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Abstract

Nowadays there are more electronic devices than human beings on Earth. These devices
are usually powered using lithium-ion batteries. Each of these batteries can assume a
completely different behavior from its peers based on usage, charging, and many other
factors, leading to potential harm and many major potential issues depending on the
importance and purpose of the given device being powered. It stems from here the im-
portance of being able to accurately predict the Remaining Useful Life (RUL) for a given
set of batteries, and most importantly creating a model that is capable of generalizing
across different sets of batteries.

This thesis introduces a Domain Adversarial Neural Network (DANN) to align feature
representations across different domains, effectively harmonizing feature distributions.
The DANN’s unsupervised learning approach is in this thesis compared with the more
traditional Transfer Learning and Fine-Tuning approaches, in the Direct Estimation of
RUL. The DANN methodology as we’ll cover in our thesis, offers a distinct advantage over
traditional transfer learning methods, as it does not rely on explicit labels from source
or target domains, making it particularly valuable in scenarios with limited labeled data
availability. Additionally, its flexibility allows seamless integration into various neural
architectures, as in the Convolutional-LSTM neural network improved with the use of an
attention mechanism, that we used in our thesis. This makes the DANN an attractive
choice for domain adaptation tasks.

This research also highlights the benefits of traditional data augmentation techniques,
particularly when tailored to the dataset’s specific characteristics. These techniques con-
tribute to improved model performance, enhancing the predictions’ accuracy.

We evaluated our work with the MIT-Toyota 2019 collaboration dataset, which is the
largest lithium-ion batteries dataset publicly available.

Keywords: domain adaptation, domain adversarial learning, remaining useful life esti-
mation, lithium-ion batteries, deep learning
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Abstract in lingua italiana

Oggi ci sono più dispositivi elettronici che esseri umani sulla Terra. Questi dispositivi
sono solitamente alimentati da batterie agli ioni di litio. Ciascuna di queste batterie può
assumere un comportamento completamente diverso dalle altre in base all’uso, alla carica
e a molti altri fattori, con conseguenti potenziali danni e molti altri potenziali problemi a
seconda dell’importanza e dello scopo del dispositivo alimentato. Da qui l’importanza di
essere in grado di prevedere con precisione la vita utile residua (RUL) per un determinato
insieme di batterie e, soprattutto, di creare un modello che sia in grado di generalizzare
tra diversi insiemi di batterie.

Questa tesi introduce una Domain Adversarial Neural Network (DANN) per allineare
le rappresentazioni delle caratteristiche in diversi domini, armonizzando efficacemente le
distribuzioni delle caratteristiche. L’approccio di apprendimento non supervisionato della
DANN viene confrontato in questa tesi con i più tradizionali approcci di Transfer Learning
e Fine-Tuning, nella stima diretta della RUL. La metodologia DANN, come illustreremo
nella nostra tesi, offre un netto vantaggio rispetto ai metodi tradizionali di apprendimento
per trasferimento, in quanto non si basa su etichette esplicite provenienti dai domini di
origine o di destinazione, il che la rende particolarmente preziosa in scenari con una
disponibilità limitata di dati etichettati. Inoltre, la sua flessibilità consente una perfetta
integrazione in varie architetture neurali, come nella rete neurale convoluzionale-LSTM
migliorata con l’uso di un meccanismo di attenzione, che abbiamo utilizzato nella nostra
tesi.

Ciò rende la DANN una scelta interessante per i compiti di adattamento al dominio.

Questa ricerca evidenzia anche i vantaggi delle tecniche tradizionali di data augmentation,
in particolare se adattate alle caratteristiche specifiche del set di dati. Queste tecniche
contribuiscono a migliorare le prestazioni del modello, aumentando l’accuratezza delle
previsioni.

Abbiamo valutato il nostro lavoro con il dataset della collaborazione MIT-Toyota 2019,
che è il più grande dataset di batterie agli ioni di litio disponibile pubblicamente.



Keywords: adattamento al dominio, apprendimento avversario del dominio, stima della
vita utile residua, batterie agli ioni di litio, deep learning
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1| Introduction

Lithium-ion batteries are widely employed due to their numerous advantages, such as
high output power, extended cycle life, high energy density, and eco-friendliness [46].
These batteries find applications in diverse industries, including electronics, aerospace,
and military. However, prolonged usage can also cause a rapid deterioration of lithium-
ion batteries’ discharge capacity due to a variety of microphenomena that occur inside
the battery and whose entanglement creates a strongly non-linear and scarcely moldable
degradation.

To ensure the safe and effective operation of batteries, the implementation of a Battery
Management System (BMS) is essential [24]. BMS’s play a critical role in intelligently
managing each unit. This strategic management is crucial not only to enhance service
life but also to guarantee safety. State Of Health (SOH) and the prediction of Remaining
Useful Life (RUL) are integral aspects of the BMS framework.

In recent years, the field has witnessed a surge in the use of data-driven methods for
fault diagnosis and prediction [38]. This trend has been driven by advances in computing
power and data processing capacity. The integration of these sophisticated methods
within BMS’s has significantly contributed to the improvement of battery management
and overall performance in various applications.

Our research aims to contribute to expedited deployment and cost reduction in the pro-
duction phase of batteries by building one model trained on one specific dataset of bat-
teries, that is capable of delivering good performances also on a different set of batteries,
while accounting for an unavoidable loss due to unpredictability and diversity in battery
behavior. We must remember that accurate RUL estimation is not merely a technical re-
quirement but holds paramount importance in averting potential unreliability, mitigating
risks of harm.

We employ a sophisticated architecture, specifically utilizing a Convolutional Long Short-
Term Memory Neural Network (LSTM) with an Attention Layer, supported by a Domain
Adversarial Neural Network (DANN) in the training phase [41]. The DANN serves as a
crucial tool for aligning feature representations across diverse domains, thereby harmo-
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nizing feature distributions. To assess the effectiveness and versatility of our proposed
methodology, we utilized the MIT-Toyota 2019 collaboration dataset. This dataset, one
of the most extensive publicly available collections, comprises a diverse set of batches of
lithium-ion battery data.

The practical relevance of our research is underscored by its potential to significantly
advance RUL estimation methodologies for lithium-ion batteries. Notably, our emphasis
on addressing challenges associated with domain adaptation introduces a pioneering ap-
proach in the field, as domain adversarial learning has not been extensively explored in
the context of RUL estimation. The use of DANN offers a distinctive advantage, as its
unsupervised learning approach eliminates the dependency on explicit labels from source
or target domains. This is particularly valuable in scenarios where labeled data is limited
or costly, facilitating practical implementation in real-world applications.

Furthermore, the incorporation of traditional data augmentation techniques enhances
the overall model performance, contributing to more accurate predictions. Our study’s
systematic method for optimizing hyperparameters in the convolutional LSTM model
not only increases prediction accuracy but also reduces the time investment compared to
earlier manual methods.

This research, therefore, holds practical significance in advancing the reliability and effi-
ciency of lithium-ion batteries, which serve as indispensable components in the electronic
devices that permeate our daily lives.

Our experiments showed that utilizing a DANN holds promise for RUL estimation, high-
lighting its distinctive unsupervised learning paradigm and adaptability compared to con-
ventional transfer learning methods. However, in instances of limited data, as evidenced
by our study involving only eight battery cells’ data, our experiments showed that fine-
tuning outperformed domain adversarial learning. The effectiveness of fine-tuning was
evident in its ability to leverage labeled data for target-specific insights, aligning closely
with the unique attributes of the target domain and surpassing the domain invariance goal
of adversarial learning. Furthermore, our experiments demonstrated good performance
improvements through the incorporation of traditional data augmentation techniques,
such as jittering [21], especially when manually adjusted to align with the specific char-
acteristics of our dataset.
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1.1. Outline of the thesis

This thesis is structured as follows. Chapter 2 provides an overview of the background
of this work, incorporating the definition of lithium-ion batteries’ features, remaining
useful life, and the significance of accurate RUL estimations. Additionally, Chapter 2
includes a discussion on the basics of domain adaptation. Chapter 3 delves into various
approaches to battery RUL estimation, with a particular focus on domain adaptation. It
also provides a broad overview of general methodologies for domain adaptation. Chapter 4
offers a detailed description of the method proposed in this thesis, encompassing its input
features, model architecture, and the implementation specifics of the Domain Adversarial
Neural Network (DANN). This chapter serves to elucidate the unique aspects of our
approach in the context of both RUL estimation and domain adaptation. Chapter 5
presents the datasets used to validate our work, elucidates how training is conducted on
these different datasets, and presents the results obtained. Finally, Chapter 6 concludes
the thesis, summarizing key findings and proposing possible future directions for research
and development.
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2| Background

In the realm of modern technological advancements, lithium-ion batteries stand as a
testament to innovation. Their longevity and reliability are paramount, and predicting
their operational lifespan has become a pressing necessity. This background section aims
to provide a holistic understanding of the challenges and methodologies associated with
Remaining Useful Life (RUL) estimation, especially when confronted with limited and
diverse data.

2.1. Introduction to Lithium-Ion Batteries

A lithium-ion battery often denoted as Li-ion, stands as one of the most prevalent
rechargeable batteries, powering a vast array of electronic devices, ranging from everyday
gadgets like cell phones and laptops to more demanding applications such as electric ve-
hicles. The cornerstone of its energy storage mechanism is the movement of lithium ions,
which shift between the positive and negative electrodes of the battery.

One of the most interesting features of lithium-ion batteries is their high energy density.
This characteristic allows them to store a significant amount of energy relative to their
physical size and weight, making them an ideal choice for applications where compactness
and lightness are crucial. Additionally, they boast a low self-discharge rate, ensuring that
they retain their charge for extended periods when not in active use. However, these
batteries, if subjected to inappropriate usage or charging conditions, can be susceptible
to an impressive degeneration in capacity or even damage, especially when exposed to
extreme temperatures.

To further understand lithium-ion batteries, let us characterize them by several parame-
ters:

• Physical size and weight

These attributes can vary considerably based on the battery’s intended application
and its capacity. For instance, a battery designed for a cell phone will differ in size
and weight from one intended for an electric vehicle.
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• Voltage

Defined as the potential difference between the battery’s positive and negative elec-
trodes, the voltage for a typical single lithium-ion cell hovers around 3.6-3.7 volts.

• Capacity

Denoted as Q, the capacity of a battery provides a measure of its energy storage
capability. It is commonly expressed in units of milliampere-hour (mAh). Depend-
ing on the battery’s design and purpose, its capacity can span from a few hundred
mAh, for smartphones, to several thousand mAh for larger applications.

• Discharge rate

This parameter, often measured in ampere (A) or milliampere (mA), signifies the
rate at which the battery can dispense its stored energy. Influenced by factors such
as temperature, battery age, and its inherent design, the discharge rate is pivotal in
determining how swiftly a device can draw power from the battery.

In essence, lithium-ion batteries, with their myriad advantages and few caveats, have
revolutionized the landscape of portable energy storage, offering both efficiency and com-
pactness. Still, they present a set of challenges since their degradation in performance is
not linear and due to many factors.

2.2. Charge-Discharge Curves of Li-Ion Cells

As in Figure 2.1, a lithium-ion battery’s charge curve is a plot where various variables
may be seen, including charging time, voltage, charging current, and charged capacity as
a dotted black line expressed in terms of State of Charge. The cells must be charged using
a constant current and constant voltage (CC-CV) technique.

This approach is made of various phases:

• Constant Current (CC)

The battery is charged at a constant current until the voltage reaches the full charge
cut-off voltage. There is a drop in the charging current.

• Constant Voltage (CV)

The battery is charged at a constant voltage and the current keeps decreasing until
the cells are fully charged.
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Figure 2.1: Charge-Discharge Curves of Li-ion cells [40].

• Trickle Charge

The battery reaching its full charge voltage at this stage does not mean that it is
100% charged. Trickle charge mode consists of charging the battery at a very low
current to reach 100%.

• Conclusion

Once every cell has been balanced and has reached its full charge voltage, the battery
pack is really 100% charged.

The industry standard is to provide 80% fast charge, then the charging current is reduced
to reach 100% charge. This is done to preserve the battery’s lifespan.

2.2.1. Discharge Curve and Discharge Capacity

The discharge curve is a plot of voltage against the percentage of capacity discharged. A
flat discharge curve is desirable, as this means that the voltage remains constant as the
battery is used up. But a flat discharge curve also means the battery might not deliver
close to 100% Depth of Discharge (DoD) because the battery cuts off if one of the cells
reaches its lower cut-off voltage, we can see an example in Figure 2.2.

On the other hand, discharge capacity, often expressed in units such as ampere-hours
(Ah) or milliampere-hours (mAh), is a fundamental metric that characterizes a battery’s
ability to deliver electrical energy. It represents the total amount of energy a battery can
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Figure 2.2: Discharge Curves of Li-ion cells [1].

Figure 2.3: Batteries metrics [2].

provide when it is discharged from a fully charged state to a specified lower voltage or
state of charge. Discharge capacity is a critical parameter, as it directly influences the
runtime and performance of devices or systems powered by the battery. Batteries with
higher discharge capacities can deliver more energy before reaching a predetermined lower
voltage or state of charge, ensuring longer operational periods and enhanced utility. In
contrast, batteries with lower discharge capacities exhibit shorter runtimes and energy
delivery capabilities, which are significant considerations when selecting the right battery
for specific applications. Understanding discharge capacity is essential for effective battery
management and optimizing the performance of electronic devices, portable equipment,
and various power systems.

2.3. State of Health (SoH) and State of Charge (SoC)

2.3.1. State of Health (SoH)

The State of Health (SoH) of a battery is a measure of its long-term condition and overall
performance relative to its initial state. SoH is an essential metric for assessing a battery’s
health and predicting its remaining lifespan. It takes into account various factors that
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influence a battery’s condition. These include its capacity, internal resistance, and aging,
which can be affected by factors such as temperature, charge-discharge cycles, rate of
charge and discharge, and depth of discharge [46].
SoH is typically expressed as a percentage, with 100% representing a battery in its new
and optimal state. A lower SoH percentage indicates a battery’s reduced capacity and
overall health.

2.3.2. State of Charge (SoC)

The State of Charge (SoC) of a battery represents its immediate charge level at a specific
moment, usually expressed as a percentage of the full charge of the battery. SoC pro-
vides real-time information about how much energy is available in the battery, with 0%
indicating a fully discharged battery and 100% indicating a fully charged battery.

SoC is crucial for day-to-day usage, helping users determine when to recharge their devices
or vehicles to prevent over-discharge or overcharging, which can harm the battery and
shorten its lifespan.

2.3.3. Differences between SoH and SoC

While SoH and SoC are both vital battery metrics, they serve different purposes, as shown
in Figure 2.3 and focus on distinct aspects of a battery’s performance:

• Focus: SoH evaluates a battery’s long-term health and overall condition, consider-
ing factors such as capacity, resistance, and aging, while SoC reflects the immediate
charge level.

• Measurement: SoH is measured over the entire lifespan of a battery, providing in-
sights into its health and degradation trends. SoC is assessed in real time, indicating
the current charge level.

• Units: SoH is typically expressed as a percentage relative to the battery’s original
capacity, decreasing over time. SoC is also expressed as a percentage, in this case,
relative to the battery’s full capacity, but represents the battery’s current charge
level, fluctuating with usage.

• Importance: SoH is crucial for understanding a battery’s longevity and predicting
its remaining lifespan. SoC is essential for determining when to recharge the battery
to avoid over-discharge or overcharging and ensuring its optimal daily operation.
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2.4. Remaining Useful Life and Li-Ion Batteries

The Remaining Useful Life (RUL) of a system or component refers to the duration for
which it can continue to operate efficiently before it reaches the end of its serviceable
life. In essence, RUL provides a predictive measure, offering insights into the expected
operational lifespan of a device from a given point in time [44]. This predictive capability
is especially crucial for systems where reliability and safety are paramount.

• General Importance of RUL

Estimating RUL has broad applications across various industries, from aerospace
and automotive to energy and electronics. By accurately predicting when a com-
ponent might fail or require maintenance, organizations can optimize operational
efficiency, reduce downtime, and enhance safety. Furthermore, RUL estimation aids
in making informed decisions regarding maintenance schedules, inventory manage-
ment, and long-term planning.

• RUL in the Context of Lithium-Ion Batteries

Given the widespread adoption of lithium-ion batteries in numerous applications,
understanding their RUL becomes particularly significant. As these batteries de-
grade over time due to factors like charge-discharge cycles, temperature variations,
and depth of discharge, their capacity to store and deliver energy diminishes. Pre-
dicting this degradation trajectory allows users to anticipate when a battery might
no longer meet its performance criteria. For applications like electric vehicles or
critical medical devices, such predictions can be the difference between seamless
operation and unexpected failure.

• Challenges in RUL Estimation for Lithium-Ion Batteries

Estimating the RUL of lithium-ion batteries is not straightforward. Their degrada-
tion patterns can be intricate, influenced by a myriad of internal and external factors.
Traditional methods, which often rely on physical and chemical degradation models,
might struggle to capture these complexities adequately. Hence, advanced predic-
tive modeling techniques, including machine learning and neural networks (NN),
have been explored to improve the accuracy of RUL predictions for these batteries.

• Benefits of Accurate RUL Estimation for Lithium-Ion Batteries

With precise RUL predictions, users can optimize battery usage, ensuring they ex-
tract maximum value while minimizing risks. For instance, electric vehicle owners
can plan long trips with confidence, knowing their battery’s state. Similarly, energy
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Dataset Name Battery Type Test Method Test Conditions
NASA Battery
Capacity Dataset

Li-Ion Constant-Current
Discharge

Room Temperature

JPL Battery Aging
Dataset

Li-Ion Cycling Room Temperature

CALCE Battery
Dataset

Various Cycling Room Temperature

Battery 500
Project

Li-Ion Cycling Room Temperature

NREL Battery
Thermal Dataset

Li-Ion Cycling and
Thermal Stress

Various
Temperatures and
Rates

Sandia Dataset Li-Ion Cycling and
Thermal Stress

Various
Temperatures and
Rates

Table 2.1: Battery Dataset Information.

storage systems can be managed more efficiently, ensuring consistent power deliv-
ery. Moreover, accurate RUL predictions can lead to better recycling strategies,
contributing to sustainability.

While RUL estimation is a critical aspect across various domains, its relevance for lithium-
ion batteries is particularly pronounced. Given the pivotal role these batteries play
in modern technology, ensuring their reliability through accurate RUL predictions is of
paramount importance.

2.5. Prior Research on RUL Estimation

Battery lifespan estimation was previously conducted by reviewing the performance of
some cells, in a laboratory specialized in conducting these tests. This was enough to get
a rough estimation of similar batteries’ expected performance. To assess battery lifes-
pan, various methods are employed depending on the type of battery and its intended
use. Common techniques include temperature cycling and charge-discharge cycles. Dur-
ing these assessments, the battery’s voltage, current, and temperature are constantly
monitored to gauge its performance. Testing conditions and methodologies differ across
datasets. Some of these are mentioned in Table 2.1. These data are the base of our
research, being vital for a correct estimation of RUL via neural networks or other data-
driven models.

The dataset utilized for this research, as detailed in [35], offers a comprehensive insight into
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the behavior of commercial lithium-ion batteries under fast-charging conditions. These
cells, specifically the Lithium Iron Phosphate (LFP)/graphite type from A123 Systems,
underwent rigorous testing, providing invaluable data for RUL estimation.

2.6. Domain Adaptation and Transfer Learning in

RUL Estimation

In the realm of RUL estimation, the concepts of domain adaptation and transfer learning
emerge as pivotal solutions to bridge the gap between available data resources and the need
for accurate predictive models. The overarching objective remains constant: to have a
model trained on a comprehensive dataset and enable it to perform effectively on a more
limited target dataset. However, the choice between domain adaptation and transfer
learning depends on the specific characteristics of the target dataset, particularly with
regard to the availability of labeled data. A similar approach has been used also in [11]
on some Turbofan degradation datasets, and by [9] on a training set of 6 rolling bearings
that were operated in three different conditions. But to the best of our knowledge, we are
the first to focus on unsupervised domain adaptation for lithium-ion batteries.

2.6.1. Target Dataset Labeling Conditions

The decision to apply either domain adaptation or transfer learning hinges on the labeling
conditions of the target dataset. These conditions can be broadly categorized into two
scenarios:

• All data is labeled (Transfer Learning)

When the entire target dataset is labeled, transfer learning is typically the preferred
approach. This method leverages the annotated data to adapt the model to the new
domain efficiently.

• No labeled data (Domain Adaptation)

If no labeled data is available for the target dataset, domain adaptation comes to
the forefront. This approach excels in scenarios where direct annotation of the data
is infeasible or costly.
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2.6.2. Domain Adaptation

Domain adaptation involves training a model on a source domain, which possesses a sub-
stantial dataset, while incorporating a subset of the target domain data into the training
process, enabling the model to learn and adapt to the distinctive features and patterns
unique to the target domain. This process operates on the fundamental assumptions that
the source and target domains only differ in terms of the underlying data distribution, and
that there exists a single hypothesis with low error that can be applied to both domains.
By facilitating a seamless transition between domains, domain adaptation empowers the
model to generalize its knowledge effectively, ensuring accurate RUL predictions in the
target domain.

2.6.3. Transfer Learning

Transfer learning, in contrast, is a strategy that primarily focuses on reusing pre-trained
models or their components. The approach involves transferring knowledge from a source
task to a target task. Fine-tuning, a key component of transfer learning, enables the
model to adapt to the specifics of the target domain without entirely retraining it from
scratch. This efficient transfer of knowledge is especially beneficial in situations where
some labeled data is available for the target domain.

In the context of RUL estimation, domain adaptation, and transfer learning prove in-
valuable when adapting NN models trained on one set of battery data to predict RUL
for batteries operating under different conditions or from various manufacturers. These
approaches stand out by their potential to save valuable time and resources that would
otherwise be expended in collecting extensive new data for every unique battery type or
operating condition. In essence, domain adaptation and transfer learning provide vital
tools to enhance the flexibility and efficiency of RUL estimation models, catering to a
diverse range of data scenarios and ensuring robust predictive performance.

2.7. Rationale and Process of Developing the Re-

search Question

The motivation behind focusing on domain adaptation and transfer learning for RUL esti-
mation stems from the observed discrepancies between laboratory and real-world battery
performance. While NN models have shown high accuracy in controlled settings, their
performance can be inconsistent when applied to different domains. This inconsistency
poses a challenge, especially when considering the vast diversity of lithium-ion battery
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applications.

Given the potential benefits of accurate RUL estimation and the limitations of current
methods in diverse domains, the research question was developed to explore how domain
adaptation techniques can be employed to improve NN models for RUL estimation.

For researchers, this topic presents an opportunity to push the boundaries of current
RUL estimation techniques, making them more versatile and applicable in diverse real-
world scenarios. For potential readers, especially those in industries relying on lithium-
ion batteries, accurate RUL estimation can lead to better maintenance schedules, longer
battery lifespans, and reduced costs. Furthermore, it can enhance safety by predicting
potential battery failures in advance.

By focusing on domain adaptation, the research present in this thesis hopes to make
significant strides in improving the accuracy and reliability of RUL estimation for these
crucial energy storage devices.
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3.1. Problem Description

Classical machine learning operates under the assumption that training and testing data
are sourced from similar environments. This suggests that a model trained on one dataset
should perform effectively on a similar dataset. Yet, this is not always true in practical sce-
narios. Often, training and testing data differ due to diverse origins or changes over time,
potentially leading to suboptimal model performance on new data sets. Domain adap-
tation in machine learning addresses this discrepancy. It primarily deals with scenarios
where labels are available only in the training (source) dataset. This field is challenging,
as it involves ensuring a model’s ability to adapt to and function with varied data types,
a problem that has proven difficult in numerous studies [12]. Also in the field of Remain-
ing Useful Life (RUL) estimation, domain adaptation plays a pivotal role, even though
not has always been taken into account in numerous studies. In the realm of batteries,
addressing the issue is contingent upon the manner in which pertinent battery-related
data is acquired. Access to sufficient battery aging data is challenging due to both the
complicated battery operations and the significantly laborious and time-consuming bat-
tery aging experiments [38]. The laboratory resources frequently place a cap on the range
of these modes due to a lack of available resources and costs. It is a matter of choices
and trade-offs. Since we are left with data sets with few batteries, and hence forced to
train a model with little data, we are going to face the difficulties of training and test-
ing models on data sets with different data distributions. Designing large-scale lab tests
where several batteries are evaluated with hundreds or thousands of similar cycles is the
most cutting-edge and simple way to collect aging data. However, the laboratory tests
connected to aging are quite time-consuming and labor-intensive. One of the most cited
papers on RUL estimation, by Lipu et al. [25], clearly demonstrates that RUL estimation
using neural networks, particularly Long Short-Term Memory (LSTM) networks, outper-
forms other mathematical methods in accuracy, namely Particle Filter and Probability
Density function among others, but still doesn’t address the challenges of Domain Adap-
tation. A notable study by Ye et al. [48], on the other hand, shows promising results
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in RUL estimation using domain adaptation techniques. They provided an overview of
classical transfer learning methods, including simple transfer learning (TL), fine-tuning,
and advanced Domain-Adversarial Neural Network (DANN) based transfer learning tech-
niques. As anticipated, these methods improved performance in scenarios where battery
behaviors were similar, or they didn’t deal with batteries at all, but with other devices.
The effectiveness of these techniques remains to be validated in situations where data
distributions across different domains are more divergent, and this is instead the direction
where our thesis pushes forward.

3.2. Statistical Matching Approaches

Until very recently, the majority of the papers and studies on the topic of domain adap-
tation were based on statistical approaches such as in [27] and in [47].
Some major contributions to this approach were based on the idea of aligning distribu-
tions of the source and target domains by minimizing the distance between statistical
moments, such as the ones proposed by Zhang et al. [49].
The objective of distribution alignment can be thought of as the opposite of classifica-
tion. Classification seeks a representation that differentiates between two distributions,
whereas alignment aims to merge or align two distributions. The underlying principle of
this method is that if the source and target domain distributions are closely aligned or
similar, a model trained on the source domain is likely to exhibit good performance on
the target domain.
The most common statistical approaches involved the use of the following metrics to
compute distances:

• Maximum Mean Discrepancy (MMD)

• Correlation Alignment (CORAL)

• Central Moment Discrepancy (CMD)

A different way of addressing the problem involved weighting the instances in the target
domain based on their similarity to the instances in the source domain [31].
It is implicit that if the instances in the target domain are similar to those in the source
domain, they should be weighted more than the instances that are not similar. How-
ever since statistical matching is a complex operation that requires specific technical
expertise and raises several methodological issues and also since in literature [32] it has
been shown that transfer learning and domain adversarial learning usually outperform
statistical matching approaches, in our work we directly decided to focus on these last
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Figure 3.1: Transfer learning, a graphical representation [20].

state-of-the-art approaches.

3.3. Transfer Learning

Transfer learning is a broader concept than domain adaptation per se. It encompasses
various approaches to using knowledge gained from one task or domain to improve the
performance of another task or domain. In essence, transfer learning involves utilizing
pre-trained models (or knowledge) to enhance prediction models, irrespective of the source
and target domains’ distribution differences [33].

The training dataset is usually larger and more diverse than the target dataset, it serves
as a starting point. The idea is to transfer the knowledge encoded in the pre-trained
model to a new, possibly related task, as can be seen in Figure 3.1. To get a broader view
it is important to remember that in contrast, domain adaptation, focuses on addressing
the challenges posed by a domain shift when the source and target domains have related
but non-identical characteristics.

3.3.1. Challenges of Transfer Learning in RUL Prediction

While literature indicates that traditional transfer learning and fine-tuning generally out-
perform most other methods, they have inherent limitations, especially when applied to
battery RUL estimation:

• Domain Adaptation

Batteries can exhibit various degradation patterns, and different battery types may
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have distinct characteristics. Traditional transfer learning methods might struggle
to adapt to these diverse domains, especially if the source domain is significantly dif-
ferent from the target domain regarding battery chemistry, usage, or environmental
conditions.

• Limited Data

RUL estimation in batteries often requires a significant amount of historical data,
including battery discharge profiles, aging conditions, and failure events. Fine-
tuning a pre-trained model might not be effective when there is insufficient labeled
data available for the specific battery type or condition of interest.

• Feature Engineering

Traditional transfer learning often relies on feature extraction from pre-trained mod-
els. In battery RUL estimation, domain-specific feature engineering is crucial, as
the features characterizing battery health and degradation may not be effectively
captured by pre-trained models.

Fine-tuning typically involves modifying the top layers of a pre-trained model, such
as a neural network, to adapt it to a new task. However, the architecture of the
pre-trained model might not be suitable for capturing the intricate features and
patterns relevant to RUL estimation in batteries.

Some methodologies, like the one proposed by Amogne et al. [3], employ transfer learning
in RUL estimation to leverage knowledge from a data-rich source domain to benefit a tar-
get domain with scarce but labelled data. The study addresses the challenge of accurate
prediction in intelligent Battery Management Systems (BMS). The proposed method, in-
corporating a transfer learning approach, outperforms other LSTM-based models in Li-ion
battery Remaining Useful Life (RUL) prediction. Relative error values for the proposed
method on three target batteries are notably low, showcasing its effectiveness.
The transfer learning approach, transferring weights from trained source batteries to tar-
get batteries, significantly improves State of Health (SOH) prediction compared to models
without transfer learning.
This method not only yields superior prediction results but also proves efficient for online
RUL prediction, saving a substantial amount of training time, but ti doesn’t address the
problem of lack of labelled data or completely different distribution of features.

Other works instead went further by fine-tuning the offline trained models on the data in
target batteries, as described by Chou et al. [10], this research offers better results and
saves considerable training time, making it suitable for online prediction. On the other
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hand, it still encounters the same limitations that the previously mentioned work and it
also doesn’t use relevant metrics of evaluation such as mean absolute error or root mean
squared error to assess the quality of their predictions.

Another intriguing approach by Shao et al. [36] involves directly converting raw signals
into graphical images as input and fine-tuning pre-trained models from ImageNet, an
image database with hundreds of thousands of pictures. However, this method did not
achieve the same level of performance as more classical approaches, despite introducing a
new perspective on addressing the problem.

3.4. Hyperparameter Optimization

This section deals with the optimization of a given model architecture through a recent
automatic approach. The optimization of neural networks, particularly deep learning
models, is crucial to achieve robust and accurate results. One challenge with deep learning
models, especially when faced with limited data like in our case, is selecting the right
hyperparameters. The choice of hyperparameters can drastically influence the model’s
performance, making the optimization process pivotal.

3.4.1. Traditional Optimization Approaches

Traditionally, optimization of neural network hyperparameters has been achieved through
methods such as grid search or random search. While these methods are straightforward
and widely used, they have recognized limitations. For instance, grid search can be
computationally expensive and inefficient, especially when exploring a high-dimensional
hyperparameter space. Random search, although sometimes more efficient than grid
search, can be unpredictable and may miss the optimal hyperparameters [7].

3.4.2. Advent of KerasTuner

To overcome the limitations of traditional methods, tools like KerasTuner have emerged.
KerasTuner is an easy-to-use, distributable hyperparameter optimization framework that
solves the challenges of finding the right hyperparameter configurations that provide good
performance. Unlike traditional methods, KerasTuner employs techniques like Bayesian
optimization, which iteratively refines the search based on past evaluations, making the
search process more efficient and precise even in situations like ours as described in Banna
et al. [5].

Several studies have illustrated the efficacy of KerasTuner in various deep-learning tasks.
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For example, Joshi et al. [22] used KerasTuner to optimize CNN models for image recog-
nition tasks, demonstrating a noticeable improvement in accuracy compared to models
optimized using traditional methods.

3.4.3. KerasTuner in RUL Estimation

While KerasTuner has been used in various domains, its application in RUL estimation,
especially for lithium-ion batteries, represents a novel approach. Given the intricate nature
of RUL estimation, where capturing the intricate degradation patterns is paramount, an
optimized model can substantially enhance prediction accuracy. Leveraging KerasTuner
in this domain suggests a promising avenue to achieve better performance and accelerate
the optimization process.

3.5. Feature-Based Adaptation

In our work, we focused on feature-based adaptation, which is a recent approach for time
series data, [19], since it is more commonly found in classification tasks for images and
similar tasks [50].
Feature-based adaptation approaches aim to map the source data into the target data by
learning a transformation that extracts invariant feature representation across domains.
They usually create a new feature representation by transforming the original features
into a new feature space and then minimizing the gap between domains in the new repre-
sentation space in an optimization procedure, while preserving the underlying structure
of the original data.
In this thesis domain adversarial learning was the selected approach as it is explained in
the following sections.

3.5.1. Domain Adversarial Neural Networks

The challenge of domain adaptation, notably when there is a difference in source and
target domain distributions, has garnered considerable interest in the machine learning
field. Domain Adversarial Neural Networks (DANN) have emerged as a promising ap-
proach to address this challenge. In this section, we review seminal and recent works in
the field of domain adversarial methods, emphasizing their contributions, methodologies,
and implications.
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3.5.2. Foundation of Domain Adversarial Techniques

In the foundational work by Ajakan et al. [14], the Domain-Adversarial Neural Networks
(DANN) algorithm was proposed, drawing inspiration from the domain adaptation theory
put forth by Ben-David et al. [6]. The primary goal of DANN was to design a network’s
hidden layer to learn representations predictive of the source labels while being neutral
about whether the data is from the source or target domain. Experimental results, es-
pecially on the Amazon reviews sentiment analysis dataset, confirmed the efficacy of this
strategy. Particularly, combining DANN with the marginalized stacked denoising autoen-
coders (mSDA) of Chen et al. [8] led to state-of-the-art performances, emphasizing that
these approaches to representation learning are complementary. Ajakan et al. also en-
visaged the adaptability of the domain adaptation regularizer from DANN to a plethora
of other learning algorithms, hinting at potential applications in deeper network archi-
tectures, multi-source adaptation challenges, and a variety of learning tasks beyond basic
binary classification [14].

Following this pioneering work, Ganin et al. [15] introduced the domain adversarial
approach, which involves training a neural network to accomplish two objectives. The
first objective is to predict labels in the source domain, while the second objective, which
is adversarial, involves tricking a domain classifier and thus ensuring that the feature
representations are not biased towards any particular domain. Through this adversarial
training, the learned features become domain-invariant, improving the model’s ability to
generalize to the target domain. We can see a graphical representation of the Ganin
proposed architecture in Figure 3.2

3.5.3. Expanding the Domain Adversarial Paradigm

Following the initial work, various modifications and extensions to DANN were proposed.
Tzeng et al. [39] introduced ADDA (Adversarial Discriminative Domain Adaptation),
refining the adversarial adaptation technique by employing a discriminative model for the
target domain, which further enhanced feature alignment.

Sicilia et al. [37] delved deeper into the nuances of applying DANN for domain gen-
eralization. Their insights highlighted the intricate relationship between source domain
variability and domain alignment, leading to a novel extension of DANN that displayed
improvements consistent with theoretical predictions.
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Figure 3.2: The suggested architecture integrates a deep feature extractor, depicted in
green, with a deep label predictor, shown in blue, creating a conventional feed-forward
structure. To facilitate unsupervised domain adaptation, a domain classifier, colored in
red, is incorporated. This classifier connects to the feature extractor through a gradient
reversal layer, which modifies the gradient by multiplying it with a specific negative
constant during backpropagation training. Adapted from [16].

3.5.4. Applications of Domain Adversarial Methods

DANN and its variants have been successfully applied in various domains. In computer
vision, these methods have been utilized for tasks such as digit classification in diverse
datasets [15] and semantic segmentation under different environmental conditions [45].
Beyond vision, domain adversarial techniques have shown promising natural language
processing, where the distributional shift between training and test data can significantly
degrade model performance.

Regarding RUL prediction, some pioneering work has been done by [26] where it is clearly
stated that while advanced deep learning and machine learning methods have achieved
excellent results in the prediction of the Remaining Useful Life of the battery, the superi-
ority of these methods is obtained by training under the same charge and discharge con-
dition data. This paper introduces a lithium-ion battery capacity estimation method us-
ing transformer-adversarial discriminative domain adaptation (T-ADDA). The T-ADDA
model, validated with NASA lithium-ion battery data, demonstrates high accuracy. De-
spite its effectiveness in cross-domain estimation, the T-ADDA model does encounter
limitations, with CNN and LSTM models displaying higher accuracy under the same
working conditions. Apart from this last work, in the literature, there is a limited ex-
ploration of the Domain Adversarial Learning paradigm applied to the Remaining Useful
Life (RUL) estimation problem for batteries. Our work addresses this gap by concen-
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trating on constructing a simpler yet effective model, contrasting with the approach in
[26], we aimed at building a model that can be more easily deployed in a variety of cases
without losing accuracy, stemming from the DANN implementation description present
in the most relevant paper about it [15].
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4.1. Proposed Set of Solutions

This chapter delineates the methodologies employed in this thesis, providing a compre-
hensive insight into the rationale, processes, and techniques adopted. By detailing these
methods, this chapter not only aims to offer transparency in the research process but also
provides a roadmap for replicating or building upon this study in future endeavors.

4.2. Architecture Redefinition

After having analyzed the convolutional-LSTM neural network improved with the use of
an attention mechanism developed by Luca Martiri [29], we realized the need to tailor
the architecture to better suit the nuances of our problem. Given the limited dataset
available to us, a comprehensive overhaul of the neural network was deemed necessary.
We drew inspiration from Martiri’s work and identified three crucial components, each of
which is here explained:

• Convolutional Layers

Fundamental in processing high-dimensionality data, these layers play a pivotal role
in extracting features from input data. The simultaneous decrease in dimensionality
and increase in feature number gives the network the capability to learn complex
features that were not easily deducible from the original data. Their utility in signal
processing makes them an essential component of many deep learning architectures,
including ours. The features under our consideration, namely actual cycle numbers,
temperature, and discharge capacity, can be aptly perceived as signals, underscoring
the relevance of convolutional layers in our model.

• LSTM Layers with Attention

Long Short-Term Memory (LSTM) units are a type of recurrent neural network
(RNN) architecture. Their capability to remember patterns over long durations
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makes them well-suited for sequential data. The inclusion of attention mechanisms
further refines the process by enabling the model to focus on specific parts of the
sequence, enhancing its performance in various sorts of tasks [4]. In our case, is
particularly useful for the neural network remembering sequence-based insights.

• Fully Connected Layers for Regression

These layers are designed to process the features extracted by the previous layers
and produce a final output. In our context, they perform regression tasks, aiming
to predict continuous values based on the processed input.

4.3. Hyperparameter Optimization

The selection of appropriate hyperparameters is fundamental to the performance of deep
learning models. Manual tuning can be cumbersome, and time-consuming, and may not
always lead to good results. Automated tuning tools aim to alleviate these challenges.
Among these tools, KerasTuner stands out as an advanced method specifically tailored
for the hyperparameter tuning of deep learning models implemented in Keras.

There were several compelling reasons behind our decision to use KerasTuner:

• Integration with Keras

Given that our models were implemented using Keras, the seamless integration of
KerasTuner with this framework was a natural fit, ensuring smooth functionality
without extensive modification to our existing codebase.

• Efficiency

KerasTuner deploys a range of search algorithms, such as Random Search, Hyper-
band, and Bayesian Optimization. These algorithms are designed to rapidly hone in
on optimal hyperparameter configurations, thus shortening the time and resources
required for tuning.

• Flexibility

KerasTuner provides the capability to customize the tuning process and tunable
parameters, allowing us to define the search space and the optimization objectives
according to our requirements. This was crucial since our model is pretty complex
and tuning all hyperparameters meant running the tuner for multiple weeks.

• Visualization
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The tool offers visualization utilities to review and analyze the tuning results, grant-
ing us insights into the optimization process and aiding in refining our model further.

Given the nature and complexity of our project, it was imperative to leverage a tool that
could offer both efficiency and precision in the hyperparameter tuning process. Keras-
Tuner, with its array of features and its alignment with the Keras ecosystem, emerged as
the logical choice for ensuring our model reached its optimal performance.

4.4. Feature Selection

Achieving broad applicability in model development and deployment often necessitates
a trade-off between the richness of the data and the universality of the model. In light
of this, we prioritized features that were ubiquitously available across multiple datasets
to ensure the widest possible relevance of our model. Specifically, we zeroed in on three
key features: Cycle, Discharge Q, and Average Temperature. How these features were
collected in our specific case and how they are measured is going to be presented in depth
in Chapter 5 1.1.
Their widespread presence in numerous online datasets made them the most viable can-
didates for a generalized model.
The most informative one is the Discharge Q feature since it is the one that relates di-
rectly to the battery’s state of health.
In most of the other works [26], the most relevant feature adopted was the cycle-to-cycle
evolution of the discharge voltage curve, expressed as a function of voltage for the given
cycle. The discharge voltage curve of a battery demonstrates the variation in voltage
throughout the discharge process. It depicts the relationship between the battery’s volt-
age and its state of charge (SOC). Especially the difference over cycles of this feature,
denoted as ∆Q(V) is of particular interest because voltage curves and their derivatives
are a rich data source that is effective in degradation diagnosis.
The problem with this feature is that it can be used only under the assumption that all
the batteries are discharged under the same conditions, which is preferable, or charged
under the same conditions. This makes it less appealing for domain adaptation or gener-
alization to other datasets, which is our thesis’s main focus.
The discharge capacity curve of a battery depicts instead the variation in capacity through-
out a discharge cycle. It showcases the relationship between the remaining capacity of the
battery and its state of charge (SOC) during the discharge process. In literature, using
the discharge capacity curve as a substitute feature for the discharge voltage curve led
to poorer performance and less accurate results in general, we are speaking about a loss
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Figure 4.1: Capacity fade curve of a battery.

from 30% to 40% in accuracy [35].
This highlights the difficulty of prediction without using voltage features.
In the present work, we were able to obtain comparable results to previous models found
in the literature that used the discharge voltage curve, surprisingly using a similar size
dataset for training.
We can see an example of the discharge capacity curve in Figure 4.1.

We also give a short description of the used features for completeness and a better under-
standing of the work:

• Cycle

The cycle number k of the battery. It is a discrete feature that represents the number
of times the battery has been charged and discharged. It is just an integer number.

ck = k (4.1)

• Average temperature

The average temperature of the battery during each cycle k is a continuous feature
that represents the average temperature of the battery during the cycle, where nk is
the number of temperature values collected for each cycle. It is measured in degrees
Celsius (◦C)

Tk =
1

nk

nk∑
i=1

Tk,i (4.2)

• Discharge Q
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The discharge capacity of the battery. It is a continuous feature that represents the
amount of charge that the battery can store at the given cycle. It is measured in
ampere-hours (Ah)

Qk = Qk,nk
(4.3)

4.5. Ad-Hoc Data Augmentation

The size and consistency of the training datasets have a significant impact on the per-
formance of deep neural networks used to process time series. In the real world, these
traits are typically scarce and frequently subject to requirements that must be guaran-
teed. Consequently, utilizing Data Augmentation techniques, either by adding noise or
permutations and by generating new synthetic data, is an efficient way to augment the
amount of data [21].
Many traditional data augmentation algorithms cannot be directly applied to time series
[21] due to the nature of the data. For instance, while rotating images to augment a
dataset is feasible, the same approach is not directly applicable in the time series domain.
If a time series sample is divided into segments and rearranged using linear interpolation,
the outcome may lack validity as it disrupts the inherent data trends. Given the varied
nature of time series data, not all augmentation techniques are universally applicable.
While few algorithms for data augmentation from computer vision can be adapted to
the time series domain, there are instances where new, specialized algorithms need to be
devised for effective treatment of time series data.
There is always the risk of producing an invalid result, where the tendency of the data
would be destroyed. Not all strategies can be used on every dataset because of the vari-
ability of time series data.
When using data augmentation in the time series domain, particularly in signal process-
ing, it is vital to keep in mind that data modification may overly distort the signal and
result in incorrect training.
There are two main types of data augmentation techniques [43]: data augmentation from
existing data, by adding noise and data augmentation by generating whole new synthetic
data. In the former algorithms, the transformations are applied directly to the data, while
in the latter the objective is to learn the probability distribution of the data to generate
completely new samples trying to imitate the data distribution.
We focused on the first approach because it was the simplest and most effective for our
purposes, and also because our main focus was improving the performance of the domain
adaptation, generating too much new synthetic data for one domain would not have made
much sense.
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Figure 4.2: Data Augmentation Techniques [21].

All these techniques [21] have as their base the deformation, shortening, enlargement, or
modification of the data samples of the dataset. In this thesis, we chose a method of data
augmentation based on the superposition of random noise to address the RUL estimation
problem, and also a time-slicing window during training.
The main reason is based on the fact that the historical capacity vector and the current
capacity have a temporal relationship in lithium batteries. The accuracy of RUL predic-
tion is based on the assumption that this relationship is discovered by the model, hence
the sequentiality of the data.
Also, we had to take care of the fact that the range of capacity discharge in which we had
to work was fixed by definition (EOL at 0.88 mAh) hence we could not use scaling [21]
for example.
Some other techniques such as permutations [43] or rotations [43] were also not employable
since they would have made us lose important sequential patterns in data.

Gaussian noise is commonly used in various fields, including signal processing, statistics,
and data analysis, to model and simulate random variations in data or measurements. It
is often used when the underlying sources of variation are not precisely known or when
multiple sources of random variation can be reasonably approximated by a Gaussian
distribution.
In our particular case, adding Gaussian noise to a set of existing batteries and including
them afterward in the training dataset increases the generalization capacity of the neural
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network by extending the initial dataset. This is also called jittering, and it is useful
also to replicate capacity regeneration, capacity dips, and sensor mistakes during lithium
battery operation, which enhances the adaptability and robustness of the model.
The following question is, by how much should we increase the dataset?
And also, how much noise should we add?
We propose in this work an empirical approach, where we experimented with a vast set
of possible values for the noise and the number of batteries to be augmented.
We could not afford an excessively noisy dataset, since it is already known that the noise
in the data can lead to a decrease in the accuracy of the model, especially when working
with the capacity discharge curve and just temperature and cycle information [35].
These observations lead to the following conclusions:

• The noise should be small enough to not alter the general trend of the capacity
discharge curve, but big enough to help the model to better generalize. After some
experimentation, we found that a noise of 0.005 is a good compromise.

• The number of batteries to be augmented should be big enough to increase the
dataset, but not too big to not trasnform too much the original dataset. Also here,
after having done many trials, we found an optimal number consisting of augmenting
all the batteries that had more than 540 cycles of life.

4.6. Transfer Learning and Fine-Tuning

Transfer learning and fine-tuning are advanced strategies in deep learning that aim to
capitalize on pre-trained models, harnessing their potential to expedite and enhance the
training process for new tasks. Instead of starting the training process from scratch, these
techniques allow us to utilize the knowledge acquired from previously trained models,
making them particularly advantageous when dealing with limited data or aiming for
efficiency [42].

4.6.1. Transfer Learning

Transfer learning involves using the architecture and weights of a pre-trained model,
typically trained on a large benchmark dataset, as the starting point for a new task [42].
The rationale behind this is that the features learned by these models on vast datasets
can act as general features, beneficial for a broad range of tasks. Indeed, using networks
trained on datasets having the same structure as the target one improves the capability
of the transferred network to use the previously learned features.
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The pre-trained model can be used as-is in cases such as ours where the original model
is trained on similar data with the same objective. This yields generally respectable
performance. But, considering that in the target domain we can use some data to improve
performance leveraging fine-tuning, we did not stop on the simple transfer learning.

4.6.2. Fine-Tuning

Fine-tuning is a subsequent step to transfer learning, where the pre-trained model is
further trained (or "tuned") on the target dataset. This can involve training the entire
model or just a subset of layers. The process adjusts the weights, enabling the model to
map the features for the new target task.

As highlighted in the literature [17, 42], there are some points to consider during fine-
tuning:

• Learning rate

A lower learning rate is often preferred to ensure that the model does not deviate
significantly from the pre-trained weights.

• Layers to train

Depending on the similarity of the new task to the original task, one might decide
to train just the top layers, a few middle layers, or the entire network. For vastly
different tasks, more layers might require fine-tuning.

• Regularization

As fine-tuning is essentially a continuation of training, regularization techniques like
dropout or weight decay can be vital to prevent overfitting.

In our case the best performance, after a few combinations of the previous parameters
have been tried, was achieved by lowering the learning rate and training the whole model.

In conclusion, the amalgamation of transfer learning and fine-tuning presents a formidable
approach to attain impressive performance with a shorter training duration and fewer data
resources with respect to a model trained from scratch. These techniques underscore the
principle of building upon existing knowledge, especially pivotal in scenarios with data
constraints.
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4.7. Our results

Now, we apply these methodologies to the task of remaining useful life estimation in
lithium-ion batteries. These strategies enable us to adapt pre-existing knowledge from a
source domain to the target domain, facilitating the accurate prediction of RUL. In this
section, we delve into the practical implementation of transfer learning and fine-tuning,
shedding light on their role in mitigating domain adaptation challenges in the context of
our experiments and results.

4.7.1. Architecture

The Convolutional Long Short-Term Memory (ConvLSTM) model [34] blends convolu-
tional layers with LSTM units, making it adept at modeling sequential data and extracting
relevant features. This section presents the model’s architecture and its role in mitigating
domain adaptation challenges.

Model Structure

• Input Layer: Accepts time series data with shape input_shape.

• Convolutional Layers: Initial layers include 1D convolutional layers (Conv1D) for
feature extraction. An optional second convolutional layer extracts more complex
features.

• LSTM Layer: Captures sequential dependencies, returning hidden states and cell
states.

• Batch Normalization: Optionally applied for regularization.

• Decoder and Attention: The decoder reverses the process, and an attention
mechanism focuses on relevant input data.

• Dense Layers: Optional fully connected layers for more complex modeling.

• Output Layer: Predicts Remaining Useful Life for each time step.

4.7.2. Transfer Learning First Approach and Results

The model is initially utilized for transfer learning, offering a robust solution to address
domain adaptation challenges. During this phase, the model is trained on two out of three
available data batches and tested on the third one. The key concept here is to leverage
knowledge from these source batches, allowing the model to adapt to domain-specific
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Metrics: MAE RMSE MAE 400 MAE 100 MAE 50
test b2-b3 29.6 52.6 25.9 5.5 4.5
T-L test b1 175.2 183.7 142.7 22.2 14.3

(a) Performance on target domain (Batch 1) with a model trained on Batch 2-3.
Metrics: RMSE MAE MAE 400 MAE 100 MAE 50
test b1 18.52 13.97 9.11 4.25 2.62
test b2 262.12 227.67 228.42 135.00 78.79
test b3 214.51 160.24 59.67 20.50 9.34

(b) Performance on target domains (Batch 1, Batch 2, and Batch 3) with a model trained on
Batch 1.

Table 4.1: Transfer Learning Results.

patterns and nuances present in the data.

Tables: In Table 4.1a we can see the results for training with Batches 2-3, testing on
their test set and also testing on Batch 1 with this transfer learning approach. For
completeness, in Appendix A we can find the results for the other possible training and
testing combinations.

We have also decided to present the results in Table 4.1b for training, just using one batch
(Batch 1) and testing with the other 2.

The outcomes from our initial application of transfer learning demonstrate its effectiveness
as a foundational approach. However, the relatively high prediction error points towards
the necessity for further refinements. In the subsequent section on Fine-tuning, we will
explore how these improvements can be implemented to enhance the model’s accuracy
and overall performance. This step is crucial in advancing the model from providing basic
predictions to achieving a more precise and reliable level of predictive accuracy.

4.7.3. Fine-Tuning: Initial Phase

Following the transfer learning phase, after having seen the results, to seek further im-
provements fine-tuning is performed. In the initial phase, the model is fine-tuned on 8
batteries out of 42 from the left-out batch of data for a limited number of epochs (i.e.,
10 epochs). Fine-tuning works by further adjusting the model’s weights to better align
with the third batch’s characteristics. It helps the model become more domain-aware and
enhances its ability to make accurate RUL predictions in the target domain.

In Table 4.2a we can see the results for fine-tuning on Batch 1. In Table 4.2b we have
decided to present, as before, the results for training using just one batch (Batch 1) and
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Metrics: MAE RMSE MAE 400 MAE 100 MAE 50
Fine-Tuning test b1 108.1 104 78.5 10.3 5.4

(a) Performance on target domain (Batch 1) after training on Batches 2-3 and fine-tuning for
10 epochs on Batch 1.

Metric RMSE MAE MAE 400 MAE 100 MAE 50
test b2 FT 56.02 35.95 32.38 10.10 4.49
test b3 FT 105.98 71.19 34.45 13.87 7.13

(b) Performance on target domains (Batch 2, and Batch 3) with a model trained on Batch 1.

Table 4.2: Fine-Tuning results.

Metrics: MAE RMSE MAE
400

MAE
100

MAE 50

Fine-Tuning (+20 Epochs) 108.9 104 77.6 7.5 4.6
Fine-Tuning (only 10 epochs) 108.1 104 78.5 10.3 5.4

Table 4.3: Fine-Tuning Extended Results, target domain (Batch 1) after +20 Epochs of
fine-tuning.

testing with the other 2 after having Fine-Tuned the model on the chosen subset of the
two batches.

For completeness, in A we can find the results for the other possible training and testing
combinations, which yield similar outcomes.

4.7.4. Fine-Tuning: Extended Phase

Subsequently, an extended phase of fine-tuning is undertaken with an increased number
of training epochs (i.e., 20 epochs) making it a total of 30 epochs. However, during
this extended fine-tuning, no significant improvement in the model’s performance was
observed. The results suggest that the model’s adaptation has already reached a point of
diminishing returns between 10 and 30 epochs, where further fine-tuning does not yield
substantial benefits even hindering performance.

This outcome may be attributed to the model already achieving a high level of domain
adaptation during the initial fine-tuning phase, leaving little room for further improve-
ment in the extended phase. The data characteristics of the third batch may have been
sufficiently captured by the model.

Displayed in Table 4.3 the results on the same combination of Batches 2-3, the others can
be found in Appendix A.
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4.7.5. Final Transfer Learning and Fine-Tuning Observations

Transfer learning proved effective in our study due to its ability to leverage pre-trained
models on the source domain, exploiting shared underlying relationships with the target
domain. However, fine-tuning, especially with limited labeled data, excelled in adapting to
the unique characteristics of the target domain, resulting in enhanced predictive accuracy,
the performance uplift is around 50% when compared to simple transfer learning. This
adaptability to domain-specific insights made fine-tuning a valuable choice, particularly
when the target domain significantly deviated from the source domain, as with Batch 2
shown in Appendix A.
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5| Experiments

In this chapter, we present the experimental procedures and methodologies we employed
in the current thesis research.

5.1. Structure of the Dataset

The MIT-Toyota dataset was collected for a joint study between the Massachusetts Insti-
tute of Technology and Toyota Motor Corporation. Originally, it has been used in [35].
The dataset is composed of 124 commercial lithium-ion batteries that were cycled to fail-
ure through a fast charge policy to obtain the relevant data.
The cells have a nominal capacity of 1.1 Ah and a nominal voltage of 3.3 V.

5.1.1. Charge-Discharge Policy

The cells in this dataset are charged with a one-step or two-step fast-charging policy.
This policy has the format "C1(Q1)-C2", in which C1 and C2 are the first and second
constant-current steps, respectively, and Q1 is the state-of-charge (SOC, %) at which the
currents switch. This means that if we had for example 6C(40%)-3C for a battery that
has a rated capacity of 1000 milliampere-hours (mAh), then "1C" for this battery would
be 1000 mA, and 6C would be 6000 mA. Thoroughly explained in 4.4
This current would be kept constant until we reached 40% of the battery’s state of charge,
and then the current would be switched to 3C, which would be kept constant until the
battery was fully charged.
In this specific dataset, the initial charging current is 3960mA (C1 = 3C) once the battery
reaches 80% of its state of charge (Q1 = 80%SOC), the current is switched to 1100mA
(C2 = 1C) and kept constant until the battery is fully charged (CC-CV).
The max and min voltage applied while charging/discharging the batteries are 2.0 V and
3.6 V. The temperature of the environment in which the charge cycles took place was
kept constant at 30 °C.
The discharging phase is the same for all batteries, constant and with a fixed value at 4C.
Since the objective was to have enough diverse data for the study, different charging
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policies have been applied. The conjunction of this factor with the strong nonlinearity
of battery degradation led to a very heterogeneous dataset, where the life duration of
batteries ranges from 150 to 2200 cycles.

5.1.2. Data Collection

Each battery cycle is organized into a hierarchical structure with two levels: firstly, a
summary of measurements for the entire cycle, and secondly, detailed measurement data
for each specific time step within that cycle.

The Cycle structure contains:

• t: vector of time stamps (sec) which indicates the time instant at which sensors
read the measurements.

• Q charge: cumulative moved charge in the charge phase (Ah).

• I: current (A).

• V: voltage (V).

• T: temperature (°C).

• Q discharge: cumulative moved charge in the discharge phase (Ah).

• Discharge dQdV: derivative of Q(V) in the discharge phase.

The Summary structure contains:

• Q charge: charge moved in the charge phase of each cycle.

• Q discharge: charge moved in the discharge phase of each cycle.

• T_max: maximum temperature reached in the cycle.

• T_min: minimum temperature reached in the cycle.

• T_avg: average cycle temperature.

• Charge time: time needed for a full charge.

• Cycle: number of the cycle.

• IR: measured internal resistance.

We are going to work with the features selected from the Summary structure.
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Figure 5.1: Distribution of the number of cycles to failure for each batch.

5.1.3. Batches Division and Analysis

The dataset used in this thesis is organized into three separate parts, referred to as
"batches". Each of these batches represents data from about 48 individual cells. The
distinguishing factor for each batch is the "batch date," which indicates the date when
testing began for that particular group of cells. The reason for dividing the dataset into
three batches is practical: it is due to the use of the same testing machines for conducting
all the tests. By splitting the dataset, it becomes easier to manage and analyze the data
from the different batches, each of which was tested at a different time.
We simply kept the division in batches and used categorical numbering to identify them.
Each batch ends up having a relevant difference in the feature’s distribution, making the
MIT- Toyota dataset more similar to 3 diverse datasets jointly collected. This poses the
challenge and the opportunity of training a model on one or two batches and applying
the domain adaptation techniques, previously introduced 2.6. The diversity previously
mentioned is reflected in the different distributions of the following adopted features:

• Cycles to failure

Number of cycles before the battery fails.

As we can see in Figure 5.1, the distribution of the number of cycles to failure for
each batch looks more similar for Batches 1 and 3, while Batch 2 has a completely
different distribution, this made us explicit how the specific charging and discharging
conditions previously mentioned are affecting the battery’s degradation. It also gave
us a hint on how the different batches could be used to train and test the model
and how the performance might relate to these differences, as we will see.
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Figure 5.2: Distribution of the average temperature for each batch.

• Average temperature

The average temperature of the battery during the cycle.

As we can see in Figure 5.2, the average temperature frequency distribution is
significantly different for all 3 batches.

• Discharge capacity

Cumulative moved charge in the discharge phase (Ah) for each cycle until EOL is
reached.

Also, relevant differences emerge in the curves of the discharge capacity for each
batch, as we can see in Figure 5.3. We have observed a significant decrease in the
rate of decline of QD (Discharge Capacity) values during the final 150 cycles of a
battery’s life. To clarify, when a battery has a lifespan of, for example, 400 cycles,
its QD value may drop rapidly from 0.98 to 0.88 within a short span of cycles, as
opposed to a battery lasting 1000 cycles where the decline occurs more gradually,
going for example from 0.91 to 0.88 in the last 150 cycles. This phenomenon is a
clear indicator of the nonlinearity of the problem faced and highlights the current
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Figure 5.3: Discharge Capacity for each batch.

Figure 5.4: Derivative of the discharge capacity of the first 10 batteries in Batch 2.

challenge. It is worth noting that we have not yet accounted for the noise in the
data, as QD values may oscillate at certain points.

To gain a deeper understanding of the steepness of the last cycles of each cell, we have
chosen to examine the derivative of discharge capacity within the second batch, which
serves as our case study. The visual representation of this analysis is provided in Fig-
ure 5.4, where we have intentionally selected only 10 batteries at random from this batch
for the sake of clarity.

What becomes evident is that, as each battery in this subset nears the end of its lifespan,
typically around 150 cycles before, there is a sharp decline in the derivative of the discharge
capacity. This observation highlights a distinct and consistent pattern in the dataset.
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5.2. Data Preprocessing Overview

The initial phase of data preprocessing was handled by the MIT Toyota Research Group,
the custodians of the dataset. They conducted an initial culling by excluding a selected
group of battery cells that did not reach at least 80% of their capacity, keeping those
above. These excluded cells were deemed irrelevant as they had not reached the end of
their operational life (EOL), making them unsuitable for training a model that directly
predicts RUL as previously explained. Following this, we took over the data preprocessing.

5.2.1. Data Cleaning

Our efforts began with the identification and treatment of outliers. This involved replac-
ing anomalous data points, including null values and sensor measurement errors, with a
calculated average derived from adjacent data points in the battery discharge curve. This
step was pivotal in ensuring data quality.

Subsequently, we segmented the battery capacity fade curve at the 80% mark of the
battery’s nominal capacity, equivalent to 0.88 Ampere-hours (Ah). This demarcation
point represented the EOL threshold, helping us determine the actual number of useful
life cycles each battery had undergone.

Recognizing the inherent noise in the charge-discharge (QD) curves, we opted to apply
a smoothing algorithm. This straightforward technique involved substituting data points
at a given cycle with the average of the preceding and succeeding cycles if a drop of 0.005
(Ah) or more was observed. This adjustment led to more consistent and reliable data,
making the model less susceptible to erroneous readings.

5.2.2. Data Selection and Maximum Prediction Horizon

Finally, we choose to consider only the most recent 800 aging cycles. This approach
prioritizes the latter part of the battery’s life, as providing RUL estimates for early-life
cycles is less crucial. We can say that focusing on the cycles towards the EOL aligns with
the idea of a model that pays maximum attention to the last 800 predictions, which are
deemed the most relevant for PHM purposes in our case.

5.3. Hyperparameter and Model Optimization

Building on the foundational research presented in a previous thesis [29], our objective
was to adapt an LSTM model with attention mechanisms for our specific datasets. Our
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datasets are distinct, featuring a smaller number of batteries (48 in total) in comparison to
those in prior studies, such as the Sandia Dataset which consists of 90 batteries (referenced
in Section 2.5). This smaller dataset size necessitated a meticulous fine-tuning of both
the model and its hyperparameters to ensure optimal performance.

5.3.1. Initial Manual Adjustments

Before resorting to automated tools, we manually adjusted certain aspects of the model
and its hyperparameters. Some primary adjustments included altering the number of lay-
ers, adding, removing, or changing regularization layers and techniques (Dropout, Batch
Normalization, L1_L2 regularization . . . ). This manual optimization phase served as a
benchmark, setting the stage for more systematic and rigorous optimization strategies.

5.3.2. Automated Hyperparameter Tuning with Keras-Tuner

To systematically explore the vast hyperparameter space and enhance the model’s per-
formance, we used Keras-Tuner, a powerful tool for hyperparameter optimization.

Optimization Techniques Employed:

1. Random search

Random search serves as a robust and straightforward approach. It samples random
combinations of hyperparameters and determines the best combination. Surpris-
ingly, random search got some nice improvements with respect to manual optimiza-
tion.

2. Bayesian optimization

A probabilistic model-based approach that seeks the input values to a function
that results in an output that is better than the current best-known value. Using
Bayesian optimization, we observed fast and reliable searches. We were convinced
that this could be the be-all and end-all of algorithms with a run time of under an
hour.

3. Hyperband

At last, we gave a shot to Hyperband, an adaptive resource allocation and early-
stopping strategy. It is designed to converge to the best model by allocating more
resources to promising configurations. Initial trials with Hyperband showed even
better performance. But there was a cost to this, the search time (on GPU) was
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Figure 5.5: Hyperband Regression Error (Loss) per epoch for each optimization attempt,
accuracy on the x-axes and epochs on the y-axes.

Hyperparameters MAE RMSE RMSE 400 RMSE 100 RMSE 50
Original 29.8 43.7 33 10.3 9.2

Hyperband 14.7 39.5 28.0 4.0 2.4

Table 5.1: Performance before and after Hyperparameter optimization, on Batches 2-3.

longer than 10 hours. But the results are astonishing, the best and most reliable
ones. In Figure 5.5, the algorithm’s performance is showcased, highlighting that only
the most promising hyperparameter sets (i.e., those yielding the highest accuracy
on the validation dataset) are carried forward to the target epoch number.

5.3.3. Final Model Configuration

Post-optimization, the optimal LSTM with attention model for our dataset, in tandem
with the optimized hyperparameters, showed an almost 50% average improvement in
prediction accuracy compared to the base model from the previous thesis on our datasets,
in Table 5.1.

Through a combination of manual adjustments and systematic hyperparameter tuning us-
ing various optimization techniques, we achieved a significant enhancement in our LSTM
with Attention model’s performance. This optimization journey underscores the impor-
tance of hyperparameter tuning, especially when transitioning between datasets with
distinct characteristics.
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5.4. Domain Adversarial Neural Networks

The presented methodology refines the domain adversarial neural network for the unique
task of estimating the remaining useful life of lithium-ion batteries. Unlike the original
DANN’s implementation [14] on image classification, this adaptation introduces several
key modifications tailored for RUL prediction.

Feature Extraction: Instead of its image-based roots, the DANN has been reconfigured to
facilitate the extraction of information from battery data sequences. This involves the ap-
plication of 1D convolutional and LSTM layers, tailored to effectively capture meaningful
features inherent in sequential battery data.

RUL Prediction: The nature of the task has shifted from image classification to RUL es-
timation, a regression problem. Consequently, the model now integrates a RUL predictor
designed to predict continuous RUL values. This module is equipped with multiple dense
layers, optimized for the intricacies of regression tasks.

• Domain Adaptation:

A central concern in this method is the challenge of domain adaptation, which seeks
to map the relevant feature distributions, in a domain-invariant manner between
two distinct data domains: the source domain, often representative of the training
dataset, and the target domain, which encapsulates data sourced from batteries for
which RUL estimations are required.

• Loss Functions:

The method uses a pair of loss functions. The first one is a customized loss function
tailored to the nuances of RUL estimation [29] for the primary task, the regression
one. The secondary task, meaning the domain classification, implements a loss called
Binary Cross-Entropy. These functions cater to the distinctive requirements of the
tasks, encompassing both the primary RUL prediction objective and the secondary
domain adaptation component, thus guiding the model’s training process effectively.

• Performance Monitoring:

To assess the model’s performance, a range of metrics is employed, the main ones,
reported in the experiments section, are Mean Absolute Error (MAE) and Root
Mean Squared Error (RMSE).
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5.4.1. Structure and Configuration

A DANN consists of three primary components: a feature extractor, a regressor, and a
domain classifier. Its strength lies in ensuring the feature extractor produces features
beneficial for label prediction, while also being domain-agnostic. We can see the structure
of our model in Figure 5.6.

• Feature extractor

It is composed of a pair of one-dimensional convolutional and pooling layers, before
an LSTM layer using ReLU activation functions.

• Regressor

All LSTM outputs are used to build the attention and decoder part of the regressor.
These, flattened, go straight into a stack of 4 dense layers. It is implemented a
softmax output layer for RUL prediction.

• Domain classifier

It adopts a sigmoid activation function for determining the domain of the input.
After multiple attempts, we got the best results by feeding as input of the domain
classifier the output of the first LSTM layer, we tried to put it right after the
convolutional layers or after the second LSTM layer (decoder) but we got worse
performance.

5.4.2. Training Strategy and Domain Adversarial Process

Within the domain adversarial neural network framework, a key component is the domain
predictor, equipped with a gradient reversal layer (GRL). This layer plays an essential role
in orchestrating an "adversarial game" between the domain classifier and the primary RUL
estimation task. The central player in this dynamic is the λ parameter, which governs
the degree of domain adaptation throughout the training phases.

During backpropagation, the GRL inverts the sign of the gradient, a process modulated by
λ. By altering the gradient weights, λ effectively converts the standard gradient descent
process into a competitive algorithm. This competition is between the primary task of
RUL estimation and the secondary task of mapping domain-invariant features. Such a
mechanism can lead to complex behaviors in the loss function, including the emergence
of periodic orbits and behaviors reminiscent of chaotic systems [18], thus presenting a
challenging landscape for training the network.



5| Experiments 47

Batch RMSE MAE MAE 400 MAE 100 MAE 50
source 2-3 90.6 64.8 66.7 16.2 14.6
target 1 166.1 124.4 104.4 11.4 10.0

Table 5.2: Here displayed are the results on combination 2-3, the others can be found in
Appendix A

After some meticulous research [13, 15], we went for an empirical approach, since in the
literature there was no evidence of a better strategy for the λ parameter tuning, and so
we tried three main strategies:

• Fixed λ

We started with a fixed λ value, and we tried to find the best value for it. We found
that this approach was not very effective, since the model was not able to converge
to a good solution.

• Dynamic λ

We tried to change the λ value during the training process, starting from 0.1 and
then increasing it to different sets of values, algorithmically chosen between 0.1 and
1. We found out that this approach was not very effective, since the model was not
able to converge to a good solution.

• Dynamic λ reversed

We tried to change the λ value during the training process, starting from a higher
set of values, giving hence more relevance to the domain adaptation task in the first
epochs and then decreasing it with multiple possible steepness, until a different set of
lower or higher values was reached, depending on the specific chosen implementation.
We found that this approach, scheduler like, was the best one since the model was
able to converge to a good solution.

One of the last big design decisions we made was to decide where the domain classifier
head should attach. This was quite challenging as a lot of tries were made to find the sweet
spot. In the end, we decided to give the domain classifier the "knowledge" coming from
the encoder, excluding the attention and decoder layers, because of the limited amount
of data Figure 5.7c. The choice of using the encoder as the last layer of the feature
extractor Figure 5.7a came from the literature [15] and the knowledge we gained through
experience, that the output of a layer geared to time series prediction was better suited
for the job.
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In our most recent round of DANN model optimization, we are satisfied with the perfor-
mance levels achieved. A simplified representation of the entire model can be found in
Figure 5.6 as detailed in Table 5.2, it is expected that the performance within the source
domain outshines that in the target domain. Notably, the discrepancy in error between
source and target predictions is minimal. Key to this success is the model’s training ap-
proach, which is tailored to extract domain-agnostic features. By doing so, the DANN is
equipped to perform well not only in the domain it was originally trained on but also in
new, different domains.

5.4.3. Lessons and Takeaways

The intrinsic design of the DANN, with its three major components: feature extractor,
regressor, and domain classifier, ensures the extraction of domain-agnostic features, a
pivotal requirement for our application. Our exploration into its structure revealed the
effectiveness of leveraging LSTM layers within the feature extractor and the role of at-
tention in the regressor, with the domain classifier leveraging the outputs of the initial
LSTM layer.

Through our exploration and experimentation, it became clear that understanding and
correctly calibrating the interplay between the feature extraction and domain classification
processes is pivotal to harnessing the true potential of the DANNs for domain adaptation.
Moreover, the selection of the encoder as the last layer of the feature extractor reaffirms
the synergy between time series prediction and domain adaptation, illuminating a pathway
for future applications and optimizations in this domain.

5.5. Comparison

Upon training, the DANN’s performance was juxtaposed against two other strategies,
namely transfer learning with and without fine-tuning introduced in section 4.6. The
reason for the different outcomes performance-wise is to be found in the training process.
When training the model for TL, we train the model on source domain data without any
domain adaptation techniques. Differently, when training the DANN, domain adaptation
is intrinsic to the model.

The results presented in Table 5.3 reveal that the performance is quite similar to that of
transfer learning combined with fine-tuning. When examining predictions from the last
100 and 50 cycles, the fine-tuning model emerges as the leader in performance, closely
followed by the DANN and then basic transfer learning. However, when we shift our
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Target RMSE MAE MAE 400 MAE 100 MAE 50
TL 183.7 175.2 142.7 22.2 14.3

TF with F-T 104 105.0 74.4 12.4 5.8
DANN 103.0 76.2 43.0 14.0 8.8

Table 5.3: Performance on target domain (Batch 1), comparison between Transfer learning
with and without fine-tuning and DANN.

focus to longer-term predictions, the DANN outperforms the others, exhibiting distinctly
superior results. We assume that this is attributed to the DANN’s enhanced capability
for generalization. As a more intricate model, the DANN excels at extracting features
that are not strictly tied to a specific domain. This proficiency is especially evident in
the early cycles, where the domain’s uniqueness is not as influential, and in contrast, the
generalization capabilities are more relevant since in the early cycles the battery behavior
is similar. This allows the DANN to deliver a stronger performance.



50 5| Experiments

Figure 5.6: Final DANN model.
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(a) Feature extractor

(b) Regressor head

(c) Domain predictor

Figure 5.7: Final DANN model decomposed to show better the single components of each
part of the network. Figure 5.7b and Figure 5.7c both use the outputs of the last layer of
Figure 5.7a.
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6| Conclusions and Future

Developments

In this thesis, we delved into the domain adaptation challenges in Remaining Useful
Life (RUL) estimation of Li-ion batteries. To tackle these issues, we introduced a novel
methodology that was previously employed in entirely different contexts.

This consisted in the implementation of a Domain Adversarial Neural Network (DANN)
to adjust the neural network’s representations of specific features to make them similar
across different domains, effectively aligning the selected feature distributions.

We showed that utilizing a DANN for our dataset is a promising approach worthy of
significant attention. This stems from the model’s unsupervised learning paradigm, dis-
tinguishing it from conventional transfer learning methods. Its adaptability and intuitive
foundation further enhance its appeal.

DANNs enable addressing domain adaptation without needing explicit labels from the
source or target domains, which is invaluable in situations where labeled data is either
unavailable or costly. Moreover, the flexibility of the model allows its easy integration into
various neural architectures, making it an enticing choice for domain adaptation tasks.

However, in cases with limited data, like our study, involving only eight battery cells’
data from the target domain, we observed that the effectiveness of fine-tuning, given the
presence of labeled data, surpasses domain adversarial learning. This is probably because
fine-tuning capitalizes on target-specific insights, enhancing predictive accuracy by align-
ing closely with the target domain’s unique attributes. Conversely, domain adversarial
learning, since it aims for domain invariance, might miss some critical domain-specific
details of the target.

Furthermore, our work revealed a moderate performance improvement when we incor-
porated traditional data augmentation techniques, such as jittering, into the previous
approaches. This enhancement was most pronounced when manually adjusted to align
with the dataset’s specific characteristics.
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It is also worth mentioning that, in this thesis, we also introduced a systematic method
for optimizing hyperparameters in the convolutional-LSTM model. Our approach demon-
strated a remarkable increase in average prediction accuracy while reducing the time
investment compared to earlier manual methods.

In conclusion, the major contributions arising from our research shed light on the capabil-
ities of deep domain adaptation in the realm of RUL estimation, demonstrating significant
and robust performance gains. While our methods showed promise, it is crucial to exercise
caution during transfer learning. We have observed that a brute-force transfer approach
can potentially lead to a degradation in our model’s performance.

A central focus of our thesis was the exploration of homogeneous domain adaptation,
which implies that there is a relationship between the data from the source domain and
the target domain, and we presume that deep neural networks can uncover some shared
representation from these two domains.

Future research could focus on discovering innovative data augmentation techniques de-
signed to mitigate the scarcity of data while preserving the inherent characteristics of
sensor data, or using a different model, maybe based on the transformer architecture.

Indeed, one promising avenue for augmentation techniques exploration involves leveraging
Generative Adversarial Networks (GANs) [30] to generate synthetic data. This approach
enables more effective training of the network with a diverse yet consistent dataset. By in-
corporating this strategy, the model becomes exposed to various patterns during training,
which can later prove beneficial during online deployment or testing, thereby enhancing
overall performance.

The other potential avenue for future research could be driven by the recent advance-
ments in the capabilities of the transformer architecture [26]. Notably, this architecture
has recently surpassed the recurrent neural network family in various tasks, including
computer vision and natural language processing. However, its application in prognostic
health management tasks, such as the one discussed, remains an area yet to be explored.
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A| Extended Results

This appendix comprehensively presents the complete set of results derived from our
experimental investigations. Due to space constraints and the extensive nature of our
data, it was not feasible to include these detailed results within the main body of the
thesis. Here, readers will find a thorough compilation of tables that provide an in-depth
view of the outcomes and findings from our research. This extended presentation of results
is aimed at offering a more complete understanding of our study and facilitating a deeper
analysis of the data and conclusions drawn in the main text.

A.1. Transfer Learning and Fine-Tuning

A.1.1. Transfer Learning

Tables: In Table A.1a we can see the results for training with batches 1-3, and testing
on batch 2 with this transfer learning approach. While in Table A.1b there are the results
for training with batches 1-2 and testing with batch 3.

Batch: MAE RMSE MAE 400 MAE 100 MAE 50
Transfer learning b2 204 241.5 199.3 148.1 56.2

(a) Performance on target domain (batch 2) with a model trained on batch 1-3.

Batch: MAE RMSE MAE 400 MAE 100 MAE 50
Transfer learning b3 142.0 176.3 107.8 29.5 16.8

(b) Performance on target domain (batch 3) with a model trained on batch 1-2.

Table A.1: Transfer Learning Results.
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A.1.2. Fine-Tuning

Tables: In Table A.2a we can see the results for training with batches 1-3, and testing on
batch 2 after applying fine-tuning for 10 epochs on 8 batteries. In Table A.2b there are the
results for training with batches 1-2 and testing with batch 3 after applying fine-tuning
for 10 epochs on 8 batteries.

Batch: MAE RMSE MAE 400 MAE 100 MAE 50
Fine-Tuning b2 45.1 79.1 40.3 13.2 6.1

(a) Performance on target domain (batch 2) after fine-tuning for 10 epochs.

Batch: MAE RMSE MAE 400 MAE 100 MAE 50
Fine-Tuning b3 89.3 130.8 49.7 16.8 10.7

(b) Performance on target domain (batch 3) after fine-tuning for 10 epochs.

Table A.2: Fine-tuning results.
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A.2. Domain Adversarial Neural Network

A.2.1. Two-Batch DANN Performance

Tables containing data when training DANN

Batch RMSE MAE MAE 400 MAE 100 MAE 50
source b1-b2 73.2 47.2 29.5 7.2 6.1

target b3 120.6 89.1 60.5 24.3 12.7

Table A.3: DANN trained on batches 1-2.

Batch RMSE MAE MAE 400 MAE 100 MAE 50
source b1-b3 56.6 39.0 20.0 11.8 12.1

target b2 123.6 101.3 117.6 85.4 52.5

Table A.4: DANN trained on batches 1-3.
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A.2.2. Single Batch DANN Performance

Tables containing data when training with a single batch DANN

Batch RMSE MAE MAE 400 MAE 100 MAE 50
train b1 56.4 40.6 17.6 9.4 4.4
test b2 148.7 138.8 171.0 124.2 107.7
test b3 107.3 82.5 67.6 26.3 15.8

Table A.5: DANN trained on batch 1.

Batch RMSE MAE MAE 400 MAE 100 MAE 50
train 2 19.4 16.7 16.7 9.2 4.2
test 1 129.5 92.7 67.4 12.4 4.4
test 3 189.7 146.2 105.5 40.3 24.6

Table A.6: DANN trained on batch 2.

Batch RMSE MAE MAE 400 MAE 100 MAE 50
train b3 64.1 48.3 32.6 17.7 11.8
test b2 197.3 164.7 105.5 81.6 71.8
test b1 146.6 109.5 180.6 28.0 28.3

Table A.7: DANN trained on batch 3.
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B| Machine Learning Background

In this appendix, we want to give a brief description of what machine learning deals with,
what a neural network is in general, what is a recurrent neural network, and why we chose
an LSTM architecture with the attention mechanism.

B.1. Fundamentals of Machine Learning

B.1.1. Supervised vs. Unsupervised Learning

Machine learning encompasses a rich landscape of models, each designed to address spe-
cific problem domains. To navigate this diversity, we categorize problems based on the
availability of labeled data. This categorization forms the foundation of supervised and
unsupervised learning.

In supervised learning, we work with data where the target variable, representing the
outcome we want to predict, is known and available for our independent set of features.
The essence of this approach lies in teaching the model by showing it examples, allowing
it to learn the relationships between the features and the target variable. The model
adjusts its predictions based on the feedback provided by the known labels, striving to
make increasingly accurate predictions over time.

On the other hand, unsupervised learning is the realm of problems where we lack labeled
data, leaving the model to explore and identify patterns in the data on its own. It
autonomously groups or organizes data points based on inherent similarities or structures,
often revealing hidden insights and associations within the data.

B.1.2. Training, Validation, and Testing Sets

In the realm of machine learning, working directly with all available data for model
training is often impractical. This is because exposing the model to the entire dataset may
lead to overlooking crucial aspects of its performance. Two fundamental considerations
arise:
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1. Generalization:

A fundamental objective of machine learning is to create models capable of gen-
eralizing their knowledge to new, unseen data. However, if a model is exclusively
trained on all available data, it may become too specialized, fitting the training data
perfectly (overfitting) while struggling to interpret data deviating even slightly from
the training dataset’s distribution.

2. Performance assessment:

To determine how well a model performs, we require a mechanism to evaluate its
performance throughout the training process. Without validation and testing sets,
we would be in the dark about how the model is likely to behave with new, unseen
data.

To address these challenges, we employ a practice known as data set partitioning. We
divide our dataset into three distinct subsets, commonly referred to as the training set,
validation set, and test set.

• Training set

This set serves as the foundation for instructing the model. The training data is
used to adapt and teach the model by providing it with examples.

• Validation set

The validation set plays a pivotal role in assessing the performance of different
models during the training process. It helps gauge how well each model generalizes
to new data and aids in the selection of the best model.

• Test set

The test set is kept separate from the beginning and is not used during the train-
ing or validation phases. It serves as a final, unbiased assessment of the model’s
performance. Evaluating the model with data it has never encountered provides a
realistic measure of its effectiveness.

This division into three sets empowers us to strike a balance between training, assessing,
and ultimately ensuring that our machine learning model can not only learn from data
but also apply its knowledge effectively to new, real-world situations.
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B.1.3. Loss Functions and Optimizers

A loss function is essentially a mathematical function that quantifies the disparity between
the predicted outcomes of a model and the true labels or target variables for a given
sample. It serves as a vital tool for assessing how effectively the model is performing its
task, providing a measure of the deviations between predictions and actual outcomes. In
our work, we have explored several loss functions, including Root Mean Squared Error
(RMS) and Mean Absolute Error (MAE).

An optimizer, on the other hand, is a specific algorithm employed to minimize the loss
function and iteratively adjust the model’s parameters. Optimizers play a crucial role
in training machine learning models by fine-tuning the model’s parameters to reduce the
error between predictions and actual values. Some of the most relevant optimizers include
Gradient Descent (GD), Stochastic Gradient Descent (SGD), and the Adam optimizer.

These concepts of loss functions and optimizers are fundamental components of machine
learning and deep learning that play a critical role in training models and enhancing their
predictive capabilities.

B.2. Basics on neural networks

B.2.1. Basic Concept of Artificial Neurons

Neural network theory is based on the concept of neurons. This is the atomic element
of every neural network. This component aims to mimic the inner workings of a single
neuron in the brain. Indeed, it takes one or, usually, multiple inputs, performs a weighted
sum, and adds a bias adjustment. The activation function is then applied to introduce
non-linearity, as shown in B.1, allowing the neuron to make decisions by activating or not
activating in response to the processed input. The output is then sent to the next layer
of neurons in the network.
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Figure B.1: A neuron, how the output is computed [23].

B.2.2. Overview of Neural Networks

Envision a neural network as a team of neurons working together. Each neuron’s output
contributes to a layer, and these layers stack together to form a complex network capable of
performing intricate tasks. Think of a neural network like a layered orchestra, where each
section plays its part to contribute to the overall symphony. Neural networks learn through
training, where they iteratively adjust the weights of connections (weights and biases) to
predict outcomes more accurately, similar to learning from experience. Connections are
updated when the output is wrong, the more the error the bigger the updates.

B.2.3. Types of Neural Networks

Neural networks come in different flavors, each with a unique structure suited for specific
tasks. The Feed Forward Neural Network (FNN) is the simplest form, where information
travels in one direction only—forward. On the other hand, recurrent neural networks
boast a feedback system that gives them a form of memory, making them ideal for tasks
like language modeling where past information is crucial. Convolutional neural networks
excel in identifying hierarchical patterns, which is why they are the go-to choice for image
recognition. Each network’s architecture is tailored to the complexities of the task at hand,
whether it is recognizing speech, translating languages, or driving autonomous cars.
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B.3. Recurrent Neural Networks

B.3.1. The Concept of Sequence Data and Why Use RNNs for

Sequence Data

Sequences are a fundamental data type with significant relevance in numerous real-world
applications. They represent a series of data points that follow a specific order, such
as time series data, natural language text, or sensor measurement sequences such as
in our case. The sequential nature of these data types presents unique challenges and
opportunities.

Recurrent neural networks are a class of neural networks well-suited for handling sequence
data. Unlike traditional feedforward neural networks, RNNs possess a memory mechanism
that allows them to capture and model temporal and sequential dependencies within the
data. This capability is particularly advantageous in scenarios where the order and context
of data points are crucial for making accurate predictions or understanding the underlying
patterns.

The advantages of RNNs in modeling sequence data include their ability to maintain
internal state information, adapt to variable-length sequences, and dynamically process
data points sequentially.

B.3.2. Challenges with Basic RNNs: Vanishing and Exploding
Gradients

Training traditional RNNs has been associated with specific challenges that affect their
performance. Two of the most prominent challenges are the issues of vanishing and
exploding gradients.

In the context of training RNNs, the vanishing gradient problem occurs when the gradients
of the loss function with respect to the model’s parameters become minuscule during the
backpropagation process. This is especially problematic when dealing with long sequences.
When gradients vanish, it means that the model has difficulty learning and updating its
parameters effectively, which can hinder its ability to capture long-term dependencies in
the data.

Conversely, the exploding gradient problem arises when the gradients become exception-
ally large during training. This can result in unstable and divergent training processes,
making it difficult to optimize the model’s parameters effectively.
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Addressing these challenges is crucial for improving the effectiveness of RNNs in modeling
sequence data. Several advanced RNN variants and techniques, such as LSTM and Gated
Recurrent Unit (GRU), have been developed to mitigate the vanishing and exploding
gradient problems.

B.4. Long Short-Term Memory Networks

B.4.1. Understanding the LSTM Unit

Presents the specialized architecture of LSTM units that enables learning long-term de-
pendencies.

• Forget gate

Explains how LSTMs decide which information to discard from the cell state.

• Input gate

Describes how LSTMs determine new information to be added to the cell state.

• Cell state

Introduces the component of LSTMs that carries relevant information throughout
the sequence processing.

• Output Gate

Details how LSTMs decide what is next to output based on the cell state and the
input.

B.4.2. The LSTM Cell State: The Key to Long-term Depen-

dencies

Elucidates the core feature of LSTMs that maintains long-term relationships in data.

B.5. Training LSTMs

Training recurrent neural networks is a little trickier than simple FNNs. In fact, since the
prediction is sequence-based, as in it depends on the previous n values to predict the next
one, the training must be shaped that way too. Simple backpropagation techniques are
extended to support the time factor too, in fact, they are called Backpropagation Through
Time (BPTT). This training strategy may result unstable if the exploding gradient is
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Figure B.2: Simple forecast example that can be done with LSTM.

considered, but the right regularization techniques are enough to tackle this potential
issue.

One key aspect of LSTM is choosing the right hyperparameters, here hyperparameter
tuning is key to get the best performance for each particular application.

B.5.1. Time Series Prediction

LSTMs have become a mainstay for forecasting in time series data due to their ability to
capture long-term dependencies. Their architecture is well-suited for analyzing sequential
data for stock markets, weather patterns, and predictive maintenance, helping predict
future events based on historical data. The gated mechanism of LSTMs allows them to
retain relevant past information and discard non-useful data, leading to more accurate
predictions over time.

B.5.2. Natural Language Processing

In natural language processing, LSTMs handle complex language structures, making them
effective for tasks such as machine translation, sentiment analysis, and text summariza-
tion. Their sequential data processing capability enables them to understand context and
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Figure B.3: Translated image from Loye G.’s article [28], shows how attention mechanism
helps dynamically focus on different parts of the input sequence in language translation.

generate coherent language patterns, a crucial factor in capturing the intricacies of human
language.

B.5.3. Speech Recognition

Speech recognition benefits from LSTM’s ability to process audio data over time. These
networks excel at modeling the temporal sequences in speech, facilitating the develop-
ment of advanced voice-activated technologies. LSTMs can differentiate between phonetic
nuances by learning from continuous speech flow, significantly improving speech-to-text
accuracy and enabling their use in real-time transcription and interactive voice response
systems.

LSTM’s capacity to learn from sequences makes it a versatile tool for any application
requiring the understanding and prediction of temporal data.

B.6. Attention Mechanism

The attention mechanism is a transformative concept in machine learning that addresses
the limitations of traditional sequence-to-sequence models such as LSTM networks. It
mimics cognitive attention by allowing models to dynamically focus on different parts of
the input sequence for each step of the output B.3, thereby significantly improving the
handling and interpretation of sequential data.



B| Machine Learning Background 73

B.6.1. General Mechanism

Attention provides a way to weight the input data by relevance, enabling the model to
access any part of the input sequence directly. This selective focus mechanism is akin to
how human attention works, allowing for a more efficient and context-aware processing
of information. By doing so, models can overcome the bottleneck of having to encode all
information into a fixed-length vector, as was common in earlier seq2seq models.

B.6.2. Attention within LSTMs

Integrating attention with LSTM networks has yielded substantial improvements, partic-
ularly in tasks where the input and output sequences are of variable lengths. In standard
LSTMs, the capacity to remember information across long sequences diminishes with in-
creasing length due to the constraints of the hidden state’s size. With attention, LSTMs
can alleviate this issue by referencing the entire input sequence directly, which enhances
their ability to maintain and utilize long-range dependencies.

This enhancement is crucial for complex sequence modeling tasks such as language mod-
eling and text generation, where the context can significantly influence the meaning and
subsequent prediction. Attention allows LSTM to perform "soft" searches for relevant
parts of the input sequence that are most informative for predicting each word or char-
acter in the output sequence, leading to more accurate and coherent results.
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