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Sommario

Lo scopo di questa tesi è riprodurre l’effetto della temperatura sulle propri-
età del fenomeno fisico noto come Rumore di Barkhausen (BK) attraverso il
Random-Bond Ising Model (RBIM). Tale analisi ci permetterà di individuare
un legame tra i fenomeni microscopici interni a un ferromagnete e gli effetti
macroscopici come il rumore di Barkhausen. Il metodo numerico utilizzato
per implementare il modello fisico è il metodo Monte Carlo. Precisamente, la
variante proposta da Wolff è stata utilizzata per simulare il comportamento
di un reticolo di spin quadrato e bidimensionale. Tale metodo numerico
è stato implementato tramite un codice C + +. Per simulare le proprietà
dell’effeto Barkhausen, abbiamo calibrato il parametro di disordine incluso
nel modello. La comparsa delle proprietà tipiche del rumore di BK è stata
rilevata grazie ad un’analisi sulla statistica dei salti di magnetizzazione. Per
completare il nostro studio, abbiamo condotto un’analisi sul rumore di BK
negativo. Il coefficiente che abbiamo studiato per confrontare i nostri risultati
teorici con quelli sperimentali è l’esponente (τ) della legge di potenza tipica
della distribuzione di valanghe del rumore di BK. In particolare, abbiamo
stimato la dipendenza di tale coefficiente dalla temperatura. I risultati si
sono dimostrati in accordo con il trend del coefficiente τ osservato sperimen-
talmente al variare della temperatura. Anche i valori numerici di τ da noi
trovati sono coerenti con i risultati di molti esperimenti sul rumore di BK.
Entro l’intervallo di temperature studiato, anche i risultati sul rumore di BK
negativo sono coerenti con le osservazioni sperimentali. Infine, abbiamo an-
che esplorato la possibile transizione di un RBIM a una fase vetro di spin,
costruendo un diagramma di fase per le transizioni para-ferro-vetro grazie a
un codice apposito. Tale diagramma ci ha permesso di mantenere il sistema
in fase ferromagnetica durante tutta l’analisi sul rumore di BK.

Parole Chiave: Rumore di Barkhausen, Rumore di Barkhausen negativo,
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Modello di Ising, Random-Bond Ising Model, Metodo Monte Carlo, Algo-
ritmo Wolff, Meccanica Statistica, Vetro di Spin, Transizioni di Fase, Leggi
di Potenza, Magnetismo nell Materia Condensata.
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Abstract

The scope of this thesis is reproducing the effect of the temperature on the
properties of the Barkhausen (BK) noise through the Random-Bond Ising
model (RBIM). This kind of analysis can help us to find a microscopical de-
scription to the macroscopic effects of BK noise. The algorithm used in order
to implement the physical model is the Montecarlo method. More precisely,
the Wolff (cluster) variant was used in order to simulate the behaviour of
a 2D square lattice of spins. Such numerical method was implemented on
a C++ code. In order to mimic the BK noise properties, we calibrated the
disorder parameter included in the RBIM. The appearance of the typical
properties of BK noise were detected thanks to a magnetization jumps’ dis-
tribution analysis. To complete the BK noise analysis, the negative BK noise
was studied too. The coefficient that we studied in order to compare our re-
sults with the experimental data, is the so called power-law coefficient (τ) of
the BK avalanches’ distribution. In particular, we estimated its dependence
from the temperature. The results are in agreement with the trend of the
coefficient τ observed experimentally by tuning the temperature. Even the
numerical values that we found are within the range of many experimental
results. Within the temperature range studied in this thesis, the negative BK
noise results are in agreement with experimental observations too. Finally,
we also estimated the phase diagram for the para-ferro-glass phase transition,
by developing a further code for the identification of the ferro-glass transi-
tion. This diagram helped us to keep our system within the ferromagnetic
regime for our analysis on BK noise.

Keywords: Barkhausen Noise, Negative Barkhausen Noise, Ising Model, Random-
Bond Ising Model, Monte Carlo Method, Wolff algorithm, Statistical Me-
chanics, Spin Glass, Phase Transitions, Power-Laws, Magnetism in Con-
densed Matter Physics.
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Introduction

The main scope of this thesis is to study the role of temperature and frozen
disorder in the magnetization reversal process, by exploiting a theoretical
model implemented on a computer. In particular, the experimental data, to
be compared with the results of our computations, refer to a thin Fe film
grown on MgO [23]. More in details, the physical process of our interest
is called Barkhausen (BK) noise. In 1919, Barkhausen [2] discovered that
iron (an example of magnetic material) produces a jerky noise when mag-
netized by a field smoothly changing in time. This noise was not expected
from the macroscopically continuous process of magnetization reversal. It
was the first indirect experimental evidence to support the model of ferro-
magnetism based on magnetic domains, postulated in 1906 by Pierre-Ernest
Weiss. Because of the external applied field, magnetic domains change in size
or orientation. Thus, minute jumps of the magnetization are produced (so,
the variation of the magnetization is not continuous). These jumps are the
cause of this noise, since they induce magnetic flux variations in a coil close
to the magnetic sample, and consequently voltage variations at the end of
the same coil. By amplifying these voltage signals and using a loudspeaker,
we can ear crackles: hence the name, Barkhausen noise. Actually, we have
to be more precise. By talking about change in size and rotation of domains
we are actually moving a step away from Barkhausen’s belief that the noise
was produced by the sudden reversal of the entire magnetic domain. In fact,
in 1938, Elmore observed for the first time the motion of domain boundaries
(referred as Bloch walls since described theoretically in 1932 by Bloch) in a
cobalt crystal. Then, Williams and Shockley showed that the Barkhausen
noise is due to irregular fluctuations in the motion of a domain boundary
(fig.1). These irregularities are due to the presence of defects in the spin
lattice (e.g. impurities, dislocations). From now on, we will call avalanches
the magnetization jumps. In an ideal lattice the wall motion would be a
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Figure 1: From the left to the right, moving downward: an example of
magnetic domain’s wall motion. The wall gets caught into the defect and,
only when the external magnetic field is big enough, it moves on producing a
jump in the magnetization of the material (for the source of the image, look
at [1]).

continuous process.
In literature, we can find many experiments that deepened the knowledge
about the characteristics of this phenomenon. The surprising result is that
BK shows scaling invariance (that is a perfect form of self similarity) and
power laws. Actually, these are some of the typical features of a critical phe-
nomenon. In 1991, Cote and Meisel [4, 5] claimed that the Barkhausen effect
is an example of self-organized criticality (SOC) [6]. Instead, Sethna, in 1995
[10], said that SOC is not needed. Nowadays, out of the large production of
data and ideas of the past years, we still do not have a single framework to
interpret the phenomenon.

This project focuses on the study of the avalanches distribution, one of the
features of the BK noise showing power law behaviour. And, as previously
said, the role of temperature is taken into consideration. This differentiates
our work from all the others that we are aware of about the same topic,
as these latter always refer to the zero-temperature condition, like [7, 10].
Actually, in [15] the role of temperature in BK noise has been studied but a
different algorithm has been used. Here, the cluster algorithm developed by
Wolff [22] is used. In particular, it is exploited in order to study a theoretical
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model made of interacting spins, the Ising model, in order to understand the
Barkhausen avalanches behaviour. This approach, of deriving macroscopic
properties from a microscopic model, was suggested by Sethna [8] for the
case of the Barkhausen noise with the Random Field Ising Model (RFIM).
In fact, the idea rests on the universality feature typical of critical phenom-
ena, according to which the behaviour of a system is independent of many
details of the system itself. Indeed, it depends only on the dimension, the
range of interaction and the symmetries system. More precisely, we used a
variant of the Ising model characterized by a source of disorder (otherwise, it
would be impossible to observe BK noise in a perfect spin lattice, as we have
already said): the Random Bonds Ising Model (RBIM). Within RBIM, we
have also been able to study a different phase transition, from ferromagnetic
to spin glass phase.
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Chapter 1

Barkhausen noise

In this chapter we will start by deepening our knowledge about the physics
behind the BK noise, i.e. the mechanism of ferromagnetism, moving through
a brief and general introduction to the magnetism in the matter. Then we
will focus on the BK effect itself. All of this will allow us to understand
the physical meaning of the mathematical model that we used to simulate
a ferromagnet. Indeed, we will come to write the ferromagnet quantum
Hamiltonian, which is the one from which the Ising model Hamiltonian comes
from. Also the phenomenon of phase transitions will be introduced.

1.1 Magnetism in condensed matter
The magnetic properties of matter are known since nearly three thousand
years. In the ancient Greece, people were attracted by the mysterious (at
the time) properties of lodestone. The first technological application of mag-
netic materials was the magnetic compass. Then, in the last two centuries
the progress about magnetism has been more rapid. It was discovered that
magnetism and electricity are two sides of the same coin, and they make up
light which is an electromagnetic wave. This achievement, derived from the
special relativity theory. Nowadays, the magnetism in condensed matter (fer-
romagnetism, spin glasses, ...) is under the lens of many scientific research
groups.
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1.1.1 Phenomenology
From electromagnetism theory, we know that there are three physical quanti-
ties needed to describe magnetism in the matter: B (magnetic induction), H
(magnetic field), and M (the magnetization). All three are vector fields. The
magnetization is defined as the magnetic moment per unit volume within a
material (i.e. in free space it is always zero). In free space, B and H are just
scaled versions of each other

B = µ0H, (1.1)

the former measured in T (Tesla) and the latter measured in A
m . µ0 is the

permeability if free space. In a magnetic solid, the relation between B and
H is more complicated

B = µ0(H +M). (1.2)

The magnetization M depends on the external field H. The magnetic sus-
ceptibility is defined as the coefficient providing the variation of the magne-
tization when the external field varies

χ =
dM

dH
. (1.3)

In the simplest case, χ is a scalar, but in general it may be a tensor. When
the magnetization varies linearly with the external field, the magnetic sus-
ceptibility is a constant and (1.3) provides

M = χH. (1.4)

A first (experimental) way to characterize magnetic materials is to study
them under the action of an external magnetic field. By putting them within
the cavity of an electromagnet (i.e. a coil, with a current running within
it, generating a tunable magnetic field, see fig.1.1), we would observe differ-
ent behaviours for different substances. Indeed, some materials are pushed
out from the cavity (e.g. H2O,Cu,...), some others are attracted within it
(e.g. Na,Al,O2 (L),Fe,...). For the greatest part of the materials, the effect
due to the magnetic field is weak, except for some substances (O2 (L),Fe,
other Fe compounds,...). This allows us to identify the three main cate-
gories of magnetic materials: diamagnetic (weak repulsive force felt within
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Figure 1.1: Qualitative example of the experimental set-up described above.
Also, the typical behaviour of the magnetic field in a finite coil, along its
axis, is shown (From [9]). Along such axis, the field is parallel to the axis
itself.

the electromagnet), paramagnetic 1(weak attractive force), and ferromag-
netic (strong attractive force, and our main interest in this work) materials.
Another way to characterize magnetic materials comes from their magnetic

Table 1.1: In this table we can see a few examples of materials for each type
of magnetic substance.

Diamagnet Paramagnet Ferromagnet
H2O Na Fe
Cu Al Fe3O4
Pb O2 Co
N2(L) Ca Ni

susceptibility (χ). In particular, the diamagnets have χ < 0, the paramag-
nets and ferromagnets have χ > 0. This can be easily derived by thinking at

1Actually, the liquid oxygen is a paramagnet even if characterized by a strong attractive
force. Here the main culprit of this "apparently" strange behaviour is the low temperature
needed to get liquid oxygen.

6



the experiment described above and using some notions of electromagnetism.
If Ic is the current within the coil, B0 = µ0nIc 2 is the magnetic induction
within the void electromagnet’s cavity, where n is the number of coils per
unit length. If we fully fill up the solenoid with a linear magnetic material,
B = µrB0 is the field within the material, where µr = 1 + χ is the magnetic
permeability of the material. This variation of the magnetic induction can be
seen as the effect of the variation of the total current within the coil. Since

B −B0 = (µr − 1)B0 = χB0, (1.5)

we can rewrite the magnetic induction

B = B0 + χB0 = µ0n(Ic + χIc). (1.6)

This works as if a magnetization current Im = χIc is generated on the surface
of the magnetic material. Arrived to this point, by exploiting the Laplace

Figure 1.2: Force acting on the magnetic sample. Here the sample is a
diamagnet, since the forces push it away from the coil due to the Im running
in the opposite direction respect to the coil current Ic.

formula about the force acting on an infinitesimal length element in which a
current runs

dF⃗ = Imdl⃗ × B⃗ (1.7)
and looking at fig.1.2, we can deduce that if the magnetization current runs
in the opposite direction of Ic (i.e. χ<0), the resultant force points outward

2Here we are using scalar quantities because what we are actually considering is the
value of the magnetic induction, B, along the axis of the electromagnet, at z = 0 (in the
ideal case of an infinite solenoid). This is enough for our scope. Note that H = nIc.
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the electromagnet. So, the sample is rejected by the electromagnet. We
have previously seen that this is typical of a diamagnet. Instead, if Im runs
in the same direction of Ic (i.e. χ > 0), the resultant will point inward the
electromagnet. This is what happens with paramagnets and ferromagnets.
So, we have proved that diamagnets have negative susceptibility, against the
positive one of paramagnets and ferromagnets.

1.1.2 Quantum-Mechanical description: Pauli Hamil-
tonian

The three magnetic effects in the matter that we have seen above can be cor-
rectly explained only through Quantum Mechanics. Nonetheless, the foun-
dation of the classical theory of magnetism in condensed matter deserves a
mention (even if wrong).
In general, at the basis of the theory of magnetism there is the concept of
magnetic moment. According to the Ampere equivalence principle, a mag-
netic dipole is equivalent to a current loop. This is the starting point for
the classical theory of magnetism, due to the works of Ampère, Oersted and
Arago at the beginning of the 19th century. These scientists believed that
magnetism in the matter derived from the presence of magnetization currents
(like the one we have talked previously) in the matter itself. By following
this ideas, we can link the magnetic moment of an atomic electron to the
orbital angular momentum of the electron itself through the gyromagnetic
ratio (we simply have to see electrons’ orbitals within an atom like if they
were current loops). This last relation is demonstrated by the Einstein-de
Haas effect and by the inverse Barnett effect3. By keeping this way of rea-
soning, classical theories for diamagnetism and paramagnetism were derived
by Langevin (and Larmor). Arrived to this point, there is a problem to take
into account. According to a theorem from Statistical Mechanics, known as
Bohr-van Leeuwen theorem, since discovered separately by Bohr in 1911 and
Hendrika Johanna van Leeuwen in 1919, in a classical system there is no
thermal equilibrium magnetization. This means that a quantum mechanics
theory for magnetism in condensed matter is needed.

3Actually, these two effects also reveal that ferromagnetism (we will talk about it later
on) is mainly due to another type of angular momentum: the spin angular momentum,
which is an intrinsic property of elementary particles, with a quantum mechanical nature.
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So, a quantum Hamiltonian is needed for this kind of problem. First of
all, the kinetic energy operator has to face some little variations. From elec-
tromagnetism theory, we know that the canonical momentum of a particle
moving within an electromagnetic field is

p =mv + qA, (1.8)

where A is the magnetic vector potential associated with the magnetic field
and such that B = ∇ ×A. This will be useful in a few moments. Before
moving on, let us introduce the operator of the spin angular momentum (see
previous note). The behaviour of the electron spin4 turns out to be connected
to an algebra based on the three Pauli spin matrices, which are defined as

σ̂x = (
0 1
1 0) , σ̂y = (

0 −i
i 0 ) , σ̂z = (

1 0
0 −1) . (1.9)

For our scope, it will be useful to write them as a vector of matrices

σ = (σ̂x, σ̂y, σ̂z). (1.10)

Between the many properties of these three matrices, we will exploit the
following identity

(σ ⋅ a)(σ ⋅ b) = (a ⋅ b)1 + iσ ⋅ (a × b), (1.11)

where

a =
⎛
⎜
⎝

a1
a2
a3

⎞
⎟
⎠

(1.12)

is a generic vector belonging to C3, 1 is the identity matrix belonging to
M2(C) and

σ ⋅ a = (
a3 a1 − ia2

a1 + ia2 −a3
) = σ̂xa1 + σ̂ya2 + σ̂za3, (1.13)

in order to obtain our quantum Hamiltonian for a spin-1/2 particle interact-
ing with an external electromagnetic field, described by the magnetic vector

4The spin comes out naturally only from combining quantum mechanics and special
relativity (i.e. from Dirac equation).
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potential A and the electric potential energy V . First step, we have to in-
troduce the Pauli matrices within our Hamiltonian. According to eq.(1.11),
the kinetic energy operator for an electron K̂ =

p̂2

2m can be rewritten 5 as

K̂ =
(σ ⋅ p̂)2

2m . (1.14)

By remembering eq.(1.8), K̂ becomes

K̂ =
[σ ⋅ (p̂ + eA)]2

2m . (1.15)

Once again, identity 1.11 comes to our help

[σ ⋅ (p̂ + eA)]2 = (p̂ + eA) ⋅ (p̂ + eA) + iσ ⋅ (p̂ + eA) × (p̂ + eA)], (1.16)

and, by exploiting the following calculations (where ψ is the electron wave-
function) and the expression for the quantum operator of the linear momen-
tum, p̂ = −ih̵∇,

[(p + eA) × (p + eA)]ψ = e [p × (Aψ) +A × (pψ)] =
= −ieh̵ [∇× (Aψ) +A × (∇ψ)] = −ieh̵ [ψ (∇×A) −A × (∇ψ) +A × (∇ψ)] =

= −ieh̵Bψ,

we can write
[σ ⋅ (p̂ + eA)]2 = (p̂ + eA)2 + eh̵σ ⋅B. (1.17)

If we define the spin angular momentum by

Ŝ =
1
2 σ̂, (1.18)

the kinetic operator finally becomes6

K̂ =
(p̂ + eA)2

2m + gµBB ⋅ S. (1.19)

5Here we use the case of a = b. So, eq.(1.11) becomes (σ ⋅ a)2
= a2.

6The second term can be derived by considering the relation between the spin angular
momentum and the corresponding magnetic moment µ⃗ = −µBgS⃗, and the Zeeman energy
of interaction between such magnetic moment and the magnetic field, E = µ⃗ ⋅ B⃗.
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By considering the electric potential energy, the final Hamiltonian has the
following form

Ĥ =
(p̂ + eA)2

2m + gµBB ⋅ Ŝ + V, (1.20)

where g = 2. This is also called Pauli Hamiltonian for a spin-1/2 particle
interacting with an external e.m. field. It is the non-relativistic limit of the
Dirac equation, when applied to particles with a velocity much lower than
the speed of light.
Now, we can write the complete Hamiltonian of all the Z electrons of an atom.
By remembering the total orbital angular momentum due to the electrons

h̵L =∑
i

ri × pi, (1.21)

and by using the following gauge

A(r) = B × r
2 , (1.22)

we obtain
Ĥ =

Z

∑
i=1

(
[p̂ + eA]2

2m + Vi) + gµBB ⋅ Ŝ. (1.23)

Since7

(p̂ + eA)
2
= p̂2

+ 2ep̂ ⋅A + e2A2, (1.24)
by exploiting 1.21, 1.22 and the fact that the scalar triple product is un-
changed under circular shift of its three operands, the total Hamiltonian
becomes

Ĥ =∑
i

(
p̂

2m + Vi) + µB(L + gS) ⋅B +
e2

8m∑i
(B × ri)

2, (1.25)

The first term is the unperturbed hamiltonian, the second and third terms
are respectively the paramagnetic and diamagnetic term. The paramgentic
term (Zeeman term) is usually the dominant perturbation and it is due to
the interaction of the atom’s own magnetic moment with the magentic field.
The diamagnetic term is always present, also for those atoms without any
magnetic moment.

The Zeeman contribution, as derived in the present section, will now allow
us to derive the Hamiltonian of a ferromagnet.

7Actually, here we have considered ∇ ⋅A = 0 so that [p̂,A] = 0.
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1.1.3 Ferromagnetism
First, let us see some hints about the behaviour of ferromagnets. Materials
of this type show a spontaneous magnetization even in the absence of an
external field, contrary to paramagnets, that have a zero magnetization if
no external field is present. However, above a certain temperature (Curie
temperature, TC) the spontaneous magnetization vanishes and the system
behaves as a standard paramagnet. There are other features typical of ferro-
magnetic materials. One of them is the so called magentic hysteresis and it
is due to the fact that ferromagnets have "memory" of the past. By looking
at fig.1.3, if we apply a magnetic field B to a ferromagnet showing no magne-
tization, M grows along OA line (first magnetization curve) and approaches
the saturation valueM∞ (A). Then, if we reduce B, the magnetization follows
a new line that takes to a state of so called "residual magnetization" (M0)
at B = 0. Only if we reach the coercive field (Bc), we can fully demagnetize
the ferromagnetic sample. By further increasing B along the negative axis,
the magnetization changes sign and approaches the saturation value −M∞
(A’). Now, if we come back toward positive values of the external magnetic
field, a new curve will be chosen by the magnetization and it is the line AA’
inverted with respect to the origin, O. So, the curve traced by the system

Figure 1.3: Sketch of the hysteresis loop of a ferromagnetic material[14].
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on the plane (B,M) is called hysteresis loop and it is observed only if the
ferromagnet temperature is below Tc.

The first (classical) model for ferromagnetism was developed by Pierre-Ernest
Weiss in 1907. The main hypothesis at the basis of its model is the presence
of a mean field, felt by each magnetic moments of the ferromagnet, propor-
tional to the magnetization itself. For all the rest, the model was the same of
that for paramagnets of Langevin. The only difference is the magnetic field
felt by each atom, which now includes also the mean field: B = Bext + λM ,
where lambda is a proportionality constant. This model is able to explain
the spontaneous magnetization and the hysteresis loop of ferromagnets. How-
ever, it does not explain the nature of dipoles’ interaction generating such
mean field. Before talking about the origin of the ferromagnetic interaction,
we want to add some other details to our description of a ferromagnet.

By thinking about the spontaneous magnetization, we might wonder how
magnetic dipoles decide the particular direction along which to be aligned.
When we deal with solid state physics, we have to consider that atoms are
no more isolated, spherically symmetric systems, instead they live within a
crystalline lattice, whose symmetry is lower than the one of the single atom
(e.g. cubic, hexagonal, ...). This means that there are preferential atomic
orbitals, chosen by the electrons, such that their Coulombian interaction
energy is minimized. The particular geometry of the preferential orbitals
defines the direction of the orbital angular momentum. Due to the spin-
orbit interaction, the orbital momentum influences the orientation of the
spin angular momentum. Since the latter is the main culprit of spontaneous
magnetization in ferromagnets, the crystal symmetry eventually determines
the preferential direction for the magnetization. These favoured directions
are called crystallographic axes and can be studied by pointing the field along
different directions. This allows to find the easy axis (i.e. the favoured one),
along which the saturation is reached faster, and hard axes, characterized by
a slower achievement of the ferromagnet’s saturation.

Another question that could arise in our minds refers to all those pieces
of iron (a ferromagnetic element) that do not show any magnetization. This
anomalous behaviour is due to the organization in magnetic domains of our
ferromagnet. A magnetic domain is a region of the material with a fixed
magnetization axis (as we have previously described). Real materials are
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made by many domains, even if we consider single-crystals, and they have
different easy axes. This means that the total magnetization can be zero,
even if each single domain reached saturation. Actually, real materials can be
made by more than one crystal. Within one crystal we have many domains,
that could have the same easy axes, but with a different orientation for each
crystal. Also in this case, the total magnetization could be zero.

1.1.4 Exchange interaction
The first interaction that comes to our minds in magnetic materials is the
magnetic dipole interaction

E =
µ0

4πr3 [µ1 ⋅µ2 −
3
r2 (µ1 ⋅ r)(µ2 ⋅ r)] , (1.26)

but it is too weak, being comparable to thermal energy only when T is of
the order of 1K (too far from the temperature where ferromagnetism is ob-
served). Moreover, it favours antiparallel coordination of nearest dipoles.

In fact, ferromagnetism has quantum origin. The main ingredient needed
to achieve spontaneous magnetization is the exchange interaction. This
kind of interaction is usually introduced when the problem of an ion with two
electrons is studied. By following this idea, let us consider for the moment
our two electrons as identical independent particles. If we limit ourselves to
a two-level energy spectrum, we can define two wave functions ψa(r) and
ψb(r). Since the two electrons are independent, the joint wave function of
the two electrons can be written in the following way

ψ(r1, r2) = ψa(r)ψb(r), (1.27)

where we have put the origin of the reference system in the nucleus, and r1
and r2 are the position vectors of the two electrons. However, we have said
that our two electrons are identical particles. From quantum mechanics, this
means that exchange symmetry (i.e. particle exchange) has to be obeyed.
The wave function 1.27 does not satisfy this property. Thus, we need to
build two new wave functions, from a linear combination of ψa(r1)ψb(r2)

and ψa(r2)ψb(r1), that will behave properly under the operation of particle
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exchange. They are

ψ(r1, r2)S =
1

√
2
[ψa(r1)ψb(r2) + ψa(r2)ψb(r1)]

ψ(r1, r2)A =
1

√
2
[ψa(r1)ψb(r2) − ψa(r2)ψb(r1)],

and we call them respectively, symmetric and antisymmetric wave function.
The last ingredient that we need is the spin angular momentum. Let us
consider a single domain (i.e. a region of the material with one easy axis).
The magnetization prefers to point along its easy axis, that we call z-axis.
We have already seen the algebra needed for the spin of the electron. Since
the spin components belong to M2(C), their eigenstates live within C2. This
means that all of them can be written as linear combination of the canonical
basis e1,e2

e1 = (
1
0) , e2 = (

0
1) . (1.28)

Hence the eigenstates are

∣ ↑z⟩ = (
1
0) ∣ ↓z⟩ = (

0
1) , (1.29)

∣ ↑x⟩ =
1

√
2
(

1
1) ∣ ↓x⟩ =

1
√

2
(

1
−1) , (1.30)

∣ ↑y⟩ =
1

√
2
(

1
i
) ∣ ↓y⟩ =

1
√

2
(

1
−i

) , (1.31)

where, for each spin component, the up and down-eigenstate have respec-
tively eigenvalue +1

2 and −1
2 . As we can see, the z-component eigenvectors

are the canonical basis, so the x and y-component eigenstates are written as
a linear combination of ∣ ↑z⟩ and ∣ ↓z⟩. In general, the spin wave function is
written as a linear combination of the z-component eigenstates

χ = a∣ ↑z⟩ + b∣ ↓z⟩. (1.32)

From now on, we will omit the subscript z by taking for granted that we will
use the z-component eigenstates as a basis. In our case of two electrons, the
general state is

χ = a∣ ↑↑⟩ + b∣ ↑↓⟩ + c∣ ↓↑⟩ + d∣ ↓↓⟩, (1.33)
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where χ ∈ C4, and

∣ ↑↑⟩ =

⎛
⎜
⎜
⎜
⎝

1
0
0
0

⎞
⎟
⎟
⎟
⎠

, ∣ ↑↓⟩ =

⎛
⎜
⎜
⎜
⎝

0
1
0
0

⎞
⎟
⎟
⎟
⎠

, ∣ ↓↑⟩ =

⎛
⎜
⎜
⎜
⎝

0
0
1
0

⎞
⎟
⎟
⎟
⎠

, ∣ ↓↓⟩ =

⎛
⎜
⎜
⎜
⎝

0
0
0
1

⎞
⎟
⎟
⎟
⎠

, (1.34)

are the canonical basis {e1,e2,e3,e4}. Now, we can write the complete wave
function of the two-electron system

ψ = ψ(r1, r2)χ. (1.35)

Whatever the exchange symmetry of the spatial wave function, the spin wave
function must have the opposite exchange symmetry. The states ∣ ↑↑⟩ and
∣ ↓↓⟩ are symmetric under the exchange of the two electrons. The states ∣ ↑↓⟩

and ∣ ↓↑⟩ are neither symmetric nor antisymmetric. Thus we need linear
combinations of the them, one symmetric and the other one antisymmetric

∣ ↑↓⟩ + ∣ ↓↑⟩
√

2
, (1.36)

∣ ↑↓⟩ − ∣ ↓↑⟩
√

2
. (1.37)

These two states, together with ∣ ↑↑⟩ and ∣ ↓↓⟩, are a basis since they are the
eigenstates of a particular Hamiltonian

Ĥ = ASa ⋅ Sb, (1.38)

where Sa and Sb are the spin operators for two particles (e.g. the two-electron
system we are studying). To prove this, we simply have to use the matrix
representation of the operator Sa ⋅ Sb. We can do this by using the basis
{∣ ↑↑⟩, ∣ ↑↓⟩, ∣ ↓↑⟩, ∣ ↓↓⟩} that we have seen previously, and remembering that
Sax, S

a
y , S

a
z operators act only on the part of the spin wave function connected

with the spin of the first particle (the operators with superscript b obviously
refers only to the spin of the second particle). By following this procedure,
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we obtain

Saz =
1
2

⎛
⎜
⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟
⎟
⎟
⎠

Sbz =
1
2

⎛
⎜
⎜
⎜
⎝

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟
⎟
⎟
⎠

,

Say =
1
2

⎛
⎜
⎜
⎜
⎝

0 0 −i 0
0 0 0 −i
i 0 0 0
0 i 0 0

⎞
⎟
⎟
⎟
⎠

Sby =
1
2

⎛
⎜
⎜
⎜
⎝

0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0

⎞
⎟
⎟
⎟
⎠

,

Sax =
1
2

⎛
⎜
⎜
⎜
⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟
⎟
⎟
⎠

Sbx =
1
2

⎛
⎜
⎜
⎜
⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟
⎟
⎟
⎠

.

Now, it is easy to compute the matrix of the operator Sa ⋅ Sb

Sa ⋅ Sb = 1
4

⎛
⎜
⎜
⎜
⎝

1 0 0 0
0 −1 2 0
0 2 −1 1
0 0 0 1

⎞
⎟
⎟
⎟
⎠

, (1.39)

and the associated set of eigenvectors and eigenvalues

{∣ ↑↑⟩,
∣ ↑↓⟩ + ∣ ↓↑⟩

√
2

, ∣ ↓↓⟩}→ λI,II,II =
1
4

∣ ↑↓⟩ − ∣ ↓↑⟩
√

2
→ λIV = −

3
4 ,

as we anticipated before. Now, we know also the eigenvalues of the operator
Sa ⋅Sb. The set of eigenvectors with eigenvalue 1

4 is called triplet. The eigen-
vector with eigenvalue −3

4 is called singlet. Now, we can write the complete
wave function, by taking into account the exchange symmetry property. We
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have two possibilities

ψS =
1

√
2
[ψa(r1)ψb(r2) + ψa(r2)ψb(r1)]χS (1.40)

ψT =
1

√
2
[ψa(r1)ψb(r2) − ψa(r2)ψb(r1)]χT , (1.41)

where χT is one of the triplet states, and χS is the singlet state. The energies
of these two possible states are

ES = ∫ ψ∗SÊψSdr1r2, (1.42)

ET = ∫ ψ∗T ÊψTdr1r2, (1.43)

where Ê is the Hamiltonian of our two-electrons system. Now, let us remem-
ber our scope: finding a Hamiltonian whose ground state is the ferromagnetic
one, a state with all magnetic momenta pointing in the same direction. Since
the magnetic momentum is proportional to the spin angular momentum8, we
want our ground state to be the one with all the spins pointing in the same
direction. In our two-electron model, this means we want the triplet states to
be the ones more favourable from an energetic point of view. So, by defining
the exchange interaction constant, J

J =
ES −ET

2 = ∫ ψ∗a(r1)ψ
∗
b (r2)Êψa(r2)ψb(r1)dr1dr2, (1.44)

we can build the ferromagnetic Hamiltonian, by exploiting the results we ob-
tained about the Sa ⋅Sb operator, with eigenvalues ES and ET if the complete
wave function is respectively ψS or ψT

Ê =
1
4(ES + 3ET ) − (ES −ET )Sa ⋅ Sb. (1.45)

By applying Ê on ψS or ψT , it is easy to see that the corresponding energy
is ES or ET .

8Here we are not considering the orbital angular momentum since, as we have said
previously, the spin is the main actor in ferromagnetism. For example, 3d metals are
characterized by the quenching of the orbital angular momentum (i.e. ⟨L⟩ = 0), so the
magnetic momentum is due only to electrons’ spin.
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In order to have ET < ES, so the ferromagnetic state favoured, we need J > 0.
If J < 0, the favoured magnetic order is obviously the antiferromagnetic one
(because the singlet state with opposite spin is favoured). Now, our patience
is going to be paid back. The Heisenberg Hamiltonian for ferromagnetism is
obtained from 1.45 and by neglecting the constant part

Ĥferr = −∑
ij

JijSiSj + gµB∑
j

Sj ⋅B, (1.46)

where we have extended the interaction between the spins of the two-electron
model to the interactions of a lattice of atomic spins (only nearest neighbours
interaction is considered here), with a different exchange interaction constant
Jij for each pair of nearest neighbours, and the paramagnetic term of inter-
action with the external magnetic field B is considered. This Hamiltonian
can be studied by doing the mean-field approximation of the Weiss model,
taking to an Hamiltonian form similar to the one of a paramagnet.

This is the Hamiltonian that we need in order to study ferromagnets (in
our case, the BK noise properties of a ferromagnet).

1.2 Crackling phenomena: the BK noise
As we know, BK noise is an effect of the irregular magnetization process of
a magnetic sample when a slowly varying external magnetic field is applied.
The irregularity (of the domain walls’ motion) is due to the defects of the
sample.

We can better grasp what is happening by looking at fig.1.4, where the
magnetization reversal process is represented. The point A represents a
metastable state reached by the system during the phase transition. It is
represented also in the right part of the figure, where a graphical represen-
tation of the examined portion of the magnetic material is used. Within the
area of the ellipse, a fraction has a magnetization already aligned with the
external field. This metastable state is due to the presence of a defect. By
increasing the amplitude of the magnetic field, the only effect is the bowing
of the domain wall (point B), instead the system remains in the state of
point A. In order to free the system from such metastable state, we need to
increase the field of a quantity ∆H. Indeed, it gives enough energy to the
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Figure 1.4: Evolution of the system during the inversion of the magnetization.

system in order to overcome the potential barrier due to the pinning defect
and jump to the next metastable state (point C). The transition from B to
C is an abrupt event, similar to avalanches formed in mountain slopes9. The
amplitude of an avalanche is here measured by ∆M .

We have already talked about the typical power-law behaviour of avalanches’
distribution, P (∆M) ∼ (∆M)−τ , in BK noise, like the one found by Puppin
[24]. In this case, the BK noise is said to belong to the class of crackling
noise. Systems exhibiting this type of noise respond with discrete events of
a variety of sizes, when pushed slowly. In fact, there are systems showing
different types of BK effect. We can distinguish between small BK effect
and large BK discontinuities. The former includes all those materials whose
field-driven transition is characterized by a large number of small avalanches.
Often, soft magnetic materials after annealing show mainly the small BK ef-
fect. The latter refers to those magnetic materials exhibiting large jumps in
the magnetization. The power-law case is the transition between these two
limiting-cases. And that is what interests us.
The model we will use to study the avalanches’ statistics is the Random
Bonds Ising Model (RBIM), already mentioned in the introduction. The
RBIM is characterized by the presence of frozen disorder, controlled by a
parameter (R) that turns out to control the avalanches’ dimension. At weak
disorder, we get one large avalanche with small precursors and aftershocks

9Domain wall (DW) motion is the microscopic mechanism behind this abrupt event.
Once the pinning potential has been overcome, DW proceeds its motion with a jump (or
avalanche).
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(large BK discontinuities). At strong disorder, we have a large number of
small avalanches (small BK noise). An ideal power-law behaviour of the
avalanches’ distribution is obtained, within RBIM, at a critical value of the
disorder parameter, RC . It is worth mentioning that, for other values of R
(but still close to RC), similar distributions are found, but with a cut-off for
large avalanche’s sizes (for an example in RFIM, look at [10]). We call critical

Figure 1.5: Distribution of magnetization steps ∆M in a 90 nm Fe film. From
[24]

such value of the disorder parameter, because it is characterized by the ap-
pearance of a power-law distribution for the avalanches’ size, and power-laws
are signature of critical phenomena (in particular continuous phase transi-
tions).

There is a couple of properties deserving to be mentioned about power-laws.
The first one is their scale invariance. Given a relation P (∆M) ∼ (∆M)−τ ,
scaling the argument ∆M by a constant factor c causes only a proportional
scaling of the function itself

P (c∆M) ∼ c−τ(∆M)−τ ∝ P (∆M). (1.47)

This behaviour shows that the relative likelihood between small and large
avalanches is the same, no matter how small or large are the avalanches
themselves.
A second important property is universality. Magnetic materials are not the
only known example of systems characterized by crackling noise phenomena.
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For example, the Earth responds with violent and intermittent earthquakes
as two tectonic plates rub past one another. A slowly crumpled piece of pa-

Figure 1.6: Histogram of number of earthquakes in 1995 as function of their
magnitude (or, alternatively, their energy release). From the world-wide
earthquake catalog of CNSS (Council of the National Seismic System).

per crackles too. Superconductor vortices, microfractures and charge-density
waves show this kind of noise too. The intriguing thing is that different phe-
nomena exhibit the same scaling exponent, τ . In this case, they are said to
belong to the same universality class. In addition, via renormalization group
theory, it has been proven that systems, belonging to the same universality
class, share the same dynamics. So, by describing one of them, we would be
able to better understand the others too. This is a reason why BK noise in
magnets is studied: it is much easier to reproduce crackling phenomena in
a ferromagnet, because we can do as many experiments as we want within
our lab. Instead, if we want to study earthquakes, we have to wait for an
earthquake to happen (we can not produce it), and it is far more difficult to
study an earthquake than a ferromagnet sample.

Most of the models for BK noise work only for the zero-temperature case,
whereas most experimental data on BK noise have been obtained at room
temperature, like Puppin did in [24]. Furthermore, Puppin and Zani [23]
tested the statistical properties of BK noise in a thin Fe film for different tem-
peratures and they proved that there is a significant difference at T = 10K and
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T = 300K. In both cases, a power-law was found. But different critical expo-
nents were observed. At T = 10K, P (∆M) ∼ (∆M)−1.8, while at T = 300K,
P (∆M) ∼ (∆M)−1. Our scope is to model this behaviour through the RBIM.

Within this project, the simulations were done on a 2D system in order
to compare them with experiments of Puppin and Zani[23, 24]. In fact, the
literature on BK noise considers mainly 3D materials, because the magnetic
phenomena within a thin film are more problematic: stray fields’ influence
in the direction perpendicular to the sample is non negligible, and it cre-
ates complex patterns in the magnetized areas. Many questions remain to
be solved and this makes 2D modelling an interesting and promising field of
study.

Since we are approximating a thin film with a 2D model, we need to know
whether the film’s thickness influences the experimental results. Wiegman
[27] proved that there is not strong thickness dependence (see fig.1.8).

Figure 1.7: Values of the power-law coefficient τ (α1 in Wiegman’s notation)
for permalloy films as a function of the thickness.

1.3 Phase transitions
In the previous chapters, we have mentioned more than once the phenomenon
of the phase transitions. By speaking in general, it is characterized by the
transition of a material from one state to a different one. By being more
precise, the phase transition is associated to a variation of the symmetry
of the equilibrium configuration of the system. The symmetry can be mea-
sured through some parameters, called order parameters. For example, at
zero field, in magnetic materials we can have a phase transition between the
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paramagnetic and the ferromagnetic phase, and the two are distinguished
thanks to the magnetization, i.e. an order parameter. Another example of
phase transition is the one between two states of matter, gas and liquid. In
this case, the order parameter is the densities difference.

In first order phase transitions, the system absorbs or yields a given amount
of heat (latent heat), during the phase separation. Examples are the crystal-
lization of a liquid, or the fusion and sublimation of a solid. The field-induced
transition in a ferromagnet from all spin-up to all spin-down configuration.
The liquid/gas transition is a transition of this kind too. All these transitions
show an abrupt change in the thermodynamic quantities. For example, once
we are in a ferromagnetic phase, we have an abrupt change from down to
up magnetization (or vice versa), due to the change of sign of the external
magnetic field. The first order transitions are also characterized by the co-
existence of the two phases (e.g. magnetic domains in a ferromagnet), and
by the presence of hysteresis loops (in ferromagnets, once the magnetic field
has changed its sign, the phase transition does not happen, and the system
remains in the previous phase which now is metastable)

But, at variance with the first two examples, the line separating the liq-
uid and gas phases on the (P,T) plane ends at a critical point, and the
down/up magnetization transition shows a similar end point in the (B,T)
plane too. Close to such point, the thermodynamic quantities do not show
the discontinuous changes typical of first-order phase transitions, but rather
a continuous change. Close to this point, thermodynamic quantities are de-
scribed by power-laws and the fluctuations and spatial correlations of the
order parameter becomes increasingly larger. These continuous transitions
are called second order transitions.

Our main interest will be obviously the magnetic case. The para-ferromagnetic
transition is the second-order phase transition that we would face by fixing
to zero the external field and moving temperature from below to above the
critical point. Such transition is characterized by a continuous change of
the order parameter (i.e. the magnetization). The magnetic susceptibility is
characterized by a power-law behaviour, with a divergence at Tc.

In the next chapters, we will study the temperature-induced second order
phase transition and the field-induced first order phase transition for mag-
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Figure 1.8: Phase diagrams in (P,V) and (B,T) planes respectively for liq-
uid/gas and magnets. Critical points, for liquid/gas and up/down magneti-
zation transitions, are shown.

nets, within the Ising model.

It is interesting to mention that, as we have seen for the magnetic case,
also a fluid, if brought close to the critical point along the critical isotherm
curve, shows a divergence for the compressibility (i.e. the analogous of the
magnetic susceptibility). This is due to a deep physical similarity between
fluids and magnets. In fact, in both cases we have spontaneous symmetry
breaking, i.e. the systems move from a disordered phase fully invariant to
rotation (gas or paramagnet), to a less symmetrical ordered phase (because
the invariance to rotation is broken!).

About critical phenomena, we want to mention that one [4, 5] of the the-
oretical models proposed for the Barkhausen effect involves the theory of
Self-Organized Criticality (SOC)[6]. SOC is a property of certain dynamical
systems that have a critical point. From a macroscopic point of view , these
systems show the scale-invariance typical of critical phenomena, but without
the need to set a control parameter to a precise value: it is the system itself
that evolves toward the critical point.
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Chapter 2

Ising Model

In this chapter, we will describe the Ising model, and the Monte Carlo
method, a computational algorithm that we used to study the equilibrium
configurations of the Ising model.

2.1 Introduction
The Ising model is a very simple model which proves however able to sim-
ulate simulate the magnetic response of a physical ferromagnetic substance.
Its main virtue lies in the fact that, even if simple, it has a behaviour very
similar to the one of a real ferromagnet. Furthermore, in its two-dimensional
implementation, it can be exactly solved within the realm of Statistical Me-
chanics. In particular, it provides one of the simplest examples of complex
systems where phase transitions can be worked out with mathematical rigor.
In the Ising model the system considered is an array of N fixed points called
lattice sites that form a d-dimensional periodic lattice (d = 1,2,3). The ge-
ometrical structure of the lattice may for example be cubic or hexagonal.
Associated with each lattice site is a spin variable si (i=1,...N) which is a
number that is either +1 or -1. There are no other variables. If si = 1, the
i-th site is said to have spin up, and if si = −1, it is said to have spin down.
A given N -tuple of numbers si specifies a configuration of the whole system.
The energy of the system in the configuration specified by si is defined to be

EI{si} = −∑
<ij>

Jijsisj −H
N

∑
i=1
si (2.1)
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where the subscript I stands for Ising and the symbol < ij > denotes a nearest-
neighbour pair of spins. There is no distinction between < ij > and < ji >.
Thus the sum over < ij > contains γN

2 terms, where γ is the number of nearest
neighbours of any given site. The parameters Jij are the exchange interac-
tions between all the spin pairs.

We focused on a 2D square-lattice Ising model (d=2), with constant exchange
interaction J1. It is one of the simplest model in Statistical Mechanics ex-
hibiting a second order phase transition. An analytic solution was found by
Lars Onsager (1944). This means that we have analytic results for compar-
ison with our simulations’ results. Let us start with the first definition, the
magnetization. Its expression is

M =
N

∑
i=1
si. (2.2)

Actually, we used the magnetization per spin,

m =
M

N
, (2.3)

and we computed the approximation of its mean value2,

m =
⟨M⟩

N
, (2.4)

where ⟨⋅⟩ is the mean value of a physical quantity, within the canonical en-
semble (look at eq.(2.9) for the definition). The critical temperature and the
mean magnetization per spin for the 2D square-lattice Ising model are given
by

Tc =
2J

kB ln(1 +
√

2)
≃ 2.269185314 ⋅ J

kB
,

m(T ) = {
0 , (T > Tc)

{1 − [sinh(2βJ)]−4}
1
8 , (T < Tc).

In fig.2.1, the plot of Onsager’s magnetization solution.
1In chapter 4 we will use a model with non constant J .
2Here we used the letter m both for magnetization per spin and its mean value. All

over this work, m will be meant for the mean magnetization per spin.
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Figure 2.1: Mean magnetization per spin as a function of temperature (On-
sager). This is the continuous phase transition, induced by temperature,
introduced in the previous chapter.

2.1.1 n-vector model
Before continuing with the Ising model case, we will here briefly review the
mathematical models used to describe interacting spins systems. And, at the
basis of each one of them, there is the Heisenberg Hamiltonian 1.46 that we
have previously derived by taking into account quantum mechanics and spin.

The Ising model is just one of the existing models that we could use for
the study of magnetic phase transitions’ properties (the temperature and
field induced transitions we have introduced in the previous chapter). In
particular, the so called Potts model, the XY model, the Heisenberg model
have been deeply studied. In fact, these mentioned models are special cases
of a general model: the n-vector model or O(n) model, describing a system of
interacting spins on a crystalline lattice. In this model, the spins si have no
longer just one component like in the Ising model (where si can be ±1 only),
instead they have n components embedded into a d-dimensional lattice. The
Hamiltonian has the usual form, but now the spins are no longer scalar so
we have to introduce the inner product:

H = −J ∑
<i,j>

si ⋅ sj (2.5)
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and < i, j > still means the interaction between nearest neighbours is just
considered. According to the number of components of the spins vectors, n,
we can have a different model. The Ising model has n = 1. The Potts model
is a more general case than the Ising model, with the spin variable taking one
of q possible values, distributed uniformly about the circle, at angles θn = 2πn

q

where n = 0,1, ..., q − 1 and the Hamiltonian given by

H = J ∑
<i,j>

cos(θsi − θsj). (2.6)

In the limit as q →∞, the Potts model becomes the XY model. This one is
a case of the n-vector model with n = 2. The Heisenberg model has n = 3,
i.e. the spins are elements of R3. Each one of these models can be applied to
whatever d-dimensional lattice.

In our case, we have studied the 2D Ising model (n=1, d=2).

2.2 Statistical Mechanics
As we said in the previous chapter, the physical properties of the systems of
our interest are determined by the interaction between a very large number
of individual elements.
Statistical Mechanics is mainly focused on the calculation of properties of
condensed matter systems. Deriving exactly the dynamics of all elements
would be a very hard task due to the very large number of components in
the system. The number of equations of motion makes it impossible to solve
the mathematics exactly. A common example arises from a volume of gas in a
container: the number of molecules is of the order of the Avogadro constant
(≈ 1023), all moving around and colliding with one another and with the
walls of the container. Too many Hamilton’s equations to solve for these
systems. Yet, by looking at the macroscopic behaviour of a gas we find well-
behaved and predictable properties like temperature or pressure. So there’s
some mechanism that averages out the solutions of all the equations to give
us a predictable behaviour of the entire system. Statistical Mechanics aims
directly to the calculation of these average properties of large systems by
studying them from a probabilistic point of view.
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Here are some conclusions that we can reach without specifying the exact
form of the dynamics.
Suppose our system is in a state µ. Let us define R(µ → ν)dt to be the
probability that it is in state ν a time dt later. R(µ → ν) is the transition
rate for the transition from µ to ν. We assume the transition rate to be time
independent. Now, the probabilistic treatment of the problem comes in. We
define a set of weights wµ(t) which represent the probability that the system
will be in state µ at time t. These weights represent our entire knowledge
about the state of the system. At this point, we write a master equation
for the evolution of wµ(t):

dwµ
dt

=∑
ν

[wν(t)R(ν → µ) −wµ(t)R(µ→ ν)] (2.7)

by considering transitions both to and from the state µ.
The probabilities wµ must also obey the sum rule

∑
µ

wµ(t) = 1 (2.8)

for all t, since the system must always be in some state.
Since we’re interested into the macroscopic properties of the system, let us
define the expectation value of a quantity Q at time t for our system as

⟨Q⟩ =∑
µ

Qµwµ(t) (2.9)

If we want to find the equilibrium state we have to put (2.7) equal to zero.
The values of the transition rates R(µ→ ν) depend on the type of interaction
between the system and the thermal reservoir. Here we know a priori the
values at equilibrium of the weights wµ and we denote them by:

pµ = lim
t→∞wµ(t). (2.10)

Gibbs showed that for a system in thermal equilibrium with a reservoir at
temperature T , the equilibrium occupation probabilities are

pµ =
1
Z
e
− Eµ
kBT . (2.11)

where Eµ is the energy of state µ and usually it is defined the quantity
β = (kT )−1. The probability distribution in 2.11 is known as the Boltzmann
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distribution. At this point we can define the expectation value of a quantity
Q for a system in equilibrium:

⟨Q⟩ =∑
µ

Qµpµ =
∑µQµe−βEµ

∑µ e
−βEµ . (2.12)

Obviously when talking about statistical quantities we have to consider also
the standard deviation, which gives us information about the fluctuations of
the quantity we are looking at. An interesting result is that the variance
of the energy is proportional to the specific heat, a macroscopic property.
This means that, since the heat capacity is an extensive quantity, the energy
fluctuations scale like

√
V with the volume V of the system. And the energy

itself scales like V , so that the relative size of the fluctuations compared to
the internal energy decreases as 1√

V
as the system becomes large. So, if we

consider a large system, we can neglect fluctuations. For this reason, the
limit of a large system is called the thermodynamic limit. The problem is
that for Monte Carlo simulations it is not feasible to simulate a system large
enough that its behaviour is a good approximation to a large system.
So, also if Statistical Mechanics has produced very elegant formula, the pro-
cess of calculating the properties of a particular model is very complex. For
example if we have to calculate the partition function Z we have to perform
a sum over a potentially very large number of states. Indeed we are inter-
ested in the thermodynamic limit where the sum is over an almost infinite
number of states. Only for a few statistical models it has been found an
analytic expression for the partition function, like the 2D Ising model (On-
sager 1944). This is why some approximate techniques have been developed.
We are interested in computational techniques, in particular in Monte Carlo
simulations.

2.3 Monte Carlo method
At this point we can introduce the general ideas behind equilibrium thermal
Monte Carlo simulations. We will focus on "importance sampling", "detailed
balance" and "acceptance ratios". As we previously said, we want to find
a method that gets as close as possible to the observable behaviour of a
thermal system. Since we have said that formulas from Statistical Mechanics
are tractable only for very small systems (see the example about the partition
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function Z, just a few lines above), in large systems the best we can do is
to choose a subset of states from the phase space by following a specific
probability distribution pµ.
So, if we want to estimate the expectation value of a quantity Q we won’t
use the correct formula (2.12). Instead, by supposing our subset of states is
{µ1, ..., µM}, our best estimate of the quantity Q will be:

QM =
∑
M
i=1Qµip

−1
µi
e−βEµi

∑
M
i=1 p

−1
µi
e−βEµi

. (2.13)

QM is the estimator of Q.

The more M states we sample, the more the estimator becomes an accurate
estimate of ⟨Q⟩. Arrived to this point a question rises: how should we choose
the probability distribution pµ? The goodness of the estimator depends on
this too. In order to answer to this question we have to keep in mind that
the sums appearing in 2.12 may be dominated by small number of states.
Like in the case of a physical system in thermal equilibrium with a reservoir:
it does not sample all its states with equal probability, instead it samples
them by using the Boltzmann distribution that we have seen previously. So
what Monte Carlo methods do is finding these M most important states,
and neglecting the others, by picking states so that the probability that a
particular state µ gets chosen is 2.11. This procedure is called importance
sampling. Then our estimator becomes just

QM =
1
M

M

∑
i=1
Qµi . (2.14)

In order to pick our sample of states so that each one appears with its correct
Boltzmann probability it is convenient to use a Markov process. In our
case, a Markov process is a mechanism which, given a system in one state
µ, generates a new state of that system ν. The probability of generating
the state ν given µ is called the transition probability P (µ → ν). For a
true Markov process all the transition probabilities have to be such that the
probability of the Markov process generating the state ν starting from the
state µ is always the same, irrespective of anything else has happened before
µ. The transition probabilities must also satisfy the following constraint:

∑
ν

P (µ→ ν) = 1, (2.15)
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since some state ν has to be generated by the Markov process when the
system is in the state µ. Note that P (µ → µ) can be different from zero.
During our Monte Carlo simulation, the Markov process is used repeatedly
to generate a Markov chain of states. We are interested into a Markov
process that creates a succession of states which appear with probabilities
given by the Boltzmann distribution, if it is run for long enough and starting
from any state of the system (we call the process of reaching the Boltzmann
distribution "coming to equilibrium", since it is exactly the process that a
real system goes through as it reaches equilibrium at a certain temperature).
This is possible if other two conditions are satisfied by our Markov process:
ergodicity and detailed balance.

2.3.1 Ergodicity
Our Markov process is ergodic if it is in principle able to reach any state
of the system if we run it for long enough. This requirement is necessary if
we want to generate states according their correct Boltzmann probabilities.
Indeed, every state ν has a non-zero Boltzmann probability pν , and if that
state were inaccessible from another state µ no matter how long we continue
our process for, then our goal is impossible if we start in state µ: we will
have zero probability of finding ν in our Markov chain of states, and not pν
probability as we require it to be.

2.3.2 Detailed balance
The detailed balance condition ensures that we reach the Boltzmann distri-
bution after we run the Markov process for long enough, i.e. after we have
reached the equilibrium. First, our Markov process reaches the equilibrium
when

∑
ν

pµP (µ→ ν) =∑
ν

pνP (ν → µ), (2.16)

that actually is just a discrete-time version of the one we would get if we were
to set to zero the derivative in the master equation 2.7, as we have already
noticed in section 2.2. By exploiting eq.(2.15), we can rewrite this in the
following way:

pµ =∑
ν

pνP (ν → µ). (2.17)
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since the first sum is on ν and so pµ can be taken out of it. Simply finding
the set of transition probabilities satisfying this equation is not sufficient to
guarantee that the probability distribution will tend to pµ from any state of
the system if we run the process for long enough. This can be seen in the
following way. Let us define the Markov matrix P for the Markov process
as the matrix whose elements are the transition probabilities P (µ → ν).
By supposing we are dealing with a physical system whose Hamiltonian has
a discrete set of n eigenvalues and eigenvectors, and writing explicitly the
eigenvalue corresponding to a state, we have the following form for P

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

P (E1 → E1) P (E2 → E1) ⋯ P (En → E1)

P (E1 → E2) P (E2 → E2) ⋯ P (En → E2)

⋮ ⋮ ⋱ ⋮

P (E1 → En) P (E2 → En) ⋯ P (En → En)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where µ, ν = 1, . . . , n. By recovering the notation we used for the master
equation, if we measure the time in steps along our Markov chain, then the
probability wν(t + 1) of being in state ν at time t + 1 is given by

wν(t + 1) =∑
µ

P (µ→ ν)wµ(t). (2.18)

In matrix notation
w(t + 1) = P ⋅w(t), (2.19)

where w(t) is the vector whose elements are the weights wµ(t). The Markov
process can reach a simple equilibrium state w(∞) as t → ∞ for which the
following identity is true

w(∞) = P ⋅w(∞) (2.20)
or a dynamic equilibrium in which the probability distribution w periodically
oscillates between a number of different values. Such a rotation is called
periodic chain. In this case w(∞) would satisfy

w(∞) = Pn
⋅w(∞) (2.21)

where n is the period of the chain. We want to avoid this last case. The
detailed balance condition allows us to get around this problem. Mathemat-
ically, it can be written in the following way

pµP (µ→ ν) = pνP (ν → µ). (2.22)
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Clearly, any set of transition probabilities which satisfy this condition also
satisfy eq.(2.16). It tells us that on average the overall transition rate from
µ to ν is equal to the one from ν to µ. In a limit cycle, some of the states’
probabilities occupation vary in a cyclic way. For these states the detailed
balance condition is violated on any particular step of the Markov chain.
For instance, if the occupation probability of a state increases, there must be
more transitions into that state than out of it on average. So, detailed balance
condition avoids this kind of dynamics. Now that we have removed limit
cycles, we can show that the system will always converge to the probability
distribution pµ as t →∞. From stochastic matrices theory, we know that as
t → ∞, w(t) will tend exponentially towards the eigenvector corresponding
to the largest eigenvalue of P. Being the Markov matrix a stochastic matrix,
its higher eigenvalue is one. It is easy to prove that all Markov matrices have
at least one eigenvector with corresponding eigenvalue one. From eq.(2.15),
we know that all the columns of a Markov matrix give sum equal to one.
This means that the vector (1,1,1,1,1, . . . ) is a left eigenvector of P with
eigenvalue one. A left eigenvector is a row vector defined by the following
equation:

uP = ku (2.23)
where k is a scalar and P is our Markov matrix. By taking the transpose of
this last equation

P⊺u⊺ = ku⊺ (2.24)
we observe that a left eigenvector is equal to the transpose of the right eigen-
vector of P⊺, with the same eigenvalue. P and P⊺ have the same eigenvalues,
since a matrix and its transpose have the same characteristic polynomial.
Thus, the eigenvalues of the left eigenvectors of a matrix are the same of
the right eigenvectors of the same matrix. Summing up: our Markov matrix
has at least one eigenvector with corresponding eigenvalue equal to one. In
order to see that one is the highest possible eigenvalue for a Markov matrix,
here it is an elementary proof. Let us suppose that Px = λx, for some λ > 1
eigenvalue and x corresponding eigenvector of P. Since we have seen that
Markov matrix entries are smaller than one (and positive), we can say that
each element of the vector Px can be no greater than the maximum com-
ponent of x, xmax. On the other hand, at least one element of λx is greater
than xmax. This proves that λ > 1 is not possible. Now, if we express the
eq.(2.17) in matrix notation we obtain

p = Pp, (2.25)
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where p is the vector whose elements are the probabilities pµ, we can see
that p is that eigenvector of the Markov matrix with eigenvalue equal to one.
By putting this together, the equilibrium probability distribution w(∞) is
exactly p. This means that w(t) must tend exponentially to p as t → ∞.
At this point, we have proved that the probability distribution of the states
generated by our Markov process will converge to whatever distribution pµ
we want, by choosing a set of transition probabilities (i.e. a Markov matrix)
which satisfy the detailed balance condition. In particular we want to obtain
the Boltzmann distribution weights. This means that the detailed balance
condition becomes

P (µ→ ν)

P (ν → µ)
=
pν
pµ

= e−β(Eν−Eµ). (2.26)

The constraints on the transition probabilities P (µ → ν) are this last equa-
tion and the equation 2.15.

2.3.3 Acceptance ratios
At this point, to simplify the choice of our Markov process we define the
transition probabilities in the following way

P (µ→ ν) = g(µ→ ν)A(µ→ ν). (2.27)

g(µ → ν) is the selection probability, the probability that given an initial
state µ, a new state ν will be generate by the algorithm. A(µ → ν) is the
acceptance ratio that tells us if we accept or not to move our system into the
new generated state ν.

So, what we have to do for building our Monte Carlo algorithm is think-
ing up an algorithm which generates random new states ν from old ones
µ with probability g(µ → ν) and then accepts or rejects those states with
acceptance ratios A(µ→ ν) that we choose to satisfy

P (µ→ ν)

P (ν → µ)
=
g(µ→ ν)A(µ→ ν)

g(ν → µ)A(ν → µ)
= e−β(Eν−Eµ). (2.28)

If not accepted, the system remains in state µ and the process is repeated
again and again. An example of Monte Carlo algorithm for the Ising model
is the single-spin-flip dynamics Metropolis algorithm. But we are interested
in the Wolff algorithm [22], the most popular among the so called cluster
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algorithms. Before talking about the advantages of this last algorithm respect
to the single-flip one, let us look more in details this algorithm.
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Chapter 3

Cluster algorithm

In this chapter we describe a particular Monte Carlo method, the Wolff algo-
rithm, which is characterized by the fact that the spins do not evolve one by
one towards equilibrium. They are grouped instead in sets of similarly ori-
ented spins (clusters), which are then eventually flipped all together in one go.

We explain how we estimated the mean values of physical quantities, showing
the results for the magnetic susceptibility and magnetization.

We will see how these results helped us finding the minimum optimal di-
mension for the system simulated in our codes.

The Ghost Spin extension, used in order to study the field-induced tran-
sition, is introduced too. Finally, the absence of hysteresis loop is explained.

3.1 The Wolff method
With this type of Monte Carlo method we expect to better simulate the
avalanche’s behaviour in comparison to a single-spin-flip dynamics algorithm,
like the single-flip- dynamics Metropolis algorithm used in [15]. In fact, by
flipping the spins of the lattice one by one, you can have the following situ-
ation. At the n-th MC iteration, the k-th spin is flipped. At the next MC
moves, instead of building an avalanche around the k-th spin, the algorithm
could end up picking and flipping the k + 1-th, and the following spins, far
from the position of k-th spin. Also, it could be that the k-th spin is picked a
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second time, before the avalanche has the possibility to happen. With Wolff
we instead give a chance to an avalanche to happen, thanks to the collective
evolution of the spins at each MC step.

The following is the strategy proposed by Wolff.

1. Pick at random a spin (seed) from the lattice.

2. Look at its neighbours to see if any of them have the same orientation
of the seed.

3. Look at neighbours of those neighbours, and so on, iteratively, until a
cluster of spins has been built up.

But, we do not want to flip all the spins with the same orientation of our first
seed spin. Indeed, the number of spin we flip should depend on the temper-
ature. For example, we know that in the Ising model at high temperatures
the spins tend to be uncorrelated with their neighbours and this means that
they flip over in very small clusters (or also individually). By approaching
the critical temperature, we know that the sizes of the clusters become much
larger, and then, below the critical temperature, an ordered phase appears
where spins tend to form big clusters that span the entire lattice. This is
why this algorithm has some probability of adding a spin to the cluster which
goes up as the temperature falls.
The last step of the strategy.

4. Once the cluster has been built, since there are no more similarly ori-
ented spins to add to the cluster, the algorithm flips the cluster with
some acceptance ratio.

3.2 Acceptance ratio for the Wolff method
The formula for the probability of adding a spin to the cluster according to
the temperature of the system is

Padd = 1 − e−2βJ (3.1)

and the acceptance ratios for both forward and backward moves between
two states are always equal to the unity (i.e. every proposal is accepted),
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Figure 3.1: On the left, a periodical square lattice, with black and white
circles representing up- and down-spins respectively. The solid lines represent
the clusters that may be built in it. On the right, the same periodical lattice,
showing a possible cluster (thicker solid line) within it.

independently of any properties of the two states, or the temperature, or
anything else at all. This is the best possible value for the acceptance ratios
in order to speed up the convergence of the algorithm.

Let us see how these choices for Padd and acceptance ratios still allow for
detailed balance condition to be satisfied. Consider two states of the system,
µ and ν, like those illustrated in the figure 3.2 below. The difference between
the two configurations is the flipping of a cluster of similarly oriented spins,
whose edge is indicated by the line in the figure. Now, we have to focus on
the way the spins are oriented around this edge. Both in µ and ν state, out-
side of the cluster there are some spins oriented like those within the cluster.
When the cluster is flipped, the bonds between these spins and the ones in
the cluster have to be broken. And those that are not broken moving from
µ to ν, of course have to be broken with the reverse move.

At this point, let us consider a move that takes our system from µ to ν.
Actually, there are many of these moves. For the moment, however, let us
just consider one particular move, starting with a particular seed spin and
then adding the other to it in a particular order. Consider also the reverse
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Figure 3.2: Two different configurations, µ on the left and ν on the right, of
our 2D lattice of spins. The black and white circles represent the up- and
down-spins in the model. (source [12])

move, from ν to µ, starting with the same seed spin and adding all the others
in the same way as in the forward move. The only difference between the
two moves is the probability of breaking bonds at the edge of the cluster.
Because, as we have already noticed, the bonds which have to be broken are
different in the two cases.

Suppose we have m broken bonds for the forward move. This means that
moving from µ to ν there are m spins close to the edge of the cluster that
are not added to the cluster itself. The probability of not adding these spins
is (1 − Padd)m, and it is proportional to the selection probability g(µ → ν).
In the reverse move, suppose we have n broken bonds. Then, the probability
of doing it will be (1 − Padd)n. The condition of detailed balance becomes

P (µ→ ν)

P (ν → µ)
=
g(µ→ ν)A(µ→ ν)

g(ν → µ)A(ν → µ)
= (1−Padd)m−n

A(µ→ ν)

A(ν → µ)
= e−β(Eν−Eµ), (3.2)

where the change in energy, Eν − Eµ, also depends on the bonds which are
broken. In particular, we have for our Ising model

Eν −Eµ = 2J(m − n) (3.3)
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that leads us to rewrite equation 3.2

A(µ→ ν)

A(ν → µ)
= [e2βJ(1 − Padd)]n−m. (3.4)

Now, we see how the value of Padd in 3.1 actually implies acceptance ratios
for forward and backward moves equal to one, if we want to satisfy 3.4. So,
every move proposed is accepted by the algorithm. This algorithm satisfies
also the ergodicity requirement. Indeed, it is enough to note that there is
the possibility at any move to build a cluster of only one spin, which is then
flipped. Thus, the appropriate succession of such moves will take the system
from one state to any other in a finite time.
So, the Wolff algorithm, if run for long time, is able to generate a series of
states of the system which will appear with their correct Boltzmann proba-
bilities.

Here it is the precise procedure for the Wolff cluster algorithm for the Ising
model:

1. Choose a seed spin at random from the lattice.

2. Look in turn at each neighbours of that spin. If they are pointing
in the same direction as the seed spin, add them to the cluster with
probability Padd = 1 − e−2βJ .

3. For each spin that was added in the last step, examine each of its
neighbours to find the ones which are pointing in the same direction
and add each of them to the cluster with the same probability Padd.
During the growth of the cluster, we may pick some neighbours that are
already within the cluster, and in this case we do not have to consider
adding them again. Also, spins that have already rejected to join the
cluster get another chance to get in when we ask them another time.
This step is repeated until there are no more spins left in the cluster
whose neighbours have not been considered for inclusion in the cluster.

4. Flip the cluster.
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3.3 Implementation on a computer code
The Ising model we have described in the previous chapter can be in any di-
mension (as we have already seen) and with any kind of boundary conditions.

Since we want to develop a model able to mimic the experimental results
obtained by Zani and Puppin [23] studying Fe films, we will use a 2D square
lattice with size L, composed by N = L×L spins. So, γ = 4, i.e. any spin will
have four nearest neighbours. About the boundary effects, we set periodic
boundary conditions to our square lattice, that is, the spins on one edge of
the lattice are neighbours of the corresponding spins on the opposite edge.
In this way, all the spins have the same number of neighbours and local ge-
ometry.
From a computational point of view, we stored the spin lattice in a vector of
dimension N , following the numbering of fig.3.3. In this way, we had to use

Figure 3.3: Here an example of enumeration of the spins within a 2D square
lattice with L=4)

only one index in order to move within the lattice. For the implementation of
the Wolff algorithm, the developed code is the following one. In particular,
we are going to see the function, that I calledCluster, that moves the system
from one state µ to a new state ν, by creating and flipping one cluster within
the lattice. Obviously, this function is then called repeatedly within the code,
in order to implement the Markov process that we have previously described.
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Algorithm: generation of a cluster

Define two vectors guests and guests1, of dimension N;
guests will contain the position, within the lattice, of those spins belonging
to the growing cluster and will be used for updating the initial state (if it
is the case);
guests1 ’s n-th entry will be zero, if the n-th spin of the lattice is not
within the cluster, or one, if the n-th spin of the lattice belongs to the
cluster;
Define the initial state µ;
Randomly pick a seed spin, s ∈ [0,N − 1];

guests[0]=s;
guests1[s]=1;
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Let us call the Cluster function, that updates the vector guests, storing
in it the position of all the spins belonging to the built cluster, and the
vector guests1, exploited within the Cluster function itself in order to
check if a spin is already within the cluster. Also, it returns the area of
the built cluster;

int Cluster (. . . ) {
⋮

for l=0; l < N; l++
i=guests[l]; //the i-th spin is within the cluster
for j=0; j < 4; j++ // j runs over the four n.n. of the i-th

if j-th neighbour has different orientation than i-th spin then
check = 1;

end
if j-th neighbour is already within the cluster then
check = 1;

end
if check ≠ 1 then
h = −2J/T ;
p = random real ∈ [0,1];
if p < (1 - exp(h)) then
k = k + 1;
guests[k] = j-th neighbour of the i-th spin;
guests1[j-th neighbour] = 1;

end
end
check = 0;

end
if l == k then //the cluster is built, leave the Cluster function
return k;

end
end

}
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3.3.1 Equilibration and Measurement
In the previous chapters, we already noticed that whenever detailed balance
and ergodicity conditions are fulfilled, the Markov process will end up by
choosing the states of the Markov chain according to the desired probabil-
ity distribution, if "run for long enough". What does "run for long enough"
mean? Being a numerical method, a Monte Carlo algorithm needs a cer-
tain amount of iterations, so of time, in order to reach convergence, i.e.
equilibrium condition where we will be able to pick states according to the
Boltzmann probability weights, pµ = 1

Z e
−βEµ . This leads us to the definition

of an equilibration time, τeq. When we reach the equilibrium, the system

Figure 3.4: Example of convergence process: snapshots of an Ising model on
a square lattice coming to equilibrium at some finite non-zero temperature,
starting from an ordered configuration. (source [12])
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spends the greatest part of the time in a small subset of states, in which the
physical observables take a narrow range of values. So, in order to estimate
the value of this equilibration time we can look at some physical quantity
(e.g. magnetization, energy, ...) and looking at the time when its value will
stabilize and oscillate around a steady mean value with a certain standard
deviation. Once we have reached the equilibrium, we have to evaluate the es-
timator (see eq.(2.14)) of whatever physical quantity we are interested in. In
order to do this, we need to know how many samples we have to take to get a
good estimate of the expectation value of these physical quantities. And, how
to pick such samples. Thus, we have to introduce a new time variable, the
correlation time (τcorr) of the algorithm we are using, that tells us the time
the system takes to move from a state to another one significantly different.
At this point, our interest is to determine equilibration and correlation time
for different temperatures. This is necessary for the following simulations.
For this analysis we used L=60. Its aim is to show the behaviour of the
Ising model at different temperatures. Later we will see that it is important
to calibrate also the value of the L parameter, in order to get more precise
results (i.e. closer to the thermodynamic limit).

As a yardstick to measure the equilibration and correlation times, we chose
to look at the plotted graphs of the magnetization per spin m of the lattice

m =
1
N
∑
i

si (3.5)

as a function of time (see example in fig.3.5). About the correlation time, we
obtained it from the time-displaced autocorrelation χ(t) of the magnetization
per spin. Here it is the discrete time version of this function

χ(t) =
1

tMAX − t
⋅
tMAX−t
∑
t′=1

(m(t0 + t
′) − µ)(m(t0 + t + t

′) − µ), (3.6)

where t0 > τeq , tMAX indicates how much a run of the algorithm lasts starting
from t0, and µ is the mean value of m at equilibrium calculated starting from
t0. Since the autocorrelation is expected to behave exponentially

χ(t) ∼ e−
t

τcorr , (3.7)

by doing semi-logarithmic plot of χ(t) we obtain a straight line, whose slope
absolute value is τcorr. This is still not enough if we want a τcorr that can be
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Figure 3.5: Magnetization plot. The Wolff’s simulation started at T=∞
(i.e. random configuration) and cooled to equilibrium at T=2.0. Time (t) is
measured in Wolff steps.

Figure 3.6: Magnetization correlation function, T=2.0.
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compared with the one of other algorithms like Metropolis (and, later I will
explain in which cases Wolff algorithm wins this comparison). Metropolis
time is usually measured in steps per lattice site, where one of these steps is
also called lattice sweep. This because, on average, the algorithm should have
flipped each one of the spin of the lattice within one step per lattice site. In
this way, the attempt frequency (i.e. the average frequency with which a spin
is chosen for flipping) is independent of the total number of spins within the
lattice. This is what happens in nature: an atom in a small sample changes
as often as the one in a bigger sample. In the Wolff algorithm, the time
needed to complete one step is proportional to the number of spins n in the
built cluster. Since such a cluster covers a fraction n

N of the whole lattice,
the correct way to define the correlation time is the following one

τcorr ∝ τsteps
⟨n⟩

N
, (3.8)

where τsteps is the correlation time measured in Wolff steps, and ⟨n⟩ is the
average cluster size in equilibrium.

The following are the results for L = 60. Both these two plots have sources

Figure 3.7: Equilibration time τeq. The errorbars were built by doing three
different experiments for each temperature.

of error. For the τeq, we used a graphical method to compute the equilibra-
tion time. This means that there can be some imprecisions due to human
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Figure 3.8: Correlation time τcorr. The errorbars were built by doing three
different experiments for each temperature.

errors at looking where the magnetization exactly starts to stabilize itself.
For τcorr there are causes of error too. The first one is that we should sum
over infinite time in order to compute χ(t), but this is impossible in numer-
ical analysis. Then, when t gets closer to tMAX , the time interval on which
we are integrating, using 3.6, becomes smaller (actually this source of error
here is reduced by taking a time window far from tMAX). This means that
the statistical error on χ(t), due to the random fluctuations of m(t), may
become large. In the end, we have also to consider an error in the computa-
tion of the log(χ(t)) slope (i.e. τsteps).

But, the main information that we have to keep from this analysis is the
peak around Tc (here, due to the small dimension of the lattice the critical
temperature is 2.30). For the next simulations, we know that for the greatest
part of the used temperature range, the same equilibration and correlation
time can be used. The only exception is the small set of temperatures close to
the critical one. For such temperatures, bigger times are required. Another
important detail is the dimension of the errorbars, getting bigger when we
come close to Tc, both from lower and higher temperatures.

The reason for these large errorbars is the continuous phase transition of
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the Ising model, that we have talked about previously. By approaching Tc,
the cluster1 size ξ, also called correlation length, starts increasing. At Tc, the
range of clusters’ size is significantly wider than at any other temperature.
This means we can find vary large clusters, that produce big fluctuations
in the value of m (i.e. big value of the variance of magnetization) because
of their orientation’s flipping. We call them critical fluctuations. So, ap-
proaching Tc, the size of these fluctuations diverges. As a consequence, the
statistical error of magnetization diverges too, since it is proportional to such
fluctuations. Just notice that in finite size systems, we do not have an actual
divergence but the values of fluctuations and statistical error become very
large. Here it is explained the source of larger errorbars close to Tc for quan-
tities linked to magnetization measurement. To make the situation worse,
we have that also the correlation time diverges close to Tc (see fig.3.11). This
means that we can extract a smaller number of independent measurements
from a simulation of a certain length. This effect causes an increase of errors
on measurements, even without the large critical fluctuations. So, if we want
to reduce this second source of error we need longer simulations. This is
called critical slowing down of the algorithm, and it is a property of the
algorithm itself and not of the model we are studying. This is why the Wolff
algorithm has been developed: it is faster than Metropolis close to Tc, i.e. it
has a smaller correlation time.

There is another important thing to notice: the magnetization per spin is
never negative (fig3.5). In fact, what we have plotted in fig.3.5 is its absolute
value, ∣m∣. This is due to the fact that the expectation value of the magneti-
zation, below Tc, is zero. We can understand this looking at the expressions
for the expectation value of a physical quantity, eq.(2.12), the one defining
the energy of the system, eq.(2.1), and finally that of magnetization

M =
N

∑
i=1
si. (3.9)

Since the Hamiltonian of the Ising model is invariant when the sign of all
the spins of a certain configuration is changed (for zero external field), the
contribution of every spin configuration si is cancelled by that of −si. Thus,

1Here, cluster is a set of spin within a configuration with same orientation. So, there
can be more than one cluster in a configuration. We are not referring to the cluster built
during a Wolff’s step
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Figure 3.9: Plot of magnetization for a L=60 2D square Ising model, T=0.1.
The system is equally happy to have most of its spins pointing either down
or up. In the Wolff algorithm the lower the temperature, the bigger the
built clusters are. In this low temperature case, the clusters have always
the dimension of the lattice. So, after a termalization phase, we have an
oscillation of the system magnetization between -1 and +1.

⟨M⟩ = 0. As we go to the thermodynamic limit we expect ∣m∣ to agree with
the exact solution of the 2D Ising model.

3.3.2 Temperature-driven phase transition
Now, we know the main features of our algorithm. This means we can start
to measure physical quantities, like the mean magnetization.

First, let us study the variance of the magnetization. It will be useful for the
choice of the optimal lattice size (L) for our simulations, and for computing
the critical temperature (especially when we will introduce the disorder, in-
stead for R=0 we already know the value of Tc and it will be only a prove
that our algorithm is working well).
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The formula for the sample variance we used is the following one2

σ2 =
1
n

n

∑
i=1

(m − m̄)2. (3.10)

The first step will be to look for the best possible lattice size for the simula-
tions of the next chapters. Since we have seen that in correspondence of Tc
the fluctuations of the magnetization have the maximum value, we can ex-
ploit the variance (that is proportional to such fluctuations) in order to find
the minimum lattice size getting as close as possible to the critical tempera-
ture value of the 2D square Ising model. From fig.3.10, we can observe how

Figure 3.10: Temperature dependence of the magnetization’s variance, for
different values of L.

going toward the thermodynamic limit the peak of the variance gets lower.
As we have already noticed, in this limit whatever measurement related to
∣m∣ will converge to the actual one. Also, we notice that the variance does
not actually diverge due to the finite size of the lattice used in our simula-
tion. The L = 500 lattice is the first one getting closer to Tc, with a critical
temperature of T 500

c = 2.27, as we can appreciate looking at fig3.11. In table
3.1, also the value of Tc for different lattice size is shown. This first analysis

2Actually, this formula gives an estimate of the population variance that is biased by a
factor of n−1

n
. Since the samples we used were made by thousands of elements, this factor
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Figure 3.11: Magnetization’s variance, L=500.

L Tc
60 2.30
80 2.30
100 2.29
200 2.28

Table 3.1: The value of Tc for different lattice size.

makes us inclined to choose L = 500 as our best candidate for the avalanches’
statistics study. In order to be completely sure about our choice, we anal-
ysed also the susceptibility, χ. From Statistical Mechanics, we know that
this quantity is proportional to the variance

χ =
∂⟨M⟩

∂H
= β (⟨M2⟩ − ⟨M⟩2) , (3.11)

where β = (kBT )−1. Actually, here we calculated the susceptibility per spin

χ =
β

N
(⟨M2⟩ − ⟨M⟩2) = βN (⟨m2⟩ − ⟨m⟩2) , (3.12)

goes to one and we can use 3.10 as a good approximation
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Figure 3.12: On the left, the χ VS ε plot. On the right, the linear fitting of
the two branches from the picture on the left.

where m = M
N . This means that also χ has a power law dependence close to

the Tc. From theory, for 2D square Ising model, the exponent τ is equal to
7
4 , if χ is plotted as a function of ε = T−Tc

Tc
. We checked if this value can be

found with a simulation on our L = 500 lattice size candidate. From fig.3.12
(the one on the right), we can observe that the two slopes are almost the
same. In 3.2, we can observe how much the two values are close to the the-
oretical value of τ , 1.75. This is another proof in favour of L = 500 as the

τε>0 τε<0
1.71 1.82

Table 3.2: The two values of the critical exponent of the susceptibility.

minimum optimal lattice size. And also a proof of the goodness of the Wolff
simulations to determine such parameter. Later on, it will be interesting to
see how this parameter τ varies according to the disorder added to the system.

Finally, we can start looking at the behaviour of magnetization as a function
of the temperature. For the measurement of ∣m∣ VS T we developed a code
capable of telling us also the Tc. Below a fixed value of ∣m∣ (we chose 0.80),
we started to look for the temperature with the highest σ2 3. In this code,

3When we will deal with RBIM, we will introduce a disorder parameter R to the
"simple" Ising model (R = 0) that we are studying here. Obviously, for R = 0 we have
already seen the value of TC and it is in agreement with Onsager’s value. But, for the
model with disorder included we do not have a theoretical value for comparison. So, we
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Figure 3.13: On the left, Magnetization’s behaviour as a function of T, for
different values of L. On the right, a focus on L=200 and L=500, compared
with the Onsager exact solution for the magnetization.

we start from T = 0.1 and with an initial configuration corresponding to
T =∞. Once reached the equilibrium, we start to sample the magnetization.
Then, we move on with the next temperature, but in this case the initial
configuration is the equilibrium configuration of T = 0.1. This means that
the system is already close to the equilibrium. For all the next temperatures
we followed the same procedure, starting from the equilibrium configuration
of the previous temperature. This saved a lot of simulation time.

Fig. 3.13 shows that L=500 is the one closer to Onsager’s solution, as we
have already noticed from the variance analysis.

Before introducing the random Ising model that we have studied, let us
look at the case of the complete Ising Hamiltonian, the one with the external
magnetic field included (till to this point we did not considered it).

3.3.3 Magnetic field-driven phase transition: Ghost
Spin

In this subsection, we want to introduce some features about the Wolff algo-
rithm, when the contribution of an external magnetic field is added to our

will exploit the fact that σ2 has a peak in correspondence of Tc in order to find it.
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spin lattice. Here it is the complete Hamiltonian of the Ising model

EI{si} = −∑
<ij>

Jsisj −H
N

∑
i=1
si, (3.13)

where the H is the external magnetic field.

The effect of such field has been introduced by considering a variation of
the Wolff algorithm, called Ghost spin extension. A first verion of such ex-
tension to the Wolff cluster method was proposed by Dotsenko, Selke, and
Talapov [16]. The idea behind the algorithm we implemented is to consider
the external field like a spin entity outside of the system, which is not in-
volved in the MC dynamics. Hence the name: ghost spin. Let us give more
details about this. We can start rewriting the Hamiltonian 3.13

EI{si} = −∑
<ij>

Jsisj − ∣H ∣
N

∑
i=1
sis0 (3.14)

where
s0 = {

+1, ifH ≥ 0
−1, ifH < 0 (3.15)

This can be seen like the Hamiltonian of the following lattice made by the

Figure 3.14: The "new" lattice within the Ghost Spin frame.

previous lattice (N spins) plus the Ghost Spin, i.e. the field. eq.(3.14) can
be written in a more compact way

H = −∑
<ij>

J̃ijsisj, (3.16)
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where
J̃ij = {

J, if i, j > 0
∣H ∣, if i = 0 ∨ j = 0 (3.17)

Pay attention that the ghost spin can not flip (it is the field!). Thus, build up
the cluster as in the Wolff method but keep in mind there is also the ghost
spin:

1. Choose the initial spin, si, randomly. Put it first on the growing clus-
ter’s list.

2. Generate the cluster starting from si, like we did for the Wolff method.
But, now we have to consider a new neighbour for each spin of the
lattice: s0. This means that we have to take into account a possible
activation of the "link" of a lattice spin with s0, when si has the same
sign of s0 (i.e. the sign of the magnetic field, H). The probability of
adding a spin to the cluster can thus be written in a more general form:

Padd = 1 − e−2βJ̃ij = {
1 − e−2βJij , if j ≠ 0
1 − e−2β∣H ∣, if j = 0 (3.18)

3. Since the ghost spin can not flip, if s0 is added to the cluster, we have
to stop building it and restart from point (1). Hint: of all the nearest
neighbours (in our 2D square lattice they are 5, the 4 lattice spins and
the ghost spin), check the ghost spin out first.

4. If the ghost spin has not entered the cluster, come back to step (2),
and move to si+1 within the growing cluster’s list. If there are no more
spin to visit within the list, flip all the cluster.

In order to prove that this algorithm still satisfies ergodicity and detailed
balance, let us recall the proof of the Wolff method we have seen in section
3.2. By considering also this time the µ and ν configurations, the condition
of detailed balance becomes:

P (µ→ ν)

P (ν → µ)
=
g(µ→ ν)A(µ→ ν)

g(ν → µ)A(ν → µ)
= (1−Padd)m−n(1−P ′

add)
kA(µ→ ν)

A(ν → µ)
= e−β(Eν−Eµ),

(3.19)
where k is the number of spins within the built cluster (and the number of
times the ghost spin has been rejected to enter the cluster), and P ′

add is the
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probability for the ghost spin to enter the cluster. As we can notice, here we
are supposing the external field H is pointing as the spin within the cluster
of configuration µ. This means that the selection probability g(ν → µ) is
simply proportional to (1 − Padd)n, where n is the number of broken bonds
in the ν → µ transition, because we are 100% sure that the ghost field can
not enter the cluster. The change in energy, Eν −Eµ, is

Eν −Eµ = 2J(m − n) + 2k∣H ∣, (3.20)

where m is the number of broken bonds in the µ → ν transition, and H is
the external field. This leads us to rewrite equation 3.19

A(µ→ ν)

A(ν → µ)
= [e2βJ(1 − Padd)]n−m ⋅ [e2βH(1 − P ′

add)]
−k. (3.21)

Since, as in the Wolff method, the acceptance ratios we use are both equal
to 1, we need

Padd = 1 − e−2βJ

P ′
add = 1 − e−2β∣H ∣,

in order to satisfy eq.(3.21). About ergodicity, it is satisfied as in the Wolff
algorithm because there is a finite probability of building clusters with only
one spin.

In this chapter, all the field-induced transition simulations use a variation
of the magnetic field ∆H = 0.001.

The first important thing to notice about this algorithm is the absence of hys-
teresis loop. In order to understand this, let us consider the clusters’ average
area (⟨A⟩) at equilibrium4 for the point of the simulation where H = 0.001,
and for the three temperatures shown in fig.3.15. Let us suppose that the
final configuration, at H = 0, in which the system is left after MC iterations,
is the one with the spins all ordered downward. This is what we actually
expect from a ferromagnetic domain starting at m = −1,H = −∞ and taken
to H = 0 by varying continuously the field. At this point, if we look at the

4Like we did for the MvsT analysis, here too we look for the equilibrium configuration,
for a certain temperature and field values, by starting from the equilibrium configuration
of the previous value of the field. So, the system is already really close to the equilibrium,
when the MC simulation for a certain field starts.
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Figure 3.15: τeq = 20, which is the termalization time for T = 0.1,R = 0, L =

60.

T ⟨A⟩ P
0.1 3600 97.3%
1.50 3500 97%
2.00 3000 95%

Table 3.3: Values’ table

table 3.3 we can see that, whatever it is the temperature we consider, the first
MC iteration at H = 0.001 will produce a very big cluster (are we forgetting
the ghost spin? No. Here the magnetic field has the same sign of each spin
within the lattice. Thus, it can be ignored because we are sure it will not
be included within the cluster), so the system will change its magnetization
sign. Now, the ghost spin joins the game. Indeed, for the next iteration the
field has the same sign of the nearly totality of the lattice spin. The fact that
1 − e−2β∣H ∣ ∼ 0.1% could mislead us to think that with very low probability
the ghost spin will interfere with the formation of another big cluster. But,
it is exactly the huge dimension of the cluster that makes possible for the
field to stop the building of the cluster, as we can see by looking at the third
column5 of table 3.3, where the probability for the ghost spin to get included
within the cluster, for the corresponding average area, is reported. All the
three values of P are close to 100%. This means that, almost certainly, the
ghost spin is accepted within the cluster that, consequently, is not flipped.
So, the system is left in the previous configuration. Obviously, it can happen

5The value P , in the third column of table 3.3, is easy to compute. It is P = 1 − (1 −
P ′

add)
⟨A⟩.
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a MC step in which the ghost spin dose not interfere with the cluster build-
ing, but still, on average, over all the MC steps during sampling phase, these
kind of steps are much less common. Then, increasing the field magnitude,
the probability of accepting the ghost spin becomes even bigger. This means
that our system will get stuck with m = 1. So, no hysteresis loop will be seen.

So, unlike the Metropolis algorithm, where we observe our system stuck
in a metastable state (i.e. not absolute minimum) until H = 4J (which is
the value to overcome the tendency induced by the four neighbours), with
the Ghost Spin extension to the Wolff method we are able to always lead
our system toward the absolute minimum of its free energy. This is also a
difference with real ferromagnets, that usually prefer to stay in a metastable
state until a big enough field is applied, giving rise to the typical hysteresis
loop of ferromagnets.

This behaviour of the Wolff algorithm can be understood from a more physi-
cal point of view. Let us suppose we have a spin pointing upward, surrounded
by equal-sign nearest neighbours. If you want to flip that spin within single-
flip Metropolis, more energy is needed since it will flip on its own against
the equal-sign nearest neighbours, compared to the Wolff algorithm where
also the nearest neighbours have the chance to enter the cluster that will be
flipped. So, in Metropolis you need the energy provided by a field H = 4J ,
instead in Wolff it is enough H > 0 in order to get the first-order phase
transition.
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Chapter 4

Random-Bond Ising Model

In this chapter we introduce the Random-Bond Ising model (RBIM) we will
study in the following chapters. The RBIM aims at reproducing the real
behaviour of ferromagnets introducing randomness in the bonds within the
spins of the lattice, thanks to the disorder parameter R.

Within this model, we studied how the temperature dependent behaviour
of the magnetization’s variance changes according to the disorder parame-
ter. This helped us to build the para-ferromagnet phase diagram within the
(T,R) plane.

4.1 Definition
In RBIM the exchange interaction constant will not have a fixed value any-
more. Instead, according to the ⟨i, j⟩ couple of nearest neighbours that we
are considering, we have a Jij value representing the spin interaction. And,
Jij is picked by a Gaussian distribution

f(Jij) =
1

√
2πR

e−
(Jij−J̄)2

2R , (4.1)

with mean value J̄ = J and variance σ2 = R. Without any loss of generality
we may set J = 1. In this way the temperatures will be measured in units of
J/kB, with kB the Boltzmann constant. We can notice that there is a non-
zero probability of having Jij < 0, i.e. an antiferromagnetic bond between
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Figure 4.1: PJ<0(R), J̄ = 1.

the spin of the ⟨i, j⟩ couple. Such probability, PJ<0, is equal to

PJ<0 = ∫
0

−∞
f(Jij)dJij =

1
2erfc(

1
√

2R
) , (4.2)

where erfc(x) = 2√
π ∫

∞
x e−t2dt is the complementary error function. This

probability represents the fraction of antiferromagnetic bonds over all the
4N bonds within our 2D square lattice. Actually, it is a function of R. In
fig.4.1, the R-dependence of PJ<0 is plotted.

4.2 Temperature-driven phase transition anal-
ysis

4.2.1 Correction of the algorithm
As it happened with the magnetic field, also in this case we have to modify the
Wolff algorithm we have introduced in the previous chapter. In particular,
we are going to prove that the "old" version of the algorithm does not satisfy
the detailed balance condition in the RBIM, precisely due to the fact that
some Jij can be less than zero (as we have previously seen). Fig.4.2 helps
us with this. The red lines represent links with negative Jij. Here we are
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Figure 4.2: Like we did in order to prove that Wolff satisfies detailed balance
when J = constant, also here we consider two configurations, A and B. The
red lines represent links with negative Jij. ● and × are spin of opposite
direction.

considering the configuration A, where the ● represents the randomly picked
spin (i.e. si) and the built cluster is made only by ●, since we do not even
consider its nearest neighbours because of their opposite sign. This is the
move A → B, and P (A → B) = 1. Then, looking at the configuration B, the
central, randomly picked, spin has opposite direction now. In this case we
consider the nearest neighbours, since they have the same sign of the seed
spin. But, the adding probability

Padd = 1 − e−2βJij , (4.3)

is negative because the exchange interactions between the spins are all nega-
tive. This means that also here the cluster is made by the only seed spin, and
we get back to the configuration A. So, this is the inverse move B → A, and
also here P (B → A) = 1. Now, we can write the detailed balance equation

P (A→ B)

P (B → A)
=

1
1 = 1 ≠ e−β∆H , (4.4)

where ∆H is the energy difference between A and B configurations, that is
obviously different from zero due to the higher energy of the A configuration.

This means that our algorithm’s rules need to be checked and changed in
order to satisfy the detailed balance condition. The change to apply refers
to how we treat two nearest neighbours with opposite sign. If their link is
positive, we do not activate their link as we did in the implementation of the

64



Figure 4.3: m VS T , L=500.

classical Wolff algorithm. But, in case of negative Jij, an antiferromagnetic
ordering is favoured. This means that the link between the two opposite
sign spin has the possibility to be activated! A new definition for the adding
probability is needed

Padd = 1 − e−2βJijsisj , (4.5)

where Jij < 0 does not mean any more 100% probability of rejecting the link
for a couple ⟨i, j⟩ of opposite-sign spins.

4.2.2 Cluster growth
In the last section we have identified a correct algorithm which obeys the de-
tailed balance principle, and thus guarantees converge towards equilibrium.
With this, we can start studying the RB Ising model. Our first interest has
been to study the dependence of Tc from the disorder parameter R. But, we
had to face a first problem. By exploiting the code, we have previously de-
scribed, for the computation of m VS T plot, we found the behaviour shown
in fig.4.3. This was something not expected, since for values of R around 0.1,
and for low temperature, the system’s magnetization falls down instead of
being close to the maximum value. For R = 0.1, the magnetization climbs up
to 1 close to T = 0.5. Instead, for higher values of R we have to wait temper-
atures closer to the critical region1 in order to see values of them closer to 1.

Actually, if we think about this apparently strange behaviour of our code, it
is not so difficult to grasp the correct interpretation of what is happening.

1We will talk about Tc as soon as we have solved this problem.
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Figure 4.4: Magnetization of a L = 500 lattice, for different values of the
disorder parameter R. These are some slices of the plot in fig.4.3.

The main culprits are the negative links and the too big clusters built by
the Wolff algorithm. Even if the values of R, for which the m value starts
to be far from 1 for low temperatures, are still low (i.e. the percentage of
negative links is very low), they are enough for our algorithm to get stuck
within the initial configuration (i.e. T = ∞). This is due to the fact that
at low temperatures the Padd of the Wolff method is nearly 1, thus the al-
gorithm includes within the cluster almost everyone of the same sign spins
it visits, creating very big clusters. So, also if the number of negative links
is very low respect to the total number of links within the lattice, there is a
good chance, while we are building a big cluster, to meet one of these links,
between two opposite sign spins. This means from that point on, our cluster
will change sign. So, we end up with a big cluster made of both positive and
negative spins that more or less compensate each other in the computation of
magnetization, that, as a consequence, gets stuck to the nearly zero value of
the initial configuration. Obviously, growing R, the number of negative links
will increase and this behaviour will become dominant, leading to clusters as
large as the lattice itself.

By looking at fig.4.5 we can observe also a clusters’ area analysis, for a lattice
size L = 60, that confirms what we have said about the tendency of the Wolff
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algorithm to build too big clusters at low temperatures. For L = 60 too, we
have such behaviour, but the decrease of ∣m∣, for low temperatures, starts at
slightly higher values of R, fig4.6 (this is obvious, for example for R = 0.1 we
still do not see any decrease of the magnetization because the probability of
having even just one negative link is nearly zero). We can see how the red
line’s (high T) distance from the lower temperatures lines becomes bigger
and bigger if we increase the R parameter. In particular, the lower tempera-
tures have a deficit for those values of the cluster’s area that are not too big
neither too small, so the ones necessary for the system to move toward the
equilibrium. This is the reason for the low temperature slowness to converge
of the Wolff algorithm, for growing values of R. In literature, this behaviour
was already noticed in [17].

4.2.3 Physical quantities analysis
In order to solve this problem, we started our simulations from a completely
ordered configuration (e.g. all spins up). In this way, we obtained fig.4.7. In

τε>0 τε<0
R = 0.2 1.49 2.18
R = 0.3 1.17 2.21
R = 0.4 0.99 2.05

Table 4.1: Value of susceptibility critical exponent τ , for R = 0.2, R = 0.3
and R = 0.4.

order to complete the interesting analysis about the critical exponent of the
susceptibility that we have done for the case R = 0, here we show how that ex-
ponent varies with R. The difference between τε>0 and τε<0 increases with R.

The behaviour of the magnetization variance as a function of T and R is
shown in fig.4.8.

Another interesting result to mention is the R-dependence that we found
for the critical temperature (fig.4.9), i.e. the para-ferromagnet phase dia-
gram in the (T,R) plane. For R = 0, we have the critical temperature of the
Ising model without disorder that we have estimated in the previous chapter,
TC = 2.27. Note that the line separating the paramagnetic and ferromagnetic
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Figure 4.5: Fixed the value of R, the analysis is done on 600 simulations for
each temperature. L = 60. Each simulation starts from T =∞ configuration,
reaches the equilibrium and continues for other iterations. For each temper-
ature the same number of cluster’s areas is measured. The counts’ axis is
not completely shown, in order to highlight the range of less probable areas
for lower temperatures (i.e. those areas that would allow the simulations to
reach the equilibrium).

Figure 4.6: m VS T , L=60.
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Figure 4.7: Magnetization of a L = 500 lattice, starting from an ordered
configuration at T = 0.1 for each value of R.

Figure 4.8: Variance, L = 500. The peak’s position at Tc moves with R.

phases resembles a linear dependence, as the dashed line in fig.4.9 suggests.
In the next chapter, we will improve the (T,R) phase diagram, when the spin
glasses will be introduced. As we have already anticipated in the previous
chapter, we derived the Tc looking at the maximum value of the magnetiza-
tion variance, for each value of R.

At this point, we have almost all we need to study the avalanches’ statis-
tics induced by an external field. We only miss a further analysis, on the
value of R, ensuring us to work within the ferromagnetic domain. It can be
that for a too big value of the disorder parameter, the system free energy
begins to show new minima besides the ferromagnetic one.
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Figure 4.9: Para-ferromagnet phase diagram in the (T,R) plane. L = 500.
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Chapter 5

Spin Glasses

Before we continue with the study of the Random-Bond Ising model, it is
necessary to check if there is a value for the R parameter such that our system
stops behaving like a ferromagnet. Indeed, the destruction of the ferromag-
netic order is expected, at T = 0, when the percentage of antiferromagnetic
bonds is equal to the 15% of all the bonds within the lattice [13]. We want
to check if the same works for T ≠ 0, or if there is a different threshold for
the concentration of antiferromagnetic bonds, and consequently determine
the value of the R parameter needed to reach such limiting value. This will
be useful for the study of the avalanches distribution, as we will see in the
next chapter. Before doing this, let us move through an overview about the
new magnetic phase that the critical antiferromagnetic bonds’ concentration
would generate: the spin glass phase.

5.1 The spin glass phase
In simple words, a spin glass is a collection of spins (i.e. magnetic moments)
whose low-temperature state is a frozen disordered one. This means a
completely different situation from the one of conventional magnets where
we observe uniform or periodic patterns. It appears that in order to pro-
duce such a state, two ingredients are necessary: there must be competition
among different interactions between the magnetic moments (i.e. no single
configuration of the spins is uniquely favoured by all the interactions, this
what usually we call ’frustration’) and these interactions must be at least
partially random, otherwise the magnetic transition will be of the standard
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ferromagnetic or antiferromagnetic type of long-range order.

5.1.1 Frustration
Let’s consider as an example the case of Ising model on the lattices in fig.5.1,
where only the nearest-neighbour antiferromagnetic interactions operate (i.e.
the exchange interaction constant is negative).
By looking at the square lattice, it is easy to see that the requirement of an-

Figure 5.1: Antiferromagnetic nearest-neighbour interactions on the (a)
square lattice and (b) triangular lattice

tiparallel nearest-neighbours spins can be satisfied. Instead, in the triangular
lattice case, introduced for the first time by Wannier [18], it is not possible
to satisfy all the interactions. As shown in fig.5.2, if two adjacent spins are
placed antiparallel, one is faced with a dilemma for the third spin. What-
ever configuration we will choose, one of the two-neighbour pairs will not
have its energy minimized. The system therefore cannot achieve a state that
entirely satisfies its microscopic constraints, but does possess a multiplicity
of equally unsatisfied states. And, since this effect occurs for each spin, the
ground state is sixfold degenerate.
This is a simple example of frustration due to conflicting inter-atomic forces
(in our case, the exchange force between magnetic moments of the atoms
of the lattice) in turn due to the geometry of the system. Such frustrated
systems are experimentally realized in a variety of crystal structures. For
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Figure 5.2: Two degenerate ground states for the upper vertex

instance, in 2D, in addition to the triangle (hexagonal) lattice, we have the
Kagomé lattices characterized by corner-sharing triangles.

5.1.2 Randomness
The second ingredient for spin glasses are random competing interactions.
The randomness can be introduced in many different ways. First is site-
randomness, which can be achieved in an alloy. The first kind of system that
was studied widely consisted of dilute solutions of magnetic transition metal
impurities in noble metal hosts. The impurity moments magnetically polarize
the host metal conduction electrons around them, whit a positive sign at some
distances and negative at others. Other impurity moments then feel the local
magnetic field produced by the polarized conduction electrons and try to cou-
ple with it. This is actually the RKKY (Ruderman–Kittel–Kasuya–Yosida)
interaction between distant magnetic atoms (i.e. this is an example of in-
direct exchange interaction, happening when orbitals of magnetic atoms are
too far from each other in order to make possible the short range direct
exchange interaction). Here the coupling depends on the distance between
magnetic ions and has the following form:

JRKKY (r)∝
cos(2kF r)

r3 (5.1)

at large r (assuming a spherical Fermi surface of radius kF ). Because of
the random placement of the impurities, some of interactions are positive (i.e.
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favouring parallel alignment of the moments) and some are negative. Thus
we have not only random but also competing interactions (i.e. frustration),
the two requirements for being a spin glass. A commonly studied spin glass
with site-randomness is Cu1−xMnx with x ≪ 1 in which the substitution of
small amounts of Mn into the Cu matrix occurs completely randomly with
no short-range ordering.

Another kind of disorder is due to bond-randomness in which the nearest
neighbour interaction bonds vary and are randomly distributed throughout
the sample. This can be done by modulating the indirect exchange interac-
tions between magnetic ions in a regular crystalline lattice. This is performed
in Rb2Cu1−xCoxF4 for which both Cu and Co are magnetic ions. In this case
the Ising character is given to the magnetic moments by the uniaxial single
ion anisotropy. A kind of anisotropy due to the electrostatic interaction of the
magnetic ions’ orbitals with the crystal field (i.e. electric field derived from
neighbouring atoms in the crystal) that tends to stabilize particular atomic
orbitals, fixing, in turn, the angular momentum of the magnetic atom and
consequently the easy axis for the magnetization along which the spin-orbit
interaction is minimized. However the size and sign of the superexchange
interaction (that usually favours antiferromagnetic order) between magnetic
ions depends on whether the coupling are between Co and Co, or Co and
Cu, or Cu and Cu and which orbital on the Cu is occupied. Automatically,
the frustration condition is present in this random-bonds spin glass.

5.2 How to identify a spin glass phase
The expression ’frozen disorder’, previously used, suggests that the spin glass
state has a nonzero local spontaneous magnetization mi = ⟨Si⟩ (Si = ±1, in
a system of Ising spins and ⟨Si⟩ is the thermal average) at a given site i
of the lattice, though the average magnetization vanishes. This last feature
might lead us to mistakenly think to an antiferromagnet. Instead, neutron
scattering experiments come to our help, showing no magnetic Bragg peaks
which would have indicated long range order. Then, in order to better char-
acterize our sample’s spin glass state, we can carry out a measurement on
the susceptibility. Indeed, the local spontaneous magnetizations of the low-
temperature spin glass state make their presence felt because they reduce
the susceptibility from the value it otherwise would have. This is what ex-

74



periments show: a spin glass exhibits a marked cusp at a temperature which
is rather sharply defined. The connection between the susceptibility and the
existence of frozen moments can be made more explicit by using a system of
Ising spins (Si = ±1) and considering the single-site susceptibility χii defined
as the amount of magnetization mi induced at site i by an external field hi
acting only on this site:

χii =
∂⟨Si⟩

∂hi
=
∂mi

∂hi
(5.2)

A fundamental theorem of classical Statistical Mechanics, the linear response
theorem, states that the fluctuations in a variable X are proportional to the
susceptibility of that variable to its conjugate field, Y :

1
β

∂⟨X⟩

∂Y
= ⟨X2⟩ − ⟨X⟩2 (5.3)

So (in units where the Boltzmann constant kB = 1), we can write:

Tχii = ⟨(Si − ⟨Si⟩)
2⟩ = ⟨S2

i ⟩ − ⟨Si⟩
2 = 1 −m2

i (5.4)

where we have used the fact that S2
i = 1 and the magnetic field is conjugate

to the spins. Averaging over all the sites in the system gives

χloc ≡
1
N
∑
i

χii =
1 −N−1∑im

2
i

T
. (5.5)

From this we can see that the reduction of the average local susceptibility
χloc from the Curie law (∝ 1

T ) characteristic of free moments is a direct
measure of the mean square local spontaneous magnetization in the frozen
state. Actually the experiments do not measure the local susceptibility χloc,
but rather its average, the uniform susceptibility χ. Nonetheless, it can be
proved that if χloc has a cusp then χ to will exhibit it. So, the experiments on
susceptibility really indicate the existence of a nonzero frozen spontaneous
magnetization, a spin glass state.

Actually, the susceptibility we are talking about is the real part of the a.c.
susceptibility χ(ω,T ) (see fig 5.3). In this technique the magnetic suscepti-
bility is measured using a very small alternating magnetic field of frequency
ω, sometimes with a constant (d.c.) magnetic field also applied. The freezing
temperature Tf turns out to depend on the frequency of the applied magnetic
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field, a feature that is not present in other magnetic systems and therefore
confirms the spin glass phase (see fig 5.3). The ’true’ Tf should therefore
be defined by the limit of vanishing frequency. Furthermore, the cusp is not
completely sharp as shown in fig 5.3 for CuMn.

Figure 5.3: The real part (χ′) of the a.c. susceptibility as a function of
temperature for Cu-0.9%Mn for frequencies 1.33 kHz (2), 234 Hz (○), 10.4
Hz (x), 2.6 Hz (△) (from Mulder et al, 1981, 1982)

5.3 Spin glass theory: a brief overview
In this section, we will very briefly overview how a spin glass phase is char-
acterized and, therefore, can be recognized in a numerical simulation.

Spin glasses belong to the class of quenched disordered systems. For these
systems the disorder is explicitly present in the Hamiltonian, typically under
the form of random couplings J among the degrees of freedom

H =H(σ;J). (5.6)
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The disorder is specified by its probability distribution p(J)dJ which is the
same for each different coupling constant in the system. This is actually the
type of Hamiltonian that we are using for the Monte Carlo simulations:

H = −∑
⟨ij⟩
Jijσiσj, (5.7)

where the spins σi = ±1 are the degrees of freedom and the couplings Jij
are Gaussian random variables. This is a famous model in spin glass theory
called Edwards-Anderson model [19]. This is a finite dimensional model,
since the sum is performed over nearest-neighbour spins. It is characterized
by a quenched disorder, meaning that the J are constant on the time scale
over which the σ fluctuate. Within this model, the first problem they had
to face was the following one: how to deal with the disorder? Indeed, each
observable depends on J. For example the free energy of the system:

FN(β, J) = −
1
βN

log∫ e−βH(σ;J)dσ (5.8)

where N is the size of the system and Z = ∫ e
−βH(σ;J)dσ is the partition func-

tion. This is not very pleasant, since it looks like that the physical properties
of spin glasses are different for each different realization of the disorder J, i.e.
for each different sample. If this was true, it would be impossible to build
a theory for spin glasses since we could only build it for a specific piece of
material. In fact, both experience and common sense tells us that for suf-
ficiently large systems, physical properties do not depend on J anymore (a
property which is called "self-averaging"). For quantities like these, it turns
out that in the thermodynamic limit (N →∞) the extensive thermodynamic
potentials, including the free energy, are self-averaging quantities. Thus, the
average over the disorder is equal to its J-independent value,

F = − lim
N→∞

1
βN

logZ(J) = F∞(β) = lim
N→∞

FN(β, J) (5.9)

where,
A = ∫ p(J)A(J)dJ (5.10)

At this point, a new problem arises when we consider the explicit formula
for the free energy:

F = −
1
βN ∫

dJp(J) log∫ e−βH(σ;J)dσ, (5.11)
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which looks pretty complicated, since we have to integrate the log (of an
integral) over J. Here it comes the replica trick, in which the logarithm of
the partition function Z is evaluated by calculating the partition function of
n replicas of the system, Zn, and then doing a limit operation:

logZ = lim
n→0

Zn − 1
n

(5.12)

that can be easily understood by means of Taylor expansion:

lim
n→0

Zn − 1
n

= lim
n→0

en logZ − 1
n

(5.13)

= lim
n→0

n logZ + 1
2!(n logZ)2 + ...

n
(5.14)

= logZ (5.15)

The important thing here is that all the Hamiltonians in Zn formula have
the same realization of the quenched disorder, and in this sense are replicas
one of the other. This replica trick allows to treat integrals like the one in
5.11. Indeed, if n is an integer, we have

Zn = ∫ dσ1...dσne−H(σ1,J)...−H(σn,J), (5.16)

which is much simpler to compute.
Another spin glass model is the one introduced by Sherrington and Kirk-
patrick [20] called S-K model for spin glasses. It’s a long range interaction
model, i.e. each of the N spins of the system is supposed to interact with
all the other spins. This is the first difference with our model (i.e. the EA
model). Another difference is the mean value of the Gaussian distribution,
in our case it is J = 1, instead in S-K model it is J = 0. By applying the
replica trick, this model appeared to be exactly solvable and many of the
features of the Edwards-Anderson model were reproduced. However, the
"replica symmetry assumption" hypothesizes that all the copies of the spin
glass thermalizes within the same minimum of the free energy. This ap-
proximation is not correct for a spin glass (instead it is for a ferromagnet),
generating not correct results like a negative entropy at low temperatures.
It was thought the error was due to an improper interchange of the two
limits n → 0 (about replica trick) and N → ∞ (i.e. thermodynamic limit)
and that the consequences were confined to low temperature. In order to
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avoid this puzzling step in the calculations, Thouless et al. turned to a dif-
ferent approach that confirmed the correctness of SK model solution above
and near TC , but found very different behaviour at low temperatures. The
turning point for spin glass theory happened when Almeida and Thouless no-
ticed that the symmetry between replicas should be broken in the spin glass
state. This correction correctly takes into account the fact that a spin glass
has many possible equilibrium configurations, thus replicas can thermalize in
different configurations. On the wave of all these theoretical results, in 1979
Parisi was able to find an equilibrium solution of SK model [21].

5.4 Para - Ferro - Glass phase diagram
However, our purpose here is to find for which value of the bonds variance,
R, we obtain a system that is no more a ferromagnet (i.e. a state with only
two minima in the free energy) and has become a spin glass (i.e. a state
with new energetic minima, different from the ferromagnetic one). Hence
the name "critical", not to be mistaken with the RC defining the power-law
regime for the magnetization jumps.

5.4.1 Overlap
We do not study in details the SK model but we simply use here some of the
results obtained for that model. In particular we are interested in a quantity
that allows us to measure the similarity between two configurations. It is
called overlap and it is defined as

qα,β =
∑
N
i=1 σiτi
N

, (5.17)

where σi and τi are the spin variables of two different realizations α, β of our
lattice, and N is the total number of spins within the lattice. For example, in
a ferromagnet, where the system equally prefers to stay within one of the two
minima of the free energy (i.e. the two configurations with magnetization
pointing up or down), the overlap is equal to ±1 because we will always find
our system in one of these two configurations. Actually, this is true for a
ferromagnet at T = 0, where the system has a unique equilibrium configura-
tion (i.e. all spins up or down). Instead, when T ≠ 0, the configuration is no
more unique (e.g. in a ferromagnet with 95% spin up and 5% spin down, it
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is unlikely that, within the 5% of down spin, the spins are the same in each
computed configuration). Thus, for T ≠ 0 the overlap maximum value is on
average smaller than 1.

In fact, the quantity that we have studied is another one. It is the prob-
ability distribution of each possible value of the overlap among realizations,
P (q). In a spin glass the overlap will have the ±1 values (actually, as we have
previously said, it is difficult that the configurations are exactly the same so
the maximum value of the overlap is on average less then 1), but also some
other values in between.

We developed a code generating a number C of configurations of the spin
lattice. For each one of the C simulations, we started from the same ini-
tial configuration of the spin lattice, i.e. all the initial configurations share
the same mean magnetization per spin1, and let the system evolving to-
ward thermalization. Then, for each couple of configurations, we computed
the overlap. In this way, we were able to determine the overlap distribution,
P (q), and discriminate whether our system was a ferromagnet or a spin glass.

For a ferromagnet, P (q) is equal to two Dirac’s deltas in ±1. Above TC ,
the P (q) becomes a Delta in zero. This can be seen by looking at fig.5.4. If
we increase the disorder parameter R, when we are still in the ferromagnetic
phase, the two Deltas start to become similar to two Gaussian functions.
From spin glass theory, we know that the transition between ferromagnet
and spin glass happens when P (0) ≠ 0. We can look at this transition from
fig5.5.

1The usual choice for the initial configuration is the random configuration, letting
the system choose between one of the energy minima. But, due to the slowness of our
algorithm, we started from an initial configuration with a magnetization closer to the one
of the two ferromagnetic minima.
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Figure 5.4: On the left, histogram of P(q) for a ferromagnet, L=90, C=100.
Since the number of configurations is finite (C(C−1)

2 = 4950 is the number of
q values that we evaluated), the values of the P(q) in q = +1 and q = −1 are
finite, and slightly different. On the right, P(q) for the paramagnetic phase,
L=90.

Figure 5.5: On the left, we can see the two Deltas being substituted by two
functions with a bell-like shape. On the right picture, the transition to spin
glass has happened since we have P (0) ≠ 0.
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5.4.2 Order Parameter q(x)
Now that we have better understood how the P (q) distribution behaves
through the ferro-glass transition, we introduce the order parameter for spin
glasses. In fact, we will exploit this quantity in order to detect the ferro-glass
transition. It is a function that is constant if the system is a ferromagnet.
If it is not constant, it means that new energetic minima exist, so it is an
indicator of the rising of the spin glass phase. If we define the function x(q)
such that

dx

dq
= P (q), (5.18)

where we are considering only the values of P (q) for q > 0, the order pa-
rameter is the inverse function, q(x), with x(0) = 0 as initial condition. In
particular, when the derivative in the origin of such order parameter is in-
finite, it means we are still in the ferromagnetic phase. When it becomes
finite, it means the system is in the glassy phase.

The scope of this chapter is to define the region in the (T,R) plane where
we are sure to be working with a ferromagnetic system, i.e. we have enriched
the plot of the critical temperature as a function of R. This can be helpful
for the avalanches’ simulations. For the q(x) plot, the values on both axes
are normalized to the biggest one. Here, we can see the transition for three
different temperatures, T = 0.5, T = 0.9 and T = 1.4. The range of tempera-
tures we studied goes from T = 0.5 to T = 1.7 (the triple point).

In fig.5.9, a kind of phase diagram is depicted, showing the three follow-
ing magnetic phases: ferromagnet, spin glass and paramagnet. On the right
of the red line, and below the blue one, the system is a spin glass. Instead,
on the left of the red line it is a ferromagnet. Above the blue line, we have
the paramagnetic phase. The value of R at T = 0.5 needed for the tran-
sition from ferromagnetic to spin glass phase, is R = 0.905. The value is
close to the result for T = 0 obtained by [28], where a concentration of 0.15
of antiferromagnetic bonds is the computed value for the transition to spin
glass. Such value, in our J = 1 model, corresponds to R = 0.93. So, by going
below T = 0.5, we would have found a value close to R = 0.93. We stopped
at T = 0.5 due to the slowness of the RBIM at lower temperatures, induc-
ing a lower accuracy in our simulations. Just one observation, the blue line
has been derived for L = 500. Instead, the ferromagnet/spin glass transition
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Figure 5.6: The transition is shown both for P (q) and q(x). With q(x) we
better appreciate it, because it is clear the value of R such that the derivative
in the origin is no more infinite. T=0.5, L=90.
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Figure 5.7: The transition is shown both for P (q) and q(x). T=0.9, L=90.

Figure 5.8: The transition is shown both for P (q) and q(x). T=1.4, L=90.
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Figure 5.9: Magnetic phase diagram. The intersection point between the
blue and red line is called triple point, it is located at T = 1.70 and R = 0.70.

line has been computed on a lattice size L = 90, due to the slowness of the
algorithm needed to compute the P (q) for C = 100. In any case, we have
seen in the previous chapter how a lattice size of L = 60 is precise to the
first decimal digit when it comes to determine the ferromagnet/paramagnet
transition temperature at R = 0. So, we can suppose the same precision for
the ferro/glass transition too, or even better since we used L = 90. And, for
our scope, that is enough.
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Chapter 6

Barkhausen noise analysis

Finally, we are ready to start with the analysis of avalanches’ statistics. The
lattice size for all the simulations is L = 500 (i.e. the optimal one that
we have found in Chapter 3). The scope of this chapter is to study the
Barkhausen noise generated during a magnetic transition between the up-
and down-states, driven by a steadily increasing external magnetic field. In
particular, we will study the power-law distributions which emerge in this
transition, and focus our attention on the temperature dependence of the of
the power-law coefficient of the avalanches’ statistics, so that we can com-
pare the theoretical result with the experimental data obtained by Puppin
and Zani [23] and Puppin [24]. An analysis on the sign of the avalanches is
done too, and the results are compared with the experimental data obtained
in [25], by Puppin and Zani.

The amplitude of an avalanche is measured by ∆M , where M is the magne-
tization of the system. So, what we are going to study is the magnetization
jumps’ statistics for different temperatures. We expect such statistics to ex-
hibit a power-law behaviour for a critical value of the disorder parameter R.
All the plots have log-log axes, so the power-law behaviour becomes a linear
behaviour.

The analysis is divided in two parts. In the first part, the simulations will
be performed on a system which is allowed to reach thermalization for every
single value of the external magnetic field. Because of this, we did not use a
too small ∆H, otherwise the simulations would have taken a not reasonable
time to be completed.
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The second part, instead, is characterized by a single avalanche analysis,
based on a particular hypothesis we did about the MC time. Here we were
able to use a smaller magnetic field step, so smaller avalanches became visible.

The first analysis is needed to understand how to tune our model’s parame-
ter, R, in order to simulate the BK noise, i.e. in order to have an acceptable
linear behaviour in log-log plot. The second analysis is, instead, the one we
used for the study of the power-law coefficient τ , thanks to the knowledge
acquired with the first analysis.

6.1 Thermalization analysis
For these simulations, we used a ∆H = 10−3J , where we recall that we chose
to fix the average bond interaction energy J = 1 so that all energies (and
magnetic fields) are measured in terms of J , and all temperatures are mea-
sured in terms of J/KB, KB being the Boltzmann constant. For each value
of H we waited long enough for our system to reach thermalization1. In our
case, each MC step had 2000 iterations, with τeq = 1000 and τcorr = 50 (i.e.
20 samples). Each avalanche plot is reported in log-log axes. On the x-axis
there is the amplitude of the magnetization jumps, ∆M . On the y-axis, the
counts of how many magnetization jumps are found for a value of ∆M .

A first way to check if we have found the critical parameter RC is by looking
at the plot of magnetization as a function of the external magnetic field. In-
deed, in fig.6.1, we can observe what we have anticipated in the first chapter:
by tuning the value of R, the system moves from a regime characterized by
many small avalanches (high R, here R = 0.45), toward a regime where one
big avalanche happens during the phase transition (low R, here R = 0.25),
passing through the power-law regime with a variety of avalanches’ sizes
(critical R, here RC = 0.35).

1In section 3.3.1, we have seen that the highest thermalization time is the one at TC . In
any case, similarly to what we did for the temperature-induced phase transition, for each
value of the external field H we started the Monte Carlo simulation from the equilibrium
configuration of the previous value of the field. This means that, even for TC simulation,
it was not required to wait the full thermalization time, being our system already close to
the equilibrium configuration. This helped us to save a lot of computational time.
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Figure 6.1: MvsB plots for different values of R, at T = 2.00. The blue and
yellow lines are shifted in order to put in evidence the behaviour close to
the transition point, i.e. each magnetization reversal actually happens at
H = 0. For each branch, the two closest values of the magnetization, around
transition point, are highlighted with black points.

In any case, it is not practical looking for power-law behaviour of magne-
tization’s jumps by looking at the magnetization plot. Indeed, we exploited
the log-log plot of the magnetizations’ jumps in order to identify the value
of R for which the linear part of the distribution has the maximum length.

In fig.6.2, we show the results of this kind of analysis. For each value of R, we
launched 7 runs of the code. First, we can notice how the linear behaviour
covers an increasingly small number of decades as the system’s temperature
decreases. One cause could be the inability of the Wolff algorithm to build
clusters belonging to a wide range of sizes at lower temperatures (see sub-
section 4.2.2). The highest evidence of this behaviour are the temperatures
T = 1.80 and T = 1.85.

We start seeing linear behaviours covering nearly two decades for temper-
atures equal or bigger than T = 1.90.

The most important thing to notice about this analysis is that, for each
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(a) (b)

(c) (d)

(e) (f)

Figure 6.2: Avalanches’ statistics.(a)T = 1.80,(b)T = 1.85,(c)T = 1.90,(d)T =

1.95,(e) T = 2.00,(f)T = 2.05.
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temperature T , the value of R with the widest linear behaviour is such that
the corresponding temperature is already slightly or well beyond the TC of
the para-ferromagnetic transition. So, the yellow and red lines in the plots
of fig.6.2 represent a paramagnetic phase. The blue lines are all within the
ferromagnetic region (and close to TC). For each temperature, the cut-off of
the statistics for low values of ∆M is due to the value of ∆H used for the
simulations.

This initial analysis indicates that the Wolff algorithm is particularly fit for
the study of the avalanches if we put the system close to the TC . Actually,
if we go below T = 1.90, even if we choose R such that T is close to TC , the
efficiency for this kind of analysis starts decreasing.

Fig.6.3 is in support of what we have just said. We can see that the lin-
ear behaviour gets worse if we choose a value of R such that T is not close
to TC . Also, note that decreasing R, the number of big avalanches increases.

Figure 6.3: Avalanches’ statistics not close to the TC region (R = 0.25), and
close to TC (R = 0.35) where, instead, the Wolff works better. We can see
a decrease of the range of avalanches’ sizes covered by the linear part of the
distribution for R = 0.25. T = 2.00

In order to improve the statistics of the blue lines from the previous plots,
we first tried reducing the simulation time to 550 iterations per MC step
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(a) (b)

(c) (d)

Figure 6.4: Comparison between thermalized and close to thermalization
simulations.(a)T = 1.90,(b)T = 1.95,(c) T = 2.00,(d)T = 2.05.

with a τeq = 250 and τcorr = 15 (i.e. still 20 samples), so, by starting the
sampling phase of the MC simulation when still the thermalization was not
fully reached, unlike the previous case. The result in fig.6.4. Here the main
result is the increase of the counts for small values of the avalanches. This
is something expected, since we do not give enough time to the system to
reach the equilibrium, so the magnetization difference between two subse-
quent values of H can be smaller. We can also notice a light filling of the
region around ∆M = 10−1.

The following are the main results to keep in mind about this first anal-
ysis:
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1. The Wolff algorithm is efficient, for BK noise modelling, only if we put
the system close to the critical temperature, TC . This means that the
Wolff method is complementary to the single-flip Metropolis method,
where the best linear behaviour was found for very low values of the
temperature, thus, far from TC , given a certain R (for the results see
[15]).

2. The linear behaviour that we have seen in previous plots (we are con-
sidering the blue lines) does not cover more than two decades.

3. By reducing the time of the simulation (i.e. not waiting for full ther-
malization), the number of small avalanches increases. In each plot of
fig.6.4, the linear regions of the two statistics have a similar slope.

4. The linear behaviour would be surely wider, on the side of the lower
avalanches, with a smaller ∆H. Indeed, with a smaller variation of
the field, some of the big avalanches that we have seen in the previous
plots, would reveal to be the sum of many smaller avalanches. As stated
above, in this first part we chose a compromise between the value of
∆H and a reasonable computational time.

5. A bigger number of runs (here we always used 7 code’s runs for each
histogram) surely would improve the statistics. But, still, the time
required would increase.

So, here the problem is linked to the required simulation time. Even in the
close-to-thermalization simulations, by reducing ∆H and keeping L = 500,
would require a very long time (on a desktop server in the Physics Depart-
ment computer, one week for 7 runs, with fixed T and R, against the three
days required for the value of ∆H that we used here). The idea for the
next analysis will be able to overcome the problem related to the computa-
tional time, allowing us to use a smaller step for the magnetic field. So, we
postpone the analysis on the power-law coefficient to the next section, where
more reliable results will be found.

This first analysis has been useful in understanding, given a certain T , where
we have to look to get a power-law behaviour within the Wolff algorithm:
close to the value of R characterized by TC ∼ T . Indeed, for the next analysis
we used fig.4.9 in order to find the suitable range of values for RC .
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6.2 Quasi-equilibrium analysis
In this second part of our analysis on the avalanches’ statistics, we start
from an hypothesis about the MC time. We mimic the real time with the
MC simulation time. So, for a value of H, we do not wait the thermalization
for sampling. Instead, we take as a sample the first few iterations of the MC
algorithm (we chose 5 iterations). As if our simulated lattice’s behaviour,
out-of-thermalization, was actually like the real one, where a magnetic do-
main changes shape and rotation under a continuous tuning of the external
magnetic field. In order to keep this out-of-thermalization analysis suffi-
ciently close to equilibrium, we have reduced the amplitude of the external
field steps. More precisely, we used ∆H = 10−5J (a field step two orders of
magnitude smaller than before) in order to simulate the experimental condi-
tions of slow but almost-continuous variation of the field. The computational
time saved allowed us to increase the number of runs to 21.

For each temperature, the analysis is focused around the lowest value of
R from the previous analysis.

In fig.6.5 and 6.6, we can look at the results for a low and high tempera-
ture respectively. The plots for the other temperatures were equivalent. As
we previously supposed, the linear region of the distribution is larger on the
side of smaller avalanches. For the lower temperatures, we still have the
tendency of the linear region to cover less decades. Instead, for the highest
temperatures, the best linear behaviours are found.

6.2.1 Power-law coefficient and critical R analysis
Finally we can analyse the power-law coefficient (τ , as defined in section 1.2)
behaviour, and compare the theoretical results with the experimental ones.
For the computation of τ , we obviously focused our linear fitting operations
on that part of the distributions that most resembles to a linear trend, as we
can notice by looking at the pictures 6.5 and 6.6. For each one of the distri-
bution, the corresponding linear fitting has been plotted too. For the highest
temperatures, we focused on the distribution with the best linear trend (al-
ways the one with higher R, as we can see from the pictures 6.5 and 6.6),
then, for the other two values of R, we chose to consider only those plot’s
points where the three different distributions were more similar to each other.
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(a) (b)

(c) (d)

Figure 6.5: Avalanches’ statistics.(a)T = 1.80,(b)R = 0.56,(c) R = 0.57,(d)R =

0.58.
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(a) (b)

(c) (d)

Figure 6.6: Avalanches’ statistics.(a)T = 2.15,(b)R = 0.15,(c) R = 0.16,(d)R =

0.17.
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The temperature dependence of the power-law exponent τ is shown in fig.6.7.

Figure 6.7: Temperature dependence of the power-law coefficient τ . The
dotted line indicates the best linear fit to the data obtained.

Since, for each temperature, we tested three different values of the disor-
der parameter R, we have three values of the coefficient τ for each T . With
these three values, we computed the errorbars in fig.6.7.

With this analysis, we did not go below T = 1.75 for two reasons:
1. The linear behaviour is already very weak for T = 1.75 (i.e. the linear

part of the distributions covers only a decade), making it difficult to
do a good analysis of the slope of the linear part of the distribution.

2. Since we are moving on the line of the para-ferromagnetic transition
(see blue line in fig.5.9) where Wolff is more efficient, going below T =

1.75 temperature means getting close to the triple-point of the para-
ferro-glass transition (see the intersection point between blue and red
line in fig.5.9).

So, a more efficient algorithm far from the critical temperature zone is needed
in order to continue the analysis for T below 1.75.

96



In fig.6.8, we can see the temperature dependence of the critical value of
the disorder parameter, RC , plotted with the disorder dependence of the
critical temperature TC too. This allows to better appreciate that they are
one the inverse function of the other.

Figure 6.8: Temperature dependence of the critical value of the disorder
parameter, Rc. For each T , we choose as a critical R the one with the wider
linear behaviour.

If we go above RC , we enter the small-avalanches regime. In particular,
within RFIM, Sethna et al. found a cut off for big size avalanches (see
fig.6.9). In fig.6.10, we can see a similar behaviour in our RBIM. Actually,
due to limit of the lattice dimension2 we can not go below ∆M = 8 ⋅ 10−6, so
we can not appreciate the four lines, in each plot, going toward small size
avalanches with the same slope for a couple of decades, like in 6.9. In any
case, we can notice a starting trend of the distributions to reach the same
slope for small size avalanches. Trend that would be more visible with a big-
ger lattice size L. Instead, we can see that, by increasing R, the quantity of
big avalanches decreases and a cut off appears like the one found by Sethna.
As with RFIM, also in RBIM the cut off appears to diverge when we get
close to RC .

2For L = 500, the minimum magnetization variation is ∆M = 2
250000 = 8 ⋅ 10−6, which in

log axis is ∆M = −5.09.
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Figure 6.9: Avalanches size distributions, for RFIM. RC = 2.16J (dotted
line), J = 1, 3D, T = 0. Up to 50% above RC , there is still a linear behaviour
for small avalanches, similar to the one at lower values of R, with a cut off
for big size avalanches. (source [10])

(a) (b)

Figure 6.10: Cut off for big size avalanches within RBIM, for T = 2.15 (RC =

0.17) and T = 2.20 (RC = 0.11).
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6.3 Negative Barkhausen noise
Up to now, we did not distinguish between positive and negative values of
∆M , i.e. all the histograms that we have seen consider both positive and
negative avalanches. A negative avalanche is a discontinuity of the area (vol-
ume, in 3D) of the magnetic domain inducing a negative variation of the
magnetization of the magnetic sample.

Within this section, we study both the statistics of ∆M > 0 and ∆M < 0. In
[25], Puppin and Zani found the same coefficient τ = 1.6 (within experimental
error) for positive and negative avalanches’ statistics. We look if the same
behaviour emerges from RBIM.

(a) (b)

(c) (d)

Figure 6.11: Avalanches’ statistics.(a)T = 2.10, RC = 0.24,(b)T = 2.15, RC =

0.17(c) T = 2.20, RC = 0.11(d)T = 2.25, RC = 0.05.
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In fig.6.11, we can compare the whole avalanches’ statistics, studied so far,
with the positive and negative ones. Only the four highest temperature are
shown, since they exhibit a wider linear behaviour respect to lower temper-
atures. For each on of these four cases, we can notice that there are always
more positive avalanches than negative ones (except for some value at big
avalanches). This is quite obvious since the external magnetic field moves in
the direction of positive avalanches. Also, the slope of positive and negative
seems quite similar. This first qualitative impression is confirmed by the plot
in fig.6.12. The main differences are found at low temperatures (T = 1.75,

Figure 6.12: Comparison between the temperature dependence of τ for pos-
itive and negative avalanches. Here we use the line connecting the points
of the plot. In this way it is easier for the reader to observe the similarity
between the two cases, positive avalanches and negative avalanches.

T = 1.80), and at T = 2.25, close to the critical temperature (TC = 2.27,
L = 500). For all the other temperatures, we found similar values of τ for
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positive and negative avalanches.

Here are some considerations about the possible causes for the temperatures
showing big differences in the value of τ :

1. Since at low temperatures the linear region of the avalanches’ distri-
bution covers just one decade or less, the analysis of the distribution’s
slope is affected by a bigger error respect to the higher temperatures.

2. Close to TC , the critical oscillations of the physical quantities, like the
magnetization, affects also the avalanches’ statistics, and consequently
the estimation of τ .
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Chapter 7

Conclusions and Discussion

The main original results of this thesis are three: the para-ferro-glass phase
diagram, the temperature dependence of the BK noise power-law exponent
τ , and the negative BK noise power-law.

7.1 The para-ferro-glass phase diagram
The para-ferro-glass phase diagram (fig.5.9, here reported as fig.7.1 for the
ease of the reader) lives in the (R,T ) plane. The line separating the fer-

Figure 7.1: Magnetic phase diagram.

romagnetic and spin-glass phases has a low-temperature behaviour in good

102



agreement with the results of [28]. In this article, the value of negative bonds’
concentration inducing the transition from ferromagnet to spin-glass at T = 0
is 0.15. By exploiting 7.2, we observe that the 15% of negative bonds cor-

Figure 7.2: Concentration of negative bonds within RBIM with J̄ = 1 and
variance R.

responds to R ≃ 0.93. The minimum temperature for which we were able
to estimate the value of R, necessary for the transition, is T = 0.5. With
R = 0.905. We can suppose the red line in fig.5.9 tends to R = 0.93 as the
temperatures goes to zero.
On the other hand, the blue line of the phase diagram is the limit between
the paramagnetic and ferromagnetic phases. It has been derived looking at
the temperature with the highest value of the magnetization variance, for a
fixed R. The intersection between these two lines is called triple point, that
is located at T = 1.70 and R = 0.70
Such phase diagram was useful for our avalanches’ analysis, by avoiding us
ending up in the glassy phase.
We did not study the line separating the glassy phase from the paramag-
netic one, so the part of the blue line below T = 1.70 should be analysed and
possibly confirmed in a separate study.

7.2 Barkhausen noise
We derived a number of results concerning the critical exponent characteriz-
ing the BK noise. By looking at results found by Puppin and Zani investi-
gating the magnetization process of a 900Å thick Fe sample grown on MgO
(001) substrate, a similarity can be seen with our theoretical values. In [23],
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they found τ = 1.8, for T = 10K , and τ = 1, for T = 300K (i.e. room tempera-
ture). By looking at fig.6.7, here reported as fig.7.3, we notice how the value

Figure 7.3: Temperature dependence of the critical exponent τ .

of τ gets close to 1 for temperatures close to the critical one (TC = 2.27, for
2D square Ising model with L = 500). The TC for iron bulk is 1043K, but,
in [23] a thin film of Fe has been studied. It can be that, due to the reduced
coordination of spins’ links compared to bulk Fe, the critical temperature
has decreased respect to the bulk value. Indeed, for the critical temperature
TC , a decreasing trend with the sample thickness was found in [29, 30]. In
[24], Puppin found for the same material τ = 1.1, at room temperature. Still
similar to our results in the high temperature regime. Another measurement
at room temperature, with which the range of values that we have found is in
agreement, is the one in [26], where for Co and MnAs thin films a power-law
exponent τ ∼ 1.33 was found.

If we move towards lower temperatures, the coefficient τ increases. At the
lowest temperatures at which the Wolff algorithm delivered reliable results
(T ∼ 1.75), it already reaches values between 1.50 and 1.55. This is in agree-
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ment with the trend found in [23], where the lowest temperature has the
highest value of τ , i.e. on average the size of the avalanches increases with
temperature. Within our simulations, it was not possible going towards too
low temperatures, because there the Wolff algorithm is no more optimal for
BK noise analysis, since it is characterized by the unbridled growth of too
big clusters (see section 4.2.2).

Finally, the good results we found in the single-avalanche analysis (section
6.2) suggest that the Barkhausen effect is a quasi-equilibrium phenomenon.
This is an interesting result, especially because we are not aware of other
studies in the literature which use the Wolff algorithm in quasi-equilibrium
conditions.

7.3 Negative Barkhausen noise
We have also the good agreement between data from negative Barkhausen
noise simulations and experimental data found by Puppin and Zani in [25].
In this article, the same value of τ was found both for positive and negative
avalanches, at room temperature, in amorphous ribbons of Fe63B14Si8Ni15.
Looking at fig.6.12, we can see that, within the range of temperatures from
T = 1.80 to T = 2.20, also our results show such similarity between positive
and negative avalanches power-law coefficient.

7.4 Future developments
In conclusion, we achieved a good agreement between our theoretical model
(Random-Bond Ising Model) and the real systems mentioned above. We
have seen that the Wolff algorithm is good, for BK noise analysis, only if
we choose the RC value such that T ∼ Tc. This makes sense since the Wolff
algorithm (and more in general clusters algorithm) have been developed in
order to overcome the critical slowness of the single-flip Metropolis algorithm
close to TC (see [22]). Actually, for low temperatures this trick (i.e. moving
close to the TC line in 7.1) is no more efficient, due to the unbridled growth
of too big clusters.

For further studies, we suggest the Niedermayer algorithm, where a new
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parameter is introduced in order to control the size of the built cluster.

More precisely, this algorithm covers with continuity the intermediate cases
between the Metropolis and the Wolff algorithm. Within this method, the
acceptance ratio (A) and the Padd formulas become

A = e−β(1−α/2)∆E,

Padd = 1 − e−αβJijsisj ,

where α is the tunable parameter mentioned above, ∆E is the energy differ-
ence between the starting configuration and the new proposed one, Jij is the
interaction strength between the two nearest neighbours spins, si and sj. We
notice that with α = 2 we recover the formulas of the Wolff algorithm (and
α = 0 gives the Metropolis case).

An interesting analysis would be finding the proper value for the param-
eter α so that the optimal algorithm, capable to visit lower temperatures
compared to those we have reached with the Wolff method, is found.
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