
Executive Summary of the Thesis

Automated Generation of Robot Planning Tasks Observing Human
Actions in Virtual Reality

Laurea Magistrale in Automation and Control Engineering - Ingegneria
dell’Automazione

Author: Gianluca Clerici

Advisor: Prof. Paolo Rocco

Co-advisors: Prof. Andrea Maria Zanchettin, Ing. Niccolò Lucci

Academic year: 2021-2022

1. Introduction
Over the last few years, significant progress has
been made in robot technology with the aim
of making robots autonomous and able to col-
laborate with humans. This has contributed to
the widespread of collaborative robots (cobots)
into Small Medium Enterprises (SMEs). These
robots are lightweight and have low speeds, low
payload and low setup time. On the other hand,
they need a robotic expert capable of repro-
gramming the cobots every time a product vari-
ation is required. For this reason, researchers
are focusing on new intuitive robot program-
ming methods that allow non-skilled operators
to program the robots. Moreover, the new tech-
nologies available in the market, such as Virtual
Reality (VR), can be exploited to improve the
effectiveness of such robot programming meth-
ods. In fact, Virtual Reality is one of the core
elements of Industry 4.0. It is used in various in-
dustrial fields such as product design, machine
control and training professionals. Virtual Re-
ality can be used to train employees. In fact,
it is possible to design different virtual environ-
ments depending on the context requirements
the headset is used in. In this way, the em-

ployee can be trained without stopping the pro-
duction line. This minimizes the downtime and
avoids all the risks that are related to the use
of the physical system. Combining this technol-
ogy with already known methods for reducing
the robot programming effort can lead to new
powerful approaches to instruct robots. Thus,
we focused on developing a new approach for
intuitively programming a robot with the help
of Virtual Reality. The operator has to demon-
strate actions in a virtual environment, and the
system has to classify the actions and character-
ize them with relevant preconditions and post-
conditions. Then, the learnt actions are written
in a planning domain file using the PDDL lan-
guage [1]. The advantage of using PDDL is that
many planners are available. A planner has the
objective of scheduling the required skills to pass
from the initial state to the final one. In order to
define the initial state and the final one, a plan-
ning problem has to be generated. The user has
to place the objects needed during the demon-
stration phase in the desired positions to define
a goal, and the system automatically generates
the planning problem. Moreover, using a plan-
ner allows performing unseen tasks and gives the

1



Executive summary Gianluca Clerici

robot the flexibility it misses.

2. Methodology
2.1. Skills Classification
During the demonstration phase, the user per-
forms actions in the virtual environment. To
correctly characterize the performed skills, it is
fundamental to identify what the operator is do-
ing and also to understand when an operation is
starting and ending. With this goal, we imple-
mented a State Machine [? ] able to recog-
nize the starting and the ending of four different
skills: Pick, Release, Stack, and Unstack. Every
time a skill performed by the user is recognized,
we store it and we characterize it. In partic-
ular, each skill has: a name, a set of precon-
ditions and a set of postconditions. The name
differentiates the recognized skill from the oth-
ers. The preconditions describe when the ac-
tion can be performed and the postconditions
describe what are the consequences of the ac-
tion. The State Machine implemented by us is
displayed in Figure 1. Each circle represents a
discrete state of the world. The arrows represent
transitions managing the passage from one state
to another when a condition is met. Looking
at Figure 1, we can distinguish three different
conditions: HandEmpty, ObjectAbove and Ob-
jectInTouch. These are functions that receive
as input some variables obtained by querying
the world model and output a logical state. In
particular, HandEmpty queries the hand state;
if the hand contains an object, it returns true.
ObjectAbove checks if the input object is above
another without wondering about which cube is
above. Finally, ObjectInTouch detects if the in-
put object is in contact with another object, if
so, it returns true.

2.2. Conditions Learning
After correctly classifying the action the user
performed, it is fundamental to extract only the
relevant predicates that constitute the precon-
ditions and postconditions. In fact, a robot can
execute a skill if and only if the skill precondi-
tions are met. The postconditions verify its cor-
rect execution, and they must be checked and
satisfied. Therefore we implemented a set of bi-
nary state variables (also called predicates) to
describe the world state. Based on the state be-

Figure 1: The figure shows the State Machine
implemented.

fore and after an action execution, we set the
action’s preconditions and postconditions. Ta-
ble 1 explains how each predicate is evaluated.
Algorithm 1 shows the strategy used to set pre-
conditions and postconditions. In particular,
the effects (postconditions) of the actions per-
formed during the demonstration by the human
are learned by comparing the initial state of the
objects involved with their final state, detecting
what has changed. Firstly, as long as the skill is
not over, it is checked if an object passes close to
the operator’s hands for the first time. If true,
the object’s initial state is evaluated and stored
in the InteractingObjects list (Alg.1, Line from
4 to 9). Once the skill is terminated, the final
state of each interacting object is computed and
compared with its initial state. The predicates
that change their values from the initial state
to the final one are stored in the postconditions
of the recognized skill (Alg.1, Line 10). In or-
der to learn when the actions can be performed
(preconditions) it is not sufficient to select only
the predicates that change their values as for
the postconditions. We also need to account for
predicates that do not change their value dur-
ing the skill demonstration but are fundamental
for correctly representing the action. In partic-
ular, the relevant parameters for the skills are
those objects on which the skill is performed.
For example, during a pick demonstration, we

2



Executive summary Gianluca Clerici

Table 1: The table shows the defined predicates, and their respective grounding during demonstration.

predicate Grounding
IsObjectInteractable(Obj1) An Obj1 is interactable when no objects are on it.
IsGrasped(Obj) An object is grasped when it is inside the user’s hand.
IsReachable(Obj) The Obj is reachable when is within the robot workspace.
IsAbove(Obj1, Obj2) The predicate evaluates to true when Obj1 is above Obj2.
IsInTouch(Obj1, Obj2) When Obj1 is touching Obj2 the predicate evaluates true.
IsGripperEmpty(Gripper) The predicate returns true when the user’s hands are free.

must learn that the picked object has to be in
the reachable workspace. Otherwise, the robot
will try to pick the object even if it is out of the
reachable workspace. In this example, the rele-
vant parameter is the object picked by the hu-
man during the demonstration and the value of
the predicate IsReachable will not change. Such
objects on which the actions are performed are
called Active Objects. The Active Objects are
predefined and reported in Table 2. Therefore,
once the skill has been recognized, the Active
Objects are set according to it (Alg.1, Line 11).
Then, for each object in the Active Object list,
we extract only the predicates whose parame-
ters are all part of such Active Objects. These
extracted predicates are considered relevant and
are stored as preconditions of the performed skill
(Alg.2, Line from 12 to 22). In addition, if the
predicate is in the postconditions list previously
set, the value of the predicate is negated, and it
is added to the preconditions.

Skill Active Obj1 Active Obj2

Pick PickedObj Null

Release ReleasedObj Null

Stack ObjInHand ObjUnderHand
Unstack ObjInHand ObjUnderHand

Table 2: The table shows the predefined Active
Objects for each skill.

2.3. Task Planning Generation
Once the demonstrated actions are classified and
characterized by the preconditions and postcon-
ditions, we focus on generalizing them through
a particular language called Planning Domain
Definition Language (PDDL). This language al-
lows using a planner that schedules the learnt
actions to solve the planning task. The plan-

Algorithm 1 Preconditions and Postconditions
learning algorithm
1: InteractingObjects← []
2: Postconditions← []
3: Preconditions← []
4: while Skill not over do
5: if Object not in InteractingObjects then
6: Obj InitState = EvalauteState(Obj)
7: InteractingObjects← Obj
8: end if
9: end while

10: SetPostconditions()
11: SetActiveObjects()
12: for all Obj ∈ ActiveObjects do
13: for j ← 1, Obj.InitState.Count do
14: if predicate.param ∈ ActiveObjects

then
15: Preconditions← predicate
16: end if
17: if predicate ∈ Postconditions then
18: Negate(predicate.value)
19: Preconditions← predicate
20: end if
21: end for
22: end for
23: SetSkillPreconditions()

ning task is composed of the problem and the
domain. The problem describes the initial robot
world state and the expected goal we try to
reach. The planning domain is a collection of
all possible generalized actions that can be ap-
plied to achieve the desired goal. Once the user
demonstration is finished, we will have a list of
all the demonstrated actions together with their
preconditions and postconditions, according to
what we stated in Chapter 2.2. Then, we have
to generate the domain file by writing the learnt
actions in the PDDL language. A fundamen-
tal rule is that actions cannot be identical in

3



Executive summary Gianluca Clerici

a domain file. Thus, we need to check if the
actions belonging to the demonstrated actions
are already present in the domain file. If not,
the actions are written in PDDL and added to
the domain file. This procedure is necessary be-
cause the user can perform identical actions dur-
ing the demonstration. The last step necessary
to complete the task planning is to generate the
problem. The problem is composed of the world
initial state and the goal to be achieved. The vir-
tual scene is composed of a set of coloured cubes
near the human position, a set of coloured cubes
near the robot base position and a robot. The
human uses the cubes near him to perform the
demonstration, while the robot uses the cubes
near it to execute the actions scheduled by the
planner. Thus, the initial world state is de-
fined by evaluating the state variables reported
in Table 1 for each robot cube. Regarding the
goal definition, once the user has terminated the
demonstration, he has to place his own set of
cubes in the desired positions. Then, the state
of each human side cube, and the goal will be
written in the problem file in PDDL form. Fig-
ure 2 shows the virtual scene that defines the ini-
tial world state and the goal, the task planning
generated and what actions the planner returns
for it.

2.4. Error Handling
As discussed in the previous chapter, the plan-
ner returns a sequence of high-level actions that
the robot has to execute to reach the goal state.
While executing an action, there is no guaran-
tee that the robot will accomplish it correctly.
Therefore, we implemented an approach that
spots and deals with possible errors during the
execution. Figure 3 presents the general work-
flow of our system. Before calling the plan-
ner, we check if the user-defined goal is already
achieved. If yes, the problem is already solved.
Otherwise, the planner is called and we check
if a plan is found. If the plan is not found,
the problem cannot be solved meaning that the
actions learnt during the demonstration phase
are not sufficient to reach the desired goal start-
ing from that initial world state. On the other
hand, if a plan is found, the planner has re-
turned a sequence of actions and the execution
phase starts. We take the first action of the se-
quence and check if the preconditions are met.

Figure 2: Example of the plan generation. The
figure shows the virtual scene before the plan
execution, the domain generated by the user
demonstration, the problem generated and the
plan generated by the Fast-Forward planner.

Figure 3: The figure shows the workflow of our
system.

If they are not, we recompute the problem and
the steps seen before are repeated. By recom-
puting the problem we update the initial world
state of the robot side and check if something is

4



Executive summary Gianluca Clerici

changed in the meanwhile. Otherwise, the robot
executes the action and the postconditions are
then checked. If they are not satisfied, as for the
preconditions, we recompute the problem and
we continue with the same procedure seen be-
fore. If they are satisfied, we check if the se-
quence of actions is completed. If it is not, we
take the next action and repeat the steps. Vice
versa, if the sequence of actions is completed, the
problem is solved and we can stop. Thanks to
this procedure, if an action cannot start or the
robot executes it incorrectly, the plan is recom-
puted starting from the new initial world state
until the problem is solved or the planner cannot
find a new plan.

3. Experiments
3.1. Experimental setup and Use case

explanation

Figure 4: The figure shows the goals the robot
had to reach during the experiments.

The experiments take place both in virtual and
real environments. For this reason, the virtual
environment has been designed to represent as
close as possible the real environment. In par-
ticular, in the virtual scene a table, the Doosan
A0509s robot, a set of cubes near the operator’s
position and another set near the robot’s po-
sition are present. The human uses the set of
cubes near the operator’s position to perform
the task demonstration and to show the actions
to the robot, while the robot uses the set of
cubes near it to perform the required goal. On
the other hand, the real environment is com-
posed of a table, the Doosan A0509s robot, and
a set of cubes. The robot’s gripper is equipped
with a Realsense 435D camera that is used to
monitor the scene. Furthermore, the cubes are
tracked thanks to special markers attached to
them, called Aruco. The difference between the
real and the virtual environment is the presence
of just the robot’s set of cubes in the real one, as

can be seen in Figure 5. This is due to the fact
that to perform the experiments in the real envi-
ronment, the demonstration phase is carried out
in the virtual environment and only the execu-
tion phase is performed in the real environment.
To test the functionality of our work, we defined
three different goals the robot had to reach (Fig-
ure 4). In the training phase, we demonstrated
the first goal generating a domain containing the
actions: Pick, Stack, Unstack and Release.

Figure 5: The left picture shows the virtual en-
vironment setup. The right picture shows the
real environment setup.

3.2. Results

Figure 6: The figure shows the success rates
achieved in the virtual and real environments
for the three defined goals.

We performed each goal five times, recording the
results. Figure 6 shows the success rates for the
three different goals in the virtual and real en-
vironments. In green the percentage of the suc-
cess rate computed without considering the error
handling is represented, while in orange the per-
centage of the success rate achieved considering
the errors management is represented. In partic-
ular, we observed that the real robot never failed
to execute actions and achieved the goals with-
out the use of the error handling procedure. In

5



Executive summary Gianluca Clerici

contrast, the robot in the simulated environment
required the use of the error handling procedure
in the second and third goals. This is because
to move the robot in the simulated environment
we did use ROS, which sometimes did not find a
suitable trajectory. Moreover, the packages used
for the implementation of the robot in the vir-
tual environment are in an experimental phase
and sometimes cause unpredictable robot move-
ments that do not happen with the real robot.
Furthermore, during the training phase, we mea-
sured the elapsed time from the first interaction
with the objects in the virtual environment to
the last action performed and the time necessary
to program the robot using the teach pendant
which is a classic programming method in the
industrial scenario. Table 3 shows the measured
times necessary to program each goals. Since
we could achieve the three goals with the same
demonstration, the measured time necessary to
program the robot is the same for each goal. As
can be noticed, the required time for program-
ming the robot with our method is lower than
using the teach pendant.

Methods Goal 1 Goal 2 Goal 3

Classical 62s 88s 117s
Our work 32s 32s 32s

Table 3: The table shows the training times re-
quired by the classical teaching and our work for
programming the goal 1, goal 2 and goal 3.

Finally, we measured the time required by the
planner to find a suitable plan with different
PDDL domains. In particular, we generated a
problem file in which the initial state describes
the state of four cubes on the table, while the
goal is the same as the third goal displayed in
Figure 6.4. Then, we tested the planner on ten
domains with an increasing number of actions.
We launched the planner five times for each do-
main, storing the time spent to generate a plan.
Figure 7 displays the results obtained, where the
black line is the average time, and the red area
represents the variance. It can be seen that
the time required to generate a plan increases
considerably as the number of skills increases.
Therefore, we need to generalize as much as pos-
sible the taught actions to keep low the overall
number of actions in the domain.

Figure 7: The figure shows the time spent by
the planner to generate a suitable plan with an
increasing number of actions in the domain.

4. Conclusions
In this work, a new approach is proposed that
aims at programming the robots intuitively
without any prior robotic knowledge. In par-
ticular, the human operator performs a series
of actions in the virtual environment, and the
robot understands when such actions can be
performed (preconditions) and what are their
consequences (postconditions). Characterizing
actions with preconditions allows the robot to
check if the action can be executed, while the
postconditions describe what has to change af-
ter the action execution. In this way, the robot
can spot and deal with possible errors and re-
plan accordingly. The learnt actions are then
generalized through a particular language called
PDDL, which allows a planner to schedule the
learned actions to reach a human specified goal.
Finally, we performed a series of experiments
to evaluate the effectiveness of our work both
in simulation and with the real robot. The re-
sults highlighted how efficiently the robot learns
the demonstrated actions and how fast and intu-
itively the operator can program the robot with
respect to traditional programming methods.

References
[1] Constructions Aeronautiques, Adele Howe,

Craig Knoblock, and McDermott. Pddl| the
planning domain definition language. 1998.

6


	Introduction
	Methodology
	Skills Classification
	Conditions Learning
	Task Planning Generation
	Error Handling

	Experiments
	Experimental setup and Use case explanation
	Results

	Conclusions

