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Abstract

X-ray absorption spectroscopy (XAS) is an extremely versatile experimental technique for
the study of materials. Among others, it can be used to determine the oxidation state and
the local environment of a given element in a material. The Next-Generation Advanced
Materials (Next-GAME) project was created with the aim of bringing X-ray instruments
back into common research centers that can at least partially support the research that
until a few years ago was relegated only to synchrotrons. It is precisely in this context
that our project takes place, aimed at the creation of a compact and user-friendly lab-
oratory XAS spectrometer without sacrificing the energy resolution. Precisely for this
purpose, an in-depth study on the geometry of monochromators was carried out, com-
bining analytical calculations with the results obtained through ray-tracing simulations.
This dual approach allowed us to highlight the effects that geometric parameters have on
the resolving properties of the instrument, enabling us to maximize the ratio between per-
formance and cost. In order to reduce the overall dimensions as much as possible without
degrading the resolution, we opted for a Johansson-type, cylindrically-bent crystal. This
setup drastically reduces chromatic aberrations with respect to commonly used Johann
crystals. In addition, exploiting the Ge[220] reflection and subsequent harmonics, a single
crystal can be used to fully cover the energy range 5− 15 keV of our interest, containing
the K-lines of the 3d transition metals and the L-lines of the 5d transition metals.

Keywords: XAS; laboratory spectrometer; Rowland’s geometry; Johann and Johansson
type crystals; energy resolution; geometric contribution to the energy resolution.





Abstract in lingua italiana

La spettroscopia di assorbimento di raggi X (XAS) è una tecnica sperimentale estrema-
mente flessibile attraverso cui è possibile effettuare analisi su molteplici materiali innova-
tivi. Il progetto Next-Generation Advanced Materials (Next-GAME) nasce con lo scopo
di riportare all’interno dei comuni centri di ricerca strumenti a raggi X che possano, al-
meno in parte, affiancare la ricerca che fino a pochi anni fa era relegata ai soli sincrotroni.
E’ proprio in questo contesto che si colloca il nostro progetto, finalizzato alla realizzazione
di uno spettrometro XAS da laboratorio compatto e facile da utilizzare senza però sacri-
ficare la risoluzione energetica dello strumento. Proprio a tal fine è stato effettuato uno
studio approfondito sulla geometria dei cristalli monocromatori, affiancando ad un ap-
proccio analitico i risultati ottenuti attraverso simulazioni di ray tracing. Questo duplice
approccio ha consentito di mettere in luce gli effetti che i parametri geometrici hanno
sulle proprietà risolutive dello strumento, consentendoci di massimizzare il rapporto tra
prestazioni e costi. Al fine di ridurre il più possibile gli ingombri senza degradare la
risoluzione ci siamo indirizzati verso la scelta di un cristallo cilindrico tipo Johansson.
Tale scelta, se comparata con i più comuni cristalli Johann, consente di ridurre le aber-
razioni cromatiche e, in aggiunta, permette di utilizzare, sfruttando la riflessione Ge[220]
e successive armoniche, un singolo cristallo per coprire interamente l’intervallo energetico
5−15 keV di nostro interesse contenente le linee-K dei metalli di transizione 3d e le linee-L
dei metalli di transizione 5d.

Parole chiave: XAS; spettrometro da laboratorio; geometria di Rowland; cristalli tipo
Johann e Johansson; risoluzione energetica; contributo geometrico alla risoluzione ener-
getica.
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1| Introduction to X-ray

Absorption Spectroscopy

X-ray Absorption Spectroscopy (XAS) is a well established non destructive method for
determining both the oxidation state and the local environment of a given element in
the studied compound. The sensitivity of XAS to the local order makes it useful for the
analysis of a huge amount of materials. Also for this reason, XAS can be considered as a
technique of multidisciplinary relevance with direct applications spanning from physics,
chemistry and biology to material, environmental and geological science [1]. A short and
definitely not exhaustive list of important achievements in different fields is reported below
[2]:

• Physics
thanks to the strong sensitivity of this technique to the local environment possible
applications are the study of the effects induced by dopants or defects in Semicon-
ductor devices, the effect of small structural changes in strongly correlated electron
systems and, more in general, studies related to low range interactions;

• Chemistry and Material science
to monitor the oxidation state of batteries and fuel cells, to study the catalysis and
in particular the relationship between structure and functionality;

• Nanoscale science
to study the properties of low dimensional systems like organic and inorganic thin
films or quantum-dots, obtaining information on their structure and relating their
shape and size with their properties. Also covalent systems like macromolecules and
polymers can be studied;

• Environmental and Earth science
investigation on short-range ordered phases in minerals, studying on the same time
the local variation in oxidation state and composition;

• Biology
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investigation on metal-based therapeutic agents and metalloproteins, studying the
interaction with their natural environment (for example physiological solution);

• Cultural Heritage
to study the efficiency of conservation techniques by observing the changes in oxi-
dation state of objects or pigments but also in order to date archaeological finds or
restoration works.

After the advent of synchrotron radiation sources, XAS experiments strongly focused at
using synchrotron facilities for the obvious advantages of synchrotron light, most impor-
tant difference to conventional x-ray sources being the several orders of magnitude higher
brightness. However, the limited access to synchrotron beamtime, reduces and nearly
excludes a large number of potentially important scientific research to be performed.
In addition, the analysis at synchrotrons of radioactive or potentially harmful to human
health samples requires dedicated beamlines and specific authorizations besides high costs
for the transport. Consequently, the development of alternatives is mandatory to com-
pensate the currently lacking beamtime [3]. It is precisely in this context that laboratory
XAS spectrometers are considered.

1.1. Laboratory XAS: working principles

Figure 1.1: The first
radiography taken by
W. C. Röntgen on his
wife’s hand in 1896 [4].

Since their discovery, X-rays are directly related to absorption
experiments. It is known, in fact, that the first tangible proof
of their existence is the radiography of the hand of Röntgen’s
wife (Figure 1.1). The ability to take shadow pictures relies on
two basic aspects of the absorption process: the first one is the
strong dependence of the absorption coefficient on the atomic
number Z that makes possible to distinguish different elements;
the second is the possibility to properly tune the penetration
depth of the radiation by changing the beam energy. The prin-
ciple of a XAS experiment is extremely simple and it is based
on the well known Lambert-Beer law:

I(E) = I0(E) e−µ(E)t (1.1)

a polichromatic beam I0(E) generated by an X-ray source is
sent on a sample of thickness t. Given the energy dependence
of the absorption coefficient µ(E), the transmitted radiation
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Figure 1.2: The spectral components of the incoming radiation I0 are differently absorbed
by a sample of thickness t due to the energy dependency of the absorption coefficient µ(E).

I(E) will have a different spectral shape if compared with the spectrum of the source (see
Figure 1.2). From this comparison a huge amount of information about the chemical-
physical nature of the sample can be deduced. It is clear that, for a spectral analysis, the
introduction of an element able to discriminate the different frequencies is needed. The
width of the spectral region selected by this element is directly linked to the spectrometer
energy resolution. The main aim of this work will be to properly design the instrument
in such a way as to minimize this bandwidth. This will allow a spectral analysis with
the necessary resolution. A more detailed analysis on the interpretation of XAS spectra
will be given later. The following paragraphs will give a general overview of the typical
use and working principles of a laboratory XAS spectrometer. In particular we will focus
our attention on the Rowland geometry setup that offers the great advantage of making
possible the choice of detectors with an extremely small surface. Thanks to the focal
properties of this setup, this will not imply signal losses ensuring, at the same time, a
strong decrease in noise compared to extended detectors. In this first phase we will not go
into details as, in the following chapters, the vast majority of the topics here mentioned
will be addressed in a more extensive way.
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A laboratory XAS spectrometer based on the Rowland setup consists of three basic com-
ponents:

• Source
It is a polichromatic source of the X-rays. For a laboratory spectrometer Bremsstrahlung
sources are used (see Chapter 2);

Figure 1.3: Incoatec microfocus X-ray source [5].

• Bent Crystal
It is the element devoted to the selection of a particular frequency (see section 3.2).
Thanks to its curvature, it is able to monochromatize and focus the light on the
detector;

Figure 1.4: A Johansson-type bent crystal [6] .
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• Detector
Thanks to the detector, it is possible to measure the intensity for each selected
energy in order to reconstruct the entire spectrum.

Figure 1.5: A Multi Element Photodiode Array Detector [7]

The three elements must be positioned on a circumference with diameter equal to the cur-
vature radius R of the crystal (see section 3.2.1). The energy selected by the monochro-
mator depends on the incidence angle of the radiation on the crystal. Consequently, in
order to make an energy scan, two of the three elements must be moved: the simplest
way to visualize the motion is to imagine the crystal fixed and moving the source and the
detector specularly to the axis of the crystal (see Figure 1.6). However, keeping the source
fixed is preferable due to its weight and dimensions. For this particular choice the motion
of the crystal and detector is required as shown in Figure 1.7: it should be noted that if
a reference system is fixed on the crystal in Figure 1.7, one would return to the simpler
motion represented in Figure 1.6. This is to underline the total equivalence between the
two motions.
After this general introduction to the working principle of the instrument, a brief paren-
thesis must be opened to talk about the properties that the sample must possess: the
idea is to put the sample directly in front of the source and to measure, consequently, the
transmitted radiation. Transmission is in fact the ideal measurement mode if we want to
increase the amount of collected light [2]. Unfortunately, this choice requires high level of
care for the preparation of the sample. The optimum thickness t of the sample, in fact,
must be comparable with the reciprocal of the absorption coefficient in order to maximize
the signal to noise ratio: for a too thin layer, in fact, the absorption is small giving rise to
noisy spectra. On the other hand, for a bulk sample the transmission could be too low,
increasing the error in the measure of I(E).[2]
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Figure 1.6: Schematic representation of a scan in energy: source (blue) and detector (red)
must move specularly with respect to the axis of the crystal.

Figure 1.7: Schematic representation of a scan in energy: source (in blue) is fixed while
detector (in red) and crystal (in black) moves.
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The requirement of an optimum thickness could sound limiting especially if considering
strongly absorbing samples. The strategy typically adopted to overcome this problem
is to build pellets of transparent (for X-rays) materials into which a variable amount of
sample powder is added [8]. The quantity of powder must be suitably chosen so as to
have an "effective absorbent thickness" comparable to 1/µ. This procedure allows us to
study a wide range of samples without being limited by their thickness.

1.2. Interpretation of a XAS spectrum

A typical result of a XAS experiment is reported in Figure 1.8. The absorption coefficient
µ(E) can simply be experimentally obtained measuring I0(E) and I(E) and inverting
equation 1.1:

µ(E) =
1

t
ln

I0(E)

I(E)

As clearly shown by the graph, the absorption coefficient presents a discontinuous jump
that is called absorption edge.

Figure 1.8: XAS spectrum example: the decaying tendency of the absorption coefficient
after the edge has been removed for clarity. XANES and EXAFS regions are highlighted
https://sigray.com/x-ray-absorption-spectroscopy/ .

https://sigray.com/x-ray-absorption-spectroscopy/
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Figure 1.9: Schematic view of single-vacancy
levels and corresponding nomenclature for the
principal absorption edges (upwards arrows).
Adapted from [9].

The physical reason for its appear-
ance is quite simple to understand:
indeed, in any absorption process, the
energy of the absorbed photon must
necessarily be acquired by the absorb-
ing system. Electrons are bonded in
atoms with discrete energies (Figure
1.9). A photon cannot therefore be
absorbed by a core electron until its
energy becomes equal or greater to
the binding energy of the electron.
Only in this case, in fact, the elec-
tron can be promoted in the contin-
uum making the absorption process
possible. Transitions are named as re-
ported in the left part of Figure 1.9:
a capital letter is used to identify the
principal quantum number n (K for
n = 1, L for n = 2, ...) and a suf-
fix number labelling the levels in each
shell from the deepest to the shallow-
est. For example KI - edge indicates
that the origin of the photoelectron is level (1s)2. The energy and the shape of the ab-
sorption profile near the edge provide insights into the electronic structure of materials.
A typical XAS spectrum can be ideally split up in two regions highlighted in Figure
1.8: the first one, known as X-ray Absorption Near-Edge Structure (XANES), identifies
an energy range centered around the absorption edge (≃ 100 eV) while the Extended X-
ray Absorption Fine Structure (EXAFS) contains features appearing after the XANES
region, tipically up to ≃ 1000 eV beyond the edge. The XANES region usually shows
an absorbtion coefficient that overshoot the step-like behaviour. This is tipically due to
an high density of unfilled states just below the continuum of free electron states. The
XANES region is of particular interest because the local environment can modify the DOS
around the continuum causing a small shift of the absorption edge. This feature allows
a fingerprint classification not only of the elements (each one with a characteristic edge)
but also of several valence states of the same element. Since this chemical shift can be
quite small (a couple of eV) it is necessary to have high energy resolution in this region [10].
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Figure 1.10: Schematic of the EXAFS process. (a) A photon with sufficiently high energy
is absorbed by an atom. (b) A photoelectron is emitted by the atom and can be treated as
a spherical wave. (c) The spherical wave reach the first neighbours of the emitting atom.
(d) The photoelectron wavefunction is scattered by the neighbouring atoms, which then
give rise to backscattered waves. (e) The interference between outgoing and back scattered
wavefunctions gives rise to oscillations in the absorption coefficient µ(E). Tacken from
[9].
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For higher energies of the photon, the photoelectron is promoted to the continuum and
propagates as a spherical wave [9]. This outgoing wave may than be back scattered
by neighbouring atoms producing oscillations in the transmitted light I(E) and, conse-
quently, in the absorption coefficient µ(E). Within 10−50 eV from the edge, the outgoing
wave (the photoelectron) undergoes multiple scattering events due to its low kinetic en-
ergy. This is known as the Near Edge X-ray Absorption Fine Structure (NEXAFS) regime.
At higher energies above the edge, due to the higher kinetic energy of the photoelectron,
single scattering events dominate [9]. This is the Extended X-ray Absorption Fine Struc-
ture (EXAFS) region that, thanks to the negligible effect deriving from multiple scattering
events, it is easier to be analyzed. In particular, it was demonstrated that the EXAFS
oscillations are the Fourier transform of the radial distribution function of the atomic
density [11]. The periodicity in energy of these oscillations is large, so resolution is not a
strict requirement anymore, but on the other hand a high flux of photons is needed, for
their amplitude is pretty weak [10]. This introductory presentation on EXAFS, while not
having the intention of being exhaustive in any way, allows us to understand how useful
the analysis of this region can be in the determination of the interatomic distances of
the first few coordination shells around the absorber in both crystalline and amorphous
materials. Very informative are XANES and EXAFS measurements at the K-edges of 3d
and L-edges of 5d transition metals, which lie in the 5− 15 keV energy range.
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The production of X-rays is often connected to the acceleration of charged particles that,
consequently, emit electromagnetic radiation. Although the origin of the radiation is
the same, the nature of the force which generates the acceleration varies considerably
according to the type of source taken into account. Synchrotron radiation takes its name
from a specific type of particle accelerator. It has become a generic therm to describe
radiation from charged particles traveling at relativistic speed in applied magnetic fields
which force them to travel along curved paths [9]. This configuration allows to obtain a
brilliance which is enormously higher than that of standard laboratory sources. Despite
this, our attention will be directed to the most common X-ray tubes.

Figure 2.1: The European Synchrotron Radiation Facility (ESRF).
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2.1. The standard X-ray tube and its spectrum

Figure 2.2: Schematic view of a
standard X-ray tube [9].

In a standard X-ray tube free electrons are produced
(thermoionic emission) by a glowing filament. The elec-
trons are then accelerated towards a metal anode that
we will call from now on target. When the electron
reaches proximity to an atom of the target it is typ-
ically deflected by the electronic cloud and/or by the
nucleus of the atom itself emitting a continuum of ra-
diation called Bremsstrahlung radiation. In this setup,
the accelerating voltage (V ) between the filament and
the target and the current of electrons (IA) emitted by
the filament can be independently varied with the only
limitation imposed by the cooling efficiency of the an-
ode. If the continuous spectrum arises from electrons
that have been decelerated and possibly completely stopped by the target, at the same
time the free electron could cause an atomic electron to be removed from one of the inner
shell creating a vacancy [9]. The subsequent relaxation of an electron from an outer shell
produces fluorescent lines superimposed to the Bremsstrahlung continuum as shown in
Figure 2.3. It is important to underline that, for our purposes, the fluorescence peaks
are undesirable. These, in fact, would lead to a rapid saturation of the detector and
would not allow to exploit the reflections of different harmonics. However, because of
energy conservation, the maximum energy that an emitted photon can have is equivalent
to the kinetic energy provided by the accelerating voltage (V) to the electron. Simply by
decreasing this voltage, therefore, it is possible to cut off the fluorescence peaks.

Figure 2.3: The X-ray tube spectrum composed by the Bremsstrahlung continuum with
fluorescent lines superimposed [9].
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2.2. Characterization of the Incoatec source.

Here are reported the results of the measurements performed on the micro-focus Incoatec
IµS 1.0 X-ray source. The main elements of the experimental setup are the source and
the detector. The source is driven by a high voltage generator and is located on a fixed
support. On the contrary, the detector is placed on a mobile trolley used to vary the
distance from the source. The alignment between the two elements was made using
a pointer fixed on the top of the source. The aim of the experiment is to study the
characteristics of the emission spectra of the aforementioned source. The main quantity
of interest is the photon flux evaluated over the full energy range and its voltage and
current dependencies.

Source

The IµS 1.0 Source is an air-cooled Micro-focus X-ray source provided by Incoatec1.

Source Technical Details

High Voltage ≤ 50 kV

Current ≤ 650µA
Power ≤ 30W

Table 2.1: Thecnical details of the generator of the IµS 1.0 X-ray source from vendor.

The technical details from the vendor are reported in table 2.1: as advised by the provider
of the source the voltage and current of the tube were set to a maximum of 40 kV and
500µA. The Source is available with different target materials: in our experiment the
Molybdenum one is employed. The source is commonly used with a Montel optical system
positioned at the exit slit. It is used to collimate and monochromatize the beam. Since,
for our purposes, a non collimated and white beam is needed, we will not make use of
this optics during the experiments.

1https://www.incoatec.de

https://www.incoatec.de


14 2| X-ray source

Figure 2.4: The Incoatec Micro-focus Source IµS 1.0 with Montel optics [5].

Detector

In order to record the emission spectra we used an X-ray and Gamma-ray high resolution
CdTe detector from Amptek2 with a square active area of 3×3 mm2. To not saturate the
detector, because of the high flux, we used multiple collimators with hole diameter from
1mm to 0.2mm and thickness of 2mm. All collimators are made of alloy HD17 i.e 90%
W, 6% Ni, 4% Cu (Figure 2.5).

Figure 2.5: The square area of the detector with a circular collimator in front.

2https://www.amptek.com

https://www.amptek.com/internal-products/xr-100t-cdte-cadmium-telluride-detector-efficiency-application-note
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The detector exploits a total of 4096 channels. In order to convert the channel scale
into an energy scale, there must be at least two known peaks in the spectrum. In this
specific case, the detector was calibrated using the known values of they K-α and K-β
lines (17.48 keV and 19.61 keV) of the Molybdenum anode. However it is important to
underline how, in order to obtain an accurate calibration, peaks that are not too close
together are needed. For this reason it should be considered that far from the Mo peaks,
the spectra could be not perfectly calibrated. The resulting energy width of each channel
after the calibration was set to about 41 eV. The calibration is reported in equation 2.1.

E(keV) = 0.265152 + 0.0413351 · channel (2.1)

The ∆E in energy of each channel is given by the slope of the calibration equation:

∆E = 41.3351eV (2.2)

Figure 2.6: Calibration of the energy axis. The blue colored peaks are the known values
of the K-α and K-β lines (17.48 keV and 19.61 keV) of the Mo anode.
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2.2.1. Experiment and Data Analysis

Preliminary considerations

All the spectra are recorded with an integration time of 300 s. The detector counts the
number of photons collected in each channel during the integration time. In order to
compare measurements taken at different distances and with different collimators i.e.
different solid angles, the data are given in Specific Spectral Radiant Intensity, defined as:

Iw(E) =
counts

T ·∆E · Ω ·W
(2.3)

where T is the integration time [s], ∆E is the energy width of the channel [eV], W is
the power [W] i.e. the product between the accelerating voltage [V] and the current [A]
emitted by the filament and Ω is the solid angle subtended by the detector active area

Ω =
A

d2

with A and d as detector area and source-to-detector distance respectively. Note that the
effective area of the detector is a square of 3x3 mm when no collimators are being used;
if instead the collimators are applied before the detector the effective area is circular.
Sometimes can be more convenient to consider the spectra not normalized to the power.
It is useful especially if we want to observe the dependence to the current keeping the
tube voltage constant or vice versa. For this reason also the Spectral Radiant Intensity
will be considered:

I(E) =
counts

T ·∆E · Ω
(2.4)

Spectra at constant power

In this section spectra collected at constant power (2W) are analyzed (see Figure 2.8).
The power of the tube is computed as:

PT = V IA (2.5)

Where IA is the anode current and V the voltage applied to the tube which can be set
independently. As expected the Molybdenum K-α and K-β lines start being visible only
for anode voltages above 20 keV. As explained before the increase of the tube voltage
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results in an increase of the maximum photon energy. The Bremsstrahlung has a trend
well approximated, at high energy, by the Kramer relation 2.6

n(E) ∝ Z
E0 − E

E
(2.6)

where n(E) is the density of emitted photons at energy E, E0 is the energy of the scat-
tered electrons (emitted from the filament) and Z is the atomic number of the anode.
Because of energy conservation, E0 will be the maximum detectable energy for a photon.
It is important to note that, unlike what experiments show, at low energies the Kramer
relation 2.6 diverges. This apparent discrepancy can be explained by remembering that
photons at lower energies are more absorbed. It means that, after the generation inside
the material, they have a lower probability to be externally emitted. Also for this reason,
only a small amount of electron energy is converted into radiation.
Starting from Figure 2.8 and choosing three specific energies (7− 10− 15 keV averaging
around these energies), it is possible to study the trend of the Specific spectral radiant
intensity as a function of the accelerating voltage (and of the anode current): it is impor-
tant to underline how in Figure 2.7 both the tube voltage and the current vary in order
to keep the power fixed.

Figure 2.7: Specific spectral radiant intensity at three specific energies in function of both
the tube voltage and the current in order to keep a constant power.
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Figure 2.8: Specific spectral radiant intensity at constant power.

Figure 2.9: Zoom of Figure 2.8.
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Spectra at constant current

The following section is devoted to the analysis of the voltage dependence of the Spectral
radiant intensity keeping constant the current at the anode (5 µA). Starting from the
original measurements (not normalized to the power) and choosing three specific energies
(7− 10− 15 keV averaging around these energies), it is possible to study the trend of the
Spectral radiant intensity as a function of the accelerating voltage V as shown in Figure
2.10

Figure 2.10: Spectral radiant intensity at three different energies in function of the tube
voltage V .

An increasing trend is common to all the energies. Higher energies are extremely influ-
enced by the change in voltage while a flatter trend is observed for low energies: remem-
bering that electrons with higher energies E0 (the energy of electrons is directly linked to
the accelerating voltage) penetrate more the anode we can deduce that the absorption of
the photons before escaping the anode increase with E0. On the other hand the Kramer
relation 2.6 says that

n(E) ∝ E0

Therefore it is reasonable to think that the increase of photons due to higher voltages can
be compensated by the absorption especially for low energy photons i.e. for photons that
are more absorbed. Figure 2.11 reports the graphs normalized to the power.
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Figure 2.11: Specific spectral radiant intensity at constant current 5 µA.

Figure 2.12: Zoom of the spectra at constant current.
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Spectra at constant voltage

This section reports the dependence of the Spectral radiant intensity as a function of the
tube current keeping constant the applied voltage at the anode (40 kV). It is reasonable
to imagine how, increasing the current i.e. the number of electrons that hit the target,
the Spectral radiant intensity should linearly increase. The linearity between the current
and the brilliance is emphasized in Figure 2.13 where linear fits perfectly approximate the
experimental points.

Figure 2.13: Spectral radiant intensity at three different energies in function of the tube
current keeping the accelerating voltage 40 kV.

Increasing the current therefore increases the number of photons measured in each channel
in the same way, without modifying the shape of the spectrum. Changing the voltage
at the anode, on the other hand, also generates a substantial change in the shape of the
spectra as seen previously. This implies that, in order to make reasonable comparisons
and to check the consistency between different sets of measurements, it is good to consider
simultaneously only the spectra at the same voltage. Following this approach it is clear
that the Specific spectral radiant intensity of different measures taken at constant voltage
must coincide (see Figure 2.14).
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Figure 2.14: Specific spectral radiant intensity at constant voltage 40 kV.

Figure 2.15: Zoom of the spectra at constant voltage.
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Conclusion

The tests performed on the Incoatec IµS 1.0 source were successful and are extremely
encouraging; indeed, the performance of the source suggests that XAS measurements are
feasible with laboratory spectrometer within a reasonable amount of time (see Chapter 7).
In general, we aim at the maximum number of photons emitted by the source, implying
that we should typically work at the largest electron current and accelerating voltage.
Note that increasing the voltage beyond 20 kV, however, causes the rapid appearance
of the unwanted fluorescence peaks of the anode material: if their energy is an integer
multiple of the scanned energy, then they will be reflected by the crystal analyzer and
unavoidably pollute the measurement (see Chapter 3). In this condition, a good choice
could be to limit the tube voltage at 20 kV: considering IA = 650 µA as reported in Table
2.1 we will obtain a power P = 13W i.e. well below the threshold of 30W set by the
source manufacturer. In order to correctly estimate the spectral radiant intensity it will
therefore be enough to consider any spectrum at V = 20 kV expressed in specific spectral
radiant intensity and multiply it by a factor W = 13.
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geometry

The aim of this chapter is to present the basic ideas regarding diffraction in solids in order
to clearly justify the geometry of the spectrometer and introduce the main contributions
to the energy resolution of the instrument.

3.1. How to monochromatize a white beam

In order to make a spectral analysis is important to be able to separate different frequencies
coming from a polichromatic source: for this reason the introduction of an element able
to separate different frequencies is needed. The natural choice is to exploit the diffraction
from a crystal. [12, 13].

3.1.1. Diffraction from a Bravais lattice

Diffraction takes place when an incoming wave interacts elastically with a periodic struc-
ture giving rise to spherical waves originating from each scattering center (the model and
its founding hypotheses are better discussed in Appendix A). Let’s just consider a plane
wave with wavevector k impinging on two atoms.

From Figure 3.1 it is not difficult to see that in order to have constructive interference
between the two outgoing spherical waves, the difference between the optical paths must
be equal to an integer multiple m of the wavelenght λ:

d · (n′ − n) = mλ (3.1)
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Figure 3.1: An incoming plane wave scattered by two obstacles (in yellow). The front
wave is represented in dashed lines. The difference between the optical paths in red.

where:

• d = is the distance between the two scattering centres;

• n = k/|k| is the unitary vector parallel to the direction of the incident wave;

• n′ = k′/|k′| is the unitary vector parallel to a possible (and up to now unknown)
direction of the out-coming diffracted wave;

• λ is the wavelength of the incoming and of the diffracted wave remembering that
we are considering by hypothesis only elastic scattering;

Because of the last consideration it is clear that the incoming and outgoing wavevectors
can differ only by their directions. Multiplying by a factor 2π/λ and taking the exponential
of both sides of equation 3.1, the diffraction condition can be written as:

exp i(G · d) = 1 (3.2)

where G = (k′ − k) is by definition a vector of the reciprocal lattice. The following
relation 3.3 is known as Von Laue condition for diffraction:

k′ = k +G (3.3)

It is useful to give a graphical interpretation of equation 3.3 (see Figure 3.2), remembering
a property common to each family of crystallographic planes:
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Figure 3.2: A graphical interpretation of Von Laue condition. A given family of crystal-
lographic planes related to a particular reciprocal lattice vector G acts like a mirror for a
particular wavevector k.

a family of crystallographic planes can be identified by the shorter vector G = ha∗+kb∗+

lc∗ of the reciprocal lattice that is perpendicular to that family of planes. The components
of this vector are the Miller Indices that uniquely identify the crystallographic family of
planes. From Figure 3.2 it is evident that

|G| = 2|k| · sin θ =
4π

λ
· sin θ (3.4)

remembering the relation

|G| = n
2π

|d| (3.5)

the Bragg condition 3.6 comes directly

nλ = 2|d| sin θB (3.6)

where θB is called Bragg angle.

The behavior of a lattice can be easily compared to that of a mirror [13]. In fact a
periodic structure specularly reflects the incident radiation. The substantial difference is
that, assuming to hit the lattice at a certain Bragg angle with polychromatic radiation,
only the wavelength that respects the Bragg’s law 3.6 will be reflected. The crystal will
therefore reflect monochromatic radiation1 while the remaining part of the radiation will
be transmitted and/or absorbed by the crystal itself.

1If the incidence angle is the same all over the surface of the crystal.
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Figure 3.3: For a given family of crystallographic planes, G is fixed. Increasing the
diffracted energy (length of vector k) leads to a decreasing in the Bragg angle.

3.1.2. From Bravais lattices to real crystals

A real crystal is built starting from a Bravais lattice by anchoring a basis made up of
one or more atoms to each point of the lattice itself (i.e, formally a crystal is given by
the convolution between lattice and base). Consequently the amplitude of the radiation
scattered from a crystalline material can be written in general as:

F crystal(Q) =
all atoms∑

l

f 0
l (Q) exp (iQ · rl) (3.7)

were f 0
l (Q) is the atomic form factor (see Appendix A) and Q = k′−k, is the scattering

wave vector that is choosen by the position of the detector. The vector position rl can be
written as Rn+rj were Rn is a Bravais lattice vector and rj labels the position of an atom
within the unit cell. The previous formula can so be decomposed in two summations:

F crystal(Q) =
all atoms∑

n

exp (iQ ·Rn)
in cell atoms∑

j

f 0
j (Q) exp (iQ · rj) (3.8)

Let’s focus on the sum over n: because of Equation 3.2 we know that, in order to satisfy
Von Laue condition 3.3 we need to restrict the Q domain, considering only those vectors
belonging to the reciprocal lattice. From now on we will consider only the points of the
reciprocal space corresponding to Bragg peaks and, consequently, it will be legitimate to
write:

Q = G (3.9)
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Let’s now consider the sum over j, better known as unit cell structure factor :

∑
j

f 0
j (G) exp (iG · rj) (3.10)

The unit cell structure factor will be responsible of the amplitude modulation of the
Bragg’s peaks and it takes into account the phase shifts due to the reciprocal positions
rj of the atoms within the unit cell. This means that, for a crystal with a base consisting
of a single atom rj = 0, Equation 3.10 reduces to the atomic form factor.
The square modulus of the unit cell structure factor will be responsible for the modulations
in intensity of the Bragg peaks. It is therefore common that, some reflections consistent
with Bragg’s law are absent because of the destructive interference contained in the unit
cell structure factor [9].
Of particular interest and simplicity is the case of Si and Ge: these crystals, in fact, are
commercially available thanks to their countless applications, especially in the field of
electronics. They are both characterized by a diamond-like structure. The starting point
to calculate their unit cell structure factor is to choose a Bravais lattice and, consequently,
the right base. The choice is not unique: often, Si and Ge are described as the convolution
between an fcc lattice and a base made of two atoms (see Figure 3.5). However, it would
be useful to refer to a simple cubic sc Bravais lattice: only in this case, in fact, the
inter-planar distances dhkl can be expressed by the following relation:

dhkl =
a√

h2 + k2 + l2
(3.11)

where a is the side of simple cubic cell. Therefore the problem is easily solvable by
decomposing it into two steps:

• let us start by calculating the structure factor of an fcc crystal described as the
convolution between a simple cubic lattice with a base of four atoms;

• the structure factor of Si and Ge will be obtained simply by multiplying the result
obtained in the previous step (that is the Bravais lattice of a diamond-like structure)
by the proper unit cell structure factor made of two atoms.

Structure factor of an fcc crystal

As anticipated, a face centered cubic (fcc) crystal can be built considering a simple cubic
(sc) lattice with a base made of four atoms identified by the following vectors rj (see
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Figure 3.4):

r1 = 0 , r2 =
1

2
(a1 + a2) , r3 =

1

2
(a2 + a3) , r4 =

1

2
(a3 + a1) (3.12)

Figure 3.4: Face centered cubic crystal built starting from a simple cubic lattice (black
spots) with a base of four atoms (yellow spots).

Consequently, the unit cell structure factor is:

F unit cell(G) = f 0(G)[1 + exp iπ(h+ k) + exp iπ(k + l) + exp iπ(l + h)] (3.13)

where f 0(G) can be taken out of the summation on the assumption that all atoms are
equal. The fcc structure factor is different from zero if and only if:

• h, k, l are all even or all odd.
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Structure factor of a diamond like crystal

A diamond like crystal can be treated considering an fcc lattice with a base made of two
atoms identified by the vectors rj (see Figure 3.5):

r1 = 0 , r2 =
1

4
(a1 + a2 + a3) (3.14)

Figure 3.5: Diamond structure built starting from a face centered cubic lattice (black
spots) with a base of two atoms (yellow spots).

Now the lattice is not a simple cubic as in the previous case. It means that the lattice sum
(the sum over n in equation 3.8) gives as result the Bragg’s law modulated by the factor
3.13. This term will be further multiplied by the two atoms unit cell structure factor :

F unit cell(G) = f 0(G)[1 + exp i
π

2
(h+ k + l)] (3.15)

Equation 3.15 vanishes if h+ k + l = 2, 6, 10 . . .
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Putting together this condition with equation 3.13 we find that, in order to have a Bragg
spot one of the following conditions must be met:

• h, k, l are all odd,

• h, k, l are all even with h+ k + l = 4n with n ∈ N.

The Bragg angle for some of the allowed reflections are reported (Figure 3.6 for Si and
Figure 3.7 for Ge) as a function of the energy. As evident, in order to perform a wide
scan in energy without ever going below θB = 30° it will always be necessary to exploit
the reflections given by different miller indices2. A possible and convenient choice for a
diamond-like structure is the family of planes [220] and the reflections of the first har-
monics that allow to use a single crystal to cover the desired energy range (approximately
from 3 keV to beyond 14 keV). The choice, in order to cover the greatest number of edges,
fell on Ge[220] and subsequent harmonics (Ge[440] and Ge[660]). All the quantitative
considerations as well as the simulations reported in this document will therefore refer to
a Germanium analyzer oriented along the [220] direction.

Figure 3.6: The reflected energies are plotted as a function of the corresponding Bragg
angles for different families of Si crystallographic planes. Some K edges are highlighted
as black vertical lines.

2As will be discussed, the resolution of the spectrometer drastically worsens as θB decreases.
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Figure 3.7: The reflected energies are plotted as a function of the corresponding Bragg
angles for different families of Ge crystallographic planes. Some K edges are highlighted
as black vertical lines.

Figure 3.8: Bragg angle as a function of the corresponding reflected photon energy for
Ge[220] and Ge[440].
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3.2. Two-dimensional bent crystals

The introduction of bent crystals arises from the need to focus the reflected beam in a
small region of space. This would allow the use of point-like detectors increasing the
signal to noise ratio. It will therefore be natural, underlined the strong analogy between
mirrors and crystals, to exploit the physical laws of curved mirrors to study the focusing
properties of a monochromator [14]. For a 2D bent mirror with curvature radius R, the
well-known formula applies [15]:

R

2
=

sin θ

p
+

sin θ

q
(3.16)

where p and q are the source — mirror and the mirror — focus distances, respectively.
The previous equation is satisfied when the well known Johann condition holds:

{
p = R · sin θ,

q = R · sin θ.
(3.17)

Note that the diffraction theory proposed in 3.1 is valid for flat crystals. When a perfect
crystal is elastically bent, the diffracted beam is modified with respect to the flat case
mainly because of two reasons:

• first, the bent geometry generates an angular distribution of the incidence angle
of the rays with respect to the surface of the crystal that is clearly different from
that generated by a flat crystal. This angular distribution causes changes in the
diffracted spectrum that can be studied with ray tracing (see Chapter 5) and cal-
culated analytically, as shown in the next paragraph (see Chapter 4),

• second, when the crystal is bent, the crystallographic atomic planes suffer a dis-
tortion and the local reflectivity of the crystal varies drastically on its surface. In
other words, the mechanical tensions related to the bending entail a misalignment
between the atomic planes causing, in general, an enlargement of the diffraction
profiles [16] (see Chapter 6).
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3.2.1. The Rowland circle

As shown in Figure 3.9 the Johann condition 3.17 requires to place and move source,
analyzer and detector on a circular trajectory (called Rowland circle) with diameter R
equal to the curvature radius of the crystal3. In conclusion Figure 3.10 resumes the double
function of a Johann curved crystal, namely that of focusing and monochromatising a
polychromatic beam. As shown higher reflected energies correspond to lower Bragg angles.
Unfortunately, the use of Johann crystals in Rowland geometry is altered by aberrations
which both degrade, especially at grazing incidence, the focus and the energy resolution
of the instrument as explained below. Since our goal is to build a spectrometer with a
single analyzer, it will be necessary to develop an appropriate design that allows to work
properly even in such extreme conditions.

Figure 3.9: Representation of Johann condition: source, crystal and detector must stay
on the circular trajectory (Rowland circle) in order to satisfy the spherical mirror law
3.16.

3The reader must not be confused by the fact that, in all this work, R represents the curvature radius
of the crystallographic planes and, consequently, the Diameter of the Rowland circle.
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Figure 3.10: Three reflections at different Bragg angles are represented. The choice of
colors underlines how, by decreasing the incidence angle, the reflected energy increases.

3.2.2. Johann-type crystals

After this brief and general introduction on the two-dimensional description of the spec-
trometer setup, let us discuss the energy resolution and focusing properties of a Johann-
type crystal [17]. Understanding the geometric origin of some undesirable effects caused
by this kind of crystals will allow us to naturally introduce a new type of analyzers in
which, at least ideally, these effects will be suppressed.

Figure 3.11: Geometric resolution worsen-
ing of a Johann Crystal. The Bragg angle
is not exactly the same all over the surface
of the crystal. This inevitably leads to a
reflected line widening.

Figure 3.12: Zoom of the focus obtained
with a Johann-type crystal. The image
clearly shows a not perfect focus on the
detector position.
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A first observation is that, as shown in Figure 3.12, a Johann-type crystal is not able to
perfectly focus all the collected light. It is mainly due to the fact that the lens equation
3.16 is valid only for rays close enough to the optical axis. For an extended mirror and in
a grazing geometry, where also rays distant from the axis are collected, it is not surprising
that the obtained focus is not exactly a point. In addition, as shown in Figure 3.11, also
considering a point-like source, the Bragg angle is not exactly the same all over the surface
of the crystal meaning that the crystal reflects slightly different energies. A first trivial
way to reduce these effects is to reduce the size of the analyzer. On the other hand this
operation would lead to a strong decrease in the collected light (increasing, in this way,
the scanning time) making this option impracticable.

3.2.3. Johansson-type crystals

At this point it is worth asking whether it is possible to overcome the two problems
that arise using Johann crystals [18]. In this regard, a brief reference to some Euclidean
geometry results may be convenient. As shown in Figure 3.13, all the angles at the
circumference (in green) that insist on the same arc have the same value.

Figure 3.13: The angles to the circumference (green) that insist on the same arc are all
congruent: in fact, each of these angles have in common the same angle at the center
(orange).
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From this simple theorem we can derive some characteristics that we would like our
analyzer to possess: the reflection must necessarily occur on the Rowland circle in order
to have the same angle allover the surface of the crystal (see Figure 3.13). On the same
time we can not modify the curvature of the crystallographic planes because it is fixed
by the Rowland diameter. From the considerations above we would like the surface of
our crystal to be entirely on the Rowland circle. It is then sufficient to take a Johann
crystal and dig properly its surface. The Johansson crystal thus obtained and shown in
Figure 3.14 also posses the advantage of ideally focusing the collected radiation. This is
because, since the angles at the circumference are equal, they must necessarily insist on
the same arc that is identified by two points i.e, the position of the source and the focus.

Figure 3.14: The crystallographic planes of a Johansson crystal are represented in red. In
dashed red the portion of crystal to be removed starting from a Johann-type crystal. The
graphical simulation undoubtedly shows how the incidence angles are the same over the
entire surface of the crystal and how the radiation is focused exactly in one point, unlike
what happens for a Johann crystal.
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3.3. From 2D analysis to real space

All the considerations made in the previous paragraphs, although of fundamental im-
portance, have a strong limitation: in fact, until now we have never taken into account
the third dimension of the spectrometer. Considering the ideal case in which the source
and detector are point-like, in fact, it is clear that a rotational symmetry around the
axis passing through the source and detector exist (see Figure 3.15). The optimal three-
dimensional geometry will therefore be obtained simply by rotating the two-dimensional
set-up around this axis [19]. However, one thing is immediately evident: the position of
the axis (more precisely its distance from the center of the analyzer) changes with Bragg
angle. Working close to back-scattering this distance will approach the diameter of the
Rowland circle while, by decreasing the Bragg angle it will decrease.

Figure 3.15: 3D geometry obtained by rotating the 2D geometry around the source-
detector axis. As shown in red, the sagittal optimal curvature radius must change during
the scan.

As visible in Figure 3.15, the ideal sagittal curvature radius of the analyzer is exactly
this distance. The optimal crystal must therefore have a toroidal shape in which the
meridional radius is fixed and equal to the diameter of the Rowland circle while the
sagittal radius must be dynamically changed during the scan (Figure 3.16a). The first
idea that might come to mind is to take a crystal with a fixed meridional curvature
and change the sagittal one by applying a variable torque to the analyzer during the scan.
This procedure, however, as well as being difficult to apply, would generate stress inside
the material which, as will be explained, would lead to a rapid worsening of the resolution
of the instrument. A more realistic approach is to approximate the ideal crystal analyzer
by a set of independent cylindrical stripes (Figure 3.16b) of finite width whose relative
positions can be dynamically adjusted as a function of Bragg angle [6]. However, the
choice of cylindrical stripes necessarily worsens the energy resolution of the spectrometer
as well as the focusing properties [6].
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(a) Toroidal Analyzer.

(b) Cylindrical stripes.

Figure 3.16: Comparison between a toroidal analyzer and five cylindrical stripes that map
the same toroidal shape. While Rm (meridional radius) is fixed, Rs (sagittal radius) must
be changed during the scan.
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In a first version, the spectrometer will consist of a single Johansson-type cylindrical
crystal of length L = 10 cm and width Z = 1 cm. In this phase I would simply like
to point out some properties related to the focus generated on the detector (see Figure
3.17): if, in the meridional plane, the crystal perfectly focus the light both thanks to its
curvature and to the shape of the surface (see subsection 3.2.3), on the sagittal plane
the crystal is flat being a cylinder. It means that, in the sagittal direction, the crystal
does not change the divergence of the incoming beam that is fixed by the height Z of the
crystal itself. Since the distance between the analyzer and the detector is exactly equal
to the distance between the source and the analyzer, it is reasonable to expect a linear
focus with height equal to 2Z = 2 cm.

Figure 3.17: The focal properties of a Johansson-type cylindrical analyzer are shown: the
focus will be two times the width Z of the analyzer.

The above reasoning is only approximately correct: by observing the projection of the
spectrometer on the meridional plane, in fact, it is immediate to appreciate how only for
the central ray the analyzer-detector distance is equal to the source-analyzer distance (see
Figure 3.18). All the beams that hit the analyzer on the left side will make a longer path
to reach the detector than the path they took to reach the analyzer, thus contributing to
a further lengthening of the focus if compared to what was previously estimated.
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Figure 3.18: Projection of the spectrometer on the meridional plane.

A simple way to correctly calculate the focal dimension D is exploit the following propor-
tion:

a : (a+ a′) = Z : D

where a is the shorter incoming path and, consequently, a′ is the longer outgoing path.

In the next chapters the different contributions that lead to a worsening of the energy
resolution of the instrument will be more deeply analyzed, initially addressing the problem
from a theoretical point of view and then comparing the results obtained with ray tracing
simulations.
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energy resolution

As introduced in the previous chapter, in order to have a perfect monochromatic beam it
would be necessarily for all the incoming rays to intercept the analyser at the same angle.
This is not possible mainly for two reasons:

1. Cylindrical stripes will necessarily introduce a spread of the reflected angles around
the nominal Bragg angle. This contribution is called Analyzer contribution to the
energy resolution.

2. Due to the non-negligible size of the source, there will be rays that starting from
different positions will intercept the analyzer with slightly different angles. This
further contribution is called Source contribution to the energy resolution.

The purpose of this chapter will be to derive analytical formulas to quantify the deviation
from the nominal Bragg angle due to the two contributions taken both separately and
simultaneously. The formulas thus obtained will be discussed trying to emphasize their
physical meaning, comparing them with the results reported in some papers. In the fol-
lowing, we will assume that the crystal curvature does not produce any intrinsic distortion
in the diffraction profile. In other words, the crystal behaves locally (i.e, in each small
area of its surface) as a flat crystal. The worsening of the resolution due to the bending
will be treated separately in Chapter 6.

4.1. Analyzer contribution to the resolution

In order to take into account only the analyzer contribution to the energy resolution,
in the following discussion we will assume a point-like source. As pointed out in 3.2.3,
Johansson crystals are not affected by aberrations. It is fundamental to underline that
this statement is perfectly true only if we are dealing with a toroidal crystal (see Figure
3.16a). This is not the case of a cylindrical crystal because there will be a distribution
of incidence angles across the width of the crystal i.e. out of the Rowland plane (Figure
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Figure 4.1: Different rays impinging on a cylindrically bent Johansson crystal. In green
are depicted the rays at Bragg condition, in shades of red the rays with a slightly different
incident angle.

4.1) which causes a degradation of the energy resolution.

The time has come to quantitatively answer the following questions:

1. what is the deviation ∆θa of a generic ray from the nominal Bragg angle?;

2. what is the energy deviation ∆Ea corresponding to ∆θa?

The answer to the second question is trivial: by differentiating the Bragg’s law 3.6 and
dividing the result by the Bragg’s law itself it is immediate to obtain:

∆λ

λB

= cot θB∆θ (4.1)

and taking advantage of the well-known relation

∆λ

λB

= −∆E

EB

(4.2)

it comes immediately that

∆E

EB

= − cot θB∆θ (4.3)
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were EB and λB represent the energy and the wavelength, respectively, of the radiation
satisfying Bragg condition. In the following, using simple trigonometric relations sup-
ported by Figure 4.2 and Figure 4.3, we will find analytical expressions for the angular
variation ∆θa as a function of the crystal coordinates (l and z)1 in a reference system
with origin placed at the center of the crystal. To be more precise, we will work mainly
with the complementary angles (identified in the Figures 4.2 and 4.3 with γB and γ).

Figure 4.2: View from above of Figure 4.3 particularly useful to visualize the existence
of some right triangles. The normal vectors in black are referred to the crystallographic
planes of the analyzer.

1The corresponding capital letters (L and Z) will be used to indicate the maximum values of these
coordinates (i.e. the half-length and half-height of the analyzer).
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Figure 4.3: 3D representation of two rays (a and a*) incident respectively at the center of
the crystal and at the extremity. Additional geometric elements are represented for the
sole purpose of supporting the reader in the calculations.

In order to avoid misinterpretations of the figures, it is important to underline that the
only elements with physical meaning (apart from the source and the crystal) are the two
orange rays (a and a∗) originating from the source and incident on the crystal respectively
in the center (it is the nominal ray, incident at θB) and in a generic point (with a generic
θ incidence angle that will deviate from θB as a function of the coordinates (l, z) of the
crystal). The other graphical constructions have only the purpose of supporting the reader
in the following calculations. Starting from Figure 4.2 and exploiting the Pythagorean
theorem on the purple triangle we can write:

b =
√
R2 − l2 (4.4)

then always referring to the purple triangle:

sin β =
l

R
(4.5)

Because of the similarity between the purple and blue right-angled triangles, all their



4| Geometric contribution to the energy resolution 47

angles are equal. Since the half-length of the crystal L is always much smaller than its
curvature radius R we can write:

β ≃ l

R
(4.6)

Taking advantage of the relations obtained above and relying on the Figure 4.2 and Figure
4.3 we can find a∗ and c applying the Pythagorean theorem respectively on the yellow
and dark green right-angled triangle obtaining:


a∗ =

√(
R sin θB − l cos

(
θB − l

R

))2

+ l2 sin2

(
θB − l

R

)
+ z2,

b =
√
R2 − l2,

c =
√

R2 cos2 θB + z2,

(4.7a)

(4.7b)

(4.7c)

As shown in Figure 4.3, a∗, b and c are the three sides of the triangle represented in light
green. This triangle is not a right triangle. Nevertheless, to relate the sides to the angles
we can exploit the generalization of the Pythagorean theorem2

c2 = (a∗)2 + b2 − 2a∗b · cos γ (4.8)

remembering that γ is complementary to the local incidence angle θ we can rewrite 4.8

c2 = (a∗)2 + b2 − 2a∗b · sin θ (4.9)

and so

sin θ =
(a∗)2 + b2 − c2

2a∗b
(4.10)

by substituting a∗, b and c and making the appropriate simplifications (without any
approximation)

sin θ =
2R2 sin2 θB − 2Rl sin θB cos (θB − l

R
)

2a∗
√
R2 − l2

(4.11)

that can be rewritten as
2Also known as the cosine theorem.
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sin θ =
2R sin θB(R sin θB − l cos (θB − l

R
))

2R(R sin θB − l cos (θB − l
R
)) ·
√

1− l2

R2 ·
√

1 +
l2 sin2 (θB− l

R
)+z2

(R sin θB−l cos (θB− l
R
))2

(4.12)

writing the equation in this way is easy to observe how the numerator can be partially
simplified. It is also possible to rearrange the roots at the denominator obtaining:

sin θ ·

√√√√1 +
l2 sin2 (θB − l

R
) + z2

(R sin θB − l cos (θB − l
R
))2

− l2

R2
−

[
l2

R2
·

l2 sin2 (θB − l
R
) + z2

(R sin θB − l cos (θB − l
R
))2

]
= sin θB

(4.13)

Thanks to the fact that l
R

<< 1 and z
R

<< 1 the term in square brackets is clearly
an infinitesimal of higher order than the others and, consequently, it can be neglected.
Developing the root in Taylor series:

sin θ ·

(
1 +

l2 sin2 (θB − l
R
) + z2

2(R sin θB − l cos (θB − l
R
))2

− l2

2R2

)
= sin θB (4.14)

From equation 4.14 is immediate to obtain the difference sin θB − sin θ

sin θB − sin θ = sin θ ·

(
− l2

2R2
+

l2 sin2 (θB − l
R
) + z2

2(R sin θB − l cos (θB − l
R
))2

)
(4.15)

The last step to be taken in order to conclude the reasoning is to relate the difference
between the sines of the incidence angles (sin θB − sin θ) with the difference ∆θa between
the angles themselves (what we actually want to calculate). This is possible simply by
exploiting the definition of the derivative of the sine function: considering in fact that, in
a real case, θB and θ will be very close in value, it is quite reasonable to write:

sin θB − sin θ ≃ cos θ∆θa (4.16)

Simply by substituting 4.16 inside 4.15 we find:
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∆θa = tan θB

([
− l2

2R2
+

l2 sin2 (θB − l
R
)

2(R sin θB − l cos (θB − l
R
))2

]
+

[
z2

2(R sin θB − l cos (θB − l
R
))2

])

(4.17)

Let us now make some physical considerations on the first term in square brackets: it
is evident that this term depends only on the l coordinate of the crystal. We know
that, in a Johansson crystal, at least when z = 0 there can not be any variation in the
incident angle due to the l coordinate (Section 3.2.3). From this simple observation we
can already deduce that the first term, because of its independence from the z coordinate,
must necessarily be null. Let’s prove it:

[
− l2

2R2
+

l2 sin2 (θB − l
R
)

2(R sin θB − l cos (θB − l
R
))2

]
=

[
− l2

2R2
+

l2

2R2
·

sin2 (θB − l
R
)

(sin θB − l
R
cos (θB − l

R
))2

]

(4.18)

finally making use of the well-known trigonometric formula

sin

(
θB − l

R

)
= sin θB cos

(
l

R

)
− cos θB sin

(
l

R

)
(4.19)

and assuming, as already done many times, that l
R
<< 1, Equation 4.18 can be rewritten

as:

[
− l2

2R2
+

l2

2R2
·

(sin θB − l
R
cos θB)

2

(sin θB − l
R
cos (θB − l

R
))2

]
≃
[
− l2

2R2
+

l2

2R2

]
= 0 (4.20)

We can therefore write the final formula describing the geometric contribution to
the energy resolution of a cylindrical Johansson crystal:

∆θa = tan θB ·

(
z2

2(R sin θB − l cos (θB − l
R
))2

)
(4.21)
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Figure 4.4: 3D plot of Equation 4.21.
The effect of coordinate l is exaggerated.

Observing relationship 4.21 just obtained and
its representations (Figures 4.4 and 4.5), some
observations arise spontaneously:

• ∆θa is exactly zero ∀l when z = 0. It
is the main peculiarity of a Johansson
analyzer;

• the variable z appears squared: this im-
plies that its sign does not affect ∆θa.
Physically this result is quite reasonable
as the Rowland circle identifies a sym-
metry plane for the spectrometer: what
happens above this plane must conse-
quently be the same as what happens
below (Figure 4.6a);

• contrary to the z variable, the sign of
the l variable affects ∆θa (Figure 4.6b).
Again, the result is not surprising. In
fact, only in the case in which the source
is placed in front of the crystal (back-scattering condition) should a left-right sym-
metry be expected. In this limit, indeed, there is no longer any dependence on the
sign of l as shown below:

lim
θB→ π/2

[
l · cos

(
θB − l

R

)]
= l · sin l

R
≃ l2

R

Figure 4.5: Geometric contribution of the analyzer with Rowland diameter R = 50 cm

and θB = 30°. Different colors indicate different ∆Ea.
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• as a last comment it is interesting to underline how the dependence due to the l

coordinate becomes more and more important as θB decreases. In fact, in formula
4.21 l is multiplied by cos θB. Despite this, however, the contribution due to l will
always be less important than that due to z. In fact, for reasonable incidence angles
(not too small), the dominant part of the denominator of Equation 4.21 will always
be R sin θB. For this reason, in some circumstances only the contribution due to the
z coordinate of the stripes will be considered.

(a) z symmetrical dependence. (b) l asymmetrical dependence.

Figure 4.6: 4.6a shows the symmetrical dependence on the z coordinate (green angles have
the same value). 4.6b shows the asymmetrical dependence on the l coordinate (green and
red angles have different values).

Comparison with results reported in literature

• Stepanenko [20] reports that, for a Johansson cylindrically bent crystal the following
formula holds:

∆λ

λB

≃ z2

2R2 sin2 θB
(4.22)

that, neglecting the l-component of the crystal, can be directly linked to our result
trough Equation 4.1;

• Rovezzi [6] reports the following formula:
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∆θa = tan θB

1− 1√
1 +

(
z

R sin θB

)2
 (4.23)

Simply by expanding the square root at the denominator:

∆θa = tan θB

1 +
(

z2

2R2 sin2 θB

)
− 1

1 +
(

z2

2R2 sin2 θB

)
 ≃ tan θB

(
z2

2R2 sin2 θB

)
(4.24)

that is, neglecting the length l of the crystal, the same result derived in the previous
section 4.21.

4.2. Source contribution to the resolution

Following the same ideas of section 4.1 we will now concentrate on the contribution to
the energy resolution due to the finite size of the source: in order to take into account
only this contribution, in the following we will assume a point-like analyzer.
In analogy with what was done in the previous case, our goal is to derive ∆θs considering
the nominal ray a starting from the centre of the source and a general ray a∗ originating
from the point (sy, sz) of the source. As in the previous demonstration, for convenience,
Figure 4.7 shows also the complementary angles γB and γ.

Our goal will be to find an expression for the generic incidence angle γ. To do this, it is
necessary to find the three sides of the triangle highlighted in green in Figure 4.7. Let’s
start finding b: by applying the cosine theorem to the gray triangle we can write:

(b∗)2 = c2 + s2y − 2syc · cos (π/2− γB) (4.25)

Substituting c = R/2 in equation 4.25:

b∗ =

√
R2

4
+ s2y −Rsy · sin γB (4.26)

Applying the Pythagorean theorem to the blue triangle it is immediate to obtain b:
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Figure 4.7: 3D representation of two rays (a and a∗) originating respectively from the
center of the source and from a generic point (sy, sz) where sy and sz are the coordinates
of the source (represented by the red rectangle) starting from its center. Additional
geometric elements are represented for the sole purpose of supporting the reader in the
calculations.

b =

√
R2

4
+ s2y −Rsy · sin γB + s2z (4.27)

In order to find a∗ we can apply the Pythagorean theorem to the triangle having as catheti
a and e and as hypotenuse our unknown a∗:


a = R sin θB

e =
√

s2y + s2z,

a∗ =
√

R2 sin2 θB + s2y + s2z,

(4.28a)

(4.28b)

(4.28c)

We have therefore obtained, as we set out to do, the three sides of the green triangle:
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a∗ =

√
R2 sin2 θB + s2y + s2z,

b =

√
R2

4
+ s2y −Rsy · sin γB + s2z

c = R/2,

(4.29a)

(4.29b)

(4.29c)

Using the cosine theorem on this triangle and exploiting the relations3 cos γ = sin θ and
sin γB = cos θB

b2 = (a∗)2 + c2 − 2a∗c · sin θ (4.30)

Substituting equations 4.29 inside equation 4.30

−Rsy · cos θB = R2 sin2 θB −R
√

R2 sin2 θB + s2y + s2z · sin θ (4.31)

from which it is possible to derive an expression for the sine of the incidence angle:

sin θ =
R sin2 θB + sy cos θB

R sin θB

√
1 +

s2y+s2z
R2 sin2 θB

(4.32)

Since the dimensions of the source are orders of magnitude smaller than R, the square
root can be expanded in Taylor series obtaining:

sin θ

(
1 +

s2y + s2z
2R2 sin2 θB

)
= sin θB +

sy
R

1

tan θB
(4.33)

Similarly to what was done in section 4.1 finding the difference sin θB−sin θ and exploiting
the definition of the derivative (see 4.16) it is immediate to obtain the final formula
describing the geometric contribution to the energy resolution of the source:

∆θs = − sy
R sin θB

+ tan θB

(
s2y + s2z

2R2 sin2 θB

)
(4.34)

observing equation 4.34 we notice how sz appears squared unlike sy which also has a
linear term. The square terms of sz is compatible with the meridional specular symmetry
(in total analogy to what has been said for the z component of the crystal). Comparing

3the relations are consistent since (γ , θ) and (γB , θB) are, by definition, complementary angles.
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equation 4.21 and 4.34 we notice that the contribution of z and sz to ∆θa and ∆θs

respectively, are formally identical because the flat shape of the crystal in the sagittal
direction. What is even more important to underline is that, due to the small size of the
source, quadratic terms can be totally neglected. Consequently, it will be particularly
important to pay attention to the sy dimension of the source. We can now estimate
the total angular deviation given by both the finite source size and the extension of the
cylindrical crystal in the sagittal direction.

4.3. Total geometric contribution to the energy res-

olution

We are now able to estimate how much the incidence angle of a given ray differs from the
Bragg angle as a function (separately) of the coordinates (sy, sz) of departure and (l, z)

of arrival of the ray itself.
At this point, however, it is necessary to underline a further aspect: equations 4.21 and
4.34 do not tell us the probability that a randomly chosen ray deviates by a certain
∆θ from the Bragg angle. They only tell us all the possible displacements that we can
have. Knowing the probability will allow us to calculate also the statistical weight of each
angular deviation ∆θ. In other words, this frequency distribution can be seen as an answer
to the following question: what is the probability that a ray randomly chosen deviates
by a given value ∆θ from the Bragg angle? In this new context we can see the terms
∆θa and ∆θs as random variables directly related to their relative frequency distributions
pa(∆θa) and ps(∆θs), respectively. On the other hand we will be interested in the overall
geometric contribution: it can be shown (Appendix C) that, neglecting the component sz
for the source and l for the crystal, the total geometric contribution to energy resolution
∆θg is simply given by:

∆θg = ∆θa +∆θs (4.35)

the two random variable are so decoupled. Therefore, knowing that the two variables are
independent, the correspondent frequency distribution pg(∆θg) is given by the convolution
of pa(∆θa) and ps(∆θs) (see Appendix B). By introducing the effect of the l component we
are no more authorized to consider Equation 4.35 valid. Nevertheless as will be shown in
Chapter 5 the convolution of the frequency distributions is still a very good approximation
in order to estimate the real pg(∆θg).



56 4| Geometric contribution to the energy resolution

4.3.1. Frequency distribution of the analyzer

The goal of the following paragraph will be to find an analytical formulation for the
relative frequency distribution referred to ∆θa. All the considerations we will make from
now on will be based on the assumption that the analyzer is uniformly irradiated by the
source4. We therefore calculate the probability pa(∆θa)d∆θa that a randomly chosen ray
falls in the range ∆θa ± d(∆θa)

2
from the Bragg angle. As graphically suggested by Figure

4.8 this probability is simply the ratio:

pa(∆θa)|d∆θa| =
4L|dz|
4LZ

=
|dz|
Z

(4.36)

where the numerator is the area of the two red bands (see Figure 4.8) and the denominator
is the area of the analyzer5. Since the coordinate l has a limited impact on ∆θ we can
neglect its effect by setting l = 0. In this framework:

∆θa = tan θB

(
z2

2R2 sin2 θB

)
(4.37)

this parabola can be derived obtaining

∣∣∣∣d∆θa
dz

∣∣∣∣ = tan θB

(
|z|

R2 sin2 θB

)
(4.38)

thus finding an analytical formula for the frequency distribution:

pa(z) =
|dz|

Z · |d∆θa|
=

R2 sin θB cos θB
Z · |z|

(4.39)

using equation 4.37 and substituting it in equation 4.39 we can finally write:

pa(∆θa) =
R2 sin θ cos θ√

2R2 sin θ cos θ∆θa · Z
=

R
√
sin θ cos θ√
2∆θa · Z

∝ 1√
∆θa

(4.40)

This result is reasonable and positive for our interests: the more a ray deviates from the
Bragg angle, the less its statistical weight will be relevant. This concept is easily deducible
from Figure 4.9: the yellow areas are smaller than the red ones. To conclude, a brief
observation regarding Equation 4.40 just obtained is proper: this function, representing

4This assumption is reasonable and derives directly from the hypothesis L << R.
5Neglecting the curvature of the crystal and treating it as a rectangle.
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a probability density, must necessarily be normalizable (i.e. integrable):

∫ ∆θmax
a

0

1√
∆θa

d∆θa ̸= ±∞ (4.41)

This improper integral converge as expected also if the function 4.40 diverges in ∆θa −→ 0.

Figure 4.8: Graphical view of the probability pa(∆θa)d∆θa under the hypothesis of uni-
form irradiation of the analyzer. The probability, for a ray, to fall in the interval d∆θa is
represented by the ratio between the two red areas and the analyzer surface (in gray).
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Figure 4.9: Graphical view of the probability pa(∆θa)d∆θa under the hypothesis of uni-
form irradiation of the analyzer. The probability, for a ray, to fall in the interval d∆θa red
(yellow) is represented by the ratio between the two red (yellow) areas and the analyzer
surface (in gray). The probability decreases moving away from the center of the analyzer
in the z direction.
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4.3.2. Frequency distribution of the source

Following exactly the conceptual scheme of the previous paragraph we will find an analyt-
ical formulation for the relative frequency distribution of ∆θs. For convenience Equation
4.34 is here reported neglecting the quadratic terms:

∆θs = − sy
R sin θB

(4.42)

To underline how true this hypothesis is, note that in Figure 4.10 the effect of quadratic
dependencies is deliberately amplified to make it visible.

Figure 4.10: Graphical view of the probability ps(∆θs)d∆θs under the hypothesis of uni-
form emittance of the source. The probability, for a ray, to fall in the interval d∆θs red
(yellow) is represented by the ratio between the red (yellow) area and the analyzer surface
(in gray). The probability is constant in first approximation.
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Consequently, unlike what happens for the analyzer (see Figure 4.9), in Figure 4.10 the
red and yellow areas are equal due to the linear dependence just underlined. This implies
a constant probability distribution:

p(∆θs) = constant (4.43)

Unfortunately this is not the end of the story: we must consider a Gaussian distribution
for the emitted radiation. Coming back to Figure 4.10, despite the fact that the red band
has the same area as the yellow one, being the first more in the periphery of the source
it will have to be weighted less since it will be less probable, for a ray, to originate from
that region. We will assume this weighting function to be a bi-dimensional Gaussian as
shown in Figure 4.11

Figure 4.11: The bi-dimensional Gaussian in red representing the decreasing of the radiant
emittance of the source (in green) starting from its center and going to the periphery.
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As a direct consequence of the reasoning just made, in order to calculate the frequency
distribution of the source it will be necessary to multiply Equation 4.43 by the Gaussian
weighting function obtaining:

ps(sy, sz) = C · exp
[
−

s2y
2σ2

y

− s2z
2σ2

z

]
(4.44)

where sy and sz are the coordinates of a generic point of the source and σy and σz are
the standard deviations of the 2D-Gaussian. In order to find p(∆θs) we can use equation
4.42 considering only the linear dependence on sy:

ps(∆θs) = C · exp
[
−R2 sin2 θB(∆θs)

2

2σ2
y

]
(4.45)

Clearly the standard deviation σy must be intimately linked to the size of the source in
the meridional direction and related to its FWHM by the relation:

FWHMy = 2
√
2 ln 2σy ≃ 2.355σy (4.46)

After this long journey we are finally able to estimate the probability for a ray to deviate
by ∆θs from the Bragg angle. Putting things together we are now able to determine the
overall probability distribution pg(∆θg) that, thanks to the independence between ∆θa

end ∆θs (see Appendix C) is simply given by the convolution (see Appendix B) of pa(∆θa)

and ps(∆θs):

pg(∆θ) =

∫
pa(∆θ −∆θ′)ps(∆θ′)d∆θ′ (4.47)

As a last comment it may be useful to note how the analyzer contribution (Equation
4.40) admits only positive ∆θa unlike the source contribution (Equation 4.45) which,
being Gaussian, is perfectly symmetrical. Therefore, the overall probability will appear
as symmetric (asymmetric) if the source (analyzer) contribution dominate.
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5| Ray tracing simulations

Nowadays, ray tracing software are powerful means to simulate the behavior of electro-
magnetic radiation interacting with optical systems of various kinds. These programs
have been improved and adapted over the years specifically for the study of synchrotron
radiation as evidenced by the numerous programs available. Despite the vast availability
of programs that, albeit with difficulty, could have been adapted to our specific case, it
was considered less expensive and more instructive to write a simple ray tracing program
able to provide us detailed information on the geometric resolution and the focal properties
of the instrument.

5.1. The software: an overview

The basic idea on which the program is founded is extremely simple: rays originating
from a source hit the crystal in such a way that the latter is uniformly irradiated1 and
are labelled according to their incidence angle. After reflection from the crystal, they are
intercepted by a plane placed in the position of the detector and oriented in the direction
of the crystal: from the intersection of the reflected rays with the plane it will be possible
to obtain information on the focal shape and size. Furthermore, the energy distribution
of the rays captured by the detector can be determined. All these information will be
discussed, comparing them with the results predicted by the theory developed in Chapter
4. We will now go into more details, describing some features of the program:

The source

As already anticipated, the source is modeled by a set of coplanar points from which
a number m of rays pre-established by the user will originate. The distribution of the
points is clearly crucial and has a direct impact on the simulated resolution; in particular,
three source configurations have a physical sense since, each of these allows to highlight a
particular characteristic of the instrument:

1Hypothesis used to derive the results of section 4.1 and subsection 4.3.1.
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1. Point-like source: this configuration allows to simulate the single geometric contri-
bution deriving from the extension of the analyzer, thus allowing direct comparisons
between results simulated and predicted from the developed theory (see chapter 4);

2. Uniformly distributed rectangular source: this configuration, if coupled to that of a
point-like analyzer, will allow us to simulate only the geometric contribution deriving
from the extension of the source, thus allowing a direct comparison with the results
obtained in section 4.2;

3. Gaussian source: it is the configuration that should best approximate the real case.
The specifications provided by INCOATEC indicating the size of the source, in fact,
refer to the FWHM in both directions2. The user will insert the two FWHM values
of the 2D Gaussian and the software will return a distribution of points in the plane
randomly chosen with the only constraint that their surface density is Gaussian.

(a) Point-like source (b) Uniform rectangular source (c) Gaussian source

Figure 5.1: (a)Is a source made of a single point. (b)Is obtained starting from 2500
points uniformly distributed on a rectangular surface with sides Sy = 35 µm and Sz =
300µm. (c)Is obtained starting from 2500 randomly-chosen points distributed following
a 2D Gaussian with FWHMy = 35 µm and FWHMz = 300µm.

The crystal

The crystal is modeled by the software considering two cylindrical surfaces:
one has the curvature radius of the Rowland circle and represents the real surface of the
crystal3; the other one represents the crystallographic plane and, consequently, it will have
a curvature radius doubled if compared to the previous surface. This is the surface that
acts as a mirror i.e. the optical element with respect to which the rays coming from the

2More precisely following the specifications provided by Incoatec FWHMy = 35 µm and FWHMz =
300 µm .

3Remember that a Johansson crystal is obtained starting from a Johann crystal and digging its surface
in such a way that it could con-kiss everywhere the Rowland’s circle (see subsection 3.2.3).
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source will be reflected. The correspondence between incidence angle and reflected energy
is given by the Bragg’s law 3.6 considering the actual distance between crystallographic
planes. The simulations reported in the following chapter will always refer to Ge[220]
reflection (a = 5.66Å) and successive harmonics4.
In summary, each ray will travel a straight path until it intercepts the first surface. At the
intersection point, the reflection with respect to the normal referred to the second surface
(crystallographic plane) will take place, thus allowing to exactly simulate the geometric
behavior of a Johansson-type crystal. Reflected rays will continue along a straight path
until they intercept the plane of the detector. The user can choose in how many points
the crystal should be hit (this number is equivalent to the number m of rays starting from
each point of the source). By choosing a single ray for each point of the source, the crystal
will be hit only in its center, thus allowing only the geometric effects deriving from the
extension of the source to be resolved. By choosing a different number of rays m, instead,
the program will arrange the incidence points on the surface of the crystal so that they
are equally distributed.

The detector

The reflected rays will continue along a straight path until they intercept the plane of the
detector. The normal to this plane will always be oriented in the direction of the analyzer
and, from the intersection between this plane and the rays, it will be easy to trace the size
and shape of the focus. At the same time, however, it is important to underline how the
rays incident on the crystal are labeled by their incidence angle. This will allow to go back
directly both to the variable ∆θ for each focal point and to the frequency distribution
associated with it, first of all simulating the limiting cases of point-like source and point-
like analyzer theoretically treated in the previous chapter and, finally, by coupling the two
effects which, being independent, will lead to a frequency distribution very close to the
convolution between the distributions of the two limiting cases. The chapter will continue
according to this logic and this order trying to highlight the most interesting aspects from
a physical point of view.

4As demonstrated in subsection 3.1.2, for a diamond-like crystal [440] and [660] reflections are allowed.
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5.2. Simulation for the individual contributions

We start from the analysis of the analyzer and source contributions separately. The
simulations reported below, unless otherwise specified, will always refer to a curvature
radius of the crystallographic planes (Rowland circle diameter) R = 50 cm and a cylindrical
Johansson-type crystal of length 2L = 10 cm e width 2Z = 1 cm.

5.2.1. Analyzer contribution to energy resolution

The simulations shown in Figure 5.3 were made by taking 2500 rays with origin in the
center of the source. These simulations must therefore be compared to Equation 4.21. As
already pointed out in Chapter 4, the dependence due to the l coordinate becomes more
and more important as θB decreases. This effect is clearly evident also in the simulations,
especially when comparing Figure 5.3a with Figure 5.3d. As the simulations show, al-
though this effect is negligible at high angles it becomes comparable to the contribution
along the z coordinate going down in incidence angles. In Figure 5.2 the maximum dis-
placement in energy predicted by Equation 4.21 and Equation 4.24 are compared with
the simulated values. It is evident how, maintaining the l dependence in the formula for
the energy resolution has greatly improved the agreement with the simulated data.

Figure 5.2: Maximum values ∆Emax
a (θB) predicted by Equation 4.21 and 4.24 and simu-

lated (Figure 5.3). Ge[220] reflections are here considered.
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(a) Front view of the crystal when θB = 75°.

(b) Front view of the crystal when θB = 60°.

(c) Front view of the crystal when θB = 45°.

(d) Front view of the crystal when θB = 30°.

Figure 5.3: Front view of the crystal: different colors represent different deviations ∆Ea

from the Bragg energy (in the center of the analyzer). As the deviation increases, the
colors turn from blue to yellow. Ge[220] reflections are here considered.
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At this point, I think it is right to make a simple consideration that will be useful in a
little while: as shown in Figure 5.3, the region of the crystal that provides a larger ∆Ea

is always the part on the right (the one with l > 0). Looking at Figure 4.3, it is clear
that the positive l regions are the parts of the crystal closest to the source. This is logical
since, from the point of view of the source, the closest crystal region will appear more
extended and, consequently, will be responsible for a worse energy resolution. Soon, this
observation will help us to highlight a weak point of all theoretical treatment and of the
simulations.5

We now turn to discuss the frequency distributions already extensively described in section
4.3.1. The software allows to count and separate the rays into energy intervals, producing
the histograms shown in Figure 5.4. These must now be compared with the theoretical
result predicted in subsection 4.3.1 and reported for convenience below:

pa(∆θa) ∝
1√
∆θa

∝ 1√
∆Ea

(5.1)

It is evident that the histograms are well approximated by the theoretical (red) curves
up to a value of ∆Ea (about 0.16 eV for Figure 5.4a and 0.9 eV for Figure 5.4b) that,
increasing the Bragg angle θB, approaches ∆Emax

a simulated. This discrepancy is due to
the fact that, in deriving equation 5.1 we neglected the l-dependence of ∆θa (or ∆Ea),
not thereby including the contributions given from the edges of the analyzer which lead
to a slight worsening of the energy resolution. This is the reason why, the simulations
show a tail (longer if θb is small) not predicted by the analytical pa. Thus, the discrepancy
between theoretical and simulated data is explained. The tails are due to the meridional
extension l of the crystal and follow a different trend. As we already know, the depen-
dence in l becomes more and more important as θB decreases. In fact, if in Figure 5.4a
the tail involves only few rays, the same cannot be said for Figure 5.4b. This show the
importance of taking into account the meridional dimension of Johansson-type crystals
at small Bragg angles.
We have critically analyzed the simulations in the case of a point-like source, compar-
ing these results with those predicted by the approximate theory and finding coherence
between the discrepancies shown by the theory, considering the approximations made to
derive it. As a last question: how could simulations differ from reality?

5I strongly believe it is the only, albeit small, geometric approximation made by the ray tracing
simulation.
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(a) Frequency distribution when θB = 75° compared with theoretical prediction

(b) Frequency distribution when θB = 30° compared with theoretical prediction

Figure 5.4: Frequency distributions in the two extreme conditions (θB = 75° and θB = 30°)
simulated with a point source and 90000 rays impinging uniformly the crystal. The red
curve represents the trend 5.1 predicted in section 4.3.1. Ge[220] reflections are here
considered.
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The only real approximation that has been made in writing the code is to assume that
the crystal is uniformly irradiated at any θB. However, it must be emphasized that,
especially at low incidence angles, there is a region of the crystal closer to the source and
a region further away (see Figure 5.5). The emission cone of the source will have a certain
divergence so that, as the distance from the source increases, it is absolutely logical to
expect a decrease in the density of rays. The closest part of the crystal will therefore
be more irradiated than the farthest part. As noted earlier the neighboring part of the
crystal is also the one that contributes most to the resolution degradation. For this reason
it is logical to expect more rays at high ∆Ea and fewer at low ∆Ea than in the simulated
histograms 5.4. However, I am strongly convinced that this effect is negligible given the
small length of the crystal compared to the typical distances between source and crystal.
A future software update may include this effect to make simulations even more realistic
than they already are.

Figure 5.5: The beam emitted by the source hits the analyzer: especially at grazing
incidence, the farthest part of the crystal will be irradiated less than the nearer part.
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5.2.2. Source contribution to energy resolution

We will now carry out an analogous analysis considering a point analyzer and an extended
source to isolate its geometric contribution. First of all, rectangular sources will be sim-
ulated: in this way, in fact, it is possible to exactly estimate the ∆Emax

s predicted by
the theory (equation 4.34) as the latter was obtained under the hypothesis of rectangular
source (see section 4.2). We will then move on to a detailed analysis of the real case of
practical interest, namely that of a Gaussian source.
The theoretical result find in section 4.2 is here reported for practicality transforming the
deviations in angle into deviations in energy simply through equation 4.3 and neglecting
quadratic dependencies:

∆Es = −E cot θB

[
− sy
R sin θB

]
(5.2)

From this result then, it was possible to obtain a constant frequency distribution (see
section 4.3.2):

ps(∆Es) = constant (5.3)

The simulations shown in (Figure 5.6) refer to a rectangular source (2Sy = 35 µm and 2Sz

= 300µm) composed of 90000 points chosen randomly within the rectangular surface, each
originating a ray. The histograms clearly show a flat frequency distribution as expected.
Furthermore, it is confirmed that the effects of quadratic terms, neglected in the analytical
expression for the frequency distribution of energies, are negligible. It can be deduced
because the simulations are totally symmetrical: the quadratic terms, on the other hand
would make the histograms weakly asymmetric (see Equation 4.34). It is important to
underline the fact that the source, unlike the analyzer, has dimensions of the order of µm
and therefore, the assumption Syz/R ≪ 1 is certainly more effective than the assumption
L/R ≪ 1 made in the case of the analyzer. For this reason we expect, for the source, a
better agreement between analytical results and simulations.
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(a) Frequency distribution when θB = 75°

(b) Frequency distribution when θB = 30°

Figure 5.6: Frequency distributions in the two extreme conditions (θB = 75° and θB = 30°)
simulated with a rectangular source (35×300 µm2) and 90000 rays impinging in the centre
of the crystal. Ge[220] reflections are here considered.
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Figure 5.7: Maximum values ∆Emax
s (θB) theoretically predicted and simulated. Ge[220]

reflections are here considered.

In the case of a source with a Gaussian distribution of points, as seen in section 4.3.2 also
the frequency distribution will change from a constant to a Gaussian:

ps(∆Es) = C exp

[
−(2

√
2 ln 2)2 R2 sin2 θB tan2 θB (∆Es)

2

2 E2 FWHM2
y

]
(5.4)

This is a Gaussian with zero mean and standard deviation σs:

σs =
E · FWHMy

2
√
2 ln 2R sin θB tan θB

(5.5)

where FWHMy is the full width at half maximum dimension of the source in the merid-
ional plane. Clearly, considering the successive harmonics (Ge[440] and Ge[660]) the
reflected energies will be respectively double and triple and, consequently, the standard
deviation. In Figure 5.9, the theoretical standard deviation (Equation 5.5) is plotted. In
particular, also the standard deviations obtained by the Gaussian fit of the simulations
(Figure 5.8) are reported in order to emphasize the perfect agreement with theory.
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(a) Frequency distribution when θB = 75°

(b) Frequency distribution when θB = 30°

Figure 5.8: Frequency distributions in the two extreme conditions (θB = 75° and θB = 30°)
simulated with a Gaussian source (FWHM 35 × 300 µm2) and 90000 rays impinging in
the centre of the crystal. Ge[220] reflections are here considered. In red the theoretical
Gaussian. In yellow the Gaussian fits of the simulations.
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Figure 5.9: Theoretical standard deviation σ of the frequency distribution due to a Gaus-
sian source with FWHMy = 35 µm considering the Ge[220] reflections. Simulated results
in the extreme cases are also reported as yellow dots.

In this first part of Chapter 5, simulations were extremely useful in order to validate
analytical calculations made in Chapter 4. For this reason, up to now, simulations were
carried out by decoupling the contributions deriving from the source and from the ana-
lyzer. Both sets of simulations show a perfect agreement with the respective probability
distributions predicted by the theory (Equations 4.40 and 4.45) confirming our intellec-
tual control on the geometric contributions to energy resolution of the spectrometer.
The next natural step is to simulate the overall geometric contribution to energy resolution
(pg) considering both an extended source and analyzer at the same time and comparing it
with the theoretical result: as shown in Appendix C, in fact, the total angular deviation
∆θg is given, as a first approximation, by:

∆θg ≃ ∆θa +∆θs

Since ∆θa and ∆θs are decoupled and independent, the overall theoretical probability
distribution can be obtained by convolving the probability distributions of ∆θa and ∆θs,
that is

pg(∆θ) =

∫
pa(∆θ −∆θ′)ps(∆θ′)d∆θ′
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5.3. Simulation of the total geometric contribution

to energy resolution

To naturally conclude the long excursus regarding the geometric contribution of the spec-
trometer, this chapter reports the results of the simulations carried out considering both
the effects of the source and of the analyzer at the same time i.e. the overall geometric
resolution of the instrument. Particular attention should be paid to Figure 5.10: the left
column refers to the simulations carried out considering all the correct parameters of the
instrument, while the images on the right are the frequency distributions predicted by
the theory. The theoretical curves are also superimposed to the simulated histograms in
order to make the comparison easier: it is evident how the theory fits almost perfectly
with the simulations although the first one do not include the effects due to the length
of the analyzer. As small deviation can be observed in Figure 5.10a: the theory seems to
provide a slight underestimation only on the right part of the overall distribution starting
approximately from 0.16 eV. This effect is essentially due to the fact that the frequency
distribution of the analyzer, represented in blue in the plot on the right (see Figure 5.10b),
does not show the typical tail originating from the l-dependence (see Figure 5.4). This
leads to an underestimation of the convolution, especially when the tail is weighted by the
maximum of the Gaussian of the source (in green) i.e. when the relative shift between the
two graphs is, not by chance, around 0.16 eV. The small effect due to the length of the
crystal becomes even less significant at lower Bragg angles where, as seen, the tail should
be more significant. The apparent contradiction is immediately solved noticing how, as
the Bragg angle decreases, the source contribution becomes more and more dominant over
the analyzer distribution (observe the panels on the right), effectively hiding any effect
coming from the tail. To summarize we can say that even in the worst condition, the dif-
ference between the simulated frequency distribution and the analytical result obtained
neglecting the l coordinate of the crystal is so small that an excellent estimate of the
overall frequency distribution can be obtained simply by convolving, for each incidence
angle, equation 5.1 with equation 5.4 without the need to perform any simulation.
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(a) Simulation at θB = 75° (b) Analytical distributions at θB = 75°

(c) Simulation at θB = 60° (d) Analytical distributions at θB = 60°

(e) Simulation at θB = 45° (f) Analytical distributions at θB = 45°

(g) Simulation at θB = 30° (h) Analytical distributions at θB = 30°

Figure 5.10: On the left are reported the overall frequency distributions simulated at
different θB considering a Gaussian source (FWHM 35 × 300 µm2) with 2500 points
arranged randomly and an analyzer of length 2L = 10 cm and width 2Z = 1 cm composed
by 625 points. On the right the analytical frequency distributions ps and pa and their
convolution pg. The convolutions (red) are also superimposed to the simulated histograms.



78 5| Ray tracing simulations

Figure 5.11: The FWHM of the total geometric contribution to energy resolution is here
reported in function of the Bragg energy EB. Both Ge[220] and Ge[440] reflections are
considered. Different diameters of the Rowland circle are represented. With black dashed
lines some Bragg angles of the Ge[220] reflections are reported. With red dashed lines
some Bragg angles of the Ge[440] reflections are reported.

In Figure 5.11 the FWHMg of the overall geometric contribution to energy resolution as
a function of the Bragg energy EB are simulated for different spectrometer dimensions,
considering both the Ge[220] and Ge[440] reflections. We could discuss the meaning of
the FWHMg in an extremely asymmetrical graph like the one shown in Figure 5.10a:
probably, for this particular shape it is not the most appropriate figure of merit; on the
other hand, the energy resolution of the spectrometer is critical at low Bragg angles, where
the distributions become really similar to a Gaussian.

The overall geometric contribution to energy resolution is reported in Figure 5.12 for
a Ge[220] Johansson (R = 50 cm) crystal of 10 × 1 cm2 and considering a source with
FWHM along the two axes respectively equal to 35 µm and 300 µm. The Ge[440] and
Ge[660] reflections can be directly deduced from the multiple axes reported with different
colors:
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Figure 5.12: The FWHM of the total geometric contribution to energy resolution is
here reported as a function of the Bragg energy EB. The Ge[220], Ge[440] and Ge[660]
reflection for a Johansson (R = 50 cm) crystal of 10×1 cm2 surface and a Gaussian source
of 35× 300 µm2 (FWHM2) are considered.

Thanks to the partial overlap between different reflections we can cover the entire energy
spectrum from EB = 3 keV up to EB = 14 keV starting the scan at θB = 75° considering
the Ge[220] reflection. As can be seen from Figure 5.11 and Figure 5.12, reached an energy
EB ≃ 6 keV for the Ge[220] reflection with an incident angle θB ≃ 30°, it is possible to go
back to the initial value θB = 75° restarting the scan considering, this time, the Ge[440]
reflection. Thanks to the partial overlap between different reflections is so possible to
continuously cover a big energy interval. Following this approach it is possible to entirely
cover the range 3− 14 keV keeping the total geometric resolution FWHMg below 2 eV.
Nevertheless, as will be explained in Chapter 6, in order to consider the overall geometric
resolution it will be necessary to take into account a further contribution to the energy
resolution that, until now, I have never explicitly considered.
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6| Intrinsic contribution to energy

resolution

Beside the geometric contribution described in the previous chapters, we need to consider
the intrinsic energy resolution of the analyzer, whose origin can be traced in the dynamical
theory of diffraction from bent crystals. Despite the relevance of this topic, this chapter
does not aim to deal with it in depth for two reasons:

• the theory that will be presented is extremely complex and goes beyond the scope
of this thesis work and probably my skills;

• the intrinsic contribution deriving from this theory can not be changed as its name
suggest. It is an intrinsic property of the crystal that can not be adjusted, as the
geometric contribution to energy resolution, by properly designing the instrument.

Nevertheless, including the intrinsic contribution is necessary. In section 6.1 the most im-
portant aspects of the theory will be mentioned while, in section 6.2, the results obtained
through the simulations carried out with tbcalc, a software written to precisely describe
the diffraction profile of a bent crystal, will be reported.

6.1. Dynamic theory of diffraction

6.1.1. From kinematic to dynamic theory of diffraction

The kinematic theory of diffraction is based on the assumption that, when the incident
radiation penetrates inside the crystal, the magnitude of the X-ray wavefield does non
change. In other words, in order to treat under this hypothesis the problem of diffraction
we must be sure that the scattering can be considered to be weak. Starting from the
kinematic theory it is possible to derive Bragg’s law 3.6 and the unit cell structure factor
(see section 3.1.2). However, a theory aiming at describing quantitatively the diffraction
profile of a crystal should take into account the attenuation of the radiation field inside
the crystal and the possibility of multiple scattering events. The theory that takes into
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account all these aspects is known as Dynamical Diffraction Theory [9]. Before introducing
the main results of the theory we can describe a simpler phenomenon (usually neglected
in the derivation of Bragg’s law). Even in the kinematical framework, indeed, a perfect
crystal ideally composed by an infinite stack of layers presents a small shift from the peak
positions predicted by Bragg’s law 3.6.

Figure 6.1: The difference between the refractive indices of the layers and of the spaces
between them introduces a small phase shift not included in Bragg’s law.

This effect is due to the difference between the refractive indices of the layers and of the
space in between (see Figure 6.1). We can ask ourselves what happens around a Bragg
reflection: to this purpose we can introduce the parameter ζ in order to map the reciprocal
space:

ζ =
∆λ

λ
=

∆Q

Q
(6.1)

it means that Equation 3.9 can be rewritten including this new parameter ζ that allows
us to probe the regions around a Bragg peak:

Q = mG(1 + ζ) (6.2)

Summing all the reflections obtained by the infinite stack of crystallographic planes a
reflectivity no longer centered on the Bragg peak is obtained: this shift is usually called ζ0.
Let us try to derive some characteristics of this parameter making qualitative reasonings:
due to the fact that the refractive index, for X-rays, is less than unity, we can expect that
the modulus of the wavevector inside the crystal layers is smaller than in the interstitial
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regions [9]. For this reason, in order to have constructive interference we must have
|k| outside larger than the value predicted by Bragg’s law 3.6. Therefore we expect a
reflectivity maximum displaced by a positive amount (ζ0 > 0) if compared with the value
predicted by Bragg’s law. As a first comment we can therefore say that Bragg’s law must
be "corrected" including this shift of the peaks. The reflectivity curve thus obtained is
so peaked not at ζ = 0 but at ζ = ζ0. If we are sufficiently far from ζ0 the kinematic
theory (used up to now) can still be considered as a good approximation. As |ζ − ζ0| −→ 0

the kinematical approximation breaks down and the reflectivity must be described by
dynamical theory. The aim of the dynamical theory of diffraction is to calculate the
scattering from an infinite stack of atomic planes where each one reflects a fraction of the
incident wave. The only parameter which I would like at least to mention is the Darwin
width: if the Bragg’s law implies that only a single energy is reflected for a given angle,
an important result of dynamic theory is that the reflected beam has a finite bandwidth
that is called Darwin width. Clearly, this enlargement causes a deterioration of the energy
resolution that must be taken into account in order to well estimate the real behaviour of
the spectrometer.

Dynamic theory for bent crystals

However, the theory just presented is not sufficient if we want to consider bent crystals.
In this case, in fact, the local distance between crystallographic planes can no more be
considered uniform due to the bending. In a pictorial view we can say that, because
of the bending, there will not be a unique interatomic distance but a distribution of
interatomic distances [10], which will cause a further broadening of the reflected energy.
A simple explanation can be done saying that, in this conditions, Bragg’s law is satisfied
by a distribution of angles. Dynamic theory for bent crystals requires more complicated
theories and different approximated approaches are usually followed [21]. In particular,
software that are typically used to estimate this contribution are based on two of them:

• Multilamellar method:
the strain inside the material is not considered and a bent crystal is modeled by
several flat lamellae parallel to the crystal surface. Each lammella behaves as a flat
crystal and reflects the radiation [10]. The superposition of the radiation reflected
by each lammella gives the final result. This approach can be followed only if the
crystal is sufficiently thick and with low curvature. This approach was introduced
in [22] and implemented in the SHADOW package [23].
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• Takagi-Taupin theory:
Unfortunately, given the small curvature radius of our crystal, it is convenient to
opt for a more accurate method, which also takes into account the internal stress
of the material. We will therefore focus on the Takagi-Taupin approach, an opti-
mum compromise of accuracy and relative simplicity. This method was developed
independently by Satio Takagi [24] and Daniel Taupin [25]. Analytic solutions for
the TT problem are known only for simple, unrealistic cases while, typically, solu-
tions are found numerically [26]. We will follow the method developed by Ari-Pekka
Honkanen in the Phyton program tbcalc (Toroidally Bent Crystal Analyzer Calcula-
tor) [27]. This is the program used in the following simulations in order to determine
the intrinsic contribution to energy resolution.

6.2. The tbcalc simulations

Here the simulations carried out with tbcalc are reported. They show the line-shape of
the reflectivity due to the intrinsic contribution of the bent crystal analyzer. This is
the analogous, for the intrinsic contribution, of the geometric frequency distribution pg

calculated and simulated in Chapter 5. For this reason, we will call the reflectivity pi.

Figure 6.2: Intrinsic contribution to energy resolution for a cylindrically bent Ge[220]
crystal. Curvature radius R = 50 cm. Thickness t = 0.35mm. σ polarized light.



6| Intrinsic contribution to energy resolution 85

Figure 6.3: Intrinsic FWHMI evaluated by a Gaussian-fit. Ge[220], Ge[440] and Ge[660]
reflections are considered. Curvature radius R = 50 cm. Thickness t = 0.35mm. σ

polarized light.

Figure 6.4: Intrinsic contribution to energy resolution for a cylindrically bent Ge[220]
crystal. Curvature radius R = 100 cm. Variable crystal thicknesses t. σ polarized light.
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Analogous simulations for Ge[440] and Ge[660] have been performed. Given that the
shape of the curves can be acceptably approximated by a Gaussian (see Figure 6.2), in
order to directly compare the geometric resolutions with the intrinsic ones, it was decided
to carry out a Gaussian fit of tbcalc simulations extrapolating the FWHMI values that are
reported in Figure 6.3. The intrinsic contribution to energy resolution is larger at small
Bragg angles and, unlike what happens for the geometric contributions, it shrinks with
increasing the order of the harmonics. The simulations were performed for a thickness
t = 350 µm, typical value for a bent crystal analyzer.
In Figure 6.4 we show the effect of crystal thickness: the diffraction profile shifts with
t, but it does not change its width. This effects should be investigated further because,
if confirmed, will be relevant for Johansson-type crystals which do not have a constant
thickness.



87
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7.1. Overall energy resolution

After calculating all contributions separately, we can reasonably estimate the overall en-
ergy resolution of the spectrometer. To construct the overall energy distribution we should
convolve equation 4.47 with the curves shown in Figure 6.2:

ptot(∆θ) =

∫
pg(∆θ −∆θ′)pi(∆θ′)d∆θ′ (7.1)

However, an immediate result can be obtained if pg(∆E) and pi(∆E) can be approximated
by gaussian functions:

FWHMtot =
√
FWHM2

g + FWHM2
i (7.2)

The final results are plotted in Figure 7.1: as can be seen, for Ge[440] considering the
reflections at high θB (up to 8 keV), the total resolution is better than for Ge[220]. It is
due to the fact that, in this region the intrinsic contribution dominates. On the contrary,
at grazing incidence is the geometric contribution the dominant component and, for this
reason, Ge[220] shows a better energy resolution in the low Bragg regime.
The combination of the above effects allows us to make good use of the reflection Ge[440]
up to EB = 10 keV where the total FWHM is around 1.7 eV. Starting from this energy,
thanks to the overlap with the Ge[660] reflection, it is possible to continue the scan
keeping the resolution below 2 eV up to EB =13.5 keV. The weak point of the whole scan
is paradoxically around EB =6keV where we must reach θB = 29° in order to reach the
overlap with the Ge[440] reflection at θB = 75°.
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Figure 7.1: FWHMtot of the overall energy resolution of the spectrometer. The FWHMtot

are estimated summing the squares of the geometric FWHMg and of the intrinsic
FWHMI .
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7.2. Estimation of the scanning time

As reported by Seidler et all.[28] at least 105 photons per measurement point will be needed
to cleanly resolve the XAS spectrum: considering a mean value of the specific spectral
radiant intensity of the Incoatec source obtainable from spectra reported in section 2.2.1

Imean
W ≃ 4 · 105

[
photons

sr · eV ·W · s

]
and considering that, the maximum power achievable fixing the tube voltage at 20 kV is
13W the following mean spectral radiant intensity is expected.

Imean ≃ 5 · 106
[
photons

sr · eV · s

]
Considering a solid angle identified by an analyzer of area A = 10 cm2 at a distance
d ≃ 50 cm from the source

Ω =
A

d2
≃ 1

250

considering a FWHM of the passing bandwidth around 1 eV and an ideal absorbing factor
of 1/e we obtain a number of photons per unit time on the detector equal to

7.5 · 103
[
photons

s

]
so we must measure each experimental point for 14 s in order to collect 105 photons.

Considering 1000 points in order to cover the entire energy spectrum less than 4 hours
are needed in order to complete the energy scan.
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8| Conclusions and future

developments

We designed a user-friendly laboratory XAS spectrometer covering the 3− 15 keV energy
range with an energy resolution below 3 eV aiming at limiting its costs and minimizing
its dimensions. An in-depth study on the geometry of monochromators was carried out,
combining an analytical approach with ray tracing simulations. Thanks to this comple-
mentary view it was possible to highlight the effects that geometric parameters have on
the resolving properties of the instrument, enabling us to maximize the ratio between
performance and costs. We selected a Johansson-type cylindrically bent analyzer with
curvature radius R = 50 cm and dimensions 10 × 1 cm2 exploiting also the reflections of
the first and second harmonics of Ge[220]. The possibility of building a spectrometer ca-
pable of covering such a wide energy range with a single crystal is certainly a remarkable
result and in line with the idea of designing an instrument that is easy to use and does
not require frequent alignments which would have been necessary using more crystals.
This result is the consequence of two important choices: first of all to have selected a
Johansson-type crystal, thus allowing us to reach incidence angles unthinkable for a Jo-
hann crystal; secondly, to have chosen a family of crystallographic planes (Ge[220]) for
which also the first and second harmonic reflections are allowed. The simulations show
that at low Bragg angles the contribution deriving from the extension of the source dom-
inates over that of the analyser. This information underlines how, despite the limitations
imposed by the use of a single crystal, the weak point of the instrument is actually the
source. As shown in the previous work carried out in the PoliMiX group [10], the choice
of a Johann-type crystal would always lead to an enormous prevalence of Johann’s aber-
rations over the effects generated by the extension of the source. At this point we can
say with certainty that, in order to improve the resolution of the instrument, it would be
necessary to mainly act on the focal dimensions of the source. We have therefore been able
to move the bottleneck of the instrument from the analyzer to a parameter that cannot
be directly modified by us. The design will soon be completed and will be followed by
the purchase of the necessary pieces and the subsequent construction of the instrument.
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A| The Atomic form factor

The purpose of this Appendix is to introduce fundamental aspects regarding the interac-
tion of X-rays with matter [9]. Following an entirely classical approach, this will help us
to deeply understand the working principle of a Bragg crystal used as a monochromator.

A.1. X-rays interacting with an electron

Classically, a charged particle hit by a plane wave reacts by oscillating in the direction of
the electric polarization of the incident wave. The oscillating charge will emit a spherical
wave with the same wavelength as the incident radiation. This is imposed by the classical
treatment which makes the derivation of inelastic scattering impossible. Fortunately this
phenomenon is typically negligible making the classical approximation often acceptable.
The amplitude of the spherical wave will not be constant on the wave front: in fact, a
general observer will appreciate only the projection of the electron acceleration perpen-
dicular to the observation direction, that is equivalent to the real one only if the observer
is placed in front (Ψ=90°) of the oscillating electron (see Figure A.1).
Let us therefore consider the electric field generated by a monochromatic plane wave in
proximity of the charged particle:

Einc(t) = E0 exp (−iωt) (A.1)

where ω is the angular frequency of the incoming wave. Remembering that, for the
outgoing spherical wave the field is inversely proportional to the distance from the emitter
(|R|)1 we can easily derive the following proportionality:

Erad(R, t) ∝ −ea(t′)

|R|
sinΨ (A.2)

1In fact, the intensity of a plane wave, which is proportional to the square modulus of the field,
decreases quadratically with distance.
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Figure A.1: An incoming plane wave (orange) scattered by a charged particle (red). The
particle starts oscillating emitting a spherical wave. The front waves are represented in
dashed lines. The amplitude of the spherical wave is modulated by a sinΨ factor.

where a is the acceleration of the charged particle, Ψ is the angle that the observation
direction makes with the oscillating direction and t′ = t− R

c
since the observer sees with

a certain delay the acceleration of the charged particle. It is due to the finite speed c of
light. It is important to underline how, considering an atom, a free electron model can
be adopted if the energy of the incident photon is much larger than the binding energy
of the electrons. Considering a photon with typical energy of the order of 1 keV, this will
certainly be true for valence electrons, less so for core ones. Assuming reasonable the free
particle approximation, the acceleration acting on the charged particle (from now on we
will refer more explicitly to an electron) and evaluated in t′ is:

a(t′) =
F

m
=

−eE0 exp (−iωt′)

m
=

−eE0 exp (−iωt) exp (iωR
c
)

m
=

−eEin exp (i
ωR
c
)

m

(A.3)
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Therefore, by expressing the ratio between the scattered electric field and the incident
electric field, the following proportionality will be obtained:

Erad(R, t)

Ein

∝
(
e2

m

)
exp (ikR)

R
sinΨ (A.4)

In order to transform the relation thus obtained into an equality it will be at least necessary
to make the second member dimensionless: to do this, the term in round brackets must
have the dimensions of a length. From a rigorous treatment we can obtain that the correct
length can be obtained simply by equaling the Coulomb energy with the energy at rest of
the electron itself. The typical length so obtained is called Thomson scattering length and
classically represents the radius of the electron. By replacing this coefficient in relation
A.4:

Erad(R, t)

Ein

= −
(

e2

4πϵ0mc2

)
exp (ikR)

R
sinΨ = −r0

exp (ikR)

R
sinΨ (A.5)

where a (−) sign has been included in order to take into account the π phase shift between
the scattered and incident waves.

A.2. X-rays interacting with an atom

An atom can easily be described by its electron density ρ(r). We can imagine that each
electron belonging to this distribution contributes by emitting a spherical wave as seen
above. The phase shift between waves emitted by two electrons placed at a relative
distance r is ∆ϕ(r) = Q · r where we can define Q as the transferred wave-vector:

Q = k − k′ (A.6)

For a given volume dr placed at a distance r from the origin, it is clear how the ratio
Erad/Ein will be proportional to the number of electrons contained in dr with a dephasing
factor given by exp (iQ · r):

Erad(R, t)

Ein

∝ −r0 f
0(Q) = −r0

∫
ρ(r) exp (iQ · r)dr (A.7)
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Figure A.2: An incoming plane wave (orange) scattered by two electrons (yellow) be-
longing to an electron distribution ρ(r) (red). The electrons start emitting two spherical
waves with phase shift ∆ϕ(r). The front waves are represented in dashed lines. If the
observer is far enough, the spherical fronts can be approximated by planes.

where f 0(Q) is known as the atomic form factor 2. If Q = 0 i.e. if the electrons of all the
different volume elements scatter in phase the reasonable result is obtained:

f 0(Q) =

∫
ρ(r)dr = Z (A.8)

As Q increases, the electrons contained in each small volume dr start to interfere more
and more out of phase, decreasing the atomic form factor 3.

2Note how this parameter is nothing but the Fourier transform of the electron density.
3Corrective terms can be added taking into account that electrons within an atom are not free particles.

These additional terms will become more important as the energy of the incident radiation decreases.
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B| Sum of two independent

random variables

In mathematics, and in particular in probability theory, a random variable (also called
stochastic variable) is a variable that can take on different values depending on some
random phenomenon. For example, the result of rolling a six-sided balanced die can be
mathematically modeled as a random variable that can take one of six possible values with
a 1/6 probability of occurring. A relative frequency function (probability density) can be
associated with each random variable. Let x and y be two random independent variables
and let X and Y be the associated frequency functions. By definition of probability it
must hold:

∫ +∞

−∞
X(x)dx = 1

∫ +∞

−∞
Y (y)dy = 1. (B.1)

If we define the random variable z = x+y, its relative frequency function Z can be written
as the convolution of the two frequency function X and Y :

Z(z) = X ⊛ Y =

∫ +∞

−∞
X(x)Y (z − x)dx (B.2)

Let’s briefly discuss an example to clarify what has been said. We define the random
variables in the following way:

• x: value obtained from the first roll of a die;

• y: value obtained from the second roll of the die;

• z = x+ y: value obtained by adding the results of the two launches.
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(a) Relative frequency function X(x) = Y (y).

(b) Y(-x) represented in order to visualize the convo-
lution.

(c) Z(z) is the result of the convolution.

Figure B.1: Graphical representation of the Relative frequency function.
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The relative frequency function related to x and y is trivial: each face of the die has in
fact the same probability 1

6
of coming out as shown in Figure B.1a. The result of the

convolution is shown in Figure B.1c. It is easy to realize how this graph represents the
frequency function relative to the random variable z.
It is of fundamental importance to underline once again how this procedure is correct
only if the random variables to be added are independent [29].
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C| Total geometric resolution

In this paragraph, unlike what has been done in Chapter 4, we will consider at the same
time the contributions of the source and the analyzer. In doing so, we will take into
account only the main1 coordinates (sy for the source and z for the crystal).

Figure C.1: 3D view of two rays (a and a∗). a is the nominal ray (starting from the center
of the source and incident in the center of the crystal). a∗ is a generic ray (starting from
the coordinate sy of the source and incident in the coordinate z of the crystal). Additional
geometric elements are represented for the sole purpose of supporting the reader in the
calculations.

1It was demonstrated in Chapter 4 how the coordinates l and sz give a second order contribution.
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Supported by Figure C.1 and using the Pythagorean theorem, the sides of the green
triangle are obtained:


a∗ =

√
R2 sin2 θB + s2y + z2,

b = R,

c =
√

(R cos θB − sy)2 + z2,

(C.1a)

(C.1b)

(C.1c)

Using the cosine theorem on this triangle and exploiting the relation cos γ = sin θ

sin θ =
(a∗)2 + b2 − c2

2a∗b
(C.2)

Substituting system C.1 in equation C.2:

sin θ =
2R2 sin2 θB + 2Rsy cos θB

2R2 sin θB

√
1 +

s2y+z2

R2 sin2 θB

(C.3)

expanding the square root:

sin θ

(
1 +

s2y + z2

2R2 sin2 θB

)
= sin θB +

sy cos θB
R sin θB

(C.4)

and consequently

sin θB − sin θ ≃ cos θ∆θg = sin θ

(
s2y + z2

2R2 sin2 θ

)
− sy

R tan θ
(C.5)

it comes that:

∆θg = tan θB

(
z2

2R2 sin2 θ

)
+ tan θB

(
s2y

2R2 sin2 θ

)
− sy

R sin θB
≃ ∆θa +∆θs (C.6)

that is exactly the sum of equation 4.24 and equation 4.34. This apparently redundant
result actually adds a lot to the knowledge of our system: in fact, considering the two
contributions together, we could have expected the presence of new terms with mixed
variables. This result, otherwise, unequivocally demonstrates how, with these approxima-
tions, we can really say that to find the total geometric contribution to energy resolution



C| Total geometric resolution 107

∆θg we simply need to sum the two contributions (∆θa and ∆θs) taken separately. On the
other hand we know that the two contributions are independent: in fact, knowing where
a ray hits the analyzer (i.e, ∆θa) does not change our knowledge regarding the starting
point of the same ray (i.e, ∆θs).
Resuming we are interested into the sum of two independent random variables and, con-
sequently, it is legitimate to convolve the frequency distributions (pa(∆θa) and ps(∆θs))
in order to find pg(∆θg) (see Appendix B).
This observation could lose its validity when also the l coordinate of the crystal is taken
into account. Despite this, l has a decidedly negligible impact on the resolution of the
spectrometer, especially at high Bragg angles. This authorizes us to neglect this term
and to sum (convolve) the two contributions (frequency distributions) as confirmed by
simulations reported in Chapter 5.
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