes:

∇2A− 1

c2
∂2A

∂t2
= 0 (1.8)

where c = 1√
ϵ0µ0

is the speed of light.
Equation 1.8 is solved by a superposition of plane waves, however since we considered
Maxwell’s equations in free space their normalization is not straightforward. To overcome
the problem, we solve the equation in a large cubic box of size L, and we impose periodic
boundary conditions: A(x, y, z) = A(x+L, y+L, z+L). Since we are using a superposition
of plane waves as solution, the boundary conditions imply that only the wave vectors that
satisfy the above relation should be included, so that the solutions are now discretized. In
particular, one has that exp (ik · r) = exp (ik · (r +L)) → kx,y,z =

2π
L
nx,y,z. The solution

for the vector potential then becomes [20]:

A (r, t) =
∑
k

∑
λ=1,2

ek,λAk,λ (r, t) =
∑
k

∑
λ=1,2

ek,λ

[
Ak,λe

i(k·r−ωkt) + A∗
k,λe

−i(k·r−ωkt)
]

(1.9)
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where ek,λ represents the polarization vector and λ represent the polarization (left or
right). If we substitute (1.9) in (1.6) and in (1.7), we obtain an expression for E and B:

B (r, t) =
∑
k

∑
λ=1,2

ik × ek,λAk,λ (r, t)

E (r, t) =
∑
k

∑
λ=1,2

iωkek,λAk,λ (r, t)

(1.10)

(1.11)

where Ak,λ (r, t) is the one defined in equation (1.9). From these equations, remembering
that k = 2π

λ
= ω

c
, where c is the speed of light, one can see that the contribution of

the electric field to the electromagnetic field energy is much bigger than the one of the
magnetic field. These last equations can be then used in (1.5) to get an expression for
the total energy of the electromagnetic field:

H =
∑
k

∑
λ=1,2

ϵ0V ω
2
k

(
Ak,λA

∗
k,λ + A∗

k,λAk,λ

)
(1.12)

It should be noted that equation (1.12) is not time dependent because the exponentials
canceled out. This is in agreement with the principle of conservation of the total energy of
the system. Once obtained the expression for the classical energy of the electromagnetic
field, it should be expressed in terms of the conjugated variables. Before doing that,
it is worth considering the Hamiltonian of an harmonic oscillator with unitary mass,
ĤOSC = p̂2

2
+ 1

2
ω2q̂2 where p̂ = −i∇ is the momentum operator and q̂ is the position

operator. It is useful to define new dimensionless operators starting from p̂ and q̂. This
leads to the definition of the creation and annihilation operators [20]:

â† =
1√
2ω

(ωq̂ − ip̂)

â =
1√
2ω

(ωq̂ + ip̂)

(1.13)

(1.14)

Since [q̂, p̂] = i, it follows that
[
â, â†

]
= 1 and ââ† = 1

ω

(
ĤOSC + 1

2
ω
)
, so that

ĤOSC = ω

(
ââ† +

1

2

)
(1.15)

If we consider only a single mode, equation (1.15) and (1.12) are formally equivalent, as
long as we perform the substitutions

Ak,λ → 1

2ϵ0V ωk

âk,λ, A
∗
k,λ → 1

2ϵ0V ωk

â†k,λ
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Substituting the above relations in (1.12), and applying the commutation relations for the
creation and annihilation operators, the full quantum Hamiltonian for the electromagnetic
field can be written as

Ĥ =
∑
k

∑
λ=1,2

ωk

(
â†k,λâk,λ +

1

2

)
(1.16)

It should be noted that since we defined the creation and annihilation operators from the
momentum and position operator, and since [q̂, p̂] = i we implicitly satisfied the last step
of the Canonical Quantization Protocol. In particular, the commutation relation for the
creation and annihilation operators is

[
âk,λ, â

†
k′,λ′

]
= δk,k′δλ,λ′ .

The quantized electromagnetic field can be interpreted as a sum of harmonic oscillators,
each of which corresponds to a certain mode. The eigenstates

∣∣∣n(i)
k,λ

〉
of the Hamiltonian

(1.16) are called photon number states (or Fock states), and they constitute a complete
and orthonormal basis. The action of the creation and annihilation operators is to add a
photon or remove a photon to/from a certain mode and it can be written as:

â†k,λ |nk,λ⟩ =
√
nk,λ + 1 |nk,λ + 1⟩

âk,λ |nk,λ⟩ =
√
nk,λ |nk,λ − 1⟩ , âk,λ |0⟩ = 0

(1.17)

(1.18)

The number of photons in each mode can be computed by applying the photon number
operator n̂k,λ = â†k,λâk,λ. Using the formalism of quantum mechanics, we can represent
the state of the total field as the tensor product of the state of each mode, that is

∣∣∣n(1)
k,λ, n

(2)
k,λ, ...

〉
=

∣∣∣n(1)
k,λ

〉
⊗
∣∣∣n(2)

k,λ

〉
⊗ ... = |{nk,λ}⟩ (1.19)

An interesting feature of equation (1.16) is that even if there are zero photons in a cer-
tain mode, there would still be a contribution to the total energy of the system due to
the term ωk

2
. This is the so-called zero point energy, and it can be observed in several

phenomena such as the spontaneous emission, the Casimir forces [21] and the Lamb shift
[22]. If we consider the vacuum states |{0}⟩, it is immediate to see that the energy of the
electromagnetic field diverges to infinity. Usually, this problem is disregarded because in
a numerical approach one cannot consider an infinite number of modes, and also usually
it is interesting to study variations of energy. Finally, assuming linear polarization, the
expression for the quantized vector potential reads

A (r, t) =
∑
k

∑
λ=1,2

ek,λAk

[
âk,λe

i(k·r−ωkt) + â†k,λe
−i(k·r−ωkt)

]
(1.20)

where Ak = 1
2ϵ0V ωk

.
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1.2. Electrons in solids

All the matter that surrounds us is made up of atoms, which in turn are made of nuclei
(protons and neutrons) and electrons. When we deal with isolated atoms, electrons are in
the electronic cloud which surrounds the nucleus. Since protons and electrons are charged
particles, the system is mainly described by the Coulomb interaction Vq1,q2 = q1q2

4πϵ0dq1,q2
,

where qi is the charge of the i-th particle and can be both positive or negative, and
dq1,q2 = |r1 − r2| is the distance between the particles. When atoms come together to
form more complex systems such as molecules or crystals, each atom contributes to the
electronic cloud with some electrons, depending on its outermost shell. Consequently, in
principle one could describe condensed matter systems by using Coulomb interaction for
every couple of particles in the system. As for the momentum operator, one should sum
over the momentum of all particles (both electrons and nuclei). Therefore, one obtains
(using atomic units):

Ĥ =

−∑
i

∇2
i

2
−
∑
I

∇2
I

2MI
−
∑
i,I

ZI

|ri −RI |
+

1

2

∑
i̸=j

1

|ri − rj |
+

1

2

∑
I ̸=J

ZIZJ

|RI −RJ |


ĤΨ({ri} , {RI}) = EtotΨ({ri} , {RI})

(1.21)

where ZI ,MI are the charge and mass of the I-th nucleus and Ψ({ri} , {RI}) is the many-
body wave function, which depends on the position of all electrons and all nuclei. As it is
known in quantum mechanics, taking the square modulus of the wave functions represents
the probability of finding the electron 1 in position r1, the electron 2 in position r2 and
so on. Instead, taking the integral over all spatial coordinates {ri} but one leads to the
electronic density.
However, due to the terms that mix the coordinates of electrons and ions, equation (1.21)
is too complex to be solved. In fact, we cannot solve the Schroedinger equation for the
Helium atom, and equation (1.21) is prohibitive also for numerical approaches. Therefore,
we have to introduce approximations to be able to solve the system.

1.2.1. Mean-field approach for the electronic problem

To derive the mean-field equations to model materials, one should start by applying ap-
proximations to equation (1.21). Later, these approximations will be corrected with the
introduction of functionals, thanks to which it is possible to compute exact quantities out
of Kohn-Sham equations (see section 1.2.2). It should be underlined that all approxima-
tions must be justified with strong physical arguments, otherwise this approach would
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lead to inconsistent results.
Solids are a particular class of condensed matter systems, for which the position of the
nuclei is almost fixed (within the limit of Heisenberg’s uncertainty principle). Therefore,
if one considers the nuclei as fixed, then the positions {RI} of the nuclei are not variables
anymore, but rather parameters of the system. Moreover, also the kinetic energy of the
nuclei will be negligible with respect to the one of electrons. This becomes clear if one
consider that mn ≈ mp ≈ 1836me ≫ me, consequently MI ≫ me. This approximation
allows one to separate the electronic problem from the nuclear one, so that one can solve
them separately thus simplifying equation (1.21). Defining

E = Etot −
1

2

∑
I ̸=J

ZIZJ

|RI −RJ |

Vn (r) = −
∑
I

ZI

|r −RI |

(1.22)

(1.23)

one has that [
−
∑
i

∇2
i

2
+
∑
i

Vn (ri) +
∑
i ̸=j

1

|ri − rj|

]
Ψ({ri}) = EΨ({ri}) (1.24)

where the term Vn (ri) is called Coulomb potential, and it corresponds to the potential
generated by the nuclei that is felt by each electron. The Hamiltonian in equation (1.24)
is almost a sum of single-particle Hamiltonians, except for the Coulomb repulsion between
electrons, which mixes the coordinates. In fact, the wave function Ψ({ri}) still depends
on the coordinates of all electrons. As a consequence, although equation (1.24) is simpler
that equation (1.21), it still cannot be solved.
A further approximation is to disregard the electron-electron interaction and then re-
introduce it using a mean-field approach. Within this framework, one can reformulate
the many-body problem into a set of single-particle equations for independent particles
(independent particles approximation). In this approach electrons only know about each
other thanks to the mean field that they feel (which is the same for all of them). In this
framework, the total Hamiltonian is simply the sum of n single-particle Hamiltonians,
the total energy is the sum of the energies of the single-particle problems and the total
wave function of the solid can be written as the product of many single-particle wave
functions Ψ({ri}) = ϕ (r1)ϕ (r2) ...ϕ (rn). This approximation is very strong because
it completely disregards the fermionic nature of the electrons and because the Coulomb
interaction terms have the same order of magnitude as the other two in equation (1.24).
The first problem is a direct consequence of Pauli’s exclusion principle and can be partially
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addressed by building the final solution using the Slater determinant formalism. This will
allow to recover an anti-symmetric global wave function. Therefore, after solving the
single-particle Schroedinger equations, one can build the total wave function as

Ψ({rn}) =
1√
N !


ϕ1 ({r1}) ϕ1 ({r2}) ... ϕ1 ({rN})
ϕ2 ({r1}) ϕ2 ({r2}) ... ϕ2 ({rN})

...

ϕN ({r1}) ϕN ({r2}) ... ϕN ({rN})

 (1.25)

It can be shown that if in equation (1.25) the positions of two electrons are swapped, then
the wave function changes sign, therefore being anti-symmetric with respect to inversion.
This is the expected behavior for fermions. Slater determinants will be discussed more
in-depth in section 1.2.3.
The problem of the missing Coulomb potential can be addressed using the Hartree mean
field potential. In the previous discussion, we pictured a material as a collection of fixed
nuclei surrounded by electrons, which form the electronic cloud. These latter are delo-
calized in all the volume of the material, with density n (r) =

∑
i |ϕi (r)|2, where ϕi (r)

are the single-particle wave functions. From classical electrostatic, it is known that a
distribution of charges produces a potential thanks to the Poisson equation [23]. Calling
VH such a potential, and remembering that electrons have a negative charge, one has that

∇2VH (r) = −4πn (r)

VH (r) =

∫
n (r′)

|r − r′|
dr′

(1.26)

(1.27)

The new single-particle Hamiltonian can now be written as[
−∇2

2
+ Vn (r) + VH (r)

]
ϕi (r) = ϵiϕi (r) (1.28)

Equation (1.28) is conceptually different from what we wrote before because it intrinsically
requires an iterative approach. In fact, it depends on the electronic density n (r), which is
calculated from the single-particle wave functions calculated from equation (1.28) itself.
We will write the full procedure in section 1.2.2, but the underlying concept is that one
chooses an initial electronic density and computes the Hartree potential, then solves the
N three-dimensional Schroedinger equation (1.28) and finally uses the obtained wave
functions to compute the new density. If the variation within a convergence parameter,
then the algorithm stops, and we can compute the many-particle wave function using
Slater determinants. The two corrections discussed, allow us to justify the use of the
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independent particle approximation and still capture the right physics in the solid.
The last step to derive the Hartree-Fock equations is to refine the accounting for the
fermionic quantum nature of electrons in (1.28) by introducing the exchange and the
correlation potentials. When we introduced the independent particle approximation, we
said that one could introduce the fermionic nature by using the single particle wave
function to build the Slater determinant Ψ. However, Ψ is only computed at the end of
the self-consistent cycle, meaning that when we evaluate the electronic density at each
step, the single-particle wave functions ϕ do not account for the Pauli exclusion principle.
Since we want to keep using a single-particle Schroedinger equation, we can try to prevent
two electrons from occupying the same quantum state by introducing another potential in
(1.28). This is called exchange potential VX and it was first introduced by Fock. Since its
derivation is rather complicated and can be found in books [23], we will simply state the
main results. We can start by noticing that the exact solution of the many-body problem
is a linear combination of Slater determinants Ψi, built from the exact single-particle wave
functions ϕ. However, due to the approximations introduced, the ϕ we get after solving
equation (1.28) are not exact. From the variation principle [24], we know that the energy
calculated

E = ⟨Ψ| Ĥ |Ψ⟩

will be minimum if Ψ are the eigenstates of Ĥ, while it will be higher if, as in our case,
the Ψ are only an approximated solution. We can exploit this property by minimizing the
energy calculated from equation (1.28) with respect to the single-particle wave functions
ϕ, and then imposing the ortho-normality of such states. Therefore we can write:

δE

δϕ∗ = 0

⟨ϕi|ϕj⟩ = δi,j

(1.29)

(1.30)

Then, the exact form of the exchange potential is

VX (r, r′) = −
∑
j

ϕ∗
j (r

′)ϕj (r)

|r − r′|
(1.31)

The potential (1.31) allows considering the Pauli principle using a single-particle approach.
The correlation potential, on the contrary, arises from the fact that in a many-body
picture electrons interact via the repulsive Coulomb potential. Therefore the probability
of finding two electrons next to each other is lower for the Slater determinant than for
the single-particles wave function that we use in each iteration. In formulas, |Ψ({ri})|2 <
|
∏

i ϕi (ri)|2. As for the exchange potential, we can account for this effect by introducing
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the potential Vc (r).
These final two potentials are computationally expensive as they require the evaluation
of the wave functions in different spatial coordination, and are therefore non-local. To
reduce the cost, usually one defines the local potential Vxc, which accounts for both effects.
Finally, one can rewrite equation (1.28) as[

−∇2

2
+ Vn (r) + VH (r) + Vxc (r)

]
ϕi (r) = ϵiϕi (r) (1.32)

The set of equations (1.32) (one for each particle) is called Kohn-Sham equations, and it
will be discussed more in-depth in the next section. It should be noted that VH , Vxc arise
from the fact that after equation (1.24) we neglected the Coulomb interaction.

1.2.2. Kohn-Sham equations and Density Functional Theory

Density functional theory is an exact ground state theory that allows describing the prop-
erties of materials from a microscopic point of view. It is based on the Hohenberg-Kohn
theorems (1964) [25], and since then its implementations (which have approximations)
have evolved to include more corrections and features. A partial timeline of DFT may
be found in chapter 1.3 of [23]. In this chapter the main ideas of DFT starting from the
aforementioned theorems are briefly described. Subsequently, the implementation of this
theory is discussed, with a focus on the self-consistent algorithm for the Kohn-Sham (KS)
equations.
In the previous section, before introducing the independent particles approximation, we
derived equation (1.24) which still depends on the many-body wave function Ψ({ri}).
We should note that the material dependence of the Hamiltonian is in the position of
the nuclei, which were assumed to be fixed, and in the number of electrons, which is
assumed to be constant (isolated system). Therefore, a change in the energy of the sys-
tem can only be caused by a variation of the wave function (apart from changes in the
phase). This concept can be formulated by saying that the energy is a functional of
Ψ: E = F [Ψ ({ri})]. This is generally true for all states, both the excited and the
ground state. However Hohenberg-Kohn noticed that for the ground state, one can say
that the energy is a function of the electronic density which has a one-to-one correspon-
dence with the external potential. This becomes clear if one considers the proof of the
Hohenberg-Kohn theorem, but for the sake of conciseness, it will not be discussed here.
Quoting directly the original paper [25], this can be expressed as the external potential
Vext (r) is (to within a constant) a unique functional of n (r); since, in turn Vext (r) fixes
Ĥ we see that the full many particle ground state is a unique functional of n (r). The
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procedure that arises from the Hohenberg-Kohn theorem is that the electronic density
uniquely defines an external potential. This uniquely defines the Hamiltonian of the sys-
tem which in turn uniquely defines the many-body wave function of the ground state:
n↔ Vext,n ↔

[
T̂ + V̂ext,n

]
Ψ = EΨ ↔ E.

Figure 1.1: Representation of the Hohengberg-Kohn theorem. The green arrows repre-
senting the mapping from the external potential to the density are straightforward from
the previous discussion. The Honingberg-Kohn theorem proves the mapping from the
density to the external potential.

Therefore, one can write

E = F [n (r)] (1.33)

Equation (1.33) is immensely simpler than the general formulation E = F [Ψ ({ri})]
because it only depends on the three spatial variables rather the on the coordinates of
all the particles in the many-body problem. It should be stressed that equation (1.33) is
valid only if we are interested in the ground state of the material. The functional F [n (r)]

then takes the form

F [n (r)] =

∫
n (r)Vn (r) dr + ⟨Ψ [n]| T̂ + Ŵ |Ψ [n]⟩ (1.34)

where T̂ is the kinetic energy operator and Ŵ is the Coulomb energy operator. To recover
the form of the Kohn-Sham equations (1.32) one should then make the density dependency
explicit in all terms. The idea is to build a system of independent particles whose ground
state density is the same of the one of the interacting many-body system. Then, since
the ground state energy is a universal functional of the density, having the density of the
system of independent particles allows computing the ground state energy. This express
this, one defines the total potential Vtot that is the sum of the Coulomb potential Vn, of
the Hartree potential VH and of the exchange-correlation potential Vxc. The density of
the ground is then the one for which

δF [n]

δn

∣∣∣∣
n0

= 0
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from which follows that

Vxc (r) =
δExc [n]

δn

∣∣∣∣
n(r)

(1.35)

Despite having a formulation for the exchange-correlation potential, to this day the exact
analytical form is not known. Therefore, we can think that Vxc is a collector for everything
that is not included in the Hartree potential. Nevertheless, the presence of such a potential
is vital for DFT as its effectiveness depends on the approximation that one chooses for
Exc [n]. From this perspective, it is easy to understand why after the original formulation
of the Kohn-Sham equation a lot of effort has been put into constructing an approximation
that was both simple (computationally) and accurate for describing the system.
Finally, we can state the full algorithm to solve the Kohn-Sham equations self consistently.

Algorithm 1.1 Self consistent solution of the Kohn-Sham equations

1: Given the coordinates of the nuclei, compute Vn (r) = −
∑

I
ZI

|r−RI |

2: Choose a suitable approximation for the exchange-correlation potential Exc [n]

3: Make an initial guess of the electronic density n (r) and choose a tolerance δ
4: while ni (r)− ni+1 (r) > δ do
5: Compute the Hartree potential ∇2VH (r) = −4πn (r)

6: Compute the exchange-correlation potential Vxc (r) = δExc[n]
δn

∣∣∣∣
n(r)

7: Compute the total potential Vtot (r) = Vn (r) + VH (r) + Vxc (r)

8: Solve the single particle Hamiltonian
[
−∇2

2
+ Vtot (r)

]
ϕi (r) = ϵiϕi (r)

9: Compute the new ground state density ni+1 (r) =
∑

i |ϕi (r)|2

10: end while

1.2.3. Slater determinants

In the previous section we described how we can calculate the electronic states in a solid.
We followed a single-particle approach that led us to the definition of the Kohn-Sham
equation. We also mentioned that once we have the wave function ϕ we can combine
them with the formalism of the Slater determinant to build the many-body wave function
Ψ. We shall now explore this formalism.
When we introduced the independent particles approximation, we supposed that we could
describe the global wave function as Ψ({ri}) = ϕ (r1)ϕ (r2) ...ϕ (rn). We may rewrite
this relation using the bra/ket formalism, thus obtaining

|Ψ⟩ = |x1⟩ |x2⟩ ... |xn⟩ (1.36)
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where x = (r, σ) is the position-spin operator. These kets form an orthonormal basis,
so that ⟨x′

i|xi⟩ = δ (x′
i − xi), and if one takes the integral of the square modulus of

|Ψ({xi})|2 dr1dr2...dri−1dri+1...drn one gets the probability of finding an electron with
spin σi in a volume element dri. However, describing the electrons in solids means dealing
with a many-body problem of identical particles which means that in equation (1.36) we
should not put labels on electrons, thus obtaining

|Ψ⟩ = |x1,x2, ...,xN⟩ (1.37)

The object Ψ belongs the Hilbert space HN , where N is the number of particles in the
system. This notation is very general and applies to both bosons and fermions. Since we
want to deal with electrons, we can state that Ψ should be anti-symmetric with respect
to the inversion of two coordinates, such that

∣∣xP (1)xP (2)...xP (N)

〉
= (±)P |x1x2...xN⟩. In

the latter, P is the permutation applied to a particle, therefore applying P (1) to a generic
electron would swap its position with the one the electron in position 1. Therefore, many
configurations represent the same physical state. This is understandable if we think that
the wave function has no direct physical meaning, whereas its square modulus (which
represents a probability) does not change if we change the sign. We may still write an
orthonormality relation as

⟨x′
1...x

′
N |x1...xN⟩ =

∑
P

(±)P
N∏
j=1

δ
(
x′
j − xP (j)

)
= N !δ (0)N (1.38)

where N ! is the total number of possible configurations for the system. This formalism
may seem heavy, but it simplifies many problems because we can perform the calculation
in the most suitable base for the problem, and then project the wave function onto the
base of the position-spin. Thus, if we consider a generic state |n⟩, then its projection onto
the position-spin base is given by ⟨x|n⟩ = ϕn (x). If we define

Ψ = |n1, n2, ..., nN⟩ =
∫
ϕ∗
n1
...ϕ∗

nN
|x1...xN⟩ dx1...dxn (1.39)
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and we use equation (1.38) to perform the projection onto the base of the position-spin,
then we obtain

Ψn1...nN
(x1...xn) =

∑
P

(±)P ϕn1

(
xP (1)

)
...ϕnN

(
xP (1)

)
=

ϕn1 ({x1}) ϕn1 ({x2}) ... ϕn1 ({xN})
ϕn2 ({x1}) ϕn2 ({x2}) ... ϕn2 ({xN})

...

ϕnN
({x1}) ϕnN

({x2}) ... ϕnN
({xN})


(1.40)

which is equivalent to the Slater determinant (1.25). Since we did not make any as-
sumption of the general state (1.39), and yet we obtained the expression of the Slater
determinant only following general algebraic rules, it is easy to guess that this method is
very powerful and it can be done for any property of our system.

1.2.4. Second quantization and Slater determinant excitation

After having obtained the expression for the Slater determinant in a general form, we
should now explore what it means to excite such a state. This is particularly important
because in chapter 2 we will use Slater determinants as a basis for the Cavity QED
Hamiltonian.
Before starting to explore such excitation, it is useful to introduce the language of the
second quantization. Let us consider the state (1.37), which lives in the Hilbert space
HN . If we want to build such a state, we can start from the vacuum state Ψ = |{0}⟩,
which lives in the Hilbert space H0 and define a field operator ψ̂† (xi) such that

|0, 0, ...,xi, ..., 0⟩ = ψ̂† (xi) |0⟩

|x1,x2, ...,xN⟩ =
N∏
i=1

ψ̂† (xi) |0⟩

(1.41)

(1.42)

The commutation relation between two creation operators applied at different coordinates
can easily be obtained by considering the change in the sign of the state if we swap two
coordinates, and then rewrite it in terms of the products of creation operators. If we do
so we obtain

[
ψ̂† (x1) , ψ̂

† (x2)
]
±
= 0, where the + refers to the fermions, the − to bosons.

Analogously, we can define an annihilation operator ψ̂ (xi) which removes a particle from
a state. It follows the same commutation rules as the creation operator, but it has a
significant difference in that if we apply the annihilation operator to the vacuum state,
then we get zero (the Hilbert space H−1 is not defined, and physically it would not make
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sense to have a negative number of particles in a state). The action of the annihilation
operator on a generic Slater determinant is less trivial due to the conservation of the
symmetry of the wave function after the application of the operator. It can be shown [26]
that

ψ̂ (xi) |y1,y2, ...,yN⟩ =
N∑
k=1

(±)N+k δ (x− yk) |y1, ...,yk−1,yk+1, ...,yN⟩ (1.43)

which means that the annihilation operator produces a state which is the sum of many
states belonging to the Hilbert space HN−1. Finally, we state the commutation relation
between the field creation and annihilation operators

[
ψ̂ (x1) , ψ̂

† (x2)
]
±
= δ (x1 − x2) (1.44)

Note that equation (1.44) is a generalization of the commutation relation between the
creation and annihilation operators defined in (1.13) and (1.14).
Now that we introduced the second quantization, we can deal with understanding what it
means to excite a Slater determinant. In this work, by exciting a state it is meant removing
a particle from an occupied state and adding it to a non-occupied state. This can be
expressed by using the transition operator t̂ = ψ̂†

Iψ̂J , where I, J are the set of indices that
describe the particular state in our system. For an atom or a molecule they might simply
be the index of the state, while in a solid one should also include the k-point index. It
may happen that one finds a many transitions operators applied in sequence t̂1t̂2... In that
case it is possible to use repeatedly equation (1.44) to reorganize the operators in such
a way that is easy the exploit the application of the annihilation operator of a vacuum
state, thus simplifying the expression. For examples of the application of such operators,
refer to Appendix A.

1.3. QED Hamiltonian

In the previous sections we dealt with the quantization of the electromagnetic field and
with the description of electrons in solid. We shall now combine the two to study their
interaction. We will study their interaction in the framework of Quantum Electrodynamics
(QED). Firstly we will derive the QED Hamiltonian for a single mode, then we will briefly
introduce optical cavities and finally we will study the two limits for the QED Hamiltonian
(weak and strong).
To write the Hamiltonian of the QED problem, let us first consider the Hamiltonian for
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a single particle in a generic system.

Ĥ =
p̂2

2
+ V̂tot(r) (1.45)

where p represents the momentum of the particle and Vtot is the potential to which the
particle is subjected. When a charged particle moves in an electromagnetic field (in our
case we refer to electrons), its momentum p = mv is not a conserved quantity anymore,
therefore it cannot be used to write the Hamiltonian of the system. Instead, one should
use the generalized momentum p = mv − qA(r, t), where A(r, t) is the vector potential
describing the field and q is the charge of the particle. Since in the present work we
operate with atomic units, we set both q and m to 1. Thus, the new Hamiltonian for a
single particle becomes:

Ĥ =
(p̂− Â)2

2
+ V̂tot(r) (1.46)

Before continuing with the calculation, it is important to set a Gauge for the vector
potential. A common choice in the field of QED is the velocity Gauge (see Appendix
A), thanks to which the momentum p of the particle and the vector potential commute
([p,A] = 0). Since the system we want to describe has both electrons and photons, we
shall also introduce the Hamiltonian of the electromagnetic field in the case of a single
mode. Therefore one can write:

ĤQED =
(p̂− Â)2

2
+ V̂tot(r) + ω

(
1

2
+ â†â

)
=

p̂2

2
+ V̂tot(r) +

Â2

2
+ ω

(
1

2
+ â†â

)
− p̂ · Â

(1.47)

In equation (1.47) one can easily recognize three terms, an Hamiltonian for the electron
part, one for the photon part and an interaction Hamiltonian: ĤQED = Ĥel+Ĥph+Ĥel−ph

• Ĥel =
p̂2

2
+ V̂tot(r)

• Ĥph = ω
(
1
2
+ â†â

)
• Ĥel−ph = Â2

2
− p̂ · Â

The latter term, which arises uniquely from the canonical momentum substitution, is the
one that couples the electrons with the electromagnetic field. In the matrix representation
of this Hamiltonian, all the non-diagonal elements are generated by Ĥel−ph (which contains
the bi-linear coupling term and the diamagnetic term Â2), so if that term was not present
we would simply have a material (electronic system) in the same region of space of an
electromagnetic field, which would lead to a simple absorption problem.
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Finally, since our system of interest is made of many electrons equation (1.45) should be
generalized to

Nel∑
i=1

p̂i
2

2
+ V̂tot(ri)

Since all electrons in the systems move in the same electromagnetic field, we have to
perform the canonical momentum substitution p̂ → p̂− Â for every electron. After some
algebra, one obtains:

ĤQED =

Nel∑
i=1

(
p̂i

2

2
+ V̂tot(ri)

)
+ ω

(
1

2
+ â†â

)
+
NelÂ

2

2
−

Nel∑
i=1

p̂i · Â (1.48)

where Nel represents the total number of electrons in each unit cell. It is easy to see that
the first term corresponds to a sum of single particles Hamiltonians. The second term
corresponds to the Hamiltonian of the radiation field and the last terms are the ones that
effectively couple different matrix elements.

1.3.1. Optical Cavities

Optical cavities are regions of space confined by two mirrors, that can trap photons inside
them. The simplest layout is given by a Fabry-Perot interferometer, which is simply
made of two plane mirrors with reflectivity R1, R2 separated by a distance Lcav. Due to
the presence of the mirrors only specific modes which satisfy the appropriate boundary
conditions can be confined by the cavity. Their frequency can be expressed as

ωn = m
πc

nLcav

where m is the order of the FP window. Each mode is then characterized by a spectral
width

∆ω =
πc

nFLcav

where F is the finesse, a parameter of the FP interferometer which depends only on the
reflectivity of the mirrors, and controls the losses of the cavity [27].
Controlling the losses is a central topic for optical cavities. If one wants to realize a laser,
then the losses control firstly whether a specific mode can be supported by the cavity
and also the optical power emitted. On the contrary, if we want to have a cavity for
studying QED phenomena we want to reduce the losses as much as possible. Optical
losses are mainly caused by non-resonant decay (whose rate is called rate γ) and photon
decay (whose rate is called κ). For atoms in cavities, the former can be modeled as
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γ = A21

2

(
1− ∆Ω

4π

)
, where A21 is the Einstein coefficient for spontaneous emission (from an

excited state 2 to the ground state 1) and ∆Ω is the solid angle subtended by the cavity
mode. For solids it should include also other phenomena such as phonon scattering, whose
importance increases with temperature. The photon decay rate can be modeled as κ = ω

Q
,

where Q = ω
∆ω

, is the quality factor of the cavity.

Figure 1.2: FP cavity with a single atom (two-level system) inside. The yellow lines
represent the round-trip of the light, while the red lines represent the losses κ and γ

Although FP interferometers constitute a good model, they cannot be used as cavities
in real QED applications, as they can only confine photons whose k vector is exactly
perpendicular to the mirrors. Instead, the mirrors should be curved so that the light can
be confined. Then, the interaction between the confined light and the cavity is described
by (1.48), and the solution depends on the coupling strength g0. For atoms in optical
cavities it can be shown that

g0 =
µ2
12ω

2ϵ0ℏV0
where µ12 is the electric dipole moment. In particular, if we are in the weak regime then
we can diagonalize the Ĥel and Ĥph separately and treat Ĥel−ph with perturbation theory,
whereas if the coupling is strong one has to diagonalize the full ĤQED. The condition to
distinguish the two is

√
Ng0 ≫ max(κ, γ) [27], where N is the number of atoms in the

cavity.

1.3.2. Weak regime

As we discussed in the previous section, the weak regime corresponds to the case when√
Ng0 < max(κ, γ). Physically it corresponds to having a low-intensity laser or being in a

low-Q cavity. To study the weak regime, let us consider a two-level system describing the
ground |g⟩ and the excited state |e⟩. Since we want to study an excitation or a relaxation
phenomenon, we should write the operators that correspond to the transition between
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those states. We will have that

σ̂+ = ĉ†eĉg, σ̂+ |e⟩ = 0

σ̂− = ĉ†g ĉe, σ̂− |g⟩ = 0

(1.49)

(1.50)

where ĉ, ĉ† are the creation and annihilation operators for the electronic states. To keep the
model as simple as possible, we can then choose our base to be {|g⟩ , |e⟩}⊗ {|n⟩ , |n+ 1⟩}
with obvious meaning of the symbols. Since we are in the weak regime, we can describe
the system using perturbation theory, in particular with the Fermi Golden Rule. With
that, one can compute the transition probability per unit of time W between two states
as

W =
2π

ℏ2
|Mif |2 g (ω) δ (ℏω − Eif ) (1.51)

where g (ω) is the density of states and Mif is the transition matrix element between
the initial state |i⟩ and the final state |f⟩. In the following, it will be assumed that the
interaction Hamiltonian is given by the electric dipole. To do this we basically have to
substitute Â with Ê in equation (1.48). This assumption is reasonable in most setups, as it
fails when the wavelength of the photon is comparable with the characteristic dimension of
the system or when the electrons are very energetic. If we further assume that the system
is centered at r = 0 and that the transition is perfectly resonant, then from equation
(1.48), we have:

Ĥint = iℏg
∑
i=+,−

σ̂i
(
â− â†

)
= iℏg

(
σ̂+â− σ̂−â

†) (1.52)

where g is the coupling strength and in the last step we already excluded the non-
physical transitions σ̂+â† and σ̂−â. Finally, by specifying the initial and final states
as |g, n+ 1⟩ , |e, n⟩, if we compute the transition matrix elements between them we get:

absorption : ⟨g, n+ 1| Ĥint |e, n⟩ = iℏg
√
n

emission : ⟨e, n| Ĥint |g, n+ 1⟩ = iℏg
√
n+ 1

(1.53)

(1.54)

When these are substituted into equation (1.51) we get the absorption and emission rates
between those two states. It should be noted that for emission we have

√
n+ 1, and there-

fore we get two terms for the emission coefficient. The one corresponding to the +1 is the
spontaneous emission, which in the semi-classical theory has to be introduced manually,
whereas in QED is directly described because we are accounting for the quantized nature
of the electromagnetic field.
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1.3.3. Strong regime

In the strong coupling regime it holds that
√
Nelg0 ≫ max(κ, γ). This regime could be

reached either by using a high-Q cavity (so we allow a photon to interact multiple times
with the atom because it stays in the cavity for a long time before being lost) or by using
a high-intensity beam. In the following it former case will be discussed, as with the latter
one should use a laser intensity that is so high that the material starts to melt.
Since the coupling between light and matter is strong, we cannot use perturbation theory
as in the previous section. Besides not being able to use the Fermi Golden Rule and
therefore having to diagonalize the QED Hamiltonian, it has a deeper physical meaning.
The states of the atom and of the electromagnetic field are now mixed, which means that
alone they do not provide a good description of the system. We will refer to these atomic
and photonic states as the bare states. The eigenstates of the system are therefore a mix
of bare states, |Ψ⟩ = |ψ, n⟩, and they will be referred to as dressed states.

Figure 1.3: Energy diagram for a single atom (represented by a two level system) in a
QED Cavity in strong regime. The first two columns represent the bare states, which
constitute the base for our interaction Hamiltonian. Their coupling generates a pairs of
degenerate levels, which constitute the sub-spaces of our problem. The degeneracy is
broken when g0 > 0, and then we have the dressed states
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To build the QED Hamiltonian we will start from a base that is the tensor product of
the atomic and photonic bare states. In this picture, the ground state of the system
corresponds to the dressed state |Ψ⟩ = |g, 0⟩ and it is the only non-degenerate state. If
we are at resonance, all the other states are double degenerate as their energy can be
obtained both by using the atomic ground state and the photonic state with an extra
photon or vice-versa. If we are not at resonance, this degeneracy is broken by a small
amount. This allows separating the space of our dressed states into many sub-spaces,
each of which is composed of two quasi-degenerate (or degenerate) dressed states. The
strong coupling does not allow to have transitions between different sub-spaces (for that
we need the ultra-strong coupling), but only within a subspace.
This means that we can describe each sub-space with a 2x2 matrix. Using equation (1.48),
we get:

ĤQED =

[
Hg,n+1;g,n+1 Hg,n+1;e,n

He,n;g,n+1 He,n;e,n

]
=

[(
n+ 1

2

)
ℏω + ℏ

2
δ ℏg

√
n+ 1

ℏg
√
n+ 1

(
n+ 1

2

)
ℏω − ℏ

2
δ

]
(1.55)

where δ = ωA − ω is the detuning parameter, and it is a measure of the resonance. ωA is
the energy separation of the atomic levels. By diagonalizing equation (1.55) we get

λ±n = ℏω
(
n+

1

2

)
± ℏ

2
Rn

Ψ±
n =

1√
2
(|g;n⟩ ∓ |e;n− 1⟩)

(1.56)

(1.57)

where Rn =
√

4g2 (n+ 1) + δ2 is the Rabi splitting. It is interesting to note that even if
there are no photons in the cavity (n = 0), the Rabi splitting is non zero. This is a conse-
quence of the zero point energy that comes from the quantization of the electromagnetic
field.
Strong coupling has been observed both in single atoms [28] and in solid state physics
whenever the local structure can be described with discrete level (e.g. quantum dots [29]
or quantum wells).

1.4. Polaritons

In the previous section we described the strong coupling regime between atoms and pho-
tons, introducing the concepts of dressed states and Rabi splitting. In more recent times
it has been shown possible to reach strong coupling for solid-state in cavities, leading to
the discovery of new interesting physics [15, 30].
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When light propagates through a medium, it couples with the latter through the polar-
ization vector P = ϵ0 (ϵ(ω)− 1)E. This relation can be derived directly from Maxwell’s
equation. In classical terms, the propagation of electromagnetic waves in a material gen-
erates the oscillation of the electronic cloud (described in terms of Hertzian dipoles). The
latter then emits new radiation, which contributes to the evolution of the radiation wave.
Using the formalism of section 1.3.3, if the coupling between light and matter is strong
we may say that the states of matter and light are mixed and we may call them dressed
states. The quasi-particles associated with these new states are called polaritons (a mix-
ture of polarization and photons). In quantum mechanical terms, they are a superposition
between the particle representing the matter (more than 70 types of polaritons exist [16])
and the photons [30].
Like every quasi-particle, polaritons are characterized by a dispersion relation E (k) =

ℏω (k) [31]. To obtain such a relation, we can start by considering the k vector of photons
propagating in matter, that is

k2 = k2 = ñ2 (ω) k2v (1.58)

where kv = 2π
λ

is the k vector in vacuum and ñ (ω) is the complex refractive index. By
calling ñ2 (ω) = ϵ (ω) and using the relation for the complex refractive index in materials
we get

c2k2

ω2
= ϵb +

f

ω2
0 − ω2 + iωγ

(1.59)

where γ is a damping parameter [31].

Figure 1.4: The polariton dispersion in the vicinity of a single resonance for vanishing
damping (solid lines) and finite damping (dashed lines) for ϵb = 1. The dashed-dotted
line gives the dispersion of photons in vacuum (a); real and imaginary parts of ñ (ω) for
vanishing damping (b) and the creation of the polariton dispersion (solid lines) from those
of excitons and photons (dashed lines) and the non-crossing rule: ϵb = 1 (c). This figure
is taken from [31]
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Apart from the dispersion relation, it is interesting to consider what the polaritonic spec-
trum looks like. In section 1.3.3 we said that when the states of light and matter are
coupled, then the system is divided into many sub-spaces, each of which has two states.
If the light is perfectly resonant the two are degenerate, otherwise they are slightly split.
When the light-matter interaction is turned on, then the degeneracy is removed thanks to
the Rabi splitting. The two levels are now separated, but they still interact thanks to the
polaritons. The dispersion relation of a polariton then follows the one of the photons in
vacuum as long as we a far from the resonance (Rabi frequency) of the two dressed states.
As it can be seen in Fig 1.4 a polaritonic dispersion relation, this feature is observed. In
fact, as it can be seen in Figure 2 of [7], by plotting the linear optical response for different
coupling parameters, one can see that when there is no coupling the absorption spectrum
has all the lines of the material. When the coupling is turned on, those lines begin to
separate in the upper and lower branch, called indeed upper and lower polariton.
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2| Methods

In chapter 1 we described the theoretical framework of the present work, starting from the
quantization of the electromagnetic field and the behavior of electrons in solid, and then
combining the two. We will now describe the specific problem of this work, discussing the
relevant assumption to simplify the QED Hamiltonian introduced in the previous chapter
to make it approachable with computational techniques. We also provide a simple example
of a single Hydrogen atom in the cavity.

2.1. Approximations and Working Assumptions

The goal of the software developed in this work is to diagonalize the QED Hamiltonian
(1.48) when we put any material in an optical cavity. We can mainly distinguish between
two types of systems, non-periodic (like atoms and molecules) and periodic ones (solids).
Both of them are described using the many-body version of equation (1.48). In fact,
in section 1.3 we derived the QED Hamiltonian starting from a single particle for the
matter part, and then we simply increased the number of particles without considering
their interaction. However, in section 1.2 we said that the quantum state of electrons in
solids (and more in general in many-body systems) is described by a linear combination of
Slater determinants, each of which can be built using the single particle wave functions.
Therefore, in equation (1.48) the single-particles momentum operator

∑
i p̂i should be

substituted with the momentum operator between Slater determinants P̂ . Therefore,
equation (1.48) becomes:

ĤQED = Ĥel +
NelA

2
0

2

(
â†

2

+ â2 + 2â†â+ 1
)
+ ω

(
1

2
+ â†â

)
− P̂ · Â (2.1)

Let us now further explore the specific approximations for the light part and the matter
part.
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2.1.1. Assumptions of the matter part

In this section we will deal with the terms Ĥel and Ĥint = −P̂ · Â. Before doing that,
we should introduce the concept of k point, which has a different meaning in solid state
theory and electronic-structure theory [32]. In the former, it refers to a generic element
of the Brillouin zone. Among all possible k points, some of them are high-symmetry
points and represent specific points in the Brillouin zone. For instance, taking Graphene
as a reference, one can acknowledge the Γ point, which has coordinates Γ = (0, 0, 0) or
the point in the middle of an edge joining two hexagonal faces, called K point and has
coordinates K =

(
1
3
, 1
3
, 0
)
. Conversely, in electronic-structure theory they are sampling

points of the Brillouin zone, and we will refer to them as k points. In those, the states are
calculated, so that the more k points one uses, the more the result will be accurate.
As we discussed in the previous sections, the matter part is described by Slater determi-
nants, which are built on top of the single-particle Kohn-Sham states. In section 3 we
will discuss more in-depth what the software developed in the present work does, but we
can already say that the starting point is represented by the single-particle Kohn-Sham
states. Those are read from Octopus, a real-time real-space TDDFT code upon which the
present work is based (see section 3.1). We will have a set of states (one for each band)
for each k point of our simulation which can be described by the Hamiltonian:

Ĥel =
∑
i,k

ϵKS
i,k ĉ

†
i,kĉi,k (2.2)

where ĉ†i,k, ĉi,k are the electronic creation and annihilation operators for the state i at a
certain k point. Applying those two operators in this order means that firstly we remove an
electron from that state, and then we re-add it; in other words we measure the occupation
of that state. ϵKS

i,k is the energy of the single-particle state i at k point k, which comes
from the solution of (1.32).
Let us now focus on the interaction Hamiltonian. We also assume that the excited states
will be singly-excited [7], which means that we are only allowed to remove one electron
from the ground state. Therefore, the momentum operator between Slater determinants
can be written as

P̂ =
∑

i ̸=j,k,k′

⟨ϕi,k| p̂ |ϕj,k′⟩ ĉ†i,kĉj,k′ (2.3)

where ϕ are the single-particle Kohn-Sham states and p̂ = −i∇ is the single-particle
momentum operator. The single excitation of the Slater determinant is given by the fact
that we are removing a single particle from the state j,k’ and adding it to the state i,k.
Here we assumed that i ̸= j because we are interested in studying transitions, otherwise
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in general we could also have i = j. Finally, in this work only semi-conductors or semi-
metallic systems are considered so that one has not to deal with fractional occupation of
the states (which is the case for metals).

2.1.2. Assumptions of the radiation part

In this section we will deal with the terms Ĥph and Ĥint. In section 1.1 we derived the
expression for a multi-mode vector potential, while in section 1.3 we derived the QED
Hamiltonian in the case of single-mode electromagnetic field. In the following discussion
we will always consider a single-mode radiation field for two reasons. The first one is
that including more modes strongly increases the dimension of the Hamiltonian, making
it virtually impossible to diagonalize (except for small systems). The second is that as
long as we consider only low energy polaritons (i.e. with energy smaller than the second
photon mode), including more modes has little effect and does not change the qualitative
results [7]. Therefore, equation (2.1) already contains the correct Ĥph, while for Ĥint we
simply have to use the expression for the vector potential, that it Â = A0e

(
â† + â

)
,

where e is the polarization vector and A0 groups all the constants.
Finally, we also assume that the optical transitions can only be vertical in the reciprocal
space. This is very common in the field of solid-state physics, and it is motivated by the
fact that the wave vector of the radiation field is much smaller than the wave vector of
the Bloch waves. This holds as long as we do not consider X-rays. Moreover, in this
work this approximation is also justified by taking only the mode with k = 0. Therefore,
equation (2.3) can be further simplified by imposing that k = k′. Therefore, the final
form of equation (2.1) is:

ĤQED =
∑
i,k

ϵKS
i,k ĉ

†
i,kĉi,k+

NelA
2
0

2

(
â†

2

+ â2 + 2â†â+ 1
)
+ ω

(
1

2
+ â†â

)
− A0

∑
i ̸=j,k

⟨ϕi,k| p̂ · e |ϕj,k⟩ ĉ†i,kĉj,k
(
â† + â

) (2.4)

Finally, at the beginning of section 2.1 we stated that we can study both periodic and non-
period systems. The difference between the two is that for non-periodic isolated systems
k is not a good quantum number so we should simply sum directly over the molecular
state. From a technical point of view, this implies that for molecules we have just one k
point, so equation (2.4) does not have the sum over the index k.
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2.2. Structure of the QED Hamiltonian matrix

In this section we will explore the QED Hamiltonian in detail, starting from defining the
basis, then analysing the blocks and finally providing a simple example.

2.2.1. Basis for the QED Hamiltonian

After defining the Hamiltonian of the system we have to choose a basis onto which to
project it, so that we can give a representation of the problem. In principle it is possible
to represent the problem on any basis as long as it is complete, but by choosing a suitable
one it is possible (using physical intuition) to reduce the number of basis states to include,
which makes the calculations will be more efficient. In this problem we have a system
where the electrons in the solid interact with the photons of the radiation field. If we
look at equation (2.4), we see that these two problems would be perfectly separable if the
interaction Hamiltonian was zero. We also know from section 1.4 that the effect of this
latter is to mix the electronic and photonic states, to obtain the polaritonic states.
Therefore, a reasonable choice is to consider a basis that diagonalizes the electronic part,
a basis that diagonalizes the photonic part, and then take their tensor product. As we
discussed, electrons in solids can be described by Slater determinants |Ψ⟩ so a suitable
basis is to consider the Slater determinant for the ground state plus one Slater determinant
for each excitation. Thus we have: {el} : {|ΨGS⟩ , |Ψex,1⟩ ... |Ψex,n⟩}. The photon part is
diagonalized by the photon number states {|n⟩} = {|0⟩ , |1⟩ , ..., |n⟩}, where |0⟩ means that
there are zero photons in the cavity.
Therefore, the final base for our Hamiltonian will be

{|ΨGS⟩ , {|Ψex⟩}} ⊗ {|n⟩} (2.5)

and the generic matrix element of the Hamiltonian will be

⟨n| ⟨Ψi| ĤQED |Ψj⟩ |m⟩ (2.6)

For the expression of the specific matrix element, please refer to Appendix A.

2.2.2. Structure of the blocks

In the chosen basis, the matrix representing the QED Hamiltonian is penta-block-diagonal.
This means that if we put the photon number states of the rows and columns, the matrix
can be divided into blocks and all non-zero elements will be on the blocks of the main
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diagonal and the two diagonals above and below. The dimension of each block is given
by the expression

DIMQED = (1 + V Bstates ∗ CBstates ∗ kpoints) ∗ (Nph + 1) (2.7)

where V Bstates, CBstates are the number of states in valence band and conduction band,
kpoints the number of k points used in the calculation and Nph the number of Fock states
included. The product V Bstates ∗ CBstates ∗ kpoints represents the fact that we can have
excitations from each state in the valence band to each state in the conduction band for
each k point. From this expression it is evident the tensor product in equation (2.5). The
1+ in the matter part represents the Slater determinant of the ground state, while the
one in the photonic part represents the photonic vacuum state |0⟩.
A visual representation is given in Figure 2.1.

Figure 2.1: Structure of the QED matrix as implemented in the code. If we put the photon
number states on the rows/columns, then the matrix is penta-block-diagonal. The red
block is diagonal and only terms from Ĥel and Ĥph contribute to it. The green block is
the bi-linear coupling block, whose elements are defined by Ĥint. Finally, the blue blocks
are again diagonal, and only the terms that contains â†2 , â2 contribute to it

From equation (2.7) it is evident that the dimension of each block is

DIMBlock = 1 + V Bstates ∗ CBstates ∗ kpoints (2.8)



30 2| Methods

On the rows (and the columns) of each block we shall put the Slater determinant of the
ground state followed by all the Slater determinants representing an excitation from the
valence state v to the conduction state c at a given k point k.

|GS⟩ |c1v1k1⟩ |c1v2k1⟩ ... |c2v1k1⟩ ... |c1v1k2⟩ |c1v2k2⟩ ... |c2v1k2⟩ ...



⟨GS| GS c1v1k1 c1v2k1 ... c2v1k1 ... c1v1k2 c1v2k2 ... c2v1k2 ...

⟨c1v1, k1| v1c1k1 c11v11k11 c11v12k11 ... c12v11k11 ... c11v11k12 c11v12k12 ... c12v11k12 ...

⟨c1v2, k1| v1c1k1 c11v21k11 c11v22k11 ... c12v21k11 ... c11v21k12 c11v22k12 ... c12v21k12 ...

... ... ... ... ... ... ... ... ... ... ... ...

⟨c2v1, k1| v1c2k1 c21v11k11 c21v12k11 ... c22v11k11 ... c21v11k12 c21v12k12 ... c22v11k12 ...

... ... ... ... ... ... ... ... ... ... ... ...

⟨c1v1, k2| v1c1k2 c11v11k21 c11v12k21 ... c12v11k21 ... c11v11k22 c11v12k22 ... c12v11k22 ...

⟨c1v2, k2| v2c1k2 c11v21k21 c11v22k21 ... c12v21k21 ... c11v21k22 c11v22k22 ... c12v21k22 ...

... ... ... ... ... ... ... ... ... ... ... ...

⟨c2v1, k2| v1c2k2 c21v11k21 c21v12k21 ... c22v11k21 ... c21v11k22 c21v12k22 ... c22v11k22 ...

... ... ... ... ... ... ... ... ... ... ... ...

where |civjkk⟩ = ĉ†ci,kk ĉvj ,kk |ΨGS⟩ and H is the generic matrix element. As it can be seen
from the matrix above, the Slater determinant of the ground state is followed by a series
of Slater determinants for excitations in the first k point. Within those, firstly we find all
the possible excitation from all possible valence band states to the first conduction band
state, then the same for the second conduction band state. After all states combination
at k point = 1 are completed, the ones for k point = 2 start and the structure is repeated.
Let us now examine each block more in-depth. For doing that, we should consider equation
(2.4). Due to the action of the creation and annihilation operators, each term of equation
(2.4) will be non-zero only in some of the blocks in Fig 2.1. In particular, for the red
block we must have that the photon number on the rows is equal to the photon number
of the columns, which implies that only the Hamiltonian inside the red block will be

ĤQED =
∑
i,k

ϵKS
i,k ĉ

†
i,kĉi,k +

NelA
2
0

2

(
2â†â+ 1

)
+ ω

(
1

2
+ â†â

)
(2.9)

It is evident then that the red block will be diagonal.
In the blue block we should have that phrows = phcols±2, so the Hamiltonian will contain
only terms that shift the number of photons by two. The blue block is also purely diagonal.
Therefore:

ĤQED =
NelA

2
0

2

(
â†

2

+ â2
)

(2.10)
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Finally the green block, also know as bi-linear coupling block, is characterized by phrows =

phcols ± 1. Therefore its Hamiltonian will be:

ĤQED = −A0

∑
i ̸=j,k

⟨ϕi,k| p̂ · e |ϕj,k⟩ ĉ†i,kĉj,k
(
â† + â

)
(2.11)

The bi-linear coupling block is the only non-diagonal block, as can be seen from the fact
that in the sum we have i ̸= j. Its action is to mix different electronic states through
photons. Its structure will look like this:

|GS⟩ |c1, v1, k1⟩ |c1, v2, k1⟩ ... |c2, v1, k1⟩ ... |c1, v1, k2⟩ |c1, v2, k2⟩ ... |c2, v1, k2⟩ ...



⟨GS| 0 Hc1,v1,k1
Hc1,v2,k1

... Hc2,v1,k1
... Hc1,v1,k2

Hc1,v2,k2
... Hc2,v1,k2

...

⟨c1, v1, k1| Hv1,c1,k1
0 0 ... Hc1,c2,k1

... 0 0 ... 0 ...

⟨c1, v2, k1| Hv2,c1,k1
0 0 ... 0 ... 0 0 ... 0 ...

... ... ... ... ... ... ... ... ... ... ... ...

⟨c2, v1, k1| Hv1,c2,k1
Hc2,c1,k1

0 ... 0 ... 0 0 ... 0 ...

... ... ... ... ... ... ... ... ... ... ... ...

⟨c1, v1, k2| Hv1,c1,k2
0 0 ... 0 ... 0 0 ... Hc1,c2,k2

...

⟨c1, v2, k2| Hv2,c1,k2
0 0 ... 0 ... 0 0 ... 0 ...

... ... ... ... ... ... ... ... ... ... ... ...

⟨c2, v1, k2| Hv1,c2,k2
0 0 ... 0 ... Hc2,c1,k2

0 ... 0 ...

... ... ... ... ... ... ... ... ... ... ... ...

One can see that apart from the element in the top left corner, the first line and the first
column only have non-zero elements corresponding to the ground state coupling to all
possible excitations. Physically this corresponds to transitions from the valence band to
the conduction band. However there are also other non-zero elements, which correspond
to transition between two conduction bands, which are allowed only if vi = vf , ki =

kf , ci ̸= cf . The first two conditions are due to the orthogonality of Slater determinants
and the vertical transitions.

2.2.3. Ab-Initio Polaritons: Simple case of H atom

In this section we will provide an example of the problem described so far by building
the Hamiltonian of a very simple system. We will consider the case of a single Hydrogen
atom in a FP cavity at resonance energy ω coupled to three For states {|0⟩ , |1⟩ , |2⟩}. The
Hydrogen atom will be described as a three-level system, therefore having the occupied
state 1s and the two first unoccupied states 2s, 2p. Following from equation (2.5), the
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basis for the Hamiltonian will be

{|Ψv1⟩ , |Ψc1⟩ , |Ψc2⟩} ⊗ {|0⟩ , |1⟩ , |2⟩} (2.12)

where Ψv1 is the state 1s written using the valence/conduction states notation. Analo-
gously for Ψc1 ,Ψc2 . According to the second quantization formalism introduced in section
1.2.4, it will hold that

|Ψv1⟩ = ĉ†v1 |0⟩

|Ψc1⟩ = ĉ†c1 ĉv1 |Ψv1⟩

|Ψc2⟩ = ĉ†c2 ĉv1 |Ψv1⟩

(2.13)

(2.14)

(2.15)

Subsequently we can compute the matrix dimension using (2.7). Remembering that since
we are describing a single atom we only have one k point, we obtain:

DIMH,QED = (1 + 1 ∗ 2 ∗ 1) ∗ (2 + 1) = 9 (2.16)

Once we have the basis and the dimensions, we can start considering the matrix elements,
⟨m| ⟨Ψi| ĤQED |Ψj⟩ |n⟩, where ĤQED is the one defined in equation (2.4), m,n represent
the photon number states and Ψi,Ψj represent the electronic states. These latter are
taken from (2.12).
The actual expression for the matrix element depends on the indexes of the states and
in general it is quite complicated. Its derivation is treated in Appendix A, and for the
sake of clarity the result is split among many equations. In particular, for the matrix
element coming from the electronic part, the reader should refer to equation (A.8), for
the photonic part to equation (A.9), for the one from the bi-linear coupling to equations
(A.10), (A.11), (A.13).
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Therefore, the matrix representation of the QED Hamiltonian takes the form:

|Ψv1 , 0⟩ |Ψc1 , 0⟩ |Ψc2 , 0⟩ |Ψv1 , 1⟩ |Ψc1 , 1⟩ |Ψc2 , 1⟩ |Ψv1 , 2⟩ |Ψc1 , 2⟩ |Ψc2 , 2⟩



⟨Ψv1 , 0| ϵv1 + Ω1
2

0 0 0 A0Pv1,c1 Pv1,c2

√
2

2
A2

0 0 0

⟨Ψc1 , 0| 0 ϵc1 + Ω1
2

0 Pc1,v1 0 Pc1,c2 0
√

2
2
A2

0 0

⟨Ψc2 , 0| 0 0 ϵc2 + Ω1
2

Pc2,v1 Pc2,c1 0 0 0
√
2

2
A2

0

⟨Ψv1 , 1| 0 Pv1,c1 Pv1,c2 ϵv1 + Ω3
2

0 0 0
√
2Pv1,c1

√
2Pv1,c2

⟨Ψc1 , 1| Pc1,v1 0 Pc1,c2 0 ϵc1 + Ω3
2

0
√
2Pc1,v1 0

√
2Pc1,c2

⟨Ψc2 , 1| Pc2,v1 Pc2,c1 0 0 0 ϵc2 + Ω3
2

√
2Pc2,v1

√
2Pc2,c1 0

⟨Ψv1 , 2|
√

2
2
A2

0 0 0 0
√
2Pv1,c1

√
2Pv1,c2 ϵv1 + Ω5

2
0 0

⟨Ψc1 , 2| 0
√
2

2
A2

0 0
√
2Pc1,v1 0

√
2Pc1,c2 0 ϵc1 + Ω5

2
0

⟨Ψc2 , 2| 0 0
√
2
2
A2

0

√
2Pc2,v1

√
2Pc2,c1 0 0 0 ϵc2 + Ω5

2

Where Pi,j = A0 ⟨ϕi| p̂ |ϕj⟩, Pi,j = P ∗
j,i and Ωn = nω + A2

0. We can therefore see that
the Hamiltonian written above is Hermitian, as we would expect since it represents the
energy of the system. As we discussed in previous sections, by diagonalizing this matrix
we obtain the polaritonic eigenvalues and eigenvectors, which can be then used to compute
the new properties of the material, as shown in sections 3.2.1 and 3.2.2. We stress that
not having included more photon number states or more electron states is not a limiting
factor for this section. In fact, for the former by looking at figure 2.1 and considering the
first row, any other block to the right would contain only zeros, and the same applies if
we consider the first column and for the latter we would simply have enabled more optical
transition, but the structure of the matrix would remain unchanged.
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3| QED Matrix Solver and
Response Functions Ab-initio
Implementation

After discussing the theory and the approximations used in the present work, we shall
now discuss the software implementation. We will refer to it as QED Solver. For doing
that we will start by discussing the main code upon which this work is based, Octopus.
Afterward, we will discuss the code structure of the QED Solver and the quantities it
can calculate in the current implementation (namely the linear optical response and the
density of states). Finally we will discuss the parallelization of the code, firstly saying why
it is important to overcome the serial implementation, then describing the main concepts
of the parallel approach and in the end comparing the performances of the two.

3.1. Octopus Code

As we already mentioned in section 2.1.1, the QED Solver is based on an existing software,
which is Octopus. As the reader might have understood from previous sections, the
QED Solver reads the single-particle Kohn-Sham states calculated by Octopus and then
computes the QED matrix. For such a reason it is worth briefly describing the main code.
Octopus is a real-grid real-time based scientific program aimed at the ab initio virtual
experimentation [33], firstly released in 2003 [34] and mainly written in Fortran 90. It
allows to study the equilibrium and non-equilibrium properties of materials (both finite
and periodic systems) using mostly DFT (see section 1.2.2 for details) and its variations
(Time-Dependent Density Functional Theory -TDDFT- for time propagation, TDDFT+U
for studying Hubbard-like systems and others [33]). In its most recent version Octopus is
also able to solve Maxwell’s equations together with the matter part, to study the feedback
between the two during time evolution. In particular, the software solves the Kohn-
Sham equations 1.1 in real time using finite differences as derivatives and it discretizes
all quantities using a real grid approach. This means that a simulation box is defined
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(typically a sphere, a cylinder or a parallelepiped), and then the software builds the grid
onto which all the quantities are calculated. The points of this grid are separated by
user-definable spacing and the materials are defined by the real-space position of the
ions (either with real positions or reduced coordinates if one wants to study periodic
systems). Since the code uses DFT, it will calculate a set of single-particle Kohn-Sham
states computed on the aforementioned grid. The interaction between electrons and ions is
described by pseudopotentials (to reduce the computational cost) [35] and in each point of
the grid the Hamiltonian is defined and diagonalized (until the solution is self-consistent).
This implies that each electronic state will have a value for each point of the grid, which
allows having a precise description of the system (if the chosen spacing is small). The
real space approach has a good scaling to big systems, as well as other advantages. In
particular, it can capture the free particle states (vacuum) better than codes based on
localized basis sets, it equally applies to finite and periodic systems and it implements
routines to calculate physical observables more conveniently [36]. Finally, one can deal
with the increasing computational cost introduced by big systems by distributing the
resources over many processors, therefore using a parallel approach (see sections 3.3, 3.4
for more details). In fact, Octopus has many parallelization techniques that allow it to
run on both CPUs (Message Passing Interface -MPI-, OpenMPI) and GPUs ( Compute
Unified Device Architecture -CUDA- and Open Computing Language -OpenCL-).

3.2. Features of the QED Solver

In this section we will explore the main features of the code QED Solver. As we already
mentioned in the previous discussion, the goal of the software is to build the QED matrix
from equation (2.4) and from the basis (2.5), then diagonalize it to obtain the dressed
states (i.e. the polaritonic states). Subsequently, the software computes the linear optical
response function and the density of states. QED Solver is developed as a utility of
Octopus, which means that it is an independent software that relies on Octopus for doing
some calculations (i.e. the Kohn-Sham states) and it uses many subroutines of Octopus.
In practice, this implies that the user should firstly run Octopus to compute the Kohn-
sham states, and then execute the utility QED Solver (which goes under the name of
oct-qed_matrix ).
The structure of the code is briefly summarized in fig 3.1. After the program starts, the
first thing that has to be done is to read the input file to understand what the user wishes
to compute. Coherently with the main Octopus code [34], the input is provided via a
file called "inp" located in the execution folder and it is composed of blocks and single
variables.
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Figure 3.1: Flow chart of the software QED Solver

A single variable is a line of type variable = value, while a block is a more complicated
structure which is delimited by the character % (example are provided in the following
discussions). The variables introduced by the this utility are:

QED Solver: Input variables

Variable Name Type Optional Values Default Value

QEDMatrixDiagonalizeMatrix logical yes yes/no yes
QEDMatrixDistributedMatrix logical yes yes/no no
QEDMatrixParallelEigensolver integer yes 1/2 1
QEDMatrixOpticalResponse logical yes yes/no yes

QEDMatrixDOS logical yes yes/no yes

Table 3.1: Input variables that define the calculation mode of the utility.

In table 3.1 the list of variables related to the general setup of the software is reported. The
first three allow the user to choose whether to diagonalize the matrix or not, and how to do
it. It is possible to do this because the user might want to run the code only to compute



38 3| QED Matrix Solver and Response Functions Ab-initio Implementation

one of the outputs. This is possible only if the polaritonic states are available. The
input variables QEDMatrixDistributedMatrix and QEDMatrixParallelEigensolver control
the parallelization of the code and the eigensolver (1 corresponds to ELPA -Eigenvalue
soLvers for Petaflop Applications- [37], 2 corresponds to ScaLAPACK -Scalable Linear
Algebra PACKage- [38]), respectively. The parallelization will be discussed more in-depth
in section 3.3. The last two variables allow the user to choose what output to compute
(the linear optical response and/or the DOS). They will be discussed more in-depth in
section 3.2.2 and 3.2.1. It should be noted that if the user wants to compute only one
of the outputs, but the QED Solver is not able to find the polaritonic states, then the
execution fails.

Variable Name Type Optional Values Default Value

QEDMatrixA0 float no ≥ 0.0 0.0

QEDMatrixCavityEnergy block no / /
QEDMatrixNumberOfPhotons integer yes ≥ 0 0
QEDMatrixCavityPolarization block yes / linear x dir

Table 3.2: Input variables that define the parameters of the optical cavity.

In table 3.2 the list of variables related to the specifications of the cavity is reported. In
particular, QEDMatrixA0 is the same that appears in equation (2.4) (and all ones that
derive from it) and it describes the light-matter coupling parameter. QEDMatrixNum-
berOfPhotons defines how many photon number states are used in the QED basis (2.5).
QEDMatrixCavityEnergy and QEDMatrixCavityPolarization are two variables of block
type. The former defines how many cavity energies the calculation should be repeated.
For cavity energy we mean the energy of the photon mode in the cavity, as in section
1.3.1.

Algorithm 3.1 Cavity Energy Block and Cavity Polarization Block
1: CAVITY ENERGY:
2: %QEDMatrixCavityEnergy
3: 0.001 | 1 | 0.005
4: %
5: CAVITY POLARIZATION:
6: %QEDMatrixCavityPolarization
7: ’circular’ | 1 | 1.0 | 1.0 | 0.0
8: %
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The latter defines the polarization of the photon mode. The two blocks have the shape
in algorithm 3.1.

In the cavity mode energy block the user should input three floats, the first one corre-
sponding to the starting value for the cavity mode energy, the second one corresponding
to the last value and the last one representing the energy step. All values should be in
Hartree. In the reported example, the calculations will be repeated for

1− 0.001

0.005
= 199.8 → 200

cavity energies. This means that the QED matrix will be diagonalized 200 times, so this
block has a great impact on the computational cost. Conversely, in the cavity polarization
block the user should first choose whether the polarization should be circular or linear.
Then if the polarization is circular the user should indicate in which direction the π

2
shift

should be added. Finally, three floats follow, each defining the value of the polarization in
a certain direction (x, y, z). The software automatically takes care of the normalization, so
that the norm of the polarization vector is one. In the reported example, the polarization
vector would look like:

e =
1√
2
(ex + iey)

Variable Name Type Optional Values Default Value

QEDMatrixValenceBandStates integer yes ≥ 1,≤ CBstates CBstates

QEDMatrixConductionBandStates integer yes ≥ 1,≤ V Bstates V Bstates

Table 3.3: Input variables that define band of the material used in the calculation.

In table 3.3 the list of parameters related to the matter degree of freedom is reported.
Before analyzing them, it should be noted that since the QED Solver reads the data from
Octopus, some parameters such as the geometry, the number of states, the occupation of
states and the k point are already defined. The two variables in the table allow the user to
deselect some of the available bands to reduce the complexity of the problem, both from a
computational point of view (the matrix dimension is reduced according to equation (2.7))
and a physical point of view (one might want to focus only on the first bands to understand
local features). The user should select at least one band for the valence and conduction
band. The former should not exceed the number the occupied states from the ground
state calculation performed by Octopus, while the latter should not exceed the number
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of unoccupied states computed by Octopus. For the sake of clarity, we shall provide an
example. Let us consider Graphene, with three unoccupied bands. the number of occupied
bands is four. Let the variables in table 3.3 be: QEDMatrixV alenceBandStates = 3,
QEDMatrixConductionBandStates = 2, then the lowest state in energy in the valence
band and the highest state in energy in the conduction band would be excluded. A
schematic representation is provided in figure 3.2.

Figure 3.2: Schematic representation of the bands of Graphene for a DFT calcula-
tion with three unoccupied states. Since QEDMatrixV alenceBandStates = 3 and
QEDMatrixConductionBandStates = 2 the first and last states are excluded.

Variable Name Type Optional Values Default Value

QEDMatrixEta float yes ≥ 0.0 0.001837466 Ha

QEDMatrixOpticalSpectrum block no / /
QEDMatrixProbePolarization block yes / linear x dir

QEDMatrixGamma float yes ≥ 0.0 0.001837466 Ha

QEDMatrixDOSSpectrum block no / /

Table 3.4: Input variables that define the parameters for the linear optical response and
for the DOS.

Finally, in table 3.4 the variables that define the output are listed. For a detailed descrip-
tion please refer to section 3.2.2 and 3.2.1. The first three variables refer to the linear
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response function. In particular, QEDMatrixEta defines an artificial broadening, QED-
MatrixOpticalSpectrum and QEDMatrixProbePolarization are blocks with the same shape
as the ones defined in table 3.2 and define the range of energies covered for computing the
spectrum and the polarization of the probe beam. The last two variables refer to the DOS,
in particular QEDMatrixGamma defines again an artificial broadening for the Lorentians,
while QEDMatrixDOSSpectrum has the same meaning as QEDMatrixOpticalSpectrum.
After reading the input file, the QED Solver initializes the parallelization scheme (if
requested) and finally reads the Kohn-Sham states from Octopus. Subsequently it ei-
ther proceeds to the definition and diagonalization of the QED Matrix (if requested with
the variable QEDMatrixDiagonalizeMatrix ) and finally to the calculation of the output
(if they were requested with the variables QEDMatrixOpticalResponse and QEDMatrix-
DOS ). A representation of the flow of the software is given in figure 3.1.

3.2.1. Density Of States

The first output that the present utility can compute is the Density of States (DOS). This
quantity represents the number of states per unit of volume V and at a certain energy E.
For a three-dimensional periodic system, we can formulate it as [39]

D (E) = 2
∑
k

δ (E (k)− E) = 2

∫
B.Z.

V

(2π)3
δ (E (k)− E) dk (3.1)

where the factor 2 accounts for the spin and k is the k vector of the reciprocal space.
The term E (k) represents the eigenvalues of the states in the system. To compute the
DOS, one should scan over a wide range of energies E (this is controlled with the input
parameter QEDMatrixDOSSpectrum. If there is a state at that energy then Dirac’s delta
will be non-zero, so there will be a state count. However, in computational physics it is not
possible to use the Delta function since one cannot have a cycle over an infinite number
of energies and also because floating point numbers cannot be represented with infinite
precision on a computer. Since the delta to be non-zero requires that the argument is
exactly zero, this condition would never be satisfied. As a consequence, instead of using a
delta we use a Lorentzian function, which has a similar shape (but with a parameterized
broadening):

D (E) =
1

nπ

∑
k

γ

(E (k)− E)2 + γ2
(3.2)

where n is the matrix dimension and γ is the broadening defined with the input parameter
QEDMatrixGamma. The software QED Solver is able to compute only the total density of
states (tDOS) and the joint density of states (jDOS) [39]. Since both of them are computed
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after the diagonalization, they represent the DOS of the polaritonic states, so instead of
having the index k we will have the index I (also because after the diagonalization we
lose the information about the k points). Also, for the tDOS we shift all the energies
by the electronic ground state, so that the tDOS starts from zero. This is computed as
EGS,el =

∑
j,k ϵ

KS
j,k , where ϵKS is the energy of the single-particle Kohn-Sham state and the

index j runs only on the occupied states (valence band). This shift implies that when the
cavity is turned off (A0 = 0, ω = 0) then the ground state is only electronic, so jDOS and
the tDOS represent the same quantity. It should be stressed that this is true only because
we chose as a basis for the Hamiltonian the Slater determinants representing transitions.
Finally, we state the formulas for the tDOS and jDOS implemented in the code.

Dt (E) =
1

nπ

∑
I

γ

[(Epol,I − EGS,el)− E]2 + γ2

Dj (E) =
1

nπ

∑
I>1

γ

[(Epol,I − Epol,0)− E]2 + γ2

(3.3)

(3.4)

3.2.2. Linear Optical Response

The other quantity that the software is able to compute is the linear response function,
which measures how the system responds to a perturbation. This latter is represented by
a probe beam of light, which in general can have a different polarization with respect to
the light in the cavity. The polarization can be controlled with the input block QEDMa-
trixProbePolarization, while the range of energies (ω) for which this the linear response
function should be calculated is controlled by the input block QEDMatrixOpticalSpec-
trum. By applying linear response theory on the polaritonic states, the formula for the
matter component of the linear response function becomes [7, 40]

χ (Ω, ω) =
1

n

∑
I>1

∣∣∣⟨ΨI | P̂ · eprobe |Ψ0⟩
∣∣∣2

ω − (Epol,I (Ω)− Epol,0 (Ω)) + iη
(3.5)

where Ω is the energy of the cavity mode, ω is the energy of the probe beam, η is
an artificial broadening (controlled by the input variable QEDMatrixEta), eprobe is the
polarization vector of the probe beam and n is the matrix dimension. Furthermore,
Ψ0 represents the polaritonic ground state, while ΨI is the excited polaritonic state. The
operator P̂ is the momentum operator between Slater determinants, the same that appears
in equation (2.3). This means that the matrix representation of such operator would have
a dimension equal to (2.8), coherently with the fact that we are calculating the matter
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component of the linear response function. However, the polaritonic states |Ψ0⟩ , {|ΨI⟩}
that come from the diagonalization of the QED Hamiltonian build on the basis (2.5),
have dimension (2.7). In order to account for this difference, the operator P̂ in equation
(3.5) is actually P̂ ⊗ Î where Î represents the identity operator for the photonic part.
Consequently, the operator P̂ ⊗ Î will have the correct dimension (2.7), and its matrix
representation will be:

Figure 3.3: Structure of the matrix for the linear optical response. The only blocks that
contain non-zero elements are located on the main diagonal. The meaning of the color is
the same of figure 2.1, so the green blocks represent the bi-linear coupling shifted on the
main diagonal (due to the identity operator in the photon part)

3.3. Parallelization of the code

Up to now we intended the code for this utility as a serial set of instructions to be
executed in sequential order by the CPU of the computer. This is the case for the
majority of software in the world, when the user launches them, the operating system
loads the data and the instructions on the run-time memory (the RAM) and assigns the
execution to a processor of the CPU. This goes through all the instructions and performs
the necessary operations. The communication between memory and CPU takes place
thanks to a bus, according to the Von Neumann architecture [41]. After the execution
is terminated, another task is assigned to the processor and so on. We will refer to this
as serial approach, and for most application it works and there is no need to introduce
extra complexity. However the physical systems we deal with are complicated, so they
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require much more computational resources to be successfully executed. We will discuss
this in-depth in section 3.3.1. This extra power can be reached by increasing the number
of processors that work on different parts of the same problem. However, telling the
operating system to allocate many processes to the same problem is not enough, because
each of them needs to be aware of the work that the others are doing. For instance, let
us consider the complex problem of summing all natural numbers from 0 to 100. We can
split it into two simpler problems by using two processes. But if we simply allocated these
two without making them aware of each other, then the first would sum from 0 to 50, thus
obtaining

∑50
n=0 n = 1275 and the second from 51 to 100, thus obtaining

∑100
n=51 n = 3775.

The final result would depend on which process we use to read the output, while it should
always be 5050. This happens because the two nodes need to communicate at the end
to combine their work. We will refer to this paradigm as parallel approach, or as it is
commonly called, MPI programming. MPI stands from Message Passing Interface, from
the first standard library for parallel programming.
In this section we will deal with the parallelization of the code, firstly discussing why we
need it for the problem in this work, and then explaining the main ideas of the parallel
approach.

3.3.1. Limitations of the serial approach

In figure 3.1 the flow diagram of the QED Solver was presented. From that picture it
is evident that the software can be divided into three main sections, the initialization
of the system, the diagonalization of the QED matrix and finally the calculation of the
output. The former has a little complexity, as the only operations that are done are the
reading of the inp file (which assigns the values to the variables that define the executing
as discussed in section 3.2) and of the Kohn-Sham states. Also, the parallel layout is
initialized. The execution of this block takes some seconds even on the CPU of a normal
computer, therefore no further discussion is needed. On the other hand, by looking at
the equations for computing the DOS (3.3) (3.4) in the output box, one can see that
their complexity is quite small. The software only has to perform a sum of real numbers.
Therefore, the computational complexity of the QED Solver is due to the diagonalization
of the QED matrix and to the linear response function. Let us consider the serial approach
and let us analyze the two problems in terms of the operation to be performed (algorithmic
complexity) and the memory required.
For what concerns the diagonalization problem, the software only needs to store the full
QED Matrix (as of figure 2.1) which has dimension (2.7). If we consider Graphene, with
four bands in the valence band and the conduction band, with a sampling of the Brillouin
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zone using a 60×60 k points grid and with 2 photons in the cavity (which is the minimum
to get all the non zero blocks), we have

DIMGraphene = (1 + V Bstates ∗ CBstates ∗ kpoints) ∗ (Nph + 1) =

(1 + 4 ∗ 4 ∗ 3600) ∗ (2 + 1) = 172803
(3.6)

Therefore, the QED matrix has 1728032 = 29860876809 elements. Since the states are
complex and since in scientific software one always wants the maximum precision, each
of those elements will be a Complex Double, which is represented with 16 bytes. This
leads to a main memory (RAM) requirement of 477.77 GB, entirely dedicated to this
task. Normal computers usually have 16 GB or 32 GB of RAM. Apart from requiring a
lot of memory, the eigenvalue problem has a complexity that scales as [42] O (N3), where
N is the matrix dimension (3.6). This means that roughly N3 operations are required to
successfully diagonalize the matrix (the exact number depends on the algorithm and on
the assumption that one can make on the shape of the matrix).
For what concerns the linear response function, the term that defines the complexity is the
numerator, which is a matrix element between two polaritonic states and the matrix in
figure 3.3, which has the same dimension of the QED matrix. Then, each element requires
the QED Solver to store the full matrix plus the two polaritonic states. This leads to
a total of N2 + 2N = 29861222415 elements, which is bigger than the diagonalization
problem. To solve this problem, in the QED Solver the shape of the matrix is exploited.
By looking at figure 3.3, if one considers the first row, only the first N

Nph+1
= 1+4∗4∗3600

elements can be non zero. Therefore, only the small matrix of dimensions N
Nph+1

× N
Nph+1

is
stored and then this is accounted when performing the matrix-vector multiplication of the
matrix element. As for the computational cost, one has to perform firstly a matrix-vector
multiplication and then a vector-vector multiplication, so the total number of required
operations is N2 +N ≪ N3. Since the computational cost of the linear optical response
is lower than the diagonalization and the memory requirement is also reduced thanks
to the shape of the matrix. Therefore, in the following discussion we will refer to the
diagonalization.
From this discussion, it can be understood that the serial approach is not suitable for the
dimension of the problem. On the other hand, the parallel approach allows dividing the
QED matrix into many processors, thus linearly reducing the computational cost. Also
the memory requirements can be reduced if one uses many nodes, as we will discuss in
section 3.3.2.
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3.3.2. High Performance Computing

In the previous section we already discussed that the parallel approach consists of di-
viding the execution of the software into many processors. When dealing with parallel
programming, it is common to use clusters which can be seen as a network of computers.
A cluster is composed of many nodes, each of which has a certain number of CPUs and
a certain amount of main memory. A node is the smallest processing unit that can be
assigned to a single user [43]. The assignment is done by the scheduler of the cluster and
it is based on the resources asked by the user. The request is done using a batch script
(see algorithm 3.2). Another concept that will be used in the following discussion is the
one of task, which can be defined as the smallest unit of instructions that needs to be
executed on a node [43]. In the batch script mentioned above, the user should specify
how many nodes should be used in the calculation and how much memory per node is
required. Further, the number of tasks per node and the number of processors (CPU) per
task should be specified. Finally, one has to declare what is the maximum time required
for the calculation.

Algorithm 3.2 Example of a part of batch script for submitting a job
1: #SBATCH --nodes=6
2: #SBATCH --ntasks-per-node=15
3: #SBATCH --cpus-per-task=2
4: #SBATCH --mem=170G
5: #SBATCH --time=10:00:00

Figure 3.4: Assignment of computing resources in an HPC cluster. Each user submits a
batch script, then the scheduler assigns the computing nodes considering the number of
requested nodes, the memory request and the maximum execution time
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In algorithm 3.2 a part of a batch script is reported. In that job, 6 nodes were requested
each with 170 GB of main memory and 15 tasks. Therefore, the total memory allocated
is 170 GB ∗ 6 = 1.02 TB, and the problem is executed with 90 tasks (all running in
parallel). Since 2 CPUs per tasks are assigned, then a total of 180 CPUs are dedicated
to the problem. The maximum time is ten hours. The information present in this script
is used by the scheduler of the cluster the define when the resources should be allocated
to the user.

3.3.3. Serial vs Parallel code performance

In this section we compare the results in terms of performance for the QED Solver when
executed in serial and in parallel. In particular, the measurements were performed using
the ProfilingMode of Octopus Code on the MPCDF cluster Ada [44] while requesting a
single node with 200 GB of main memory. A simple system was defined for this task,
which was a 1D LiH chain with 2 k points, 1 state in the valence band and four states in
the conduction bands. According to equation (2.8), this leads to a block dimension of 9.
The variable QEDMatrixNumberOfPhotons is used to control the dimension of the global
matrix (2.7). The calculations were repeated for 1 task (serial) and for 5, 10, 15, 20, 25

tasks.

(a) Diagonalization time as a function of the matrix
dimension for many numbers of tasks.

(b) Diagonalization time as a function of the num-
ber of tasks for the matrix dimension of 1494

Figure 3.5: Performance of the code for the diagonalization of the QED matrix in the
serial and parallel case

We measured the time for the subroutine qed_solve (which diagonalizes the Hamiltonian
using the eigensolver ELPA [37]) and for the subroutine qed_get_matrix (which defines
the QED matrix). No measurements were performed on the subroutine qed_optical_response
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(which computes the linear optical response) because its performance greatly depends on
reading the polaritonic states from binary files. This operation depends on the bus of the
cluster, which is shared between all users. Let us start with the diagonalization time.
As for the diagonalization, despite the presence of noise, it can be seen that the time
needed grows with the cube of the matrix dimension N . The cubic fitting of the curve
(dotted blue curve) is much more precise than the quadratic one (dotted red curve), es-
pecially in the first half of the graph. Since the fluctuations are minor if compared to the
trend, it can be argued that they are due to cluster usage at the moment of measurement.
This is particularly true for the parallel case, as the tasks need to communicate. It is inter-
esting to note that when the matrix dimension is small compared to the number of tasks,
then increasing the number of tasks does not lead to an improvement in performance.
This is partly due to the communication time, and partly because with modern CPUs the
difference of elements in the matrix dimension must be significant to generate an effect.
In the figure 3.5a, when the matrix dimension is 600, if we are using 25 tasks then each
of them manages 6002

25
= 14400 elements, while by using 15 tasks each of them manages

6002

15
= 24000 elements. The difference is minor also considering that the majority of them

are zeros.

Figure 3.6: QED matrix build time. The trend is linear as shown by the linear fitting for
the 1 task case.

Let us now consider the matrix build time. Since the number of elements in a square
matrix is N2, N being the matrix dimension, one would expect a quadratic scaling for the
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subroutine qed_get_matrix. In the parallel case, each task would manage N2

nt
elements,

which is still quadratic. This is indeed the scaling of the DO cycles for the rows and the
columns. However figure 3.6 clearly shows that the time scales linearly with the matrix
dimension. To understand this behavior, one should look carefully at the structure of
the QED matrix, so let us consider the Hydrogen example (2.2.3). First of all, one can
see that the majority of the elements is 0, so in that case the algorithm does not do
anything. Further, the terms on the main diagonal of the blocks are a simple sum of
know quantities, so also in that case the code is quite fast. The real complexity is given
by the bi-linear coupling block because to compute its entries one has to perform a matrix
element between Kohn-Sham states. This operation requires performing a derivative and
then an integral. In the system used to produce figure 3.6, each block has a dimension
of 9, and the bi-linear coupling block has only 36 non-zero elements (out of 81 entries).
Therefore, adding a photon to the cavity implies adding 72 matrix elements to compute,
and adding 5 photons to the cavity means adding 72∗5 matrix elements to compute. This
explains the linear scaling for the subroutine qed_get_matrix.

3.4. Parallel code examples

In this section we will explore how the code of QED Solver was parallelized. We will only
discuss the diagonalization and the linear optical response, as each of them introduces
important concepts of parallel programming. For the sake of simplicity, let us consider
the system discussed in section 2.2.3 where the Hamiltonian has dimension 9× 9, and it
is represented in equation (2.2.3). Let us divide this problem into three tasks and start
by the diagonalization.
The subdivision of the matrix is performed thanks to the BLACS library (Basic Linear
Algebra Communication Subprograms), which creates a grid of processors. There are
many possibilities to do that, but in this software it was decided to allocate all tasks to
the columns, so that in the example that we are considering each task would manage
three columns and nine rows. A visual representation of the flow chart and the matrix
division is provided in figure 3.7a. Within the BLACS grid, each task has a unique rank
and knows how many rows and columns it manages. One can easily iterate through them
using a standard Fortran do loop. However when building the QED Matrix the task also
needs to know the global indexes, otherwise they would build the same matrix. In fact,
by looking at figure 3.7a, and comparing it with the equation (2.2.3), one can see that for
Task 0 the element (1, 1) should be H1,1 = ϵv1 +

Ω1

2
, while for task 1 the element (1, 1)

should be H1,1 = 0. This is because the local element H1,1 of task 1 corresponds to the
global element H1,4 of the QED matrix. The BLACS grid provides a function that allows
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the tasks to know about the global indexes they are managing. From this discussion it
emerged the most important concept of parallel programming, which is that all tasks run
the same algorithm, but manage different data. As a consequence, each task will produce
a different result, which then should be properly combined with the ones generated by the
others tasks. Considering again the example of the Hydrogen atom, all nodes will read
all the Kohn-Sham states because each of them has to build some part of the bilinear
coupling block. Subsequently, they all build different parts of the QED matrix and the
begin the diagonalization. While diagonalizing, each task communicates with the others
to share the matrix element they manage. Once this step is completed, each task will
have all the eigenvalues and some eigenvectors (in this case three). Finally, each task
writes the polaritonic states that it has to binary files. It should be stressed again that
the code is the same for every task, the difference only comes from the fact that each task
is assigned to a different part of the matrix. A visual representation of the flow is given
in figure 3.7b.

(a) BLACS subdivision of the QED Matrix.
Each task has a certain number of columns (in
this example three) and all the rows

(b) Flow chart for the parallelization of the diagonal-
ization. The purple arrows represent a communication
between tasks

Figure 3.7: In fig a the flow diagram is represented, where it should be noted that the
BLACS grid is generated at very beginning of software. Then, the Kohn-Sham states
are read, followed by the definition of the QED Matrix, the diagonalization. Finally
the polaritonic states are saved and the BLACS grid is de-allocated. In figure b, the
BLACS grid for the QED Matrix is represented. Each task manages 3 columns and 9
rows. Before the diagonalization, the QED Matrix contains the matrix elements, after
the diagonalization it contains the polaritonic states. Therefore, each task manages 3
polaritonic states
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The chosen subdivision of the QED Matrix is particularly advantageous in the last step,
which is the writing of the polaritonic states to binary files. In fact, for both eigen-
solvers (ELPA and ScaLAPACK), after the diagonalization the eigenvectors are along the
columns of the matrix. As a consequence, with the chosen parallel layout each task has a
certain number of states that can immediately be written to files, without any communi-
cation needed.
Let us now consider the linear optical response. The code implements the formula pre-
sented in section 3.2.2, which has a lower algorithmic complexity compared to the diago-
nalization. By looking at equation (3.5), one can see that the sum has N−1 terms, where
N is the matrix dimension (2.7). Therefore, in the Hydrogen example we are considering
there will be 8 terms. The complexity of the linear response function code is mainly due
to the numerator, therefore that is the part that is parallelized. Computing the denom-
inator and performing the actual sum are cheap operations that can be executed by a
single task.

Figure 3.8: Flow diagram for the parallelized linear optical response

Let us now explore the algorithm. Firstly, one can see that the matrix elements are always
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between the polaritonic ground state Ψ0 and an excited state. As a consequence, every
task should have the polaritonic ground state plus a certain number of excited state,
depending on the dimension of the matrix and on the number of tasks assigned to the
problem. Since the linear optical response is computed after the diagonalization of the
matrix, the tasks are already divided into a BLACS grid. Therefore, if the matrix was
diagonalized it makes sense to keep using the same grid, with the addition that the task
that has the polaritonic ground state has to broadcast such state to all other tasks. This
is a standard MPI operation, that is indeed called broadcast. If the QED matrix was not
diagonalized, then all the states were previously saved to binary files, so all tasks simply
have to read the file containing the polaritonic ground state. After this operation, all
tasks should build the P̂ matrix. One can note that the numerator does not depend on
the probe energy ω, therefore it is enough to compute it once. Subsequently, all tasks
initialize a vector of dimension N − 1 which has zeros on all entries. It will contain
the polaritonic matrix elements in the numerator of equation (3.5). Each task should
compute the matrix element between the polaritonic ground state and the excited states
that it manages. In the example of the Hydrogen atom, as of figure 3.7a, the task 0 will
compute two matrix elements, that are ⟨ΨGS| P̂ |Ψ1⟩ , ⟨ΨGS| P̂ |Ψ2⟩, while the tasks 1 and
2 will compute three matrix elements each. After this operation is completed, each task
will have some elements of the aforementioned array equal to zero, and others containing
the computed matrix elements. For the example of Hydrogen atoms, the situation is
represented in the red box in figure 3.8. Finally, we have to combine the information
of all tasks so that the one that has to compute the sum can have all the information.
This is again a standard MPI operation, called MPI_Allreduce, in which all tasks sum
their array (or number or matrix) with the same array held by all the other tasks. The
situation after this operation is shown in the orange box in figure 3.8. After that, the
task assigned to the calculation of the sum can perform the remaining operations, which
are the cycle over ω, the definition of the denominator, the actual sum and the output to
text file.
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After describing the theory and the implementation, we shall now discuss the results
obtained. We will present three systems, with increasing complexity. For each of them,
firstly we state the parameters of the simulation, then we discuss the band structure
to rationalize the formation of polaritons. Subsequently, we analyze the linear response
function as a function of the light-matter coupling constant (the term A0 in equation
(2.4)).

4.1. Benzene molecule

The first system discussed in this work is the Benzene molecule, which is a finite system.
The setup is taken from the paper Light–Matter Response in Nonrelativistic Quantum
Electrodynamics [45] and it is reported in the figure below.

Figure 4.1: Set up for the Benzene molecule. This image is taken from [45], while the
coordinates for the atoms are taken from [46]. In the image, λα represents the polarization
direction of the light in the cavity

The benzene molecule is parallel to the cavity mirrors, as it lies in the xy plane, while
the cavity is a Fabry-Perot resonator which confines the light in z direction. The photon
mode is polarized in the x direction (as indicated by λα in figure 4.1), and the photon
basis was truncated to n = 5, thus {|0⟩ , |1⟩ , |2⟩ , |3⟩ , |4⟩ , |5⟩}. This was decided after
a test on the convergence. The ground state of the benzene molecule has 15 occupied
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states, which were all included in the calculation. As for the unoccupied states, 10 were
considered. Since benzene is a finite system, we performed simulations with periodic
boundary conditions on a single k-point grid. According to equation (2.7), the matrix
dimension is DIMHC6H6

= 906.

Figure 4.2: Single particle density of states for Benzene molecule. The peaks in this plot
do not represent the polaritonic states of equation (3.3), but only the electronic states.
The vertical line at −3.9eV is the Fermi level

In figure 4.2, the density of states for the Benzene molecule is reported. The vertical line
at −3.9eV is the Fermi level, therefore from this plot the HOMO-LUMO transition, that
is the transition between the highest occupied state to the lowest unoccupied state, is
expected to be at 5.11eV which is accordance with the literature (the small difference is
due to the number of unoccupied states included in the calculation) [47]. This transition
is the π − π∗, and in the following discussion we tune the cavity to this frequency thus
focusing on this transition, rather than on the ones at higher energy.
Let us now consider the absorption of benzene without the cavity. To do that it is enough
to set the coupling strength A0 to zero. As one would expect from the energies of the
states, the π − π∗ peak in both the linear optical response (figure 4.3a) and the joint
DOS (figure 4.3b) takes place at 5.12eV . However, if one compares this result with the
literature [45, 47], the transition should happen at 6.9eV . This difference can be explained
by the fact that in the present work the dynamic response was disregarded, while that was
accounted for in both reference papers (which were using a time-dependent approach). In
such a framework, they included the variation of the exchange-correlation potential that
happens after the optical response, which gives the difference in the transition energy.
It is worth noticing that in principle this effect is present also in solids, but due to the
presence of a much higher number of electrons it is usually negligible. On the contrary,
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for finite systems like molecules, the effect is much bigger. Another interesting feature
is to observe that there are almost no transitions between 5eV and 10eV and then after
15eV , while the joint DOS is quite big. This is due to the matrix elements in the linear
optical response, which are zero due to the symmetries of the orbitals.

(a) Linear optical response without the cavity (b) Joint density of states without the cavity

Figure 4.3: In panel (a) the linear optical response of the Benzene molecule is shown. The
first peak is roughly at 5.12eV , which corresponds to the π − π∗. Conversely, the series
of peaks between 10eV and 14eV correspond the the σ− σ∗ transitions. In panel (b) the
Joint DOS is represented. It is possible to observe the peaks corresponding to the π− π∗

and σ − σ∗ transitions. The value of the Lorentzian broadening was η = 135meV

Let us now turn on the cavity and consider the linear optical response. As it was expected
(figure 4.4), as soon as the coupling is non zero then the polaritonic split appears. If one
looks at the Rabi splitting in the absorption line at the lowest energy (the π − π∗), one
can see that it increases with A0. Before analyzing this splitting in detail, it is worth
noticing that apart from the main photonic line there are other ones in the left part of
the graphs. They are highlighted in the panel corresponding to A0 = 0.06. The physical
interpretation for those is that the line at the lowest energy is due to the coupling of the
electronic states with the Fock state |1⟩, the second line corresponds to the coupling with
the Fock state |2⟩ and so on. These resonances have a lower intensity than the primary
ones, and the steepness of the line describing them is much higher, which is why they are
harder to see and they are not present in every panel. In fact, for A0 = 0.02 they are too
weak, while for A0 = 0.08, A0 = 0.1 they are shifted out to the left side of the graph.
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Figure 4.4: Contour plot of the linear optical response for some values of the coupling
strength A0. On the x-axis there is the resonance energy of the cavity and on the y-axis
the energy of the probe. The value of the Lorentzian broadening was η = 135meV

Let us briefly analyze the steepness of those two red lines. The lower one forms an angle of
42◦, while the second has an angle of 64◦, thus their ratio is 1.52. To understand whether
it is correct, one should consider the matrix elements of the main diagonal of the QED
matrix. Since those are the photon lines, they must be described by the photonic part of
the matrix elements of the Hamiltonian. By looking at equation (2.4), and remembering
that the operator â†â applied to a Fock state gives the number of photons, then the
photonic part of the elements is given by

⟨n|HQED |n⟩ = En = Ω

(
nph +

1

2

)
+NelA

2
0

(
nph +

1

2

)
(4.1)

For the first photon line clearly one has that nph = 1, while for the second nph = 2. As a
consequence, the two lines will be:

⟨1|HQED |1⟩ = Eph,1 =
3

2
Ω +

3NelA
2
0

2

⟨2|HQED |2⟩ = Eph,2 =
5

2
Ω +

5NelA
2
0

2

(4.2)

(4.3)

The ratio between the two angular coefficients is 5
3
= 1.67, which is comparable with the

one obtained with the two lines.
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Figure 4.5: Comparison of the Rabi splitting for the π − π∗ transition

Finally, as for the Rabi splitting of the π − π∗ transition, it can be seen from figure 4.5
that the lower polariton is always more intense than the upper one which is in accordance
with what is found in literature [45]. As for the value of the splitting, it increases linearly
with the coupling strength A0, which is in accordance with equation (1.56). The values
are reported in the table below.

A0 = 0 A0 = 0.02 A0 = 0.04 A0 = 0.06 A0 = 0.08 A0 = 0.1

π − π∗ 0 0.36 0.68 0.85 0.93 1.03

Table 4.1: Rabi splitting (in eV) as a function of the coupling strength
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4.2. LiH 1D chain

The second system we discuss is a simple 1D linear chain of Lithium and Hydrogen. The
system is non-physical (as we will discuss), nevertheless it constitutes a good introduction
to periodic systems because of its simple structure. Moreover, this was the system that was
used to debug the implementation of the software, as it was possible to test observables
even with a very small matrix (as small as 14× 14).

Figure 4.6: Set up of the LiH 1D chain. The cavity confines the photon mode in the
z-direction, while the chain is periodic in the x-direction. The distance between Lithium
and Hydrogen atom is 1.5949 Å

The setup used is represented in the figure above. The distance for the Li-H bond is the
one of the Lithium Hydride molecule [48], and the chain is periodic in the x direction.

Figure 4.7: Band structure of the LiH 1D chain. The red state is the valence band,
which is fully occupied, while the other constitutes the conduction band. The blue state
is double degenerate. The presence of a gap indicates a insulating behavior
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On the other hand, the cavity is a Fabry-Perot resonator which confines the light in z

direction. The photon mode is polarized in the x direction, and the photon basis was
truncated to n = 5, thus {|0⟩ , |1⟩ , |2⟩ , |3⟩ , |4⟩ , |5⟩}. As for the property of the material,
both the Lithium and the Hydrogen have 1 electron available for bonds (for Lithium is
the 2s, for Hydrogen the 1s). As a consequence, there will be only 1 valence band (which
will be full), and we can expect a semiconducting behavior. As for the unoccupied states,
3 states were used for the conduction bands and the Brillouin zone was sampled with 81
k points. From equation (2.7), the matrix dimension is DIMHLiH

= 1464.
In figure 4.7 the band structure of the system is reported. The presence of an energy gap
of 5.53eV between valence (red state) and conduction band indicates that the material
behaves as an insulator, as it was expected from the electronic valence of Li and H atoms.
Moreover, it should be noted that the blue band is double degenerate. Let us now consider
the linear optical response and the joint density of states without coupling with the cavity.
To do that, it is enough to set A0 = 0 in the calculation.

(a) Linear optical response without the cavity (b) Joint density of states without the cavity

Figure 4.8: In panel (a) the linear optical response of the LiH 1D chain is shown. The
onset is roughly at 23.5eV , which corresponds to the transition from the red band to the
black band at kx = 0. Conversely, the highest peak corresponds to the transition between
the same bands, but at the border of the Brillouin zone. In panel (b) the Joint DOS is
represented. The first peak corresponds to the band gap, while the second corresponds
to the onset of the optical absorption. The value of the Lorentzian broadening was
η = 544meV

In figure 4.8a and 4.8b the linear optical response and the joint DOS are shown, respec-
tively. From the joint DOS it is possible to recognize the first peak as the band gap of the
system at 5.53eV , followed by a decrease that goes as D(E) ∼ 1√

E
as it is expected for 1D
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systems [39]. The small undulations between 10eV and 20eV are due to the finite k-point
sampling in the simulation. Interestingly, the transitions between these two bands (the
valence and the first conduction band) are not present in the optical response 4.8a. This
is due to the fact that the matrix elements between the polaritonic states in equation
(3.5) are zero. This can be interpreted by considering the symmetries of the bands, which
would justify the zero in the matrix elements. The 1√

E
trend continues until the first

transition from the red band to the black band, which generates the peak at 23.5eV , and
it is the onset of the optical response. Finally, the two peaks at higher energy correspond
to transitions happening at kx = ±0.25 and at the border of the Brillouin zone. In par-
ticular, the latter generates the biggest absorption peak.
Let us now turn on the cavity. Firstly the linear optical response will be analyzed. As
one can see from figure 4.9, while without cavity coupling the material response is inde-
pendent of the cavity frequency, when the cavity is on the cavity is turned on, the linear
response band is divided into two branches, separated by a region with a much lower
optical response. This trend increases with the coupling strength A0. If one recalls figure
1.4, then the upper band can be identified with the upper polariton, the lower with the
lower polariton. The fact that there is a region with lower absorption is coherent with
the fact when there is strong coupling, the dressed states are split by the Rabi splitting,
which is also supposed to increase linearly with the coupling strength A0, according to
equation (1.56).

Figure 4.9: Contour plot of the linear optical response for many values of the coupling
strength A0. On the x-axis there is the resonance energy of the cavity and on the y-axis
the energy of the probe. The value of the Lorentzian broadening was η = 544meV
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To prove that the Rabi splitting is indeed linear, let us consider two vertical cuts of the
linear optical response (i.e. at two fixed cavity energies). The cuts are represented by the
red lines in figure 4.9.

Figure 4.10: Comparison between two vertical cuts (i.e. at fixed cavity frequency) for the
linear optical response. The arrows represent the Rabi splitting

The first cut is taken at Ω = 24.46eV , which means where the lower polariton splits. The
second is taken at Ω = 35.35eV , where the upper polariton splits. In both cases, the
increasing length of the arrows (which represent the Rabi splitting) increases linearly as
shown in the table below.

A0 = 0 A0 = 0.01 A0 = 0.02 A0 = 0.03 A0 = 0.04 A0 = 0.05

Ω = 24.46eV 0 11.41 12.98 14.28 16.23 18.56

Ω = 35.35eV 0 3.97 5.98 9.59 13.58 17.43

Table 4.2: Rabi splitting (in eV) as a function of the coupling strength

4.3. Graphene

The last system studied in this work is Graphene, which is a 2D material constituted
only by Carbon atoms arranged in hexagons. Due to its properties, it is probably the
most studied 2D material. The main characteristic of its band structure is the presence
of the Dirac points (and Dirac cones), where the valence band and the conduction band
touch. From those points, two cones are originated, where the dispersion relation of the
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electron is linear. As a consequence, since the mass is the second derivative of the energy
dispersion relation with respect to k [39], the mass of electron inside these cones is zero,
which means that the fermions cannot accelerate nor decelerate.

Figure 4.11: FP Cavity containing the Graphene used to simulate this system. The lattice
of Graphene is taken from https://en.wikipedia.org/wiki/Graphene

(a) Bandstructure of Graphene. Each segment (from Γ

to K, from K to M and from M to Γ) is sampled with
40 k points

(b) Dirac cones of Graphene.
The image was taken from [49]

Figure 4.12: In panel (a) the band structure with 4 states in the valence band and 6
states in the conduction band is shown. The line at −4.17eV represents the Fermi level.
In panel (b) a 3D representation of the π bands, with a focus on the Dirac points

Due to the presence of these cones, this material has a very high computational complexity.
In fact, one has to use a fine k-point sampling to correctly describe the region around
the cones. At the same time, one can see that the conduction bands from number 2 to
number 5 are very close in energy both at Γ and K, which means that to get a coherent
quantitative description one has to include most of them. In particular, for the following
results all the states in the valence were included, as well as 4 states in the conduction
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band. As for the k points sampling, a grid of 60 × 60 points in the xy plane was used,
for a total of 3600 points. Finally, the photonic base was truncated to 4 states, thus
{|0⟩ , |1⟩ , |2⟩ , |3⟩}. As a consequence, according to equation (2.7), the matrix dimension
is DIMHGraphene

= 230404. The computational complexity of the system is extremely high
compared to the LiH chain or the Benzene molecule. For such reason, it was not possible
to include 6 photonic states like in the previous page, as well as the 5th conduction band
had to be left out.
Let us now consider the properties of Graphene without the presence of the cavity.

Figure 4.13: Linear optical response of Graphene without the cavity. The value of the
Lorentzian broadening was η = 150meV

As it can be seen, the onset of the linear response is at 0eV , as one would expect due
to the fact that the valence and the conduction band touch each other at the K point.
Subsequently the first peak is at about 4.2eV , which according to the literature [50, 51]
corresponds to the π − π∗ around the M point. The intensity calculated in this work
is lower than the one present in the literature. Finally, the highest absorption peak at
14.35eV is given by the σ− σ∗ transition. In one recalls how dense the conduction bands
from 2 to 5 are (figure 4.12a), then it is easy to see that this peak is supposed to be much
higher than the π − π∗ one. The fact that the intensity of the π − π∗ is much lower than
the one that can be found in literature is due to the fact that the matrix element at the
numerator of equation (3.5) should include a term ∝ 1

EI−E1
. Since its value is 1

4eV
for the

π − π∗ and 1
15eV

for the σ − σ∗, then the two peaks get rescaled and yield the expected
result.
Let us now turn on the cavity. In all the following discussions, the polarization of the light
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in the cavity was circular, thus the polarization vector was e = 1√
2
(ex + iey). Due to

the computational complexity of this problem it was not possible to produce the contour
plots for observing the polaritonic split in the bands. Therefore, it will only be possible
to consider plots at certain cavity energy. Moreover, in order to study the modification
of the Dirac cone it was decided to sample the Brillouin zone only around the K point.
This allowed to strongly simplify the computational complexity, as the number of k points
needed was 973. In addition, it was also decided to focus only on the bands which form
the Dirac cone, which means the last valence band and the first conduction band. This
contributed to simplify the problem from both a computational and a physical point of
view.

(a) Linear optical response of Graphene using cir-
cularly polarized light e = 1√

2
(ex + iey)

(b) Linear optical response of Graphene using lin-
early polarized light in the x direction

Figure 4.14: In panel (a) the linear optical response using circularly polarized light is
shown. In panel (b) a 3D representation of the π bands, with a focus on the Dirac
points. For both panels, the cavity energy is 27.2meV and the Lorentzian broadening is
η = 150meV .

Let us start by analyzing the panel 4.14a, which is for circularly polarized light. When
the cavity is turned on, like in the previous systems the peak at 4eV is split into an upper
polariton and a lower polariton (red curve). This split pushes the lower branch very close
to the ω = 0eV , which prevents the gap from opening for such value of A0. However,
by increasing the coupling strength one can see that the response for small values of ω
decreases, and for A0 = 0.01 the onset on Im(χ) is at around 2eV . This witnesses the
gap opening in the band structure. However, one can observe other interesting features.
In fact, by considering the black curve (A0 = 0.005), it can be seen that the first peak
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corresponding to the lower polariton is shifted with respect the same peak of the red curve
(A0 = 0.0025), coherently with the expectations. However, that peak is itself split into
two peaks, which is a feature that was not observed in the previous systems. By looking
at the magenta and green curves, this sub-split increases and it also appears in the upper
polariton peak (5.5eV for A0 = 0.0075 and between 6eV and 8eV for the green curve). On
the contrary, if the polarization of the light in the cavity is linear (figure 4.14b), as soon
as the coupling strength is greater than zero the optical response in the region ω = 0eV

increases. For small values of A0 (green curve) a small peak appears, which later grows
exponentially when A0 is increased. This shows that linearly polarized light is not suitable
for opening a gap in the band structure of Graphene.

Figure 4.15: Linear optical response of Graphene. The value of the coupling strength
was A0 = 0.005, the cavity energy was Ω = 272meV and the Lorentzian broadening was
η = 272meV

Finally, to confirm what was observed for the Graphene for the simulations in which the
k-point sampling was performed only around a small region centered at the K-point, in
the figure 4.15 the results for the case of full sampling of the Brillouin zone are reported.
The plot should be compared with the black curve in figure 4.14a. It can be seen that
the onset at zero is at the same height, which suggests that by using higher values of
A0 a gap would appear. As for the position of the peaks, it can be noted the splitted
peak in figure 4.15 corresponds to the highest peak in figure 4.14a, which however has no
splitting. Subsequently, the peak around 3eV in 4.14a corresponds to the second peak in
4.15, which however is shifted at 4eV . Finally, in figure 4.15 it is possible to recognize
the σ − σ∗ peak, which is shifted from around 14eV to around 19eV .
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As it might be clear from the discussion on Graphene, the system is quite complex as
plenty of different phenomena (which are not observed for Benzene or the LiH chain) take
place. Nevertheless, there is an indication that by using circularly polarized light a gap
is opened, which should be considered a remarkable result. The understanding of the full
physics of the system should be considered a future development of this work.
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developments

In this thesis work we presented a new software for studying materials in the framework
of cavity QED. We started by exploring the theoretical background of cavity QED, that
is by quantizing the electromagnetic field and by describing the behavior of electrons in
both finite and periodic systems. Afterward, we combined the radiation field and the
matter by deriving the QED Hamiltonian starting from the canonical momentum substi-
tution and arriving at the dressed states, which are a mix of the electronic states and the
photonic states. This led to the introduction of the concept of polaritons. Subsequently,
we discussed the methods and the assumption used to study the problem, among which
the one of taking only the photonic mode at q = 0. Then, we discussed the structure of
the problem and how the code was implemented, firstly by giving the shape of the QED
matrix, then by discussing the serial implementation of the code and finally discussing
the limitation of such an approach, which led to its parallelization.
Finally, we used the software to study three systems, the LiH 1D chain, the Benzene
molecule and Graphene. To study those systems, it was enough to enter the parameters
of the material in a simple input file. For each system we showed that by increasing the
coupling strength A0 we increase the Rabi splitting of the peak at resonance, and this
increase is linear. The fact that we were able to do this for Graphene is a significant result
because the computational complexity of studying such a system is very high due to the
number of k points required to successfully sample the Dirac cone. For Graphene, we also
showed that by using chiral light it is possible to open a gap at the Dirac cone, which is
in accordance with what is found in literature. On the other hand, for both the LiH chain
and the Benzene molecule we were able to see the polaritonic splitting by plotting the
linear response function against the cavity resonance and the probe energy. This result is
also computationally significant because the QED matrix had to be diagonalized about
one thousand times for each value of the coupling parameter.
In conclusion, in this work we developed a software that allows studying any material in
a QED cavity, starting only from the Kohn-Sham states (which can be easily computed
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using DFT). This is relevant because the flexibility of the code allows approaching systems
spanning from molecular to bulk in an efficient and controllable way for any light-matter
coupling regime. Moreover, since the code was parallelized and it was written with a
programming language highly optimized for numeric computation, the complexity of the
systems that we will be able to study in the future will increase significantly as scientists
will be able to make use of this code in the computer clusters of their institutes.
Finally, the future developments of this project are twofold. On one hand, it will be inter-
esting to use the software to study more complex systems such as Weyl semi-metals. For
those, the number of k points required to correctly sample the Weyl points is very high
due to the extra dimension (the material is 3D), which will require a big computational
effort. The hope is to control the position of such points and affect the topological chiral
currents associated with them. On the other hand, the development of the software will
continue to include new features, such as the correlation between electrons and the pos-
sibility of computing the ground-state electronic density from the polaritonic states and
exploiting it to develop DFT functional with built-in light-matter correlation.
There will also be improvements regarding the diagonalization of the QED matrix, as it is
possible to fully exploit its sparse structure. However, the most exciting development will
be overcoming the single-mode approximation. To do that, it is possible to make use of a
Quantum Computer to delegate the calculation of the Fock states, which are very expen-
sive for classical computing (as shown through this work) but are quite cheap for quantum
hardware. This will constitute an absolute first in the use of a quantum computer and
will open many possibilities to study systems whose complexity will always be prohibitive
for a classical supercomputer. This will be an actual development of this thesis work,
as I will begin a Ph.D. jointly between the Max Planck Institute for the Structure and
Dynamics of Matter and IBM Research Zurich. This collaboration will bring together the
expertise from both institutions, and eventually will allow studying cavity QED materials
by interfacing a quantum computer with the TDDFT code Octopus.
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elements

In this appendix we will explicitly calculate the generic matrix element for a solid in an
optical cavity starting from equation (2.4) and from the chosen basis (2.5). A generic
matrix element for this problem is defined as HI,J,m,n, where I, J are the indexes for
the electronic states and m,n are the ones for the photon number states. Since we are
interested in studying solids, the generic index I (and J) should be further specified in the
index of the conduction band in which we put the electron, the index of the valence band
from which we remove the electron and finally the k point. Therefore, each electronic
state will be characterized by cI , vI , kI .
Before starting calculating the matrix element, it is useful to recall the communication
rules for the bosonic â, â† and fermionc ĉ, ĉ† creation and annihilation operators:

[
âi, â

†
j

]
= âiâ

†
j − â†j âi = δi,j, [âi, âj] =

[
â†i , â

†
j

]
= 0[

ĉi, ĉ
†
j

]
= ĉiĉ

†
j + ĉ†j ĉi = δi,j, [ĉi, ĉj] =

[
ĉ†i , ĉ

†
j

]
= 0

(A.1)

(A.2)

They action on a generic state is to add or remove a particle from the initial state. In the
case of fermions, one can either have zero or one particle in a state due to Pauli exclusion
principle while in bosonic case the only constraint is that the number of particles is non-
negative. As a consequence, it holds that if we apply the annihilation operator to an
empty state we get zero: â |0⟩ = 0. Finally, the action of such operators on a generic state
is given by the following relations:

â† |n⟩ =
√
n+ 1 |n+ 1⟩

â |n⟩ =
√
n |n− 1⟩ , â |0⟩ = 0

(A.3)

(A.4)
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Moreover, we recall that the momentum operator between Slater determinants with ver-
tical transitions and the single-mode vector potential operator are defined as:

P̂i,j,k =
∑
i,j,k′

⟨ϕi,k| p̂ |ϕj,k⟩ ĉ†i,kĉj,k

Â = A0

(
â† + â

)
(A.5)

(A.6)

After recalling these relations we can start deriving the expression for the general matrix
element. Let us consider two states |Ψa,k⟩ |n⟩ and |Ψb,k′⟩ |m⟩. Then we have:

⟨n| ⟨Ψa,k| ĤQED |Ψb,k′⟩ |m⟩ = ⟨n| ⟨Ψa,k|
∑
i,k

ϵKS
i,k ĉ

†
i,kĉi,k |Ψb,k′⟩ |m⟩+

⟨n| ⟨Ψa,k|
NelA

2
0

2

(
â†

2

+ â2 + 2â†â+ 1
)
+ ω

(
1

2
+ â†â

)
|Ψb,k′⟩ |m⟩

− A0 ⟨n| ⟨Ψa,k|
∑
i ̸=j,k

⟨ϕi,k| p̂ · e |ϕj,k⟩ ĉ†i,kĉj,k
(
â† + â

)
|Ψb,k′⟩ |m⟩

(A.7)

Let us now examine the previous expression term by term. The operators in the first
term act only on the electronic states, so we can extract the photon part. Furthermore,
the creation and annihilation operators act on the same same (that is actually the density
operator), therefore this term can only be non-zero if both the electronic and photonic
states are the same. Therefore we have:

⟨n| ⟨Ψa,k| Ĥel |Ψb,k′⟩ |m⟩ = ⟨n|m⟩ ⟨Ψa,k|
∑
i,k

ϵKS
i,k ĉ

†
i,kĉi,k |Ψb,k′⟩ =

δn,m
∑
i,k

ϵKS
i,k ⟨Ψa,k| ĉ†i,kĉi,k |Ψb,k′⟩ = δn,mδa,bδk,k′

∑
i,k

ϵKS
i,k ni,k

(A.8)

Where ni,k is the number of particle in the state i, k and the index i runs over all states,
both in valence and conduction band. By looking at the Kronecker’s deltas in the previous
expression, one can wee that this part of the Hamiltonian only yields terms on the main
diagonal of the matrix.
Let us now consider the second term of the Hamiltonian, which corresponds to the photon
part. Similarly to the previous term, since the operators do not act on the electronic states
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we can extract the electronic part. Therefore we have:

⟨n| ⟨Ψa,k| Ĥel |Ψb,k′⟩ |m⟩ =

⟨n|m⟩ ⟨Ψa,k|
NelA

2
0

2

(
â†

2

+ â2 + 2â†â+ 1
)
+ ω

(
1

2
+ â†â

)
|Ψb,k′⟩ |m⟩ =

⟨Ψa,k|Ψb,k′⟩
NelA

2
0

2

(
⟨n| â†2 + â2 + 2â†â+ 1 |m⟩

)
+ ω

(
1

2
+ ⟨n| â†â |m⟩

)
=

δa,bδk,k′
NelA

2
0

2

(√
(m+ 1) (m+ 2)δn,m+2 +

√
m (m− 1)δn,m−2 + (2m+ 1) δn,m

)
+

ω

(
1

2
+m

)
δn,m

(A.9)

Where m is the number of photons in the state |m⟩. By looking at this expression, one
can see (thank to the deltas of the electronic part) that this term only yield non zero
element on the main diagonal of block located either on the main diagonal (the red blocks
of fig 2.1) or on the second diagonal (the blue blocks of fig 2.1).
Finally, we shall consider the last term of equation (A.7), the bi-linear coupling. In this
case, the operators act on both the electronic and the photonic part, so we cannot do any
a priori assumption.

⟨n| ⟨Ψa,k| Ĥel |Ψb,k′⟩ |m⟩ =

− A0 ⟨n|m⟩ ⟨Ψa,k|
∑
i ̸=j,k

⟨ϕi,k| p̂ · e |ϕj,k⟩ ĉ†i,kĉj,k
(
â† + â

)
|Ψb,k′⟩ |m⟩ =

− A0

∑
i ̸=j,k

⟨ϕi,k| p̂ · e |ϕj,k⟩ ⟨Ψa,k| ĉ†i,kĉj,k |Ψb,k′⟩ ⟨n| â† + â |m⟩ =

− A0

∑
i ̸=j,k

⟨ϕi,k| p̂ · e |ϕj,k⟩ ⟨Ψa,k| ĉ†i,kĉj,k |Ψb,k′⟩
(√

m+ 1δn,m+1 +
√
mδn,m−1

)
(A.10)

By looking at this expression above one can see that, due to the deltas on the photonic
part, this terms yields non-zero elements only on the blocks located on the first diagonal
of the matrix (the green blocks in fig 2.1). The electronic part is more complicated, and
needs further discussion. The operator ĉ†i,kĉj,k removes an electron from the state j, k
and places it on the state i, k. This suggests that we should look for non-zero elements
between Slater determinants that represent having all electrons in the valence band state
(the ground state) and others that represent an excitation from the valence band to
the conduction band. As a matter of fact, if we consider consider the bilinear coupling
between the Slater determinants representing the ground state we would get zero. Indeed,
saying ⟨ΨGS| ĉ†i,kĉj,k |ΨGS⟩ means that we are taking the bracket between a state that has
a vacancy in the state j, k and another that has a vacancy in the state i, k. Due to the
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fact that the states are orthonormal this would yield zero. Let us now consider the matrix
element between the Slater determinant of the ground state and of a generic excitation.
Then we would have:

⟨ΨGS| ĉ†i,kĉj,k |Ψc1,k⟩ = ⟨ΨGS| ĉ†i,kĉj,kĉ
†
c1,k

ĉvi,k |ΨGS⟩ =

⟨ΨGS| ĉ†i,k
[
δj,c1 − ĉ†c1,kĉj,k

]
ĉvi,k |ΨGS⟩ =

δj,c1 ⟨ΨGS| ĉ†i,kĉvi,k |ΨGS⟩ − ⟨ΨGS| ĉ†i,kĉ
†
c1,k

ĉj,kĉvi,k |ΨGS⟩ = δj,c1δi,vi

(A.11)

where we used the commutation relation (A.2) and the last term is zero because ĉj,k acts
on a conduction band state. It should be noted that there should also be a delta for the
k point, which is not present because we chose the creation and annihilation operators to
act on the same k point. Finally, we can write the full expression for the matrix element
of the first row or column of a bi-linear coupling block:

⟨ΨGS| ĉ†i,kĉj,k |Ψc1,k⟩ = ⟨ΨGS| ĉ†i,kĉj,kĉ
†
c1,k

ĉvi,k |ΨGS⟩ =

− A0

∑
i ̸=j,k

⟨ϕi,k| p̂ · e |ϕj,k⟩ ⟨Ψa,k| ĉ†i,kĉj,k |Ψb,k′⟩
(√

m+ 1δn,m+1 +
√
mδn,m−1

)
=

− A0

∑
i ̸=j,k

⟨ϕi,k| p̂ · e |ϕj,k⟩ δj,c1δi,vi
(√

m+ 1δn,m+1 +
√
mδn,m−1

)
=

− A0 ⟨ϕv1,k| p̂ · e |ϕc1,k⟩
(√

m+ 1δn,m+1 +
√
mδn,m−1

)
(A.12)

With the above discussion we described the matrix element on the first row and on the
first column of the bi-linear coupling block. However, if we look at (2.2.3) we notice
that there are also non zero elements in that are not in those locations. In fact, they
are matrix elements between Slater determinants representing excitation from the valence
band to the conduction band, therefore they represent a double excitation of the system.
To describe them, let us consider two Slater determinants |Ψca,k⟩ = ĉ†ca,kĉva,k |ΨGS⟩ and
|Ψcb,k⟩ = ĉ†cb,kĉvb,k |ΨGS⟩. Then we have:

⟨Ψca,k| ĉ
†
i,kĉj,k |Ψcb,k⟩ = ⟨ΨGS| ĉ†ca,kĉva,kĉ

†
i,kĉj,kĉ

†
cb,k
ĉvb,k |ΨGS⟩ =

⟨ΨGS| ĉ†va,k
[
δi,ca − ĉ†ca,kĉi,k

] [
δj,cb − ĉ†cb,kĉj,k

]
ĉvb,k |ΨGS⟩ =

δj,cbδi,ca ⟨ΨGS| ĉ†va,kĉvb,k |ΨGS⟩ − δj,cb ⟨ΨGS| ĉ†va,kĉ
†
ca,k

ĉi,kĉvb,k |ΨGS⟩−

δi,ca ⟨ΨGS| ĉ†va,kĉ
†
cb,k
ĉj,kĉvb,k |ΨGS⟩+ ⟨ΨGS| ĉ†va,kĉ

†
ca,k

ĉi,kĉ
†
cb,k
ĉj,kĉvb,k |ΨGS⟩ =

δj,cbδi,caδva,vb

(A.13)
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The last three terms are all zero because we are removing multiple electrons from a state,
and then taking the bracket with a state from which we removed the same number of
electrons from other states.





79

List of Figures

1.1 Representation of the Hohengberg-Kohn theorem. The green arrows repre-
senting the mapping from the external potential to the density are straight-
forward from the previous discussion. The Honingberg-Kohn theorem proves
the mapping from the density to the external potential. . . . . . . . . . . . 12

1.2 FP cavity with a single atom (two-level system) inside. The yellow lines
represent the round-trip of the light, while the red lines represent the losses
κ and γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3 Energy diagram for a single atom (represented by a two level system) in
a QED Cavity in strong regime. The first two columns represent the bare
states, which constitute the base for our interaction Hamiltonian. Their
coupling generates a pairs of degenerate levels, which constitute the sub-
spaces of our problem. The degeneracy is broken when g0 > 0, and then
we have the dressed states . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4 The polariton dispersion in the vicinity of a single resonance for vanishing
damping (solid lines) and finite damping (dashed lines) for ϵb = 1. The
dashed-dotted line gives the dispersion of photons in vacuum (a); real and
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