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1. Introduction
This study was based on a previous project fo-
cusing on the development of a Deep Neural
Network (DNN) to recognize activities carried
out by inpatients [1]. Such setting entailed a
data collection on 20 healthy subject simulat-
ing patient-like activities and following a specific
protocol. For this reason, the reference study in
[1] has been defined "Simulated Hospital Study"
(SHS).
The aim of this work is to validate the SHS
pre-trained DNN SHS on a novel Real Hospi-
tal Study (RHS). More in detail, the research
question addressed in this project intends to in-
vestigate to what extent previously-learned SHS
activity features representations could be trans-
ferred to the target RHS.
Table 1 summarizes the main differences be-
tween the two above-mentioned settings.

SHS RHS

Subjects 20 12

Splitting Random (Partly) random

Protocol Yes No

Session
time

1 hour ≈24 hours

DNN
classes

6 5

Majority
labels

Dynamic Static

Table 1: Comparison between simulated and
real hospital study

2. Methods
2.1. Data collection
The RHS dataset consisted of 12 general ward
patients (7 males and 5 females, body mass in-
dex (BMI): 30.13±9.88 kg

m2 ) from a clinic located
in the United States.
The enrollment occurred on a voluntary basis
and without any exclusion criteria. An informed
consent was dispensed to and signed by the in-
patients interested in taking part to the study.
This project has been approved by an internal
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Figure 1: ECGMove4 axes orientations

committee at Philips in co-operation with the
clinic counterpart.
A pair of movisens® ECGMove4 wearables were
attached to the left-side chest in two separate lo-
cations: between the first and second rib and in
correspondence of the twelfth one. Such loca-
tions were termed as Upper and Lower. Refer-
ring to Fig. 1, ECGMove4 x-, y- and z- axes
corresponded to caudo-cranial, left-right and
postero-anterior anatomical directions, respec-
tively. These devices captured different types
of signals (i.e. ECG, temperature, angular rate,
...). Nevertheless, the 3D acceleration only has
been selected since the SHS DNN was trained
on such data. The latter signal has been logged
at 100 Hz in the range of ±16 g(1 g = 9.8 m/s2).
All data acquisition sessions were recorded with
a video camera placed within patient’s hospital
room and lasted for ≈24 hours. Video clips were
examined by a single operator to make annota-
tions on activities and postures.
The acquisition setup was designed to minimally
interfere with the standard clinical workflow.
Thus, all the activities performed by patients
were framed in a free-living context. After a
preliminary inspection of the video recordings,
a set of 28 labels has been determined (see Fig.
2).

2.2. Data preprocessing
A precondition was to adopt the same SHS pre-
processing pipeline and 3D acceleration proper-
ties to correctly validate the legacy DNN. The
first step consisted in matching the ECGMove4
accelerometer reference system (depicted in Fig.
1) with SHS sensor one. The same applied to
the acceleration range, data normalization and
windowing strategy (i.e. 6-seconds with 50%
overlapping). Data segments were labelled via

Figure 2: Activity label set

majority voting and discarded if they contained
more than 50% of unlabelled samples. Concern-
ing sampling frequency, ECGMove4 wearables
measured acceleration at 64 Hz whereas SHS de-
vices at 100 Hz. We found that downsampling
acceleration signals did not remarkably impair
the DNN learning. Thus, the ECGMove4 sam-
pling rate was decreased to 16 Hz.
Annotated activities and acceleration samples
were synchronized with a specific procedure.
The latter consisted in generating acceleration
artifacts in front of the camera by shaking both
ECGMove4 sensors at the beginning and just
before the end of each recording session.
The activities represented in Fig. 2 were
grouped in 5 DNN activity classes: Lying,
Reclined, Upright, Walking and (self-
propelled) Wheelchair.
As reported in table 1, the RHS dataset splitting
procedure was partially randomized. In fact, 5
patients were a-priori blindly designated as test
patients. The remaining 7 ones were randomly
split into train and validation subsets on a per-
patient basis.

2.3. Deep Neural Network
Differently from the original intent, we were un-
able to validate the same DNN model architec-
ture used in SHS. The main culprit lied in a
quite remarkable DNN performance instability
(i.e. sensitivity to parameter initialization). In
addition, the acceleration samples on which the
DNN was trained were acquired from a quite
different chest location from both Upper and
Lower ECGMove4 devices. Nevertheless, one
of the additional sensors employed in SHS al-
most perfectly matched with Upper ECGMove4
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in terms of anatomical location. Hence, the fi-
nal DNN baseline consisted of a slight variation
of the SHS DNN architecture (with codename
ccpd2 ) trained on 16 Hz 3D acceleration sam-
ples acquired from the left-side upper-chest ac-
celerometer. Fig. 3 shows the ccpd2 baseline
DNN architecture.

Figure 3: Baseline deep neural network struc-
ture

Four 1D convolutional layers (filters: 4, 16, 16
and 32 with kernel sizes: 23, 10, 7 and 7, re-
spectively) performed automatic feature extrac-
tion. The bottleneck features were then flattened
and fed to a fully-connected layer (512 neurons).
All the convolutional layers used a zero-padding
strategy and a ReLu activation function. Plus,
each convolutional block ended with a batch-
normalization layer. The dropout layers (ratio:
30%) were included within the second and fourth
convolutional block. The last dense layer was
composed of 5 neuron (matching the number of
DNN activity classes) and activated by a soft-
max function.
The ccpd2 model was trained for 100 epochs,
using Adam optimizer and with a batch size of
100.

2.4. CPA
CPA stands for Calibration, Posture and Activ-
ity that represent the constituting modules. It
consists of a rule-based human activity recogni-
tion algorithm under Philips intellectual prop-
erty. This approach is characterized by a strong
determinism to predict postures. In fact, we
deemed interesting to compare the performance
between models with opposite intrinsic natures
(i.e. determinism and black-box for CPA and
DNN, respectively).
The Calibration module aimed at aligning the
ECGMove4 device frame with the anatomical
directions. The main assumption of this proce-
dure is that the posture during Walking should
be Upright. In addition, multiple consecutive
Walking segments were necessary to determine

the reference and device vertical directions. If
the Calibration was successful, the x-axis tilt
angle (α) between the two directions would be
computed and used to generate a rotation ma-
trix (Rorient) to finally align the reference sys-
tems.
The Posture routine required a set of pre-
determined reference posture vectors (pi).
Those were rotated by the Rorient rotation ma-
trix and compared to the measured accelera-
tion values for each axis. The output pos-
ture was selected for the corresponding ith index
that minimized the distance between the refer-
ence (pi) and rotated (p̃i) posture vectors. The
CPA algorithm recognized 7 different postures:
Upright, Reclined, Lie supine, Prone, Lie on
left side, Lie on right side, Upside down.
The Activity module has not been used since
the intensity at which RHS activities were per-
formed was outside the scope of this study.

2.5. Hybrid ensemble method
A further method based on a ensemble ma-
chine learning technique was designed. Its
aim was to capitalise on the advantages of-
fered by the structural differences between the
CPA and ccpd2 DNN by combining their pre-
dictions. Those were considered as Base-models
(or Level-0 model) providing their output to a
Meta-model (or Level-1 model) in a Stacked gen-
eralization framework. In practical terms, the
Level-1 model was fed with the DNN softmax-ed
probability outputs (one for each of the 5 DNN
activity class) and CPA deltas (i.e. distances be-
tween rotated and reference posture vectors).
A Logistic regressor was identified as a suitable
Meta-learner model. In this way we could eas-
ily interpret the contribution of each Base-model
output (treated as features) to determine the fi-
nal activity class prediction.

2.6. Deep transfer learning
It is worth to recall that the research question
related to this work concerned to assess the
degree of feature representations transferabil-
ity between source SHS and RHS. This can be
achieved by transferring kernel parameters con-
tained in a ccpd2 convolutional layer via transfer
learning techniques.
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2.6.1 Canonical techniques

The first set of tests entailed a standard transfer
learning approach. Although several configura-
tions were tested, all of them shared the same
basic procedure.

1. Retraining the ccpd2 baseline model on
SHS data.

2. Freezing all layers.
3. Detaching and replacing the final ccpd2

fully-connected classification layer with a
custom one (or block).

4. Retraining the tweaked ccpd2 DNN on tar-
get hospital data.

At the end of step 3 the pre-trained ccpd2 is de-
fined as backbone. Step 4 consisted of the fine-
tuning procedure. Within this stage, a num-
ber of frozen backbone layers were unfrozen to
adapt the model weights to the novel informa-
tion brought by hospital activity data.

2.6.2 Kernel transfer analysis

This analysis aimed at assessing the feasibility
of transferring feature representation in differ-
ent contexts. At the end of this investigation
we were able to discriminate which kernels con-
tained either general or domain-specific feature
representations. The procedure carried out in
this stage followed the footsteps of a previous
study focusing on this matter [3]. Two different
scenarios have been addressed:

1. knowledge transfer between users within
the same domain

2. knowledge transfer between different do-
mains.

Case 1 referred to different patients within RHS
and case 2 to cross-domain transfer from SHS to
RHS.
The implementation of this approach consisted
of making a replica (transferred model) of the
original ccp2 DNN (source model). Next, a
number of pre-trained source model kernel pa-
rameters were copied to the transferred model.
Eventually, the latter was fine-tuned on a por-
tion of the target subset reserved for adaptation.
Different combinations of transferred layers and
percentage of revealed adaptation subset were
tested.

2.7. Domain-Adversarial Neural Net-
works

Since both the SHS and RHS relate to the same
activity recognition task, we leveraged this as-
pect to implement a specific setting of knowl-
edge transfer: domain adaptation (according to
the definitions outlined in [4]).
Since this project revolved around DNN mod-
els, this task has been carried out via Domain-
Adversarial Neural Networks (DANNs) [2].
Those can be easily implemented by expand-
ing any pre-existing DNN architecture and are
trained via standard backpropagation. Fig. 4
represents a general DANN scheme and its main
components: feature extractor, label predictor
and domain classifier.

Figure 4: Domain-adversarial neural network
structure

Both the feature extractor and label predictor
blocks coincide with the backbone and classifica-
tion block of the ccpd2 architecture represented
in Fig. 3.
The novelties are represented by the domain
classifier and the Gradient Reversal Layer
(GRL). This module is devoted to discriminate
if the extracted features either belong to the SHS
source or RHS target domain. This is achieved
by maximizing the binary cross-entropy loss.
This block was added to ccpd2 by means of
two fully-connected layers (512 and 256 neu-
rons, respectively) before the single-neuron out-
put layer.
The GRL acts as a two-way activation layer for
the gradients computed during the backpropa-
gation. The upstream gradient is simply trans-
ferred from the features extractor to the domain
classifier without any changes. The downstream
one is instead changed in sign. Both of them
are scaled by a λ domain adaptation parameter
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varying according to the following equation:

λp =
2

1 + exp(−γ · p)
− 1 (1)

where p indicates the training progress (from 0
to 1) and γ = 10.
Concerning the training procedure, a custom
batch generation system needed to be imple-
mented. Each batch contained 128 elements
equally split in SHS source and RHS target sam-
ples. By default, the DANN are framed in a fully
unsupervised learning setting. Thus, the target
samples are considered unlabelled and fed along
with the labeled source samples to the domain
classifier. On the other hand, the label predictor
is trained on labeled SHS source activity data
only. However, the training routine can be ac-
customed to a semi-supervised learning scenario
by revealing portions of the RHS target activity
sample to the label predictor. Both the unsu-
pervised and semi-supervised were implemented
and tested within this work
To summarize, DANNs promote the emergence
of features that are both discriminative for the
main predictive learning task and indiscriminate
to the shift between domains.

3. Results
3.1. Data analysis
The RHS mostly featured static postures. By
way of example, Reclined and Upright
jointly accounted for ≈60% of the overall activi-
ties distribution. As a consequence, all the DNN
models were trained using a balanced batch gen-
erator.
A related analysis consisted in the quantification
of Inactive labels compared to Active labels. As
expected, the former accounted for 85.48±5.76%
(mean± std over all RHS patients).
Eventually, we found that patients spent ≈ 80%
(median value) of their time in bed.

3.2. Deep neural network
Fig. 5 represents the confusion matrix associ-
ated with the performance obtained by validat-
ing the SHS pre-trained ccpd2 on whole RHS
dataset.

Figure 5: Pre-trained ccpd2 validation on real
hospital study

Although the detection accuracy obtained for
the static postures was fairly high, both the
Walking and Wheelchair were poorly rec-
ognized.
When retraining the ccpd2 on RHS patients and
validating it on the 5 pre-defined test inpatients,
we encountered two contrasting effect. On one
side, a remarkable drop in Reclined and Up-
right detection (≈ −40% for both classes). On
the other hand, a noticeable increase in the
recognition of Walking activities (≈ +30%).
The percentage changes are referred to to the
scores shown in Fig. 5. This also holds for the
results presented in subsection 3.4.
Within this context, a Leave-One-Subject-Out
(L1SO) cross-validation has been implemented
to assess ccpd2 performance heterogeneity be-
tween RHS patients. The obtained weighted
F1-score values ranged from 0.2724 to 0.6964,
implying a wide-spread variability.

3.3. CPA
We verified that, due to the lack of Walking
samples, the CPA Calibration never successfully
occurred across all RHS patients. Thus, we were
compelled to pick an a-priori and constant α tilt
angle able to provide acceptable performance for
the whole RHS dataset.
α = −18◦ has been identified as the optimal
tilt angle providing acceptable detection accu-
racy with an overall weighted F1-score of 0.65.

3.4. Hybrid ensemble method
The Stacking ensemble allowed to increase the
detection accuracy of Lying and Upright by
≈ +20% and ≈ +35%, respectively. On the
contrary, Reclined recognition experienced a
consisting degradation of ≈ −17%.
By examining the Logistic regressor regression
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coefficient heatmap, we found that the Stacking
was able to grasp complexity relationship be-
tween postures. For instance, CPA Lie left/right
deltas were a remarkable indicator to predict
a DNN Lying posture. In general, the Level-
1 model trusted the CPA outputs rather more
than the DNN ones.

3.5. Deep transfer learning
As mentioned in subsection 2.6, several transfer
learning settings were tested during this stage.
However, we did not experience substantial im-
provement with respect to the ccpd2 baseline
results reported in Fig. 5. In fact, we found
that both the accuracy and loss scores limitedly
improved during the fine-tuning process. Such
behaviour has been experienced on all tested
transfer learning configurations. However, the
best results (Precision: 0.67, Recall : 0.66, F1-
score: 0.66) have been obtained when unfreezing
all ccpd2 convolutional layers and a single 128-
neurons fully-connected layer.
Concerning the kernel transfer analysis, two
main findings have been obtained at the end
of the "same domain" setting. The first was
that also including a small percentage (as low
as 25%) of the left-out adaptation subset the
overall F1-score sharply rose to ≈0.9. The ad-
ditional remark was strictly linked to a statis-
tical analysis based on the p-value associated
to Wilcoxon paired-test between F1-score popu-
lations in different kernel transfer settings (see
[3]). In particular, we found that features ex-
tracted up to the second convolutional layer were
patient-independent within this setting.
On the other hand, the "different domain" sce-
nario featured a high variability in F1-scores due
to the high RHS within-population and cross-
domain (i.e. SHS to RHS) heterogeneity. Thus,
no clear findings could be obtained at the end of
the investigation.

3.6. Domain-adversarial neural net-
works

At first, the DANN was evaluated in a unsuper-
vised learning scenario. Thus, the label predictor
module was fed with SHS activity data only. Af-
ter testing several DANN settings, we concluded
that the performance obtained in this scenario
was not higher than what achieved with previ-
ously techniques.

Hence, we decided to switch to a semi-supervised
learning setting by revealing a portion of labeled
data from a single RHS patient. The best results
have been obtained by feeding 50% of P03 ac-
tivity data to the label predictor.
Following this path we finally achieved the over-
all optimal DANN model. This configuration
entailed revealing 10% activity data from 5 dif-
ferent RHS patients. This DANN setting out-
performed all the models tested throughout this
project with a weighted F1-score of 0.73. In ad-
dition, this optimal DANN achieved the best
(i.e. lowest) cross-entropy score on validation
subset while training. This finding corroborated
the robustness of such model.
Eventually, a further assessment of the identi-
fied optimal DANN was performed by evaluating
the feature alignment success. After the domain
adaptation process, the features representation
associated to activity data from both SHS and
RHS should be more similar. This has been vi-
sually inspected by relying on ""t-Distributed
Stochastic Neighbor Embedding" (t-SNE)" [5].
Fig. 6 shows a t-SNE representation of SHS and
RHS features emphasizing a fairly good align-
ment on Walking speeds up to 1.5 km/h.

Figure 6: Feature alignment between simulated
and real hospital study after domain adaptation

4. Conclusion
The inherent discrepancies between SHS and
RHS both in terms of population and activity
patterns affected the performance of all activity
recognition models implemented in this work.
This can be proved by examining the results
obtained when validating the SHS pre-trained
ccpd2 on RHS data (see Fig. 5). The quite
poor performance obtained on Walking is jus-
tified by the irregular steps taken by RHS pa-
tients while moving around the room. The same
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applies to RHS Wheelchair class that usu-
ally entails a very slow self-propelling. In ad-
dition, the very high ccpd2 performance vari-
ability when performing L1SO cross-validation
indicated that RHS featured quite diverse activ-
ity patterns.
For this reason, we considered using a more
deterministic approach like CPA. However, the
main issue encountered by using this algorithm
was the inability of automatically calibrating the
ECGMove4 sensor due to the lack of Walking
samples. Nevertheless, the Stacking hybrid en-
semble method consistently relied on CPA out-
puts. This supported the hypothesis that the in-
trinsic determinism of the CPA algorithm could
result beneficial to possibly mitigate the effect
of domain shift between SHS and RHS.
At this concern, the results obtained from
both the transfer learning techniques and ker-
nel transfer analysis contributed to directly ad-
dress the research question. In fact, we found
that SHS previously-learned knowledge could be
limitedly transferred to RHS setting. This
behaviour still holds if adopting standard fine-
tuning techniques.
Thus, a more refined approach relying on the
task similarity between SHS and RHS was iden-
tified in domain adaptation and DANNs mod-
els. In particular, what we found at the end
of "same-domain" kernel transfer analysis was
confirmed at this stage. Indeed, providing small
chunks of RHS labeled activity data from mul-
tiple patients during DANN training procedure
improved its overall performance. The latter fea-
tured the best trade-off between annotation bur-
den and performance (0.73 weighted F1-score).
As future works, we recommend to devise an
alternative CPA Calibration routine based on
a different activity trigger (e.g. sit-to-stand
event). Then, the optimal DANN identified in
this project should be validated in a similar fu-
ture scenario by partially annotating subjects
activities in a spot-check fashion.
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Abstract

Human activity recognition via wearables constitutes a pervasive and unobtrusive ap-
proach to perform patient monitoring. The first goal of this project was to validate a
deep neural network (DNN) devoted to classify activities carried out by healthy patients
in a Simulated Hospital Setting (SHS). The robustness of this model was assessed by eval-
uating it on free-living activities performed by 12 hospitalized patients. 3D acceleration
activity data were acquired by a pair of wearables attached on two separate chest loca-
tions. The baseline DNN adopted in this work slightly diverged from the SHS one and was
able to recognize 5 different hospital activities: Lying, Reclined, Upright, Walking

and (self-propelled) Wheelchair. Plus, a rule-based algorithm was evaluated as a stand-
alone and in combination with the DNN activity class probability outputs within a Stacked
generalization ensemble method. The above-mentioned methods performed quite mod-
estly and suggested to adopt knowledge transfer approaches. Thus, this study addressed
a specific research question: to what extent the previously-learned knowledge from source
SHS activity data could be transferred to target real hospital setting (RHS)? The first set
of test entailed conventional transfer learning techniques. Then, a more refined domain
adaptation approach was implemented via domain-adversarial neural networks (DANNs).
By testing such architectures both in a unsupervised and semi-supervised learning setting,
the optimal configuration (0.73 weighted F1-score) was identified within the latter scenario
by revealing small portions of activity data from multiple RHS patients. In conclusion,
the RHS dataset resulted quite diverse and different from SHS. Hence, the task similar-
ity between SHS and RHS was leveraged to implement knowledge transfer via DANNs.
An in-depth kernel transfer analysis demonstrated that the cross-domain transferability
of convolutional layers was quite limited. However, providing small hints of target RHS
samples could substantially improve the overall activity recognition performance. This
proposed DANN methodology might be used and validated in future tasks by partially
annotating target domain activity in a sport-check fashion. This may remarkably unbur-
den the annotation process by preserving fairly good activity recognition performance.

Keywords: deep learning, domain adaptation, activity recognition, neural networks





Abstract in lingua italiana

Il riconoscimento delle attività motorie attraverso sensori indossabili rappresenta un ap-
proccio non-invasivo per il monitoraggio di pazienti ospedalizzati. L’obiettivo iniziale di
questo studio è stato validare una deep neural network (DNN) capace di riconoscere at-
tività simil-ospedaliere svolte da soggetti sani (progetto SHS). La robustezza della DNN
è stata valutata su attività svolte da 12 pazienti ricoverati. Esse sono state acquisite
come segnali di accelerazione da una coppia di sensori posizionati sul torace. La DNN di
riferimento utilizzata in questo studio è in grado di riconoscere 5 classi: Disteso o Recli-

nato sul letto, postura Eretta, Cammino e spinta della sedia a rotelle. Inoltre, un
algoritmo rule-based è stato valutato in autonomia e in combinazione con gli output prob-
abilistici della DNN in un metodo ensemble (Stacked generalization). Tali modelli hanno
offerto risultati modesti e indirizzato verso approcci basati sul trasferimento di conoscenza.
Questo progetto risponde ad una specifica domanda di ricerca: fino a che punto è possi-
bile trasferire la conoscenza appresa sulle attività dal dominio SHS sorgente a quello di
destinazione (definito RHS)? I primi esperimenti hanno coinvolto tecniche tradizionali di
trasferimento di apprendimento. In seguito è stato implementato un approccio basato su
adattamento di dominio attraverso domain-adversarial neural networks (DANNs). Tali ar-
chitetture sono state addestrate in modalità non(semi)-supervisionata. Il modello DANN
ottimale (F1-score pesato: 0.73) è stato ottenuto rivelando porzioni di attività svolte da
diversi pazienti RHS durante l’addestramento. In conclusione, il dataset RHS è risultato
variegato e differente da quello SHS. La similitudine nell’obiettivo tra i progetti SHS e
RHS è stata sfruttata per un trasferimento di conoscenza attraverso DANNs. Un’analisi
sul trasferimento dei kernel convoluzionali ha dimostrato che la trasferibilità di essi (da
SHS a RHS) è limitata. Fornendo alcune informazioni su attività del dominio RHS du-
rante l’addestramento, si è ottenuto un miglioramento del riconoscimento delle attività.
La metodologia DANN proposta in questo lavoro potrebbe essere validata in studi futuri
annotando a campione le attività del dominio target. Ciò potrebbe alleggerire il processo
di annotazione, preservando una buona performance nella classificazione delle attività.

Parole chiave: deep learning, adattamento dominio, riconoscimento attività, reti neurali
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1| Introduction

This chapter presents the main research area and question involved in this Master thesis
project. The latter has been accomplished during a full-time 1-year internship within
the Patient Care & Measurements department of Philips Electronics Nederland B.V. in
Eindhoven. Due to the Covid-19 pandemic, most of the working experience has been
carried out remotely. Thus, the access to in-place High Tech Campus (Eindhoven) labs
and facilities has been limited. Nevertheless, the dataset analyzed and processed in this
work had been previously acquired and made available for this study.

1.1. Reference study

The core of this research project is closely linked to a former one carried out within the
same Philips department. That study has been published as a paper [15] and used as
main reference throughout this work. More in detail, the objective of that work was
to assess the accuracy of a deep neural network (DNN) model to recognize 6 different
typical activities for hospitalized patients: Lying in bed, Upright posture, Walking,
self-propelled Wheelchair transport, Stair ascent and Stair descent. Those have
been performed by 20 healthy volunteers in a simulated hospital environment following
a specific activity protocol. The raw data have been captured by a single tri-axial ac-
celerometer placed on the subjects’ trunk. This project has been defined as "Simulated
Hospital Study" (SHS). The results obtained by the developed DNN were quite promis-
ing in this setting.
The next step was to validate the latter model on a real hospital scenario. As a conse-
quence, the dataset used in this project consisted in free-living activities carried out by
12 hospitalized patients. The under-exam setting has been termed "Real Hospital Study"
(RHS). Table 1.1 summarizes the main differences between the two studies.
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Simulated Hospital Study Real Hospital Study

Subjects 20 12

Dataset splitting Random (Partially) random

Activity protocol Yes No

Session time 1 hour ≈24 hours

DNN classes 6 5

Majority labels Dynamic Static

Table 1.1: Comparison between simulated and real hospital study.

1.2. Research question

The research question of this project focuses on a human activity recognition (HAR) task
and has been formulated as follows.

• Question: to what extent is it possible to use a DNN model pre-trained on a
simulated setting to classify patients’ activities carried out in a free-living context?

The above-mentioned statement is supported by several motivations presented hereinafter.
Physical activity and mobility are key indicators for the recovery process of general ward
patients in the hospital. Despite the fact that inpatients spend the majority of their
time in bed during hospitalization, tracking patterns in patient movement can be a useful
predictor of consciousness, mental and physical healing. As an example, getting out of bed
and taking a few steps can indicate patients’ ability to tolerate activities of daily living
and discharge readiness. Physical activity in the hospital is nowadays often monitored
solely through direct observation by caregivers. Developing objective methods to assess
mobility can help discriminate patients who require dedicate medical attention and those
who are ready to be discharged safely.

1.3. State-of-the-art

The classification of human activities via wearable devices has been extensively covered in
many studies. Their main differences involved different sensors types and locations, data
collection protocols and processing or classification techniques [25]. Concerning sensor
modalities, accelerometers stand out for being fairly parsimonious in production cost and
power usage [34]. Several works achieved remarkable HAR performance using 3D accel-
eration data with different strategies [1, 6, 47]. In the last few years, acceleration-based
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HAR approaches consistently shifted from feature-based models [4] to deep-learning (DL)
ones [46]. Cutting edge DL models offer state-of-the-art performance without the need
of strong physiological bases required for optimal feature extraction. The side-effect of
adopting such models consists of their lack of interpretability. Plus, properly designed
DL architectures are nowadays embedded within wearables for real-time processing.
The process of combining the information acquired from multiple sensor locations is called
"sensor fusion". This approach can be applied to HAR tasks by placing a number of
sensors in different body locations. Thus, sensor fusion might provide a more robust
technique to perform HAR with respect to using a single recording device [2, 17]. On
the other hand, the obvious by-product effect of using several sensors consists in a cum-
bersome data acquisition protocol. According to the use-case, this design choice might
represent an issue. For instance, recognizing activities of daily living performed by healthy
subjects may afford the use of several sensors [14, 43]. In contrast, this might become
a serious problem when performing the same task entailing and elderly population [7],
especially if hospitalized.
Furthermore, it is still challenging to identify the optimal sensor body location since this
heavily depends on the specific HAR scenario [8]. Among several viable options, the
sternum [32, 37] is often selected as candidate body position for placing wearable ac-
celerometers. This setting matches with the sensor location used for this study.
Eventually, it is well-known that self-reported activities carried out by adults suffer from
basement effect and recall bias due to under-reporting [42]. Pervasive monitoring via
wearable devices constitutes a reliable and objective means to mitigate this issue.
One of the main challenges related to HAR using DL methods consists in reproducing
the performance obtained in a laboratory setting in a real-life scenario. This facet encap-
sulates the research question of this project entailing SHS and RHS. A previous study
highlighted how changes in activity patterns, initially following a protocol and then in
a free-living setup, might overestimate the classification accuracy on training data [19].
Generally speaking, there might be many root causes of why DL models trained on a
specific setup might perform differently on a different HAR scenario. Under the point of
view of machine learning, it is possible to group discrepancies between source and tar-
get task into two main categories: covariate and concept shifts. The first can be due to
differences in data acquisition protocol, activity distribution or sensor modalities. The
latter can occur when there is a discrepancy between source and target activity classes.
On top of that, the intrinsic variability of activity patterns between subjects contributes
as an additional factor for dataset shift, especially in a clinical setting.
However, the latter issue is not only attributed to HAR tasks. In fact, it is desirable that
machine learning models may have enough generalization power to preserve acceptable
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performance when evaluated on different contexts. It is possible to transfer knowledge
from source to target predictive models via transfer learning [33] assuming that a rela-
tionship between the two domains exists. Indeed, many studies focusing on HAR relied
on this approach [9]. Due to the already-mentioned recent emergence of DL models this
technique might also be defined as "deep transfer learning". The key benefit of using deep
transfer learning models is the chance of unburdening the annotation process in target
activities [11, 38, 45]. Such technique especially comes into hand when analyzing sensitive
data privacy-wise. A prime example consists of activity data acquired from inpatients, as
in our use-case.
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This chapter will thoroughly describe the pipeline designed to obtain pre-processed sig-
nals. In addition, some first insights obtained at the end of the data analysis will be
presented. As a general rule, all the steps involved in the data acquisition process have
been tailored to be embedded in a standard clinical workflow. This implied minimizing the
interaction between the nurse or patient with the acquisition equipment while providing
almost continuous monitoring.

2.1. Data acquisition

2.1.1. Dataset

The population consists of 12 general ward patients (7 males and 5 females, body mass
index (BMI): 30.13± 9.88 kg

m2 ) from a clinic located in the United States. This implied a
consistent within-population heterogeneity in terms of length of stay, number of comor-
bidities, medical treatments and several other patient-specific features.
The enrollment occurred on a voluntary basis without exclusion criteria. An informed
consent was dispensed to and signed by the inpatients interested in taking part to the
study. This project has been approved by an internal committee at Philips in co-operation
with the clinic counterpart.

2.1.2. Experimental protocol

The acquisition procedure entailed a ≈24-hours recording for both camera-based ground-
truth and raw data acquired through a pair of wearable sensors.
The former consists of video recordings obtained via a cart-mounted camera with a tele-
scopic pole and laptop stand placed within patient’s hospital room. The camera has been
stopped at least once to allow battery replacement or potential room transfer. Concerning
its technical specifications, it is sufficient to point out the sampling frequency: fs = 15

frames per second (fps). In addition, each frame has been associated with a timestamp
(nanoseconds resolution) expressed in Posix time. A MATLAB® .mat file containing the
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Figure 2.1: ECGMove4 axes orientation

frame timestamps has been generated for each video chunk (see annotation setup subsec-
tion 2.2.2). Further technical details cannot be disclosed since the camera is an internal
Philips product.
The employed wearable devices consisted of two movisens® ECGMove4 sensors. The
latter allows the on-line measurement of a short-lead ECG and the physical activity of
a subject via a 3D accelerometer (see Fig. 2.1 for the axes orientation), gyroscope and
atmospheric air pressure. The sensors configuration occurred via a preliminary USB con-
nection to a PC hosting a dedicated software to set up acquisition parameters and starting
time. It is relevant to note that the movisens® sensors have been almost always switched
on after the camera. Section 2.3 outlines how the synchronization between the camera
ground-truth frames and ECGMove4 samples has been handled. As a side note, ECG-
Move4 data logging has not been interrupted even when the camera recording has been
stopped. However, acquired data in such time window have been discarded due to the lack
of ground-truth data. Moreover, the recording session starting time occurred in different
hours of the day across inpatients.
After stopping both sensors, the recorded raw signals for each ≈24-hours session have been
stored as tabular (.csv) and compressed files (.bin). However, only the former data format
has been imported and processed throughout this project. Furthermore, a unisens.xml

file containing metadata information has been generated. The latter has been parsed to
obtain information about the ECGMove4 internal sensors settings. Table 2.1 shows the
ECGMove4 signals recorded during the acquisition procedure and their corresponding de-

https://docs.movisens.com/Sensors/EcgMove4/#welcome
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Signal Properties

ECG Resolution: 12 bit, Range: ±5 mV, Output rate: 1024 Hz

3D acceleration Range: ±16 g, Output rate: 64 Hz

Angular motion Range: ±2000 dps, Resolution: 70 mdps, Output rate: 64 Hz

Pressure Range: 300-1100 hPa, Resolution: 0.03 hPa, Output rate: 8Hz

Temperature Output rate: 1 Hz

Table 2.1: ECGMove4 acquired signals and properties

Figure 2.2: ECGMove4 placement within patient’s chest

fault settings. An additional ad-hoc movisens® software could have been used to perform
off-line analysis of the acquired raw data. However, this procedure has been carried out
via custom Python scripts.
Concerning ECGMove4 placement, the two sensors have been attached on patient’s left-
side chest using disposable electrodes for improved comfort. One of the two movisens®

devices has been placed between the first and second rib whereas the other one in cor-
respondence of the twelfth rib (see Fig. 2.2). Those have defined as Upper and Lower
ECGMove4, respectively. Figure 2.3 summarizes the acquisition environment presented
so far.
The data acquisition technical protocol has been supervised and performed by two onsite
Philips researchers and consisted of different steps.
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Figure 2.3: Acquisition setup overview

1. Starting camera video recording after placing it within the hospital room.

2. Starting ECGMove4 devices acquisition.

3. Stacking and shaking them together in front of the camera to create motion artifacts
(required for the synchronization procedure as described in section. 2.3)

4. Placing the two sensors on patient’s left-side chest.

5. Starting a 30-minutes capnography session.

6. Removing both ECGMove4 wearables from patient’s chest.

7. Repeating the stacking and shaking procedure (as outlined in step 3).

8. Switching both movisens® devices off.

9. Turning off the cart-mounted camera.

The corresponding timestamp for each of the listed events along with any relevant patient-
specific annotations have been stored in a separate tabular .csv file. Moreover, the
medical staff has been trained and involved in this procedure uniquely when placing or
removing the ECGMove4 sensors.
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2.2. Data annotation

It is worth to recall that patients carried out their activities in a free-living context. The
following subsection will provide the rationales behind choosing the specific activity labels
that have been eventually annotated.

2.2.1. Labelling strategy

Since the essence of this work is to perform an HAR task mainly based on DL techniques,
it is required to carry out a careful and exhaustive labelling procedure on the recorded
ground-truth video data. This implied the design of an ad-hoc labelling strategy, involving
the generation of a label set.
The a-priori knowledge on activities performed by patients was limited. Thus, the final 28-
classes label set represented in table 2.2 has been obtained after several revisions produced
along with the annotation progress. The rationale behind choosing individual activity or
posture labels was multi-faceted.

1. Making relevant distinctions from a clinical standpoint.

2. Preserve the SHS labelling strategy as much as possible.

3. Including postures used in pre-existing HAR algorithms.

4. Including contextual information.

Point 2 and 3 have been fulfilled for correctly validating the SHS pre-trained DNN (see
DNN validation subsection 2.7.3) and CPA (see section 2.6) models, respectively. Point
4 allowed to use this dataset in future Philips R&D projects (e.g. in-bed detection).
Focusing on point 1, it mainly concerned categorizing static postures and has been ad-
dressed by relying on Fowler’s positions [5] represented in Fig. 2.4. By definition, Fowler’s
postures only refer to patient’s trunk inclination while sitting. However, it might be ex-
pected that the Low-Fowler’s position (i.e. 30°) could be associated to low-intensity
activities (e.g. reading, watching TV, talking to visitors, ...) whereas Standard Fowler’s
posture (i.e. 60°) to medium-to-low-intensity tasks (e.g. eating, grooming, ...). Thus, the
final decision was to consider Reclined as a distinct label from Supine and Upright.

2.2.2. Technical setup

The data labelling procedure has been carried out using a proprietary Philips annotation
tool with codename Barista. All the annotations on the RHS dataset have been made by
a single operator (i.e. the undersigned). Although this might have introduced annotation
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Label Definition

In bed Start : Bed entry start
End : Bed exit end

In (wheel)chair Start : (Wheel)chair entry start
End : (Wheel)chair end

Out of view Patient legs no more in camera field of view

Supine Patient trunk lying flat or ≤ 30◦ w.r.t1mattress

Upright Patient trunk being vertical or ≥ 60◦ w.r.t1mattress

Reclined Patient trunk being ≥ 30◦ and ≤ 60◦ w.r.t1mattress

Lying left Patient lying on left side of his/her body

Lying right Patient lying on right side of his/her body

Bend forward Patient trunk being ≥ 45◦ between vertical and floor

Prone Patient lying on belly

Bed entry Start : patient making first contact with mattress
End : all patient limbs lying within bed area

Bed exit Start : patient starting moving towards edge of bed
End : patient not making contact with mattress anymore

(Wheel)chair entry Start : patient bending knees to sit in (wheel)chair
End : patient making first contact with (wheel)chair

(Wheel)chair exit Start : patient bending forward while in (wheel)chair
End : patient not touching the (wheel)chair anymore

Self-propelled wheelchair Start : patient touching wheelchair wheels to start propelling it
End : patient not touching wheelchair wheels anymore

Eating (main) meal Start : patient grasping food/drink/cutlery for the first time
End : patient putting down food/drink on the overbed table

Standing/held upright Start : patient standing with both feet touching ground
End : patient lifting one foot or moving walking aid to start walking

Ambulating/taking steps Start : patient starting initial swing of gait cycle
End : both patient’s feet touching ground (double support)

Physiotherapy Nurse interacting with patient for a physiotherapy session

Capnography session Start : referring to case report form
End : referring to case report form

Transport in wheelchair Start : nurse touching wheelchair seat-back to start propulsion
End : nurse not touching the wheelchair seat-back anymore

Patient care Nurse physically interacting with patient

Telemetry device repositioning Nurse relocating telemetry device

Step Occurrence of heel strike phase of gait cycle

Fall Patient touching ground due to balance loss

Table 2.2: Label set description
1 with respect to
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Figure 2.4: Fowler’s positions

biases, it is valuable to point out that test patients activities have been annotated only
when the development of HAR models used in this study was complete.
Practically speaking, annotations have been made on 10-minutes video chunks denoted
as "part" (as described in subsection 2.7). Recalling that each of the 12 patients has
been monitored for around 24 consecutive hours, the labelling process resulted fairly
cumbersome with an overall estimated completion time of ≈165 hours. The Barista

graphical user interface (depicted in Fig. 2.5) consisted of a blurred 10-minute video clip
being played back (top pane) and a grid used for making annotations (bottom pane). The
shaded strip on top reported the current video frame (top-left), the video chunk codename
it belongs to (top-center) and its associated timestamp (top-right). The bottom grid
allowed to visualize the annotations made so far. Each grid row was associated with a
unique label and each dark-blue segment to the time span in which that specific posture or
activity has been annotated. Conveniently, the light-blue endings could be used to resize
and adjust the annotation time duration with a fine-grained resolution. According to the
camera technical specification outlined in the experimental protocol subsection 2.1.2, its
time resolution was ≈66 ms. The same applies to the video playback, in which it was
possible to scan through individual frames. As a side note, the pink background indicated
that two or more labels were concurrent.
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Figure 2.5: Annotation platform graphical user interface

2.3. Data synchronization

This routine allowed to align ECGMove4 3D acceleration samples with the ground-truth
video frames. Practically, this has been achieved by generating acceleration artifacts (see
data acquisition protocol steps in subsection 2.1.2). The procedure consisted in compar-
ing the artifacts timestamps recorded by the wearables and the camera. In this way, the
possible discrepancies between the two information have been qualified.
During the ≈24-hours recording the movisens® devices proved to be very stable in terms
of sampling frequency drift. Conversely, the camera showed occasional frame drops. Al-
though limited, such inconsistencies were mitigated by customizing two ECGMove4 pa-
rameters: sampling frequency (to a float value) and offset (of the first ECGMove4 sample
with respect to camera start timestamp).
A simple visual test has been performed to verify the correctness of the above-mentioned
adjustments. As an example, Fig. 2.6 illustrates the shaking artifacts generated at the
beginning of P00 recording session. The red vertical lines indicates a specific sensor shak-
ing direction. Ideally, whenever a movement artifact starts the corresponding acceleration
norm values should immediately increase (and vice versa). This behaviour should be pre-
served by repeating the same procedure just before the end of the recording session for the
same patient. Thereby, it can be assumed that the synchronization task was successful.
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Figure 2.6: Synchronization shaking artifacts

No a-priori time lag criterion between shaking movements and acceleration norm increase
(or decrease) timestamps has been set. Thus, a qualitative visual inspection has been
performed on all patients.

2.4. Data pre-processing

A consistent part of this work consisted in designing an end-to-end data processing pipeline
(represented in Fig. 2.7).

2.4.1. Preliminary steps

As reported in table 2.1, ECGMove4 devices were composed of multiple internal sensors
acquiring different signals. However, 3D acceleration only has been selected as signal of
interest throughout this work. In fact, one of the objectives of this project consists in the
validation a pre-existing HAR DNN model trained on acceleration data. This implicitly
required the same pre-processing steps followed in SHS to perform a fair validation
As a consequence, the 3D acceleration signal range has been halved in its range to ±8
g (1 g = 9.8 m/s2). On the other hand, the sensors adopted in the SHS study featured
a 100 Hz acceleration sampling frequency whereas the movisens° devices were limited
to 64 Hz. We found that by either upsampling or downsampling the ECGMove4 data
did not remarkably impact the DNN performance. The final decision was to subsample
ECGMove4 acceleration data to 16 Hz to allow a faster training procedure.
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Figure 2.7: Data processing pipeline

Eventually, the ECGMove4 acceleration axes orientation (represented in Fig. 2.1) has
been transformed to match the SHS sensor reference system (see Fig. 2.8). The above-
mentioned transformations along with the data windowing strategy (presented at the end
of this section) have been preserved when developing novel HAR models throughout this
project, unless otherwise stated.

What follows refers to label consistency across SHS and RHS as explained in point 2
within the labelling strategy subsection 2.2.1.
The first discrepancy between the two settings concerned concurrent RHS labels. By way
of example: Supine while lying In bed). Since all the models developed in this study
performed a single-activity classification, the contextual information has been filtered out.
Thus, only the information about posture or activity has been retained.
Moreover, three special cases of multiple concurrent posture (or activities) have been
identified and handled.

1. Reclined + Lying right/left → Reclined

2. Ambulating/Taking steps + Upright → Ambulating/Taking steps

3. Upright + (self-propelled) Wheelchair → (self-propelled) Wheelchair

Focusing on case 1, Reclined and Lying left/right might be equivalent under a phys-
iological standpoint. However, the followed rationale was to make the HAR models more
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Figure 2.8: Transformed ECGMove4 axes orientation

robust to real use-case scenarios including posture variations.

Considering that this project entailed privacy-sensitive data, an extensive anonymization
procedure has been implemented on the acquired video recordings. As shown in the
sample video frame in Fig. 2.5, the original video was processed by converting it to a
grayscale sequence of frames and superimposing a blurring effect. Such procedure has
been performed to avoid the detection of the patient’s face or peculiar features during the
annotation process.
The adopted codename for each ≈10-minutes video chunk (e.g. top-center of sample
snapshot in Fig. 2.5) was: PXX part YYY (/2), where XX [01-12] referred to the patient
ID, YYY to the video chunk number and (/2) to video segments acquired after premature
camera stopping.
The same SHS data windowing strategy has been used to segment 3D hospital activities
acceleration data (i.e. sliding 6-seconds windows with an overlapping of 50%). Each data
window has been labeled via majority voting. Data segments containing more than 50%
of unlabeled samples have been discarded.

2.4.2. Annotations download and parsing

The annotations made via Barista have been automatically retrieved via its Application
Programming Interface (API). For this aim, a Python script has been developed to com-
plete a two-folded task: logging-in to the online Barista platform via a local pre-generated
token and downloading all annotations for all patients at once. Those have been stored as
individual (i.e. one for each video "part") .json file. The following represents a reduced
information set related to an annotated event within a .json file.
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{
" content " : "{\" s t a r t \" : 244 .332 , \"end \":600067}} ,
" context " : {

" formId : "P00 part 2" ,
. . .
} ,

" created_at " : "2020−07−18T18 : 06 : 40 . 9 94000" ,
" c rea ted : by " : "Lorenzo P r i n c i p i " ,
. . .
" l a b e l s " : " In bed " ,
" last_modif ied_at " : "2020−07−18T20 : 24 : 22 . 5 41000" ,
" last_modif ied_by : "Lorenzo P r i n c i p i " ,
"owner_id " : "Lorenzo P r i n c i p i " ,
" type " : " v ideo "
} ,

The main information are reported in the content and labels field. The former indicates
the start and end timestamps corresponding to the light-blue endings in the annotation
grid as shown in Fig. 2.5. Those are expressed as milli-seconds time unit offset from the
10-minute video starting timestamp. The latter refers to one of the label names contained
in the RHS label set reported in table 2.10. The remaining fields relate to various meta-
data.
Next, an additional Python script has been implemented parse the content of .json files.
After an appropriate routine, each labeled event has been associated to its respective
camera timestamps (stored in a .mat file as described in the experimental protocol sub-
section 2.1.2). This final pre-processing step of allowed to obtain labeled data. Fig. 2.9
shows ECG and acceleration norm for a sample 30-seconds segments with annotations
represented as colored regions with the same color code as in Fig. 2.10 according to their
category. ECG has been visualized and overlaid to acceleration signal to verify that the
two were correctly synchronized. In this way, the RHS dataset could be used for future
projects entailing different signals and tasks.

To summarize, a final label set composed of 28 labels has been produced (see Fig. 2.10 for
a compact representation of what already represented in table 2.2). However, a subset of
activity classes has been chosen when developing HAR models in this work. The reason
consisted in focusing on the most relevant posture and activities. This has been achieved
by referring to an ad-hoc ontology tree (see table 2.3) used as lookup table. The unique
values of its last column have been considered the final 5 RHS activity classes recognized
by DL models: Lying, Upright, Reclined, Walking, Wheelchair).
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Figure 2.9: Sample ECG and acceleration annotated segment

Figure 2.10: Label set compact representation
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Label Category Group Posture DNN class

In bed Lie Inactive Unknown Lying

In (wheel)chair Sit Inactive Upright Upright

Out of view Other Unknown Unknown None

Other Other Unknown Unknown None

Supine Lie Inactive Supine Lying

Upright Sit Inactive Upright Upright

Reclined Lie Inactive Reclined Reclined*

Lying left Lie Inactive Left Lying

Lying right Lie Inactive Right Lying

Bend forward Transition Inactive Bend forward None

Prone Lie Inactive Prone Lying

Bed entry Transition Active Transition None

Bed exit Transition Active Transition None

(Wheel)chair entry Transition Active Transition None

(Wheel)chair exit Transition Active Transition None

Eating main meal AHDL Active Unknown None

Standing/held upright Stand Inactive Upright Upright

Ambulating/taking steps Walk Active Upright Walking

Physiotherapy AHDL Active Unknown None

Patient care AHDL Inactive Unknown None

Telemetry device repositioning Other Unknown Unknown None

Step Walk Active Upright Walking

Fall Walk Active Unknown None

Capnography session Lie Inactive Unknown Unknown

Transport in wheelchair AHDL Inactive Upright Upright

Self-propelled wheelchair AHDL Inactive Upright Wheelchair
* Lying if validating deep neural network pre-trained on Simulated Hospital Study

Table 2.3: Label ontology tree
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2.5. Data analysis

Before getting any insights on the pre-processed RHS dataset, the precondition was to
perform a sanity check (presented in subsection 2.5.1). The aim of this procedure was to
exclude potential outlier samples and unravel their root causes. Thereafter, some basic
statistics (i.e. overall percentage of activity or inactivity, labels distribution, posture
transition frequency) on the hospital activity dataset have been obtained. The results
obtained at the end of the above procedure have been presented in section 3.1.1. Lastly,
possible correlation between patient BMI and baseline 3D acceleration values during static
postures (i.e. Supine and Upright) has been investigated (see subsection 3.1.2). The
latter analysis aimed at quantifying the heterogeneity in ECGMove4 orientations and
placements among RHS patients.

2.5.1. Sanity check

This procedure was carried out by selecting two opposite postures (i.e. Upright and
Supine). Then, it has been assessed if the associated 3D acceleration readings matched
with the axes orientation (depicted in Fig. 2.8. Specifically, Supine samples should take
[0, 0, -1] values for x-, y- and z- axes, respectively (conversely, [0, -1, 0] for Upright).
Many factors (e.g. sensor placement, chest shape, ...) might be the cause for slight de-
viations from the theoretical acceleration baseline values. Thus, this procedure was con-
fined to identifying highly abnormal acceleration values for the above-mentioned postures.
Namely, positive values for x-axis and z-axis when Upright and Supine, respectively.
This has been carried out by computing the 3D acceleration values distributions on both
ECGMove4 locations for the two postures. However, only the Supine posture featured
abnormal values (within the red box in Fig. 2.11). It has been found that all those outliers
referred to P12 activity patterns. More in detail, P12 often dragged her left arm (same
side where the movisens® device was placed) under her head while lying on bed. This ges-
ture implied a remarkable skin deformation, dragging the Upper ECGMove4 back. This
behaviour, along with patient’s chest shape and her very high BMI (> 40) constituted
the root causes for the detected outliers. Since this does not relate to sensor malfunctions
or defects, no actions concerning those abnormal samples have been taken.

2.6. CPA algorithm

This section introduces the first HAR algorithm evaluated within this project. Although
this model is not DL-based, it has been involved in a later machine learning ensemble
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Figure 2.11: Supine 3D acceleration values distributions across patients

method (see subsection 2.7.5).
CPA stands for Calibration, Posture and Activity and refers to the three separate modules
of which the algorithm is composed. It falls into the category of rule-based algorithms,
meaning that the activity recognition task is performed by comparing the CPA output
with a set of pre-determined conditions to determine the final posture or activity. Such
conditions will be adequately explained within this section.
The structure of this section is organized so that an explanation on the Calibration and
Posture routines is provided at first. The Activity one will not be covered because the
intensity level at which tasks were performed was outside the scope of this project. Even-
tually, section 3.2 summarises the results obtained with different CPA configurations by
also reporting some final considerations and recommendations for future use. Since the
CPA algorithm is under Philips intellectual property, only general details to understand
its high-level functioning will be disclosed.

2.6.1. CPA requirements and modules

Differently from the data windowing strategy used for DL models (see end of prelimi-
nary pre-processing subsection2.4.1)), CPA algorithm requires 5-seconds 3D acceleration
segments with no overlapping as input. The acceleration data should be acquired from
a sensor placed in the upper-chest location on the left side. This requirement has been
fulfilled by selecting Upper ECGMove4.



2| Material and methods 21

Calibration

The aim of the Calibration module was to align the sensor axes reference system with the
anatomical body directions. Referring to the transformed ECGMove4 axes orientations
in Fig. 2.8, the x-, y- and z- acceleration axes should have been aligned with the right-
left, cranio-caudal, antero-posterior anatomical directions, respectively. The purpose of
this procedure was to even out potential interfering factors (e.g. BMI, chest shape, sensor
placement, ...) for the posture detection. The Calibration procedure entailed four separate
steps.

1. Walking detection.

2. Selecting calibration data.

3. Determining reference and device frame vertical axes.

4. Adjusting orientation matrix

Step 1 involved an algorithm that outputted the probability associated with a Walking

activity within each 5-seconds 3D acceleration window. In case enough valid and consecu-
tive Walking acceleration segments were detected, step 2 used those as input to retrieve
the reference vertical direction. The core idea behind the Calibration procedure is that
the posture taken during Walking should be vertical. Thus, the next step consisted of
calculating the vertical axis within the device frame by dividing the acquired mean accel-
eration by its norm. Eventually, the reference and device vertical directions retrieved in
step 3 were compared to assess the x-axis tilt angle (α) between the two. Such angle was
the used to generate a 3x3 orientation matrix (Rorient) used to rotate and align the device
reference system with the anatomical body directions. By default, α = 12.045◦ (rotated
backwards).

Posture

The CPA algorithm has been designed to classify 7 different postures: Upright, Reclined,
Lie supine, Prone, Lie on left side, Lie on right side, Upside down. This mod-
ule is composed of four different steps.

1. Creating a 7x3 posture matrix (P ) by horizontally stacking unit-length posture
vectors pi (i = 0, ..., 6).

2. Rotating the 3x1 posture vectors (pi) by the Rorient orientation matrix: p̃i =

Rorientpi.

3. Calculating a normalized mean value for each acceleration axis within each data
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segment.

4. Selecting the final posture index (i = 0, ..., 6) based on a minimal distance criterion
between pi and p̃i.

It is clear that the approach followed in the Posture module is similar the Calibration
one. In this case, the pi posture vectors represented the reference vectors (e.g. pupright =

[0,−1, 0]) to which the rotated p̃i ones were compared. After a normalization step, the
output posture was selected for the associated ith index that minimized the distance
between the reference pi and rotated p̃i posture vectors.

2.7. Deep-learning techniques

In the recent decades, approaches based on artificial intelligence (AI) increasingly took
place in several engineering-related fields to overcome a variety of challenges. At the same
time, the technological advancement allowed the design of unobtrusive devices capable of
continuously acquiring data. In this way, it has been made possible to take full advantage
of DL or machine learning models usually requiring a large amount of labeled data. Also
HAR tasks have recently been addressed via such techniques, especially thanks to the
development of wearable devices. Thus, the under-exam RHS task has been considered
well-suited for being tackled with DL techniques.
This section is structured so that an introduction with general concepts about DL mod-
els will be provided at first. Secondly, a detailed analysis of the legacy DNN used for
the reference SHS and the rationale followed to develop the actual baseline DNN used
throughout this work will be presented. Then, the results obtained by validating the latter
model on the RHS will be reported. Next, the strategy pursued to perform a complete
retraining of the baseline DNN on RHS will be discussed. Finally, in order to combine
the respective advantages of the CPA and DL models, a hybrid DL ensemble method will
be discussed.

2.7.1. General concepts

This project heavily relied on testing and developing artificial neural networks (ANNs)
in a deep paradigm. Hereafter, an high-level overview of the structure and functioning of
such models is given.
ANNs are a subset of machine learning techniques aimed at tackling AI-related tasks.
Those consist of circuits of artificial neurons reflecting the behaviour of biological neural
networks contained in the human brain. The building block of such models is represented
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Figure 2.12: Graphical representation of a perceptron

by the above-mentioned artificial neurons. Vast research has been carried out throughout
the last century in order to correctly model it. The first milestone has been achieved
by understanding how the human brain could produce complex patterns, by comparing
neurons with a binary threshold to a Boolean logic [30]. On a later stage, F. Rosenblatt
expanded the concept of the all-or-none neuron by introducing neural connections weights
and redefining it as perceptron[35]. Within the same work, a learning rule (delta rule)
aimed at finding the optimal weight coefficients for neural connections has been presented.
A schematic representation of a perceptron is depicted in Fig. 2.12 and described by the
following equations:

o(x⃗) = sgn(ω⃗ · x⃗)

sgn(y) =

1, if y > 0.

−1, otherwise.

where x⃗, o⃗ and ω⃗ represent the input, output and weight vectors respectively. However,
perceptron per se can only be used to accomplish classification tasks involving linearly-
separable classes.
The latter limitation has been overcome by the so-called multilayer perceptrons (MLP)
models being able to perform non-linear classification tasks. Those structures resembled
the intricate circuitry of biological neural networks devoted to automatic feature extrac-
tion. MLP are composed of input layers, hidden layers (performing to the actual feature
extraction process) and a final output layer (see Fig. 2.13). However, the delta rule
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Figure 2.13: Multilayer perceptrons scheme

learning strategy is no more applicable in this complex context. As a consequence, a gen-
eralized learning rule based on computing the gradient of the loss function with respect
to the weights called backpropagation [36] has been designed. The following equation
synthetically describes the backpropagation algorithm coupled with stochastic gradient
descent iterative method:

θt+1 = θt − α
∂E(X, θt)

∂θt

where θt denotes the parameters of the ANN at iteration t, X = {(x⃗1, y⃗1), ..., (x⃗N , y⃗N)} the
set of input-output pairs of size N , E(X, θt) the error function and α (learning rate) the
coefficient that regulates the amount of novel information overwriting the old parameters.
As a general principle, the aim of an optimization problem is to find the optimal weights
that minimize the error function associated to the predictive task. In this regard, it is
typical that ANNs error functions are characterized by non-convexity. This implied that
the convergence to the global minimum via backpropagation with gradient descent was
not guaranteed. However, it has been proved that the latter issue is not a major drawback
in most of the practical scenarios [26].
Nowadays, thanks to an ever-increasing production of data made possible by pervasive
sensing solutions, data-driven models found their success in many applications. Accord-
ingly, it has been deemed necessary to additionally increase the complexity of MLPs
models to identify meaningful patterns and perform successful feature extraction within
a large amount of labelled data. As a consequence, the "deep-learning" umbrella-term
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Figure 2.14: Example of a convolutional block

encompasses ANNs composed of several MLP hidden layers and, possibly, some changes
to their standard structure (e.g. sparse or non-feedforward neural connections for convo-
lutional and recurrent neural networks, respectively) [18]. Such architectures are broadly
defined as deep neural networks (DNNs). Since often employed within this project, it
might be beneficial to briefly introduce the main aspects of convolutional neural networks
(CNNs). Their sparse connectivity allows for local feature detection, better resembling
the feature extraction process performed by biological neural networks involved in visual
tasks (i.e. from coarse-grained to low-level features). The essential components of a con-
volutional layer are: the input data, the filter (acting as a feature detector) and the feature
map. The latter represents the result of the convolution (dot product) between the filter
kernel striding over the input data. In general, each convolutional layer is mainly charac-
terized by three parameters: the number of filters, the stride and the padding strategy (in
case the filter does not fit the input data shape). Right after, a sub-sampling (or pooling)
layer is placed in order to reduce the feature map dimensionality and retaining the useful
information. Fig. 2.14 shows an example of a convolutional and pooling layer in series
which are commonly referred as convolutional block. The crossed kernel filter squares in
Fig. 2.14 indicate a null dot product. A series of convolutional blocks, used as feature
extractor, is usually provided as input to a MLP to perform the final predictive task.
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Figure 2.15: Simulated Hospital Study deep neural network architecture

2.7.2. Baseline deep neural network architectures

This study bases its foundations on the DNN developed in the SHS. Thus, it is of key
importance to describe the DNN architecture designed for that use-case. It has been
developed using TensorFlow framework and its main components are 3 zero-padded con-
volutional layers (number of filters: f1 = 8, f2 = 8, f3 = 8 with kernel sizes: k1 = 23,
k2 = 10, k3 = 7) characterized by Rectified Linear Unit (ReLu) activation function. The
latter allowed to zero out weights taking negative values, implying a sparsity of the DNN
connections and an overall improved model efficiency. The last 2 convolutional blocks
were fed to a dropout layer (ratio: 30%). Moreover, batch normalization layers have been
interposed after each convolutional one to even out the differences between each mini-
batch and speed up the DNN training process [21]. The pooling layers for each of the 3
convolutional blocks consisted of max-pooling (pool sizes: 10, 4 and 2 respectively). The
final two layers consisted of a Long Short-Term Memory (LSTM) with 6 units and a fully-
connected one. The latter featured 6 neurons, coinciding with the number of SHS DNN
activity labels: Lying in bed, Upright, Walking, Walking downstairs, Walking

upstairs, Wheelchair). The block-diagram representation of the SHS DNN architec-
ture is depicted in Fig. 2.15.
However, some issues arised when retrieving above-described DNN model. In fact, no
Tensorflow model checkpoint with which the results in [15] have been obtained was
available. After an intensive investigation, the replication of such results turned out to
be unfeasible. In addition, it has been found out that the SHS DNN was quite sensible
to parameter initialization with performance gaps as large as ≈20% for the same posture
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Figure 2.16: Baseline deep neural network architecture

(e.g. Upright or Wheelchair) by simply changing the random number generation
seed.
On top of that, the sensor location used in [15] roughly matched with the Lower ECG-
Move4. Such location neither resembled to Upper or Lower ECGMove4 locations. How-
ever, SHS acquisition protocol entailed multiple sensor placed in different locations. One
of those was attached to the left-side upper-chest area, almost perfectly matching with
Upper ECGMove4 placement.
Other than the legacy DNN model above described, additional testing have been carried
out implementing variations on its core structure. In particular, a novel DNN architecture
featuring an extra 1D convolutional layer in place of the final LSTM one has been selected
as reference DNN for further testing on ongoing Philips R&D projects. With the vision
of deploying such DNN on an embedded system, it is much more convenient to remove
LSTM layers. In fact, those are generally known to be computationally cumbersome and
difficult to implement in such environment. Therefore, such DNN architecture with code-
name ccpd2 (see Fig. 2.16) has been actually used as baseline DNN for the current study.

Concerning training process hyperparameters, all the DNN models implemented in this
work have been trained for 100 epochs with early stopping enabled, using Adam opti-
mizer [24], 10-3 learning rate and a batch size of 100, unless otherwise stated. In addition,
due to the class imbalance (see label distribution Fig. 3.1) a balanced batch genera-
tor based on minority class oversampling has been implemented via imbalanced-learn

Python module. Concerning performance metrics, a Cross-Entropy loss function has been
adopted whereas the weighted F1-score has been usually used to assess the overall model
accuracy.

To summarise, different reasons made the validation of the exact same DNN architecture
used in SHS unfeasible. Hence, the ccpd2 architecture has been selected baseline DNN.
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This model received 3D acceleration data sampled ad 16 Hz acquired on sensors placed
on the upper-chest as input. Hereafter a list of motivations followed to select the ccpd2
model as baseline model is provided-

1. Model architecture (ccpd2 )

• Kernel transfer analysis: since this project intends to understand to what
extent features extracted from SHS might be representative for different datasets.
Having more convolutional layers might be helpful in better differentiating
which layers provide generic or specific (to the use-case) features

2. Sensor location (Upper)

• Comparison with feature-based model: to allow a fair comparison be-
tween DNN-based approaches and CPA algorithm (see section 2.6) designed to
receive input data acquired from sensors placed around the upper-chest

3. Sampling frequency (16 Hz )

• Computational efficiency: with the vision of later implementing a DNN
model within an embedded system. Within this setting, computational costs
are a top priority in terms of energy consumption and real-time processing. Ob-
viously, down-sampling 3D acceleration data helps in this task. A by-product
effect consists of speeding up DNN models training without losing any relevant
information about activities and postures patterns

It is important to note that, at this point, the validation procedure reported in the next
subsection not only aims at evaluating the previously developed DNN models on a real
setting scenario but also at benchmarking its robustness to inevitably slight variations
associated to a different target use-case.

2.7.3. Baseline model validation

The validation procedure could not be straightforwardly performed due to the intrinsic
differences between SHS and RHS (reported in the comparison table 1.1).
The first inconsistency concerned DNN activity classes. The main difference consisted of
the lack of Stairs walking and Reclined DNN labels within RHS and SHS settings,
respectively. The former can be justified by the fact that the camera field of view was
restricted to patient’s room. The latter was instead merely considered as a variation of
the Lying posture within SHS. Thus, a required step was to include the Reclined posture
as a separate class for the SHS. Considering that, at this stage, the validation process
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was no more strictly bounded to the same SHS DNN architecture and settings, this final
adjustment was considered harmless.
The additional discrepancy related to dataset splitting into train, validation and test sub-
sets. Referring again to table 1.1, SHS performed a complete per-patient random splitting
whereas RHS identified 5 patients as test ones even before starting the data acquisition
procedure. Indeed, this consisted in the best strategy to avoid possible biases during
the annotation process. Although not an issue during the DNN validation process, this
resulted quite problematic when retraining the ccpd2 on hospital activity data due to the
consistent label distribution shifts between train, validation and test inpatients. During
the experiments performed on the latter scenario, various combinations of hospitalized
patients in the three data subsets were tested. Nevertheless, no substantial improvement
of the DNN model performance has been achieved by doing so. By default, other than the
5 pre-defined hospitalized test patients, 5 patients were assigned to the train set whereas
2 inpatients to the validation set, unless otherwise stated.
As a side note, since the SHS DNN involved the normalization of the input data via
a scikit-learn StandardScaler, it was necessary to re-fit the same scaler instance when
validating it on hospital activity data. In fact, the two settings are characterized by
completely different 3D acceleration values distributions.

2.7.4. Baseline model retraining on hospital data

The next step was to retrain the baseline ccpd2 DNN architecture using training set inpa-
tients acceleration samples and validating it on the 5 pre-defined test inpatients activity
data.
As a "debugging" procedure consequent to the results reported in the retrained ccpd2
confusion matrix in Fig. 3.5, a per-patient investigation has been carried out. The intent
of this analysis was to possibly highlight patients featuring unexpected 3D acceleration
patterns for specific activities or postures. According to the poor performance achieved
by the retrained ccpd2 DNN validated on P01 acceleration samples only, such inpatient
could be a candidate outlier with respect to the hospitalized population. As an example,
Fig. 2.17 shows a ≈1-minute 3D acceleration segment acquired by Upper ECGMove4
device annotated as Upright but entirely misclassified as Reclined. It is clear that the
≈ 0.7 x-axis stationary value is not an expected to occur when Upright. Such behaviour
is not sporadic and has been possibly associated to an exaggerate left-lateral placement
of the Upper movisens® device or interfering factors that caused this peculiar sensor dis-
placement. This occurrence has already been discussed in the BMI and 3D acceleration
correlation section 3.2. No other inpatients featuring prolonged abnormal acceleration
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Figure 2.17: Incorrectly classified P01 3D acceleration segment

values showed up at the end of this analysis.
As a by-product finding of this procedure, it has been observed that P05 featured two very
noisy and long-lasting (≈ 1-hour) 3D acceleration segments within the 24-hours recording.
The culprit was a High-Frequency Chest Wall Oscillation device used as daily therapy to
dissolve mucus congestions and free the airway.

2.7.5. Hybrid ensemble method

The rationale behind this method was to capitalizes on the advantages offered by intrinsic
difference between CPA and DNN model (i.e. determinism and black-box, respectively).
The devised solution xwas to implement an ensemble method. Among the many viable
solutions, a hybrid Stacked Generalization framework has been designed. The term "hy-
brid" indicates that a heterogeneous collection of weak learners (i.e. CPA and ccpd2 ) was
involved.

General concepts

A Stacked Generalization ensemble method, commonly defined as Stacking, involves com-
bining the predictions from different models used for the same dataset. Such task is
performed by designing a single machine learning model (Meta-Model or Meta-Learner)
able to receive as input the outputs from two or more Base-Models. The former (also
defined as Level-1 model) learns how much to trust the predictions obtained from the
Level-0 models during its training phase. A Logistic regressor is usually identified as a
suitable Meta-Model since it conveniently allows to visualize and assess the contribution
of each weak learner to the final prediction.

Concerning the training procedure, it has been decided to follow a random per-patient
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splitting ratio for each of the three data subsets (D1, D2, D3) involved in this process:

• D1 (9 patients): used to train Level-0 models

• D2 (1 patient): used to train the Meta-Learner and validate Base-Models

• D3 (2 patients): used to validate the Level-1 model

Implementation

The Level-1 model consisted of a Logistic regressor whereas the Level-0 ones of ccpd2
DNN model and CPA algorithm. Their output before the classification step consisted
of softmax-ed values and distances (defined as deltas) from the reference posture vectors
for each activity class, respectively. Such values have been vertically stacked and used to
train the Level-1 model. Table 2.4 shows an example of a Meta-Learner training sample
in which both the ccpd2 DNN and the CPA are in agreement (bold values) to classify it
as Lying. Thus, the Level-1 model training set has shape Nx12, where N represents the

Lying Reclined Upright Walking Wheelchair
0.99 0 0 0 0

(a) DNN softmax-ed outputs

Lying Reclined Supine Prone Lie left Lie right Upside down
1.46 0.82 0.12 2 1.34 1.46 1.37

(b) CPA deltas

Table 2.4: Meta-Model training sample

number of Base-model output samples.
Although the two Base-Models recognized different activity labels, it was still valuable to
preserve such differences to identify possible relationships between specific CPA postures
and DNN classes. It is important to note that the Stacking ensemble method had to be
compared to the previously obtained DNN results. As a consequence, the hybrid ensemble
method eventually outputted the same 5 RHS activity classes.
Some preliminary transformations were required to implement the Stacking ensemble
framework. As already mentioned, CPA and DNN entailed two different data windowing
strategies. However, the DNN windowing strategy has been picked for a fair comparison.
In addition, the Logistic regressor Meta-Model required a preliminary feature normaliza-
tion step for a correct interpretation of the regression coefficients. Thus, a MinMax scaler
has been fitted and applied to the Meta-Learner training dataset (D2). Eventually, the
choice of the specific Level-1 Logistic regression model parameters has been carried out
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via a GridSearch with a 10-fold cross validation. The optimal Logistic regression settings
obtained after the hyperparameters tuning procedure is reported below:

Log i s t i cReg r e s s i on (C=0.0001 , c lass_weight=’ balanced ’ , s o l v e r=’ newton−cg ’ )

where C represented the inverse of the regularization strength, class_weight=’balanced’
indicated that the weights have been adjusted according to the inverse empirical frequency
for each activity class and solver related to the algorithm used during the optimization
problem. Both the standardization and hyperparameter tuning have been performed using
scikit-learn Python module.

2.8. Deep transfer learning approaches

One of the main objectives of this project was to evaluate the performance of a DNN
trained on simulated hospital activities on RHS. This lent to the implementation of trans-
fer learning techniques. According to the results obtained by using the methods outlined
in the previous sections, the domain switch between SHS and RHS was broad. The fea-
tures extracted by the DNN trained on SHS were not representative enough for some
inpatient activities (especially Walking and (self-propelled) Wheelchair). Hence,
transferring knowledge acquired from SHS data and adapting it to the target hospital
domain might have been beneficial. An additional advantage of using this approach con-
sisted in not fully retraining the ccpd2 DNN on the hospital dataset. In this way, the
issues related to activity distributions between inpatients (see cross-validation results in
table 3.2) might have been mitigated.
This section is divided into three parts. The first addresses some basic concepts related
to transfer learning. The second introduces the different settings and strategies used to
implement such technique. Eventually, an in-depth kernel transfer analysis has been car-
ried out to investigate about the information brought by each convolutional layer during
the transfer process .

2.8.1. General concepts

Traditional (semi-)supervised deep-learning classification models are tailored to make pre-
dictions on future testing data by relying on the knowledge acquired from (partially) la-
beled training data. A pre-requisite of such methods is that the distributions of both
labeled and unlabeled data should be the same. However, this is is not the case in many
of the practical real-world scenarios. Transfer learning instead allows the domain, tasks
and data distribution between train and test set to be different. More in detail, transfer
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learning allows to improve the learning of the predictive function on a target domain by
using the knowledge acquired from the source domain and task [33]. Referring to our
use-case, the aim is to find meaningful feature representations to minimize divergence
between SHS and RHS. In parallel, the HAR classification error should be be minimized
leveraging on the great availability of labeled data on both source (SHS) and target (RHS)
domains. Thus, the under-exam transfer learning approach can be categorized as Induc-
tive Transfer learning based on feature-representation-transfer. The term "inductive"
indicates that part of the target domain is treated as training data to induce the target
predictive function.
The HAR field is not stranger to this approach. In fact, it is quite common that deep-
learning models developed to tackle a specific activity recognition task might be adapted
and re-used for a different one by taking advantage of the connections between source
and target domain. This setting is defined as transfer-based activity recognition. When
performing the latter, several factors might represent the causes for HAR domain shift:
sensor modality, labelling strategy, data acquisition protocols and so on [9].

2.8.2. Canonical deep neural network transfer learning

Referring to the current use-case, ccpd2 DNN pre-trained on SHS has been used as a
feature extractor block (also called "backbone"). Then, those feature have been fine-
tuned to hospital activity data. This procedure could be carried out by following the
steps below.

1. Retraining the ccpd2 baseline model on SHS data.

2. Freezing all layers.

3. Detaching and replacing the final ccpd2 fully-connected classification layer with a
custom one (or block).

4. Retraining the tweaked ccpd2 DNN on target hospital data.

Step 2 consisted in disabling the weight update for all parameters contained in ccpd2
layers. Step 3 was required to change the number of neurons of the last baseline DNN
fully-connected layer so to match the number of RHS activity classes (i.e. 5). During this
step, the final dense layer could optionally be preceded by multiple fully-connected layers
creating a classification block. By doing so, the extracted features (also called "bottleneck
features") were gradually processed before being mapped to the final output target RHS
activity class. Step 4 consisted of the fine-tuning procedure. Within this stage, a number
of layers frozen during step 2 has been unfrozen in order to adapt the model weights to
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information brought by hospital activity data. In case a batch-normalization got unfrozen,
it was essential to set it in inference mode so that its mean and variance parameters learned
during stage 1 were not updated.

2.8.3. Kernel transfer analysis

A detailed analysis concerning the feasibility of transferring feature representations has
been carried out. To achieve this, the same footsteps outlined in a previous study have
been followed [31]. Practically speaking, two separate high-level transfer learning scenar-
ios have been considered.

1. Knowledge transfer between users within the same domain.

2. Knowledge transfer between different domains.

The core idea behind this approach was to determine if specific convolutional kernels were
able to grasp either generic or domain-specific feature representation. By creating a copy
of the baseline DNN model (defined as transferred model) it was possible to gradually
transfer pre-trained kernel parameters to it and adapting the DNN replica by training
them on a target domain subset. After statistically comparing the results obtained with
the transferred model and the original baseline DNN (called source model), useful insights
on the overall knowledge transfer process could be derived.

Technical implementation

Translating the above-mentioned process to the current task, case 1 referred to different
RHS inpatients whereas 2 to the feature representation transfer from source SHS to target
RHS domains.
The following technical details were shared among the two transfer learning settings.

• The source model has been trained on 90% of the whole source dataset and validated
on the residual 10% of it .

• N [1..4] convolutional layers were transferred from source to transferred model and
frozen. The remaining layer parameters have been randomly initialized and tuned
to a portion of the target dataset defined as adaptation subset.

• The transferred model has been trained on different percentages (50%, 75%, 100%)
of the adaptation subset.

Concerning the training process, the source model and transferred model have been both
trained for 50 epochs. To avoid quick overfitting on RHS data, the learning rate has been
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Figure 2.18: Kernel transfer analysis general scheme

decreased to 10-7 during fine-tuning.
Fig. 2.18 graphically summarizes what outlined so far for a generic DNN architecture.
Each kernel transfer setting was identified by a codename: AXB(N%) where A and B
indicated the source and target domain, respectively, whereas N% to the portion of adap-
tation subset used to fine-tune the transferred kernel parameters. Referring to the current
use-case, S and R have been used to denote SHS and RHS in place of A and B, respec-
tively.
As a side comment, it is valuable to remark that, due to the high class imbalance in both
the source and target domain activities, the splitting procedure has been performed with
stratification in order to preserve label distribution between dataset splits.

2.9. Domain-adversarial neural networks

The approach described in this section consisted of a specific setting of knowledge trans-
fer: domain adaptation. The latter, by referring to the formal definitions of the various
transfer learning configurations introduced in [33], can be identified as a special case of
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transductive transfer learning. The term "transductive" refers to the fact that (part of)
the unlabeled target data should be available during the training process to compute its
marginal probability distribution. Domain adaptation assumption relates to the differ-
ence between the marginal probability distributions of source and target data involved
into the same learning task
Within the context of DNNs, it is possible to perform domain adaptation by means of
domain-adversarial neural networks (DANNs) [16]. Those architectures can be developed
on the basis of any pre-existing DNN architecture by adopting almost effortless structural
changes to it. Such feature resulted particularly suitable for the RHS activity recognition
task in which the baseline model consisted of a DNN.

2.9.1. Motivation

The main advantages of performing domain adaptation from source (SHS) to target (RHS)
domains via DANNs consists of two key reasons.

1. The predictions are made based on features that cannot discriminate between the
training (source) and test (target) domains.

2. The training process relies on labeled data from the source domain and unlabeled
data from the target domain.

Commenting point 2, labeled target-domain data are not strictly required, configuring
unsupervised domain adaptation task. Nevertheless, it is indeed possible to reveal a por-
tion of labeled target data (if available) during the training process. The latter scenario
can be defined as semi-supervised domain adaptation. [16] uniquely focused on the more
challenging unsupervised domain adaptation setting. However it has been stated that
DANNs can be easily generalized to the semi-supervised case.
To summarize, DANNs promote the emergence of features that are both discriminative
for the main predictive learning task and indiscriminate with respect to the shift between
the domains.

2.9.2. Technical implementation

The ccpd2 baseline DNN model has been tweaked in order to be considered as a DANN.
Fig. 2.19 shows the three main components of a DANN structure: the feature extractor
(in green), the label predictor (in blue) and the domain classifier (in pink). The first two
are rather straightforward to address since they are already present on almost every pre-
existing DNN model devoted to automatic feature extraction and classification. In the
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Figure 2.19: Domain-adversarial neural network structure

case of ccpd2 model, feature extraction is carried out by a series of 1D convolutional lay-
ers generating bottleneck features (i.e. features f in figure 2.19). The classification block
is instead constituted by the respective final fully-connected layer before the 5-neurons
output one.
The domain classifier (or domain discriminator) module has been added to the original
ccpd2 model architecture. It consisted of two fully-connected layers (256 and 128 units,
respectively) interposed by dropout layers (ratio: 30%) and followed by the single-neuron
dense output layer activated by a sigmoid function. This final layer discriminates if the
extracted features are either related to the source or target domain. Since the domain
classification task only involves two classes (1 or 0 for target or source samples, respec-
tively), the corresponding Ld loss is a binary cross-entropy loss function. On the other
hand, the Ly loss used for the label predictor block consists of the already-implemented
(multi-class) cross-entropy loss.
An attractive feature of DANN model is that its parameters are updated during the train-
ing process by using standard backpropagation. Referring to Fig. 2.19, the produced label
and domain predictor loss derivatives are represented by ∂Ly

∂θy
and ∂Ld

∂θd
, respectively, where

θ indicates the parameter vector. By following the corresponding backpropagation flows
(indicated by the arrows) it now becomes clear the crucial role that the novel gradient
reversal layer (GRL) plays. Such layer is interposed between the feature extractor and
domain classifier blocks. By changing sign to the gradient produced by the domain pre-
dictor and scaling it with a λ domain adaptation parameter, its negative contribution on
the feature extractor helps in generating domain-agnostic features. At the same time,
the information contained in the gradient produced by the label predictor concurs to the
generation of meaningful features for the activity recognition task. On the other hand,
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the gradient transferred from the feature extractor to the domain classifier is not altered
by the GRL. The GRL layer has been implemented by relying on a useful Tensorflow
custom_gradient decorator. This allowed to customize the upstream and downstream
gradients computations.

import t en so r f l ow as t f

@tf . custom_gradient
def grad i ent_rever se (x , lambda_p ) :

# Forward pass
y_forward = t f . i d e n t i t y (x )

# Backward pass
def custom_gradient (dy ) :

return −dy∗lambda_p , None
return y_id , custom_gradient

In addition, two hyper-parameters values schedulers have been implemented. The first
aimed at promoting convergence and low error on the source domain and concerned the
µ learning rate:

µp =
µ0

(1 + α · p)β
(2.1)

where p represents the training progress (changing from 0 to 1), µ0 = 0.01 the initial
learning rate value and α = 10 and β = 0.75 two constants.
The second scheduler related to the λ domain adaptation parameter, linearly changing
from 0 to 1 according to the following equation:

λp =
2

1 + exp(−γ · p)
− 1 (2.2)

where γ = 10. By gradually increasing λp, the domain classifier became more robust to
noisy inputs during the early stages of the training process, ensuring a smooth domain
adaptation. As a side note, the λp has been only used to update the feature extractor
component whereas the domain classification block adopted a unitary λ domain adapta-
tion parameter to train as fast as the label predictor.
Concerning the dataset splitting strategy has been performed by splitting both the source
and target data in train and validation subsets with a 90%-10% ratio. The batch gener-
ation system has been designed so that each data batch used during the training process
was composed of 128 elements. Half of them consisted of labelled source SHS data and
the remaining half to unlabeled target RHS data. Within the unsupervised-learning set-



2| Material and methods 39

ting, the labeled half was routed to the label predictor whereas the whole batch was fed
to the domain discriminator module. All DANN configurations tested at this stage have
been trained for 150 epochs with early stopping enabled (patience: 50 epochs). The best
DANN model state (i.e. lowest validation loss on source validation set) has been saved at
the end of the training process.

Caveats for the current use-case

Due to the label set differences between SHS and RHS, the same actions on the Re-

clined and Stairs walking classes as explained in the DNN validation subsection 2.7.3
have been taken. Thus, the DANN architectures developed in this stage classified 7 sep-
arate activity classes: Lying, Reclined, Upright, Stairs ascent, Stairs descent,
Wheelchair, Walking.
Focusing on class imbalance within source and test domains, a resampling strategy has
been tested when generating data batches. The latter has been implemented via the
already-implemented (for DNN training) Imbalanced-learn RandomOversampler. In alter-
native, the complementarity between SHS and RHS labels distribution allowed to not use
any resampling technique withing a semi-supervised learning scenario.
Referring to dataset splitting, training and validation data subsets have been generated
from both source (SHS) and target (RHS) activity data. The splitting process has been
performed a per-subject basis. As a result, the DANN training involved four different
data subsets:

1. source_train (18 SHS subjects)

2. source_validation (2 SHS subjects)

3. target_train (6 RHS patients)

4. target_validation (6 RHS patients)

Concerning target subsets, the splitting ratio was adjusted to 50%-50% to avoid the risk
of creating a non-representative target_validation data subset. The same does not apply
to SHS data because of the activity protocol involved in the related acquisition procedure.
Throughout the DANN experiments reported in the corresponding Results subsection 3.5,
the learning rate annealing routine described in equation 2.1 has been either preserved
or disabled. The latter option avoided that the DANN model could get stuck in local
minima during its training process (as reported in [16]).
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3.1. Data analysis

3.1.1. Basic data statistics and first insights

Most of the HAR models adopted in this project relied on large quantities of data. Thus,
it resulted challenging to perform an in-depth analysis on the whole labeled dataset. Nev-
ertheless, it was possible to carry out an high-level analysis concerning general properties
characterizing the use-case setting.
The first examined feature consisted of the label distribution within the hospital activity
dataset. Although elementary, this investigation was crucial to be performed before im-
plementing algorithms that suffered from unbalanced labels during their training phase.
As a consequence, the percentual distribution of each label along with the corresponding
average duration (in hours) has been calculated. Fig. 3.1 only reports the top-8 most oc-
curring labels for visualization purposes. The label distribution is heavily skewed towards
static postures and featured few Walking segments.
As already mentioned in the labelling strategy subsection 2.2.1, contextual information
has been annotated in conjunction with posture or activities. For the purposes of this
project, only the context-sensitive In bed and Patient care labels have been quantified.
The latter may have possibly represented the cause for interferences on ECGMove4 accel-
eration samples. Realistically, such events should not often occur. The obtained results
have been expressed in percentiles (P25%, P50%, P75%):

• In bed : (66.59%, 79.56%, 83.15%)

• Patient care : (3.58%, 5.82%, 8.35%)

The next step was to further investigate on the label imbalance between dynamic and
static activities. The latter kind has been generalized as Inactive labels comprising: In

bed, In (wheel)chair, Supine, Upright, Reclined, Lying left, Lying right, Bend
forward, Prone, Standing/Held upright, Patient care, Capnography session and
Transport in wheelchair. Such Inactive labels accounted for 85.48±5.76% (mean±std
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Figure 3.1: Top-8 most occurring activity labels

over all patients).
An additional cause for possible interferences with sensor readings has been identified
with posture transitions (e.g. switching from Reclined to Upright while In_bed).
As expected, those segments occurred for less than 1% on average during the 24-hour
recording session for each patient.
As a concluding note, it has been observed that only 3 (i.e. P06, P07 and P09) out of
the 12 hospitalized patients consistently used walking aids (i.e. cane, roller, walker or IV
pole) to move around the room.

3.1.2. Acceleration values and BMI correlation

Referring to the experimental protocol subsection 2.1.2, it has been outlined that two
movisens® devices have been placed on patient’s upper and lower chest. Such body loca-
tions are quite distinct and their anatomical shape heavily depended on patient’s gender
and BMI. As a consequence, the 3D acceleration baseline values (acc_x, acc_y, acc_z)
for the same posture might strongly vary between patients due to the above-mentioned
factors. Thus, a correlation analysis between BMI and 3D acceleration median values on
both wearables has been performed. The rationale behind this procedure was that inpa-
tients with higher BMI should systematically present more remarkable differences between
the 3D acceleration values acquired by Upper and Lower ECGMove4 when Upright or
Supine in comparison to patients with lower BMI.
After performing a detailed analysis (including grouping by gender), no clear correlation
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Figure 3.2: Correlation between body mass index and median 3D acceleration values

pattern has been found. However, some byproduct insights have been obtained at the
end of this analysis. In fact, observing Fig. 3.2, it could be noticed that P01 showed
an abnormal negative median acc_x value compared to the positive one for all the other
patients when Standing/Held upright, especially for the Upper location (bottom pane).
Without any information available on the P01 case report form, it has been concluded
that the ECGMove4 devices might have been placed more left-laterally in this case. The
encountered abnormality may have been emphasized by the quite high P01 BMI.

3.2. CPA

It has been verified that the CPA Calibration procedure failed for all RHS patients. A
thorough explanation on the causes for this behaviour has been outlined in the Discussion
chapter 4.
As one would expect, the Posture module optimally performs after a successful Calibra-
tion. However, the only option was to choose an a-priori and static α tilt angle. The
latter should be simultaneously optimal for all patients. Naturally, this task is unfeasible
and only a sub-optimal α value has been found at the end of this investigation.

3.2.1. Testing and optimal configuration

The first experiment consisted in running the CPA algorithm with a default configuration
on the whole RHS dataset. Fig. 3.3 depicts a confusion matrix obtained by evaluating
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Figure 3.3: CPA performance with default parameters

CPA with no parameter adjustments. Since the Upside down posture is not part of the
label set reported in Fig. 2.10, the corresponding confusion matrix row (i.e "true labels")
has been omitted.
As expected, the overall CPA performance resulted modest. The next step was to under-
stand the rationales behind every misclassification category.
The first consideration concerned the Upright-as-Reclined. It has been found that the
reference tilt angle used to define Reclined and its related CPA posture vector was 60°.
This angle constituted an edge-case (i.e. between Reclined and Upright) according
to the corresponding definitions used for this study (see label set description table 2.2).
The Reclined-as-Supine case followed the same line of reasoning. In fact, the CPA Supine
definition was set at 30°which corresponds to a Supine-Reclined edge-case for the adopted
labelling strategy.
Next, the Prone-as-Lying right misclassifications were examined. The Prone posture
rarely occurred within the RHS dataset and usually deviated from its ideal position. In-
deed, it was way more common that patients might have laid in an intermediate position
(i.e. between Lying right/left and Prone) for comfort reasons, especially while sleep-
ing.
Finally, the Lying left-as-Reclined/Upright instance was an already-known issue for the
adopted CPA implementation. This behaviour has been documented and analyzed by a
Philips colleague. The root cause consisted in a remarkable skin deformation around the
Upper sensor location when a subject was Lying left. The devised solution was to update
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α (◦) Posture % accuracy (with updated posture vectors)

Upright Reclined Supine Prone Lie left Lie right

-29 76.3 (63.3) 81.9 (51.1) 49.1 (38.8) 0 (0) 21 (50.1) 65.22 (64.9)
-18 58.1 (44.5) 68.6 (43.6) 89.3 (65.3) 18.9 (0) 18.6 (62.7) 94.6 (96.3)
-15 54 (63.3) 56.4 (51.1) 84.8 (38.8) 28.8 (0) 18.3 (50.1) 65 (64.9)
-10 46.6 (33.9) 45.5 (36.1) 84.2 (83.7) 36.9 (0) 15.9 (53.9) 65 (65.4)
-5 39.7 (26.2) 33.5 (29.5) 82.6 (85.2) 37.6 (0) 15.2 (59) 64.8 (65.6)
0 31.6 (20) 21.6 (23.3) 81.9 (84.3) 38 (0) 15.6 (74) 64.5 (65.6)
5 24.4 (14.9) 15.9 (14.3) 82 (82.5) 18 (0) 18 (66.4) 64.2 (65.3)
10 18.7 (9.7) 10.7 (10.2) 79.3 (82) 38 (0) 19.3 (64.9) 64 (65.1)
15 12.2 (5.2) 1.2 (3.7) 76.6 (88.3) 37.5 (0) 20 (69.8) 93.3 (95)
18 8.8 (4) 0.7 (1.1) 74.3 (87.6) 36.4 (0) 20.7 (65.6) 93.4 (93.4)
29 3.5 (0.5) 2.5 (1.6) 60.9 (69.6) 0.4 (0) 19.5 (50.4) 64.1 (65.3)

Table 3.1: CPA configurations and postures detection accuracy

the reference posture vectors to mitigate this confusing factor.
Without the aid of a Calibration step, the adopted strategy was evaluating CPA per-
formance by selecting a range of α tilt angles in combination with original and updated
posture vectors. Table 3.1 summarises the percentage accuracy obtained for each posture
using the CPA Posture detection module with different configurations. Results obtained
with the updated posture vectors are included within the parentheses whereas the best
scores for each posture are indicated in bold. What follows is an interpretation of the
results obtained with different CPA parameters. By increasing the α orientation tilt an-
gle from the negative reference value (-12.045°) towards positive ones both the Upright

and Reclined were increasingly not recognised. Instead, the Supine condition was fairly
often well-detected but suffered from extreme alpha tilt angles (i.e. ±29◦). The same
applied to Prone although the accuracy scores were way lower in absolute value than the
ones obtained for the Supine posture. Concerning Lie left, the results obtained with
the updated posture vectors outperformed the scores achieved with default ones under
the same α tilt angle. This finding proved the efficacy of the identified updated posture
vectors. However, the trade-off consisted in a worse detection of the remaining postures.
Eventually, the Lie right has been optimally identified for α = ±18◦.
The choice of the suboptimal α tilt angle has been made upon these assumptions. As
illustrated in the label distribution Fig. 3.1, RHS labels were heavily skewed towards
Upright, Reclined and Supine. Thus, αopt = −18◦ has been identified as the angle
providing the best performance for the above-mentioned postures. Following the same
rationale, the default posture vectors have been preferred over the updated ones since
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Lie left consisted of a minority class. To summarise, αopt = −18◦ with original posture
vectors has been picked as the suboptimal CPA configuration for RHS posture detection.

3.3. Deep-learning techniques

3.3.1. Baseline model validation

As explained in the baseline DNN subsections 2.7.2 and 2.7.3, some adjustments concern-
ing model architecture and labelling needed to be implemented prior to its validation on
RHS data. Fig. 3.4a and 3.4b depict two confusion matrices obtained by validating the
ccpd2 model on the SHS test set and the whole hospital study dataset respectively.
Commenting the former case, the introduction of a novel Reclined class in the SHS
dataset increased the Reclined-as-Lying misclassifications. The absence of confusion be-
tween Reclined and Upright was because Reclined has been defined as a bed tilt
angle between 30°and 45°within SHS. Indeed, this condition could be easily confused as
Supine. In addition, a remarkable drop in Wheelchair recognition has be appreciated.
This can be partially explained by referring to the DNN instability mentioned in baseline
DNN subsection 2.7.2. This behaviour might also apply for the ccpd2 model. However,
since this activity class represented the least-occurring within RHS, no further investiga-
tion has been performed to understand the rationale behind this behaviour.
Concerning Fig. 3.4b, the most-occurring static postures (i.e. Lying, Reclined and
Upright) were fairly well recognized. On the other hand, both the Walking and (self-
propelled) Wheelchair labels are almost always erroneously identified as Upright.
As a concluding note, since both the Stair ascent and Stair descent were not part
of the RHS label set (see label set Fig. 2.10), the corresponding rows of Fig. 3.4b have
been removed to improve its visualization.

3.3.2. Baseline model retraining on hospital data

Fig 3.5 shows the baseline ccpd2 performance when trained and validated on RHS data.
At first sight, the Reclined posture was quite often incorrectly classified as Lying. This
might have been linked to two possible root causes: the overall majority of Lying segment
over Reclined ones and subtle bed tilt angles.
Concerning Upright-as-Wheelchair and vice versa, it can be supposed that the Wheelchair

samples featured by hospital study test patients were not representative enough. Thus,
the baseline DNN failed in extracting meaningful patterns and features to differentiate
the two conditions.
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(a) Baseline deep neural network validated on simulated hospital study

(b) Baseline deep neural network validated on real hospital setting

Figure 3.4: Baseline deep neural network validation performance comparison between
simulated and real hospital study
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Figure 3.5: Baseline deep neural network retrained on hospital activity data

The Walking detection was just about acceptable. Comparing this result to what ob-
tained by validating the SHS pre-trained DNN on RHS (see Fig. 3.4b), a remarkable
improvement in Walking detection can be appreciated. This might indicate that SHS
and RHS Walking patterns could be quite different.
In general, the under-exam hospital setting dataset was way more complex and hetero-
geneous than the simulated one. To prove this statement, it is possible to observe the
accuracy and loss scores for both training and validation RHS subsets. Focusing on the
blue curves in Fig. 3.6, it can be noticed that the improvement in those scores was quite
limited and slow across epochs.
In order to make a more robust assessment of the baseline ccpd2 performance on such a
diverse dataset, a cross-validation was deemed appropriate. In particular, a Leave-One-
Subject-Out (L1SO) strategy was implemented by creating 12 unique dataset folds each
containing a different hospitalized patient in its test set. The train and validation set
inpatients (i.e. 9 and 2, respectively) were randomly selected. Table 3.2 reports the main
performance metrics (precision, recall, F1-score) obtained for each L1SO fold. The best
scores for each metric across folds are highlighted in bold. As expected, all the reported
metrics dramatically depended on the holdout patient for a specific fold. The same values
have been represented in Fig. 3.7 by using boxplots to emphasize their heterogeneity
between patients within the same performance metric.



3| Results 49

Figure 3.6: Accuracy and loss history when retraining baseline deep neural network on
hospital activity data

Figure 3.7: Performance metrics cross-validated scores distribution
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Fold # Precision Recall F1-score Train IDs Validation IDs Test ID

1 0.4576 0.2865 0.331
P02, P03, P04, P05, P06,

P08, P09, P10, P11
P07, P12 P01

2 0.8231 0.5684 0.6612
P01, P04, P05, P06, P07,

P08, P09, P11, P12
P03, P10 P02

3 0.5942 0.4699 0.523
P04, P05, P06, P07, P08,

P09, P10, P11, P12
P01, P02 P03

4 0.6532 0.5645 0.605
P01, P02, P03, P05, P06,

P07, P08, P11, P12
P09, P10 P04

5 0.4198 0.226 0.2724
P01, P03, P06, P07, P08,

P09, P10, P11, P12
P02, P04 P05

6 0.7101 0.6498 0.6745
P01, P02, P03, P04, P07,

P08, P09, P11, P12
P05, P10 P06

7 0.6484 0.5564 0.5944
P01, P03, P04, P05, P06,

P08, P09, P11, P12
P02, P10 P07

8 0.5272 0.273 0.3508
P01, P02, P04, P05, P07,

P09, P10, P11, P12
P03, P06 P08

9 0.5724 0.5053 0.5201
P01, P02, P03, P05, P07,

P08, P10, P10, P12
P04, P06 P09

10 0.7125 0.6612 0.6812
P01, P02, P03, P04, P05,

P07, P09, P11, P12
P06, P08 P10

11 0.7897 0.6454 0.6964
P02, P03, P04, P05, P06,

P07, P08, P09, P12
P01, P10 P11

12 0.5807 0.2959 0.367
P01, P02, P03, P04, P05,

P06, P07, P10, P11
P08, P09 P12

Table 3.2: Retrained baseline deep neural network cross-validated performance
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Figure 3.8: Stacking ensemble default configuration performance

3.3.3. Hybrid ensemble method

Fig. 3.8 shows the confusion matrix obtained for the initial described in the corresponding
implementation subsection 2.7.5. The percentage values contained within parentheses in
its diagonal refer to the scores variation with respect to the one obtained by using the
ccpd2 DNN model only under the same settings.
A preliminary consideration can be made on the Walking and Wheelchair classes.
The randomly selected test patients did not feature many samples associated to those
activities. Even though both Lying and Upright have been better classified compared
to the baseline ccpd2 model, the Reclined detection degraded quite consistently. The
cause for this behaviour might consists of the already-mentioned discrepancy in the def-
inition of this label between the two studies. On top of that, the wide range of RHS
Reclined variations may contribute to this occurrence.
Next, a detailed examination of the contributions of Base-Models output probabilities to
the final Level-1 model activity class output has been performed. Practically, a heatmap
of the optimal Meta-Model regression coefficient has been represented. Fig. 3.9 shows the
weight of each input class probability (x-axis) to determine the Stacking ensemble model
output (y-axis). The orange and blue borders indicates CPA deltas and DNN probability
outputs, respectively.
The first consideration concerns the negative coefficient values obtained for the CPA
deltas. Since the latter based its output on a "minimal distance" criterion, a negative
coefficient implied a consistent contribution to the Stacking ensemble output.
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Figure 3.9: Meta-Model coefficient heatmap

Starting from the top row associated to Lying, it can be noticed that both CPA Lie

Left and Lie Right deltas gave a substantial contribution to its classification. This
was expected since such postures consists in a variation of Lying. In turn, they were
more challenging to be recognized. The Logistic regression model was able to grasp this
complexity relationship by giving utmost importance to the above-mentioned CPA out-
puts. Without surprise, the Upright_CPA regression coefficient took high positive value,
meaning that the above-mentioned information acted as a negative feedback on the Lying
classification. The same behaviour was reinforced by the negative Upright DNN prob-
ability output coefficient.
Next, Reclined class has been examined. Due to the already-discussed variations of this
posture, Supine CPA delta coefficient was quite high. On the other hand, the Upright

CPA delta provided a smaller contribution to its recognition. This has been confirmed
by the limited amount of Reclined-as-Upright misclassifications in the confusion matrix
in Fig. 3.8).
What follows is a possible explanation for the CPA Upside down coefficients involved in
the Lying and Reclined classifications. Upside_down might have acted as negative
contribution to Lying-like postures (especially if supine) since they are opposite condi-
tions. The same cannot be stated for the Upside_down contribution on Reclined. In
contrast, it seems like that a patient with a Reclined posture might have been closer
to an Upside_down one. The root cause for this could be associated to peculiar sensor
placement and Reclined posture variations (e.g. slightly lying on side).
The further step was to design a second Stacking ensemble configuration. Assuming that
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Figure 3.10: Modified Meta-Model coefficient heatmap

static postures taken by hospitalized patients may have been long-lasting, it might have
been beneficial to introduce information contained in CPA deltas from the previous pre-
diction. Moreover, the CPA algorithm involved a walking detection algorithm used during
its Calibration procedure (described in subsection 2.6.1) outputting a probability score
associated with such activity. Thus, the Walking_CPA score has been added as additional
input probability feature for the Level-1 model.
The results obtained with these adjustment were practically equivalent to the previous
ones. Also in this case, a further Logistic regression coefficient heatmap has been de-
picted in Fig. 3.10. The CPA deltas obtained at the current and previous prediction are
delimited with an orange and green box, respectively. The DNN probability outputs are
contained within a blue rectangle.
The coefficients associated to previous CPA deltas were either null or equivalent to the
ones for the current timestamp. This explained why the results obtained with this con-
figuration were equivalent to the previous Stacking ensemble setting. Concerning the
Walking_CPA feature, it appeared that the inclusion of such information was worthless.

3.4. Deep transfer learning

3.4.1. Canonical deep neural network transfer learning

Fig. 3.11a and 3.11b represent the confusion matrices associated to the performance ob-
tained for two representative transfer learning configurations: unfreezing all SHS ccpd2
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Unfrozen convolutional layers Fully-connected block Precision Recall F1-score

-

GAP 0.68 0.61 0.62
1x FC 0.65 0.64 0.64
2x FC 0.63 0.63 0.63
3x FC 0.63 0.63 0.63

Last one GAP 0.64 0.60 0.61
0x FC 0.64 0.60 0.61

Last two GAP 0.65 0.61 0.61
0x FC 0.65 0.61 0.62

Last three GAP 0.65 0.62 0.62
0x FC 0.65 0.63 0.63

All

GAP 0.65 0.61 0.62
0x FC 0.66 0.61 0.62
1x FC 0.67 0.66 0.66
2x FC 0.63 0.63 0.63
3x FC 0.63 0.63 0.63

Table 3.3: Summary of transfer learning settings performance

backbone layers and only the last convolutional layer before the final fully-connected one,
respectively. The accuracy and loss curves for both training and validation set (blue and
orange lines, respectively) obtained for the setting represented in Fig. 3.11b are shown
in Fig. 3.12. Both metrics very slightly improved after the fine-tuning starting epoch for
both the training and validation sets. As a side comment, the sharp peaks in both curves
just after the beginning of the fine-tuning process (green vertical line) are caused by the
initialization of the Adam optimizer parameters learned up to that epoch.
Table 3.3 reports the Precision, Recall and F1-score obtained for several transfer learning
configurations. The first column indicates how many convolutional layers have been un-
frozen during the fine-tuning procedure. The strategy was to gradually unfreeze backbone
layers from DNN top (just before the fully-connected classification layers) to bottom (to-
wards the input layer). As mentioned in step 3 of the transfer-learning procedure outlined
in subsection 2.8.2, different fully-connected blocks configurations have been tested. The
best scores for each metric have been highlighted in bold.
The codename "Nx FC" indicates how many N hidden fully-connected layers have been
added. At most 3 dense layers with 512, 256 and 128 neurons interposed by dropout
layers (ratio: 30%) have been sequentially included to the original DNN architecture. In
this case, the bottleneck features have been flattened before being fed to the final fully-
connected block. In alternative, a single 1D Global Average Pooling (GAP) layer [28] has
been implemented in place of the fully-connected layers. The main advantage of GAP
layer is that it generated one feature map for each corresponding activity output class.
This was performed by averaging each feature map and feeding them to softmax layer.



3| Results 55

(a) Performance obtained by unfreezing all backbone layers

(b) Performance obtained by unfreezing last convolutional layer

Figure 3.11: Performance comparison between two transfer learning settings
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Figure 3.12: Accuracy and loss curves obtained when fine-tuning last convolutional layer

The obtained scores for each metric are quite similar independently from the transfer
learning setting. The overall best performance has been achieved by unfreezing all back-
bone convolutional layers and adding a hidden 128-neurons dense layer.

3.4.2. Kernel transfer analysis

Same domain

The following results have been obtained by analyzing case 1 outlined in the kernel transfer
analysis section 2.8.3. Namely, this consisted in transferring different features representa-
tions between different inpatients within RHS. According to the splitting ratios indicated
in the implementation subsection 2.8.3, 11 hospitalized patients have been randomly as-
signed to the training subset whereas a single one to the target dataset. The latter has
been further equally split (50% ratio) into adaptation and test subsets. Concerning the
testing phase, a L1SO cross-validation strategy has been adopted. Fig. 3.13 shows the
F1-score scores distributions obtained for each kernel transfer configuration. The first
boxplot on the left (indicated as RnR(0%)) corresponds to the performance obtained by
validating the source model without adaptation. In general, F1-scores were fairly high for
all the represented kernel transfer and adaptation subset configurations.
The above analysis has been coupled with a Wilcoxon signed-rank test on the obtained
F1-score populations. This has been performed to gain useful insights on the effect of
sequentially transferring kernels. Fig. 3.14 shows the boxplots obtained by transferring
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Figure 3.13: F1-score distributions for "same domain" kernel transfer analysis

up to four convolutional kernels and revealing 25% of the adaptation subset. The two
asterisks (**) placed on top of the line connecting R1R(25%) and R4R(25%) indicate
that the p-value associated to the Wilcoxon test is lower than 0.01. As a consequence,
the two F1-score populations are significantly different. Although not represented in Fig.
3.14, R1R(25%) F1-score population difference from either R2R(25%) or R3R(25%) is
not statistically significant.

Different domains

This scenario added an additional layer of complexity with respect to the previous one:
the shift between different SHS source and RHS target domains. The first one has been
split in training (18 subjects) and validation (2 subjects) subsets whereas the latter in
adaptation (10 patients) and testing subsets (2 patients). Similarly to the previous setting,
the F1-scores obtained by performing a 10-fold cross-validation across the different kernel
transfer configurations are shown in Fig. 3.15. Differently from before, the F1-scores are
now far more lower and spread out. Thus, it is now more challenging to carry out and
interpret the same statistical analysis as above.

3.5. Domain-adversarial neural networks

For needs of comparison, it was necessary to introduce the performance obtained by train-
ing the DANN architecture described in subsection 2.9.2 uniquely on source or target data
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Figure 3.14: F1-score distributions using 25% of the adaptation subset

Figure 3.15: F1-score distributions for "different domain" kernel transfer analysis
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without adaptation (i.e. λd = 0). The baseline results are represented in Fig. 3.16a and
3.16b, respectively. The Walking detection accuracy is quite high in Fig. 3.16b due
to the Oversampling strategy. However this improvement is at the expense of detection
accuracy on the other static postures.
The first set of tests were conducted in a unsupervised learning setting. This implied that
the label predictor module (see DANN structure Fig. 2.19) has been trained on SHS source
activity data only. Within this context, an alternative strategy to the Oversampling has
been followed to mitigate its side-effects reported above.
To compensate the label distribution within training batches, a portion of target RHS
activity data has been fed to the label predictor block. This configured a semi-supervised
learning setting. Throughout this stage, labeled activity data from a specific RHS patient
were (partially) revealed during the training procedure. The best result has been obtained
by partially including (i.e. 50%) P03 activity data within the training set.
However, "cherry-picking" a specific RHS patient might introduce several biases within
the whole procedure. In addition, the a-priori knowledge on target data labels distribution
might often be limited. Thus, it has been investigated if results comparable to the ones
obtained in the previous setting could be produced by including small portions of labeled
activity data from multiple random RHS patients to the DANN training set. The optimal
configuration has been achieved by revealing 10% of labeled activity patterns for each of
the 5 randomly-picked RHS patients: P03, P04, P08, P10 and P11. The performance
obtained on target validation subset with this DANN setting has been represented in Fig.
3.17. In addition, the accuracy and loss trends for both label predictor and domain dis-
criminator modules have been depicted in Fig. 3.18a and 3.18b, respectively. It can be
appreciated that the improvement of both classification loss and accuracy scores for all
the involved data subsets (see legend in Fig. 3.18a) was slow but constant. It has to be
reminded that the on the aims of DANN is to increase the domain discriminator module
loss as much as possible. This can be verified in Fig. 3.18b.
The effectiveness of the chosen optimal DANN configuration can be verified under a differ-
ent point of view. As performed in [16], it might be possible to visually quantify the suc-
cess of the DANN "feature alignment" task. This can be carried out using "t-Distributed
Stochastic Neighbor Embedding" (t-SNE) [44]. In particular, the label predictor last hid-
den layer output obtained by either feeding source or target samples to the DANN have
been embedded into a 2D t-SNE representation. Fig. 3.19a and 3.19b, show a side-to-
side comparison of the above-mentioned 2D t-SNE embeddings obtained before and after
DANN training. Each activity class has been coded as a digit: [0: Lying, 1: Reclined,
2: Stair ascent, 3: Stair descent, 4: Upright, 5: Walking, 6: Wheelchair ]. Red and blue
numbers refer to source (SHS) and target (RHS) samples, respectively. The represented
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(a) Baseline "source-only" domain-adversarial neural network performance

(b) Baseline "target-only" domain-adversarial neural network performance

Figure 3.16: Performance comparison between two baseline domain-adversarial neural
networks
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Figure 3.17: Optimal domain-adversarial neural network performance

clusters appeared a bit more compact and intermixed between source and target samples
(especially [0: Lying ]) after the domain adaptation process (see Fig. 3.19b). However,
some of those clusters were still isolated (e.g. SHS [0: Walking ]. On the other hand,
moderate-to-low Walking speeds should result quite intermixed at the end of the domain
adaptation process. Fig. 3.20 shows a zoomed-in representation of what represented in
Fig 3.19b. The dark-orange rectangle is mainly filled with both red and blue [5: Walking]
dots. This indicates that the DANN was able to align the slow-paced Walking feature
representation for both RHS and SHS.
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(a) Optimal domain-adversarial neural network label predictor metrics history

(b) Optimal domain-adversarial neural network domain classifier metrics history

Figure 3.18: Optimal domain-adversarial neural network domain classifier and label pre-
dictor metrics history
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(a) Baseline "source-only" domain-adversarial neural network feature alignment

(b) Optimal domain-adversarial neural network feature alignment

Figure 3.19: Feature alignment before and after domain adaptation
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Figure 3.20: Alternative visualization of Fig. 3.19b
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Data labelling

Although each of the 28 labels had a precise definition (see label set description table 2.2),
the annotation procedure resulted challenging due to multiple contaminating factors.

The first consideration concerns static postures (i.e. Upright, Reclined, Supine)).
Eventual bed or (wheel)chair tilt angle has been estimated by inspecting it from camera
point of view without any additional support. The worst-case scenario, in terms of anno-
tation effort, consisted in the camera being placed frontally and quite far away from the
patient (as depicted in the sample Barista snapshot in Fig. 2.5). In addition, some edge-
cases constituted an additional layer complexity (i.e. 30°→ Supine/Reclined, 60°→
Reclined/Upright). Plus, pillows may have occasionally been placed under patient’s
back or head for additional comfort. Those objects could interfere with ECGMove4 3D
acceleration readings, making the patient result more tilted than how the bed (or chair)
actually was. Furthermore, nighttime recordings often showed patients covering with
blankets while sleeping. Those segments have been either labeled according to the visible
previous posture or discarded in case this clue was unavailable.
Indeed, all the above-mentioned factors could have been mitigated by means of an ade-
quate tool to support the labelling process. The adopted camera was able to acquire point
cloud data. Such information could have been used to perform bed tilt angle detection as
performed in [29]. Actually, a R&D Philips team with which we had strict cooperation
had access to those data. However, their project solely consisted in the detection of bed
position for patient monitoring.

Moving to Walking activity, the most cumbersome information to annotate related to
Step occurrence. The HAR models adopted in this study aimed at recognizing a general
Walking activity. Thus, a compromise between precision in Step annotations and time
spent on the overall labelling procedure has been made. Anyway, the annotation platform
(see annotation setup subsection 2.2.2) did not allow to label timestamp events. Conse-
quently, timestamp events (indicated in the compact label set table 2.10) underwent an
additional pre-processing step. Moreover, in case the patient used a walking aid while
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Walking, both its type and the starting timestamp for that activity were reported in a
separate .csv spreadsheet.
In general, Walking activities are one of the most important indicators for patients’ dis-
charge readiness and readmission rate [13]. Being able to preemptively predict these two
information by analyzing patient’s Walking while in hospital represents an important
objective. However, the RHS features Walking patterns that might not be suited for
this aim. In fact, those are usually short-lasting and slow-paced since patients are mostly
moving around the room. Indeed, the sustained Walking could have occurred outside
hospital room, but this has not been annotated because outside of camera field of view.
In addition, as mentioned in [15], the DNN used in that work struggled in recognizing
Walking when using walking aids. This constitutes a current and major challenge in the
HAR field [10]. However, only 3 out of 12 patients consistently used walking aids. This
aspect contributed to not perform an in-depth analysis on such activity on RHS. In con-
clusion, the RHS Walking activity class has not been considered as high-priority when
evaluating HAR models. At the same time, the optimal DANN configuration provides a
modest recognition performance for such activity.
The additional remark concerned the Patient care label indicating physical interaction
between the nurse (or clinician) and patient. The guideline was to keep the segments in
which Patient care followed a standard clinical routine (e.g. bandages removal, aus-
cultation, blood pressure measurement). On the other hand, such samples have been
discarded in case of ECGMove4 devices removal (e.g. before the patient took a shower or
underwent diagnostic exams).

As a general conclusion, the uncertainty due to the contaminating factors during the
annotation process might have played a consistent role in the performance of HAR models
developed throughout this work.

Data pre-processing

One of the inconsistencies between SHS and RHS accelerometers consisted in their sam-
pling frequency (i.e. 100 Hz and 64 Hz, respectively). We found that both upsampling
(to 100 Hz) and downsampling (up to 16 Hz) input acceleration had little to none effects
in terms of classification accuracy. Thus, for the reasons outlined in the baseline DNN
subsection 2.7.2, RHS acceleration data have been downsampled to 16 Hz. This decision
was supported by the findings of a previous study investigating the optimal acceleration
frequencies for different human activity recognition tasks [23]. Furthermore, the majority
of RHS activity was composed of static postures which, typically, do not feature complex
acceleration patterns.
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Following the example of [15], the segment length was chosen to make sure that only rel-
evant information was captured in each 6-seconds data window, including slow Walking

and Wheelchair transport.

Data analysis

As already mentioned shown in the label distribution analysis in Fig. 3.1, the RHS
activities were mostly composed of static postures. This is in agreement with the expected
behaviour of general ward patients and has been supported by the In_bed contextual label
analysis. The latter showed that RHS patients spent ≈80% of the recording session lying
in bed.
On the other hand, SHS mainly featured Walking activities at sustained and different
paces (i.e. by setting a treadmill). Thus, this setting was remarkably different from the
under-exam RHS, implying a consistent domain shift between the two scenarios.

The scarcity of posture transitions obtained after the corresponding analysis showed that
the implemented window length was long-lasting enough to avoid "transition-only" seg-
ments.

The correlation analysis between 3D acceleration and BMI brought some preliminary spec-
ulations confirmed in successive experiments. A remarkable heterogeneity of acceleration
baseline values between patients taking the same posture (e.g. Standing/Held upright

in Fig. 3.2) has been found. This has been identified as a major culprit for the impair-
ment of human activity recognition models based on learning. Although nurses have been
trained to correctly attach wearables as close as possible to the intended chest locations,
some factors (e.g. bandages, wounds, laparoscopic holes and already-in-place telemetry
devices) interfered with this procedure. In addition, BMI additionally contributed to the
divergence of 3D acceleration readings from expected values.

To summarize, even limited incorrect sensor placements or orientations could have im-
paired the activity detection accuracy of models used in this work.

CPA

The determinism that characterized CPA has been leveraged to double-check the correct-
ness of annotations. The whole annotation procedure resulted time-consuming and, in
turn, prone to errors. It is of key importance to point out that annotations have not been
reworked on the basis of the results obtained with CPA. Instead this algorithm served
as a tool to fix major annotation mistakes (e.g. Lying right instead of Lying left).
This process has been beneficial to spot subtle scenarios that were not grasped during
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video playback when making annotations. For instance, some patients removed one or
more movisens® devices by themselves. In such cases, the corresponding annotated ac-
celeration segments have been labeled as Other. A similar example consisted in patients
undergoing therapies involving devices that interfered with ECGMove4 readings.

The outcome of the CPA Calibration module was not successful. In fact, the entire
procedure is built around the assumption of having sufficient and uninterrupted Walking
samples. Both aspects are in contrast with what outlined in the previous Data Analysis
discussion. On top of that, some elderly patients consistently used walking aids (e.g.
rollator) that made them hunch over while moving around the room. The latter statement
contradicts the CPA Calibration assumption of being Upright while Walking. Eventually,
if the Upper ECGMove4 sensor had been relocated after a successful Calibration routine,
the latter needed to be performed again. This behaviour has been encountered within
RHS (see next paragraph). However, the implemented Calibration module is a one-time
process not envisaging a sensor repositioning by design.
This issue is closely linked to the consistent heterogeneity in sensors orientations across
RHS patients, as previously discussed. This concern could be tackled by adopting a
calibration procedure that bases on making the subject repeat a specific posture [22].
However this routine should be a-priori defined, contrasting with the free-living RHS
setting. Instead, a potential reworking of the CPA Calibration module according to what
outlined in the recommendations (see next paragraph) could be envisaged. Hereafter
some good practices for using the CPA algorithm in a similar future scenario have been
outlined.

Clearly, the Calibration process should be used whenever possible. In case of a dataset
with scarcity of Walking segments, a different trigger event should be devised to start
the Calibration. For instance, it can be assumed that a subject should take an Upright
posture a few seconds after a Sit-to-Stand transition. The additional benefit of using
the proposed Calibration trigger is that the orientation matrix (Rorient) can be updated
whenever a Sit-to-Stand transition occurs. In this way, the Calibration process would no
more be a one-time process but rather become robust to sensor repositioning. However, all
the speculations made so far should be supported and verified by an adequate feasibility
study.
Following the strategy used to validate CPA in the testing subsection 3.2.1, it is advisable
to select a range of candidates α orientation tilt angles in case the Calibration procedure is
unavailable. According to the aim of the study and label set distribution, the (sub)optimal
α and parameters can then be selected.
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Deep neural network

DNNs composed of 1D convolutional layers have been developed to usually compare to
a baseline feature-based machine learning model [27], [20]. However, shallow ANNs are
still capable to obtain fairly good results it the dataset is limited or does not feature
complex activity patterns [41]. Indeed, RHS entails a vast dataset suitable to be fed to
deep-learning models. At the same time, the featured activities are not complex. In fact,
even the rule-based CPA model deprived of the Calibration routine was able to achieve
an acceptable performance.

The ccpd2 DNN trained on SHS and validated on RHS provided modest performance on
the target activity classes. The misclassifications concerning static postures have been
produced by multiple causes: ambiguous annotations, wide range of variations and dif-
ferences in sensor placement. Such factors were not present in the SHS. Thus, the valida-
tion procedure actually consisted in a robustness assessment of the previously-developed
model. At the same time, the dynamic activities on which SHS DNN has been promi-
nently trained for did not occur so frequently within RHS. Considering Walking, it is
important to note that SHS Walking speeds ranged from 0.4 km/h to 4.0 km/h by
pre-setting a treadmill. Indeed, the above-selected walking paces range includes a vast
group of ages and conditions among subjects [3]. However, the average Walking RHS
speed within the hospital study (although not annotated) might even be slower than the
lowest one featured in the SHS study (due to the previously-mentioned reasons).
Examining the Wheelchair-as-Upright case, almost the same observations made in the
Walking case hold in this context. In fact, it can be expected that general ward patients
might use the wheelchair to merely move around, implying a very slow and discontinuous
wheelchair propelling.

The next consideration concern the ccpd2 retraining on RHS. In this case the main issue
consisted in the label distributions heterogeneity between train, validation and pre-defined
test patients. We noticed that the baseline DNN failed in extracting general features
associated to patient activities and postures. This has been confirmed by the L1SO cross-
validation results (see table 3.2). The poor F1-score obtained for specific emphasized how
the RHS was diverse. Other than the motivations outlined above, patients mannerism for
static posture and dynamic activities added up to the overall RHS heterogeneity.

Hybrid ensemble method

Conventional machine learning ensemble methods have been successfully and widely used
in several HAR studies [12], [40]. However the proposed hybrid Stacking ensemble method
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introduces the novelty of relying on the outputs of DNN and rule-based model (CPA).
The results obtained with this method are promising and could be validated on similar
future works.

Referring to the current use-case, the CPA algorithm brought meaningful information
for classifying Lying-like postures and overall performance stability. In fact, due to
the intrinsic black-box nature of the DNN model it was uncertain if it was able to give
enough importance to 3D acceleration axes orientation. The CPA algorithm represented
a strongly deterministic approach uniquely relying on that information and able to dis-
ambiguate some uncertain predictions.

In general, by inspecting the regression coefficient (in Fig. 3.9) we found that the Stacking
ensemble model preferred the information content contained in the CPA deltas rather than
DNN probability outputs. Since 3 out of 5 RHS activity classes consists in static postures,
it could be expected that the CPA determinism proved highly reliable. As a future work,
it might be interesting to explicitly force the Stacking ensemble model to use the CPA
deltas information content in case of uncertainty when classifying specific postures (e.g.
Reclined).

The last set of experiments based on including "past" information was not remarkably
beneficial for the RHS. Moreover, by also adding the previous probability outputs obtained
from the DNN prediction in place of the CPA deltas no performance improvements have
been encountered. However, it has been found that replicating the same sets of experi-
ments on the dataset acquired from the SHS, the Meta-Model trained on DNN probabil-
ity outputs and CPA deltas outperformed the DNN-only model performance. Plus, by
additionally introducing the previous DNN probability outputs to the above-mentioned
setting, further overall improvement in the detection of the SHS DNN activity classes
has been achieved (especially for Stair ascent , Stair descent and Walking). This might
suggested that the rationale of introducing additional past information might be useful to
enhance the classification of activities that involve repetitive accelerations patterns. This
speculation should verified in future works adopting this technique in a human activity
recognition task.

Eventually, this last set of experiments served as a catalyst for some initial testing and
future works on hidden markov models (HMM) and Viterbi algorithm (not reported in
this document).
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Deep transfer learning

Extensive research has been carried out on transferring previously-learned knowledge on
a target domain in the context of HAR. The transfer learning settings presented in this
work are considered standard implementations of such approach.

Using such techniques usually implies a degradation of the detection accuracy on activ-
ities classes related to the target domain. However, such impairment is often limited
making transfer learning suitable to be adopted in several scenarios. Nevertheless, the
results obtained using this approach to transfer activity feature representation from SHS
to RHS were unsatisfactory. By observing Fig. 3.11a and 3.11b, it is quite clear that the
represented transfer learning settings failed in adapting the features extracted from SHS
to the hospital activity data. The enhancement obtained after fine-tuning was almost
irrelevant.

A possible explanation for this behaviour, might be attributed to consistent domain shift
between SHS and RHS. To be fair, many of the activity classes are shared between the
two. However, some of them (e.g. Walking and Wheelchair) are inherently different
for the reasons outlined above. In addition, the large heterogeneity of static postures
activity samples within RHS and compared to SHS might have severely impaired the
learning and fine-tuning processes.

Kernel transfer analysis

The results obtained at the end of the kernel transfer analysis procedure have been com-
pared to what reported in [31].

We found that by revealing a small percentage (as low as 25%) of labeled activity data
performed by the left-out patient (i.e. "same domain" scenario in subsection 3.4.2) the
F1-score obtained for the respective test subset sharply increased. Indeed, recalling that
most of the RHS activities consisted of static postures, it should not be challenging for
the DNN to classify them after receiving some "clues" on activity data carried out by test
patient itself.

By carrying out the latter analysis on all boxplots obtained in Fig. 3.13, two general
behaviours have been identified.
The first relates to an overall decrease in F1-score values when transferring more kernels,
independently from the used percentage of adaptation subset. This might be related to
more user-related features captured by deeper kernels. At the same time, it is important
to note that the last convolutional layer alone contains over 50% of the overall ccpd2
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parameters. As a consequence, the general performance decrease might also be due to a
reduced optimization space. Except for the last consideration, this finding is in line with
what outlined in [31].
The second trend directly relates to the analysis of the p-values obtained in conjunction
with the Wilcoxon test. In fact, it has been noticed that the F1-score populations ob-
tained by transferring one or two kernel are not significantly different, independently from
the revealed percentage of adaptation subset. This meant that features extracted up to
the second convolutional layers were user-independent. Also this results matched with
what reported in the reference study
A final consideration can be made on the RHS "same domain" kernel transfer analysis.
By observing the high F1-score values obtained by accustoming the DNN to a small per-
centage of activities samples of the test set (see Fig. 3.13), the annotation and acquisition
process entailed in a similar future use-case can be drastically unburdened by adopting
this strategy. On a practical side, the already trained DNN model might only adapt to
few hours of activity data carried out by the test patient to provide fairly good results.

The "different domain" kernel transfer analysis scenario was quite more complex to in-
terpret. Indeed, transferring knowledge learned from a protocol laboratory activity data
environment (SHS) to a free-living one (RHS) represents a challenging task. However,
although not as linear as in the previous scenario, also in this case the F1-score values gen-
erally decreased by transferring more kernels trained on SHS. On top of that, by increasing
the used percentage of the adaptation subset, the boxplots distributions spreading fairly
decreased. Also this result is in line with what expected since the DNN has the chance
more information on the target RHS setting.

Differently from the statistical analysis performed in the previous case, now was way
more difficult to assess if two F1-score populations (see boxplots in Fig. 3.15) were
significantly different due to the their wide-spread distributions. As a general finding, the
F1-score populations associated to transferring 3 or 4 convolutional layers were almost
always significantly different under a statistical point of view. In this case, however, due
to the uncertainty linked to the statistical analysis, it was trickier to determine which
kernels contain feature representations associated to a specific domain and which are
user-independent. Thus, no direct comparison could be performed with the corresponding
scenario described in [31].

Domain-adversarial neural networks

One of the main issues encountered during the validation of DNN models on the hos-
pital study setting was the consistent data heterogeneity due to sensor placements (i.e.
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orientations) and diverse patient-specific activity patterns. Hence, it was indeed valu-
able to obtain activity feature representations agnostic to the above-mentioned factors.
Techniques based on adversarial learning might constitute a valid solution to address this
issue. Indeed, latest advancements of this approach entail quite sophisticate DNN archi-
tectures [39]. However, few studies directly implemented DANNs in the context of HAR.
This project aims at investigating this knowledge gap by validating DANNs on RHS.

The first insight obtained after the domain adaptation procedure from source SHS to
target RHS concerned the label discrepancies between the two settings. In fact, we found
that the domain discriminator module fairly easily identified the membership of the Stairs
Walking activity to the SHS. This has been verified by observing that the DANN almost
never predicted those classes when validated on RHS. This concept generally refers to
open set recognition. The DANN implemented in this work was not purposely designed
for this task, but it can be accustomed to it in future related works.
Similarly, the "target-only" DANN (see Fig. 3.16b) domain classifier had no difficulties
in discriminating which extracted features belonged to the source or target domain (i.e.
Walking and static postures, respectively). This has been confirmed by noticing a
very low domain classifier binary cross-entropy loss occurring during the initial training
epochs.

The first set of DANN testings were conducted in a fully unsupervised learning setting
and implementing an Oversampler to generate balanced batches.
However, such learning setting implies that no a-priori knowledge on target labels is avail-
able. Thus, according to this reason and the modest results obtained for the unsupervised,
it has been decided to include RHS labelled samples to the training batches. In this way,
the differences in SHS labels distribution were compensated by RHS ones.

The best result for the "single-patient" semi-supervised setting were obtained by revealing
50% of P03 labelled activity data. In fact, by analyzing P03 labels distribution it has been
verified that it almost perfectly matched with the overall RHS HAR labels distribution
(see Fig- 3.1). In other words, P03 consisted in the "most-representative" patient for
the target hospital dataset. The performance obtained for this DANN semi-supervised
learning setting outperformed the results obtained for the fully unsupervised one.

The successful results obtained for the optimal "multi-subject" DANN configuration sug-
gested that such model could be able to rapidly adapt to future activity recognition
tasks by annotating activity patterns in a spot-check fashion (e.g. by a trained nurse)
and revealing them during the DANN training process. Such remark was corroborated
with what found at the end of the "same-domain" kernel transfer analysis (see end of
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subsection 3.4.2).

Concerning feature alignment, it was expected that some fast-paced (≥ 4 km/h) SHS
Walking activities were too much different from RHS Walking patterns. DANN did not
manage to align the related features that appeared as an isolated [5: Walking] (in red)
cloud (see bottom-left of Fig. 3.19b).

Research question and optimal model

Upon the considerations made so far, a comprehensive answer to the research question
outlined in the section 1.2 can finally be outlined-

Although the SHS and RHS may share similarities in label set and sensor modalities
and placement, several above-mentioned causes made the domain shift quite remarkable.
Thus, the knowledge previously acquired from SHS data can be limitedly directly trans-
ferred to the hospital study setting.
In fact, it was necessary to fine-tune the SHS feature representations to the target activity
data carried out by inpatients. This task was not accomplished successfully by using stan-
dard transfer learning techniques. Instead a more refined domain adaptation approach
based on DANNs was required to gain substantial improvement in activity recognition.

The optimal model to perform this task was identified in DANN leveraging knowledge
on a partial amount of RHS labelled data from multiple patients. Table 4.1 summarizes
the F1-scores obtained on RHS data for each of the optimal configurations found for each
investigated approach. Although using the DANN (50% P03) model provided the best
F1-score, the "multi-subject" DANN (score in bold in table 4.1) was identified as optimal.
The rationale behind this is that the cross-entropy loss scores obtained with this setting
was the lowest among all models tested out. This suggested that the "multi-subject"
DANN might be more robust to target domain variation for potential future uses. In
addition, it is worth to recall that DANN models might be in general preferred because
they drastically reduce the need of labeled target RHS data.
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Model (Weighted) F1-score

DANN (50% P03) 0.76

DANN (multi-subject) 0.73

DANN (unsupervised) 0.69

DNN validation 0.69

CPA (optimal alpha) 0.65

DTL (unfreeze all) 0.61

Table 4.1: Summary of main models performance
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In this project we tackled a acceleration-based HAR task entailing the evaluation a DNN
developed on simulated hospital setting (SHS) on a real one (RHS). Due to the inherent
discrepancies between SHS and RHS, a slight variation of the original DNN architecture
has been designed (defined as ccpd2 ). During the validation procedure, we proved that
the features extracted from the SHS domain were not representative enough for the RHS.
In addition, the RHS dataset itself, although mainly composed of trivial static postures,
resulted be quite diverse. This facet consistently impaired the retraining of the ccpd2
model on RHS activity data.

Furthermore, several alternative approaches and techniques have been tested among which
the rule-based CPA algorithm and a novel hybrid Stacking ensemble machine learning
model. However, the former suffered from the lack of a sensor calibration procedure. The
latter consistently improved the detection of specific postures but at the expense of others.

Due to the consistent domain shift between SHS and RHS, transfer learning techniques
have been adopted to fine-tune the SHS feature representations to the target hospital ac-
tivity data. However, no substantial improvements were obtained by using this approach.

Thus, we implemented a more refined domain adaptation technique based on DANNs.
After extensive testing, we found that the optimal DANN configuration entailed a semi-
supervised learning setting by revealing small portions of labeled activity data from mul-
tiple RHS patients. Such optimal model offered a 0.73 weighted F1-score. We considered
this model as the best compromise between annotation burden and performance scores.

As future works, it might be valuable to investigate on a different CPA calibration routine
as suggested in this work. In addition, it might be interesting to accustom the developed
models to include the information acquired from both ECGMove4 sensors (i.e. sensor
fusion). Finally, the optimal identified DANN configuration should be validated to assess
if the percentage of target labeled data should be varied according to the HAR task.
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