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Abstract

Music is often related to emotions, as it has the ability to affect, shape, and even ma-
nipulate emotional states of individuals. Understanding the relationship between music
and emotions can help the development of affective computing systems that incorporate
emotions into human computer interaction (HCI). The results of research in this field can
be applied to various technical innovations, such as software that provide recognition of
emotions induced by music or automatic music synthesis. The goal of this study was to
explore the human emotional responses to temporal features in music, focusing on har-
monic tension, by means of acquiring various physiological data, supported by self-report
questionnaires. A listening experiment was designed and conducted with 10 recruited sub-
jects who were asked to wear non-invasive equipment to have their physiological signals
monitored and recorded, while they listen to certain music stimuli. The chosen signals
to acquire were electroencephalogram (EEG), electrocardiogram (ECG), electrodermal
activity (EDA), and respiratory activity (RSP). The analysis of various statistical fea-
tures was performed, exploring the correlation between the manually annotated tension
in music and the responses captured by the recorded physiological data. The correlation
between subjects’ physiological and self-report responses was also analyzed, as well as
the differences between statistical measures of each subject. The main contributions of
this work are the created experimental protocol with detailed instructions, the acquired
dataset containing data for the four physiological signals for 10 subjects, as well as their
responses to self-report questionnaires, then the proposed pipeline for data processing and
analysis, and the preliminary results. The limitations concerning the number of subjects
affected the acquired dataset size and thus the robustness of different statistical measures
and the applicability of the conclusions that were reached. The exploration of more fea-
tures and their connections, as well as the combination with fMRI or fNIRS data, could
result in more advanced affective computing systems used in healthcare, therapy, enter-
tainment, and other fields where it is desired to monitor or affect the emotional state and
responses of individuals.

Keywords: physiological signals, induced emotions, listening experiment, MIR, EEG





Abstract in lingua italiana

La musica è spesso correlata alle emozioni, poichè è in grado di generare, formare o ad-
dirittura manipolare lo stato emotivo degli individui. Comprendere la relazione tra la
musica e le emozioni può aiutare lo sviluppo di sistemi di Affective Computing che in-
corporino le emozioni nell’Interazione Uomo-Computer (HCI). I risultati della ricerca in
questo campo possono essere applicati a varie innovazioni tecnologiche, come i software
di riconoscimento di emozioni indotte dalla musica, o la composizione musicale autom-
atizzata. L’obiettivo del presente studio è l’esplorazione delle risposte emotive umane
a diverse caratteristiche temporali nella musica, in particolare sulla tensione armonica,
tramite l’acquisizione di vari parametri fisiologici, supportata dall’utilizzo di questionari.
Un esperimento di ascolto è stato impostato e condotto con 10 soggetti, con indosso della
strumentazione non invasiva, a cui sono stati monitorati e registrati i segnali fisiologici
mentre ascoltavano certi stimoli musicali. I segnali scelti per l’acquisizione erano elet-
troencefalogramma (EEG), elettrocardiogramma (ECG), attività elettrodermica (EDA),
e respiratoria (RSP). L’analisi di vari indicatori statistici è stata condotta, esplorando la
correlazione tra la tensione musicale annotata manualmente e le risposte estrapolate dai
dati fisiologici registrati. Inoltre, sono state analizzate anche la correlazione tra le risposte
dei soggetti e le differenze tra misure statistiche su ciascun soggetto. I contributi prin-
cipali di questo lavoro sono i protocolli sperimentali, con istruzioni dettagliate, i dataset
con i dati dei 4 segnali fisiologici per 10 soggetti, le loro risposte ai questionari, la catena
di processamento, e analisi e i risultati preliminari. La limitatezza del numero di soggetti
ha influenzato la dimensione del dataset, e di conseguenza, la robustezza di diverse misure
statistiche, nonchè l’affidabilità delle conclusioni ottenute. L’esplorazione di più indica-
tori e delle loro connessioni, nonchè la combinazione con dati fMRI o fNIRS, potrebbe
dare adito a sistemi di Affective Computing più avanzati , utilizzabili in ambito sanitario,
terapeutico, dell’intrattenimento o altri campi dove è richiesto di monitorare o influenzare
lo stato emotivo o le risposte emotive degli individui.

Parole chiave: segnali fisiologici, emozioni indotte, esperimento di ascolto, MIR, EEG
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1| Introduction

1.1. Motivation

The recent advance in computer science, engineering, psychology, and neuroscience has
motivated the development of systems and devices that aim to recognize, interpret, and
process human emotions. Particularly, a new branch of artificial intelligence - affective
computing - has emerged, aiming to explore the ability to give machines emotional intel-
ligence, including modeling emotional states, sympathy, empathy, and more.

Emotions play a vital role in our daily lives since they reflect the way in which we expe-
rience our environment; they are associated with thoughts, behavioral responses, and a
degree of pleasure or displeasure [19, 27, 38, 105]. While there are questions on whether
emotions cause changes in humans’ behavior, their physiology is closely linked to the
arousal of the nervous system; according to neurobiology, emotions are considered to be
elaborations of arousal patterns in which neurochemicals increase or decrease the brain’s
activity level. Therefore, modeling and recognizing emotions helps further understanding
of another layer of human nervous system, as well as how our surroundings, personal
habits, etc. affect our emotional responses.

Due to their complexity and subjectivity, recognizing and evaluating emotions is not
such a straight-forward task; it is usually based on three kinds of evidence: self-report,
behavior, and physiological reaction. The most common and simple approach to measure
emotional responses to music is through a first-person perspective or self-report – either
verbal or non-verbal (such as moving a slider, pressing a bar, drawing a picture) [68].
Apart from self-report methods, further research of physiological signals as responses to
external stimuli could help building a better understanding of human emotions.

Music is often referred to as a language of emotions and is considered to be a powerful
tool for arousing emotions in humans coming from all cultures. According to a study by
Juslin and Laukka [68], majority of people report that their primary motivation to listen
to music is the emotional effect it has on them. It can be inferred that music has an
ability to affect, shape, and even manipulate emotional states of a person; for instance,
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people tend to listen to specific types of music in order to affect their mood or state of
mind [134]. Music therapy is also used as a tool to deal with different psychological and
behavioural diseases [26].

The relationship between music and emotions has been a subject of research in various
disciplines, such as philosophy, musicology, and sociology. There are numerous theories
on how musical expectations are created, maintained, confirmed, or disrupted. Music can
communicate and induce a range of powerful emotions [67], which has been the subject
of intense scientific investigation. One of the most important goals of the research on
emotions in music is to understand how features in music composition and performance
relate to inducing various emotional responses. Researchers are usually interested in cases
where emotions in music are perceived similarly by different listeners, which is referred
to as listener agreement (where the music seems to express a particular emotion with a
certain level or agreement among listeners).

Understanding the relationship between music and emotions can also help the develop-
ment of affective computing systems that incorporate emotions into human computer
interaction (HCI) [111]. The results of research in this field can be applied to various
technical innovations, such as software that provide recognition of emotions induced by
music or automatic music synthesis.

1.2. Related work

Several research methods have been used to explore the relation between music and
psycho-physiological responses of humans, most frequently used ones being self-reporting,
biological, music-analytic, clinical, individual, and cultural related [34]. Some studies fo-
cused on analyzing human emotional states use physical signals such as facial expression
[37], speech, posture and more, while others measure the internal physiological signals
[54]. Among the latter category, the most commonly used signals are Electroencephalo-
gram (EEG), Functional near-infrared spectroscopy (fNIRS), Electrocardiogram (ECG),
Blood volume pressure (BVP), Electromyogram (EMG), Electrodermal activity (EDA),
and Respiratory activity (RSP) [34].

The nature of music stimuli used for similar listening experiments can be classified into
natural music characterized by changes in its dynamics, tempo, and performer’s ex-
pression, and computerized music, which involves synthesized sound without expression
[74, 75]. The latter is therefore easier to describe, control and measure, but also more
limited in the aspect of musical expression. The music genres used in the field are mainly
classical and commercial music. The music stimuli mainly include short excerpts of few
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seconds, but also whole music pieces that are several minutes long [34]. Some studies
focus on temporal analysis of the acquired data [74, 75, 89], while some others compare
elicited emotions to diverse genres, therefore averaging responses over the whole music
excerpt [15, 71, 88, 120].

1.3. Summary of this study

This study aims to explore the human emotional reactions to temporal features in music,
focusing on harmonic tension, by means of acquiring physiological data of subjects and
their responses to self-report questionnaires. The first version of the study started as
"Sound Resonance Project" back in 2019, in a collaboration between Politecnico di Milano
– Department of Electronics, Information and Bioengineering (DEIB) and Johns Hopkins
University (USA) - International Arts and Mind Lab, Brain Science Institute. The goal
was to acquire physiological signals of the attendees of a polyphonic choir’s concert, while
they listen to the performance. For that purpose, the company Empatica Srl (Milan,
Italy) [78] provided a number of wearable sensors in form of wristbands - Empatica E4,
which measures electrodermal activity (EDA), heart rate variability (HRV), and several
other signals. The preliminary results did not show significant correlation among the
subjects, nor between the chosen music features and the physiological data, possibly due
to the low sampling rate of the sensors (4 Hz). The project was thus soon suspended, also
due to the pandemics of the SARS-CoV-2 virus.

Nevertheless, it was considered important to continue the research on this topic; there-
fore, as a continuation of the "Sound Resonance Project", this study was initiated. The
aim of this study was to explore different methods to recognize and interpret induced
emotions using physiological signals, provide preliminary assessment on the topic, as well
as directions for the future research. This time, the study was done as an internal collabo-
ration between the two laboratories of Politecnico di Milano - Department of Electronics,
Information and Bioengineering (DEIB): Image and Sound Processing Lab and Brain
Lab. A listening experiment was designed and conducted where subjects were asked to
wear non-invasive equipment in order to have their physiological signals monitored and
recorded, while they listen to certain music stimuli. The set of music stimuli contained
four choral pieces recorded from the previously described concert, as well as 12 simple
chord sequences recorded with a MIDI keyboard. According to the research on the state
of the art, the exploration of emotions elicited by choral pieces as music stimuli represents
a novelty in this field.
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The physiological signals chosen to be acquired in the listening experiment are Elec-
troencephalogram (EEG), Electrocardiogram (ECG), Electrodermal activity (EDA), and
Respiratory activity (RSP). It is worth noting that, although using physiological signals,
this study is used only for the purpose of scientific research and has no diagnostic or
medical purposes. In addition to the listening part, the subjects filled several self-report
questionnaires that aimed to acquire data related to subjects’ lifestyle, musical expertise
and preference, and emotional competencies, as well as the elicited emotions while listen-
ing to the music stimuli. The questionnaires were added to this study with the assumption
that the collected data could be correlated with the subjects’ reactions and therefore their
physiological responses to certain music stimuli. As the study aims to give preliminary
analysis, a limited number of 10 subjects were recruited for the study, all of them being
university students of different nationalities and cultural backgrounds. The physiological
data from all subjects, as well as their responses to questionnaires were collected and
processed. The analysis of various statistical features was performed, exploring the cor-
relation between the manually annotated tension in music and the responses captured
by the recorded physiological data. The correlation between subjects’ physiological and
self-report responses was also analyzed, as well as the differences between statistical mea-
sures of each subject. The main contributions of this study are the created experimental
protocol, the proposed pipelines for data acquisition and data processing, the preliminary
results and elaborations, and suggestions for further work, as well as the acquired dataset
of physiological signals and responses to questionnaires.

1.4. Thesis outline

The document is organized as follows: Chapter 2 provides background for the topics
explored in this work. Later, Chapter 3 summarizes the work that is done in the field.
Chapter 4 provides details on the whole method, including the experimental setup, data
acquisition, data processing, and more. Chapter 5 shows and discussed preliminary results
of the work. Finally, Chapter 6 contains the main conclusions of the study, explains
contributions, and provides suggestions for possible further developments.
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2.1. Emotions

Even though there is no scientific consensus on a universal definition of emotions, they can
be referred to as subjective and conscious mental experiences accompanied by particular
neurophysiological responses or changes. Emotions are associated with thoughts, feelings,
behavioral responses, and a degree of pleasure or displeasure [19, 27, 38, 105]. The emo-
tions also play a big role in natural human interaction [37]. Research on emotion has
included many fields such as psychology, medicine, sociology of emotions, and computer
science, aiming to explain the origin and function of emotions from different aspects.

2.1.1. Theories of emotions and possible applications

Emotions are complex; they are considered to involve several components, such as subjec-
tive experience, cognitive processes, expressive behavior, psychophysiological changes, and
instrumental behavior. There are numerous theories about relations of these components;
and while many of them question whether emotions cause changes in human’s behavior
or not, their physiology is closely linked to arousal of the nervous system. For instance,
James [59] argued that the perception of what he called an "exciting fact" directly led to
a physiological response, known as "emotion". According to James, a stimulus triggers
activity in the autonomic nervous system, which in turn produces an emotional experience
in the brain. Neurobiology explains human emotions as pleasant or unpleasant mental
states organized in the limbic system of the mammalian brain; they are considered to be
elaborations of vertebrate arousal patterns in which neurochemicals increase or decrease
the brain’s activity level. A group of researchers [18, 86, 107] suggested that emotion is
related to a group of structures in the center of the brain called the limbic system, which
includes the hypothalamus, cingulate cortex, hippocampi, and other structures.

The recent developments in fields of computer science, engineering, and neuroscience has
motivated the emersion of a new field called affective computing. Affective computing is
considered a branch of artificial intelligence that aims at designing systems and devices
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that can recognize, interpret, and process human emotions [111]. It is considered that
such systems could bring notions of empathy and sympathy into artificially intelligent
machinery. The applications of these systems could span across healthcare, entertainment,
e-learning, marketing, human monitoring, and security [54].

2.1.2. Models of emotions

Various theories of emotion have been introduced in studies of music; however, it is difficult
to define a universal representation of emotions to be used in scientific research. Although
there is currently no dominating theoretical paradigm in research on music emotion, most
researchers implicitly oriented their work to one of the existing models [68]. The two
most widely accepted and used emotional models are Discrete Emotional Model (DEM)
and Affective Dimensional Model (ADM), while sometimes the Binary Emotional Model
(BEM) is also used due to its simplicity [35, 111].

Discrete Emotional Model (DEM)

In his work, Paul Ekman [35–38] has supported the view that emotions are discrete, mea-
surable, and physiologically distinct. Ekman also found that certain emotions seem to be
universally recognized and and shared across languages and cultures. His research [37]
examined six basic emotions: anger, disgust, fear, happiness, sadness and surprise, repre-
sented in Figure 2.1. Plutchik [112], who fundamentally agreed with Ekman’s perspective,
developed the so called wheel of emotions, suggesting eight primary emotions grouped on
a positive or negative basis. The wheel of emotions is represented in Figure 2.2.

Figure 2.1: Six basic emotions proposed by Ekman [37], taken from [53].
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Figure 2.2: Robert Plutchik’s wheel of emotions, with eight primary emotions grouped
on a positive or negative basis

Coming from those findings, the Discrete Emotional Model (also known as categorical
model) proposes distinction of emotions into a number of basic discrete states. The
assumption behind the model is that all the other emotions can be derived from the basic
ones [35, 128]. The advantage of such approach is the use of natural language and intuitive
terms for emotions. On the other side, the drawback is that the number of basic emotions
is very small in comparison with the range of various emotions experienced by humans.
Additionally, the language used to describe emotions can be ambiguous and subjective.

Affective Dimensional Model (ADM)

On the contrary to the categorical approach, a psychotherapist Michael Graham [47]
describes all emotions as existing on a continuum of intensity. According to his proposal,
for instance, fear might range from mild concern to terror. Therefore, the ADM (also
known as the continuous dimension model) treats emotions as fundamentally similar,
differing only in terms of one of more dimensions. Most often, the first two dimensions
uncovered by factor analysis are valence and arousal [119]. Valence can be defined as
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how positive or negative the experience feels, while arousal represents the intensity of
the feeling [52]. According to this model, emotions are therefore identified based on
their position in the emotion space. The two-dimensional valence-arousal (VA) space
is represented in Figure 2.3. The arousal and valence in the suggested model can be
associated to certain music features. For instance, the arousal can be related to changes
in tempo, pitch, loudness, timbre, while valence can be connected to the scale used (e.g.,
major or minor) or harmony (e.g. consonant or dissonant) [46].

Figure 2.3: Thayer’s arousal-valence emotion space [143]

The dimensional approach is often used because of its simple representation using a lim-
ited number of dimensions. On the other hand, it is less intuitive for subjects than the
categorical approach as it can blur psychological distinctions (e.g. anger and fear could
be placed close to each other in the VA space, but have very different impact on the or-
ganism). Adding more dimensions to the model could make the annotation process more
complex and put additional cognitive load on the subjects.



2| Theoretical background 9

2.1.3. Emotions and music

The relationship between music and emotions has been a subject of research in various
disciplines, such as philosophy, musicology, and sociology. For instance, the chapter [134]
provides a psychological explanation for the link between musical activity and emotional
states. Meyer’s book “Emotion and meaning in music” [97] provides ideas on how musical
expectations are created, maintained, confirmed, or disrupted. According to a study by
Juslin and Laukka, majority of people report that their primary motivation to listen to
music is the emotional effect it has on them [68]. It has also been suggested that musical
training is not required to perceive emotions in music [64]. In psychological studies,
emotions are often classified in three categories: the emotion expressed by the performer,
the emotion perceived by the listener, and the evoked emotion induced by music.

Even though the most subjective one, the induced emotion also turns out to be the most
interesting to explore in research. Namely, researchers are usually interested in cases
where emotions in music are perceived similarly by different listeners, which is referred
to as listener agreement (where the music seems to express a particular emotion with
a certain level or agreement among listeners). Music is also often used to “manipulate”
the emotions of listeners in many areas of society (e.g., in health, sport, or advertising)
[68]. Additionally, the results of research in this field can be applied to various technical
innovations, such as software that provides recognition of musical emotion or automatic
music synthesis.

Inducing basic emotions for physiological data collection in an experiment requires certain
guidelines and standard protocols. Music is among five common elicitation techniques,
along with audio visual, imagery, memory recall, and the situational procedure [125].
There are different ways in which a musical event may evoke emotions [67]. For instance,
some emotions may be aroused by structural characteristics of the music, such as variations
in lyrics, melody, tempo, and more [77], while others are related to personal associations
and memories and not based on musical factors: what Davies [28] refers to as the “Darling,
they are playing our tune” phenomenon. In fact, research shows that listeners often use
music as a reminder of valued past events [127] and that specific pieces of music may be
associated with particular time periods of an individual’s life (e.g., [121]). Therefore, the
relationships among music features and emotions are only probabilistic (i.e., uncertain)
and are therefore best thought of as correlational, as described by the Juslin’s Lens Model
[65].
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2.1.4. Emotion evaluation

Recognizing and evaluating emotions is not such a straight-forward task; it is usually
based on three kids of evidence: self-report, behavior, and physiological reaction. The
most common and simple approach to measure emotional responses to music is through a
first-person perspective or self-report – either verbal (e.g., adjective checklist, quantitative
ratings, questionnaire, free description) or non-verbal (moving a slider, pressing a bar,
drawing a picture) [68]. The questionnaires can vary according to the emotional model
that is used. The main disadvantage of such self-report methods is that a subject might
feel discomfort, insecurity, or even lack of self-awareness in recognizing and sharing their
true conscious and unconscious experiences about the stimuli.

In their early work, Salovey and Mayer [94] defined Emotional Intelligence (EI) as the
“the ability to monitor one’s own and others’ feelings and emotions, to discriminate among
them and to use this information to guide one’s thinking and actions”. They considered
that the high EI is correlated with the individual’s emotional abilities and skills related
to appraising and regulating emotions in the self and others. Accordingly, it was argued
that individuals high in EI could accurately perceive certain emotions in themselves and
others and also regulate emotions in themselves and others in order to achieve a range
of adaptive outcomes or emotional states [103]. Some of the tools used for self-report
emotion evaluation are described in details in Subsection 3.2.2. Another kind of evidence
used to infer emotions involves various physiological measures of emotion, details of which
are presented in Subsection 3.1.1.

Based on the most previous research on expression, perception, and induction of emotions,
in can be considered that most of it has neglected the social context of musical emotion
[67]. Even though several studies on emotion in music have revealed limits on reliability
of music conveying certain emotions, in some situations the context could add more in-
formation to the study, thus helping the analysis of the induced emotions. Nevertheless,
such assumption is not certain for now, since previous research has only measured listen-
ers’ de-contextualized responses to music in laboratory settings [68]. The lack of social
context particularly affects the studies on inducted emotions, as it neglects several critical
issues that could help understanding music and emotions, such as listeners’ motivation for
listening to music and their uses of music in different daily contexts. Therefore, it would
be beneficial to consider the functions of musical emotions in their particular context [68].



2| Theoretical background 11

2.2. Music features

One of the most important goals of the research on emotions in music is to understand
how features in music composition and performance relate to inducing various emotional
responses. Results of several studies over the past century suggest that changes in music
attributes are correlated with changes in emotional interpretation [134].

2.2.1. Music Information Retrieval (MIR)

Music Information Retrieval (MIR) is a multidisciplinary field born in the last century,
with the aim to describe music and extract information about it. MIR connects fields
such as musicology, informatics, signal processing, psychoacoustics, machine learning,
and more. It was first mentioned as a term in 1966 by Kassler [70], and nowadays it
finds applications in music recommendation systems, automatic transcription, automatic
composition, classification or recognition of music genres, artists, instrumentation etc.
The goal of MIR is to describe music with features, for means of better understanding,
describing, and categorizing music. There are numerous features of music that have
been reported to be eliciting emotions. These features include tempo, mode, harmony,
tonality, pitch, micro-intonation, contour, interval, rhythm, sound level, timbre, timing,
articulation, accents on specific notes, tone attacks and decays, vibrato, and more. The
same feature can be used in a similar manner in more than just one emotional expression
(e.g., if considering a Discrete Emotional Model, fast tempo can be used to induce both
anger and happiness) [68]. Therefore, “each cue is neither necessary nor sufficient, but the
larger the number of cues used, the more reliable the communication” ([66], p. 430).

The features can be roughly divided into low-level features (LLF), mid-level features
(MLF), and high-level features (HLF). The low-level features are characterized by being
objective and directly computable, usually by extracting from the signal or the spectrum.
Examples of LLFs are frequency, sound pressure level, spectral centroid, and more. The
mid-level features introduce some semantics and musicological notions, such as pitch,
chord, timbre, beat, or tempo. Lastly, the high-level features are the least objective and
can be very ambiguous as they often refer to human’s interpretation of music. They are
also the most meaningful and intuitive for describing. Some examples of HLF are mood,
emotion, style, and other [82]. Therefore, the semantic richness in features is followed by
the decrease of objectiveness.
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2.2.2. Tension in music

Tension experience is the basis for music emotion [131], but it is also subjective and chal-
lenging to describe precisely. In his seminal work, the musicologist Leonard Meyer [97]
wrote that understanding and enjoyment of music depend upon the perception of and
response to attributes such as tension and repose, instability and stability, and ambiguity
and clarity. He proposed that expectations have the main role in experiencing emotions
while listening to music. Namely, some parts of a music piece can create strong expecta-
tions for continuation, giving the sense of tension and instability, while other points in a
music piece would fulfill expectations and be perceived as "closed" and completed.

Therefore, the term tension in music represents a sense of unrest, instability, excitement,
or anticipation of a listener. It can also be described as balance between expectation of
something familiar and surprise or curiosity about what is next. The "exchange" of build-
ing and releasing the tension is what makes the music "move forward" and unfold in time.
Meyer [97] discussed that arousal through interruption of expectations has little value;
to have any aesthetic meaning, the arousal or tension must be followed by a satisfying
resolution of the tension.

Music can convey tension and release through changes in various musical layers: har-
mony, melody, rhythm, timbre, structure, dynamics, and more. In general, tension can
be brought by less expected elements, changes or "violated rules" in these layers. For
instance, in every scale there is a hierarchy of importance among the scale tones: some
are more stable, significant of "final sounding" than others, which makes the listeners
experience varying amounts of tension and resolution [82]. An example of "musical ex-
pectancy formation" is the bigram table of chord transition probabilities extracted from a
corpus of Bach chorales [118], showing, for instance, that after a dominant seventh chord,
the most likely chord to follow is the tonic, and that a supertonic is nine times more likely
to follow a tonic than a tonic following a supertonic [134].

The tension in music largely depends on tonal features and their relative importance in the
musical piece but can be enhanced by expressive features (such as dynamics) [81]. Tension
in the harmonic layer can be expressed with a complex chord or certain harmonic role of
a chord, such as dominant or cadential 6-4. Examples of tension in melodic layer could be
a large leap in the melody, a change of a melodic range, certain (often dissonant) intervals
or particular notes in a scale. The rhythmic tension can be conveyed through complexity
of rhythm or effects such as anticipation of a note, repetition, accentuation, syncopation,
acceleration, off-beat notes. The growing tension in the layer of music dynamics is often
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expressed with crescendo1, but also a sudden change of dynamics - even silence used in
expressive way - can contribute to a surprise and therefore the tension [33].

Nevertheless, the perceived tension largely depends on the musical background of the
listener, because their expectations are built with their education. Listeners can experi-
ence the same music in drastically different ways due to differences in their background,
culture, and preferences. From a listener’s point of view, the amount of tension can be
correlated with the amount of attention they need to put into listening. In fact, according
to Berlyne’s theory [12], listeners tend to prefer music that gives them an optimum level
of arousal (e.g., perceived complexity). If the arousal potential is too high or too low,
listeners will reject the music. Berlyne modelled this hypothesis on relations between lis-
teners’ preferences and arousal in the form of an inverted U-shaped curve [68], represented
in Figure 2.4.

Figure 2.4: The inverted-U relationship between complexity and preference, as theorized
by Berlyne. Taken from [30].

1a gradual increase in loudness or intensity
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2.3. Physiological signals and sensors

As mentioned in Subsection 2.1.1, affective computing is a multidisciplinary study that
revolves around computer science, psychology, cognition, and physiology, aiming to in-
tegrate human affects and emotions with artificial intelligent systems [130]. Currently,
there are a lot of ways to build an such systems using various techniques and algorithms.
However, it is considered that the physiological approach towards emotion recognition
has become a better alternative to facial expressions, gestures, and vocal traits [54]. The
summary of the signals used in physiological approach follows.

2.3.1. Electroencephalogram (EEG)

The electroencephalography (EEG) is a method to record electrical activity of the human
brain using electrodes placed on their scalp. The mentioned electrical activity generated
by the brain underneath reflects how many neurons in the brain network communicate
with each other via electrical impulses and in what way [132]. In particular, the electrical
function of the brain is measured with a electroencephalogram (EEG), which represents
a difference in potentials from two points of brain function recorded in time domain
[132]. The electroencephalography is mainly a non-invasive method that involves placing
electrodes along the scalp, called extracranial EEG. Since the voltage is recorded from the
scalp, the EEG signals are rather weak and affected by various biological and external
artifacts [123]. Therefore, optimizing the quality of recorded EEG data is crucial for the
analysis [39]. Another type of EEG, intracranial EEG, provides an EEG recording directly
from the brain, using surgically implanted, therefore invasive electrodes. Consequently,
the intracranial EEG can provide more detailed and targeted information on brain activity
but is less often used due to the invasive setup [132]. Compared to other bioelectrical
signals, EEG signals are characterized by their high temporal resolution, which allows
capturing fast and precise cognitive, perceptual, emotional, and motor processes. The
disadvantage of EEG signals is the low spatial resolution on the scalp, since the measured
potential on the scalp is the average response of several spatial areas activated by a
particular stimulus [71].

The EEG was discovered in the 19th century: a British physician Richard Caton is cred-
ited with giving the first contribution to the field by presenting his findings about electrical
phenomena of the cerebral hemispheres of animals. Back in 1875, Caton observed vari-
ations in currents measured by a galvanometer, from unipolar electrodes placed on the
surface of both brain hemispheres of animals. The first EEG recordings were done on
paper [51]. However, the first EEGs from humans were recorded in 1924 by Hans Berger,
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a German professor of neurology and psychiatry who used to investigate electrical activity
of the brain. Berger was the one who came up with the term "electroencephalogram" and
defined the wave patterns, including alpha and beta waves [51].

The development of electroencephalography contributed greatly to the knowledge about
the brain and its functions, as well as to exploration of various changes in psychological
and physiological behavior [71]. Nowadays, EEG is mainly used for clinical purposes,
which includes observing and interpreting abnormal EEG signal patterns, in order to
support a clinical diagnosis of epilepsy or other conditions such as sleep disorders, coma,
Alzheimer’s disease, and more [124]. Additionally, the EEG used to be the main method
of diagnosis for tumours, stroke, and other focal brain disorders, but with development of
high-resolution anatomical imaging techniques such as magnetic resonance imaging (MRI)
and computed tomography (CT), the use of EEG in those fields has decreased [124]. Other
than for clinical purposes, EEG is also used in the fields of neuroscience, cognitive psychol-
ogy, psychiatry, neurolinguistics, and psycho-physiological research [39, 124]. Applications
of EEG are mainly focused either on event-related analysis or on its spectral content. The
event-related analysis explores potential fluctuations in time interval around the stimulus
onset, while the spectral analysis focuses on neural oscillations (popularly called "brain
waves") that can be observed in the frequency domain of an EEG signal.

EEG: biological background

A human brain is a complex organ that is constantly active, absorbs information, re-wires
existing data, and integrates everything into a consistent experience of oneself and of the
surrounding. It is the main organ of the human central nervous system (CNS) and it
can be divided into brainstem, limbic system (also known as "the emotional brain"), the
cerebellum (also known as "little brain") and the cerebrum (or cortex). The cerebral cor-
tex is further divided into four basic sections or lobes: Occipital, Temporal, Parietal, and
Frontal. The Occipital lobe is located in the rearmost portion of the skull and is respon-
sible for the visual processing, spatial orientation, and motion perception. The Temporal
lobe is associated with processing sensory input using visual memories, language, and
emotional association, as well as the comprehension of written and spoken language.
The Parietal lobe is responsible for integrating information coming from external sources
as well as internal sensory feedback from skeletal muscles, head, eyes, etc. From these
sources, Parietal cortex creates a coherent representation of how the body relates to the
environment and vice-versa. Lastly, the Frontal lobe is where most of conscious thoughts
and decisions are made, and is associated with attention, short-term memory, planning,
and motivation.



16 2| Theoretical background

The previously described activity of the brain refers to neurons in brain areas generat-
ing diverse "firing" patterns and thus creating postsynaptic potential. The postsynaptic
potential of a single neuron is obviously too small to be detected; however, if it happens
in synchrony for hundreds of thousands of similarly oriented neurons, they generate an
electric field that is rapidly propagated through the brain tissue and the skull. Within
milliseconds, the generated electric field can be measured from the scalp. Nevertheless,
since the scalp is relatively far from the source of the postsynaptic potentials, it is not
possible to precisely locate the spatial portion of the brain that created the potentials
(since the measured potential on the scalp is the average response of several spatial areas
activated by a particular stimulus [71]). Additionally, since the measured electrical signals
are of very low amplitude, the recorded data needs to be sent to an amplifier.

EEG: Recording protocol

For standardization reasons, electrode locations and names are specified by the interna-
tional 10-20 electrode system, established by the General Assembly of the International
Federation in Paris in 1949 [60]. The locations of the electrodes are chosen based on stan-
dard landmarks of the skull: the nasion, inion, and the left and right preauricular points.
The anterior-posterior plane from the nasion to the inion is divided into 5 separate areas:
Fronto Polar, Frontal, Central, Parietal, and Occipital areas. Therefore, the names of the
electrodes placed in those areas start with the marks Fp, F, C, P, and O, respectively
[60]. On the left and right sides, there are also Temporal areas, labeled by the mark T.
The described landmarks and brain areas are represented in Figure 2.5.

Figure 2.5: EEG electrodes names and locations from two sides: 10-20 setup, [4]
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To distinguish between left and right homologous regions, a numbering system of the elec-
trodes was also established. The electrodes placed on the right hemisphere are labeled
with even numbers (e.g., F4, O2), while those placed on the left hemisphere are labeled
with odd numbers (e.g., C3, T4). Thus, each electrode placement site has a letter that
identifies the area of the brain, and a number that identifies the exact position. The
electrodes on the on the central nasion-inion line are labeled with "z" (zero) (e.g., Fpz,
Cz, Oz) and are often used as "ground" or "reference" points. As for the use of additional
electrodes, the American Electroencephalographic Society adopted another guideline, de-
scribed in details in the latest IFCN standards [102] and represented in Figure 2.6.

Figure 2.6: EEG electrodes names and locations according to the 10-20 setup, [102]
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During an EEG recording procedure, electrodes are placed on the subject’s scalp to record
the electrical activity. If the EEG system includes a large number of electrodes, they are
usually embedded into an EEG cap or a net for easier use. To increase the conductivity
between the electrodes and the subject’s scalp, a water-soluble electrolytic gel or paste is
applied into a hole in each electrode - usually with a syringe. Each electrode is attached to
an individual wire and connected to one of the two inputs of a differential amplifier. The
subjects are advised to arrive with clean and dry hair, to remove any ponytails, braids,
hair clips etc, and to not put sprays, oils, or creams in their hair beforehand [39].

The advantage of such EEG system with wet electrodes is that it has a better signal-to-
noise ratio than a system with dry electrodes, hence it is easier to design and less expensive.
On the other hand, the disadvantages are that they cause a sense of discomfort to the
subject, and that the setting up procedure is more complicated and time consuming.
As raw EEG signals are rather weak, they are usually contaminated by various types of
external artifacts such as eye blinks, muscular movement, heart rate, etc. Moreover, the
recording equipment is sensitive and easily picks interference from the external sources.
The artifacts coming from eye blinks or eye movement are typically characterized by
low-frequency signal (< 4Hz) with high amplitude, and therefore they represent one of
the main problems in EEG analysis [123]; thus, they need to be identified and removed
from the raw EEG signal. The main methods used to remove artifacts are Independent
Component Analysis (ICA) [63, 90], Principal Component Analysis (PCA), regression
based methods, high-pass filtering (e.g., Butterworth, above 2Hz) and adaptive filtering
[55]. Other than artifacts coming from eye activity, any type of muscular movement or
muscular tension (e.g., clenching the teeth) adds high-amplitude noise to the signal.

EEG: Features

The relevant features in electroencephalogram can be event-related (therefore, in time
domain) or focused on the spectral content (therefore, in frequency domain). The event-
related analysis refers to a certain stimulus and focuses on the time interval around the
stimulus onset. In particular, event-related potential (ERP) is a measured brain response
that is a direct result of a specific external stimulus. Those stimuli need to be clearly
defined in time and to follow a resting state (baseline) in order to be observable. Since
the EEG reflects thousands of simultaneously ongoing brain processes, the response to a
single stimulus or event of interest is not usually visible in the EEG recording of a single
trial. Thus, to see the brain’s response to a stimulus, it is important that the same stimuli
are repeated many times in the experiment, so that averaging across many trials reduces
the randomness in the brain activity and leaves the relevant waveform of the ERP.
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The spectral analysis works with neural oscillations or “brain waves” that can be observed
in the frequency content of an EEG signal. Human EEG power spectrum is divided into
five frequency bands: delta (0-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and
gamma (30-50 Hz). Each frequency band is considered to be related to specific functions.
The frequency bands are represented in Figure 2.7.

Figure 2.7: EEG bands, taken from [104]

Spectral analysis is one of the most used methods to analyze EEG data, which implies
the decomposition of the EEG into its frequency components. Starting from the Fourier
transform of the signal (which gives the amplitude and phase values of the signal at
a specific frequency), it is then common to compute the squared magnitude and thus
obtain an estimate of the power spectral density, expressed in squared microvolts per
Hertz (µV2/Hz). One of the features that could be obtained from power spectral density
is the average band power for any of the bands represented in Figure 2.7, which describes
with a single number the contribution of a given frequency band to the overall power of
the signal in a certain time interval.

2.3.2. Electrocardiogram (ECG)

Electrocardiography is the process of recording of the human heart’s electrical activity
through sensors attached to the skin. The electrocardiogram (also called ECG or EKG)
produces a graph of voltage across time of the electrical activations that lead to the con-
traction of the heart muscles. The ECG recording protocol involves attaching a small
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number of electrodes on a subject’s body (usually on the chest near the heart) and con-
necting them by wires to a data acquisition machine [54, 85]. These electrodes measure
the electrical activation of the heart during each cardiac cycle. A common source of noise
in ECG signals are motion artefacts resulting from sensor displacement due to participant
movement [135]. Traditionally, "ECG" usually refers to a 12-lead ECG that is acquired
while the subject is lying down, however, many other devices can record ECG, such as
various portable devices or even some models of smartwatches. While it is widely used in
medical and clinical fields to investigate and monitor symptoms of possible health prob-
lems, ECG is being used more and more by researchers exploring physiological arousal
(often combined with other biosensor methods). Common features of the ECG signal are
heart rate (HR), inter-beat interval (IBI) and heart rate variability (HRV), while it is
considered that HR reflects emotional activity [73].

ECG: biological background

The human nervous system is a very complex structure and can be divided into two major
regions: the central nervous system (CNS) and the peripheral nervous systems (PNS).
The CNS includes the brain and spinal cord, while the PNS is named so because it is on
the periphery and it consists of ganglia and nerves outside the brain and spinal cord [14].
The representation of this structure can be seen in Figure 2.8. The PNS is then divided
into the somatic nervous system and the autonomic nervous system.

Figure 2.8: Central and Peripheral Nervous System [14]
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Both the brain and heart are connected via the autonomic nervous system (ANS) and
their communication affect one’s perception, emotion, intuition, and general health. The
ANS regulates many bodily functions, such as the heart rate, respiratory rate, digestion,
pupillary response, and more. The ANS is subdivided into two distinct components: the
sympathetic nervous system (SNS) and the parasympathetic nervous system (PNS). The
more detailed structure of the nervous system is represented in Figure 2.9.

The SNS is often considered the "fight or flight" or “quick response” system that domi-
nates during stressful states, while the PNS is referred to as "rest and digest" or “relaxed
response” system that dominates in relaxing states. Therefore, these two systems often
have "opposite" actions of activating and inhibiting a physiological response. The oscil-
lations of a healthy heart are complex and constantly changing, while the SNS and the
PNS provide complementary stimulation for the cardiovascular system to adjust to sud-
den changes and maintain the regulatory balance or homeostasis. Increased sympathetic
drive is associated with increases in heart rate, blood pressure and sweating, which can
be referred to as “autonomic arousal”. Upon excitation, the cardioaccelerator releases the
neurotransmitter norepinephrine and causes the increase of the heart rate, which occurs
throughout the SNS. On the other hand, the PNS is responsible for the decrease in the
heart rate, which happens when the cardioinhibitory centers release the neurotransmitter
acetylcholine [54].

Figure 2.9: General Nervous System structure [32]
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ECG: Features

A normal ECG signal should have three segmented waves in a single cycle, which is rep-
resented in Figure 2.10. The cycle consists of the P wave, which represents depolarization
of the atria; the QRS-complex, which represents depolarization of the ventricles; and the
T wave, which represents repolarization of the ventricles [83, 85]. The most notable fea-
ture of the ECG is the QRS-complex, which represents the electrical activation that leads
to the ventricles contracting and expelling blood from the heart muscle. The R-peak is
strongly present in the signal and is used for extracting heart beats. The ECG gener-
ally provides a good signal/noise ratio, and the R-peak that is of interest generally has a
large amplitude compared to the surrounding data points and a small amplitude variation
through time. Starting from detected R-peaks, some of the common ECG features used
in research are heart rate (HR) and heart rate variability (HRV).

Figure 2.10: Normal ECG waveform, where P-wave, QRS-complex and T-wave represent
the contraction/depolarization of atria, contraction/depolarization of ventricles and repo-
larization of ventricles, respectively [57].

Heart rate (HR) is measured in beats per minute, and represents the average number
of heart beats in a given time period. Common measures expressing the HR found in
the literature are the beats per minute (BPM) and the mean inter-beat interval (IBI).
For extraction of the instantaneous heart rate (BPM), the peak detection precision is not
crucial, due to the BPM being an aggregate measure, calculated as the average beat-beat
interval across the entire analyzed signal or a longer segment.

Heart rate variability (HRV) is a measure that represents the variation of the heart rate. It
refers to how much an individual’s heart rate signal changes through time and is measured
by the variation in the beat-to-beat interval. Overall, HRV can be considered an indicator
of physiological stress or arousal, with increased arousal associated with a low HRV,
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and a decreased arousal associated with high HRV [96, 100]. Research suggests that a
person with higher HRV while resting can provide more appropriate emotional responses
compared to those that have low HRV at rest. It is important to note that, even though it
is largely used in research of emotional states, the HRV cannot be a moment-by-moment
indicator of emotion. Namely, the data collected over a time interval cannot accurately
relay information on response to a stimulus, but can rather help understanding the total
reaction to a signal in the taken time interval.

Contrary to HR, when extracting HRV measures, the R-peak positions are crucial, since
the measures are designed to capture the slight natural variation between peak-peak in-
tervals in the heart rate signal. Thus, even a few incorrectly detected peaks can introduce
large measurement errors [135]. The measures that express HRV can be divided into time-
domain and frequency-domain ones. Time-domain methods are based on beat-to-beat or
R-R intervals. Frequency domain methods assign bands of frequency and then count the
number of R-R intervals that match each band.

The measures in time-domain that are commonly used for HRV are:

• MAD (Median absolute deviation of RR intervals)

• SDRR (Standard deviation of RR intervals)

• SDSD (Standard deviation of successive difference between heart beats intervals)

• RMSSD (Root mean square of successive RR interval differences),

out of which SDSD and RMSSD are the most often used [135]. RMSSD is computed as
presented in Equation 2.1.

RMSSD =

√√√√ 1

n− 2

n−2∑
i=0

(RRi −RRi+1)2, (2.1)

When HRV is expressed in frequency domain, the following measures are usually consid-
ered:

• Power of the low frequency band (LF, 0.04–0.15 Hz), which is related to short-term
blood pressure variation [13],

• Power of the high frequency band (HF, 0.16–0.5Hz), which is a reflection of breathing
rate [100],

• The ratio between power in HF and LF bands.
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These measures are computed from the PSD (Power Spectral Density), which is most
commonly estimated using the Welch’s method [142]. High-frequency (HF) activity has
been linked to PSNS and found to decrease under conditions of acute time pressure
and emotional strain, possibly related to focused attention and motor inhibition. While
relatively short recordings of 5 min or less can effectively capture high-frequency HRV,
long-term recordings of at least 24 hours are needed to reliably assess lower-frequency
components [110].

2.3.3. Electrodermal activity (EDA)

Electrodermal activity (EDA) refers to changes in electrical conductance measured at
the skin surface, usually corresponding to changes elicited by the ANS [72]. The skin
conductance can be quantified by applying an electrical potential between two points of
skin contact and measuring the resulting current flow between them [17]. For the majority
of people, when they experience emotional activation, increased cognitive workload or
physical exertion, their brain sends signals to the cells in skin to increase the level of
sweating. Even though the increase of sweat on the skin surface may not be noticeable,
electrical conductance can increase significantly as the pores of the skin begin to fill [45].
A common factor that elicits EDA responses is subjective salience, a concept closely
related to motivational importance. EDA is also a useful indicator of attention, and it is
widely recognized that attention-grabbing stimuli and attention-demanding tasks evoke
increased EDA responses [24]. EDA can also be referred to as skin conductance (SC) or
galvanic skin response (GSR).

The skin conductance can be further divided into two components: the phasic skin con-
ductance (PSC) and the tonic skin conductance (TSC). The tonic part corresponds to
slow shifts and therefore varies slowly over time. It is considered to be the raw level of
skin conductance when there are no external stimuli, thus also called Skin Conductance
Level (SCL). On the contrary, the phasic part measurements are usually associated with
discrete external stimuli, therefore with rapid changes or transient events. The changes
in the phasic component are shown as increases or peaks in skin conductance and are
generally referred to as Skin Conductance Responses (SCR) or Galvanic Skin Responses
(GSR). Although associated to fast external events, a phasic response can occur 1 to 5
seconds after the stimulus [16]. An example of a typical SCR following a stimulus is
represented in Figure 2.11, where the reader can notice a latency before the onset of the
response, as well as before reaching the peak amplitude.
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Figure 2.11: An example of a typical SCR, following a stimulus onset. Taken from [29]

The phasic component is therefore sensitive to specific arousing stimulus events, and those
SCRs are called event-related SCRs or ER-SCRs. The event-related analysis refers to the
physiological changes that occur in response to a certain event and is usually done by
time-segmenting the signal in epochs. An epoch is a short chunk of the signal (usually
below 10 seconds) around the stimulus. The event-related features can be rate changes,
peak characteristics, and phase characteristics. On the other hand, is no specific events
are considered in the signal, such SCRs are called non-specific SCRs, and the analysis is
based on longer time intervals. The described systematic division is represented in Figure
2.12.

Figure 2.12: EDA division [17]
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EDA: biological background

The skin is the largest organ of a human body and the main interface between an organism
and the environment. Since it is very complex in its functions, it is also densely innervated.
When sweat glands are innervated, a change in skin conductance can be measured at
the surface. Similar as for the cardiovascular arousal (increase in heart rate and blood
pressure), the increased sympathetic drive causes increase in sweating [24]. The activity
of sweat glands is triggered by sudomotor fibers, each of which innervates a skin area of
about 1.28cm2̂. When multiple sudomotor fibers fire at the same time, it is identified as a
"nerve burst" in the integrated nerve record. A sudomotor nerve burst corresponds to an
observable skin conductance response (SCR), visible as modulation of the conductance of
an applied current. Therefore, the SCR amplitude is considered as an index of sympathetic
activity [11].

EDA: Recording protocol

The EDA sensor measures electrical conductance (the inverse of resistance) of the skin, by
passing a small amount of direct current between two electrodes that are in contact with
the skin. The signal is usually measured in microsiemens (µS). According to [17], the am-
plitudes of phasic SCRs can range from the threshold (0.01–0.05 µS) to a maximum value
of around 2-3 µS. In experiments with highly aversive and fearful stimuli, the maximum
value can increase to around 8 µS, although rarely. As for SCLs, [138] mention a range
of 1-40 µS, but averages are more often between 2-16 µS. Based on developed recommen-
dations [45], the EDA signal acquisition should be done when subjects are seated and
asked not to move. Since the sweat glands are at highest density in palmar and plantar
regions, it is considered better to record EDA from the palmar surface or fingers of the
non-dominant hand. If the EDA is recorded from the wrist, the phasic signals could be
with lower SCR magnitude [24].

A common procedure is to acquire EDA in conditions that can then be subtracted from
each other, in such a way that the resultant measure is a relative difference within the
individual, and not based on the absolute values. It is recommended to record the baseline
signal representing the resting state, that is several minutes long, in order to give enough
time for the subject to relax and the skin conductivity to decrease. The subtraction
procedure serves as a form of normalization for the individual’s EDA data [45].

It is also important to distinguish between normalization and standardization. While
normalization refers to data transformations in order to correct them and make them
fit for parametric statistical analysis, it does not help with inter-subjects comparisons.
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On the other hand, standardization refers to correcting the data so that they can be
directly and meaningfully compared between subjects. Therefore, standardization facil-
itates individual-difference comparisons where all SCRs have been transformed, relative
to their physiological responsiveness, and thus to factor out issues like thickness of skin,
etc. There are several proposed methods for standardization, while there is no universally
agreed one, considering there are pros and cons to every procedure. The examples of some
EDA standardization methods are presented below:

1. SCL data: Range-Corrected Scores
This method computes the minimum SCL during a baseline or rest period and a
maximum SCL during the most arousing period. The resulting SCL for a subject
can then be computed as a proportion of their individual maximum range, using
the formula

SCL− SCLmin

SCL− SCLmax

(2.2)

2. SCR data: Proportion of Maximal Response
The SCR data can be assumed to have a minimum equal to zero and a maximum
corresponding to the result of a startle stimulus, such as surprising audio stimuli,
hand clap, balloon pop, etc. In such a way, each individual SCR can then be
standardized by dividing it by the subject’s maximum SCR.

3. Transformations into standard values
Some studies recommend transforming SCRs into Z-scores [10], which requires the
mean and standard deviation to be used instead of a hypothetical maximum. In
particular, each raw SCR, a mean SCR value and standard deviation of SCRs, are
used to compute the Z-score which is normally distributed, has an average of 0 and
a standard deviation of 1 [17]

.

2.3.4. Respiratory activity (RSP)

The respiratory activity is related to the breathing of an individual and it is set and
controlled by the respiratory center of the brain. The respiratory rate is a measure rep-
resenting the number of breaths taken in one minute, represented in BPM (breaths per
minute). It is typically measured by counting how many times the chest rises, through a
sensor attached to a human body. While heart rate and pulse rate are involuntary param-
eters, respiratory rate can be both voluntary and involuntary. The differentiation between
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voluntary and automatic (metabolic) breathing is that automatic breathing requires no
attention to maintain, whereas voluntary breathing involves a given amount of focus (e.g.
meditation) [129]. A healthy adult in a resting state can have a respiratory rate between
12-15 BPM: the average length of an inhalation in a quiet state is around two seconds,
while an exhalation is around three seconds. This respiratory rhythm can change with
some medical conditions [1]. The respiratory rate can be affected by excitatory nervous
system arousal; it has also been reported that factors such as stress, crying, sleeping,
agitation and age have a significant influence on the respiratory rate.

There are various methods to monitor and measure the respiratory rate; some of the
novel techniques allow its estimation from the electrocardiogram, photoplethysmogram,
or accelerometry signals [7, 22, 79], and thus can be mounted in wearable sensors. Addi-
tionally, a video recording of chest and abdomen movement can be recorded to analyze
the breathing activity. The respiratory activity is widely used to monitor the physiology
of acutely-ill hospital patients, by using regular measures to identify changes in physiology
and other vital signs. It is also a good tool for short-term analysis of autonomic nervous
system (ANS) issues.

RSP: Biological background

The respiratory system of humans consists of the respiratory tract, which is divided into
an upper and a lower respiratory tract. The upper tract includes the nose, nasal cavities,
sinuses, pharynx and the part of the larynx above the vocal folds, while the lower tract
includes the lower part of the larynx, the trachea, bronchi, bronchioles and the alveoli.
The primary purpose of the respiratory system is the equalization of the partial pressures
of the respiratory gases in the alveolar air with those in the pulmonary capillary blood, by
simple diffusion across a thin membrane which forms the walls of the pulmonary alveoli.

The inhalation at rest mainly happens with the contraction of the diaphragm. When
the diapraghm contracts, the sheet of muscle that separates the thoracic cavity from the
abdominal cavity flattens (moves downwards), pushing the abdominal organs downwards.
That movement increases the volume of the thoracic cavity. The automatic rhythmical
breathing in and out, can be interrupted by forms of very forceful exhalation (coughing,
sneezing), by the expression of a wide range of emotions (laughing, sighing, crying out
in pain, exasperated intakes of breath) and by such voluntary acts as speech, singing,
whistling and playing wind instruments. All of these actions rely on the muscles within
the respiratory system, and their effects on the movement of air in and out of the lungs.
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RSP: Features

The features used in RSP analysis can be calculated from the respiration rate and the
breath-to-breath interval (BBI). The BBI is calculated by noting a time stamp at the peak
of each breath pulse and measuring the time interval between these stamps. The BBI is
used as input for calculation of respiratory rate variability features. The respiratory rate
variability (RRV) or breath rate variability (BRV) represents variations in respiratory
rhythm. The RRV features can be grouped into time-domain features, frequency-domain
features, and nonlinear parameter calculation of RRV.

1. Time domain measures of RRV
Some of the statistical measures relying on time-domain signal are standard devi-
ation of the BBI (SDBB), root mean square value of successive differences of the
BBI (RMSSD), and standard deviation of SDBB (SDSD).

Root mean square of successive differences shows the square root of the mean of the
square of the successive differences between adjacent BBs.

RMSSD =

√√√√ 1

N − 1

N−1∑
j=1

(BBj+1 −BBj+1)2, (2.3)

Standard deviation of B-B intervals (SDBB) is a measure of changes in breath rate
due to cycle longer than 5 min.

SDABB =

√√√√ 1

M − 1

M∑
i=1

(meanIBIi −meanIBI), (2.4)

where M is a total number of segments.

Standard deviation of SDBB (SDSD) is a standard deviation of successive differences
between adjacent BBs.

2. Frequency-domain measures of RRV
Frequency-domain methods show the number of BB counts in each frequency band.
Bands are defined as high frequency (HF) band (0.15–0.4 Hz), low frequency (LF)
band (0.04–0.15 Hz), and very low frequency (VLF) band (<0.04 Hz). The most
common feature is the power distribution across each of these bands, calculated
using algorithms based on FFT or Welch estimation [142]. The power distribution
across LF and VLF bands reflects the sympathetic modulation and parasympathetic
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tone, while the power in HF band is a pure measure of parasympathetic activity.
Another common features is the ratio between LF and HF bands (rLFHF).

3. Nonlinear analysis
Approximate entropy (ApEn) is a measure that quantifies the unpredictability in a
signal, by estimating the likelihood that similar observation will not be followed by
additional similar conditions. Lower ApEn values are related to more regular signal,
while larger ApEn values are related to more irregular and thus less predictable
signals. ApEn is defined as:

ApEn(m, r, L) = ϕm(r)− ϕm+1(r), (2.5)

where r is the tolerance, m is the embedded dimension, L is the signal length, and
ϕm(r) is the normalized counting number of different vectors, calculated as:

ϕm(r) =
1

L−m+ 1

L−m+1∑
i=1

Nm(i)

L−m+ 1
, (2.6)

Sample entropy (SampEn) is a modification of the ApEn that attempts to assess
the complexity of physiological signals. The unconditional probability of randomly
selecting two sequences of length m from a signal that have a distance less than r

using the relative frequency methods is Cm
i =

nm
i

N−m
. The averaged probability is

then given by:

ϕm(r) =
1

N −m

N−m∑
i=1

Cm
i , (2.7)

2.4. Statistical and spectral measures

This section describes the background for relevant statistical and spectral measures used
in this work.

2.4.1. Power spectral density (PSD)

Power spectral density (or simply power spectrum) gives information about a signal’s
power distribution across frequency. More precisely, it specifies the power levels of the
frequency components present in a signal. Using the PSD measure, frequency components
having stronger or weaker power levels in the given frequency range can be identified.
The PSD applies to signals existing over the whole signal length, or over a large enough
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time period, in which case it refers to the spectral energy distribution per unit of time.
Windowed power spectrum breaks down the data into consecutive (overlapping or not)
segments or windows; the entire PSD is then computed for each segment.

The PSD estimation techniques can be using parametric or non-parametric methods,
and can be based on time-domain or frequency-domain analysis. The spectral density is
usually estimated using Fourier transform methods (such as the Welch method [142]), but
other techniques such as the maximum entropy method can also be used. The Welch’s
period gram [142] is commonly used to estimate the PSD and it is based on discrete
Fourier transform (DFT). The N-point DFT of a random variable X (n) is given by:

DFTx(f) =
N−1∑
n=0

X(n)ei2πfn, (2.8)

Incorporating a weighted windowing function w(n) to the input series, the data near the
edges of the time series are given less weight compared to the data near the center. In
such a way modified period gram is given by:

PM(f) =
1

MU

∣∣∣∣∣
M−1∑
n=0

X(n)w(n)e−i2πfn

∣∣∣∣∣
2

, (2.9)

where U = 1
M

∑M−1
n=0 w(n)2. Finally, the averaged PSD is computed using all segments.

PSD by Welch period gram is given by:

Pw(f) =
1

N

N−1∑
i=0

PM,i(f), (2.10)

where PM,i(f) is the ith modified periodogram from the data series.

2.4.2. Correlation

In statistics, correlation is defined as any statistical relationship, whether causal or not,
between two random variables [25]. Correlations are useful measures because they can
indicate a predictive relationship. The most familiar measure of dependence between two
quantities is Pearson’s correlation coefficient, commonly called simply "the correlation
coefficient". The correlation coefficient is a value that indicates the strength of the re-
lationship between variables. It can take any value ranging from -1 to 1, interpreted as
following:
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• -1: Perfect negative correlation. The variables tend to move in opposite direc-
tions (i.e., when one variable increases, the other variable decreases).

• 0: No correlation. The variables do not have a relationship with each other.

• 1: Perfect positive correlation. The variables tend to move in the same direction
(i.e., when one variable increases, the other variable also increases).

The correlation coefficient that indicates the strength of the relationship between two
variables can be found using the following formula:

rxy =

∑
(xi − x)(yi − y)√∑
(xi − x)2(yi − y)2

, (2.11)

where rxy stands for the correlation coefficient of the linear relationship between the
variables x and y, xi and yi represent their samples, and x and y represent their mean
values, respectively.

The relationship between more than two variables can be made possible through a corre-
lation matrix. A correlation matrix is a table of rows and columns that shows the extent
of correlation between variables. All the numbers in the cells of a correlation matrix rep-
resent correlation coefficient values of the column and row variables. The diagonal values
(always equal to 1) show that the correlation between a variable and itself is a perfect
correlation. The correlation matrix is a symmetrical matrix. In terms of usage, a correla-
tion matrix mainly serves to quantitatively summarize large data to identify correlation
patterns.
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3| State of the art

This chapter provides an overview of various studies done in the field and discusses the
characteristics of provided options.

3.1. State of the art on experimental protocols

Several research methods have been used to explore the relation between music and
psycho-physiological responses of humans. A review of 251 studies by Eerola et al. [34]
represents a valuable summary of research approaches, developed methodologies, and
experimental protocols. The document includes an overview of the equipment used in
the field, the number and profile of recruited subjects, the type of stimuli used to elicit
emotions, the number of stimuli repetitions, the length of the experiment, and more.

3.1.1. Methodologies used to record physiological responses

There are dozen of methods that can be used to track and analyze human emotional states:
some of them use self-report measures, some others use the physical signals such as facial
expression [37], speech, posture and more, while others measure the internal physiological
signals [54]. Considering the number of available options, selecting measures and devices
to use is a challenging task. Among methodologies that record internal physiological
signals, the most commonly used are:

• Electroencephalogram (EEG)

• Functional Magnetic Resonance Imaging (fMRI)

• Functional near-infrared spectroscopy (fNIRS)

• Electrocardiogram (ECG)

• Blood volume pressure (BVP)

• Electromyogram (EMG)

• Electrooculogram (EOG)
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• Electrodermal activity (EDA)

Skin conductance (SC)

Skin temperature (ST)

• Respiratory activity (RSP)

As for the number of sensors used in a study, a division can be made to unimodal and
multimodal approaches. Many studies focused on multimodal approach, by combining
different physiological signals from biosensors such as ECG, EEG, EMG, EDA, or RSP.
Even though the multimodal approach generally showed better performance, the clear
advantage of the unimodal approach is the simpler data collection and lower data pro-
cessing time [54, 106]. The used devices can be clinical, academic, or commercial; many
wearable devices have lately been developed to monitor biological signals of an individual
during their daily life [71]. According to [68], physiological measures should be used in
connection with other measures, such as self-report.

Electroencephalogram (EEG)

As far as devices for EEG signal acquisition are concerned, they can be classified into those
used in clinical or laboratory setting and those used for commercial purposes. The clinical
EEG devices are usually equipped with more electrodes but are also less comfortable to
wear and more complicated to mount. On the contrary, the commercial devices can often
be in the form of a headband that are visually more appealing and easier to wear, but
that often have a very small number of electrodes. An example of such a headband with
4 electrodes is given in Figure 3.1.

Figure 3.1: A wearable headband device for EEG acquisition, model Muse 2,
https://choosemuse.com/
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The IFCN standards for digital recording of clinical EEG [102] and the EEG recording
protocol for cognitive and affective human neuroscience research [39] represent a valuable
summary of requirements for a proper EEG recording. According to the IFCN stan-
dards, the amplification and channel-acquisition for EEG must be available for at least
24 channels, and preferably 32 channels. In their work, Fiedler et al. [43] explored the
use of 256-channel EEG cap, emphasizing that such high-density electroencephalography
(HD-EEG) also requires skilled staff and extensive preparation. The IFCN standards also
recommend the minimum digital sampling rate for acquisition and storage of the EEG
data to be 200 Hz; however, some models (e.g. eego™mylab by ANT Neuro [144]) claim
to have a sampling rate up to 16 kHz. The high temporal resolution is a known advantage
of EEG signals. However, being very receptive to noise and interferences, they are also
characterized by low signal-to-noise ratio (SNR) and are therefore challenging for data
processing and analysis. The data can vary significantly between individuals and even for
the same person over time. Hence, EEG is often paired with PET scans and fMRI scans
to help study the affective picture processes in the brain.

It has been shown in research that most of the EEG channels represent redundant in-
formation [4]. Namely, brain imaging and EEG studies have suggested that listeners’
responses to music involve sub-cortical and cortical regions of the brain that are known
from earlier research to be involved in emotional reactions [68, 120]. For that reason, the
EEG data is often analysed only for specific regions of interest, by grouping electrodes
according to their position on the scalp. For instance, in their study on tension based
on nested structures in music [131], Sun et al. analyze the EEG data in four regions of
interest: left anterior (F1, F3, F5, FC1, FC3), right anterior (F2, F4, F6, FC2, FC4),
left posterior (P1, P3, P5, CP1, CP3), and right posterior (P2, P4, P6, CP2, CP4).
Maity [89] extracted EEG data for only frontal electrodes (F3, F4, F7, F8, Fp1, Fp2, Fz),
claiming that earlier works have shown frontal electrodes to be the most significant for
studying simple auditory musical stimuli. Schmidt [120] used only 4 scalp locations (F3,
F4, P3, P4) and reported greater relative left frontal EEG activity related to joy and
happy musical excerpts, and greater relative right frontal EEG activity to fear and sad
musical excerpts. In their study on music listening effect on Parkinson’s disease patients,
Maggioni et al. [88] use only 8 electrodes (Fp2, C4, T4, O2, Fp1, C3, T3, O1).

According to several mentioned studies [88, 89], the frequency bands of interest for a
listening experiment are alpha and theta bands, corresponding to ranges of [4,8] Hz and
[8,13] Hz, respectively. The frequency analysis is mainly based on computing the Fast
Fourier Transformation (FFT) [120] or Power Spectral Density (PSD) [43, 88], usually
using a moving window with 0.5-2 seconds length.
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Functional near-infrared spectroscopy (fNIRS)

Functional near-infrared spectroscopy (fNIRS) is an optical brain monitoring technique
which uses near-infrared spectroscopy for the purpose of functional neuroimaging [40].
fNIRS uses near-infrared light to measure brain activity in order to estimate cortical
hemodynamic activity that occurs as a response to neural activity. Alongside EEG,
fNIRS is one of the most common non-invasive neuroimaging techniques which can be
used in portable contexts. The signal is often compared with the BOLD signal measured
by fMRI.

Electrodermal activity (EDA)

An overview by Fowles [45] summarizes recommendations related to using EDA in experi-
mental protocols. According to Braithwaite [17], the sample rate of EDA can be set quite
low for long-term ambulatory measurements or experiments that do not require a high
level of temporal precision. However, if an experimenter wants to run an event-related
analysis, then the accuracy of 1 millisecond is required. It is thus recommended to set
the acquisition rate to a minimum of 2000 samples per second (2KHz). Generally, 500Hz
- 2000Hz sample rates are sufficient for laboratory studies. For instance, the Empatica
E4 [78] wristbands that were used in the initial project described in Section 1.3 have
a sampling rate of 4Hz, which is not enough for a temporal analysis, according to the
described resources.

As described in Subsection 2.3.3, the EDA signal can be decomposed into its tonic and
phasic components; the process of decomposition can be done in multiple ways. The
most simple methods are using a median of highpass filter; however, there are several
model-based methods such as [2, 48] that are shown to have a greater validity compared
to heuristic and ad-hoc approaches. Several studies [3, 49] use the cvxEDA model [48],
which is based on convex optimization and robust to noise coming from overlapping SCRs.
According to [49], EDA features such as the maximum value, the mean or the variance
seemed more significant for estimating arousal than valence, if taking into account the
valence-arousal emotion model presented in Subsection 2.1.2.

Since the background tonic SCL is constantly changing for an individual and can be very
different between them, some researchers made a conclusion that the actual SCL level is
not that informative on its own nor that easy to derive. The protocol usually requires
recording a baseline, which is considered to be the average tonic level of a subject during
their rest state and in absence of any specific external stimuli. The standard practice is
to record a baseline signal for 5-15 minutes of rest prior to any tasks. During the baseline
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period, considering that the subject is in resting state, the EDA signal level should be
smooth and slowly drop in amplitude. The baseline value is computed by averaging over
the lowest values of in such way recorded signal.

3.1.2. Music stimuli used in state of the art

To measure specific patterns of responses to stimuli in experiments, researchers have used
various stimuli like cognitive tasks, motor imaginary movement, visual or audial stimuli.
When it comes to the music stimuli, the music genres used in the field are mainly classical
and commercial music. The nature of music stimuli can be roughly categorized into
natural music (used in [75])and computerized music [34]. The latter is easier to describe,
control and measure, but also more limited in the aspect of musical expression. The set
of music stimuli usually included short excerpts of few seconds, but there could also ne
whole music pieces that are several minutes long [34].

Exploring the effects of music harmony, Koelsch [74, 75] has focused on analyzing the
violated music expectations. In [75], he analyzed sequences of chords, where some chords
were more or less expected, according to the rules of classical music harmony. In [74], he
transformed the tonic resolution of existing classical pieces by shifting them a semi-tone
above (which represents the most distant harmonic relationship according to the circle
of fifths (cite)), thus violating the expectation. The results showed that the transposed
chords evoked electric brain activity in range 180-350ms with negative polarity.

In their study [131], Sun, Feng, and Yang studied the behavioral and physiological re-
sponses to music tension in the context of complex nested structures. Then, the study
on emotion recognition [15] used one-minute-long audio tracks to explore the effect of
five different genres. One of the most common databases for decoding affective states
is DEAP (Koelstra, 2011), which consists of 40-minutes-long EEG and other biosensors
recordings of 32 subjects while they are watching music videos.
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3.2. Overview of studies based on self-report meth-

ods

3.2.1. Musicality and music preferences assessment

Musical skills and expertise can vary greatly among individuals, starting from their reper-
toire of musical behaviors to the level of skill they display in any musical behavior. The
types of musical behaviors can be ranging from performance on an instrument and listen-
ing expertise, over the ability to employ music in functional settings, to communicating
about music. The assumption behind adding this aspect to the study is that the individ-
uals’ habits, skills, and preferences related to music could influence their emotional and
cognitive experience while they listen to certain music stimuli.

Musical Sophistication Index (Gold-MSI)

Musicality is generally difficult to define as it is not necessarily correlated with formal
musical education. The Goldsmiths Musical Sophistication Index (Gold-MSI) [101] was
developed for that purpose. Being musically "sophisticated" in this sense means being
more likely responsive to music. The questionnaire is also considered sensitive to differ-
ences among ‘non-musicians’.

The self-report inventory also allows the scoring of a General Musical Sophistication factor
that incorporates aspects from five sub-scales:

• Active Engagement (AE)

• Perceptual Abilities (PA)

• Musical Training (MT)

• Singing Abilities (SA)

• Emotions (EM)

• General Musical Sophistication (GM).

Music preferences

Acknowledging the individual’s interests in and attitudes to different musical genres and
activities is an important aspect of this research. Music preferences could be measured at
different levels of abstraction, aiming to classify by artists, genre, instrumentation, etc.
Some studies also explore the connection of music preference with personality [20, 114].
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Assessment of music preference is usually performed via self-report questionnaires that
use Likert scale [62] or in the form of music excerpts to listen. Some examples of the
first group are Short Test of Music Preferences (STOMP) [113], built with Likert scale
on 14 genres and mapped on 4 music-preference dimensions, then Revised Short Test
of Music Preferences (STOMP-R) extended to 23 genres, and Music Preference Ques-
tionnaire (MPQ) [126] that evaluates preferences across 11 genres, and maps them to 4
dimensions (Rock, Elite, Urban and Pop/Dance). On the other hand, a questionnaire
based on listening to music excerpts representing certain genres and then reporting the
opinions are MUSIC (standing for Mellow, Urban, Sophisticated, Intense, and Campestral
music) [115, 116] which counts music excerpts from mainly unknown pieces, representing
26 genres. A study by Ang et al. [6] was based on comparing preferences for ethnic and
non-ethnic music among Malaysian students using 30 music excerpts. A study by Ferrer
et al. [42] mentions the artist-based musical preferences (AMP) assessment as a "more
ecologically valid instrument" to collect musical preferences.

Assessing one’s music preferences brings various difficulties and biases. For instance, a
difficulty on the side of the subject could be the lack of knowledge on certain genres or
music in general, or certain lexical limitation (not being able to describe their preferences
with words or numbers precisely and distinctively). When the study is based on listening
to certain music excerpts, the subjects could be biased by the popularity of the piece, or
their personal memories, and therefore judge for the entire genre based on their opinion
on that piece. Additionally, their reactions and preferences could depend on a certain
situation or a period in their lives, and can be changed through time, which is why
some studies tend to repeat the questionnaire after several weeks. An obvious large bias
present in the field of music is created by cultural differences, since individuals coming
from different cultures are exposed to different scales, instruments, ornamentation, and
more. Lastly, a bias exists on the experiment’s side, as it is very challenging to find a
proper representative piece of a certain genre, or even objectively classify genres into wide
enough and distinctive enough categories.

3.2.2. Emotional competencies assessment

Aiming to develop Emotional Intelligence (EI) measures with good psychometric proper-
ties, the researchers had a difficulty of constructing questions that could be objectively
scored. Namely, compared to cognitive ability measures that have objectively right or
wrong answers, items designed to measure emotional ability rely on expert judgment to
define correct answers, which is problematic for multiple reasons [117].
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Based on whether the EI measure is a test off maximal performance or a self-report ques-
tionnaire, a classification into ability EI and trait EI measures, respectively, was proposed
by Petrides and Furnham in 2000 [109]. Following this distinction, the ability EI tests
measure an individual’s theoretical understanding of emotions and emotional functioning,
while the trait EI questionnaires measure typical behaviors in emotion-relevant situations,
as well as self-rated abilities. O’Connor [103] provides an exhaustive review of the Emo-
tional Intelligence measures mostly used in research, considering also factors such as the
test length, number of facets measured and if tests are freely available. Summaries of
some tests relevant for this study follow.

The most popular measure of ability EI is the Mayer, Salovey, Caruso Emotional In-
telligence Test (MSCEIT) [93] that measures ability dimensions of perceiving emotions,
facilitating thought, understanding emotions, and managing emotions. However, MS-
CEIT is a commercialized test that is expensive to use, relatively long (141 items) and
thus time consuming to complete.

One of the main commercial trait EI instrument is the Bar-On Emotional Quotient In-
ventory (EQ-i) [8, 9], which comprises 133 items and is also expensive to use. The Schutte
Self-Report Emotional Intelligence Scale (SSREI, SREIT, or SEIS) [61, 122]) is one of the
most widely used self-report EI measures based on the earlier ability model by Salovey and
Mayer [94]). It comprises 33 items and therefore, compared to Bar-On EQ-i represents
an easier and shorter measure, that is freely available.

3.2.3. Emotional music scale

According to Juslin [69], the instruments commonly used for self-report are:

• Likert scales

• Adjective checklist

• Visual analogue scales

• Self-report instruments

• Diary study,

while some of the standardized mood/emotion scales are:

• Differential Emotion Scale (DES) [58]

• Positive and Negative Affect Schedule (PANAS) [141]

• Affect Intensity Measure (AIM) [80]
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• Activation–Deactivation Adjective Check List [133]

• Geneva Emotional Music Scales (GEMS) [145]

• Profile of Mood States (POMS) [95]

• UWIST Mood Adjective Checklist [92]

In the DES, participants are requested to rate 30 emotion words, while the PANAS is
based on 60 words that characterize emotion or feeling (e.g., inspired, calm, distressed)
on a 5-point scale. The POMS is another commonly used instrument for assessing mood
including 65 adjectives, again to be rated on a 5-point scale. The adjective checklists,
such as the Activation–Deactivation Adjective Check List consists of sets of emotions of
interest, presented to the participants in a scrambled order. Lastly, the AIM aims to
quantify the intensity of an individual’s emotional experience.

Additionally, Subsection 2.1.2 presents several models of measuring emotions.

Geneva Emotional Music Scales (GEMS)

Geneva Emotional Music Scales (GEMS) [145] is a Discrete Emotional model aimed at
assessing emotions induced by music. The GEMS is considered to be the first instrument
specifically designed to capture the richness of musically evoked emotions. It is based on
multiple studies that included a wide range of music and listener samples. The model com-
prises nine categories of musical emotions: wonder, transcendence, tenderness, nostalgia,
peacefulness, energy, joyful activation, tension, and sadness. This domain-specific model
accounts for ratings of music-evoked emotions more powerfully than multi-purpose scales
that are based on non-musical areas of emotion research. In addition, we also showed
that the experience of the musical emotions tends to activate distinct emotive brain sites.

The original GEMS (GEMS-45) that is frequently used in studies on music and emotion
has 9 scales and 45 emotion labels. However, a short and ultra-short version have been
developed: GEMS-25 and GEMS-9, respectively. The GEMS-25 is based on the same
adjective items pool and data-analytic procedures as the GEMS-45, although obviously
providing less detailed results. The GEMS-9 presents only the primary nine factors along
with a few emotion adjectives describing each factor. Each of the factors is supposed to be
rated with a Likert scale of 5 levels. This ultra-short version is made for data collection
in short studies. The use the GEMS for academic research purposes in a university
environment is free, but any use for commercial purposes is prohibited.
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This chapter describes the steps taken in this study, starting from the organization of the
listening experiment, to data acquisition and data processing. Relevant choices, concern-
ing sensors, music stimuli, questionnaires and more, are also described in detail.

4.1. Subjects of the experiment

A total number of 10 subjects whose age ranged from 22 to 36, out of which 7 males
and 3 females, were recruited for the study from a variety of settings in a metropolitan
area of Milan, Italy. All subjects were university students of different nationalities and
cultural backgrounds. The subject’s age ranged from 22 to 36, the average age being 26.1,
with standard deviation 4.5. Upon invitation, a simple sorting process was conducted,
mainly based on the applicant’s basic health status, gender, and time availability. The
gender factor was considered not only with the goal to obtain gender balance, but also
due to certain limitations related to the size of the available EEG caps. As for the
health status, the participation in the study was allowed to the subjects who do not
suffer from any hearing difficulties, who are not carries of a pacemaker, nor those who
show pathological inheritance concerning cardiovascular diseases, respiratory diseases, or
neural system disorders.

The invitation contained general information about the study, the explanation of the
protocol, and the Informed Consent document1 that was approved by the research Ethical
Committee of Politecnico di Milano. The Informed Consent describes the way in which
the data is acquired, stored, and later processed. Prior to taking part in the study, all
subjects were required to read and agree to what is described in the document, after which
each of them was assigned a two-hours-long session, according to their availability. All 10
subjects gave their consent to take part in the acquisition session and did not interrupt
the session until it was finished.

1https://drive.google.com/file/d/1I4dKPL1g0sg3R5JH-HseiQqHvHiLXODy/view



44 4| Methodology

4.2. Self-report questionnaires

The questionnaires aimed to acquire data related to subjects’ lifestyle, musical expertise,
music preference and emotional competencies, as well as the emotions elicited while the
subject listen to the music pieces during the data acquisition session. The questionnaires
were added into the study as an additional element to analyze and categorize the re-
sults and explore conditional correlations. The assumptions behind this choice were that
the subjects’ preferred music genre, emotional competencies, and lifestyle habits related
to music could be correlated with their reactions and thus their physiological responses
to certain music stimuli. The questionnaires used in this work can be divided into two
categories: those to be filled out before the acquisition session, aimed to profile the sub-
jects and to collect general information about them, and those to be filled out during the
session, collecting responses about elicited emotions during specific listened music pieces.

4.2.1. Subjects’ background and preferences

The questionnaire that was supposed to be filled out before the session was assembled as
an online Google Form, consisting of five sections:

I. Informed consent

II. Basic data collection

III. Questionnaire on Musical Sophistication (Gold-MSI) [101]

IV. Questionnaire on Music Preference (STOMP-R) [113]

V. Questionnaire on Emotional Competencies (SREIT) [122]

The subjects were asked to fill the form before coming to the session. Additional reason
for filling out the form beforehand was to put more emphasis on reading the Informed
consent and to get the subjects more familiar with the task requirements. The part aimed
at collecting basic data consisted of questions about the subjects’ age, gender, nationality,
occupation, and similar. The three questionnaires chosen from the literature, in particular
Gold-MSI, STOMP-R, and SREIT, were mainly constructed by a number of sentences to
be rated on a Likert scale. These questionnaires are in depth described and discussed in
Section 3.2.
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4.2.2. Assessment of elicited emotions

The questionnaire to be filled during the data acquisition session, after listening to each
choral piece was based on GEMS-9 (Geneva Emotional Music Scales) [145]. GEMS-9
is a self-report questionnaire that aims to assess the subject’s emotions elicited while
listening to a specific music piece. The original questionnaire was enriched with two
general questions that were considered of value for further analysis and categorization:

1. How well do you know this music piece?

2. How much do you like this music piece?

Both questions were to be answered using the same Likert scale as for the original GEMS-9
questionnaire. In such a way adjusted document is presented in Appendix A.

4.3. Music stimuli

The initial set of music stimuli that was chosen for the experiment contained recordings
of four pieces of polyphonic choral music, performed in a live concert in spring of 2019
by the "Discanto Vocal Ensemble", directed by Giorgio Brenna, in Milan, Italy. Then,
following some examples in the literature [75], and in order to have a part of music stimuli
that is represented and controlled in a simpler and more direct fashion, the initial set was
enriched with 12 short sequences of chords played on a MIDI keyboard. The whole set of
stimuli can be found online2.

4.3.1. Chord sequences

The part of the music stimuli that included chord sequences was recorded using a MIDI
keyboard and the digital audio workstation REAPER (Cockos, Inc) [23], and then ren-
dered into audio files using a free "Soft piano" plugin by Spitfire Audio [56]. In total there
were 12 chord sequences, each of which consisted of 5 consecutive chords. Six sequences
had the initial tonic chord of C major, while the other six started from C minor chord.
All sequences represented different chord progressions used in Western music, some with
more complexity and tension (therefore "less expected"), and some more natural to a non-
educated listener (therefore "more expected"). In particular, the 5th chord had the most
variations, providing expected or unexpected resolutions. Some examples are presented
in Figures 4.1 and 4.2.

2https://1drv.ms/u/s!AvcHs1ydRWzggZ1Zp8YGjxTauNInXg?e=dvGmmd

https://1drv.ms/u/s!AvcHs1ydRWzggZ1Zp8YGjxTauNInXg?e=dvGmmd
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Figure 4.1: An example of a chord progression with an expected resolution from the
dominant chord to the tonic chord

Figure 4.2: An example of a chord progression with a non-expected resolution from the
dominant chord to the Neapolitan 6th chord
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Each chord was set to last one beat, with exception of the very last chord of each sequence
that took two beats. With BPM3 set to 120, each beat lasted two seconds, and therefore
each chord sequence lasted 12 seconds, as represented in Figure 4.3. The sequences were
played one after another, and in order to minimize the bias and the mutual influence in
the inter-subjects statistics, the order of sequences was randomized for each subject using
a random sequence generator. Then, to give the subject some rest between the stimuli,
six seconds of silence were added between each chord sequence. Following the described
order, the 12 sequences were then merged into a single audio file for each subject, summing
up to 10 different audio files. The total length of the resulting audio files was 3 minutes
and 44 seconds.

Figure 4.3: The representation of the structure of the 12 chord sequences. Each sequence
consists of five chords, the last of which lasts longer than the rest and can be harmonically
expected or unexpected.

3beats per minute
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4.3.2. Choir recordings

This part of the music stimuli includes four pieces recorded during the live concert of the
polyphonic choir "Discanto Vocal Ensemble", directed by Giorgio Brena in 2019. All four
pieces can be classified into the genre of Western choral "sacred music" and thus represent
a novelty in the field of researching human responses to music stimuli using physiological
signals. The details about the four music pieces used in the experiment are represented
in Table 4.1.

Piece title Composer Length [min]

"Abide with me" William Henry Monk 1:52
"Intellige Clamorem Meum" Alessandro Scarlatti 3:07

"Ubi Caritas" Maurice Duruflé 2:00
"Ubi Caritas" Ola Gjeilo 2:48

Table 4.1: The list of the choral pieces used in the experiment

For each of the pieces, the different aspects of music tension (further explained in Subsec-
tion 2.2.2) through time were manually annotated by music experts, including the choir
director himself. The annotation process was done taking into account the correspond-
ing music scores, but also the live performances, thus the layer of musical expression.
The tension was represented with numbers ranging from 1 to 5, standing for the lowest
and highest levels of tension, respectively. In such a way represented tension was then
noted down in a tabular way, with a column for time latency and another column for
the tension level. An example of such annotated harmonic tension through time for the
piece "Ubi Caritas" by M. Duruflé is given in Table 4.2, while a corresponding graphical
representation for the same piece is shown in Figure 4.4.
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Latency [s] Harmonic tension [1-5]

0 1
7.908 2
10.914 1
18.474 2
35.736 1
39.078 3
47.49 2
48.576 3
51.516 2
54.228 1
56.316 3
61.542 2
69.954 1
90.354 2
105.84 1
112.08 0

Table 4.2: The annotations of the harmonic tension for the piece "Ubi Caritas" by M.
Duruflé.

Figure 4.4: The plot corresponding to the annotations of the harmonic tension for the
piece "Ubi Caritas" by M. Duruflé.
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4.4. Technical equipment

The physiological signals chosen for the continuous acquisition were the following: elec-
troencephalogram (EEG), electrocardiogram (ECG), electrodermal activity (EDA), and
respiratory activity (RSP). The equipment needed to acquire the described signals was
connected to a PC for the real-time visualization of the acquired signals and their storage
for further processing.

Electroencephalogram (EEG)

The EEG signals were measured using a digital electroencephalograph system developed
by Micromed S.p.A. The EEG cap with 61 electrodes was placed on the subject’s head
according to the international 10-20 EEG placement system [102], as presented in Figure
4.5. Each electrode was connected with wires to the acquisition device. The signals were
recorded with a sampling rate of 1024 Hz. In order to improve the conductivity between
the electrodes and the scalp, a water-soluble electrolytic gel was applied on subjects’ scalp
before the data acquisition. The subjects were previously informed about the procedure,
were advised to keep their hair clean and dry, without ponytails, braids, hair clips etc, as
well as to avoid using any sprays, oils, or gels in their hair beforehand. They were also
explained that the gel could be removed from their hair using warm water at the end of
the acquisition session. The gel was applied using a syringe, via a hole in each electrode.

Figure 4.5: An example of an EEG cap with 61 electrodes and a strap [5]
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Electrodermal activity (EDA)

The electrodermal activity was recorded using the ProComp Infiniti System, model SA7500
(Thought Technology Limited, Montreal, QC, Canada), which is a multi-modality device
for real-time biofeedback and data acquisition. This system was used for acquiring not
only EDA, but also ECG and RSP signals. The sampling rate used for the EDA signals
was 2048 Hz. The recording protocol required wrapping two clamps, each coupled with
a sensor, around the medial phalanx of the index and middle finger of the non-dominant
hand, as presented in Figure 4.6. The clamps were wrapped in a way that both ensures
stable conductivity and is comfortable for the subject. The subject was asked to avoid
engaging the hand’s muscles, to minimize interferences from physical movement.

Figure 4.6: The placement of two clamps, each with EDA sensors, around fingers [87]

Electrocardiogram (ECG)

The electrocardiogram setup included three adhesive and disposable electrodes, placed
on the subjects’ thorax to record the cardiac activity. The electrodes were placed as
presented in Figure 4.7 and were connected to the ProComp Infiniti System described
above. The sampling rate of the recorded ECG signal was 256 Hz.

Figure 4.7: The placement of thee adhesive ECG electrodes on the thorax [44]
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Respiratory activity (RSP)

The respiratory activity was recorded using a belt with a sensor, wrapped around the
subject’s thorax, just under the sternum. The sensor could track the movement of the
thorax while the subject breathes in and out and was connected to the previously described
ProComp Infiniti System. The samples were taken with a frequency of 256 Hz.

Figure 4.8: The placement of a respiratory belt around the thorax [140]

4.5. Experimental protocol

The acquisition sessions were conducted in a light and quiet room inside Building 21 of
Politecnico di Milano, Italy, in December 2021. The BrainLab of Politecnico di Milano
provided not only the room and equipment, but also educational support for this study.
Two trial acquisition sessions were organized in order to build up the protocol and adapt
it to the needs and limitations concerning time, space, and personnel. Within the official
experiment, there were usually two sessions scheduled per day (one from 10AM to 12PM
and the other from 2PM to 4PM), taking into account the time required for setting up the
equipment before each session, as well as the cleaning after it. Before their acquisition
session, the subjects were asked to fill out the provided online questionnaire and were
given additional instructions related to the acquisition session. Upon arrival, the subjects
were verbally reminded about the duration and tasks involved in the experiment, as well
as the possibility to withdraw their participation at any given moment. The subjects were
then asked to give a formal written consent of participation in the study and the involved
data collection by signing the printed informed consent form.
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The approximate duration of each acquisition session was 1 hour 45 minutes, including:

• Setting up the equipment (45 min)

• Acquiring the data (45 min)

• Cleaning (15 min)

The data acquisition part included continuous recording of the listed physiological signals
and compiling the adjusted GEMS-9 questionnaires after each listened piece. During the
session, the subject was sitting in the room together with the experimenter, while wearing
the mentioned equipment and the AKG headphones [50], model K92.

4.5.1. Equipment setup

Before the subject arrived, the room was prepared for the session, which included
organizing the space where the subject will be seated, the space for the experimenter,
and the equipment. A movable desk with disposable electrodes, syringes, conductive gel,
measure tape, dry wipes, and similar objects was prepared. Then, all the sensors were
set up and connected to the PC on the experimenter’s desk, with two screens to monitor
several signals continuously. Next, the software for data acquisition were set up, entering
general data about the subject and the session. The software used for acquisition of EDA,
ECG, and RSP was BioGraph Infiniti (Thought Technology Limited), while the software
used for EEG was Micromed System Plus Evolution. Lastly, a notes insert was prepared,
in order to keep track of possible disruptions or other details during the session.

After the subject arrived, they were welcomed and seated in a comfortable chair, at
a comfortable distance from the table. The disposable electrodes for ECG were attached
to the subject’s body, the two clamps for EDA were wrapped around their two fingers,
and the respiratory belt was wrapped around the subject’s thorax. At that point, all the
incoming signals were checked, adjusting the equipment accordingly if necessary. As far
as the EEG is concerned, first it was needed to measure the subject’s head circumference
and the nasion-inion distance with a measuring tape. According to the measures, one
of the two EEG caps (one smaller, the other larger) was chosen and then set up on the
subject’s head, in such a way that the cap is centered and that the reference electrode is
positioned at the midpoint of the nasion-inion distance. When the EEG cap was properly
positioned and comfortably tightened with the strap around the subject’s chin, it could
be proceeded with filling the holes in the electrodes with the conductive gel. The gel was
applied doing a circular motion with the syringe to move the hair and thus get closer to
the skin, and then slowly getting the syringe out of the hole.
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When all the holes were filled with gel in a systematic order, the signals coming from
all channels were checked on the monitor. If a certain channel showed that there was
not enough conductivity between the corresponding electrode and the scalp (e.g. if the
signal of the channel drifted or was very noisy), the electrode was adjusted by adding
more gel into the corresponding hole or moving the hair, or adjusting the whole EEG cap.
The Figure 4.9 represents the setup of equipment on a subject’s body: the reader can
notice the respiratory belt around the thorax, as well as the wires of the ECG electrodes
attached under the shirt.

Figure 4.9: A subject with set-up equipment during an acquisition session

When the equipment was finally set up, as represented in Figure 4.10, the subject
was informed about the task in details, and advised to stay relaxed and keep any physical
movement at minimum, especially while listening to the music stimuli. A short trial
listening session was then performed, in order to adjust the volume of the music stimuli
playback according to the subject’s preferences. After confirming with the subject that
they are ready, the data acquisition part could start.
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4.5.2. Data acquisition and monitoring

Before starting the task, it was needed to record the baseline signals, corresponding
to the subject’s resting state. The EEG recording protocol required acquisition of one-
minute-long signal for the baseline, for two cases of the subject having eyes open and
closed, while the EDA recording protocol needs a longer baseline signal in order to capture
the slow changes while the subject reaches a resting state. Therefore, it was decided to
record one-minute-long EEG baseline signal while the subject keeps their eyes closed,
and then 5 minutes of both EEG and EDA baseline signals while the subject keeps their
eyes open. The described process was performed with the help of a chronometer and
an external button connected to the apparatus, to mark the beginnings of certain time
intervals. The subjects were asked to keep their eyes open during the task.

Figure 4.10: A subject with set-up equipment during an acquisition session

During the task, the music stimuli were played in randomized order, notes of which
were accordingly documented. The time synchronization was established by pressing the
external button at the same time as a PC keyboard button that played the music stimuli
from a PC. Both during the acquisition of the baseline data and the task-related data, the
signals were continuously monitored during the session on the screens. The notes were
kept on any disruptions in the experimental protocol.
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4.5.3. Cleaning

When the task was finished, the EEG cap was carefully taken off of the subject’s head
and the gel was partially removed from their hair using dry napkins. After taking off the
EEG cap, the rest of the equipment was taken off, including the disposable electrodes and
the respiratory belt. The subject was then asked for feedback about the whole process;
with that, the session was concluded, and the subject could leave the room.

After the subject has left, the acquired signals were again checked and saved. All
the used equipment was dissembled and packed back where they were taken from, unless
there is another session upcoming right after. The disposable electrodes and used napkins
were thrown away. Lastly, the reusable part of the equipment needed to be cleaned:
particularly the EEG cap and the syringes. The EEG cap was first soaked in water,
and then the remains of the gel were taken out from each electrode hole with the help
of toothpicks, ear picks, napkins, toothbrush, and similar objects. The whole process of
cleaning the EEG cap could take around an hour, after which it was left to dry before the
next use. The Figure 4.11 represents the whole above-described experimental protocol.

Figure 4.11: The diagram representing the proposed experimental protocol
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4.6. Data processing

The raw EEG data processing was performed using EEGLAB [31] in MATLAB R2021b
(the Mathwords, Inc.), while the processing of the acquired EDA, ECG, and RSP signals
was performed in Python [137]. The created pipeline that includes eliciting emotions
using the music stimuli, acquiring, importing, and preprocessing the data, as well as
feature extraction and data analysis is represented in Figure 4.12.

Figure 4.12: The diagram representing the data processing pipeline

4.6.1. EEG

At first, the raw .TRC files were imported and read into MATLAB and then transformed
into .SET files. Among the 65 channels of the imported data, four of them (elA32, elB31,
elB32, and MKR) were not EEG channels, so they were directly removed. Then, the
information about button-induced events was read from the files’ header, which allowed
indicating the beginning of each audio track. Then, the imported files were segmented into
tracks, according to the imported events’ latency. Since the subjects’ physical movement
and other external interferences were increased in the parts between the listening tasks,
segmenting into tracks before signal processing allowed disposing the parts with large
artifacts. The first 16 channels of the raw EEG data corresponding to a part of a listened
music track is represented in Figure 4.13.
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Figure 4.13: The first 16 channels of raw EEG data in the EEGLAB environment [31]

EEG: Data preprocessing

After having the EEG data organized according to the audio tracks, the signal preprocess-
ing was performed. The data were initially filtered with the basic finite impulse response
(FIR) filter, set at 1Hz as the lower edge and 45Hz as the higher edge of the frequency pass
band. The reasoning behind the higher edge cutoff frequency is that there is a line-noise
present at 50Hz, while the frequency range that concerns this task does not require high
frequencies. On the other hand, the lower edge was set to reduce the noise present at low
frequencies, while not affecting the spectrum of interest. After filtering, the downsampling
of the data was performed, reducing the sampling frequency from 1024Hz to 256Hz, in
order to reduce the memory load and required computational power.

Next step in the preprocessing pipeline was cleaning the data, by inspecting the channels
that could be considered not useful, due to high frequency noise or bad conductivity of
the corresponding electrodes. The detection of such bad channels was done using Clean
Rawdata plugin [76, 99]. This procedure often detected those channels whose correspond-
ing electrodes are physically positioned near the reference electrode Cz, due to their lower
voltage amplitude. However, since those channels are not by default noisy or artifactual,
after manual inspection and confirmation of channels Pz, P1, P2, Cpz, Cp1, and Cp2,
they were discarded from the set of channels to be removed. Then, the channels that are
finally selected as bad were removed from the data, after which spherical interpolation
[41, 108] of the missing channels was performed, which led to having 61 channels in the
data for each subject. The information about detected and removed channels was kept
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in the fields of the EEG data structure. Since the task required having continuous data
through time, no additional removal of temporal data portions was performed.

After removing the bad channels from the data, the artifacts embedded in the data (mus-
cular movement, eye blinks, or eye movements) were corrected or subtracted, using an
independent component analysis (ICA) algorithm [90]. The ICA is used to separate and
estimate signal sources, which also allows removal of artifactual components. In the very
end of the preprocessing pipeline, the re-referencing of the channels was performed, using
the method that computes the common average reference (CAR) [84].

EEG: Feature extraction

After pre-processing, the next step was to extract meaningful features from the cleaned
EEG data. The event-related potential (ERP) described in Subsection 2.3.1 was not used
in the end, since there was a low number of music stimuli repetitions to obtain meaningful
results.

The analysis in frequency domain was performed for segments of 1 second or 256 samples
for all EEG recordings. For each segment of 1 second, standardization was performed, by
subtracting the mean value of the samples in the segment and dividing by the standard
deviation of these samples. Such operation was performed for each channel. Then, power
spectral density (PSD) was calculated for each of the described standardized segments,
using the Welch estimation method [142], again for each channel. The mean power of the
alpha band (8-13 Hz) and the theta band (4-8 Hz) was calculated for each segment and
for each channel. The resulting matrices for average power in alpha and theta bands are
of dimension Nsamples x Nchannels, where Nsamples corresponds to the number of segments,
which is in this case equal to the length of the data in seconds, while Nchannels stands
for the number of channels. Since the locations of the electrodes are known and are
same for each subject, the channels have been grouped into five regions: Frontal, Central,
Occipital, Parietal, and Temporal, and additionally divided into left and ride sides of the
scalp. The described process was performed for each of the subjects, for each of the music
tracks and baseline files, and for both alpha and theta bands.

4.6.2. EDA

The raw data for EDA, ECG, and RSP were organized in .txt files, where several first
rows contained basic information about the session and the subject, while the rest of the
rows contained data points for the time latency and the amplitude values of the three
signals, each sample in a new row. After importing and reading the .txt files, as well as
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importing the events, the data were segmented into tracks and saved as JSON (JavaScript
Object Notation) files. The raw EDA data of one of the separated tracks is represented
in Figure 4.14.

Figure 4.14: EDA raw data for subject S08

EDA: Preprocessing

The processing of EDA data was done in Python, using Python library NeuroKit2 [91].
First, the data were downsampled from 2048 Hz to 1024 Hz. Then, the cleaning of the
data was performed, which included filtering the signal with a Butterworth low-pass filter
of the 4th order and then smoothing it as described in [21]. The comparison between the
raw and the cleaned signal is represented in Figure 4.15.

As explained in Subsection 2.3.3, the EDA consists of the tonic and the phasic part, so
considering the signal as a whole would not give adequate measures of SCL and SCR.
Therefore, the decomposition into tonic and phasic components needed to be done, which
was performed using a function eda_phasic from NeuroKit2. The function provides several
models to extract the components, while the model chosen for this study is cvxEDA [48],
based on convex optimization and robust to noise coming from overlapping SCRs. The
result is shown in Figure 4.16.
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Figure 4.15: Raw and cleaned EDA data for subject S08

Figure 4.16: EDA tonic and phasic components for "Abide with me", for the subject S08.
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EDA: Feature extraction

Other than extracting the SCL (tonic component) and SCR (phasic component) from the
EDA data, the library Neurokit [91] helps extracting features such as SCR onsets, SCR
peaks, SCR amplitude, or SCR rise time.

4.6.3. ECG

For the processing of the ECG data, a Python library HeartPy [135, 136] was used. As
described in Subsection 2.3.2, the defining feature of the ECG is the QRS-complex, out of
which the R-peak is strongly present in the signal and it is used for heart beat extraction.

ECG: Preprocessing

Since the ECG data were acquired by the same device as the EDA, the number of sam-
ples written in a second is equal to that of the EDA (2048 Hz), even though the practical
sampling frequency of the ECG is 256 Hz. Therefore, as the first step, the downsampling
was performed, lowering the sampling frequency from 2048 Hz to 256 Hz. In such a way
downsampled, but still raw ECG signal is presented in Figure 4.17.

Figure 4.17: Raw ECG signal for a part of "Ubi Caritas" by Gjeilo, for the subject S08.



4| Methodology 63

The preprocessing of the ECG data starts with preparing the raw signal for the R-peak
detection. This involves filtering the signal with a bandpass filter with [3, 45] Hz as cut-
off frequencies. Then, a peak detection function from the Python SciPy library [139] was
used to locate peaks in the signal. In such a way located R-peaks are shown in Figure
4.18.

Figure 4.18: Raw ECG with R-peaks for a part of "Ubi Caritas" by Gjeilo, subject S08

ECG: Feature extraction

The peak detection algorithm can incorrectly detect peaks if the signal is very noisy.
Therefore, after the R-peaks are detected, they are tested and possibly rejected based
on a threshold value for the RR-intervals (that is, intervals between two R-peaks) in the
analyzed section. The thresholds are determined as RRmean ± 30% of RRmean, with
minimum value of 300. If the RR-interval exceeds one of the thresholds, it is ignored.
Only accepted peaks in the segment are used for computing the ECG measures [135, 136].

The processing of ECG data usually requires using longer time windows (e.g., more than
40 seconds) in order to have enough material to compute features based on averaging
R-peaks positions. Therefore, the ECG signal is not the most appropriate for continuous
tracking of emotional response to listened music. Using the library HeartPy, several
time-domain features were computed across the whole length of music tracks:
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• BPM (Beats per minute)

• IBI (Interbeat interval)

• SDNN (Standard deviation of the NN (R-R) intervals)

• SDSD (Standard deviation of successive RR interval differences)

• RMSSD (Root mean square of successive differences),

out of which SDNN, SDSD, and RMSSD are the measures of HRV [54].

4.6.4. RSP

The processing of RSP signals was done using a Python library NeuroKit2 [91], same
as for EDA signals. After organizing the RSP data, the first step of preprocessing was
downsampling from 2048 to 256 Hz, for the same reason as described in Subsection 4.6.3.
The raw respiratory activity signal is represented in Figure 4.19.

Figure 4.19: Raw RSP signal for "Ubi Caritas" by Gjeilo for the subject S05.

Next, it was necessary to clean the raw signal using the function rsp_clean() and extract
the inhalation peaks of the signal using rsp_peaks() [91]. Then, one of the first features
to extract for RSP signals is the respiratory rate, representing the number of breaths an
individual takes per minute and measured in breats per minute (BPM).
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The respiratory rate was computed using a function rsp_rate, and a graph for one of the
music pieces and for one of the subjects is presented in Figure 4.20

Figure 4.20: RSP rate signal for "Ubi Caritas" by Gjeilo, for the subject S10.

After having extracted the respiratory rate signal and the peaks, a Respiratory Rate
Variability (RRV) can be computed, using a function rsp_rrv() [91]. This function gives
as outputs several RRV measures including time domain, frequency domain, and nonlinear
features, some of which are listed below:

• Time-domain features

RMSSD (root-mean-squared standard deviation)

SDBB (standard deviation of the breath-to-breath intervals)

• Frequency-domain features

Power of the LF band

Power of the HF band

Ratio between LF and HF bands
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4.6.5. Questionnaires

Gold-MSI

The scoring system of a General Musical Sophistication factor incorporates aspects from
five sub-scales:

• Active Engagement

• Perceptual Abilities

• Musical Training

• Singing Abilities

• Emotions

• General Musical Sophistication.

The summed and average values for each of the sub-scales were extracted for each subject.

STOMP-R

Following the scoring instructions from the literature, a possible scoring of STOMP-R
(Revised Short Test of Music Preferences) for four dimensions implies classifying the music
preferences into the following categories: Reflective & Complex, Intense & Rebellious,
Upbeat & Conventional, and Energetic & Rhythmic. According to the MUSIC model,
the classification into five groups is also possible: Mellow, Urban, Sophisticated, Intense,
and Campestral music.

SREIT

The SREIT (Schutte Self-Report Emotional Intelligence Scale) questionnaire is comprised
of 33 items based on a Likert scale. Thus, the total SREIT score for each participant was
derived by summing up the item responses. For a larger number of subjects, factor analysis
could be performed, grouping the responses into several categories.
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This chapter presents the steps taken in analysis; considering the direction of the study,
it is mainly focused on EEG signals, due to their high temporal resolution.

5.1. EEG

The analysis of EEG signals was mainly performed in the frequency domain. This section
presents and discusses the correlation between various features related to music and EEG.

5.1.1. Power spectral density

The power spectral density for EEG signals was estimated using the Welch method, for
each of the recorded files and for each EEG channel. The estimated PSDs of the EEG
signals corresponding to two baseline states - with subjects’ eyes closed (EC) and open
eyes (EO) - averaged across time and for all subjects are represented in Figure 5.1.

Figure 5.1: A comparison between estimated PSDs of the EEG signals corresponding
to two baseline states. The blue and red colors correspond to the baseline states with
subjects’ eyes closed (EC) and open (EO), respectively.
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It can be observed that the averaged estimated PSD corresponding to the EC-baseline
is significantly stronger than EO-baseline in the frequency area around 10 Hz, which
corresponds to the alpha frequency band (8-13 Hz), as defined in Section 2.3.1 (Figure
2.7). Increased power for frequencies below 2 Hz is visible for both baseline conditions,
with EO-baseline being slightly higher.

The same comparison was then performed between the estimated PSD of EO-baseline
and each of the music tracks, again averaged across time and for all the subjects. The
corresponding plots are shown in Figure 5.2.

Figure 5.2: A comparison between estimated PSDs of the EEG signals corresponding to
the baseline-EO state and the five tracks. The black lines mark the boundaries of theta
and alpha frequency range.
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Again, it can be observed that the average alpha activity for the EEG signals correspond-
ing to the music tracks is stronger compared to those corresponding to the EO-baseline
signals. However, in the case of music tracks versus the EO-baseline, the difference is not
as prominent as in Figure 5.1.

Extracting the theta and alpha temporal activity

The PSD was then estimated for segments of 1 second, using a moving window with no
overlap. Normalization was performed for each segment and each EEG channel, subtract-
ing the mean value of the samples and dividing by their standard deviation. Then, the
integration over theta (4-8 Hz) and alpha (8-13 Hz) frequency bands was performed, again
for each segment and each EEG channel. The PSDs in theta and alpha bands over time
for the subject S02 are shown in Figure 5.3.

Figure 5.3: EEG baseline EC and EO, alpha and theta, subject S02

It can again be noticed that the alpha activity is stronger for the baseline EC state, as
expected. However, not all the subjects have such high amplitude of alpha power. For
analysis and demonstration purposes, the mean value and the standard deviation were
computed for each subject and for each music track. The resulting values are represented
in Figure 5.4. Observing the presented values, a pattern can be noticed among certain
subjects; namely, subjects S02, S07, and S10 have higher values of both mean and standard
deviation in the alpha band, for both tracks.
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Figure 5.4: Values of mean and standard deviation for the 10 subjects, for "Abide with
me" and "Intellige Clamorem Meum". The darker colors correspond to larger values.

5.1.2. Inter-subjects analysis

The inter-subjects analysis refers to comparing the EEG signals among subjects and
exploring the correlation between their features.

Standardization

Due to numerous physiological and cognitive differences across subjects, it is not possible
to directly compare with each other the EEG signals corresponding to different subjects
listening to the same stimuli. For that reason, we use the mentioned baseline files that
were recorded in subject’s resting state while they kept their eyes open because it is more
similar condition to the one of the tasks. After having computed the mean power for alpha
and theta bands, the power corresponding to the music tracks was standardized with
respect to the power of the baseline of the same subject. The described standardization
was performed by subtracting the mean value of the baseline and then dividing by the
standard deviation of the baseline. This procedure was performed for each channel, for
each music track, and for each subject. The estimated PSD across time for subjects S01,
S02, and S10, for the case of the original PSD, the PSD with subtracted baseline mean,
and the one divided by the standard deviation, are presented in Figure 5.5, corresponding
to alpha activity and Figure 5.6, corresponding to theta activity.
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Figure 5.5: Standardization steps of the PSD of the alpha band for subjects S01, S02, and
S10, for track 1. (a) Without normalization, (b) Subtracting the mean of the baseline-EO,
(c) Dividing by the standard deviation of the baseline-EO.
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Figure 5.6: Standardization steps of the PSD of the theta band for subjects S01, S02, and
S10, for track 1. (a) Without normalization, (b) Subtracting the mean of the baseline-EO,
(c) Dividing by the standard deviation of the baseline-EO.
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Correlation between subjects

The arrays containing values of estimated PSD for segments of 1 second were compared
among all 10 subjects. The resulting 10x10 correlation matrix measuring the correlation
between the PSDs of the alpha band of all subjects for tracks “Intellige Clamorem Meum”
and “Ubi Caritas” are shown in Figures 5.7 and 5.8, respectively.

Figure 5.7: Correlation matrix between all subjects for "Intellige Clamorem Meum"

Figure 5.8: Correlation matrix between all subjects for "Ubi Caritas"
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As it can be seen, the non-diagonal values of the matrix, corresponding to correlation
coefficients between each of the subject pairs, are very low. It can thus be concluded that
there is no meaningful correlation when considering the whole temporal domain of the
PSD corresponding to the music tracks.

Division into brain regions

Since the locations of the electrodes are known and are the same for all subjects, the
channels have been grouped into five regions: Frontal, Central, Occipital, Parietal, and
Temporal. The described process was performed for each subject, for each music track
and baseline file, and for both alpha and theta bands. Figures 5.9 and 5.10 represent
the correlation between the extracted alpha activity of all subjects, for "Ubi Caritas"
by Gjeilo, taking into account only those EEG channels that belong to the frontal and
temporal regions of the brain, respectively.

Figure 5.9: Correlation matrix of extracted alpha activity for all subjects for "Ubi Caritas"
for the channels belonging to the frontal region

Observing both matrices, it can be noticed that the values of correlation coefficients are
still very low; therefore, no meaningful correlation can be extracted between the PSD of
the alpha band throughout the whole temporal domain. Considering that EEG signal is
highly sensitive to noise and therefore contains a lot of randomness, no significant result
could be obtained observing the whole time domain.
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Figure 5.10: Correlation matrix between all subjects for "Ubi Caritas" for the channels
belonging to the temporal region

Then, a choice was made to explore correlation between the subjects not for the whole
temporal domain, but for shorter segments, using a moving window to split the entire
tracks into shorter sections. In this case, taking a window that is 5 seconds long, the
correlation matrix has more positive values, as shown in Figure 5.11. Therefore, such
analysis in shorter segments could bring more interesting results.

However, in that case, the analysis would include working with high-dimensional matrices,
which are difficult to visually represent, as well as to process numerically. Thus, another
way of representing the correlation corresponding to temporal segments had to be found.
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Figure 5.11: Correlation matrix between all subjects for "Intellige Clamorem Meum" in
a window corresponding to the range between 130 and 135s of the track

Correlation between the temporal segments of interest

Considering that a correlation matrix is symmetrical - that is, the values above and under
the main diagonal are identical - a measure to represent could be taken by averaging or
summing those values and therefore having only one number representing the correlation
matrix corresponding to a certain window of interest. Some of the possible measures to
represent the upper-diagonal values as one number are to transform the matrix into a
1-D array and to compute its statistical measures, such as the mean, average, or standard
deviation. Another interesting measure could be the number of correlation coefficients
in the array that are greater than a certain value. Following this reasoning, Figure 5.12
shows the average values of the correlation matrices across the whole temporal domain of
"Abide with me", while Figure 5.13 represents the number of correlation coefficients that
larger than 0.5, for the same track. The window length used in this case is 3 seconds.

The segments that are interesting to consider are the windows where the correlation
reaches certain value; thus, the segments where there is certain similarity between EEG
signals of all subjects. The next step would be exploring whether the found similarity
corresponds to a certain musical event in the considered track.
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Figure 5.12: The average values of the upper-diagonal cells of the correlation matrices
across the whole temporal domain of "Abide with me"

Figure 5.13: The number of corr. coefficients that are larger than 0.5 across the whole
temporal domain of "Abide with me"

Both figures have several peaks in common, the highest of which correspond to the win-
dows ranging from 31 to 34, 46 to 49, and 91 to 94 seconds of the track.
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Therefore, the correlation matrices corresponding to these segments are shown in Figures
5.14, 5.15, and 5.16, respectively.

Figure 5.14: Correlation matrix between all subjects for "Abide with me" in a window
ranging from 31 to 34 seconds of the track

Figure 5.15: Correlation matrix between all subjects for "Abide with me" in a window
ranging from 46 to 49 seconds of the track
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Figure 5.16: Correlation matrix between all subjects for "Abide with me" in a window
ranging from 91 to 94 seconds of the track

It can be noticed that the number of positive correlation coefficients is significantly larger
than in previously presented correlation matrices, which means that computing the cor-
relation between EEG signals of subjects gives more informative results when shorter
segments are considered. Now, it is interesting to compare the time position of these seg-
ments with the annotated tension of "Abide with me". The tension levels annotated for
"Abide with me" (described in detail in Subsection 4.3.2) are presented in Table 5.1. Ob-
serving the Table, it can be noticed that the highest levels of annotated tension, marked
with color, corresponds to the temporal segments ranging from 32.27 to 36.7 seconds, and
from 88.22 to 91.5 seconds. Therefore, in this case, it can be stated that the largest values
of correlation correspond to the highest levels of annotated tension.
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Latency [s] Harmonic tension [1-5]

0 1
5.35 0
7.70 2
8.86 2
10.66 0
15.34 0
17.05 2
19.26 2
20.03 1
22.70 1
23.47 2
26.73 1
30.74 1
32.27 3
35.83 3
36.70 2
39.87 1
50.64 0
59.48 0
62.01 2
63.58 2
64.97 0
71.70 0
73.16 2
74.86 2
77.09 1
78.08 1
81.32 2
85.65 1
88.22 1
90.32 3
91.50 2
94.36 1
105.94 0

Table 5.1: The annotations of the harmonic tension for the piece "Abide with me"
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5.1.3. Correlation with music tension

As each music track is assigned numerically annotated tension, another direction to ex-
plore the similarity between the subjects’ EEG signals is to start from the time inter-
vals that correspond to the certain level of tension and compute the correlation between
subjects for those intervals. Figures 5.17 and 5.18 represent the correlation matrices
corresponding to the segments of highest level of tension in the track "Abide with me".

Figure 5.17: Correlation matrix between all subjects for "Abide with me" for all channels,
in the first segment of the highest annotated tension (interval 33-36 seconds).

Figure 5.18: Correlation matrix between all subjects for "Abide with me" for all channels,
in the second segment of the highest annotated tension (interval 88-91 seconds).



82 5| Analysis

5.2. EDA

Upon visual evaluation of the acquired EDA signals, those corresponding to subject S09
were excluded. As it can be noticed in Figure 5.19, the signal is corrupted, the reason
for which could be the low conductivity between the sensor and the skin during the data
acquisition. Therefore, the EDA signals corresponding to the subject S09 were excluded
from the study.

Figure 5.19: Bad EDA signal for subject S09

Since EDA signals are considered "slow", they might not be able to catch responses during
continuous or overlapping stimuli. Several features described in Chapter 4 were extracted,
including the SCR onsets, SCR peaks, SCR amplitude, and SCR rise time. Due to not
having observed significant results in preliminary visual inspection of the signals, and due
to the time limitations, it was not proceeded further with the analysis of EDA signals.
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5.3. ECG

According to the reasons provided in Subsection 2.3.2, the analysis of ECG signals was
mainly based on extracting long-term features, taking into account the whole temporal
domain of a signal.

Peak detection

In order to extract HR and HRV features, the R-peaks have to be detected, as described
in 2.3.2. An example of a successful peak detection is represented in Figure 5.20.

Figure 5.20: Successful peak detection for "Intellige Clamorem Meum", subject S08.

The peak detection was unsuccessful for signals corresponding to some subjects or some
tracks due to noisy signal, example of which are shown in Figure 5.21. According to this,
the ECG data corresponding to subjects S07 and S10 were excluded from the analysis.

Figure 5.21: Unsuccessful peak detection for "Intellige Clamorem Meum", subject S10.
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Measures of HR and HRV

The relevant features for the heart rate and the heart rate variability were extracted for
each song and each subject. An example of the features for the track "Abide with me" is
shown in Figure 5.22.

Figure 5.22: Heart rate (HR) and heart rate variability (HRV) features extracted for the
track "Abide with me"

5.4. RSP

The RRV (respiratory rate variability) features were extracted for each track and each
subject. An example of the extracted features for the track "Abide with me" is given in
Figure 5.23.

Figure 5.23: The extracted RRV features for "Abide with me".
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5.5. Questionnaires

5.5.1. Gold-MSI

Responses of all 10 subjects to the Gold-MSI questionnaire are presented in Figure 5.24,
where measures AE, PA, MT, SA, EM, and GM stand for Active Engagement, Perceptual
Abilities, Musical Training, Singing Abilities, Emotions, and General Musical Sophistica-
tion, respectively.

Figure 5.24: The responses to Gold-MSI questionnaire. The darker colors correspond to
larger values.

Correlation with EEG features

Figures 5.25 and 5.26 represent the correlation between Gold-MSI responses and EEG
features - precisely, mean and standard deviation for alpha and theta bands - for each
of the choral tracks, for all 10 subjects. Figure 5.27 represents the same correlations
averaged across all choral tracks, for all 10 subjects.



86 5| Analysis

Figure 5.25: Correlation between Gold-MSI and EEG features, tracks 2 and 3

Figure 5.26: Correlation between Gold-MSI and EEG features, tracks 4 and 5
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Figure 5.27: Correlation between Gold-MSI and EEG features

It can be seen from the figures that relatively significant correlation exists between the
feature Perceptual Abilities and the alpha activity of the subjects (values of 0.57 and 0.56
for the mean and the standard deviation of the alpha activity, respectively), as well as
between the General Musical Sophistication factor and the alpha activity (values of 0.48
and 0.51 for the mean and the standard deviation of the alpha activity, respectively).
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Correlation with ECG features

Figure 5.28 represents the correlation between Gold-MSI responses and ECG features,
averaged across all choral tracks, for 8 subjects.

Figure 5.28: Correlation between Gold-MSI and ECG features

When it comes to correlation between Gold-MSI responses and the ECG features, positive
correlation can be observed between the BPM (beats per minute) and the Gold-MSI
features MT, SA, EM, and GM, with values of 0.56, 0.55, 0.57, and 0.63, respectively.
Additionally, negative correlation is present between IBI (Interbeat interval) and the same
Gold-MSI features. Since the average values of IBI are also negatively correlated with
average values of BPM (with a correlation coefficient equal to -0.988), this result makes
sense. Not that strong negative correlation exists also between SDSD (standard deviation
of the differences between successive NN (or RR) intervals) and the Gold-MSI features
MT, EM, and GM.
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Correlation with RRV features

Figure 5.29 represents the correlation between Gold-MSI responses and RRV features,
averaged across all choral tracks.

Figure 5.29: Correlation between Gold-MSI and RRV features

The last figure shows that the largest values of correlation coefficients are between power
spectral density of the low frequency band (LF) and the Gold-MSI responses, in particular,
the AE, MT, SA, and GM, with values 0.62, 0.55, 0.69, and 0.68, respectively.

5.5.2. SREIT

Responses of all 10 subjects to the SREIT (Schutte Self-Report Emotional Intelligence
Scale) questionnaire, described in 3.2.2, are shown in Figure 5.30.
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Figure 5.30: SREIT results

Correlation with EEG features

Figure 5.31 represents the correlation between SREIT values and EEG features.

Figure 5.31: Correlation between SREIT and EEG features

The correlation coefficients between SREIT responses and the EEG features show that a
positive correlation exists between the SREIT values and the EEG theta activity - specif-
ically, the mean and the standard deviation, with values of 0.52 and 0.57, respectively.
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Correlation with ECG features

Figure 5.32 represents the correlation between SREIT values and ECG features.

Figure 5.32: Correlation between SREIT and ECG features

In the last figure, it can be noticed that only SDNN is relatively strongly positively
correlated with the SREIT values, the correlation coefficient being equal to 0.51.

Correlation with RRV features

Figure 5.33 represents the correlation between SREIT responses and the RRV (respiratory
rate variability) features - averaged across all choral tracks.

Figure 5.33: Correlation between SREIT and RRV features
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According to the last figure, no significant correlation can be noticed between any of the
RRV features and the SREIT values.

5.5.3. STOMP-R

The elaboration of responses to STOMP-R (Revised Short Test of Music Preferences)
questionnaire, in the form of MUSIC model (standing for Mellow, Urban, Sophisticated,
Intense, and Campestral music) is shown in Figure 5.34. Due to not having a standardized
evaluation model, and due to the limited number of subjects, it was not proceeded with
the analysis including the responses to STOMP-R questionnaire.

Figure 5.34: The elaboration of responses to STOMP-R according to the MUSIC model.
The darker colors correspond to larger values.
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This chapter contains the discussion and conclusions of this research, as well as suggestions
for future developments.

6.1. Summary of the study

The goal of this study was to explore the correlation between music features and in-
duced emotions using various physiological signals in a listening experiment, supported
by self-report questionnaires. The listening experiment was designed and conducted with
10 recruited subjects, in laboratories of Politecnico di Milano (Brain Lab) in December
2021. Detailed research has previously been done on the state of the art to understand
what methods are commonly used and the most fitting for the nature of the study, which
was focused on harmonic tension in music pieces. The chosen physiological signals to ac-
quire were electroencephalogram (EEG), electrocardiogram (ECG), electrodermal activity
(EDA), and respiratory activity (RSP). Additionally, the subjects provided responses to
several self-report questionnaires, aiming to collect data about their lifestyle, musical ex-
pertise and preferences, and emotional competencies, as well we the emotions they feel
while listening to the music stimuli. After acquiring the signals for all 10 subjects, the
data was organized and preprocessed according to the literature. The analysis of various
features was performed, exploring the correlation between the manually annotated tension
in music and the responses captured by the recorded physiological data. The correlation
between subjects’ responses was also analyzed, as well as the differences between statisti-
cal measures of each subject. The pipelines for signal preprocessing and feature extraction
for each of the physiological signals was proposed, with suggestions for improvement.

It can be concluded that the experimental protocol was well designed, as well as that
the acquired data and the proposed pipelines can be used for further research. The
preliminary analysis showed certain correlation between the explored features. However,
considering the limitations on the number of subjects, it would be necessary to acquire
additional data with significantly larger number of subjects to obtain more meaningful
statistical measures and reach more objective conclusions about the correlations between



94 6| Conclusions and future work

music features and induced emotions. This study also showed the organizational difficulty
of realizing interdisciplinary research and has set the minimum base for any future research
project that involves the work of different laboratories.

6.2. Contributions

The main contributions of this work are the created experimental protocol, the acquired
datasets containing data for four physiological signals for 10 subjects, as well as their
responses to self-report questionnaires, then the proposed pipeline for data processing and
analysis, and the preliminary results. The experimental protocol described in Chapter 4
contains detailed instructions for the experimenter that could be used in the continuation
of this study or for one exploring a similar topic.

The whole dataset can be found using the following hyperlinks:

• EEG signals: https://1drv.ms/u/s!AvcHs1ydRWzggZ4t3R9FFhLezMROPg?e=yJB7j2

• EDA, RSP, and ECG signals: https://1drv.ms/u/s!AvcHs1ydRWzggZ4bsbStszR3FrAMSw?
e=FK9Y80

6.2.1. Subjects’ feedback

All 10 subjects provided some feedback on the procedure and the task they had to per-
form. They reported that the experiment was clear, well explained, and well organized,
and that the equipment setup was not too uncomfortable. Related to the task, some
subjects reported that the part with chord sequences was long, not musically engaging,
and therefore tiring to listen to, especially not being allowed to move. On the other hand,
they noted that the choral pieces were very similar to each other and suggested that a
study with more diverse examples could be more interesting. The subjects liked filling
out the self-report questionnaires and showed interest for a deeper understanding of their
theoretical background, their use in this study, and the obtained results.

6.3. Criticism and suggestions for improvement

6.3.1. Comments on project management

As the study involved several departments and universities, putting together the whole
project was challenging from the organizational point of view. Since numerous aspects
depended on the University personnel, for instance acquiring the needed technical equip-

https://1drv.ms/u/s!AvcHs1ydRWzggZ4t3R9FFhLezMROPg?e=yJB7j2
https://1drv.ms/u/s!AvcHs1ydRWzggZ4bsbStszR3FrAMSw?e=FK9Y80
https://1drv.ms/u/s!AvcHs1ydRWzggZ4bsbStszR3FrAMSw?e=FK9Y80
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ment, receiving the approval from the ethical committee, or organizing the acquisition
sessions, the whole process took longer than expected. The planning should therefore
be more realistic, taking into consideration possible delays, the human factor, and the
whole project’s complexity. Additionally, if the student performs such an experiment for
the first time, it is advised that a mentor is physically present at least during the first
acquisition sessions, to educate, monitor, and support them.

6.3.2. Comments on the experimental protocol

As this study aimed to conduct preliminary assessment with limited resources, only 10
subjects were recruited. This represents a drawback in analyzing data and drawing con-
clusions, especially when working with such noisy signals as EEG, and when aiming to
extract relevant statistics based on inter-subjects analysis. For the possible future work,
according to the state of the art, at least 30 subjects would be sufficient to obtain signifi-
cant results. Additionally, the selected group of students could be more diverse, in terms
of age, nationality, but also occupation (only university students participated in the data
collection process).

The experimental setup, even if not using invasive equipment, was complex, and there-
fore it took a lot of time to acquire data for each participant, including setting up the
equipment and cleaning it afterwards. On average, it took three to four hours of the exper-
imenter’s work per subject. It also took time and assistance of a mentor to get educated
and gain practice using the equipment and properly setting up the whole experimental
protocol.

6.3.3. Comments on music stimuli

Since this study started as a continuation of the "Sound Resonance Project", described in
details in Section 1.3, the set of music stimuli consisting of polyphonic choral music pieces
was predefined. The advantage of having choral pieces recorded in a live performance
is the novelty that it brings to the field, since the music used in the state of the art
mainly belongs to genres of classical instrumental or popular music. On the other hand,
the drawback of this dataset is that the pieces are similar to each other and that the
annotations of music tension are not easily and objectively measurable. When exploring
the feature of tension in music, it is advised to use music pieces or excerpts that can
have more objective representation of tension, for instance drastic changes in dynamics,
rhythm, and similar. Additionally, having more diverse pieces would be useful in terms
of exploring the variety of induced emotions.
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According to the state of the art, the stimuli should be repeated a few times (especially
the short stimuli), in order to increase the signal-to-noise ration. Considering the analysis
related to specific temporal events, extracting features based on Event Related Potential
(ERP) of EEG could provide interesting results, which in this case was not applicable due
to low number of repetitions. Another prerequisite for ERP analysis is having a resting
state (baseline) right before the stimuli, which in the case of continuous music pieces or
chords progressions is not possible. More exploration on the topic could be done.

6.4. Future work

Regarding the continuation of this study, it would be interesting to explore more features
and connections between features for all collected data. The EEG signals could be used in
combination with fMRI or fNIRS to obtain information on spatial distribution of elicited
responses. After acquiring data for more subjects, possibly even for different music stimuli,
some machine learning methods could be used, such as supervised learning. Classification
methods could be additionally used, classifying patterns of acquired signals into one of
predefined classes, such as various elicited emotions.

With these improvement at place - on a longer timescale - the development of more
advanced affective computing systems would become feasible. These systems could be
used in healthcare, therapeutic fields, entertainment, marketing, education and other fields
where it is desired to monitor or affect the emotional state and responses of individuals.
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A| Appendix: Adjusted GEMS-9

questionnaire



Subject: ________________  Date: ___________________ 
 

1 
 

Geneva Emotional Music Scale (GEMS-9) 

 

Instructions 

When providing your ratings, please describe how the music piece you listen to makes you feel 
(e.g., this music piece makes me feel sad). Do not describe the music (e.g., this music piece is 
sad) or what the music may be expressing (e.g. this music piece expresses sadness). Keep in 
mind that a piece of music can be sad or can sound sad without making you feel sad. Please rate 
the intensity with which you felt each of the following feelings on a scale ranging from 1 (not at all) 
to 5 (very much). 

 

  1                    2                         3                      4                       5  
Not at all        Somewhat        Moderately        Quite a lot        Very Much  

 

 

1. Music piece no. 1              
 
a. To what extent does the music piece make you feel the following emotions? 

 

1.  
Wonder  
Filled with wonder, Dazzled, Moved  1     2     3     4     5   

2.  
Transcendence  
Fascinated, Overwhelmed, Feelings of transcendence and spirituality  1     2     3     4     5  

3.  
Power  
Strong, Triumphant, Energetic  1     2     3     4     5  

4.  
Tenderness  
Tender, Affectionate, In love  1     2     3     4     5  

5.  
Nostalgia  
Nostalgic, Dreamy, Melancholic  1     2     3     4     5  

6.  
Peacefulness  
Serene, Calm, Soothed  1     2     3     4     5  

7.  
Joyful Activation  
Joyful, Amused, Bouncy  1     2     3     4     5  

8.  
Sadness  
Sad, Sorrowful  1     2     3     4     5  

9.  
Tension  
Tense, Agitated, Nervous  1     2     3     4     5  

 

b. How well do you know this music piece?                                          1     2     3     4     5 
 

c. How much do you like this music piece?                                          1     2     3     4     5 
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B| Appendix: STOMP-R

questionnaire



STOMP-Revised 
 

Please indicate your basic preference for each of the following genres using the scale provided.   
 

    1-----------------2-----------------3-----------------4-----------------5-----------------6-----------------7 
      Dislike          Dislike      Dislike a       Neither like          Like a  Like                 Like 
     Strongly          Moderately         Little        nor dislike   Little         Moderately       Strongly 
 

1. _____ Alternative 
2. _____ Bluegrass 
3. _____ Blues 
4. _____ Classical 
5. _____ Country 
6. _____ Dance/Electronica 
7. _____ Folk 
8. _____ Funk 
9. _____ Gospel 
10. _____ Heavy Metal 
11. _____ International/Foreign 
12. _____ Jazz 

13. _____ New Age 
14. _____ Oldies 
15. _____ Opera 
16. _____ Pop 
17. _____ Punk 
18. _____ Rap/hip-hop 
19. _____ Reggae 
20. _____ Religious 
21. _____ Rock 
22. _____ Soul/R&B 
23. _____ Soundtracks/theme song

 
____________________________________________________________________________________________________ 
 
Music preference dimensions scoring: 
 
Reflective & Complex: 2, 3, 4, 7, 11, 12, 13, 15 
 
Intense & Rebellious: 1, 10, 17, 21 
 
Upbeat & Conventional: 5, 9, 14, 16, 20, 23 
 
Energetic & Rhythmic: 6, 8, 18, 19, 22
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C| Appendix: SREIT

questionnaire



1 
 

The Schutte Self Report Emotional Intelligence Test (SSEIT) 

 

Instructions: Indicate the extent to which each item applies to you using the following 

scale:  

  

1 = strongly disagree  

2 = disagree  

3 = neither disagree nor agree  

4 = agree  

5 = strongly agree  

 

1. I know when to speak about my personal problems to others 

2. When I am faced with obstacles, I remember times I faced similar obstacles and 

overcame them 

3. I expect that I will do well on most things I try 

4. Other people find it easy to confide in me 

5. I find it hard to understand the non-verbal messages of other people* 

6. Some of the major events of my life have led me to re-evaluate what is important and not 

important 

7. When my mood changes, I see new possibilities 

8. Emotions are one of the things that make my life worth living 

9. I am aware of my emotions as I experience them 

10. I expect good things to happen 

11. I like to share my emotions with others 

12. When I experience a positive emotion, I know how to make it last 

13. I arrange events others enjoy 

14. I seek out activities that make me happy 

15. I am aware of the non-verbal messages I send to others 

16. I present myself in a way that makes a good impression on others 

17. When I am in a positive mood, solving problems is easy for me 

18. By looking at their facial expressions, I recognize the emotions people are experiencing 

19. I know why my emotions change 

20. When I am in a positive mood, I am able to come up with new ideas 

21. I have control over my emotions 

22. I easily recognize my emotions as I experience them 

23. I motivate myself by imagining a good outcome to tasks I take on 

24. I compliment others when they have done something well 

25. I am aware of the non-verbal messages other people send 

26. When another person tells me about an important event in his or her life, I almost feel as 

though I have experienced this event myself 

27. When I feel a change in emotions, I tend to come up with new ideas 

28. When I am faced with a challenge, I give up because I believe I will fail* 

29. I know what other people are feeling just by looking at them 

30. I help other people feel better when they are down 

31. I use good moods to help myself keep trying in the face of obstacles 

32. I can tell how people are feeling by listening to the tone of their voice 



2 
 

33. It is difficult for me to understand why people feel the way they do* 
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