
POLITECNICO DI MILANO
School of Industrial and Information Engineering

Master of Science in Mathematical Engineering:

Quantitative Finance

COS method for option pricing under a

regime-switching model with time-changed

Lévy processes

Supervisor: Daniele Marazzina

Master thesis by:

Trebbi Aurora

ID: 913416

Academic year: 2019-2020

Acknowledgements

First and foremost, I would like to thank my supervisor, Professor Daniele Marazz-

ina, who with his courses, in particular ”Computational finance”, has been funda-

mental in transmitting me interest in mathematical finance and especially for having

offered me his valuable advice throughout the process of this dissertation.

A special thanks goes to my family. To my father, for being present in every choice

of my life, for his unconditional love and for being my role model. To my mother,

for always believing in me. To my brother, for listening to my doubts, even knowing

nothing about the subject, just to be supportive. Finally, to my beloved grandmoth-

ers, Cesarina and Agata, both of them for bringing me luck at each exam in their

own way and in particular, Cesarina, for being the only person willing to remain in

religious silence just to let me study.

Last, but not least, I would like to thank all my friends, those I have known for

many years and those I met during this course of study, for sharing with me goals

and failures and distracting me on weekends. In particular Chiara, I could not wish

for a better roommate, and Lucrezia, for being always by my side, no matter what.

iii

Abstract

A significant task for a financial engineer is to continuously look for both models

that better describe reality and more efficient pricing methods for derivatives. For

such a reason, this dissertation focus on the application of the COS method under a

regime-switching model. The method is called the COS method, since it is based on

the use of Fourier cosine series expansion. Moreover, we adopt the theory of regime-

switching models since they allow to reproduce the evolution over time of market

conditions by including the possibility of switches among market scenarios (e.g.

bull or bear market) in the model parameters. The COS method enables switches

among different models without any additional cost. Its efficiency is further shown

implementing a numerical test to compare its performances with respect to other

well-known methods. Its versatility, instead, is shown by the multiplicity of financial

options to which it can be applied, starting from the basic vanilla options, up to the

path-dependent options.

v

Contents

Introduction 1

1 Preliminary notions 5

1.1 Basic tools . 5

1.2 Black-Scholes . 7

1.3 Jump processes . 9

1.3.1 Poisson process . 9

1.3.2 Lévy processes . 10

1.3.3 Building Lévy processes . 14

1.3.4 Merton . 15

1.3.5 Kou . 15

1.3.6 VG . 15

1.3.7 NIG . 16

1.3.8 CGMY . 16

1.3.9 Meixner . 17

1.4 Stochastic time-changed Lévy processes 17

1.4.1 CIR time change . 18

1.4.2 Γ-OU time change . 18

1.5 Heston . 19

1.6 Option pricing . 20

2 Regime switching models 23

2.1 Markov chain . 23

2.1.1 Transition and Intensity matrices 24

2.2 Notation and pricing formula . 25

3 COS method 29

3.1 Fourier Cosine series . 29

3.2 COS method under regime-switching 30

3.3 Coefficients V̄k for Plain Vanilla Options 32

3.4 Truncation range . 32

vii

viii Contents

3.5 Matrix exponentiation . 33

3.5.1 Two-state case . 34

3.6 Put-Call parity . 35

4 Calibration 37

4.1 Calibration results . 37

5 Method’s efficiency and comparisons 47

5.1 Lattice method . 47

5.2 FST method . 49

5.3 PDE method . 50

5.4 Numerical results . 53

6 Digital and butterfly options 55

6.1 Numerical Example . 56

7 Bermudan options 57

7.1 Pricing formula . 57

7.2 Coefficients V̄k . 58

7.3 Computation of Hi
k(ci, di, tm) . 58

7.4 Numerical Example . 60

8 Barrier options 63

8.1 Pricing formula . 64

8.2 Numerical Example . 65

9 American and continuously monitored barrier options 67

9.1 Numerical Example . 68

10 Asian options 71

10.1 Geometric Asian options . 72

10.1.1 Coefficients V̄k . 72

10.1.2 Pricing formula . 72

10.2 Arithmetic Asian option . 73

10.2.1 Coefficients V̄k . 73

10.2.2 Pricing formula . 75

10.2.3 Truncation range . 76

10.2.4 Clenshaw-Curtis quadrature 77

10.3 Numerical Example . 78

10.3.1 Monte Carlo under a two-regime model 80

Contents ix

Conclusion 83

A Cumulants 85

B Call Option Prices 87

C Matlab codes 91

C.1 Auxiliary functions . 91

C.1.1 Characteristic Exponents . 91

C.1.2 Cumulants . 94

C.1.3 Functions χk, ξk . 96

C.1.4 Coefficients V̄k . 97

C.1.5 Computation of H̄i . 99

C.1.6 Computation of M . 100

C.1.7 Put-Call parity . 101

C.1.8 Characteristic function under 2 regimes switching 101

C.1.9 Black-Scholes dynamics under 2 regimes switching 102

C.2 COS method . 104

C.2.1 Vanilla options . 104

C.2.2 Bermudan options . 105

C.2.3 Barrier options . 106

C.2.4 Asian options . 109

C.2.5 2RS Vanilla options . 112

C.2.6 2RS Digital and Butterfly options 113

C.2.7 2RS Bermudan options . 116

C.2.8 2RS Barrier options . 118

C.2.9 2RS Asian options . 122

C.3 Different methods . 125

C.3.1 Lattice method . 125

C.3.2 FST method . 127

C.3.3 PDE method . 132

Bibliography 135

List of Figures

3.1 Comparison of European call option values, directly obtained by the

COS method, with those obtained by the put-call parity 36

4.1 Differences between some of the calibrated models 41

5.1 Log-plot of absolute error against N for the European calls under the

Black-Scholes regime-switching model 54

xi

List of Tables

4.1 Calibration Lévy processes . 38

4.2 Calibration time-changed Lévy processes 38

4.3 Calibration regime-switching Lévy processes 38

4.4 Calibration regime-switching time-changed Lévy processes 39

4.5 Calibration Lévy processes . 42

4.6 Calibration time-changed Lévy processes 42

4.7 Calibration regime-switching Lévy processes 43

4.8 Calibration regime-switching time-changed Lévy processes 43

5.1 Cpu times for the different methods against N 54

6.1 Errors and cpu time for European, digital and butterfly call options

in a two-regime jump-diffusion Merton model 56

7.1 Errors and cpu time for Bermudan put option in a two-regime jump-

diffusion Merton model . 61

8.1 Errors and cpu time for up & out call option in a two-regime jump-

diffusion Merton model . 65

9.1 Errors and cpu time for the American put option and the up & out

continuously monitored call barrier option in the state 2 69

9.2 Errors and cpu time against s . 70

10.1 Prices and cpu time for geometric and arithmetic Asian put in a two-

regime Black-Scholes model with the COS method 79

10.2 Prices, 95% confidence intervals and cpu time for geometric and arith-

metic Asian put in a two-regime Black-Scholes model with the MC

method . 79

10.3 Prices and cpu time for geometric and arithmetic Asian put in a two-

regime jump-diffusion Merton model with the COS method 80

A.1 Cumulants . 85

xiii

xiv List of Tables

B.1 Call option prices on the S&P 500 index closed on 18 April 2002 . . . 87

B.2 Call option prices on the AAPL stock closed on 5 November 2020 . . 88

Introduction

A derivative is a financial instrument the value of which depends on other under-

lying entities, such as assets, indices, interest rates... Options are just a class of

derivatives and in general there exists a great variety of these, ranging from the

simplest ones, which are the so called vanilla options, to the most complex ones, the

so called exotic options.

Vanilla options include call and put options. A call (put) option is a contract that

gives the owner the right but not the obligation to buy (sell) the underlying asset

at a prespecified price: the strike price. Defining ST as the underlying value at the

option maturity T and K as the strike price, the call option has payoff (ST −K)+.

Similarly, put option payoff is (K − ST)+.

Belonging to the class of exotic options there are the path dependent options, the

values of which depend not only on the underlying value at maturity, but also on

the path history of the underlying price during the option’s life. This leads us to

another important distinction: European options which can be exercised only at

maturity and American options, which instead can be exercised at any time up to

maturity.

Option pricing is one of the main duties of a financial engineer. Analytical prices are

often unknown and therefore increasingly efficient numerical methods are sought.

The purpose of this dissertation is to present the application of the COS method,

known to be fast, accurate and versatile, under a regime-switching model. This

method, originally introduced in [7], has been extended to the regime-switching

model in [17]. Here we expand the discussion to Asian options, taking as starting

point [20].

We present the content of the dissertation in more detail:

Chapter 1 provides the basics of computational finance. It gives an overview of the

most popular models adopted for describing the dynamics of assets prices. Start-

ing from the well known Black-Scholes model, we arrive to the more realistic Lévy

processes, distinguishing between finite activity processes, such as Merton and Kou,

and infinite activity ones, VG, NIG, CGMY and Meixner. Then, in order to better

2 List of Tables

describe the features of the historical financial series, stochastic time-changed Lévy

and Heston models are tackled. Finally, in order to be able to price financial deriva-

tives, we review the concept of risk-neutral valuation.

Chapter 2 presents the theory of regime-switching models, the great benefit of which

is to fully represent the stochastic features of financial markets by allowing switches

in the parameters of the underlying process. Switches that are modeled via a con-

tinuous time, finite state Markov chain. Then, the notation that will be adopted

for the whole dissertation is presented and the pricing problem seen in the previous

chapter is readapted to this new framework.

Chapter 3 deals with adapting the COS method for option pricing introduced in [7]

to the regime-switching framework, as it is done in [17]. Here, we describe in detail

all the steps required by the method for the valuation of European options. Finally

we propose a remark. With a numerical test we show that, under certain conditions,

using the COS method for pricing call options can result in significant errors, thus,

whenever possible, the use of the well known put-call parity relation is suggested.

Chapter 4 aims to show that the financial world is in fact best described when com-

bining different time-changed Lévy models with regime-switching. In order to do

so, a calibration of the various models previously presented and also of some of their

possible combinations is set up. Hence, first of all, the problem is mathematically

formalized and later implemented exploiting real market data.

Chapter 5 aims to verify the performances of the COS method with respect to other

popular methods in literature, specifically the Lattice method, the Fourier space

time stepping method and the Partial differential equation method. For each of

them, a brief theoretical explanation is presented and the formulas used for pricing

are derived. Then, a numerical test shows that the efficiency of the COS method

with respect to the other methods is already achieved by pricing options under a

two-state Black-Scholes model with constant interest rate and dividend yield, which

is the simplest of the regime-switching models and thus all methods should perform

at their best.

Chapter 6 is the first in a series of chapters which aspire to extend the COS method

to pricing various types of options. Here digital and butterfly options are addressed

and since they differ from the vanilla options only in the payoff, their derivation is

straightforward. The chapter ends with a numerical test showing that the method

remains fast and efficient.

List of Tables 3

Chapter 7 extends the COS method to Bermudan options, which differ from vanilla

options as they can be early exercised on a set of prespecified dates. Therefore,

a backward in time recursive procedure to find the series coefficients of the option

values at the first early-exercise date is needed. Finally a numerical test is proposed.

Chapter 8 follows up the previous chapter. Indeed, barrier options have a payoff

depending upon the underlying price touching a preset barrier level and thus even

this type of options requires a backward in time recursive procedure. A numerical

test is then proposed once again.

Chapter 9 describes an approximation technique to extend the pricing to continu-

ously monitored options, the Richardson extrapolation, and verifies its efficiency in

a numerical test.

Chapter 10 focus on the application of the COS method to pricing Asian options,

path-dependent options which, differently from Bermudan and barrier options, re-

quire a forward in time recursive procedure. This to demonstrate the great versatility

of the COS method which can be easily extended to various types of options.

As regards Appendices, Appendix A displays the formulas for the cumulants of the

various models taken into consideration, which are needed in implementing the COS

method. Appendix B contains the data used in the calibration tests and Appendix C

reports the most important Matlabr codes developed to get the results discussed

throughout the dissertation.

Chapter 1

Preliminary notions

1.1 Basic tools

In this section we present the main mathematical notions that are needed in order

to price the various options by referring to [6].

For the basics of probability, such as sigma-algebras, probability measure/space,

stochastic process, we refer to [11].

Definition 1.1.1 Characteristic function

Let X be an Rd-valued random variable. Its characteristic function ϕX defined on

Rd is

∀u ∈ Rd, ϕX(u) = E[eiu·X] =

∫
Rd
eiu·xf(x)dx (1.1)

where f is the density function of X and i denotes the imaginary unit, which is

defined solely by i2 = −1.

Since ϕX is continuous in zero, we can write it as

ϕX(u) = eψX(u) (1.2)

ψX is called the characteristic exponent of X.

Proposition 1.1.1 Characteristic function and moments

1. If E[|Xn|] <∞ then ϕX has n continuous derivatives at u = 0 and

∀k = 1, . . . , n, mk ≡ E[Xk] =
1

ik
∂kϕX
∂uk

(0) (1.3)

2. If ϕX has 2n continuous derivatives at u = 0 then E[|X2n|] <∞ and

∀k = 1, . . . , 2n, mk ≡ E[Xk] =
1

ik
∂kϕX
∂uk

(0) (1.4)

6 Chapter 1. Preliminary notions

3. X possesses finite moments of all orders iff u 7→ ϕX(u) is C∞ at u = 0. Then

the moments of X are related to the derivatives of ϕX by

mn ≡ E[Xn] =
1

in
∂nϕX
∂un

(0) (1.5)

Definition 1.1.2 Moment generating function

The moment generating function of Rd-valued random variable X is the function

MX defined by

∀u ∈ Rd, MX(u) = E[eu·X] (1.6)

When MX is well defined, it can be formally related to the characteristic function

by

MX(u) = ϕX(−iu) (1.7)

If the moment generating function MX of a random variable X on R is defined on

a neighborhood of zero, then in particular all moments of X are finite and can be

recovered from the derivatives of M in the following manner

mn =
∂nMX

∂un
(0) (1.8)

Moreover, the characteristic exponent of X defined in (1.2) is also the cumulant

generating function. In particular, we have the following definition.

Definition 1.1.3 Cumulants

The cumulants of X are defined by

cn(X) =
1

in
∂nψX
∂un

(0) (1.9)

By exploiting Proposition 1.1.1 and equations (1.7) and (1.8), we can rewrite the

formula for computing the cumulants as

cn(X) =
∂n log(ϕX(−iu))

∂un
(0) (1.10)

This reformulation will be useful in Chapter 3.

Definition 1.1.4 Brownian motion

W = (Ω,F , (Ft)t≥0, (Wt)t≥0,P) stochastic process is a Wiener process, also known

as Brownian motion, if

• W0 = 0 a.s.

• Wt −Ws ⊥⊥ Fs, ∀s ∈ [0, t]

• Wt −Ws ∼ N(0, t− s)

1.2. Black-Scholes 7

Definition 1.1.5 Martingale

A stochastic process M = (Mt)t≥0 valued on R is a martingale if

• Mt ∈ L1(Ω,F ,P) ∀t

• E[Mt|Fs] = Ms, ∀s ∈ [0, t]

1.2 Black-Scholes

The price of an option depends, as mentioned before, on the values of the underlying

asset. Hence, modeling the underlying dynamics is a fundamental step in derivative

pricing.

In 1973 Black and Scholes proposed a model for the underlying stock dynamics that

became the reference for the financial world. Specifically, they considered a financial

market consisting of only two assets: a riskless asset Bt and a risky one St. The

former has the following dynamicsdBt = rBtdt

B0 = 1
(1.11)

where r is the risk-free interest rate and we assume it to be constant. If we also

assume that Bt can deliver a continuous dividend yield δ, then equation (1.11) can

be generalized to dBt = (r − δ)Btdt

B0 = 1
(1.12)

which has solution Bt = e(r−δ)t.

The risky asset, instead, follows the dynamics of a geometric Brownian motion, i.e.dSt = µStdt+ σStdWt

S0 > 0 given
(1.13)

where Wt is a Brownian motion defined on the historical probability measure P.

Moreover, µ is the drift term and σ is the diffusion term and they represent the

deterministic and the stochastic part of the process, respectively.

The solution of (1.13) is given by

St = S0e

(
µ−σ

2

2

)
t+σWt (1.14)

which follows a log-normal distribution.

In Black-Scholes model, other than the probability measure P, in order to price

8 Chapter 1. Preliminary notions

options a so-called risk-neutral probability measure Q is introduced. We will cover

this in detail in Section 1.6, here we just need to know that under this measure the

evolution over time of the risky asset corresponds on average to that of the riskless

one, i.e. we have the following the dynamicsdSt = (r − δ)Stdt+ σStdWt

S0 > 0 given
(1.15)

We have to specify that here Wt is defined on Q, hence it is not the same Brownian

motion as in (1.13). However, for convenience, we use the same symbol.

Then by comparing (1.13) and (1.15) it follows that µ = r − δ.
This financial model has been very successful since it is the simplest model that im-

poses positive prices and also provides closed formulas for the valuation of European

options. In the case of European call option, the valuation formula extended to the

case in which the underlying pays a continuous dividend yield δ 1 is given by

C(S0, K, t, r, δ, σ) = S0e
−δtN(d1)−Ke−rtN(d2) (1.16)

where

d1,2 =
log
(
S0

K

)
+
(
r − δ ± σ2

2

)
t

σ
√
t

(1.17)

For the standard proof see [2].

However, it is now a fact that Black-Scholes model is not suitable for option pricing

in the real economy, indeed its assumptions lead it to be an extreme simplification

of reality. Specifically, by analyzing the historical financial series, some empirical

facts common to a wide set of financial assets came out. These are known as stylized

facts (we refer to [5] and [6]) and highlight the limitations of Black-Scholes model

1. heavy tailedness and negative skewness the empirical distribution shows

heavier tails than those of a log-normal distribution and a negative skewness.

This leads to a problem of underestimation of extreme events (in particular

the negative ones)

2. volatility clustering high-volatility events tend to cluster in time

3. leverage effect the volatility of an asset is negatively correlated with the

return of that asset. It is intuitive that when a stock price falls, the market

becomes uncertain about the future of that quoted company and thus the

perceived riskiness increases

1this extension of BS is known as Garman-Kohlhagen model

1.3. Jump processes 9

4. volatility smile/surface σ does not remain constant over time and it depends

also on the strike K, thus plotting σ as a function of K (and T) we obtain the

typical volatility smile (surface)

5. non continuity jumps in the price dynamics are often observed

Unfortunately, it is not possible to have a stochastic process that includes all the

properties listed above. Anyway, to overcome these problems, many alternative

models have been proposed over the years and some of the most popular ones in

literature will be analyzed in the following sections.

1.3 Jump processes

The Lévy processes are stochastic processes incorporating jumps in the stock price

dynamics in order to account for its fat tailed and leptokurtic distribution. In this

section, we present the main concepts behind the vast theory of these processes. For

a detailed discussion, refer to [6].

1.3.1 Poisson process

The Poisson process is a fundamental example of stochastic process with discon-

tinuous trajectories and will be used as a building block for more complex jump

processes.

Before defining the Poisson process, we need to recall the concepts of exponential

random variable:

Y ∼ E(λ) f(y) = λe−λy1y≥0 (1.18)

and of Poisson random variable:

N ∈ N r.v., N ∼ P (λ) P(N = n) = e−λ
λn

n!
, ∀n ∈ N (1.19)

Now we can give the following definition.

Definition 1.3.1 Poisson Process

Let (τi)i≥1 be a sequence of independent exponential random variables with parameter

λ and Tn =
∑n

i=1 τi. The process (Nt, t ≥ 0) defined by

Nt =
∑
n≥1

1t≥Tn (1.20)

is called a Poisson process with intensity λ

The Poisson process is therefore defined as a counting process: it counts the number

of random times (Tn) which occur between 0 and t, where (Tn−Tn−1)n≥1 is an i.i.d.

sequence of exponential variables. Moreover, among its properties there are:

10 Chapter 1. Preliminary notions

• ∀ω, the sample path t → Nt(ω) is piecewise constant and increases by jumps

of size 1

• if t is fixed, Nt ∼ P (λt)

• Nt is cadlag: its paths are right continuous and left limited

• its density is P(Nt = n) = e−λt (λt)n

n!
, ∀n ∈ N

• its characteristic function is ϕ(u) = E[eiuNt] = eλt(e
iu−1), ∀u ∈ R

• independent increments: t1 < · · · < tn, Ntn −Ntn−1 ⊥⊥ Ntn−1 −Ntn−2 . . .

• homogeneous increments: ∀t > s, Nt −Ns ∼ Nt−s

In general, Nt is not a martingale, but to make it one we can define

Ñt = Nt − E[Nt] = Nt − λt (1.21)

Ñt is called compensated Poisson process.

Its characteristic function is ϕ(u) = eλt(e
iu−iu−1).

1.3.2 Lévy processes

To build a jump process to better describe the stock dynamics, so far we have the

following ingredients: Wt and Nt. However, by taking Nt the jump sizes will always

remain equal to 1. To obtain different jump sizes, we need a different process: the

compound Poisson process, which is a particular case of a Lévy process as stated in

Proposition 1.3.2.

Definition 1.3.2 Lévy process

A stochastic process (Xt)t≥0 defined on the probability space (Ω,F ,P) with values in

Rd is a Lévy process if it possesses the following properties:

• cadlag: right continuous and left limited trajectories

• X0 = 0

• independent increments: 0 < t1 < · · · < tn, Xtn −Xtn−1 ⊥⊥ Xtn−1 −Xtn−2 . . .

• stationary increments: Xt+h −Xt ∼ Xh −X0 = Xh

• stochastic continuity: ∀ε > 0, lim
h→0

P(|Xt+h −Xt| ≥ ε) = 0

1.3. Jump processes 11

Proposition 1.3.1 Characteristic function of a Lévy process

Let (Xt)t≥0 be a Lévy process on Rd. There exists a continuous function ψ : Rd → R
called the characteristic exponent of X, such that:

E[eiu·Xt] = etψ(u), u ∈ Rd (1.22)

The Wiener process is a Lévy process itself, but it is the only one with continuous

trajectories. Also Poisson processes are Lévy processes.

Black-Scholes model in the stock price is not a Lévy, indeed we know that its dy-

namics is given by (1.13) but S0 6= 0 otherwise St ≡ 0. However, we can take a Lévy

process Xt and define St = S0e
Xt , where Xt has driftless characteristic exponent

equal to ψ(u) = −σ2u2

2
.

Definition 1.3.3 Compound Poisson

A compound Poisson process with intensity λ > 0 and jump size distribution f is a

stochastic process Xt defined as

Xt =
Nt∑
i=1

Yi (1.23)

where jumps sizes Yi are i.i.d. with distribution f and (Nt) is a Poisson process with

intensity λ, independent from (Yi)i≥1

The Poisson process itself can be seen as a compound Poisson process such that

Yi ≡ 1.

Proposition 1.3.2 (Xt)t≥0 is compound Poisson process if and only if it is a Lévy

process and its sample paths are piecewise constant functions

Proposition 1.3.3 Let (Xt)t≥0 be a compound Poisson process on Rd. Its charac-

teristic function has the following representation

E[eiu·Xt] = exp

{
tλ

∫
Rd

(eiu·x − 1)f(dx)

}
, ∀u ∈ Rd (1.24)

where λ denotes the jump intensity and f the jump size distribution

Introducing a new measure ν(A) = λf(A), we can rewrite the formula (1.24) as

E[eiu·Xt] = exp

{
t

∫
Rd

(eiu·x − 1)ν(dx)

}
, ∀u ∈ Rd (1.25)

ν is called the Lévy measure of process (Xt)t≥0, it is a positive measure on Rd but

not a probability measure since
∫
ν(dx) = λ 6= 1.

To every cadlag process and in particular to every compound Poisson process (Xt)t≥0

12 Chapter 1. Preliminary notions

on Rd one can associate a random measure on Rd × [0,∞), describing the jumps of

X: for any measurable set B ⊂ Rd × [0,∞)

JX(B) = #{(t,Xt −Xt−) ∈ B} (1.26)

∀A ⊂ Rd measurable, if B = [t1, t2] × A this measure counts the number of jumps

occurring between t1 and t2 and having their sizes belonging to A.

In the case of compound Poisson process with intensity λ and jump size distribution

f , it can be proved that JX has intensity measure µ(dx×dt) = ν(dx)dt = λf(dx)dt.

This suggests an alternative interpretation of the Lévy measure of a compound

Poisson process as the average number of jumps per unit time.

Definition 1.3.4 Lévy measure

Let (Xt)t≥0 be a Lévy process on Rd. The measure ν on Rd defined by

ν(A) = E[#{t ∈ [0, 1] : ∆Xt 6= 0,∆Xt ∈ A}], A ∈ B(Rd) (1.27)

is called the Lévy measure of X: ν(A) is the expected number, per unit time, of

jumps whose size belongs to A

This definition implies that every compound Poisson process can be represented as

Xt =
∑
s∈[0,t]

∆Xs =

∫
[0,t]×Rd

xJx(ds× dx) (1.28)

where JX is a Poisson random measure with intensity measure ν(dx)dt. Hence, every

piecewise constant Lévy process X0
t can be be rewritten as the sum of its jumps.

Given a Brownian motion with drift and diffusion µt+ σWt, independent from X0,

the sum

Xt = µt+ σWt +X0
t = µt+ σWt +

Nt∑
i=1

Yi (1.29)

defines another Lévy process know as Jump diffusion model. However the Lévy

measure ν, due to the cadlag property, is finite for any compact set A such that

{0} /∈ A, but it is not necessarily a finite measure: if {0} ∈ A, Xt may have an

infinite number of infinitesimal jumps. In this case the sum of jumps becomes an

infinite series and its convergence imposes some conditions on ν, under which we

obtain a decomposition of Xt similar to the one above.

Proposition 1.3.4 Lévy-Itô decomposition

Let (Xt)t≥0 be a Lévy process on Rd and ν its Lévy measure.

• for any measurable compact set A ⊂ Rd\{0} : ν(A) <∞

•
∫
|x|≤1
|x|2ν(dx) <∞

1.3. Jump processes 13

•
∫
|x|>1

ν(dx) <∞

• ∃µ ∈ Rd and a brownian motion (Wt)t≥0 with covariance matrix A such that

Xt = µt+Wt +X l
t + lim

ε→0
X̃ε
t (1.30)

where

X l
t =

∫
|x|>1, s∈[0,t]

xJX(ds× dx)

X̃ε
t =

∫
ε≤|x|≤1, s∈[0,t]

x
(
JX(ds× dx)− ν(dx)ds

)

This decomposition entails that for every Lévy process there exist a vector µ, a

positive definite matrix A and a positive measure ν that uniquely determine its

distribution. The triplet (µ,A, ν) is called characteristic triplet of the Lévy process.

The following theorem express the relation existing between the characteristic triplet

and the characteristic exponent of a Lévy process.

Theorem 1.3.1 Lévy-Khinchin representation

Let (Xt)t≥0 be a Lévy process on Rd with characteristic triplet (µ,A, ν). Then

E[eiu·Xt] = etψ(u), u ∈ Rd (1.31)

with ψ(u) = iµ · u− 1

2
u · Au+

∫
Rd

(eiu·x − 1− iu · x1|x|≤1)ν(dx) (1.32)

Moreover, from the Lévy-Itô decomposition it follows also that every Lévy process

is the combination of a continuous part Xc
t = µt + Wt and a discontinuous part,

composed by a finite sum of big jumps X l
t and a possibly infinite sum of small jumps

X̃ε
t .

Hence, we can define the following distinctions:

• if
∫
|x|≤1

ν(dx) <∞ we have a finite activity Lévy process, otherwise an infinite

activity

• if
∫
|x|≤1
|x|ν(dx) < ∞ we have a finite variation Lévy process, otherwise an

infinite variation

In other words, finite activity Lévy processes are essentially diffusion processes punc-

tuated by jumps at random intervals. The distribution of their jump sizes is known

and they are composed by a Brownian motion plus a compound Poisson. In this

category, the most popular processes are the ones of Merton and Kou. The infinite

14 Chapter 1. Preliminary notions

activity Lévy processes, instead, present an infinite number of infinitesimal jumps,

thus the distribution of their jump sizes does not exist (jumps arrive infinitely of-

ten). Moreover they do not necessarily contain a Brownian component (in that case

the characteristic triplet becomes (µ, 0, ν)) as the dynamics of jumps is already rich

enough to generate nontrivial small time behaviour. Many models from this class

can be constructed via Brownian subordination, it is the case of Variance Gamma,

Normal Inverse Gaussian and CGMY processes.

1.3.3 Building Lévy processes

As we mentioned above, one way to construct a Lévy process consists in the Brow-

nian subordination. A subordinator is essentially a Lévy process (Xt)t≥0 such that

Xt ≥ 0 ∀t.
Let St be a subordinator and let Wt be a Brownian motion independent from S.

Subordinating Brownian motion with drift Xt = θt + σWt by the process S we ob-

tain a new Lévy process Yt = θSt + σW (St) = XSt . This process is still a Brownian

motion but observed in the stochastic time scale given by St. The financial inter-

pretation is that of business time: time speeds up or slows down during periods of

high or low business activity, respectively.

Let us consider the tempered α-stable subordinator, which is a three-parameter pro-

cess with Lévy measure

ρ(x) =
ce−λx

x1+α
1x>0 (1.33)

where c > 0 is the intensity of the jump size, λ > 0 governs the decay of big jumps

and 0 ≤ α < 1 governs the importance of small jumps. Usually it is convenient to

use the following reparametrization

ρ(x) =
1

Γ(1− α)

(
1− α
ν

)1−α
e−(1−α)x/ν

x1+α
(1.34)

where ν is the variance of the subordinator at time 1 and it actually determines how

random the time change is.

By time changing an independent Brownian motion (with drift θ and volatility σ)

by a tempered α-stable subordinator, we get the so-called normal tempered stable

process the characteristic exponent of which, in general case, is

ψ(u) =
1− α
να

{
1−

(
1 +

ν(−iθu+ u2σ2/2)

1− α

)α}
(1.35)

The choice α = 0 corresponds to a Variance-Gamma process (VG) and α = 0.5 to a

Normal Inverse Gaussian (NIG). In the following sections, we will see some details

about the most popular Lévy models in literature.

1.3. Jump processes 15

1.3.4 Merton

It is a finite activity Lévy process, with the form (1.29) where the jumps in the log-

price Xt folllow a Gaussian distribution Yi ∼ N(µ̃, σ̃2). Overall it has 4 parameters:

• σ ∈ [0, 1] diffusion volatility

• λ > 0 jump intensity

• µ̃ ∈ R mean jump size

• σ̃ ∈ [0, 1] standard deviation of jump size

The characteristic exponent is given by

ψ(u) = −σ
2u2

2
+ λ
(
e−

σ̃2u2

2
+iµ̃u − 1

)
(1.36)

1.3.5 Kou

It is a finite activity Lévy process, with the form (1.29) where the jumps in the

log-price Xt follow an asymmetric exponential distribution with density

f(dx) = [pλ+e
−λ+x1x>0 + (1− p)λ−e−λ−|x|1x<0]dx (1.37)

Thus, overall there are 5 parameters:

• σ ∈ [0, 1] diffusion volatility

• λ > 0 jump intensity

• λ+ > 0 governs the decay of the tails for the distribution of positive jump sizes

• λ− > 0 as λ+ but for negative jump sizes

• p ∈ [0, 1] represents the probability of an upward jump

The characteristic exponent is given by

ψ(u) = −σ
2u2

2
+ iuλ

(
p

λ+ − iu
− 1− p
λ− + iu

)
(1.38)

1.3.6 VG

It is an infinite activity Lévy process, obtained as a normal tempered stable process

with α = 0. Overall it has 3 parameters:

• θ ∈ R drift of the Brownian motion such that 1− ν
(
θ + σ2

2

)
> 0

16 Chapter 1. Preliminary notions

• σ ∈ [0, 1] volatility of the Brownian motion

• ν > 0 variance of the subordinator

Substituting α = 0 in the equation (1.35), its characteristic exponent becomes

ψ(u) = −1

ν
log

(
1− iuθν +

σ2u2ν

2

)
(1.39)

1.3.7 NIG

It is an infinite activity Lévy process, obtained as a normal tempered stable process

with α = 0.5. Overall it has 3 parameters:

• θ drift of the Brownian motion

• σ volatility of the Brownian motion

• ν variance of the subordinator

Substituting α = 0.5 in the equation (1.35), its characteristic exponent becomes

ψ(u) =
1

ν

(
1−
√

1− 2iuθν + σ2u2ν
)

(1.40)

However, there is also available another parametrization (see [1]) such that the NIG

process Yt can be written as

Yt = XSt (1.41)

where Xt is a Brownian motion with drift β and diffusion coefficient 1 and where St

is an Inverse Gaussian Lévy process with parameters γ and
√
ω2 − β2, where ω > 0

and |β| < ω. In this case, the expression for the characteristic exponent is

ψ(u) = γ
(√

ω2 − β2 −
√
ω2 − (β + iu)2

)
(1.42)

1.3.8 CGMY

It is a pure jump process, i.e. it does not contain Brownian part and it is obtained

by generalizing the VG process. Overall it has 4 parameters:

• C > 0 measure of the level of activity

• G > 0 controls the rate of exponential decay on the right of the Lévy density

• M > 0 as G but regarding the left of the Lévy density

1.4. Stochastic time-changed Lévy processes 17

• Y < 2 determines the path behaviour: if Y < 0 the paths have finite jumps

in any finite interval, if not the process has infinite activity. Moreover, if

Y ∈ [1, 2) the process is of infinite variation and if Y = 0 the process reduces

to VG

Its characteristic exponent is given by

ψ(u) = CΓ(−Y)
(

(M − iu)Y −MY + (G+ iu)Y −GY
)

(1.43)

For further details, see [4] or [16].

1.3.9 Meixner

As CGMY, it is a pure jump process. Overall there are 3 parameters: α > 0,

|β| < π, η > 0. Its characteristic exponent is given by

ψ(u) = 2η log

(
cos(β/2)

cosh((αu− iβ)/2)

)
(1.44)

1.4 Stochastic time-changed Lévy processes

Lévy models can reflect stylized facts like negative skewness and heavy tailedness.

However, the volatility clustering effect cannot be explained by the Lévy processes

because of their stationary increment property. A solution to this is to allow the

parameters to modify the timely evolution of volatility. Hence, the Lévy models

with stochastic time were introduced in [3].

Stochastic time-changed Lévy models are simply Lévy processes subordinated or

time changed by stochastic clocks. Let us consider the Lévy process Xt and the

instantaneous rate of time change yt such that the new clock is given by its integral

Yt =

∫ t

0

ysds (1.45)

For simplicity define the time-changed Lévy Zt = XYt , thus the stochastic time-

changed risk-neutral asset price process is given by

St = S0
e(r−δ)t

E[eZt]
eZt (1.46)

By defining st = log(St/S0) and noticing that E[eZt] = ϕZ(−i) we can rewrite (1.46)

as

st = (r − δ)t+ Zt − logϕZ(−i) (1.47)

Hence, the characteristic function of st driven by a stochastic clock is given by

ϕs(u, t) = E[eiust] = eiu[(r−δ)t−logϕZ(−i)]E[eiuZt] (1.48)

18 Chapter 1. Preliminary notions

where the characteristic function of Zt is obtained simply as follows

E[eiuZt] = ϕY (−iψX(u), t, y0) (1.49)

Therefore the risk-neutral characteristic exponent of st is

ψs(u, t) = iu(r − δ)t+ log

(
ϕY (−iψX(u), t, y0)

ϕY (−iψX(−i), t, y0)iu

)
(1.50)

For the computations, we use two stochastic clocks very popular in literature: the

Cox-Ingersoll-Ross (CIR) and the Gamma-Ornstein-Uhlenbeck (Γ-OU) processes.

1.4.1 CIR time change

The Cox–Ingersoll–Ross (CIR) process yt solves the SDE

dyt = κ(η − yt)dt+ λ
√
ytdWt (1.51)

where κ is the rate of mean reversion, η is the long-run rate of time change and λ

governs the volatility of the time change. The presence of the square root of yt in

the diffusion term excludes negative values for yt. The characteristic function of the

integrated CIR process is given by

ϕCIR(u, t) = E[exp(iuYt)|y0] =
exp(κ2ηt/λ2) exp(2y0iu/(κ+ γ coth(γt/2)))

(cosh(γt/2) + κ sinh(γt/2)/γ)2κη/λ2

(1.52)

where γ =
√
κ2 − 2λ2iu

1.4.2 Γ-OU time change

The Γ-OU process yt solves the SDE

dyt = −λytdt+ dzλt (1.53)

where z is a subordinator and λ > 0. The characteristic function of the Γ-OU

stochastic clock Yt is given by

ϕΓ-OU(u, t) = E[exp(iuYt)|y0]

= exp

(
iuy0

λ
(1− e−λt) +

a1λ

iu− λa2

(
a2 log

(
a2

a2 − iuλ−1(1− e−λt)

)
− iut

))
(1.54)

1.5. Heston 19

1.5 Heston

In the previous section we introduced the stochastic time-changed Lévy processes in

order to account for the effects of bursts of volatility. Another model used with this

aim is the Heston model (1993), which belongs to the class of stochastic volatility

models. Hence, it does not require a stochastic time change but it is the volatility

parameter to be stochastic.

It is defined by the coupled two-dimensional SDEdXt/Xt =
√
VtdW

1
t

dVt = κ(θ − Vt)dt+ ε
√
VtdW

2
t

(1.55)

where Xt represents an asset price process and Vt the instantaneous variance of

relative changes to Xt, in the sense that the quadratic variation of dXt/Xt over

[t, t+ dt] is Vtdt. Moreover,

• V0 > 0 spot variance

• θ > 0 mean

• κ > 0 mean reversion speed

• ε > 0 vol-of-vol

• W 1 and W 2 scalar Brownian motions such that dW 1
t dW

2
t = ρdt with correla-

tion ρ ∈ [−1, 1]

The characteristic function is available in closed form. Its risk-neutral version is

given by

ϕ(u, t) = eA(u,t)+B(u,t)Vt+iuXt (1.56)

where

A(u, t) =
κθ

ε2

(
(κ− ρεui−D)t− 2 log

(
Ge−Dt − 1

G− 1

))
(1.57)

B(u, t) =
κ− ρεui−D

ε2

(
1− e−Dt

1−Ge−Dt

)
(1.58)

G =
κ− ρεui−D
κ− ρεui +D

(1.59)

D =
√

(κ− ρεui)2 + u(i + u)ε2 (1.60)

Vt follows the dynamics of a Cox-Ingersoll-Ross process (CIR), which does not guar-

antee that Vt is greater than 0, indeed Vt can become null with a non-zero probability.

20 Chapter 1. Preliminary notions

However, there exists a condition, sufficient but not necessary, for which Vt is always

positive

2κθ ≥ ε2 (1.61)

This is known as Feller’s condition.

1.6 Option pricing

We are now able to deal with the pricing problem, which is the aim of this disser-

tation. The concepts below are introduced to actually use the models previously

presented. For a complete discussion, refer to [2].

Definition 1.6.1 Equivalent measures

Given P, Q measures on Ω we say that Q ∼ P if

∀A ∈ Ω, Q(A) > 0 ⇔ P(A) > 0

Definition 1.6.2 Equivalent martingale measure

Let P be the real measure, Q is an EMM iff

• Q ∼ P

• St/Bt is a martingale under Q

where Bt and St are the risky and riskless assets introduced in Section 1.2. EMM

is often referred to as just ”a martingale measure”.

Theorem 1.6.1 First fundamental theorem

The market is arbitrage free iff ∃Q martingale measure

An arbitrage opportunity is the possibility to make a riskless profit without net

investment of capital. The principle of no arbitrage states that a model of a financial

market should not allow for arbitrage possibilities. This theorem allows to obtain

the formula of risk neutral valuation, so called since it is the kind of formula which

would be used for valuing a derivative in a risk neutral world.

Theorem 1.6.2 Risk neutral valuation formula

Given the market model (B, S) and an option with payoff Φ(ST), the pricing formula

takes the form

V (s, t) = e−r(T−t)EQ[Φ(ST)|St = s] (1.62)

where Q is a (not necessarily unique) martingale measure

1.6. Option pricing 21

Another important notion is that of completeness of the market. In simple terms,

the market is said to be complete if any derivative product can be replicated from

more basic instruments, such as cash and the underlying asset. The unique existence

of Q is connected with this concept by the following theorem.

Theorem 1.6.3 Second fundamental theorem

Assume that the market is arbitrage free. Then the market is complete iff Q is

unique

In order to use equation (1.62), we need to determine Q such that St/Bt, i.e. the

discounted stock price process that pays a continuous dividend yield, is a martingale.

In particular, for Lévy models, the following proposition holds.

Proposition 1.6.1 Let (Xt)t≥0 be a Lévy process with characteristic triplet (µ, σ2, ν)

verifying ∫
|y|≥1

eyν(dy) <∞

Then Yt = eXt is a martingale iff

ψ(−i) = µ+
σ2

2
+

∫ ∞
−∞

(ex − 1− x1|x|≤1)ν(dx) = 0

Indeed Yt is a martingale iff E[Yt] = E[Y0] = E[eX0] = 1, but E[eXt] = etψ(−i).

Therefore, we take Xt Lévy process and we define St = S0e
Xt . Then, since we want

e−(r−δ)tS0e
Xt to be a martingale, it follows from the above proposition that this is

equivalent to require

ψ(−i) = r − δ (1.63)

Hence, the idea is to define X̄t such that

X̄t with
(
0, σ2, ν

)
Xt with

(
r − δ − ψX̄(−i), σ2, ν

)
ψX(u) = iu

(
r − δ − ψX̄(−i)

)
+ ψX̄(u)

Chapter 2

Regime switching models

In Chapter 1 we already discussed the need to better fit market data. Lévy processes,

stochastic time-changed Lévy processes and stochastic volatility models where de-

veloped with this aim. However, to have a better view of the financial world, it is

important to also consider its continuous changes over time, for instance periods

of high and low volatility alternate unpredictably. This is the reason why regime

switching models have been introduced: indeed they exploit a continuous time, fi-

nite state Markov chain to allow switches of model parameters which account for

the influence of major economic factors on asset price dynamics in a parsimonious

manner. Before beginning the discussion, we need to introduce the main concepts

behind a Markov chain (refer to [12] and [18]).

2.1 Markov chain

A Markov chain is a stochastic model describing a sequence of possible events in

which the probability of each event depends only on the state attained in the previous

event. The formal definition is the following.

Definition 2.1.1 A random process (αt)t≥0 taking values in the state space J , ei-

ther finite or countable, is said to be a Markov chain if ∀j ∈ J and ∀s ∈ [0, t] we

have

P(αt = j | αr : r ≤ s) = P(αt = j | αs) (2.1)

Let us denote the probability of transition from the state i to the state j (i, j ∈ J)

in the time interval [s, t+ s] by

pij(s, t+ s) = P(αt+s = j | αs = i) (2.2)

If it holds true that pij(s, t + s) = pij(0, t) for any i, j ∈ J and s, t ≥ 0, then the

Markov chain is said to be homogeneous and in this case we define pij(s, t + s) :=

pij(t). In our discussion, we will assume Markov chains to be homogeneous.

24 Chapter 2. Regime switching models

2.1.1 Transition and Intensity matrices

A fundamental step in the study of continuous-time Markov chains is the intro-

duction of the so called transition rates. For fixed t, the (possible infinite) matrix

P (t) = (pij(t)) is called transition matrix and it satisfies the following properties:

(a) pij(t) ≥ 0, ∀i, j ∈ J

(b)
∑

j∈J pij(t) = 1, ∀i ∈ J

(c) pij(t+ s) =
∑

k∈J pik(t)pkj(s), ∀i, j ∈ J , ∀t, s ≥ 0

The last identity is usually referred to as the Chapman-Kolmogorov equation.

We also assume that pij(t) are continuous for t ≥ 0 and that

(d) lim
t→0

pij(t) =

1 if i = j

0 if i 6= j

It turns out that conditions (a)-(d) imply a great deal more than might be expected.

One of these results is that pij(t) are differentiable at t = 0, more precisely we have

the following theorem.

Theorem 2.1.1 If the transition probabilities are continuous, then the following

limits exist

if i 6= j, qij = lim
t→0+

pij(t)

t
qii = lim

t→0+

pii(t)− 1

t
(2.3)

where 0 ≤ qij <∞ for i 6= j and qii ≤ 0 (possibly qii = −∞).

If the state space J is finite, then qii > −∞ and the following equations hold true

d

dt
pij(t) =

∑
k∈J

pik(t)qkj, pij(0) = δij (2.4)

d

dt
pij(t) =

∑
k∈J

qikpkj(t), pij(0) = δij (2.5)

qij are called transition rates

The matrix Q = (qij)i,j∈J is called (infinitesimal) generator of the Markov chain or

simply intensity matrix.

Thanks to the differentiability of pij(t) and the homogeneity of the Markov chain,

we have that

P(αt+h = j | αt = i) =

pij(h) = qijh+ o(h), if i 6= j

pii(h) = 1 + qiih+ o(h), if i = j
(2.6)

2.2. Notation and pricing formula 25

The above structure implies the relation qii = −
∑

j 6=i qij.

Finally notice that equations (2.4) and (2.5), known as forward and backward Kol-

mogorov equations, respectively, can be rewritten in matrix form, thus taking for

instance the forward equation and a finite number of states, this is equivalent to

P ′(t) = P (t)Q (2.7)

which has solution

P (∆t) =

p11 . . . p1J

...
. . .

...

pJ1 . . . pJJ

 = P (0)eQ∆t = eQ∆t (2.8)

where we used property (d), which says that P (0) = I, the identity matrix.

Finally, given the notion of transition rates, one can prove that the waiting time in

state i ∈ J = {1, . . . , J} is exponentially distributed with parameter −qii. On the

other hand, given that the Markov chain exits the state i, the event of transition to

state j occurs with probability qij/(−qii).

2.2 Notation and pricing formula

We can now use finite-state continuous time Markov chain to regulate the transition

from one market state to another. First, let us fix some notation that we will use

throughout the dissertation by referring to [17].

Define J = {1, 2, . . . , J} as the state space, being every state characterized by its

own parameters (ri, δi, . . .) with i ∈ J , and let αt{t∈[0,T]} be the Markov chain taking

values i ∈ J and Q := {qij, 1 ≤ i, j ≤ J} ∈ RJ×J its associated intensity matrix.

Let us take a regime-switching exponential Lévy model St = S0e
Xt , S0 > 0, where

Xt is a Lévy process in which the evolution of asset prices is influenced by the

Markov chain αt. If αt is in state i, then X i
t is a Lévy process with characteristic

triplet (µi, σ
2
i , ν(i, z)) and characteristic exponent ψi(u). Hence, all the results listed

in Chapter 1 continue to be true, provided of course to adapt the notation to this

new framework. For instance, the Lévy-Khinchin formula for ψi(u) introduced in

Theorem 1.3.1 becomes

ψi(u) = iµiu−
1

2
σ2
i u

2 +

∫
R

(
eiuz − 1− iuz1|z|≤1

)
ν(i, dz) (2.9)

However, we have to consider all the states i ∈ J simultaneously since we have an

only underlying asset which can jump between different regime states not known a

priori. This will lead to a matrix form for the characteristic exponent, which will be

a function of the single ψi, as we will see later on.

26 Chapter 2. Regime switching models

In case of a plain vanilla derivative, the risk-neutral valuation formula is then gen-

eralized to

vi(x, t) = EQ

[
exp

(
−
∫ T

t

r(αs)ds

)
Φ(XT)

∣∣∣∣Xt = x, αt = i

]

=

∫
R

exp

(
−
∫ T

t

r(αs)ds

)
f(y|x, αt = i)Φ(y)dy (2.10)

where Q is the risk-neutral measure, Φ(XT) is the payoff function of our financial

derivative and f(y|x, αt = i) is the transition density function of the terminal return

XT conditional that we are in economic state i. The transition density function is

often unknown, but it can be recovered from the inverse Fourier integral using the

characteristic function which is often available.

Therefore, it is natural to consider Fourier transform methods for option pricing

under such models. Among these, there are the method of Fourier space time

stepping (FST) (discussed in Chapter 5) and the COS method.

Based on any Lévy process with characteristic triplet (µi, σ
2
i , ν(i, z)), the resulting

system of PIDEs under the risk-neutral measure for the European option v(X i, t) is

given by  ∂
∂t
vi(x, t) + Livi(x, t)− (ri − qii)vi(x, t) = 0

vi(x, T) = Φ(XT)
(2.11)

where vi(x, t) ∈ C2,1, i = 1, 2, . . . , J denotes the option price at time t, with log-spot

equal to x and conditional on the state αt = i at time t and Li is the generator of

the regime-switching Lévy process given as

Livi(x, t) =µi
∂

∂x
vi(x, t) +

1

2
σ2
i

∂2

∂x2
vi(x, t) +

∑
j 6=i

qijvj(x, t)

+

∫
R\{0}

(
vi(x+ z, t)− vi(x, t)− z1|z|≤1

∂

∂x
vi(x, t)

)
ν(i, dz) (2.12)

We recall that µi under the risk-neutral measure can be deduced following the same

procedure as in Section 1.6, i.e. introducing another Lévy process X̄ i
t with charac-

teristic triplet (0, σ2
i , ν(i, z)) and characteristic exponent ψ̄i(u), it follows that

µi = ri − δi − ψ̄i(−i) (2.13)

By applying the Fourier transform F to (2.11), [10] and [17] show that the charac-

teristic exponent of the Lévy process can be factored out of F so that the system of

PIDEs reduces to a system of ODEs:(∂t + ψi(u)− (ri − qii))Fi +
∑

j 6=i qijFj = 0

Fi(u, T) = F [Φ(XT)](u)
(2.14)

2.2. Notation and pricing formula 27

where Fi(u, t) = F [vi](u, t).

In matrix form, equation (2.14) can be displayed as(∂t + Ψ(u))F̄ (u, t) = 0

F̄ (u, T) = F [Φ(XT)](u)1̄′
(2.15)

where F̄ is a column vector of Fi’s and 1̄′ = [1, . . . , 1]′ ∈ RJ×1.

The matrix characteristic exponent Ψ ∈ RJ×J is defined as

Ψ(u) =


ψ1(u)− r1 + q11 q12 q13 . . .

q21 ψ2(u)− r2 + q22 q23 . . .
...

. . .

qJ1 qJ2 . . . ψJ(u)− rJ + qJJ

 (2.16)

By knowing the final condition, the solution of the system of ODEs in equation

(2.15) can easily be found by

F̄ (u, t) = ϕτ (u)F̄ (u, T) (2.17)

where ϕτ (u) is the characteristic function of the J regime-switching Lévy process

Xt such that ϕτ (u) = exp{τΨ(u)} is a J × J matrix with τ = T − t . Option prices

can then be obtained by taking a reverse Fourier transform. For European options

v̄ = F−1[ϕτ (u)F̄ (u, T)] (2.18)

where v̄ = [v1, v2, . . . , vJ]′ is the vector of regime-dependent option values.

Chapter 3

COS method

In this chapter we present the application of the Fourier series expansion of cosines in

the context of numerical integration as a more efficient alternative method to those

based on FFT, indeed equation (2.18) converges slowly whereas the COS method is

proven to have exponential convergence.

The COS method was initially introduced in [7] and generalized in [8], however here

we extend it to price options under the regime-switching model, as it is done in [17].

3.1 Fourier Cosine series

Let f : [0, π]→ R, its cosine expansion is given by

f(θ) =

∞∑′

k=0

Ak · cos(kθ) (3.1)

with

Ak =
2

π

∫ π

0

f(θ) cos(kθ)dθ (3.2)

where
∑′ indicates that the first term in the summation is weighted by one half.

For functions with a generic domain f : [a, b]→ R, the Fourier-cosine series expan-

sion can easily be obtained via a change of variables:

θ :=
x− a
b− a

π x =
b− a
π

θ + a (3.3)

Thus

f(x) =

∞∑′

k=0

Ak · cos
(
kπ
x− a
b− a

)
(3.4)

Ak =
2

b− a

∫ b

a

f(x) cos
(
kπ
x− a
b− a

)
dx (3.5)

30 Chapter 3. COS method

3.2 COS method under regime-switching

Here we refer to [17]. Consider a set of prespecified monitoring dates {t0, t1, . . . , tM},
where 0 = t0 < t1 < . . . tm < · · · < tM = T , with ∆t = tm − tm−1 and T being the

final time. Also define

τ i =

∫ tm

tm−1

1αs=i ds (3.6)

to denote the occupation time of the Markov chain αt in state i during the interval

[tm−1, tm]. Finally τ is the sum of all τ i and is equal to the time step ∆t.

The starting point for pricing European options with the COS method, as with

many other pricing methods of the financial world, is the use of the risk-neutral

valuation formula, which in this case reads

h̄(x, tm−1) = EQ[v̄(Xtm , tm)|Xtm−1 = x] =

∫
R

F(y|x, τ)v̄(y, tm)dy (3.7)

where v̄ and h̄ denote the vector of regime dependent option values and continuation

values, respectively, and x and y are the state variables at time tm−1 and tm.

As mentioned before, the matrix transition density function F, such that F(y|x, τ) =

diag
(
f̄(y|x, τ)

)
with f̄(y|x, τ) ∈ RJ×1, usually is not known, on the other hand the

characteristic function is often available. It is why we exploit the relation between

transition density and characteristic function, which is given by

f̄(y|x, τ) =
1

2π

∫
R
ϕτ (u|x)e−iuy1̄′du (3.8)

The Fourier cosine series of formula (3.4) can be used only for functions with finite

support, thus exploiting the fact that the density rapidly decays to zero as y → ±∞,

we can truncate the integration range without losing significant accuracy to [a, b] ∈ R
obtaining

h̄1(x, tm−1) =

∫ b

a

F(y|x, τ)v̄(y, tm)dy (3.9)

Adapting the Fourier cosine series expansion of formula (3.4), we have

h̄1(x, tm−1) =

∫ b

a

∞∑′

k=0

Ak(x) cos
(
kπ
y − a
b− a

)
v̄(y, tm)dy (3.10)

where

Ak(x) =
2

b− a

∫ b

a

F(y|x, τ) cos
(
kπ
y − a
b− a

)
dy (3.11)

is the diagonal matrix of the series coefficient of the Fourier cosine expansion of the

transition density function and belongs to RJ×J .

Then, we interchange summation and integration and define

V i
k (tm) :=

2

b− a

∫ b

a

cos
(
kπ
y − a
b− a

)
vi(y, tm)dy (3.12)

3.2. COS method under regime-switching 31

V̄k(tm) = [V 1
k (tm), V 2

k (tm), . . . , V J
k (tm)]′.

Thus, also truncating the infinite series, we obtain

h̄2(x, tm−1) =
1

2
(b− a)

N−1∑′

k=0

Ak(x)V̄k(tm) (3.13)

where h̄2 is an approximation to h̄1 which converges exponentially or algebraically

with increasing N as proven in the error analysis section of [17].

Additionally, we have that Ak(x) in equation (3.11) can be approximated by Dk(x),

i.e.

Dk(x) =
2

b− a
Re
(
e−ikπ

a
b−aϕτ

(kπ

b− a

∣∣∣x)) (3.14)

Indeed

Dk(x) =
2

b− a
Re
(
e−ikπ

a
b−aϕτ

(kπ

b− a

∣∣∣x))
=

2

b− a
Re
(
e−ikπ

a
b−a

∫
R

F(y|x, τ)eiy
kπ
b−ady

)
=

2

b− a
Re
(∫

R
F(y|x, τ)eikπ

y−a
b−a dy

)
=

2

b− a
Re
(∫

R
F(y|x, τ)

(
cos
(
kπ
y − a
b− a

)
+ i sin

(
kπ
y − a
b− a

))
dy
)

=
2

b− a

∫
R

F(y|x, τ) cos
(
kπ
y − a
b− a

)
dy

≈ 2

b− a

∫ b

a

F(y|x, τ) cos
(
kπ
y − a
b− a

)
dy = Ak(x)

The characteristic function for Lévy processes ϕτ (u|x) can be represented as

ϕτ (u|x) := ϕ(u)eiux, u ∈ R (3.15)

such that the approximation in equation (3.13) can be simplified to

h̄3(x, tm−1) =

N−1∑′

k=0

Re
(
eikπ

x−a
b−aϕ

(kπ

b− a

))
V̄k(tm) (3.16)

Define

Λ̄k(tm) := ϕ
(kπ

b− a

)
V̄k(tm) (3.17)

Then, the COS formula for the European option in state i ∈ J is given by

vi(x, t0) =

N−1∑′

k=0

Re
(
eikπ

x−a
b−a Λi

k(tM)
)

(3.18)

where Λi
k(tM) is the ith element of Λ̄k(tM) in equation (3.17) for i = 1, 2, . . . , J .

32 Chapter 3. COS method

3.3 Coefficients V̄k for Plain Vanilla Options

In order to use equation (3.18) to price options, first we need to compute V̄k. Let

us denote the log-asset prices by x := log(S0/K) and y := log(ST/K), with St the

underlying price at time t and K the strike price.

The payoff of European options in terms of log-asset prices is given by

Φ(y, tM) = vi(y, tM) = [α ·K(ey − 1)]+ with α =

 1 for a call

−1 for a put
(3.19)

Let us define the functions

χk(c, d) : =

∫ d

c

ey cos
(
kπ
y − a
b− a

)
dy

=
1

1 +
(
kπ
b−a

)2

[
cos
(
kπ
d− a
b− a

)
ed − cos

(
kπ
c− a
b− a

)
ec

+
kπ

b− a
sin
(
kπ
d− a
b− a

)
ed − kπ

b− a
sin
(
kπ
c− a
b− a

)
ec
]

(3.20)

ξk(c, d) : =

∫ d

c

cos
(
kπ
y − a
b− a

)
dy

=


[

sin
(
kπ d−a

b−a

)
− sin

(
kπ c−a

b−a

)]
b−a
kπ

k 6= 0

d− c k = 0
(3.21)

(for the complete proof refer to [7]).

Thus, using these functions and (3.19) into (3.12), we obtain

V i
k (tM) =

2

b− a

∫ b

a

cos
(
kπ
y − a
b− a

)
[α ·K(ey − 1)]+dy

=

 2
b−aK[χk(0, b)− ξk(0, b)] for a call

2
b−aK[ξk(a, 0)− χk(a, 0)] for a put

(3.22)

3.4 Truncation range

The choice of the two bounds a and b for the integration range is very important.

It is intuitive that choosing an interval too small or too large can lead to significant

errors. Extending to the regime-switching framework what is reported in [7], we

define ai and bi, i ∈ J , such that

ai = x0 + ci1 − L
√
ci2 +

√
ci4

bi = x0 + ci1 + L

√
ci2 +

√
ci4 (3.23)

3.5. Matrix exponentiation 33

a = min
i
{ai} and b = max

i
{bi} (3.24)

where x0 = log(S0/K), L is a constant parameter (typically L = 10) and cin denotes

the nth cumulant of X i
t . The cumulants of a general Lévy process X i can be obtained

by adapting the equations (1.9) and (1.10) to the framework of regime-switching

Lévy models, i.e. using either

cin(X) =
1

in
∂n(tψi(u))

∂un

∣∣∣∣∣
u=0

(3.25)

or

cin(X) =
∂nf i(u)

∂un

∣∣∣∣∣
u=0

(3.26)

where f i(u) = log(ϕi(−iu)).

We report in Appendix A the cumulants of the Lévy processes presented in Sec-

tion 1.3. However, for the stochastic time-changed Lévy processes, it may be more

difficult to find the derivatives analytically. Formulas reveal to be complicated and

tediously long. Hence, we calculate them numerically using finite differences. There-

fore, we need the 1st, 2nd and 4th finite differences denoted by dnf
i(·), which for some

small h > 0 are derived from (3.26) as

d1f
i(u) =

f i(u+ h)− f i(u− h)

2h

d2f
i(u) =

f i(u+ h)− 2f i(u) + f i(u− h)

h2

d4f
i(u) =

f i(u+ 3h)− 2f i(u+ 2h) + 4f i(u)

4h4

−f i(u+ h)− f i(u− h)− 2f i(u− 2h) + f i(u− 3h)

4h4

Then the cumulants ci1, ci2 and ci4 are d1f
i(0), d2f

i(0) and d4f
i(0), respectively.

3.5 Matrix exponentiation

In order to evaluate (3.17) for all k = 0, . . . , N − 1, it is convenient to consider the

matrix formulation

Λ̄(tm) = ϕτ (ū)V̄ (tm) = exp{τΨ(ū)}V̄ (tm) (3.27)

where ū = [u0, u1, . . . , uN−1]′ with uk = kπ
b−a . Here ϕτ (ū) and Ψ(ū) are JN × JN

matrices and qij in equation (2.16) is multiplied by the identity matrix on RN×N .

34 Chapter 3. COS method

Moreover, Λ̄(tm) is reordered such that

Λ̄(tm) = [Λ1
0(tm),Λ1

1(tm), . . . ,Λ1
N−1(tm),Λ2

0(tm), . . . ,ΛJ
N−1(tm)]′

V̄ (tm) = [V 1
0 (tm), V 1

1 (tm), . . . , V 1
N−1(tm), V 2

0 (tm), . . . , V J
N−1(tm)]′

Evaluating this matrix exponential is not an easy task. Indeed the expm function

in Matlabr which is based on Padé approximants has O(N3) complexity. Hence,

this procedure for high values of N can become computationally demanding. It is

why [17] propose alternative methods: an exact formula for the two-state case and

a very efficient approximation for generic J > 2 states.

However, in this dissertation, we will focus only on the two-state case since this

already provides good fit to market data and the increasing of J leads to a larger

number of parameters involved which causes instability, imprecisions, making the

additional computational load not worth the effort. Nevertheless, for the sake of

completeness of analysis, we use a notation for generic J states.

3.5.1 Two-state case

When we have J = 2 states we can compute the matrix exponential with an exact

formula. Indeed we have

Ψ(uk) =

[
ψ̃1(uk) q12

q21 ψ̃2(uk)

]
(3.28)

where ψ̃i(uk) = ψi(uk)− ri + qii, i = 1, 2. Its eigenvalues are given by

s1,2(uk) =
1

2

(
ψ̃1(uk) + ψ̃2(uk)±

√
ψ̃1(uk)2 − 2ψ̃1(uk)ψ̃2(uk) + ψ̃2(uk)2 + 4q12q21

)

Then

ϕτ (uk) = eτΨ(uk) = es2(uk)τI +
es2(uk)τ − es1(uk)τ

s2(uk)− s1(uk)
(Ψ(uk)− s2(uk)I) (3.29)

with I identity matrix in R2×2.

This will hold for all values of uk such that ϕτ (ū) in equation (3.27) becomes a block

diagonal matrix, i.e.

ϕτ (ū) =

[
ϕτ (ū)1,1 ϕτ (ū)1,2

ϕτ (ū)2,1 ϕτ (ū)2,2

]
(3.30)

where ϕτ (ū)i,j has non-zero elements [ϕτ (u0)i,j,ϕτ (u1)i,j, . . . ,ϕτ (uN−1)i,j]
′ along its

main diagonal only.

3.6. Put-Call parity 35

3.6 Put-Call parity

As stated in [7], when pricing call options with the COS method, the solution’s

accuracy exhibits sensitivity regarding the size of the truncated domain, i.e. the

choice of parameter L in (3.23). This holds specifically for call options under certain

Lévy jump processes with fat-tailed distributions. Indeed their unbounded payoff

may introduce a significant cancellation error for large values of L.

In detail, assuming K(eb − 1) ≥ 0, the truncation error in the COS method for a

call option is given by

ε̄ = h̄(x, T)− h̄1(x, T)

=

∫
R\[a,b]

F(y|x, τ)v̄(y, T)dy

≥
∫ +∞

b

F(y|x, τ)v̄(y, T)dy

=

∫ +∞

b

F(y|x, τ)K(ey − 1)1̄′dy

≥ K(eb − 1)

∫ +∞

b

F(y|x, τ)1̄′dy

Thus it is intuitive that the larger [a, b], the larger K(eb− 1), which grows exponen-

tially with respect to b. Hence, although the value of
∫ +∞
b

F(y|x, τ)1̄′dy decreases

as the integration domain increases, the total error might increase.

Since put options are not affected by this, for pricing call options one can exploit

the well known Put-Call parity which reads

vcall(x, t0) = vput(x, t0) + S0e
−δT −Ke−rT (3.31)

Let us stress that, intuitively, this relation can be used even in regime-switching

models only if r and δ remain constant in the different regimes. To see in practice

what we just described, we propose the example presented in [21] adapted to the

regime-switching framework.

We consider a two-state CGMY model, with Y values close to 2, so as to have a

distribution with very heavy tails. The parameters are: S0 = 100, K = 100, T =

0.1, r = 0.1, δ = 0.05, C = 1, G = 5, M = 5, Y = [1.5, 1.98]′, q12 = 0.5974, q21 =

1e − 5. To price numerically the call option, we implement both the direct COS

method and the one taking into account the put-call parity. By plotting the results

against different values of L ∈ [8, 10] we obtain the following figures.

36 Chapter 3. COS method

8 8.5 9 9.5 10

L

18.838

18.84

18.842

18.844

18.846

18.848

18.85

18.852

C
a
ll

O
p
ti
o
n
 V

a
lu

e

Direct COS

Put-Call parity

(a) State 1

8 8.5 9 9.5 10

L

87.39

87.395

87.4

87.405

87.41

87.415

87.42

87.425

C
a
ll

O
p
ti
o
n
 V

a
lu

e

Direct COS

Put-Call parity

(b) State 2

Figure 3.1: Comparison of European call option values, directly obtained by the

COS method, with those obtained by the put-call parity

We can clearly see that the call prices obtained by the put-call parity do not deviate

from the reference solutions in both states, for all integration ranges. The parity

leads to robust formulas for pricing European call options by the COS method, and

hence, whenever we encounter r and δ constant, we will apply this relation.

Chapter 4

Calibration

The calibration problem is of considerable interest in computational finance and

beyond. In the financial world, it consists in estimating the risk-neutral parameters

of a certain model which give the model prices consistent with the market prices.

Thus, it allows you to compare the different pricing models we have seen so far in

order to choose the one which best fits the market data.

Therefore, a calibration process requires an objective function to be minimised. In

our case, this is given by the so called Root Mean Square Error

min
θ∈A

RMSE(θ) = min
θ∈A

√√√√ ∑
options

(Market price−Model price(θ))2

number of options
(4.1)

where θ is the vector of model parameters and A is its admissibility domain.

To implement the procedure described, we use the lsqnonlin Matlabr function

which solves nonlinear least squares problems. However, this function finds a local

solution, not a global one, and thus the choice of the starting values for the param-

eters is really crucial and must be prudent.

To compute the option prices we use the COS method with N = 212. Moreover, we

remark the fact that, since our datasets contain call option prices, due to the pos-

sible convergence problems highlighted in Section 3.6, we made use of the put-call

parity relation.

4.1 Calibration results

First, we set up a calibration procedure considering as dataset the table of call

options on the S&P 500 index (taken from [16]) which is reported in Appendix B.

Below we report the obtained calibration results in descending order of RMSE.

38 Chapter 4. Calibration

Table 4.1: Calibration Lévy processes

Model Parameters RMSE

BS σ = 0.1806 6.7382

VG σ = 0.1791, ν = 0.7206, θ = −0.1370 3.5574

Meixner α = 0.3903, β = −1.4913, η = 0.3558 3.2366

NIG ω = 6.3199, β = −3.9686, γ = 0.1638 3.0983

Merton σ = 0.1383, µ̃ = −9.9977, σ̃ = 0.0767, λ = 0.0351 2.1669

CGMY C = 0.0278, G = 0.0027, M = 2.1152, Y = 0.7871 2.0324

Kou σ = 5e− 7, p = 0.9440, λ+ = 11.3157, λ− = 0.0178, λ = 0.8775 1.7831

Heston V0 = 0.0225, θ = 0.1339, κ = 0.3705, ε = 0.3044, ρ = −0.7611 0.8106

Table 4.2: Calibration time-changed Lévy processes

Model Parameters RMSE

VG-CIR σ = 0.1613, ν = 0.0809, θ = −0.1251, 0.5057

k = 0.6198, η = 1.5649, λ = 2.0359

Meixner-CIR α = 0.1225, β = −0.5906, η = 3.3813, 0.4929

k = 0.5747, ηCIR = 1.5736, λ = 1.9509

NIG-CIR ω = 18.6177, β = −4.8502, γ = 0.4709, 0.4848

k = 0.5461, η = 1.5738, λ = 1.8866

VG-GOU σ = 0.1565, ν = 0.0857, θ = −0.2099, 0.4464

λ = 1.2553, a1 = 0.5860, a2 = 0.6376

CGMY-CIR C = 0.0071, G = 0.0598, M = 11.4255, Y = 1.6826, 0.4367

k = 0.3914, η = 1.3985, λ = 1.3589

Meixner-GOU α = 0.1107, β = −0.9843, η = 3.6324, 0.4221

λ = 1.1588, a1 = 0.5880, a2 = 0.6498

NIG-GOU ω = 22.4157, β = −9.5143, γ = 0.4848, 0.4053

λ = 1.0760, a1 = 0.5919, a2 = 0.6790

CGMY-GOU C = 0.0257, G = 2.6531, M = 32.7961, Y = 1.4708, 0.3649

λ = 0.8943, a1 = 0.6190, a2 = 0.9747

Table 4.3: Calibration regime-switching Lévy processes

Model Parameters RMSE

2RS BS σ1 = 0.1486 σ2 = 0.2115, 5.8866

q12 = 1.512, q21 = 1e− 5

2RSMM σ1 = 0.1522, ν1 = 0.0605, θ1 = −0.2685, 0.3856

VG & NIG ω2 = 6.8699, β2 = −6.6748, γ2 = 0.0662,

q12 = 0.7837, q21 = 1e− 5

4.1. Calibration results 39

Model Parameters RMSE

2RS VG σ1 = 0.1541 ν1 = 0.0614, θ1 = −0.2544, 0.3758

σ2 = 0.2299, ν2 = 5.1315, θ2 = −0.2061,

q12 = 0.7289, q21 = 1e− 5

2RS Meixner α1 = 0.0905, β1 = −1.0184, η1 = 5.1949, 0.3651

α2 = 0.5751, β2 = −2.7545, η2 = 0.0769,

q12 = 0.7082, q21 = 1e− 5

2RSMM C1 = 0.0762, G1 = 7.2908, M1 = 40.6165, 0.3492

CGMY & Meixner Y1 = 1.2709, α2 = 0.6198, β2 = −2.8190,

η2 = 0.0651, q12 = 0.6037, q21 = 1e− 5

2RSMM C1 = 0.0686, G1 = 6.9063, M1 = 38.2677, 0.3460

CGMY & VG Y1 = 1.2911, σ2 = 0.2577, ν2 = 6.7102,

θ2 = −0.2361, q12 = 0.5752, q21 = 1e− 5

2RS NIG ω1 = 26.3844, β1 = −12.3251, γ1 = 0.5226, 0.3437

ω2 = 6.0287, β2 = −6.0127, γ2 = 0.0499,

q12 = 0.5611, q21 = 0.0512

2RS CGMY C1 = 0.9026, G1 = 14.4446 M1 = 37.9758, 0.3389

C2 = 0.0541, G2 = 0.0127, M2 = 10.5510,

Y = 0.6591, q12 = 0.5974, q21 = 1e− 5

2RS Kou σ1 = 0.1240, p1 = 3e− 13, λ+,1 = 20.5976, 0.3254

λ−,1 = 20.0841, λ1 = 2.7386, σ2 = 0.0412,

p2 = 1e− 5, λ+,2 = 1.0010, λ−,2 = 1.5197,

λ2 = 0.3333, q12 = 0.5416, q21 = 0.0160

2RS Merton σ1 = 0.1301, µ̃1 = −0.1521, σ̃1 = 3e− 8, 0.3133

λ1 = 0.5060, σ2 = 0.0282, µ̃2 = −0.9951,

σ̃2 = 0.6580, λ2 = 0.2351, q12 = 0.4646, q21 = 0.2036

Table 4.4: Calibration regime-switching time-changed Lévy processes

Model Parameters RMSE

2RSMM VG-GOU σ1 = 0.1610, ν1 = 0.0599, θ1 = −0.1560, 0.3066

& VG-CIR λ1 = 0.4844, a1,1 = 1.2459, a2,1 = 0.4058,

σ2 = 0.0790, ν2 = 0.2969, θ2 = −0.2484,

k2 = 0.5854, η2 = 1e− 5, λ2 = 0.7392,

q12 = 2.4981, q21 = 1.5414

2RS VG-CIR σ1 = 0.1293, ν1 = 0.0385, θ1 = −0.2786, 0.2556

k1 = 0.3073, η1 = 2.5613, λ1 = 1.3381

σ2 = 0.2837, ν2 = 0.0010, θ2 = −0.2537,

40 Chapter 4. Calibration

Model Parameters RMSE

k2 = 5.9938, η2 = 0.1079, λ2 = 4.4056

q12 = 3.1516, q21 = 1.5949

2RS VG-GOU σ1 = 0.1429, ν1 = 0.0001, θ1 = −0.0992, 0.2475

λ1 = 0.3358, a1,1 = 9.6476, a2,1 = 0.5059

σ2 = 0.0304, ν2 = 0.0699, θ2 = −0.5887,

λ2 = 1.2465, a2,1 = 0.2465, a2,2 = 1.4037

q12 = 9.8471, q21 = 0.9211

2RSMM CGMY-CIR C1 = 0.0165, G1 = 1.3122, M1 = 19.0381, 0.2472

& Meixner GOU Y1 = 1.5301, k1 = 0.2497, η1 = 1.2176,

λ1 = 1.2889, α2 = 0.0908, β2 = 0.7954,

η2 = 10.9211, λ2 = 5.4519, a1,2 = 3e− 5,

a2,2 = 0.0823, q12 = 0.6748, q21 = 1.3954

2RSMM CGMY-CIR C1 = 0.0147, G1 = 1.6194, M1 = 20.6193, 0.2435

& CGMY-GOU Y1 = 1.5567, k1 = 0.0765, η1 = 7.7933,

λ1 = 1.3810, C2 = 0.0928, G2 = 6.6012,

M2 = 21.2152, Y2 = 1.3066, λ2 = 6.1880,

a1,2 = 0.3100, a2,2 = 2.1783

q12 = 1.6291, q21 = 0.8706

2RS NIG-CIR ω1 = 36.4911, β1 = −5.6275, γ1 = 0.7611, 0.2381

k1 = 0.3610, η1 = 5.9673, λ1 = 2.9410

ω2 = 28.6197, β2 = −17.1623, γ2 = 0.6258,

k2 = 3.4886, η2 = 0.3190, λ2 = 0.1403

q12 = 6.1739, q21 = 4.4264

2RS NIG-GOU ω1 = 60.5808, β1 = 35.8057, γ1 = 0.7786, 0.2162

λ1 = 5.5575, a1,1 = 2e− 5, a2,1 = 0.1058,

ω2 = 60.2640, β2 = −47.4782, γ2 = 0.5530,

λ2 = 1.0145, a1,2 = 0.5245, a2,2 = 1.5544,

q12 = 19.0685, q21 = 4.5030

By analyzing these results, we can immediately see that, coming as no surprise,

Black-Scholes model leads to larger mispricing than any other model. By intro-

ducing Lévy models, we can already observe a remarkable improvement but only

incorporating a stochastic volatility, as with the Heston model or even better with

the time-changed Lévy models, this improvement becomes really substantial. And

we can do even better, by allowing the possibility of switching regime.

Indeed, as outlined in Chapter 2, with the regime-switching models we can have a

more complete view of the financial world since they reflect the continuous changes

4.1. Calibration results 41

of market conditions. Moreover, another interesting aspect of regime-switching con-

sists of allowing switches not only in the model parameters, but also in the models

as well. And here comes one of the strengths of the COS method: for how it is built,

it can easily take into account changes in the models without any additional cost.

Finally, as mentioned before, we will consider only the case J = 2, but even with

such a small J we still get various possible combinations of different models, thus

we considered only a set of these and below we report the figures relating to the

more significant steps that allowed to arrive to the best calibrated model between

the ones considered, which revealed to be the 2RS NIG-GOU1.

900 1000 1100 1200 1300 1400 1500

Strikes

0

20

40

60

80

100

120

140

160

180

200

O
p
ti
o
n
 V

a
lu

e

Mkt prices

BS prices

900 1000 1100 1200 1300 1400 1500

Strikes

0

20

40

60

80

100

120

140

160

180

200

O
p
ti
o
n
 V

a
lu

e

Mkt prices

NIG prices

900 1000 1100 1200 1300 1400 1500

Strikes

0

20

40

60

80

100

120

140

160

180

200

O
p
ti
o
n
 V

a
lu

e

Mkt prices

2RS NIG GOU prices

Figure 4.1: Differences between some of the calibrated models

In order to prove the robustness of the result, another calibration procedure should

be implemented, but this time taking data during a crisis period. Nowadays, we

are in the middle of the coronavirus pandemic, which is causing the worst global

economic crisis since the Great Depression. Hence, we download from Thomson

Reuters website a current dataset of European call options on the AAPL stock,

considering the most liquid ones (those with a high open interest value) with different

1We don’t exclude the possibility that a better model can be found since we focused only on a

set of all the possible combinations of two different models. However, we can consider ourselves

satisfied being the final RMSE equal to 0.2162

42 Chapter 4. Calibration

maturities. As regards the value of the interest rate r, we point out that r actually

depends on maturity, but this is not true in our models. We must therefore download

the yield curve and choose a constant value coherent with the maturities taken.

Below we report the results of this second calibration.

Table 4.5: Calibration Lévy processes

Model Parameters RMSE

BS σ = 0.3669 0.3697

NIG ω = 879.4969, β = −859.8439, γ = 1.1526 0.2786

CGMY C = 33.2156, G = 22.2316, M = 1740.9071, Y = 0.2679 0.2777

Meixner α = 0.0020, β = −3.0888, η = 49.3772 0.2768

VG σ = 0.0375, ν = 0.0101, θ = −3.7144 0.2768

Kou σ = 0.0281, p = 4e− 5, λ+ = 95.0217, λ− = 36.7421, λ = 94.9603 0.2755

Merton σ = 0.0770, µ̃ = −0.0852, σ̃ = 6e− 7, λ = 18.6672 0.2700

Heston V0 = 0.1592, θ = 0.1387, κ = 1.9015, ε = 0.7047, ρ = −0.2366 0.1547

Table 4.6: Calibration time-changed Lévy processes

Model Parameters RMSE

CGMY-CIR C = 0.0376, G = 0.9799, M = 11.4161, Y = 1.7105, 0.1533

k = 0.6888, η = 0.3414, λ = 0.2964

VG-CIR σ = 0.3721, ν = 0.0209, θ = −1.0998, 0.1506

k = 0.5333, η = 4e− 7, λ = 0.2657

NIG-CIR ω = 20.2734, β = −8.1150, γ = 2.5672, 0.1502

k = 0.5336, η = 5e− 7, λ = 0.2582

Meixner-CIR α = 0.1799, β = −0.5915, η = 9.7034, 0.1497

k = 2.7377, ηCIR = 0.6705, λ = 0.9018

CGMY-GOU C = 0.1442, G = 3.8267, M = 18.2318, Y = 1.4640, 0.1471

λ = 0.6714, a1 = 1.1595, a2 = 4.4645

Meixner-GOU α = 0.1001, β = −1.1519, η = 22.8780, 0.1462

λ = 0.6533, a1 = 1.1983, a2 = 6.1784

VG-GOU σ = 0.3604, ν = 0.0159, θ = −1.4357, 0.1461

λ = 0.6482, a1 = 1.1541, a2 = 5.8326

NIG-GOU ω = 26.0200, β = −12.0298, γ = 2.9702, 0.1459

λ = 0.6633, a1 = 1.3111, a2 = 6.8134

4.1. Calibration results 43

Table 4.7: Calibration regime-switching Lévy processes

Model Parameters RMSE

2RS BS σ1 = 0.3974 σ2 = 0.3146, 0.3031

q12 = 1.7908, q21 = 1.2040

2RS CGMY C1 = 8.0519, G1 = 16.2283 M1 = 47.1655, 0.1310

C2 = 0.0269, G2 = 0.0246, M2 = 20.7043,

Y = 0.5749, q12 = 0.5758, q21 = 1.2042

2RS Meixner α1 = 0.0536, β1 = −1.7583, η1 = 45.9504, 0.1306

α2 = 0.0513, β2 = −3.1306, η2 = 0.0177,

q12 = 0.5240, q21 = 1.1217

2RSMM C1 = 0.5281, G1 = 8.9699, M1 = 368.6334, 0.1304

CGMY & Meixner Y1 = 1.3096, α2 = 0.1877, β2 = −3.0833,

η2 = 0.0199, q12 = 0.5588, q21 = 1.2144

2RSMM σ1 = 0.2099, ν1 = 0.0071, θ1 = −4.0745, 0.1302

VG & NIG ω2 = 1.6276, β2 = −1.0598, γ2 = 0.1562,

q12 = 0.8469, q21 = 0.4127

2RS NIG ω1 = 1857.3471, β1 = −1834.9438, γ1 = 1.1215, 0.1302

ω2 = 1.6007, β2 = −1.6050, γ2 = 0.1497,

q12 = 0.8374, q21 = 0.4620

2RS Kou σ1 = 0.2752, p1 = 1e− 5, λ+,1 = 55.2008, 0.1300

λ−,1 = 25.1872, λ1 = 27.9020, σ2 = 0.0710,

p2 = 7e− 6, λ+,2 = 1.0003, λ−,2 = 3.7271,

λ2 = 0.7076, q12 = 0.7903, q21 = 0.5965

2RSMM C1 = 0.7017, G1 = 9.9899, M1 = 460.4624, 0.1300

CGMY & VG Y1 = 1.2542, σ2 = 0.2975, ν2 = 5.1175,

θ2 = −0.1136, q12 = 0.7052, q21 = 0.8730

2RS VG σ1 = 0.1440 ν1 = 0.0065, θ1 = −4.6519, 0.1297

σ2 = 0.3307, ν2 = 2.1893, θ2 = −0.1294,

q12 = 0.8487, q21 = 0.4128

2RS Merton σ1 = 0.2033, µ̃1 = −0.0818, σ̃1 = 0.0097, 0.1294

λ1 = 17.6795, σ2 = 2e− 5, µ̃2 = −0.1782,

σ̃2 = 0.3683, λ2 = 0.6980, q12 = 0.7540, q21 = 0.5086

Table 4.8: Calibration regime-switching time-changed Lévy processes

Model Parameters RMSE

2RSMM CGMY-CIR C1 = 0.0779, G1 = 1.6966, M1 = 10.9642, 0.1372

& Meixner GOU Y1 = 1.5576, k1 = 0.3183, η1 = 1.3491,

λ1 = 0.4094, α2 = 0.1141, β2 = 1.2509,

44 Chapter 4. Calibration

Model Parameters RMSE

η2 = 5.0622, λ2 = 1.2483, a1,2 = 0.0014,

a2,2 = 0.3108, q12 = 0.8264, q21 = 0.4472

2RS NIG-CIR ω1 = 17.5165, β1 = −1.2189, γ1 = 2.7341, 0.1348

k1 = 1.2828, η1 = 3.9711, λ1 = 1.6565

ω2 = 25.1103, β2 = −17.1673, γ2 = 1.5345,

k2 = 1.7949, η2 = −0.1190, λ2 = 0.0288

q12 = 18.3695, q21 = 6.1298

2RSMM VG-GOU σ1 = 0.3554, ν1 = 0.0116, θ1 = −1.7154, 0.1270

& VG-CIR λ1 = 0.0359, a1,1 = 2.8973, a2,1 = 2.9873,

σ2 = 0.0163, ν2 = 0.8791, θ2 = −0.5853,

k2 = 5.8691, η2 = 4e− 5, λ2 = 0.1660,

q12 = 0.6789, q21 = 1.4390

2RS NIG-GOU ω1 = 23.6859, β1 = −6.2431, γ1 = 3.4914, 0.1255

λ1 = 20.8632, a1,1 = 3.0541, a2,1 = 3.3499,

ω2 = 81.3249, β2 = −24.6381, γ2 = 0.1219,

λ2 = 0.0984, a1,2 = 9.7914, a2,2 = 0.1896,

q12 = 0.5045, q21 = 0.6046

2RS VG-GOU σ1 = 0.1840, ν1 = 0.0073, θ1 = −4.0415, 0.1166

λ1 = 0.0421, a1,1 = 9.8060, a2,1 = 15.4299

σ2 = 0.6464, ν2 = 0.8073, θ2 = −0.3477,

λ2 = 4.2687, a2,1 = 1e− 5, a2,2 = 10.3190

q12 = 1.3212, q21 = 2.3879

2RSMM CGMY-CIR C1 = 1.1804, G1 = 11.2176, M1 = 255.5387, 0.1144

& CGMY-GOU Y1 = 1.1519, k1 = 6.3486, η1 = 0.4934,

λ1 = 0.5214, C2 = 0.0994, G2 = 75.8750,

M2 = 71.1163, Y2 = 1.3590, λ2 = 0.0022,

a1,2 = 3.7557, a2,2 = 0.0942 q12 = 4.7010, q21 = 3.4896

2RS VG-CIR σ1 = 0.0009, ν1 = 0.0060, θ1 = −5.3094, 0.1121

k1 = 5.6021, η1 = 0.7059, λ1 = 0.5938

σ2 = 0.1631, ν2 = 0.0350, θ2 = −0.1399,

k2 = 0.3245, η2 = 5.0823, λ2 = 0.5504

q12 = 3.9621, q21 = 1.2086

By comparing the results of the two calibrations, we can immediately see that in

the first case we went from an RMSE equal to 6.7382 in Black-Scholes to an RMSE

equal to 0.2162 in the best regime-switching model, while in the second case Black-

Scholes and the best model present RMSEs of 0.3697 and 0.1121, respectively. Such

4.1. Calibration results 45

a discrepancy is due to how the error has been defined in formula (4.1): indeed if

instead of the RMSE, we used the following relative error

Err(θ) =
||Market prices−Model prices(θ)||2

||Model prices(θ)||2
(4.2)

we would find that for instance the errors for Black-Scholes in the two calibrations

of 6.7382 and 0.3697 would become respectively equal to 0.0897 and 0.0237 and

therefore comparable.

Hence, we can draw the same conclusions as before, with the only difference that

here the best calibrated model is the 2RS VG-CIR.

Chapter 5

Method’s efficiency and

comparisons

In this chapter, our goal is to verify the efficiency of the COS method with respect

to other well known methods in literature, specifically:

• Lattice method

• Fourier space time stepping (FST) method

• Partial differential equation (PDE) method

To this end, we review the example presented in [17]. We consider a two-state

Black-Scholes model using the same input data and parameters found by the first

calibration procedure described in the previous chapter, i.e.

r = 0.019, δ = 0.012, T = 1.192, S0 = 1124.47, K = 1125,

σ1 = 0.1486, σ2 = 0.2115, q12 = 1.512, q21 = 1e− 5

and we price a European call option with the aforementioned methods. All the

results are compared with the analytic option values of [14] given as: 92.63798967107

and 105.89517232057 for state 1 and state 2, respectively.

Let us see in detail how these methods work.

5.1 Lattice method

Here we refer to [19].

The lattice method consists in a fast and simple trinomial tree model. With respect

to the original CRR binomial tree, an extra branch is introduced so that the stock

price is allowed to remain unchanged, or go up or go down by a ratio.

Below we illustrate the situation in the first time interval ∆t

48 Chapter 5. Method’s efficiency and comparisons

S0u

S0 S0m

S0d

with u = eσ
√

∆t, m = 1 and d = 1/u.

The trinomial tree we propose is a combining tree with the idea that, if the regime

state changes, instead of increasing the number of branches (which include the dif-

ferent rates, dividend yields and volatilities of each regime state), we change the

probability, so the tree is still combining.

Taking up the notation defined in Chapter 2, assume that there are J states. ∀i ∈ J ,

denote by πiu, π
i
m, πid the risk-neutral probabilities corresponding to when the stock

price increases, remains the same and decreases, respectively. Then, we have the

following set of equations

πiu + πim + πid = 1 (5.1)

πiuu+ πim + πidd = e(ri−δi)∆t (5.2)

(πiu + πid)σ
2∆t = σ2

i ∆t (5.3)

In order to ensure σ to be greater than all σi, define

σ = max
1≤i≤J

σi + (
√

1.5− 1)σ̄ (5.4)

where σ̄ is the arithmetic mean of σi.

Then define λi = σ/σi, so λi > 1 and the set of risk-neutral probabilities can be

found in this way

πim = 1− 1

λi
2 (5.5)

πiu =
e(ri−δi)∆t − d− πim(1− d)

u− d
(5.6)

πid =
u− e(ri−δi)∆t − πim(u− 1)

u− d
(5.7)

After the whole lattice is constructed, the main idea of the pricing method is pre-

sented here.

5.2. FST method 49

Let T be the maturity of the option, N the number of time steps and ∆t = T/N .

At time step t, there are 2t + 1 nodes in the lattice. Let St,n and V j
t,n be the stock

price and the option value, respectively, at the nth node at time step t under the

jth regime state.

Now we need the transition probability matrix in order to find the price of the

derivative at each node by iteration. And from Section 2.1.1 we know that, given

the intensity matrix Q, the transition probability matrix, denoted by P , can be

found as in (2.8).

Considering that V i
N,n = [α · (SN,n − K)]+ for all states i where SN,n = S0u

N+1−n

and using the following equation recursively:

V i
t,n = e−ri∆t

[
J∑
j=1

pij(π
i
uV

j
t+1,n+2 + πimV

j
t+1,n+1 + πidV

j
t+1,n)

]
(5.8)

the price of the option under all regimes can be obtained.

5.2 FST method

Here we follow [10] and [13], adapting the discussion to the regime-switching frame-

work. The main idea behind this method consists in starting from the pricing

problem expressed as a partial integro differential equation (PIDE) and then pass

to Fourier space, where the problem can be reduced to solve ordinary differential

equations (ODE).

To numerically solve (2.18) we consider a grid for the set Ω = [0, T] × [xmin, xmax]

which is {tm|m = 0, . . . ,M} × {xn|n = 0, . . . , N − 1} where tm = m∆t with

∆t = T/M and xn = xmin + n∆x with ∆x = (xmax − xmin)/(N − 1).

We consider also a grid for the frequency domain: wn = −wmax + n∆w, n =

0, 1, . . . , N with wmax = π/∆x and ∆w = 2wmax/N .

Selecting the grid is no easy task. We choose the boundary points such that first,

given the interest in pricing in a neighborhood of x = 0, xmin = −xmax and then

such that the interval is large enough to contain all information necessary for pricing

the option but at the same time small enough to maintain numerical accuracy. The

same holds true for choosing wmax.

We also take into account the suggestions reported in [10] i.e. xmax ∈ [2, 5] works

well for diffusion models with low volatility and short maturity, while xmax ∈ [4, 8]

is preferable for models with a large volatility term or a dominant jump component.

For each regime state i ∈ J , let us define vmi,n := vi(tm, xn) and v̂mi,n := v̂i(tm, wn)

the corresponding point transformed in the Fourier space.

50 Chapter 5. Method’s efficiency and comparisons

Using this notation, we have

v̂mi,n = F [vi](tm, wn) ≈
N−1∑
k=0

vmi,ke
−iwnxk∆x

= e−iwnxmin∆x
N−1∑
k=0

vmi,ke
−ink/N

= αn FFT[v̄mi](n) (5.9)

with αn = e−iwnxmin∆x and FFT[v̄mi](n) denoting the nth component of the discrete

Fourier transform (DFT) of the vector v̄mi , where

v̄m = [vm1,0, v
m
1,1, . . . , v

m
1,N , v

m
2,0, . . . , v

m
J,N]′

v̄mi = [vmi,0, v
m
i,1, . . . , v

m
i,N]′

Thus, we have

vmi,n = FFT−1[α−1 ˆ̄vmi](n) (5.10)

Combining equations (5.9) and (5.10) with equation (2.18), we get

v̄m−1
i = FFT−1[α−1 · ˆ̄vm−1

i]

= FFT−1[α−1 · (ϕ(w)ˆ̄vm)i]

= FFT−1[���α−1 ·�α · (ϕ(w) FFT[v̄m])i] (5.11)

where

(ϕ(w) FFT[v̄m])i =
J∑
j=1

ϕ(w)i,j FFT[v̄mj] (5.12)

Notice that for European options M = 1 so we can simplify the procedure by taking

only one time step.

5.3 PDE method

In the numerical example we are considering, we are in Black-Scholes framework.

For this reason its pricing formula will be simplified to a PDE, not a PIDE anymore.

From equation (2.11), we can recover the PDE equation considering that now, the

generator of the regime-switching Lévy process is given as

Livi(x, t) = µi
∂

∂x
vi(x, t) +

1

2
σ2
i

∂2

∂x2
vi(x, t) +

∑
j 6=i

qijvj(x, t) (5.13)

Thus, the PDE is given by ∂
∂t
vi(x, t) + Livi(x, t)− (ri − qii)vi(x, t) = 0

vi(x, T) = Φ(XT)
(5.14)

5.3. PDE method 51

where vi(x, t) ∈ C2,1, i = 1, 2, . . . , J denotes the option price at time t, with log-spot

equal to x and conditional on the state αt = i at time t.

In order to simplify notation, we already consider the two-state case and given that

for Black-Scholes µi = ri − δi − 1
2
σ2
i , ∀x ∈ R and t ∈ [0, T] we obtain 2 PDEs ∂

∂t
v1(x, t) + µ1

∂
∂x
v1(x, t) + 1

2
σ2

1
∂2

∂x2
v1(x, t)− (r1 − q11)v1(x, t) + q12v2(x, t) = 0

v1(x, T) = Φ(XT)

(5.15) ∂
∂t
v2(x, t) + µ2

∂
∂x
v2(x, t) + 1

2
σ2

2
∂2

∂x2
v2(x, t)− (r2 − q22)v2(x, t) + q21v1(x, t) = 0

v2(x, T) = Φ(XT)

(5.16)

To solve numerically the PDEs, we use the finite difference method. In literature

other more efficient methods can be found, however they are less intuitive and here

we use this method only as a comparison to COS method. The finite difference

method is based on the approximation of derivatives. We recall that, given a regular

function g : R → R, there are three possible approximations of the first order

derivative in the stock:

g′(x) =
g(x+ h)− g(x)

h
+O(h) (5.17)

g′(x) =
g(x)− g(x− h)

h
+O(h) (5.18)

g′(x) =
g(x+ h)− g(x− h)

h
+O(h2) (5.19)

known as forward, backward and central finite differences, respectively. In order to

have a better accuracy, we will use the central ones.

The second order derivative, instead, is approximated by

g′′(x) =
g(x+ h)− 2g(x) + g(x− h)

h2
+O(h2) (5.20)

Even as regards the discretization of the derivative over time there are different

methods:

• Explicit Euler scheme, which uses the forward first order derivative

• Implicit Euler scheme, which uses the backward first order derivative

• Theta method, which uses a linear combination with coefficient θ ∈ [0, 1] of

forward and backward first order derivatives

The theta method with θ = 1
2

is known as Crank-Nicolson.

Now we can proceed to the discretization of the problem expressed by the 2 PDEs.

52 Chapter 5. Method’s efficiency and comparisons

Let us introduce an uniform grid in log-stock and time domain:

xk = xmin + k∆x, k = 0, . . . , N with ∆x =
xmax − xmin

N
(5.21)

tl = l∆t, l = 0, . . . ,M with ∆t = T/M (5.22)

where considering that the underlying dynamics under Black-Scholes in state i ∈
{1, 2} is

ST ∼ S0e
x = S0e

(
ri−δi−

σ2i
2

)
T+σi

√
TZ with Z ∼ N(0, 1) (5.23)

and moreover P(Z > 6) = P(Z < 6) ≈ 10−8, we can take as a rule of thumb:ximin =
(
ri − δi − σ2

i

2

)
T − 6

√
Tσ i = 1, 2

ximax =
(
ri − δi − σ2

i

2

)
T + 6

√
Tσ i = 1, 2

→

xmin = min(x1
min, x

2
min)

xmax = max(x1
max, x

2
max)

Then, by defining vk,li = vi(xk, tl) and using the theta method we obtain

vk,l+1
1 −vk,l1

∆t
+ (1− θ)

[
µ1

vk+1,l
1 −vk−1,l

1

2∆x
+

σ2
1

2

vk+1,l
1 −2vk,l1 +vk−1,l

1

∆x2
− (r1 − q11)vk,l1 + q12v

k,l
2

]
+

θ

[
µ1

vk+1,l+1
1 −vk−1,l+1

1

2∆x
+

σ2
1

2

vk+1,l+1
1 −2vk,l+1

1 +vk−1,l+1
1

∆x2
− (r1 − q11)vk,l+1

1 + q12v
k,l+1
2

]
= 0

vk,M1 = Φ(Xk) k = 0, . . . , N

boundary conditions

(5.24)

boundary conditions:

for call: v0,l
1 = 0, vN,l1 = S0e

xmax −Ke−r1(T−tl)

for put: v0,l
1 = Ke−r1(T−tl) − S0e

xmin , vN,l1 = 0

A similar equation is obtained for the state 2.

Let us define for i, j ∈ {1, 2}, i 6= j the following matrices

M 1
i =


βi γi

αi βi γi

αi
.
.


N−1×N−1

M 2
i =


β̂i γ̂i

α̂i β̂i γ̂i

α̂i
.
.


N−1×N−1

M 3
i = (1− θ)


qij

qij
. . .

qij


N−1×N−1

M 4
i = −θ


qij

qij
. . .

qij


N−1×N−1

5.4. Numerical results 53

V̄ 1
i =


v1,l
i

v2,l
i
...

vN,li


N−1×1

V̄ 2
i =


v1,l+1
i

v2,l+1
i
...

vN,l+1
i


N−1×1

BCi =


−αiv0,l

i + α̂iv
0,l+1
i

0
...

0

−γivN,li + γ̂iv
N,l+1
i


N−1×1

with

αi = (1− θ)
[
− µi

2∆x
+

σ2

2∆x2

]
α̂i = −θ

[
− µi

2∆x
+

σ2

2∆x2

]
βi = − 1

∆t
+ (1− θ)

[
− σ2

∆x2
− (r + qij)

]
β̂i = − 1

∆t
− θ
[
− σ2

∆x2
− (r + qij)

]
γi = (1− θ)

[
µi

2∆x
+

σ2

2∆x2

]
γ̂i = −θ

[
µi

2∆x
+

σ2

2∆x2

]
Hence, we can solve the coupled PDEs in the following wayM 1

1V̄
1

1 +M 3
1V̄

1
2 = M 2

1V̄
2

1 +M 4
1V̄

2
2 +BC1

M 1
2V̄

1
2 +M 3

2V̄
1

1 = M 2
2V̄

2
2 +M 4

2V̄
2

1 +BC2

(5.25)

Then, define

D̄1 := M 2
1V̄

2
1 +M 4

1V̄
2

2 (5.26)

D̄2 := M 2
2V̄

2
2 +M 4

2V̄
2

1 (5.27)

which at time l are known since we proceed backward in time.

Thus, in order to find the solution for state 1, we multiply the first equation in (5.25)

by M 1
2 and the second one by M 3

1 and subtracting them we have

M 1
2(M 1

1V̄
1

1 +M 3
1V̄

1
2) = M 1

2(D̄1 +BC1) −
M 3

1(M 1
2V̄

1
2 +M 3

2V̄
1

1) = M 3
1(D̄2 +BC2) =

(M 1
2M

1
1 −M 3

1M
3
2)V̄ 1

1 = M 1
2(D̄1 +BC1)−M 3

1(D̄2 +BC2)

where we used the fact that M 1
2M

3
1 = M 3

1M
1
2 since M 3

1 is a diagonal matrix.

Thus, by inverting the last equation we can find V̄ 1
1 .

In order to find V̄ 1
2 repeat the same procedure but multiply the first equation in

(5.25) by M 3
2 and the second one by M 1

1.

5.4 Numerical results

It is now time to implement all the described methods and in order to compare

them, we plot the errors against the number of grid points.

54 Chapter 5. Method’s efficiency and comparisons

0 20 40 60 80 100 120 140 160

N

10
-15

10
-10

10
-5

10
0

10
5

|e
rr

o
r|

FST

PDE

Lattice

COS

(a) State 1

0 20 40 60 80 100 120 140 160

N

10
-15

10
-10

10
-5

10
0

10
5

|e
rr

o
r|

FST

PDE

Lattice

COS

(b) State 2

Figure 5.1: Log-plot of absolute error against N for the European calls under the

Black-Scholes regime-switching model

Table 5.1: Cpu times for the different methods against N

Time (s)

N PDE Lattice FST COS

100 0.1534 0.0496 0.0228 0.0160

120 0.2664 0.1688 0.0713 0.0565

140 0.3012 0.1882 0.0889 0.0621

160 0.4265 0.2713 0.1396 0.0640

We can clearly see that the COS method is by far the more efficient method. Not

only in terms of accuracy, but also in terms of computational time. However, we

have to make some clarifications:

• the reference solutions are given up to the 11th decimal digit, hence we find

that the COS results are already in accord with the reference solutions for

N = 62 in state 1 and N = 46 in state 2

• as regards the implementation of the FST method under regime-switching, in

order to efficiently obtain the matrix exponential to evaluate the characteristic

function we use again the formula (3.29)

• the PDE approach is supposed to work fine for great values of N , for instance

N = 1000, thus for the range considered we cannot completely trust this

method. Anyway this is a result itself, because in order to have better solutions

we should increase N and this implies a greater computational load, confirming

the efficiency of the COS method

Chapter 6

Digital and butterfly options

In the previous chapter we showed the efficiency of the COS method in pricing

vanilla options. Now our aim is to extend the procedure to price other very popular

financial derivatives, as it is done in [17]. Thus, let us start with the so called

digital and butterfly options. They differ from the vanilla options only in the payoff,

hence the COS method will remain the same as long as we consider the new cosine

series coefficients. A digital call option is an option with payoff 0 if ST ≤ K and

K if ST > K, the vice versa holds for a digital put. Therefore, the cosine series

coefficients at time T are given by

V i
k (T) =

2

b− a

∫ b

a

cos
(
kπ
y − a
b− a

)
K1[α·K(ey−1)]+dy

=

 2
b−aKξk(0, b) for a call

2
b−aKξk(a, 0) for a put

(6.1)

The butterfly call (put) option, instead, is a combination of four options for which

we have two long position calls (puts) with exercise price K1 and K3 and two short

position calls (puts) with exercise price K2 = (K1 +K3)/2. Therefore, the payoff of

a butterfly call option at time T is given by

Φ(XT) = K1(ey1 − 1)+ − 2K2(ey2 − 1)+ +K3(ey3 − 1)+

where yj = log(ST/Kj) for j = 1, 2, 3. Again, the cosine series coefficients are known

analytically so that by calling xj = log(Kj/p) we have

V i
k (T) =



2
b−a

[{
pχk(x1, b)−K1ξk(x1, b)

}
− 2
{
pχk(x2, b)−K2ξk(x2, b)

}
+
{
pχk(x3, b)−K3ξk(x3, b)

}]
for a call

2
b−a

[{
K1ξk(a, x1)− pχk(a, x1)

}
− 2
{
K2ξk(a, x2)− pχk(a, x2)

}
+
{
K3ξk(a, x3)− pχk(a, x3)

}]
for a put

(6.2)

56 Chapter 6. Digital and butterfly options

where p is a scale parameter and we take p = 100. In this case, we use the same

definition of the truncation range as in equation (3.23) but now the interval is

centered at x0 = log(S0/p).

6.1 Numerical Example

We propose here the following numerical example taken from [17]. Consider a two

regime jump-diffusion Merton model with parameters

S0 = 100, K = 100, K1 = 90, K3 = 110, T = 1,

r = [0.05, 0.06]′, δ = [0.03, 0.05]′, σ = [0.1, 0.2]′,

µ̃ = [0, 0]′, σ̃ = [0.2, 0.2]′, λ = [0.1, 0.2]′

Q =

[
−1 1

1 −1

]
The reference call values in state 1 are given in [17] up to the 10th decimal digit.

We summarize in the following table the obtained errors and CPU times.

Table 6.1: Errors and cpu time for European, digital and butterfly call options in a

two-regime jump-diffusion Merton model

European Call Digital Call Butterfly Call

N Error Time (s) Error Time (s) Error Time (s)

32 0.0908 0.0531 0.1219 0.0224 0.0870 0.0301

64 1.672e-04 0.0547 4.9930e-04 0.0225 1.1914e-04 0.0313

128 <1e-10 0.0551 <1e-10 0.0226 <1e-10 0.0331

Ref. val. 6.4077976575 49.4890166846 2.7062546784

These results verify our claim, i.e. the COS method is really fast end efficient even

with other type of options.

Chapter 7

Bermudan options

A Bermudan option is an option that offers the possibility of early exercise. It falls

in between the American and the European option, in fact the owner can exercise

it on a set of prespecified dates.

Let us consider the set of possible early exercise dates to be {t0, t1, . . . , tM} where

0 = t0 < t1 < . . . tm < · · · < tM = T , with ∆t = tm − tm−1 and T being the

final time. Note that by making M → ∞ and therefore passing from discrete to

continuous in terms of exercise opportunities, the price should converge to that of

the corresponding American option.

Now let us see the implementation of its pricing algorithm following [17].

7.1 Pricing formula

From its description, it can be easily understood that the value of the Bermudan

option at one of its possible exercise dates is given by

vi(x, tm) =

Φ(x, tM), for m = M

max(hi(x, tm),Φ(x, tm)), for m = M − 1, . . . , 1
(7.1)

where i = 1, . . . , J is the regime state and the continuation value hi(x, tm) is given

by

hi(x, tm) =

∫
R
vi(y, tm+1)f(y|x, τ i)dy (7.2)

In matrix-vector form, the initial price of the Bermudan option v̄(x, t0) can be

approximated by

v̄(x, t0) =

N−1∑′

k=0

Re
(
eikπ

x−a
b−aϕ

(kπ

b− a

))
V̄k(t1) (7.3)

where V̄k(t1) = [V 1
k (t1), . . . , V J

k (t1)]′ and v̄(x, t0) = [v1(x, t0), . . . , vJ(x, t0)]′

58 Chapter 7. Bermudan options

7.2 Coefficients V̄k

From the discussion above it follows immediately that for the valuation of the Bermu-

dan option it is necessary to proceed backward in time and compare, in each regime

and at each time step, the payoff and the continuation value. In this way, we deter-

mine the actual regime-dependent early exercise points denoted by [x∗1, x
∗
2, . . . , x

∗
J]

and such that hi(x∗i , tm) = Φ(x∗i , tm).

Substituting equation (7.1) in the general equation (3.12) of the Fourier cosine series,

we have that

• at time tM , x∗i = 0 and the Fourier cosine coefficients are exact as in equation

(3.22)

• for m = M − 1,M − 2, . . . , 1

V i
k (tm) =

2

b− a

∫ b

a

cos
(
kπ
y − a
b− a

)
max(hi(y, tm),Φ(y, tm))dy (7.4)

Let us focus on the case m = M − 1,M − 2, . . . , 1.

Once we find x∗i at time tm, we can split the integral, which defines V i
k (tm), into two

parts: one on the interval [a, x∗i], and the second on (x∗i , b], i.e.

V i
k (tm) =

Gik(x∗i , b) +Hi
k(a, x

∗
i , tm) for a call

Gik(a, x∗i) +Hi
k(x
∗
i , b, tm) for a put

(7.5)

where, considering [ci, di] ∈ [a, b],

Gik(ci, di) =
2

b− a

∫ di

ci

cos
(
kπ
x− a
b− a

)
Φ(x, tm)dx

=

 2
b−aK[χk(ci, di)− ξk(ci, di)] for a call

2
b−aK[ξk(ci, di)− χk(ci, di)] for a put

(7.6)

and

Hi
k(ci, di, tm) =

2

b− a

∫ di

ci

cos
(
kπ
x− a
b− a

)
hi(x, tm)dx (7.7)

7.3 Computation of Hi
k(ci, di, tm)

For the computation of Hi
k(ci, di, tm) we refer to [8], adapting the discussion to the

regime-switching framework.

For l = 0, . . . , N − 1 using equation (3.17), inserting the ith component of (3.16) in

equation (7.7) and interchanging summation and integration we obtain

Hi
k(ci, di, tm) = Re

(
N−1∑′

k=0

Λi
l(tm+1)Mk,l(ci, di)

)
(7.8)

7.3. Computation of Hi
k(ci, di, tm) 59

where

Mk,l(ci, di) :=
2

b− a

∫ di

ci

eilπ
x−a
b−a cos

(
kπ
x− a
b− a

)
dx (7.9)

With fundamental calculus, we can rewrite Mk,l as

Mk,l(ci, di) = −i

π
(M c

k,l(ci, di) +M s
k,l(ci, di)) (7.10)

where

M c
k,l(ci, di) :=


di−ci
b−a πi k = l = 0

exp
(
i(l+k)

(di−a)π
b−a

)
−exp

(
i(l+k)

(ci−a)π
b−a

)
l+k

otherwise
(7.11)

and

M s
k,l(ci, di) :=


di−ci
b−a πi k = l

exp
(
i(l−k)

(di−a)π
b−a

)
−exp

(
i(l−k)

(ci−a)π
b−a

)
l−k k 6= l

(7.12)

Substituting equation (7.10) into equation (7.8), we have

Hi
k(ci, di, tm) = Re

(
N−1∑′

k=0

Λi
l(tm+1)

(
− i

π
(M c

k,l(ci, di) +M s
k,l(ci, di))

))
(7.13)

In matrix-vector product form (7.13) reads

H̄i(ci, di, tm) =
1

π
Im{(Mc(ci, di) + Ms(ci, di))ū

i} (7.14)

where Im{·} denotes the imaginary part, and ūi collect the terms

uil :=

1
2
Λi
l(tm+1), l = 0

Λi
l(tm+1), l = 1, . . . , N − 1

(7.15)

Moreover, Mc(ci, di) := {M c
k,l(ci, di)}N−1

k,l=0 and Ms(ci, di) := {M s
k,l(ci, di)}N−1

k,l=0.

However, the matrix-vector product in (7.14) requires O(N2) computations and thus

we follow the procedure described in [8], which develops an FFT-based algorithm to

reduce the computational complexity to O(N log2(N)).

We have that Mc(ci, di) and Ms(ci, di) are N × N matrices, specifically a Hankel

matrix and a Toeplitz matrix, respectively

Mc(ci, di) =


m0 . . . mN−1

m1 . . . mN

...
...

mN−1 . . . m2N−2

 Ms(ci, di) =


m0 . . . mN−1

m−1 . . . mN−2

...
...

m1−N . . . m0

 (7.16)

60 Chapter 7. Bermudan options

with

ml :=


di−ci
b−a πi l = 0

exp
(
il

(di−a)π
b−a

)
−exp

(
il

(ci−a)π
b−a

)
l

l 6= 0
(7.17)

Due to the special structure of these matrices, we can rewrite the matrix-vector

product into circular convolutions. Specifically:

• the product Ms(ci, di)ū
i is equal to the first N elements of m̄s ~ ūis where

m̄s = [m0,m−1,m−2, . . . ,m1−N , 0,mN−1,mN−2, . . . ,m1]′ (7.18)

ūis = [ui0, u
i
1, . . . , u

i
N−1, 0, . . . , 0]′ (7.19)

• the product Mc(ci, di)ū
i is equal to the first N elements of m̄c ~ ūic where

m̄c = [m2N−1,m2N−2, . . . ,m1,m0]′ (7.20)

ūic = [0, . . . , 0, ui0, u
i
1, . . . , u

i
N−1]′ (7.21)

And these can be efficiently dealt with by the FFT algorithm, indeed given two

vectors x̄ and ȳ we can write

x̄~ ȳ = D−1(D(x̄) · D(ȳ))

where D is the discrete Fourier transform (DFT).

Notice that we can obtain the DFT of ūc from the one of ūs exploiting the shift

property of DFTs, i.e. D(ūc) = sgn · D(ūs) with sgn = [1,−1, 1,−1, . . .]′.

Finally, let us stress that, in order to reduce the computational time required to

construct m̄s and m̄c, we can compute the factors exp
(
il (di−a)π

b−a

)
and exp

(
il (ci−a)π

b−a

)
(l = 0, 1, . . . , N − 1) only once exploiting some special properties of the ml’s:

• m−l = −ml (ml denotes the complex conjugate of ml)

• ml+N =
exp
(
iN

(di−a)π
b−a

)
·exp
(
il

(di−a)π
b−a

)
−exp

(
iN

(ci−a)π
b−a

)
·exp
(
il

(ci−a)π
b−a

)
l+N

, l 6= 0

7.4 Numerical Example

We consider once again the Merton’s jump-diffusion Markov-modulated model, with

parameters

S0 = 100, K = 100, T = 0.5, r = [0.05, 0.06]′,

δ = [0.05, 0.07]′, σ = [0.1, 0.2]′, µ̃ = [0, 0]′,

σ̃ = [0.3, 0.4]′, λ = [0.1, 0.2]′, q12 = q21 = 1

7.4. Numerical Example 61

and we price a Bermudan put option with M = 10 exercise dates but different

values for N . Then we focus on the prices in state 2 and we consider as reference

solution the one obtained with N = 216, which is: 6.249854030604797. The results

are summarized in the following table.

Table 7.1: Errors and cpu time for Bermudan put option in a two-regime jump-

diffusion Merton model

Bermudan Put

N Price Error Time (s)

64 6.259773455002508 0.0099 0.0562

128 6.250000729430543 1.4670e-04 0.0713

256 6.249854354808557 3.2420e-07 0.0808

512 6.249854030599596 5.2012e-12 0.0965

Ref. val. 6.249854030604797

We then implement the FST method and we find out that we manage to reach almost

the same level of accuracy of the COS method by taking N = 223 and xmax = 4.

Indeed in this case, the FST price is 6.249854030824808 with an error of 2.2001e−10.

This further confirms the supremacy of the COS method over the FST method.

Chapter 8

Barrier options

Barrier options are financial derivatives the payoffs of which depend upon the un-

derlying asset crossing a certain barrier level. Firstly, there is a major distinction

that needs to be addressed: in/out barrier options. In the case of the underlying

price touching the barrier, the former become valid whereas the latter invalid. Then,

another important distinction is between up, down and knock barrier options. To

explain it, let us focus on the out barrier options

• Up & Out the option ceases to exist when the underlying price rises above a

specific level

• Down & Out the option ceases to exist when the underlying price falls below

a specific level

• Knock & Out the option ceases to exist when the underlying price exits a

region bounded by both barriers (Up and Down)

In barrier options are defined similarly, with the only difference that the barrier

crossing makes the option valid. As it is commonly done in literature, we will price

only out contracts, since the in contract value can be obtained with the so called

in-out parity, that is

C = CIN + COUT (8.1)

where C is the price of an European option, CIN and COUT are the prices of the

barrier options with the same level. Moreover, we will not consider knock barriers

since their derivation is straightforward.

As in the case of American and Bermudan options, even Barrier options can be of

continuous or discrete type, which differ in how often the underlying is monitored.

64 Chapter 8. Barrier options

8.1 Pricing formula

Here we continue to refer to [17]. As with Bermudan options, even in this case the

pricing method requires a backward in time recursive procedure. However, we do

not need anymore to compare the payoff and the continuation value in each regime

and at each time step, but attention must be paid to the fact that the continuation

value must include information regarding a possible crossing of the barrier level.

Nevertheless, notice that barrier levels are already known beforehand implying the

fact that pricing Barrier options is much easier than pricing Bermudan ones.

Let us consider, for instance, an up-and-out option. Its payoff function is given by

vi(x, T) =
[
[α · (ST −K)]+ −Rb

]
1St<B +Rb (8.2)

where α = 1 for a call and α = −1 for a put and Rb is a rebate, which is a fixed fee

to be paid to the option holder in the case that the barrier event occurs.

Let xb = log(B/K) and m = M − 1, . . . , 1 for each regime i ∈ J . The price of the

option monitored M times satisfies the following system
h̄(x, tm−1) =

∫
R F(y|x, τ)v̄(y, tm)dy

v̄(x, tm−1) =

Rb x ≥ xb

h̄(x, tm−1) x < xb

(8.3)

Based on the derivation for Bermudan options, we have the following lemma.

Lemma 8.1.1 Backward Induction for Discrete Barrier Options

By backward recursion we find the following solution for discretely monitored barrier

options:

For m = M − 1,M − 2, . . . , 1,

V i
k (tm) = Hi

k(a, xb, tm) +
2

b− a
Rbξk(xb, b) (8.4)

with Hi
k(a, xb, tm) and ξk(xb, b) given by (7.14) and (3.21), respectively.

If xb < 0, we have

V i
k (tM) =

2Rbξk(xb, b)/(b− a) for a call

Gi
k(a, xb) + 2Rbξk(xb, b)/(b− a) for a put

(8.5)

For xb ≥ 0, we find

V i
k (tM) =

Gi
k(0, xb) + 2Rbξk(xb, b)/(b− a) for a call

Gi
k(a, 0) + 2Rbξk(xb, b)/(b− a) for a put

(8.6)

with Gi
k(ci, di) given by equation (7.6).

A similar recursion formula for a down-and-out option can be derived easily.

8.2. Numerical Example 65

8.2 Numerical Example

We continue the example of Section 7.4 considering now an up & out call barrier

in state 2 with M = 12 monitoring dates (i.e. monthly monitored), barrier level

B = 120 and rebate Rb = 0. Again we consider as reference solution the one

obtained with N = 216, which is 2.277022824693888. Below we report the table

with the results obtained.

Table 8.1: Errors and cpu time for up & out call option in a two-regime jump-

diffusion Merton model

UO Barrier Call

N Price Error Time (s)

64 2.303984051645670 0.0270 0.0211

128 2.275748862495687 0.0013 0.0236

256 2.276939342532470 8.3482e-05 0.0248

512 2.277022821405835 3.2881e-09 0.0331

Ref. val. 2.277022824693888

Then, if we implement again the FST method with N = 223 and xmax = 4 we obtain

a price of 2.277023091369360, with an error equal to 2.6668e − 07, leading to the

same conclusions made in the previous example.

Finally, let us notice that in this example we are considering a call option but we

cannot adapt put-call parity to barrier options because in this example r and δ

assume different values in the 2 regimes. However, this is not even necessary, since

Merton distribution has not fat tails and thus we can reasonably assume that if

there were any numerical errors these would be minimal.

Chapter 9

American and continuously

monitored barrier options

As we already anticipated in the previous sections, American option prices can be

obtained by Bermudan options by increasing the number of exercise dates. The

continuous barrier option can also be approximated in a similar fashion based on a

set of discretely monitored barrier options. However, these procedures can be time

consuming and computationally expensive, it is why we resort to the application of

Richardson extrapolation with s stages ([15]).

Richardson extrapolation requires prior knowledge of the rate of convergence which,

from theory, we know to be 1 in the case of convergence of the discrete Bermudan

to American and 1/2 in the case of the discrete barrier converging to the continuous

barrier. The s-stage extrapolation tableau is then given by

vil,0 = vi(M = 2l−1M0)

vil,j =
(2rate)jvil+1,j−1 − vil,j−1

(2rate)j − 1
(9.1)

where j = 1, . . . , s − 1, l = 1, . . . , s and vil,0 is the price of a discrete Bermudan or

barrier option with M monitoring dates in regime i ∈ J . We start with an initial

number of monitoring dates M0 and then we double M at each stage.

Regarding the choice of the number of stages, as we will see in the numerical example,

we have verified that the suggestions reported in [17] to use s = 4 for American

options and s = 6 for the continuous barrier options are optimal, so we adopt them.

Considering for instance s = 4, the computations can be conveniently set up in the

following scheme.

68 Chapter 9. American and continuously monitored barrier options

l vil,0 vil,1 vil,2 vil,3
1 vi1,0 vi1,1 vi1,2 vi1,3
2 vi2,0 vi2,1 vi2,2
3 vi3,0 vi3,1
4 vi4,0

where, in the case rate = 1 we have

vi1,1 = 2vi2,0 − vi1,0 vi1,2 =
4vi2,1−vi1,1

3
vi1,3 =

8vi2,2−vi1,2
7

vi2,1 = 2vi3,0 − vi2,0 vi2,2 =
4vi3,1−vi2,1

3

vi3,1 = 2vi4,0 − vi3,0

Hence, we finally get the formula for the value of an American option in the state i

using 4-point Richardson extrapolation scheme

vi1,3 =
1

21

[
64vi4,0 − 56vi3,0 + 14vi2,0 − vi1,0

]
(9.2)

Similarly, doing the computations for s = 6 and rate = 1/2 we obtain

vi1,5 =
1

3(4
√

2− 1)(2
√

2− 1)(
√

2− 1)

[
128
√

2vi6,0 − 32(7 + 3
√

2)vi5,0

+ 24(7 + 3
√

2)vi4,0 − 6(7
√

2 + 6)vi3,0 + (7
√

2 + 6)vi2,0 − vi1,0
]

(9.3)

9.1 Numerical Example

In order to test the accuracy of Richardson extrapolation formulas derived above,

we consider once again the same data as the numerical examples in Section 7.4 and

8.2. For convenience we report them here

S0 = 100, K = 100, T = 0.5, r = [0.05, 0.06]′,

δ = [0.05, 0.07]′, σ = [0.1, 0.2]′, µ̃ = [0, 0]′,

σ̃ = [0.3, 0.4]′, λ = [0.1, 0.2]′, q12 = q21 = 1

with barrier level B = 120, rebate Rb = 0.

While we vary the number of monitoring dates M , we decide to fix the number of

grid points to N = 212. Below we summarize the results obtained for state 2 in a

table.

9.1. Numerical Example 69

Table 9.1: Errors and cpu time for the American put option and the up & out

continuously monitored call barrier option in the state 2

Extrapolation

M Error Price Error Time (s)

Bermudan approximation

to American in state 2

16 6.0981e-04 6.250840779 4.6193e-06 0.4273

32 3.0250e-04 6.250837644 1.4840e-06 0.8340

64 1.5036e-04 6.250836690 5.2997e-07 1.5584

128 7.4860e-05 6.250836356 1.9633e-07 3.9975

Ref. val. 6.2508361596

Discrete barrier approximation

to continuous barrier in state 2

64 0.1821 1.890757303 3.6082e-04 0.5733

128 0.1310 1.890401669 5.1843e-06 1.1149

256 0.0938 1.890395982 5.0248e-07 2.7230

512 0.0669 1.890396474 1.1247e-08 5.0355

Ref. val. 1.8903964848

In Richardson extrapolation, M represents the maximum number of monitoring

dates which appears in its formula.

From the table, it is evident that, for the same M , in order to price options in

continuous time, the extrapolation approach (on the right) allows to obtain a more

precise result than simply considering the discrete Bermudan or barrier option (on

the left). In particular, this can be seen in the barrier option for M = 512, where

the extrapolation returns an error of 1.1247e− 08 against an error of 0.0669 of the

discrete barrier approximation. Moreover, by looking at the results of the discrete

Bermudan option we can see that the more M increases, the more the error becomes

negligible confirming what we claimed at the beginning of Chapter 7, i.e. as M →∞
the price converges to the American option price.

Now all that remains is to discuss the choice of the number of stages to use in the

extrapolation formula. We fix for instance M = 128 and we repeat the pricing

for different values of s. Below we report the table of the obtained errors with

respect to the reference values, from which we can clearly see that for the American

option, there is no such difference between the errors and thus s = 4 is a good

choice. Instead, for the continuous barrier option, the errors have different orders

of magnitude depending on s implying that s = 4 is not enough but should be

70 Chapter 9. American and continuously monitored barrier options

increased, in our case to s = 6.

Table 9.2: Errors and cpu time against s

American Put Continuous Barrier Call

M = 128 Error Time (s) Error Time (s)

s = 3 2.6666e-07 4.0200 1.4210e-04 1.4179

s = 4 1.9633e-07 3.9339 7.5194e-05 1.3610

s = 5 1.7409e-07 4.4089 2.9534e-06 1.3073

s = 6 1.6466e-07 3.3975 5.1843e-06 1.0458

Chapter 10

Asian options

In this chapter our goal is to give an innovative contribution to this dissertation

consisting in developing the COS method under regime-switching for Asian options.

To this aim, we refer to [20] but we extend the procedure to the regime-switching

framework.

Asian options are financial derivatives belonging to the class of exotic options.

Specifically, they are path-dependent options where the payoff depends on the av-

erage of the underlying asset prices during option’s life. The most popular types of

averages considered are geometric average and arithmetic average.

Let us consider the set of monitoring dates to be {t0, t1, . . . , tM} where 0 = t0 <

t1 < . . . tm < · · · < tM = T , with ∆t = tm − tm−1 and T being the final time. If

M →∞, we pass from discrete to continuous time. Then

• geometric average in discrete time

A(T) =

(
M∏
m=0

Sm

) 1
M+1

(10.1)

• geometric average in continuous time

A(T) = exp

(
1

T

∫ T

0

log(St)dt

)
(10.2)

• arithmetic average in discrete time

A(T) =
1

M + 1

M∑
m=0

Sm (10.3)

• arithmetic average in continuous time

A(T) =
1

T

∫ T

0

Stdt (10.4)

72 Chapter 10. Asian options

Another important distinction that needs to be addressed is between floating-strike

and fixed-strike Asian options, which differ in how the payoff function is defined.

The floating-strike Asian option has payoff

vi(S, T) =
[
α ·
(
ST − A(T)

)]+

(10.5)

where i = 1, . . . , J is the regime state and α = 1 for a call, α = −1 for a put. While

the fixed-strike has payoff

vi(S, T) =
[
α ·
(
A(T)−K

)]+

(10.6)

We will focus on fixed-strike Asian options.

10.1 Geometric Asian options

10.1.1 Coefficients V̄k

Defining

y = log

((
M∏
m=0

Sm

) 1
M+1
)

=
1

M + 1

M∑
m=0

log(Sm) =
1

M + 1

M∑
m=0

xm (10.7)

We can rewrite the payoff in (10.6) in terms of y in the following way

vi(y, tM) = [α · (ey −K)]+ (10.8)

Therefore, the cosine series coefficients are given by

V i
k (tM) =

2

b− a

∫ b

a

cos
(
kπ
y − a
b− a

)
vi(y, tM)dy

=
2

b− a

∫ b

a

cos
(
kπ
y − a
b− a

)
[α · (ey −K)]+dy

=

 2
b−a [χk(log(K), b)−Kξk(log(K), b)] for a call

2
b−a [Kξk(a, log(K))− χk(a, log(K))] for a put

(10.9)

10.1.2 Pricing formula

In order to use the Fourier cosine expansion, we need to determine the conditional

characteristic function of y given x0. This for geometric Asian options can be com-

puted directly.

First of all, since the increments of a Lévy process are stationary and independent,

10.2. Arithmetic Asian option 73

we can denote the (identical) characteristic functions of the increments x1 − x0,

x2 − x1, . . . , xM − xM−1 by φ(u,∆t), i.e.

φ(u,∆t) = E[exp(iu log(Sm/Sm−1))] = E[exp(iu(xm − xm−1))] (10.10)

We recall that for J = 2, φ(u,∆t) will have the same structure as equation (3.30).

Based on [9], we can express y in (10.7) as

y =
1

M + 1

M∑
m=0

log(Sm) = log(S0) +
1

M + 1

M∑
m=1

m∑
j=1

xj

= x0 +
1

M + 1

M∑
m=1

xm

M∑
j=m

1 = x0 +
1

M + 1

M∑
m=1

(M + 1−m)xm

Hence, the characteristic function of y given x0 in the state i can be computed

exploiting the properties of conditional expectation

ϕi(u|x0) = E
[
eiux0eiu

∑M
m=1

M+1−m
M+1

xm
∣∣∣α0 = i

]
= eiux0 · E

[M∏
m=1

eiu
M+1−m
M+1

xm
∣∣∣α0 = i

]
= eiux0 ·

M∏
m=1

E
[
eiu

M+1−m
M+1

xm
∣∣∣α0 = i

]
= eiux0 ·

M∏
m=1

φi
(
u
M + 1−m
M + 1

,∆t
)

(10.11)

where

φi(u,∆t) =
J∑
j=1

φ(u,∆t)i,j (10.12)

Therefore, the geometric Asian option price in state i can be derived by

vi(x, t0) =

N−1∑′

k=0

Re
(
e−ikπ

a
b−aΛi

k(tM |x)
)

(10.13)

with

Λi
k(tm|x) = ϕi

(kπ

b− a

∣∣∣x) · V i
k (tm) (10.14)

10.2 Arithmetic Asian option

10.2.1 Coefficients V̄k

The payoff function in state i of an arithmetic Asian option with M monitoring

dates and a fixed strike reads as

vi(S, tM) =

[
α ·

((
1

M + 1

M∑
m=0

Sm

)
−K

)]+

(10.15)

74 Chapter 10. Asian options

In this case, the characteristic function of the arithmetic mean cannot be computed

directly. Therefore, it will be derived recursively by Fourier cosine expansions and

Clenshaw-Curtis quadrature.

We begin the recursion procedure by denoting

Rm = log

(
Sm
Sm−1

)
= xm − xm−1, m = 1, . . . ,M (10.16)

From Lévy properties, we know that these increments are identically and indepen-

dently distributed, so that Rm
d
= R. Thus, it follows that ϕRm(u) = ϕR(u) ∀u,m.

Characteristic function ϕR(u) is known in closed form for different Lévy processes

and for J = 2 is given by the procedure described in Section 3.5.1.

Then, we introduce the stochastic process Ym, where Y1 := RM and form = 2, . . . ,M

we have

Ym := RM+1−m + log(1 + exp(Ym−1)) = RM+1−m + Zm−1 (10.17)

where we defined Zm := log(1 + exp(Ym)), ∀m.

In this setting Ym admits the form

Ym = log

(
SM+1−m

SM−m
+
SM+2−m

SM−m
+ · · ·+ SM

SM−m

)
(10.18)

and we have that

1

M + 1

M∑
m=0

Sm =
(1 + exp(YM))S0

M + 1
(10.19)

Substituting (10.19) in (10.15) we can rewrite the payoff in the following way

vi(y, tM) =

[
α ·
(
S0(1 + exp(y))

M + 1
−K

)]+

(10.20)

Hence, the cosine series coefficients are given by

V i
k (tM) =

2

b− a

∫ b

a

cos
(
kπ
y − a
b− a

)
vi(y, tM)dy

=
2

b− a

∫ b

a

cos
(
kπ
y − a
b− a

)[
α ·
(
S0(1 + exp(y))

M + 1
−K

)]+

dy

=


2
b−a

[
S0

M+1
χk(x

∗, b)−
(
K − S0

M+1

)
ξk(x

∗, b)
]

for a call

2
b−a

[(
K − S0

M+1

)
ξk(a, x

∗)− S0

M+1
χk(a, x

∗)
]

for a put
(10.21)

where x∗ = log
(
K(M+1)

S0
− 1
)

.

10.2. Arithmetic Asian option 75

10.2.2 Pricing formula

In order to recover the characteristic function of YM , i.e. ϕYM (u), we start with Y1,

for which the characteristic function reads as

ϕY1(u) = ϕR(u) (10.22)

Then, for m = 2, . . . ,M , ϕYm(u) can be recovered in terms of ϕYm−1
(u). This is

done by application of (10.17) and the fact that Lévy processes have independent

increments.

This implies that, ∀m, RM+1−m and Zm−1 are independent in each state i, which

gives

ϕiYm(u) = ϕiRM+1−m
(u) · ϕiZm−1

(u) = ϕiR(u) · ϕiZm−1
(u) (10.23)

where

ϕiYm(u) =
J∑
j=1

ϕYm(u)
i,j

ϕiR(u) =
J∑
j=1

ϕR(u)i,j (10.24)

From the definition of characteristic function, we have

ϕiZm−1
(u) = E

[
eiu log(1+exp(Ym−1))|αM+1−m = i

]
=

∫ ∞
−∞

eiu log(1+ey)f iYm−1
(y)dy

=

∫ ∞
−∞

(ey + 1)iuf iYm−1
(y)dy (10.25)

To apply the Fourier cosine series expansion to approximate the characteristic func-

tion, we first truncate the integration range, i.e.

ϕiZm−1
(u) =

∫ b

a

(ey + 1)iuf iYm−1
(y)dy (10.26)

Then we apply the Fourier cosine expansion to approximate f iYm−1
(y), giving

ϕiZm−1
(u) =

2

b− a

N−1∑′

l=0

Re
(
e−ilπ

a
b−aϕiYm−1

(lπ

b− a

))
·
∫ b

a

(ey + 1)iu cos
(
lπ
y − a
b− a

)
dy (10.27)

Equation (10.27) can be written in matrix-vector form as

ϕim−1 =MAim−1 (10.28)

76 Chapter 10. Asian options

where

ϕim−1 = (ϕim−1(k))N−1
k=0 ϕim−1(k) = ϕiZm−1

(uk)

uk =
kπ

b− a
k = 0, . . . , N − 1

M = (M(k, l))N−1
k,l=0 M(k, l) =

∫ b

a

(ey + 1)iuk cos((y − a)ul)dy

Aim =
2

b− a
(Aim(l))N−1

l=0 Aim(0) = 0.5Aim(0) Aim(l) = Re
(
e−iaulϕiYm−1

(ul)
)

Hence, the COS formula for the arithmetic Asian option price in state i reads as

vi(x, t0) =

N−1∑′

k=0

Re
(
e−ikπ

a
b−aΛi

k(tM)
)

(10.29)

with

Λi
k(tm) = ϕiYm

(kπ

b− a

)
· V i

k (tm) (10.30)

10.2.3 Truncation range

In the previous paragraph, we derived the characteristic function of Ym, m =

1, . . . ,M , independently of x0. With this in mind, the expression for the integration

range in (10.27) can be found following the discussion of Section 3.4, i.e.

ai,m = ci1(Ym)− L
√
ci2(Ym) +

√
ci4(Ym)

bi,m = ci1(Ym) + L

√
ci2(Ym) +

√
ci4(Ym) (10.31)

a = min
i

(
min
m
{ai,m}

)
and b = max

i

(
max
m
{bi,m}

)
(10.32)

However, it is rather expensive to determine these cumulants here, and therefore we

adopt the procedure described in [20] extending it to the regime-switching frame-

work.

For each Ym, m = 1, . . . ,M , we have

ci1

(
m
SM+1−m

SM−m

)
≤ ci1

(
exp(Ym)

)
≤ ci1

(
m

SM
SM−m

)
0 ≤ ci2

(
exp(Ym)

)
≤ ci2

(
m

SM
SM−m

)
0 ≤ ci4

(
exp(Ym)

)
≤ ci4

(
m

SM
SM−m

)

10.2. Arithmetic Asian option 77

Therefore, a truncation range for Ym can be defined as

ai,m = ci1

(
log

(
m
SM+1−m

SM−m

))
− L

√√√√ci2

(
log

(
m

SM
SM−m

))
+

√
ci4

(
log

(
m

SM
SM−m

))

bi,m = ci1

(
log

(
m

SM
SM−m

))
+ L

√√√√ci2

(
log

(
m

SM
SM−m

))
+

√
ci4

(
log

(
m

SM
SM−m

))
(10.33)

Note that in principle, given a random variable Z, we have that ∀i ∈ J , ∀n ≥ 1,

log(cin(Z)) 6= cin(log(Z)), but this does not influence the fact that as L → ∞ the

truncation error goes to zero.

The cumulants of log
(
mSM+1−m

SM−m

)
and log

(
m SM

SM−m

)
in (10.33) are known in closed

form for exponential Lévy asset price processes, since

ci1

(
log

(
m
SM+1−m

SM−m

))
= log(m) + ci1(R), ci1

(
log

(
m

SM
SM−m

))
= log(m) +mci1(R)

∀n ≥ 2 cin

(
log

(
m
SM+1−m

SM−m

))
= cin(R), cin

(
log

(
m

SM
SM−m

))
= mcin(R)

with R the logarithm of the increment of an exponential Lévy process, between any

two consecutive time steps. These expressions are based on log(mZ) = log(m) +

log(Z) and on the fact that for an exponential Lévy asset price process, the cumu-

lants of the log-asset returns, log(Sl/Sk) ∀l > k, are linearly increasing functions of

t = (l − k)∆t.

Hence, we set

[a, b] =

[
min
i

(
min
m
{ai,m}

)
,max

i

(
max
m
{bi,m}

)]
(10.34)

10.2.4 Clenshaw-Curtis quadrature

Here we discuss the computation of M needed in equation (10.28), which can be

done efficiently using Clenshaw-Curtis quadrature, as pointed out in [20]. Notice

thatM remains constant for all time steps tm, m = 1, . . . ,M − 1 and for all states

i ∈ J , so that we need to compute it only once.

Its elements are given by

M(k, l) =

∫ b

a

(ey + 1)iuk cos((y − a)ul)dy k, l = 0, . . . , N − 1 (10.35)

78 Chapter 10. Asian options

To use the Clenshaw-Curtis rule, we first change the integration interval from [a, b]

to [−1, 1]∫ b

a

(ey + 1)iuk cos((y − a)ul)dy

=

∫ 1

−1

b− a
2

(
exp

(
b− a

2
y +

a+ b

2

)
+ 1

)iuk

cos

((
b− a

2
y +

a+ b

2
− a
)
ul

)
dy

=

∫ 1

−1

f(y)dy (10.36)

The integral can then be approximated as follows∫ b

a

(ey + 1)iuk cos((y − a)ul)dy ≈ (DTd)Ty =: wTy (10.37)

where, denoting the number of quadrature points by nq, D is an (nq/2+1)×(nq/2+1)

matrix and

D(k, n) =
2

nq
cos

(
2(n− 1)(k − 1)π

nq

)
·

1/2 if n = {1, nq/2 + 1}

1 otherwise
(10.38)

d :=

(
1,

2

(1− 4)
,

2

(1− 16)
, . . . ,

2

(1− (nq − 2)2)
,

1

(1− n2
q)

)T
(10.39)

y = {yn}nq/2n=0 yn := f

(
cos

(
nπ

nq

))
+ f

(
− cos

(
nπ

nq

))
(10.40)

10.3 Numerical Example

Unfortunately, the study of Asian options in regime-switching is not widespread

in literature yet, so there are no prices to compare our results with. Therefore,

to check the correctness of the methods just described, we set up a Monte Carlo

procedure as explained in the following section. In doing this, we take the two-state

Black-Scholes model, since it has the simplest dynamics and we introduce Monte

Carlo for comparison purposes only, so we want to keep a code as readable and fast

as possible. However, provided to know the model dynamics, it can be generalized

to any model that we presented in Chapter 1, and in principle even to a generic

number J of states but procedure would become tediously long, both to implement

and to run. As regards the COS method for the arithmetic Asian option, following

the suggestions reported in [20], we set nq = 25
16
N .

As parameters, we choose those obtained by the first calibration procedure described

in Chapter 4, i.e.

r = 0.019, δ = 0.012, T = 1.192, S0 = 1124.47, K = 1125,

σ1 = 0.1486, σ2 = 0.2115, q12 = 1.512, q21 = 1e− 5

10.3. Numerical Example 79

Moreover, we consider a weekly monitoring, M = 52, but different values for N . In

reporting the results obtained, we focus on the prices in state 1 since they are the

most significant, given that q12 > 0.

Table 10.1: Prices and cpu time for geometric and arithmetic Asian put in a two-

regime Black-Scholes model with the COS method

Geometric Asian Put Arithmetic Asian Put

N Price Time (s) Price Time (s)

32 40.8441 0.1226 41.2714 0.1744

64 40.4938 0.1304 39.3426 0.8831

128 40.4937 0.1366 39.3304 7.1326

As regards the Monte Carlo method, we choose a number of simulation equal to 105

obtaining

Table 10.2: Prices, 95% confidence intervals and cpu time for geometric and arith-

metic Asian put in a two-regime Black-Scholes model with the MC method

Price 95% C.I. Time (s)

Geom. Asian Put 40.4907 [40.3169,40.6645] 5.5605

Arithm. Asian Put 39.3353 [39.1643,39.5064] 4.5367

We can notice that COS results are consistent with MC ones. Moreover, we can

consider ourselves already satisfied with N = 64, indeed COS prices are inside the

confidence intervals of MC and cpu times are really low, proving the efficiency of

COS method. Finally, let us stress that if one were required to compute the price

of a continuously monitored Asian option, one could apply the Richardson extrap-

olation, similarly to what was done for the Bermudan and barrier options.

Having checked the correctness of the method for Asian options under regime-

switching, we can now consider a more interesting model than the basic 2RS Black-

Scholes thus we take the usual 2RS Merton with the following parameters

S0 = 100, K = 100, T = 0.5, r = [0.05, 0.06]′,

δ = [0.05, 0.07]′, σ = [0.1, 0.2]′, µ̃ = [0, 0]′,

σ̃ = [0.3, 0.4]′, λ = [0.1, 0.2]′, q12 = q21 = 1

and we price Asian put options in state 2 with M = 52 monitoring dates.

80 Chapter 10. Asian options

Table 10.3: Prices and cpu time for geometric and arithmetic Asian put in a two-

regime jump-diffusion Merton model with the COS method

Geometric Asian Put Arithmetic Asian Put

N Price Time (s) Price Time (s)

32 4.2891057049 0.1394 4.4253507337 0.1642

64 3.9766991861 0.1453 3.8628489039 0.8904

128 3.9680721978 0.1587 3.8308815987 8.3996

256 3.9680718567 0.1615 3.8309342233 108.5708

We can see that as N increases, prices tend to converge and N = 128 can already

be considered a good compromise between precision of the result and computational

cost.

10.3.1 Monte Carlo under a two-regime model

In finance, Monte Carlo method can be used to numerically compute the expected

value which appears in the risk-neutral valuation formula by relying on repeated

random sampling. Indeed, it consists in simulating, a large number of times, the

option payoff and then in taking the mean of the discounted payoffs in order to

reproduce the expected value.

For convenience, we focus on the case of our interest: the two-state Black-Scholes

model. Extending the discussion in Section 1.2 to regime-switching, we have that

the underlying dynamics in state i ∈ J is given by

St = S0e
Xi
t (10.41)

where

dX i
t =

(
ri − δi −

σ2
i

2

)
dt+ σidWt (10.42)

Integrating both terms between two subsequent monitoring dates, we get∫ tm

tm−1

dX i
s =

∫ tm

tm−1

(
ri − δi −

σ2
i

2

)
ds+

∫ tm

tm−1

σidWs

X i
tm −X

i
tm−1

=

(
ri − δi −

σ2
i

2

)
∆t+ σi(Wtm −Wtm−1)

∼
(
ri − δi −

σ2
i

2

)
∆t+ σi

√
∆tZm (10.43)

with {Zm}m=1,...,M standard normals i.i.d. and discount factorD(tm−1, tm) = exp(−ri·
(tm − tm−1)).

In order to understand which state i to consider, we have to determine the time

10.3. Numerical Example 81

instants in which regime switches occur. At the end of Section 2.1.1 we pointed out

that the Markov chain remains in each state i for a period of time Ti ∼ E(−qii).
These Ti may not coincide with the monitoring dates tm, and thus for each Ti we

identify m∗ such that tm∗−1 < Ti < tm∗ .

Hence, assuming w.l.o.g. that initially we are in state 1, we draw T1 exponentially

distributed and implement equation (10.43) for state 1 until tm∗−1, then we divide

∆t = tm∗ − tm∗−1 into two parts, ∆t1 = T1 − tm∗−1 and ∆t2 = tm∗ − T1, resulting in

X1
T1 −X

1
tm∗−1

∼
(
r1 − δ1 −

σ2
1

2

)
∆t1 + σ1

√
∆t1Zm∗

X1
tm∗ −X1

T1 ∼
(
r2 − δ2 −

σ2
2

2

)
∆t2 + σ2

√
∆t2Zswitch

D(tm∗−1, tm∗) = e−r1·(T1−tm∗−1)−r2·(tm∗−tm∗−1)

with Zswitch standard normal.

Then, the same procedure is repeated until we reach T and all the algorithm just

described is iterated for a great number of times, typically Nsim = 105.

Having simulated the dynamics of the Lévy process in each time step ∆t and for

each iteration n ∈ {1, . . . , Nsim}, we can now compute the Monte Carlo price as

1

Nsim

Nsim∑
n=1

Dn
[
α · (An(T)−K)

]+
(10.44)

where An(T) is the nth geometric/arithmetic average and

Dn =
M∏
m=1

Dn(tm−1, tm) (10.45)

Antithetic variables

Now we want to go one step further with the Monte Carlo method, considering a

technique of variance reduction: the so called Antithetic Variables technique (AV).

Indeed from theory we know that the error for the MC is an estimation of the un-

biased standard deviation of the MC price, so if we manage to reduce this standard

deviation we will have a smaller error and thus a better precision of the price esti-

mate. The basic idea behind this method is that, in order to estimate E[X] with X

being a random variable with law f , one must consider other two random variables

X1, X2 distributed as X and then take Y defined as

Y :=
X1 +X2

2
(10.46)

82 Chapter 10. Asian options

So one gets

E[Y] =
E[X1] + E[X2]

2
= E[X] (10.47)

Var[Y] =
1

4
Var[X1] +

1

4
Var[X2] +

1

2
Cov(X1, X2) =

1

2

(
Var[X] + Cov(X1, X2)

)
(10.48)

And if we take X1, X2 s.t. Cov(X1, X2) < 0, from equation (10.48) we obtain

Var[Y] ≤ Var[X]

Thus it is clear that is more convenient to estimate E[Y], instead of E[X].

In our case we consider X being the discounted payoff. Then, in order to satisfy the

following conditions X1, X2 ∼ X

Cov(X1, X2) < 0

we take X1 = X and we construct X2 starting from X but considering all the

random samples from the normal distribution with opposite sign.

Conclusion

In this dissertation, we studied the problem of option pricing under a regime-

switching framework using the COS method. This method, based on the Fourier

cosine series coefficients, can be used for a various set of options, of which we have

covered only a few of the most popular in literature. Before describing its appli-

cation to exotic options, we set up two calibration procedures with quoted prices

of vanilla options, since they are the most liquid contracts. This is done to know

the parameters of the various models considered and thanks to the calibrations we

found out that regime-switching time-changed Lévy models are the best suited to

describe market data. However, if these models account for several regime switches,

they will involve a large number of parameters making the method slower and less

accurate. For such a reason, we limited our numerical tests to the case of a maximum

of 2 different regimes. This choice led us to another advantage. In order to apply

the COS formula, the characteristic function for the underlying price process must

be known and in general its derivation is not immediate since it requires a matrix

exponentiation. But in the two-state case we have an analytical formula available.

Using the calibrated parameters, we proceeded to the pricing of the various options,

including the continuous path dependent options, such as American and continuous

barrier options, for which we used the s-stage Richardson extrapolation reaching

a high accuracy. Finally, the method confirmed to outperform the most popular

methods in literature, showing excellent convergence properties.

Appendix A

Cumulants

Table A.1: Cumulants

Model Cumulants

BS c1 = µT

c2 = σ2T

c4 = 0

Merton c1 = (µ+ λµ̃)T

c2 = (σ2 + λµ̃2 + λσ̃2)T

c4 = λ(µ̃4 + 6σ̃2µ̃2 + 3σ̃4)T

Kou c1 =
(
µ+ λ

(
p
λ+
− 1−p

λ−

))
T

c2 =
(
σ2 + 2λ

(
p
λ2+

+ 1−p
λ2−

))
T

c4 = 24λ
(

p
λ4+

+ 1−p
λ4−

)
T

VG c1 = (µ+ θ)T

c2 = (σ2 + νθ2)T

c4 = 3(σ4ν + 2θ4ν3 + 4σ2θ2ν2)T

NIG c1 = (µ+ γβ(ω2 − β2)−
1
2)T

c2 = γω2(ω2 − β2)−
3
2T

c4 = 3γω2(ω2 + 4β2)(ω2 − β2)−
7
2T

CGMY c1 = µT + CTΓ(1− Y)(MY−1 −GY−1)

c2 = CTΓ(2− Y)(MY−2 +GY−2)

c4 = CTΓ(4− Y)(MY−4 +GY−4)

Meixner c1 = (µ+ ηα tan(β/2))T

c2 = ηα2

2
(cos(β/2))−2T

c4 = ηα4

4
(cos(β/2))−2(1 + 3(tan(β/2))2)T

86 Appendix A. Cumulants

Model Cumulants

Heston c1 = (r − δ)T + θ−V0
2κ

(1− e−κT)− 1
2
θT

c2 = 1
8κ3

(κεTe−κT (V0 − θ)(8κρ− 4ε) + 8κρε(1− e−κT)(2θ − V0)

+2κθT (−4κρε+ ε2 + 4κ2) + ε2((θ − 2V0)e−2κT

+θ(6e−κT − 7) + 2V0) + 8κ2(V0 − θ)(1− e−κT))

c4 = 0

Appendix B

Call Option Prices

In the following table, taken from [16], we report the data used in the first calibration

procedure. Specifically, 75 call option prices on the S&P 500 Index at the close of

the market on 18 April 2002. On that day, the S&P 500 Index closed at 1124.47

with r = 1.9% and δ = 1.2%.

Table B.1: Call option prices on the S&P 500 index closed on 18 April 2002

Strike May June Sep. Dec. March June Dec.

2002 2002 2002 2002 2003 2003 2003

T=0.088 T=0.184 T=0.436 T=0.692 T=0.936 T=1.192 T=1.708

975 161.60 173.30

995 144.80 157.00 182.10

1025 120.10 133.10 146.50

1050 84.50 100.70 114.80 143.00 171.40

1075 64.30 82.50 97.60

1090 43.10

1100 35.60 65.50 81.20 96.20 111.30 140.40

1110 39.50

1120 22.90 33.50

1125 20.20 30.70 51.00 66.90 81.70 97.00

1130 28.00

1135 25.60 45.50

1140 13.30 23.20 58.90

1150 19.10 38.10 53.90 68.30 83.30 112.80

1160 15.30

1170 12.10

1175 10.90 27.70 42.50 56.60 99.80

88 Appendix B. Call Option Prices

Strike May June Sep. Dec. March June Dec.

2002 2002 2002 2002 2003 2003 2003

T=0.088 T=0.184 T=0.436 T=0.692 T=0.936 T=1.192 T=1.708

1200 19.60 33.00 46.10 60.90

1225 13.20 24.90 36.90 49.80

1250 18.30 29.30 41.20 66.90

1275 13.20 22.50

1300 17.20 27.10 49.50

1325 12.80

1350 17.10 35.70

1400 10.10 25.20

1450 17.00

1500 12.20

The next table, instead, contains the data used in the second calibration procedure.

It has been downloaded from Thomson Reuters website and presents 59 call option

prices on the AAPL stock at the close of the market on 5 November 2020. On that

day, the AAPL stock closed at 114.95 with r = 0.15% and δ = 0.71%.

Table B.2: Call option prices on the AAPL stock closed on 5 November 2020

Strike Nov. Dec. March June Sep. Jan. June

2020 2020 2021 2021 2021 2022 2022

T=0.041 T=0.118 T=0.367 T=0.616 T=0.866 T=1.211 T=1.614

87.5 27.75 33.15

90 28.33 31.48

92.5 26.44

95 20.53 24.47

97.5 17.65 18.42 23.20

100 15.30 16.25 19.58 21.70 23.10 25.25 27.52

102.5 12.85 14.20

105 10.75 12.20 22.47

107.5 10.22

110 6.80 8.70 12.96 15.45 19.85

112.5 5.10 14.35 18.64

115 3.65 10.30 13.05

117.5 2.50

89

Strike Nov. Dec. March June Sep. Jan. June

2020 2020 2021 2021 2021 2022 2022

T=0.041 T=0.118 T=0.367 T=0.616 T=0.866 T=1.211 T=1.614

120 3.55 8.20 13.10 15.55 18.20

125 2.05 6.51 9.00 13.71

130 1.14 7.57 12.05

135 3.80 6.13 10.65

140 5.05 7.05 9.45

145 2.20 8.11

150 3.40 7.30

155 2.86

160 1.04

Appendix C

Matlab codes

C.1 Auxiliary functions

C.1.1 Characteristic Exponents

1 function psi=CharExp(model,u,T,r,delta,param)

2 % INPUTS

3 % model: Chosen model of the underlying dynamics

4 % u: Valuation point of the characteristic exponent

5 % T: Time-to-maturity

6 % r: Risk-free interest rate

7 % delta: Dividend yield

8 % param: Vector with the parameters of the model

9 %

10 % FUNCTIONS

11 % CharExpAux: Given psi without drift, it returns psi(u,T)

12 % CharExpCIR: Given psi, it applies the time change

13 % with CIR clock

14 % CharExpGOU: Given psi, it applies the time change

15 % with Gamma OU clock

16 % CharExpHeston: Returns directly psi(u,T) for the Heston model

17 %

18 % OUTPUT

19 % psi: Characteristic exponent in the form psi(u,T),

20 % s.t. the corresponding characteristic function

21 % can be written as: phi(u)=exp(psi(u,T))

22

23 switch(model)

24 case 'BS'

25 sigma=param;

26 psi=@(u) -sigmaˆ2/2*u.ˆ2;

27 psi=CharExpAux(psi,u,T,r,delta);

92 Appendix C. Matlab codes

28 case 'Merton'

29 sigma=param(1); mu_tilde=param(2);

30 sigma_tilde=param(3); lambda=param(4);

31 psi=@(u) -sigmaˆ2/2*u.ˆ2+lambda* ...

32 (exp(1i*u*mu_tilde-sigma_tildeˆ2*u.ˆ2/2)-1);

33 psi=CharExpAux(psi,u,T,r,delta);

34 case 'Kou'

35 sigma=param(1); p=param(2); lambdap=param(3);

36 lambdam=param(4); lambda=param(5);

37 psi=@(u) -sigmaˆ2/2*u.ˆ2+1i*u*lambda.* ...

38 (p./(lambdap-1i*u)-(1-p)./(lambdam+1i*u));

39 psi=CharExpAux(psi,u,T,r,delta);

40 case {'VG','VG_CIR','VG_GOU'}

41 sigma=param(1); nu=param(2); theta=param(3);

42 psi=@(u) (-1/nu)*log(1-1i*u*theta*nu+sigmaˆ2*nu*u.ˆ2/2);

43 if strcmp(model,'VG')

44 psi=CharExpAux(psi,u,T,r,delta);

45 elseif strcmp(model,'VG_CIR')

46 k=param(4); eta=param(5); lambda=param(6);

47 psi=CharExp_CIR(psi,u,T,r,delta,k,eta,lambda);

48 else

49 lambda=param(4); a1=param(5); a2=param(6);

50 psi=CharExp_GOU(psi,u,T,r,delta,lambda,a1,a2);

51 end

52 case {'NIG','NIG_CIR','NIG_GOU'}

53 omega=param(1); beta=param(2); gammaNIG=param(3);

54 psi=@(u) gammaNIG*(sqrt(omegaˆ2-betaˆ2)- ...

55 sqrt(omegaˆ2-(beta+1i*u).ˆ2));

56 if strcmp(model,'NIG')

57 psi=CharExpAux(psi,u,T,r,delta);

58 elseif strcmp(model,'NIG_CIR')

59 k=param(4); eta=param(5); lambda=param(6);

60 psi=CharExp_CIR(psi,u,T,r,delta,k,eta,lambda);

61 else

62 lambda=param(4); a1=param(5); a2=param(6);

63 psi=CharExp_GOU(psi,u,T,r,delta,lambda,a1,a2);

64 end

65 case {'CGMY','CGMY_CIR','CGMY_GOU'}

66 C=param(1); G=param(2); M=param(3); Y=param(4);

67 psi=@(u) C*gamma(-Y)*((M-1i*u).ˆY-MˆY+(G+1i*u).ˆY-GˆY);

68 if strcmp(model,'CGMY')

69 psi=CharExpAux(psi,u,T,r,delta);

70 elseif strcmp(model,'CGMY_CIR')

71 k=param(5); eta=param(6); lambda=param(7);

72 psi=CharExp_CIR(psi,u,T,r,delta,k,eta,lambda);

73 else

C.1. Auxiliary functions 93

74 lambda=param(5); a1=param(6); a2=param(7);

75 psi=CharExp_GOU(psi,u,T,r,delta,lambda,a1,a2);

76 end

77 case {'Meixner','Meixner_CIR','Meixner_GOU'}

78 alpha=param(1); beta=param(2); eta=param(3);

79 psi=@(u) 2*eta*log(cos(beta/2)./ ...

80 cosh((alpha*u-1i*beta)./2));

81 if strcmp(model,'Meixner')

82 psi=CharExpAux(psi,u,T,r,delta);

83 elseif strcmp(model,'Meixner_CIR')

84 k=param(4); etaCIR=param(5); lambda=param(6);

85 psi=CharExp_CIR(psi,u,T,r,delta,k,etaCIR,lambda);

86 else

87 lambda=param(4); a1=param(5); a2=param(6);

88 psi=CharExp_GOU(psi,u,T,r,delta,lambda,a1,a2);

89 end

90 case 'Heston'

91 psi=CharExp_Heston(u,T,r,delta,param(1),param(2), ...

92 param(3),param(4),param(5));

93 otherwise

94 warning('method not found')

95 end

96

97 end

98 %% List of Characteristic Exponents

99 function psi=CharExpAux(psi,u,T,r,delta)

100 psi_u=psi(u);

101 psi_i=-psi(-1i);

102 mu=r-delta+psi_i;

103 psi=(1i*u*mu+psi_u)*T;

104 end

105

106 function psi=CharExp_Heston(u,T,r,delta,V0,theta,k,epsilon,rho)

107 alfa=-0.5*(u.*u+u*1i);

108 beta=k-rho*epsilon*u*1i;

109 epsilon2=epsilon*epsilon;

110 gamma=0.5*epsilon2;

111 D=sqrt(beta.*beta-4.0*alfa.*gamma);

112 bD=beta-D;

113 eDt=exp(-D*T);

114 G=bD./(beta+D);

115 B=(bD./epsilon2).*((1.0-eDt)./(1.0-G.*eDt));

116 psi=(G.*eDt-1.0)./(G-1.0);

117 A=((k*theta)/(epsilon2))*(bD*T-2.0*log(psi));

118 psi=A+B*V0+1i*u*((r-delta)*T);

119 end

94 Appendix C. Matlab codes

120

121 function psi=CharExp_CIR(psi,u,T,r,delta,k,eta,lambda)

122 psi_u=-1i*psi(u);

123 psi_i=-1i*psi(-1i);

124 y0=1;

125 gamma_u=sqrt(kˆ2-2*lambdaˆ2*1i*psi_u);

126 gamma_i=sqrt(kˆ2-2*lambdaˆ2*1i*psi_i);

127 log_phi_u=kˆ2*eta*T*lambdaˆ(-2)+2*y0*1i*psi_u./ ...

128 (k+gamma_u.*coth(gamma_u*T/2))-log(cosh(gamma_u*T/2)+ ...

129 k*sinh(gamma_u*T/2)./gamma_u)*(2*k*eta*lambdaˆ(-2));

130 log_phi_i=kˆ2*eta*T*lambdaˆ(-2)+2*y0*1i*psi_i./ ...

131 (k+gamma_i*coth(gamma_i*T/2))-log(cosh(gamma_i*T/2)+ ...

132 k*sinh(gamma_i*T/2)/gamma_i)*(2*k*eta*lambdaˆ(-2));

133 psi=1i*u*((r-delta)*T-log_phi_i)+log_phi_u;

134 end

135

136 function psi=CharExp_GOU(psi,u,T,r,delta,lambda,a1,a2)

137 psi_u=-1i*psi(u);

138 psi_i=-1i*psi(-1i);

139 y0=1;

140 log_phi_u=1i*psi_u*y0*lambdaˆ(-1)*(1-exp(-lambda*T))+ ...

141 a1*lambda./(1i*psi_u-lambda*a2).*(a2*log(a2./(a2-1i*psi_u* ...

142 lambdaˆ(-1)*(1-exp(-lambda*T))))-1i*psi_u*T);

143 log_phi_i=1i*psi_i*y0*lambdaˆ(-1)*(1-exp(-lambda*T))+ ...

144 a1*lambda./(1i*psi_i-lambda*a2).*(a2*log(a2./(a2-1i*psi_i* ...

145 lambdaˆ(-1)*(1-exp(-lambda*T))))-1i*psi_i*T);

146 psi=1i*u*((r-delta)*T-log_phi_i)+log_phi_u;

147 end

C.1.2 Cumulants

1 function c=ComputeCumulants(model,T,r,delta,param)

2 % INPUTS

3 % model: Chosen model of the underlying dynamics

4 % T: Time-to-maturity

5 % r: Risk-free interest rate

6 % delta: Dividend yield

7 % param: Vector with the parameters of the model

8 %

9 % OUTPUT

10 % c: Vector with the 1st, 2nd and 4th cumulants

11

12 switch (model)

13 case 'BS'

14 sigma=param;

C.1. Auxiliary functions 95

15 mu=r-delta-sigmaˆ2/2;

16 c1=mu*T;

17 c2=sigmaˆ2*T;

18 c4=0;

19 case 'Merton'

20 sigma=param(1); mu_tilde=param(2);

21 sigma_tilde=param(3); lambda=param(4);

22 mu=r-delta-sigmaˆ2/2-lambda* ...

23 (exp(mu_tilde+sigma_tildeˆ2/2)-1);

24 c1=(mu+lambda*mu_tilde)*T;

25 c2=(sigmaˆ2+lambda*mu_tildeˆ2+lambda*sigma_tildeˆ2)*T;

26 c4=lambda*(mu_tildeˆ4+6*sigma_tildeˆ2*mu_tildeˆ2+ ...

27 3*sigma_tildeˆ4)*T;

28 case 'Kou'

29 sigma=param(1); p=param(2); lambdap=param(3);

30 lambdam=param(4); lambda=param(5);

31 mu=r-delta-sigmaˆ2/2-lambda* ...

32 (p/(lambdap-1)-(1-p)/(lambdam+1));

33 c1=(mu+lambda*(p/lambdap-(1-p)/lambdam))*T;

34 c2=(sigmaˆ2+2*lambda*(p/(lambdapˆ2)+(1-p)/(lambdamˆ2)))*T;

35 c4=24*lambda*(p/(lambdapˆ4)+(1-p)/(lambdamˆ4))*T;

36 case 'VG'

37 sigma=param(1); nu=param(2); theta=param(3);

38 mu=r-delta+(1/nu)*log(1-theta*nu-nu*sigmaˆ2/2);

39 c1=(mu+theta)*T;

40 c2=(sigmaˆ2+nu*thetaˆ2)*T;

41 c4=3*(sigmaˆ4*nu+2*thetaˆ4*nuˆ3+4*sigmaˆ2*thetaˆ2*nuˆ2)*T;

42 case 'NIG'

43 omega=param(1); beta=param(2); gammaNIG=param(3);

44 mu=r-delta-gammaNIG*(sqrt(omegaˆ2-betaˆ2)- ...

45 sqrt(omegaˆ2-(beta+1)ˆ2));

46 c1=(mu+gammaNIG*beta/sqrt(omegaˆ2-betaˆ2))*T;

47 c2=gammaNIG*omegaˆ2*(omegaˆ2-betaˆ2)ˆ(-3/2)*T;

48 c4=3*gammaNIG*omegaˆ2*(omegaˆ2+4*betaˆ2)* ...

49 (omegaˆ2-betaˆ2)ˆ(-7/2)*T;

50 case 'CGMY'

51 C=param(1); G=param(2); M=param(3); Y=param(4);

52 mu=r-delta-C*gamma(-Y)*((M-1)ˆY-MˆY+(G+1)ˆY-GˆY);

53 c1=mu*T+C*T*gamma(1-Y)*(Mˆ(Y-1)-Gˆ(Y-1));

54 c2=C*T*gamma(2-Y)*(Mˆ(Y-2)+Gˆ(Y-2));

55 c4=C*T*gamma(4-Y)*(Mˆ(Y-4)+Gˆ(Y-4));

56 case 'Meixner'

57 alpha=param(1); beta=param(2); eta=param(3);

58 mu=r-delta-2*eta*log(cos(beta/2)/cos((alpha+beta)/2));

59 c1=mu*T+eta*alpha*tan(beta/2)*T;

60 c2=eta*T*alphaˆ2/(2*(cos(beta/2))ˆ2);

96 Appendix C. Matlab codes

61 c4=eta*T*alphaˆ4/(4*(cos(beta/2))ˆ2)*(1+3*(tan(beta/2))ˆ2);

62 case 'Heston'

63 V0=param(1); theta=param(2); k=param(3);

64 epsilon=param(4); rho=param(5);

65 c1=(r-delta)*T+0.5*((1-exp(-k*T))* ...

66 (theta-V0)/k-theta*T);

67 c2=1/(8*kˆ3)*(k*epsilon*T*exp(-k*T)* ...

68 (V0-theta)*(8*k*rho-4*epsilon) ...

69 +8*k*rho*epsilon*(1-exp(-k*T))*(2*theta-V0) ...

70 +2*k*theta*T*(-4*k*rho*epsilon+epsilonˆ2+4*kˆ2) ...

71 +epsilonˆ2*((theta-2*V0)*exp(-2*k*T) ...

72 +theta*(6*exp(-k*T)-7)+2*V0) ...

73 +8*kˆ2*(V0-theta)*(1-exp(-k*T)));

74 c4=0;

75 otherwise % use finite difference

76 h=1e-2;

77 psi=@(u) CharExp(model,-1i*u,T,r,delta,param);

78 f=psi(0);

79 fh=psi(h);

80 f_h=psi(-h);

81 f2h=psi(2*h);

82 f_2h=psi(-2*h);

83 f3h=psi(3*h);

84 f_3h=psi(-3*h);

85 c1=(fh-f_h)/(2*h);

86 c2=(fh-2*f+f_h)/(hˆ2);

87 c4=(f3h-2*f2h+4*f-fh-f_h-2*f_2h+f_3h)/(4*hˆ4);

88 end

89 c=[c1,c2,c4];

90

91 end

C.1.3 Functions χk, ξk

1 function [chi,xi]=CosineCoeff(k,c,d,a,b)

2 % INPUTS

3 % k: Grid index

4 % [c,d]: Interval of interest

5 % [a,b]: Truncated domain

6 %

7 % OUTPUTS

8 % chi,xi: Auxiliar functions needed in the computation

9 % of the Fourier cosine series coefficients

10

11 u=k*pi/(b-a);

C.1. Auxiliary functions 97

12 x1=(d-a)*u;

13 x2=(c-a)*u;

14 xi=(sin(x1)-sin(x2))./u;

15 xi(1)=d-c;

16 chi=(cos(x1)*exp(d)-cos(x2)*exp(c)+ ...

17 u.*(sin(x1)*exp(d)-sin(x2)*exp(c)))./(1+u.ˆ2);

18

19 end

C.1.4 Coefficients V̄k

1 function Vk=VkVanilla(k,x1,x2,a,b,K,alpha)

2 % INPUTS

3 % k: Grid index

4 % [x1,x2]: Exercise interval

5 % [a,b]: Truncated domain

6 % K: Strike price

7 % alpha: 1 for a Call, -1 for a Put

8 %

9 % FUNCTION

10 % CosineCoeff: Function that returns the auxiliar functions

11 % chi,xi needed to compute Vk

12 %

13 % OUTPUT

14 % Vk: Fourier cosine series coefficients

15 % for the Vanilla Option

16

17 [chi,xi]=CosineCoeff(k,x1,x2,a,b);

18 Vk=2/(b-a)*K*alpha*(chi-xi);

19

20 end

1 function Vk=VkDigital(k,x1,x2,a,b,K)

2 % INPUTS

3 % k: Grid index

4 % [x1,x2]: Exercise interval

5 % [a,b]: Truncated domain

6 % K: Strike price

7 %

8 % FUNCTION

9 % CosineCoeff: Function that returns the auxiliar functions

10 % chi,xi needed to compute Vk

11 %

12 % OUTPUT

13 % Vk: Fourier cosine series coefficients

98 Appendix C. Matlab codes

14 % for the Digital option

15

16 [~,xi]=CosineCoeff(k,x1,x2,a,b);
17 Vk=2/(b-a)*K*xi;

18

19 end

1 function Vk=VkButterfly(k,x1,x2,x3,x,a,b,K1,K2,K3,p,alpha)

2 % INPUTS

3 % k: Grid index

4 % [x1,x2,x3,x]: Exercise points

5 % [a,b]: Truncated domain

6 % [K1,K2,K3]: Strike prices

7 % p: Scale parameter

8 % alpha: 1 for a Call, -1 for a Put

9 %

10 % FUNCTION

11 % CosineCoeff: Function that returns the auxiliar functions

12 % chi,xi needed to compute Vk

13 %

14 % OUTPUT

15 % Vk: Fourier cosine series coefficients

16 % for the Butterfly Option

17

18 if alpha==1

19 [chi1,xi1]=CosineCoeff(k,x1,x,a,b);

20 [chi2,xi2]=CosineCoeff(k,x2,x,a,b);

21 [chi3,xi3]=CosineCoeff(k,x3,x,a,b);

22 else

23 [chi1,xi1]=CosineCoeff(k,x,x1,a,b);

24 [chi2,xi2]=CosineCoeff(k,x,x2,a,b);

25 [chi3,xi3]=CosineCoeff(k,x,x3,a,b);

26 end

27 Vk=2/(b-a)*alpha*(p*chi1-K1*xi1- ...

28 2*(p*chi2-K2*xi2)+p*chi3-K3*xi3);

29

30 end

1 function Vk=VkAsianGeom(k,x1,x2,a,b,K,alpha)

2 % INPUTS

3 % k: Grid index

4 % [x1,x2]: Exercise interval

5 % [a,b]: Truncated domain

6 % K: Strike price

7 % alpha: 1 for a Call, -1 for a Put

8 %

C.1. Auxiliary functions 99

9 % FUNCTION

10 % CosineCoeff: Function that returns the auxiliar functions

11 % chi,xi needed to compute Vk

12 %

13 % OUTPUT

14 % Vk: Fourier cosine series coefficients

15 % for the Asian Option

16

17 [chi,xi]=CosineCoeff(k,x1,x2,a,b);

18 Vk=2/(b-a)*alpha*(chi-K*xi);

19

20 end

1 function Vk=VkAsianArithm(k,x1,x2,a,b,K,S0,M,alpha)

2 % INPUTS

3 % k: Grid index

4 % [x1,x2]: Exercise interval

5 % [a,b]: Truncated domain

6 % K: Strike price

7 % S0: Spot price

8 % M: Number of monitoring dates

9 % alpha: 1 for a Call, -1 for a Put

10 %

11 % FUNCTION

12 % CosineCoeff: Function that returns the auxiliar functions

13 % chi,xi needed to compute Vk

14 %

15 % OUTPUT

16 % Vk: Fourier cosine series coefficients

17 % for the arithmetic Asian Option

18

19 [chi,xi]=CosineCoeff(k,x1,x2,a,b);

20 Vk=2/(b-a)*alpha*(S0/(M+1)*chi-(K-S0/(M+1))*xi);

21

22 end

C.1.5 Computation of H̄i

1 function H=ComputeH(x1,x2,a,b,N,u)

2 % INPUTS

3 % [x1,x2]: Interval of interest

4 % [a,b]: Truncated domain

5 % N: Number of grid points

6 % u: Lambdak

7 %

100 Appendix C. Matlab codes

8 % OUTPUT

9 % H: Continuation value

10

11 exp2=exp(1i*(1:N)'*(x2-a)/(b-a)*pi);

12 exp1=exp(1i*(1:N)'*(x1-a)/(b-a)*pi);

13 m=zeros(3*N-1,1); % m=[m_{1-N},...,m_{N-1},

14 % m_{N},...,m_{2N-1}]

15 m(N)=(x2-x1)/(b-a)*pi*1i; % m_0

16 m(N+1:2*N)=(exp2-exp1)./(1:N)'; % [m_1,...,m_{N-1},m_N]

17 m(1:N-1)=-conj(flipud(m(N+1:2*N-1)));

18 m(2*N+1:3*N-1)=(exp2(N)*exp2(1:N-1)-exp1(N)*exp1(1:N-1))./ ...

19 (N+1:2*N-1)';

20 m_s=[m(N:-1:1);0;m(2*N-1:-1:N+1)]; % m_s=[m_0,m_{-1},...,m_{1-N},

21 % 0,m_{N-1},...,m_1]'

22 m_c=m(3*N-1:-1:N); % m_c=[m_{2N-1},...,m_1,m_0]'

23

24 u_s=[u;zeros(N,1)]; % u_s=[u_0,u_1,...,u_{N-1},

25 % 0,...,0]'

26 sgn=ones(2*N,1);

27 sgn(2*(1:N))=-1;

28 xi_s=ifft((fft(m_s)).*fft(u_s));

29 Msu=xi_s(1:N);

30 xi_c=ifft((fft(m_c)).*sgn.*fft(u_s));

31 Mcu=flipud(xi_c(1:N));

32 H=1/pi*imag(Msu+Mcu);

33

34 end

C.1.6 Computation of M

1 function Mkl=ComputeM(a,b,uk,ul,nq)

2 % INPUTS

3 % [a,b]: Truncated domain

4 % uk: k*pi/(b-a)

5 % ul: l*pi/(b-a)

6 % nq: number of quadrature points

7 %

8 % OUTPUT

9 % Mkl: M(k,l)=\int_aˆb (eˆy+1)ˆ{1i*uk} cos((y-a)ul)dy

10 % using Clenshaw-Curtis quadrature

11

12 dim=nq/2+1;

13 n=(0:dim-1)';

14 D=2/nq*cos(n*n'*2*pi/nq);

15 D(:,1)=D(:,1)*0.5;

C.1. Auxiliary functions 101

16 D(:,dim)=D(:,dim)*0.5;

17 nn=2:2:nq;

18 d=2./(1-nn.ˆ2);

19 d=[1;d(1:end-1)';d(end)*0.5];

20 f=@(x) (b-a)/2*(exp((b-a)/2.*x+(a+b)/2)+1).ˆ(1i*uk).* ...

21 cos(((b-a)/2.*x+(a+b)/2-a)*ul);

22 y=f(cos(n*pi/nq))+f(-cos(n*pi/nq));

23 Mkl=(D'*d)'*y;

24

25 end

C.1.7 Put-Call parity

1 function Prices=PutCall_parity(J,Prices,S0,T,r,delta,K)

2 % INPUTS

3 % J: Number of states

4 % Prices: Put option prices in the J states

5 % S0: Spot price

6 % T: Time-to-maturity

7 % r: Risk-free interest rate constant

8 % for all the J states

9 % delta: Dividend yield constant

10 % for all the J states

11 % K: Strike price

12 %

13 % OUTPUT

14 % Prices: Call option prices obtained with PC parity

15

16 for j=1:J

17 Prices(j)=Prices(j)+S0*exp(-delta*T)-K*exp(-r*T);

18 end

19

20 end

C.1.8 Characteristic function under 2 regimes switching

1 function [phi11,phi12,phi21,phi22]=CharFun_2RS(models,u,T,r, ...

2 delta,Q,params)

3 % INPUTS

4 % models: String vector containing the chosen models

5 % of the underlying dynamics in the two states

6 % u: Valuation point

7 % T: Time-to-maturity

102 Appendix C. Matlab codes

8 % r: Vector with the risk-free interest rates

9 % in the 2 states

10 % delta: Vector with the dividend yields

11 % in the 2 states

12 % Q: Intensity matrix

13 % params: Cell array with the parameters of

14 % [model1,model2]

15 %

16 % FUNCTION

17 % CharExp: Returns the characteristic exponent psi(u,T)

18 %

19 % OUTPUTS

20 % phiij i,j in [1,2]. They are vectors in order to get

21 % phi=[diag(phi11),diag(phi12); ...

22 % diag(phi21),diag(phi22)]

23

24 psi1_tilde=1/T*CharExp(models(1),u,T,r(1),delta(1), ...

25 params{1})-r(1)+Q(1,1);

26 psi2_tilde=1/T*CharExp(models(2),u,T,r(2),delta(2), ...

27 params{2})-r(2)+Q(2,2);

28 s1=1/2*(psi1_tilde+psi2_tilde+sqrt(psi1_tilde.ˆ2 ...

29 -2*psi1_tilde.*psi2_tilde+psi2_tilde.ˆ2+ ...

30 4*Q(1,2)*Q(2,1)));

31 s2=1/2*(psi1_tilde+psi2_tilde-sqrt(psi1_tilde.ˆ2 ...

32 -2*psi1_tilde.*psi2_tilde+psi2_tilde.ˆ2+ ...

33 4*Q(1,2)*Q(2,1)));

34 phi11=exp(s2*T)+(exp(s2*T)-exp(s1*T))./(s2-s1).* ...

35 (psi1_tilde-s2);

36 phi12=(exp(s2*T)-exp(s1*T))./(s2-s1)*Q(1,2);

37 phi21=(exp(s2*T)-exp(s1*T))./(s2-s1)*Q(2,1);

38 phi22=exp(s2*T)+(exp(s2*T)-exp(s1*T))./(s2-s1).* ...

39 (psi2_tilde-s2);

40

41 end

C.1.9 Black-Scholes dynamics under 2 regimes switching

1 function [XT,XTAV,D]=simulateBS_2RS(Nsim,M,T,r,delta,Q,sigma,i)

2 % INPUTS

3 % Nsim: Number of simulations

4 % M: Number of time steps

5 % T: Time-to-maturity

6 % r: Vector with the risk-free interest rates

7 % in the 2 states

8 % delta: Vector with the dividend yields

C.1. Auxiliary functions 103

9 % in the 2 states

10 % Q: Intensity matrix

11 % sigma: Cell array with the volatilities of

12 % [model1,model2]

13 % i: Initial regime state

14 %

15 % OUTPUTS

16 % XT: Lévy process under 2RS Black & Scholes

17 % XTAV: Antithetic variable of XT

18 % D: Total discount factor

19

20 dT=T/M;

21 Z=randn(Nsim,M);

22 XT=zeros(Nsim,M+1);

23 XTAV=zeros(Nsim,M+1);

24 D=ones(Nsim,1);

25 drift=zeros(2,1);

26 drift(1)=r(1)-delta(1)-sigma{1}ˆ2/2;

27 drift(2)=r(2)-delta(2)-sigma{2}ˆ2/2;

28 for n=1:Nsim

29 k=i;

30 waitingTime=exprnd(1/abs(Q(k,k)));

31 for m=1:M

32 if waitingTime<=m*dT && waitingTime>(m-1)*dT

33 t=waitingTime-(m-1)*dT;

34 XT(n,m+1)=XT(n,m)+drift(k)*t+ ...

35 sigma{k}*sqrt(t)*Z(n,m);

36 XTAV(n,m+1)=XTAV(n,m)+drift(k)*t- ...

37 sigma{k}*sqrt(t)*Z(n,m);

38 D(n)=D(n)*exp(-r(k)*t);

39 if k==1

40 k=2;

41 else

42 k=1;

43 end

44 t=m*dT-waitingTime;

45 Zswitch=randn;

46 XT(n,m+1)=XT(n,m+1)+drift(k)*t+ ...

47 sigma{k}*sqrt(t)*Zswitch;

48 XTAV(n,m+1)=XTAV(n,m+1)+drift(k)*t- ...

49 sigma{k}*sqrt(t)*Zswitch;

50 D(n)=D(n)*exp(-r(k)*t);

51 if k==1

52 k=2;

53 else

54 k=1;

104 Appendix C. Matlab codes

55 end

56 waitingTime=m*dT+exprnd(1/abs(Q(k,k)));

57 else

58 XT(n,m+1)=XT(n,m)+drift(k)*dT+ ...

59 sigma{k}*sqrt(dT)*Z(n,m);

60 XTAV(n,m+1)=XTAV(n,m)+drift(k)*dT- ...

61 sigma{k}*sqrt(dT)*Z(n,m);

62 D(n)=D(n)*exp(-r(k)*dT);

63 end

64 end

65 end

66

67 end

C.2 COS method

C.2.1 Vanilla options

1 function Price=COS_Vanilla(N,L,alpha,model,S0,T,r,delta,K,param)

2 % INPUTS

3 % N: Number of grid points

4 % L: Parameter needed in domain truncation

5 % alpha: 1 for a Call, -1 for a Put

6 % model: Chosen model of the underlying dynamics

7 % S0: Spot price

8 % T: Time-to-maturity

9 % r: Risk-free interest rate

10 % delta: Dividend yield

11 % K: Strike price

12 % param: Vector with the parameters of the model

13 %

14 % FUNCTIONS

15 % ComputeCumulants: Compute the cumulants for the chosen model

16 % VkVanilla: Returns the Fourier cosine series

17 % coefficients for Vanilla options

18 % CharExp: Returns the characteristic exponent psi(u,T)

19 %

20 % OUTPUT

21 % Price: Price of the Vanilla option obtained

22 % with the COS method

23

24 x0=log(S0/K);

25 c=ComputeCumulants(model,T,r,delta,param);

26 a=x0+c(1)-L*sqrt(c(2)+sqrt(c(3)));

C.2. COS method 105

27 b=x0+c(1)+L*sqrt(c(2)+sqrt(c(3)));

28 k=(0:N-1)';

29 Vk=VkVanilla(k,a,0,a,b,K,-1); % Put option

30 u=k*pi/(b-a);

31 phik=exp(CharExp(model,u,T,r,delta,param));

32 Lambdak=phik.*Vk;

33 Lambdak(1)=0.5*Lambdak(1);

34 Price=exp(-r*T)*sum(real(exp(1i*u*(x0-a)).*Lambdak));

35 % Call price with Put-Call parity

36 if alpha==1

37 Price=Price+S0*exp(-delta*T)-K*exp(-r*T);

38 end

39

40 end

C.2.2 Bermudan options

1 function Price=COS_Bermudan(N,M,L,alpha,model,S0,T,r,delta,K,param)

2 % INPUTS

3 % N: Number of grid points

4 % M: Number of dates of early exercise

5 % L: Parameter needed in domain truncation

6 % alpha: 1 for a Call, -1 for a Put

7 % model: Chosen model of the underlying dynamics

8 % S0: Spot price

9 % T: Time-to-maturity

10 % r: Risk-free interest rate

11 % delta: Dividend yield

12 % K: Strike price

13 % param: Vector with the parameters of the model

14 %

15 % FUNCTIONS

16 % ComputeCumulants: Compute the cumulants for the chosen model

17 % VkVanilla: Returns the Fourier cosine series

18 % coefficients for Vanilla options

19 % ComputeH: Returns the continuation value

20 % CharExp: Returns the characteristic exponent psi(u,T)

21 %

22 % OUTPUT

23 % Price: Price of the Bermudan option

24 % obtained with the COS method

25

26 dT=T/M;

27 x0=log(S0/K);

28 c=ComputeCumulants(model,T,r,delta,param);

106 Appendix C. Matlab codes

29 a=x0+c(1)-L*sqrt(c(2)+sqrt(c(3)));

30 b=x0+c(1)+L*sqrt(c(2)+sqrt(c(3)));

31 k=(0:N-1)';

32 u=k*pi/(b-a);

33 phik=exp(CharExp(model,u,dT,r,delta,param));

34 if alpha==1

35 Gk=@(x) VkVanilla(k,x,b,a,b,K,alpha);

36 ContValue=@(x,y) exp(-r*dT)*ComputeH(a,x,a,b,N,y);

37 else

38 Gk=@(x) VkVanilla(k,a,x,a,b,K,alpha);

39 ContValue=@(x,y) exp(-r*dT)*ComputeH(x,b,a,b,N,y);

40 end

41 xstark=zeros(M,1);

42 Hk=0;

43 for m=M-1:-1:1

44 Vk=Gk(xstark(m+1))+Hk;

45 Lambdak=phik.*Vk;

46 Lambdak(1)=0.5*Lambdak(1);

47 g=@(x) exp(-r*dT)*sum(real(exp(1i*(x-a)*u).*Lambdak))- ...

48 alpha*K*(exp(x)-1);

49 xstark(m)=fzero(g,xstark(m+1));

50 Hk=ContValue(xstark(m),Lambdak);

51 end

52 Vk=Gk(xstark(1))+Hk;

53 Lambdak=phik.*Vk;

54 Lambdak(1)=0.5*Lambdak(1);

55 Price=exp(-r*dT)*sum(real(exp(1i*u*(x0-a)).*Lambdak));

56

57 end

C.2.3 Barrier options

1 function Price=COS_BarrierUO(N,M,B,Rb,L,alpha,model,S0,T,r, ...

2 delta,K,param)

3 % INPUTS

4 % N: Number of grid points

5 % M: Number of monitoring dates

6 % B: Barrier

7 % Rb: Rebate

8 % L: Parameter needed in domain truncation

9 % alpha: 1 for a Call, -1 for a Put

10 % model: Chosen model of the underlying dynamics

11 % S0: Spot price

12 % T: Time-to-maturity

13 % r: Risk-free interest rate

C.2. COS method 107

14 % delta: Dividend yield

15 % K: Strike price

16 % param: Vector with the parameters of the model

17 %

18 % FUNCTIONS

19 % ComputeCumulants: Compute the cumulants for the chosen model

20 % VkVanilla: Returns the Fourier cosine series

21 % coefficients for Vanilla options

22 % ComputeH: Returns the continuation value

23 % CharExp: Returns the characteristic exponent psi(u,T)

24 % CosineCoeff: Function that returns the auxiliar functions

25 % chi,xi needed to compute Vk

26 %

27 % OUTPUT

28 % Price: Price of the Up & Out Barrier option

29 % obtained with the COS method

30

31 dT=T/M;

32 x0=log(S0/K);

33 xb=log(B/K);

34 c=ComputeCumulants(model,T,r,delta,param);

35 a=x0+c(1)-L*sqrt(c(2)+sqrt(c(3)));

36 b=x0+c(1)+L*sqrt(c(2)+sqrt(c(3)));

37 k=(0:N-1)';

38 u=k*pi/(b-a);

39 phik=exp(CharExp(model,u,dT,r,delta,param));

40 if alpha==1

41 Vk=@(x) VkVanilla(k,x,xb,a,b,K,alpha);

42 if xb>=0

43 Vk=Vk(0);

44 else

45 Vk=0;

46 end

47 else

48 Vk=@(x) VkVanilla(k,a,x,a,b,K,alpha);

49 if xb>=0

50 Vk=Vk(0);

51 else

52 Vk=Vk(xb);

53 end

54 end

55 ContValue=@(y) exp(-r*dT)*ComputeH(a,xb,a,b,N,y);

56 [~,xik]=CosineCoeff(k,xb,b,a,b);
57 Gk=2/(b-a)*Rb*xik;

58 Vk=Vk+Gk;

59 for m=M-1:-1:1

108 Appendix C. Matlab codes

60 Lambdak=phik.*Vk;

61 Lambdak(1)=0.5*Lambdak(1);

62 Vk=ContValue(Lambdak)+Gk;

63 end

64 Lambdak=phik.*Vk;

65 Lambdak(1)=0.5*Lambdak(1);

66 Price=exp(-r*dT)*sum(real(exp(1i*u*(x0-a)).*Lambdak));

67

68 end

1 function Price=COS_BarrierDO(N,M,B,Rb,L,alpha,model,S0,T,r, ...

2 delta,K,param)

3 % INPUTS

4 % N: Number of grid points

5 % M: Number of monitoring dates

6 % B: Barrier

7 % Rb: Rebate

8 % L: Parameter needed in domain truncation

9 % alpha: 1 for a Call, -1 for a Put

10 % model: Chosen model of the underlying dynamics

11 % S0: Spot price

12 % T: Time-to-maturity

13 % r: Risk-free interest rate

14 % delta: Dividend yield

15 % K: Strike price

16 % param: Vector with the parameters of the model

17 %

18 % FUNCTIONS

19 % ComputeCumulants: Compute the cumulants for the chosen model

20 % VkVanilla: Returns the Fourier cosine series

21 % coefficients for Vanilla options

22 % ComputeH: Returns the continuation value

23 % CharExp: Returns the characteristic exponent psi(u,T)

24 % CosineCoeff: Function that returns the auxiliar functions

25 % chi,xi needed to compute Vk

26 %

27 % OUTPUT

28 % Price: Price of the Down & Out Barrier option

29 % obtained with the COS method

30

31 dT=T/M;

32 x0=log(S0/K);

33 xb=log(B/K);

34 c=ComputeCumulants(model,T,r,delta,param);

35 a=x0+c(1)-L*sqrt(c(2)+sqrt(c(3)));

36 b=x0+c(1)+L*sqrt(c(2)+sqrt(c(3)));

C.2. COS method 109

37 k=(0:N-1)';

38 u=k*pi/(b-a);

39 phik=exp(CharExp(model,u,dT,r,delta,param));

40 if alpha==1

41 Vk=@(x) VkVanilla(k,x,b,a,b,K,alpha);

42 if xb>=0

43 Vk=Vk(xb);

44 else

45 Vk=Vk(0);

46 end

47 else

48 Vk=@(x) VkVanilla(k,x,0,a,b,K,alpha);

49 if xb>=0

50 Vk=Vk(a);

51 else

52 Vk=Vk(xb);

53 end

54 end

55 ContValue=@(y) exp(-r*dT)*ComputeH(xb,b,a,b,N,y);

56 [~,xik]=CosineCoeff(k,a,xb,a,b);
57 Gk=2/(b-a)*Rb*xik;

58 Vk=Vk+Gk;

59 for m=M-1:-1:1

60 Lambdak=phik.*Vk;

61 Lambdak(1)=0.5*Lambdak(1);

62 Vk=ContValue(Lambdak)+Gk;

63 end

64 Lambdak=phik.*Vk;

65 Lambdak(1)=0.5*Lambdak(1);

66 Price=exp(-r*dT)*sum(real(exp(1i*u*(x0-a)).*Lambdak));

67

68 end

C.2.4 Asian options

1 function Price=COS_AsianGeom(N,M,L,alpha,model,S0,T,r,delta,K,param)

2 % INPUTS

3 % N: Number of grid points

4 % M: Number of monitoring dates

5 % L: Parameter needed in domain truncation

6 % alpha: 1 for a Call, -1 for a Put

7 % model: Chosen model of the underlying dynamics

8 % S0: Spot price

9 % T: Time-to-maturity

10 % r: Risk-free interest rate

110 Appendix C. Matlab codes

11 % delta: Dividend yield

12 % K: Strike price

13 % param: Vector with the parameters of the model

14 %

15 % FUNCTIONS

16 % ComputeCumulants: Compute the cumulants for the chosen model

17 % VkAsianGeom: Returns the Fourier cosine series

18 % coefficients for Geometric Asian options

19 % CharExp: Returns the characteristic exponent psi(u,T)

20 %

21 % OUTPUT

22 % Price: Price of the Geometric Asian option

23 % obtained with the COS method

24

25 dT=T/M;

26 x0=log(S0);

27 c=ComputeCumulants(model,T,r,delta,param);

28 a=x0+c(1)-L*sqrt(c(2)+sqrt(c(3)));

29 b=x0+c(1)+L*sqrt(c(2)+sqrt(c(3)));

30 k=(0:N-1)';

31 if alpha==1

32 Vk=VkAsianGeom(k,log(K),b,a,b,K,1);

33 else

34 Vk=VkAsianGeom(k,a,log(K),a,b,K,-1);

35 end

36 u=k*pi/(b-a);

37 m=1:M;

38 psik=CharExp(model,u*(M+1-m)./(M+1),dT,r,delta,param);

39 phik=exp(1i*u*x0).*exp(sum(psik,2));

40 Lambdak=phik.*Vk;

41 Lambdak(1)=0.5*Lambdak(1);

42 Price=exp(-r*T)*sum(real(exp(-1i*u*a).*Lambdak));

43

44 end

1 function Price=COS_AsianArithm(N,M,L,alpha,model,S0,T, ...

2 r,delta,K,param)

3 % INPUTS

4 % N: Number of grid points

5 % M: Number of monitoring dates

6 % L: Parameter needed in domain truncation

7 % alpha: 1 for a Call, -1 for a Put

8 % model: Chosen model of the underlying dynamics

9 % S0: Spot price

10 % T: Time-to-maturity

11 % r: Risk-free interest rate

C.2. COS method 111

12 % delta: Dividend yield

13 % K: Strike price

14 % param: Vector with the parameters of the model

15 %

16 % FUNCTIONS

17 % ComputeCumulants: Compute the cumulants for the chosen model

18 % VkAsianArithm: Returns the Fourier cosine series

19 % coefficients for Arithmetic Asian options

20 % ComputeM: Returns M using Clenshaw-Curtis quadrature

21 % CharExp: Returns the characteristic exponent psi(u,T)

22 %

23 % OUTPUT

24 % Price: Price of the Arithmetic Asian option

25 % obtained with the COS method

26

27 dT=T/M;

28 c=ComputeCumulants(model,dT,r,delta,param);

29 a=zeros(M,1);

30 b=zeros(M,1);

31 for m=1:M

32 a(m)=log(m)+c(1)-L*sqrt(m*c(2)+sqrt(m*c(3)));

33 b(m)=log(m)+m*c(1)+L*sqrt(m*c(2)+sqrt(m*c(3)));

34 end

35 a=min(a);

36 b=max(b);

37 k=(0:N-1)';

38 if alpha==1

39 Vk=VkAsianArithm(k,log(K*(M+1)/S0-1),b,a,b,K,S0,M,1);

40 else

41 Vk=VkAsianArithm(k,a,log(K*(M+1)/S0-1),a,b,K,S0,M,-1);

42 end

43 u=k*pi/(b-a);

44 nq=25/16*N;

45 MM=zeros(N,N);

46 for j=1:N

47 for l=1:N

48 MM(j,l)=ComputeM(a,b,u(j),u(l),nq);

49 end

50 end

51 phikR=exp(CharExp(model,u,dT,r,delta,param));

52 phikY=phikR;

53 for m=2:M

54 A=2/(b-a)*real(phikY.*exp(-1i*a*u));

55 A(1)=0.5*A(1);

56 phikZ=MM*A;

57 phikY=phikR.*phikZ;

112 Appendix C. Matlab codes

58 end

59 Lambdak=phikY.*Vk;

60 Lambdak(1)=0.5*Lambdak(1);

61 Price=exp(-r*T)*sum(real(exp(-1i*u*a).*Lambdak));

62

63 end

C.2.5 2RS Vanilla options

1 function Prices=COS_Vanilla_2RS(N,L,alpha,models,S0,T,r,delta, ...

2 K,Q,params)

3 % INPUTS

4 % N: Number of grid points

5 % L: Parameter needed in domain truncation

6 % alpha: 1 for a Call, -1 for a Put

7 % models: String vector containing the chosen models

8 % of the underlying dynamics in the two states

9 % S0: Spot price

10 % T: Time-to-maturity

11 % r: Vector with the risk-free interest rates

12 % in the 2 states

13 % delta: Vector with the dividend yields

14 % in the 2 states

15 % K: Strike price

16 % Q: Intensity matrix

17 % params: Cell array with the parameters of

18 % [model1,model2]

19 %

20 % FUNCTIONS

21 % ComputeCumulants: Compute the cumulants for the chosen model

22 % VkVanilla: Returns the Fourier cosine series

23 % coefficients for Vanilla options

24 % CharFun_2RS: Returns the vectors necessary to build the

25 % block diagonal matrix phi(u,T)

26 %

27 % OUTPUT

28 % Prices: Prices in the 2 states of the Vanilla

29 % option obtained with the COS method

30 % under a regime-switching model

31

32 x0=log(S0/K);

33 c1=ComputeCumulants(models(1),T,r(1),delta(1),params{1});

34 c2=ComputeCumulants(models(2),T,r(2),delta(2),params{2});

35 a1=x0+c1(1)-L*sqrt(c1(2)+sqrt(c1(3)));

36 b1=x0+c1(1)+L*sqrt(c1(2)+sqrt(c1(3)));

C.2. COS method 113

37 a2=x0+c2(1)-L*sqrt(c2(2)+sqrt(c2(3)));

38 b2=x0+c2(1)+L*sqrt(c2(2)+sqrt(c2(3)));

39 a=min(a1,a2);

40 b=max(b1,b2);

41 k=(0:N-1)';

42 u=k*pi/(b-a);

43 [phik11,phik12,phik21,phik22]=CharFun_2RS(models,u,T,r, ...

44 delta,Q,params);

45 if alpha==1

46 Vk=VkVanilla(k,0,b,a,b,K,1);

47 else

48 Vk=VkVanilla(k,a,0,a,b,K,-1);

49 end

50 Lambdak1=(phik11+phik12).*Vk;

51 Lambdak2=(phik21+phik22).*Vk;

52 Lambdak1(1)=0.5*Lambdak1(1);

53 Lambdak2(1)=0.5*Lambdak2(1);

54 Prices=zeros(2,1);

55 Prices(1)=sum(real(exp(1i*u*(x0-a)).*Lambdak1));

56 Prices(2)=sum(real(exp(1i*u*(x0-a)).*Lambdak2));

57

58 end

C.2.6 2RS Digital and Butterfly options

1 function Prices=COS_Digital_2RS(N,L,alpha,models,S0,T,r,delta, ...

2 K,Q,params)

3 % INPUTS

4 % N: Number of grid points

5 % L: Parameter needed in domain truncation

6 % alpha: 1 for a Call, -1 for a Put

7 % models: String vector containing the chosen models

8 % of the underlying dynamics in the two states

9 % S0: Spot price

10 % T: Time-to-maturity

11 % r: Vector with the risk-free interest rates

12 % in the 2 states

13 % delta: Vector with the dividend yields

14 % in the 2 states

15 % K: Strike price

16 % Q: Intensity matrix

17 % params: Cell array with the parameters of

18 % [model1,model2]

19 %

20 % FUNCTIONS

114 Appendix C. Matlab codes

21 % ComputeCumulants: Compute the cumulants for the chosen model

22 % VkDigital: Returns the Fourier cosine series

23 % coefficients for Digital options

24 % CharFun_2RS: Returns the vectors necessary to build the

25 % block diagonal matrix phi(u,T)

26 %

27 % OUTPUT

28 % Prices: Prices in the 2 states of the Digital

29 % option obtained with the COS method

30 % under a regime-switching model

31

32 x0=log(S0/K);

33 c1=ComputeCumulants(models(1),T,r(1),delta(1),params{1});

34 c2=ComputeCumulants(models(2),T,r(2),delta(2),params{2});

35 a1=x0+c1(1)-L*sqrt(c1(2)+sqrt(c1(3)));

36 b1=x0+c1(1)+L*sqrt(c1(2)+sqrt(c1(3)));

37 a2=x0+c2(1)-L*sqrt(c2(2)+sqrt(c2(3)));

38 b2=x0+c2(1)+L*sqrt(c2(2)+sqrt(c2(3)));

39 a=min(a1,a2);

40 b=max(b1,b2);

41 k=(0:N-1)';

42 u=k*pi/(b-a);

43 [phik11,phik12,phik21,phik22]=CharFun_2RS(models,u,T,r, ...

44 delta,Q,params);

45 if alpha==1

46 Vk=VkDigital(k,0,b,a,b,K);

47 else

48 Vk=VkDigital(k,a,0,a,b,K);

49 end

50 Lambdak1=(phik11+phik12).*Vk;

51 Lambdak2=(phik21+phik22).*Vk;

52 Lambdak1(1)=0.5*Lambdak1(1);

53 Lambdak2(1)=0.5*Lambdak2(1);

54 Prices=zeros(2,1);

55 Prices(1)=sum(real(exp(1i*u*(x0-a)).*Lambdak1));

56 Prices(2)=sum(real(exp(1i*u*(x0-a)).*Lambdak2));

57

58 end

1 function Prices=COS_Butterfly_2RS(N,L,alpha,models,S0,T,r,delta, ...

2 K1,K2,K3,p,Q,params)

3 % INPUTS

4 % N: Number of grid points

5 % L: Parameter needed in domain truncation

6 % alpha: 1 for a Call, -1 for a Put

7 % models: String vector containing the chosen models

C.2. COS method 115

8 % of the underlying dynamics in the two states

9 % S0: Spot price

10 % T: Time-to-maturity

11 % r: Vector with the risk-free interest rates

12 % in the 2 states

13 % delta: Vector with the dividend yields

14 % in the 2 states

15 % [K1,K2,K3]: Strike prices

16 % p: Scale parameter

17 % Q: Intensity matrix

18 % params: Cell array with the parameters of

19 % [model1,model2]

20 %

21 % FUNCTIONS

22 % ComputeCumulants: Compute the cumulants for the chosen model

23 % VkButterfly: Returns the Fourier cosine series

24 % coefficients for Butterfly options

25 % CharFun_2RS: Returns the vectors necessary to build the

26 % block diagonal matrix phi(u,T)

27 %

28 % OUTPUT

29 % Prices: Prices in the 2 states of the Butterfly

30 % option obtained with the COS method

31 % under a regime-switching model

32

33 x0=log(S0/p);

34 c1=ComputeCumulants(models(1),T,r(1),delta(1),params{1});

35 c2=ComputeCumulants(models(2),T,r(2),delta(2),params{2});

36 a1=x0+c1(1)-L*sqrt(c1(2)+sqrt(c1(3)));

37 b1=x0+c1(1)+L*sqrt(c1(2)+sqrt(c1(3)));

38 a2=x0+c2(1)-L*sqrt(c2(2)+sqrt(c2(3)));

39 b2=x0+c2(1)+L*sqrt(c2(2)+sqrt(c2(3)));

40 a=min(a1,a2);

41 b=max(b1,b2);

42 k=(0:N-1)';

43 u=k*pi/(b-a);

44 [phik11,phik12,phik21,phik22]=CharFun_2RS(models,u,T,r, ...

45 delta,Q,params);

46 if alpha==1

47 Vk=VkButterfly(k,log(K1/p),log(K2/p),log(K3/p),b,a,b, ...

48 K1,K2,K3,p,alpha);

49 else

50 Vk=VkButterfly(k,log(K1/p),log(K2/p),log(K3/p),a,a,b, ...

51 K1,K2,K3,p,alpha);

52 end

53 Lambdak1=(phik11+phik12).*Vk;

116 Appendix C. Matlab codes

54 Lambdak2=(phik21+phik22).*Vk;

55 Lambdak1(1)=0.5*Lambdak1(1);

56 Lambdak2(1)=0.5*Lambdak2(1);

57 Prices=zeros(2,1);

58 Prices(1)=sum(real(exp(1i*u*(x0-a)).*Lambdak1));

59 Prices(2)=sum(real(exp(1i*u*(x0-a)).*Lambdak2));

60

61 end

C.2.7 2RS Bermudan options

1 function Prices=COS_Bermudan_2RS(N,M,L,alpha,models,S0,T,r, ...

2 delta,K,Q,params)

3 % INPUTS

4 % N: Number of grid points

5 % M: Number of time steps

6 % L: Parameter needed in domain truncation

7 % alpha: 1 for a Call, -1 for a Put

8 % models: String vector containing the chosen models

9 % of the underlying dynamics in the two states

10 % S0: Spot price

11 % T: Time-to-maturity

12 % r: Vector with the risk-free interest rates

13 % in the 2 states

14 % delta: Vector with the dividend yields

15 % in the 2 states

16 % K: Strike price

17 % Q: Intensity matrix

18 % params: Cell array with the parameters of

19 % [model1,model2]

20 %

21 % FUNCTIONS

22 % ComputeCumulants: Compute the cumulants for the chosen model

23 % VkVanilla: Returns the Fourier cosine series

24 % coefficients for Vanilla options

25 % ComputeH: Returns the continuation value

26 % CharFun_2RS: Returns the vectors necessary to build the

27 % block diagonal matrix phi(u,T)

28 %

29 % OUTPUT

30 % Prices: Prices in the 2 states of the Bermudan

31 % option obtained with the COS method

32 % under a regime-switching model

33

34 dT=T/M;

C.2. COS method 117

35 x0=log(S0/K);

36 c1=ComputeCumulants(models(1),T,r(1),delta(1),params{1});

37 c2=ComputeCumulants(models(2),T,r(2),delta(2),params{2});

38 a1=x0+c1(1)-L*sqrt(c1(2)+sqrt(c1(3)));

39 b1=x0+c1(1)+L*sqrt(c1(2)+sqrt(c1(3)));

40 a2=x0+c2(1)-L*sqrt(c2(2)+sqrt(c2(3)));

41 b2=x0+c2(1)+L*sqrt(c2(2)+sqrt(c2(3)));

42 a=min(a1,a2);

43 b=max(b1,b2);

44 k=(0:N-1)';

45 u=k*pi/(b-a);

46 [phik11,phik12,phik21,phik22]=CharFun_2RS(models,u,dT,r, ...

47 delta,Q,params);

48 if alpha==1

49 Gk=@(x) VkVanilla(k,x,b,a,b,K,alpha);

50 ContValue=@(x,y) ComputeH(a,x,a,b,N,y);

51 else

52 Gk=@(x) VkVanilla(k,a,x,a,b,K,alpha);

53 ContValue=@(x,y) ComputeH(x,b,a,b,N,y);

54 end

55 xstark=zeros(M,2);

56 Hk1=zeros(N,1);

57 Hk2=zeros(N,1);

58 for m=M-1:-1:1

59 Vk1=Gk(xstark(m+1,1))+Hk1;

60 Vk2=Gk(xstark(m+1,2))+Hk2;

61 Lambdak1=phik11.*Vk1+phik12.*Vk2;

62 Lambdak2=phik21.*Vk1+phik22.*Vk2;

63 Lambdak1(1)=0.5*Lambdak1(1);

64 Lambdak2(1)=0.5*Lambdak2(1);

65 g1=@(x) sum(real(exp(1i*(x-a)*u).*Lambdak1))- ...

66 alpha*K*(exp(x)-1);

67 g2=@(x) sum(real(exp(1i*(x-a)*u).*Lambdak2))- ...

68 alpha*K*(exp(x)-1);

69 xstark(m,1)=fzero(g1,xstark(m+1,1));

70 xstark(m,2)=fzero(g2,xstark(m+1,2));

71 Hk1=ContValue(xstark(m,1),Lambdak1);

72 Hk2=ContValue(xstark(m,2),Lambdak2);

73 end

74 Vk1=Gk(xstark(1,1))+Hk1;

75 Vk2=Gk(xstark(1,2))+Hk2;

76 Lambdak1=phik11.*Vk1+phik12.*Vk2;

77 Lambdak2=phik21.*Vk1+phik22.*Vk2;

78 Lambdak1(1)=0.5*Lambdak1(1);

79 Lambdak2(1)=0.5*Lambdak2(1);

80 Prices=zeros(2,1);

118 Appendix C. Matlab codes

81 Prices(1)=sum(real(exp(1i*u*(x0-a)).*Lambdak1));

82 Prices(2)=sum(real(exp(1i*u*(x0-a)).*Lambdak2));

83

84 end

C.2.8 2RS Barrier options

1 function Prices=COS_BarrierUO_2RS(N,M,B,Rb,L,alpha,models,S0,T, ...

2 r,delta,K,Q,params)

3 % INPUTS

4 % N: Number of grid points

5 % M: Number of monitoring dates

6 % B: Barrier

7 % Rb: Rebate

8 % L: Parameter needed in domain truncation

9 % alpha: 1 for a Call, -1 for a Put

10 % models: String vector containing the chosen models

11 % of the underlying dynamics in the two states

12 % S0: Spot price

13 % T: Time-to-maturity

14 % r: Vector with the risk-free interest rates

15 % in the 2 states

16 % delta: Vector with the dividend yields

17 % in the 2 states

18 % K: Strike price

19 % Q: Intensity matrix

20 % params: Cell array with the parameters of

21 % [model1,model2]

22 %

23 % FUNCTIONS

24 % ComputeCumulants: Compute the cumulants for the chosen model

25 % VkVanilla: Returns the Fourier cosine series

26 % coefficients for Vanilla options

27 % ComputeH: Returns the continuation value

28 % CharFun_2RS: Returns the vectors necessary to build the

29 % block diagonal matrix phi(u,T)

30 % CosineCoeff: Function that returns the auxiliar functions

31 % chi,xi needed to compute Vk

32 %

33 % OUTPUT

34 % Prices: Prices in the 2 states of the Up & Out

35 % Barrier option obtained with the COS method

36 % under a regime-switching model

37

38 dT=T/M;

C.2. COS method 119

39 x0=log(S0/K);

40 xb=log(B/K);

41 c1=ComputeCumulants(models(1),T,r(1),delta(1),params{1});

42 c2=ComputeCumulants(models(2),T,r(2),delta(2),params{2});

43 a1=x0+c1(1)-L*sqrt(c1(2)+sqrt(c1(3)));

44 b1=x0+c1(1)+L*sqrt(c1(2)+sqrt(c1(3)));

45 a2=x0+c2(1)-L*sqrt(c2(2)+sqrt(c2(3)));

46 b2=x0+c2(1)+L*sqrt(c2(2)+sqrt(c2(3)));

47 a=min(a1,a2);

48 b=max(b1,b2);

49 k=(0:N-1)';

50 u=k*pi/(b-a);

51 [phik11,phik12,phik21,phik22]=CharFun_2RS(models,u,dT,r, ...

52 delta,Q,params);

53 if alpha==1

54 Vk=@(x) VkVanilla(k,x,xb,a,b,K,alpha);

55 if xb>=0

56 Vk=Vk(0);

57 else

58 Vk=0;

59 end

60 else

61 Vk=@(x) VkVanilla(k,a,x,a,b,K,alpha);

62 if xb>=0

63 Vk=Vk(0);

64 else

65 Vk=Vk(xb);

66 end

67 end

68 ContValue=@(y) ComputeH(a,xb,a,b,N,y);

69 [~,xik]=CosineCoeff(k,xb,b,a,b);
70 Gk=2/(b-a)*Rb*xik;

71 Vk1=Vk+Gk;

72 Vk2=Vk+Gk;

73 for m=M-1:-1:1

74 Lambdak1=phik11.*Vk1+phik12.*Vk2;

75 Lambdak2=phik21.*Vk1+phik22.*Vk2;

76 Lambdak1(1)=0.5*Lambdak1(1);

77 Lambdak2(1)=0.5*Lambdak2(1);

78 Vk1Aux=ContValue(Lambdak1)+Gk;

79 Vk2Aux=ContValue(Lambdak2)+Gk;

80 Vk1=Vk1Aux;

81 Vk2=Vk2Aux;

82 end

83 Lambdak1=phik11.*Vk1+phik12.*Vk2;

84 Lambdak2=phik21.*Vk1+phik22.*Vk2;

120 Appendix C. Matlab codes

85 Lambdak1(1)=0.5*Lambdak1(1);

86 Lambdak2(1)=0.5*Lambdak2(1);

87 Prices=zeros(2,1);

88 Prices(1)=sum(real(exp(1i*u*(x0-a)).*Lambdak1));

89 Prices(2)=sum(real(exp(1i*u*(x0-a)).*Lambdak2));

90

91 end

1 function Prices=COS_BarrierDO_2RS(N,M,B,Rb,L,alpha,models,S0,T, ...

2 r,delta,K,Q,params)

3 % INPUTS

4 % N: Number of grid points

5 % M: Number of monitoring dates

6 % B: Barrier

7 % Rb: Rebate

8 % L: Parameter needed in domain truncation

9 % alpha: 1 for a Call, -1 for a Put

10 % models: String vector containing the chosen models

11 % of the underlying dynamics in the two states

12 % S0: Spot price

13 % T: Time-to-maturity

14 % r: Vector with the risk-free interest rates

15 % in the 2 states

16 % delta: Vector with the dividend yields

17 % in the 2 states

18 % K: Strike price

19 % Q: Intensity matrix

20 % params: Cell array with the parameters of

21 % [model1,model2]

22 %

23 % FUNCTIONS

24 % ComputeCumulants: Compute the cumulants for the chosen model

25 % VkVanilla: Returns the Fourier cosine series

26 % coefficients for Vanilla options

27 % ComputeH: Returns the continuation value

28 % CharFun_2RS: Returns the vectors necessary to build the

29 % block diagonal matrix phi(u,T)

30 % CosineCoeff: Function that returns the auxiliar functions

31 % chi,xi needed to compute Vk

32 %

33 % OUTPUT

34 % Prices: Prices in the 2 states of the Down & Out

35 % Barrier option obtained with the COS method

36 % under a regime-switching model

37

38 dT=T/M;

C.2. COS method 121

39 x0=log(S0/K);

40 xb=log(B/K);

41 c1=ComputeCumulants(models(1),T,r(1),delta(1),params{1});

42 c2=ComputeCumulants(models(2),T,r(2),delta(2),params{2});

43 a1=x0+c1(1)-L*sqrt(c1(2)+sqrt(c1(3)));

44 b1=x0+c1(1)+L*sqrt(c1(2)+sqrt(c1(3)));

45 a2=x0+c2(1)-L*sqrt(c2(2)+sqrt(c2(3)));

46 b2=x0+c2(1)+L*sqrt(c2(2)+sqrt(c2(3)));

47 a=min(a1,a2);

48 b=max(b1,b2);

49 k=(0:N-1)';

50 u=k*pi/(b-a);

51 [phik11,phik12,phik21,phik22]=CharFun_2RS(models,u,dT,r, ...

52 delta,Q,params);

53 if alpha==1

54 Vk=@(x) VkVanilla(k,x,b,a,b,K,alpha);

55 if xb>=0

56 Vk=Vk(xb);

57 else

58 Vk=Vk(0);

59 end

60 else

61 Vk=@(x) VkVanilla(k,x,0,a,b,K,alpha);

62 if xb>=0

63 Vk=Vk(a);

64 else

65 Vk=Vk(xb);

66 end

67 end

68 ContValue=@(y) ComputeH(xb,b,a,b,N,y);

69 [~,xik]=CosineCoeff(k,a,xb,a,b);
70 Gk=2/(b-a)*Rb*xik;

71 Vk1=Vk+Gk;

72 Vk2=Vk+Gk;

73 for m=M-1:-1:1

74 Lambdak1=phik11.*Vk1+phik12.*Vk2;

75 Lambdak2=phik21.*Vk1+phik22.*Vk2;

76 Lambdak1(1)=0.5*Lambdak1(1);

77 Lambdak2(1)=0.5*Lambdak2(1);

78 Vk1Aux=ContValue(Lambdak1)+Gk;

79 Vk2Aux=ContValue(Lambdak2)+Gk;

80 Vk1=Vk1Aux;

81 Vk2=Vk2Aux;

82 end

83 Lambdak1=phik11.*Vk1+phik12.*Vk2;

84 Lambdak2=phik21.*Vk1+phik22.*Vk2;

122 Appendix C. Matlab codes

85 Lambdak1(1)=0.5*Lambdak1(1);

86 Lambdak2(1)=0.5*Lambdak2(1);

87 Prices=zeros(2,1);

88 Prices(1)=sum(real(exp(1i*u*(x0-a)).*Lambdak1));

89 Prices(2)=sum(real(exp(1i*u*(x0-a)).*Lambdak2));

90

91 end

C.2.9 2RS Asian options

1 function Prices=COS_AsianGeom_2RS(N,M,L,alpha,models,S0,T, ...

2 r,delta,K,Q,params)

3 % INPUTS

4 % N: Number of grid points

5 % M: Number of monitoring dates

6 % L: Parameter needed in domain truncation

7 % alpha: 1 for a Call, -1 for a Put

8 % models: String vector containing the chosen models

9 % of the underlying dynamics in the two states

10 % S0: Spot price

11 % T: Time-to-maturity

12 % r: Vector with the risk-free interest rates

13 % in the 2 states

14 % delta: Vector with the dividend yields

15 % in the 2 states

16 % K: Strike price

17 % Q: Intensity matrix

18 % params: Cell array with the parameters of

19 % [model1,model2]

20 %

21 % FUNCTIONS

22 % ComputeCumulants: Compute the cumulants for the chosen model

23 % VkAsianGeom: Returns the Fourier cosine series

24 % coefficients for Geometric Asian options

25 % CharFun_2RS: Returns the vectors necessary to build the

26 % block diagonal matrix phi(u,T)

27 %

28 % OUTPUT

29 % Prices: Prices in the 2 states of the Geometric

30 % Asian option obtained with the COS method

31 % under a regime-switching model

32

33 dT=T/M;

34 x0=log(S0);

35 c1=ComputeCumulants(models(1),T,r(1),delta(1),params{1});

C.2. COS method 123

36 c2=ComputeCumulants(models(2),T,r(2),delta(2),params{2});

37 a1=x0+c1(1)-L*sqrt(c1(2)+sqrt(c1(3)));

38 b1=x0+c1(1)+L*sqrt(c1(2)+sqrt(c1(3)));

39 a2=x0+c2(1)-L*sqrt(c2(2)+sqrt(c2(3)));

40 b2=x0+c2(1)+L*sqrt(c2(2)+sqrt(c2(3)));

41 a=min(a1,a2);

42 b=max(b1,b2);

43 k=(0:N-1)';

44 u=k*pi/(b-a);

45 if alpha==1

46 Vk=VkAsianGeom(k,log(K),b,a,b,K,1);

47 else

48 Vk=VkAsianGeom(k,a,log(K),a,b,K,-1);

49 end

50 phik1=ones(N,1);

51 phik2=ones(N,1);

52 for m=1:M

53 [p11,p12,p21,p22]=CharFun_2RS(models, ...

54 u*(M+1-m)./(M+1),dT,r,delta,Q,params);

55 phik1=phik1.*(p11+p12);

56 phik2=phik2.*(p21+p22);

57 end

58 Lambdak1=exp(1i*u*x0).*phik1.*Vk;

59 Lambdak2=exp(1i*u*x0).*phik2.*Vk;

60 Lambdak1(1)=0.5*Lambdak1(1);

61 Lambdak2(1)=0.5*Lambdak2(1);

62 Prices=zeros(2,1);

63 Prices(1)=sum(real(exp(-1i*u*a).*Lambdak1));

64 Prices(2)=sum(real(exp(-1i*u*a).*Lambdak2));

65

66 end

1 function Prices=COS_AsianArithm_2RS(N,M,L,alpha,models,S0,T, ...

2 r,delta,K,Q,params)

3 % INPUTS

4 % N: Number of grid points

5 % M: Number of monitoring dates

6 % L: Parameter needed in domain truncation

7 % alpha: 1 for a Call, -1 for a Put

8 % models: String vector containing the chosen models

9 % of the underlying dynamics in the two states

10 % S0: Spot price

11 % T: Time-to-maturity

12 % r: Vector with the risk-free interest rates

13 % in the 2 states

14 % delta: Vector with the dividend yields

124 Appendix C. Matlab codes

15 % in the 2 states

16 % K: Strike price

17 % Q: Intensity matrix

18 % params: Cell array with the parameters of

19 % [model1,model2]

20 %

21 % FUNCTIONS

22 % ComputeCumulants: Compute the cumulants for the chosen model

23 % VkAsianArithm: Returns the Fourier cosine series

24 % coefficients for Arithmetic Asian options

25 % ComputeM: Returns M using Clenshaw-Curtis quadrature

26 % CharFun_2RS: Returns the vectors necessary to build the

27 % block diagonal matrix phi(u,T)

28 %

29 % OUTPUT

30 % Prices: Prices in the 2 states of the Arithmetic

31 % Asian option obtained with the COS method

32 % under a regime-switching model

33

34 dT=T/M;

35 c1=ComputeCumulants(models(1),dT,r(1),delta(1),params{1});

36 c2=ComputeCumulants(models(2),dT,r(2),delta(2),params{2});

37 a1=zeros(M,1);

38 a2=zeros(M,1);

39 b1=zeros(M,1);

40 b2=zeros(M,1);

41 for m=1:M

42 a1(m)=log(m)+c1(1)-L*sqrt(m*c1(2)+sqrt(m*c1(3)));

43 b1(m)=log(m)+m*c1(1)+L*sqrt(m*c1(2)+sqrt(m*c1(3)));

44 a2(m)=log(m)+c2(1)-L*sqrt(m*c2(2)+sqrt(m*c2(3)));

45 b2(m)=log(m)+m*c2(1)+L*sqrt(m*c2(2)+sqrt(m*c2(3)));

46 end

47 a1=min(a1);

48 a2=min(a2);

49 b1=max(b1);

50 b2=max(b2);

51 a=min(a1,a2);

52 b=max(b1,b2);

53 k=(0:N-1)';

54 u=k*pi/(b-a);

55 if alpha==1

56 Vk=VkAsianArithm(k,log(K*(M+1)/S0-1),b,a,b,K,S0,M,1);

57 else

58 Vk=VkAsianArithm(k,a,log(K*(M+1)/S0-1),a,b,K,S0,M,-1);

59 end

60 nq=25/16*N;

C.3. Different methods 125

61 MM=zeros(N,N);

62 for j=1:N

63 for l=1:N

64 MM(j,l)=ComputeM(a,b,u(j),u(l),nq);

65 end

66 end

67 [phikR11,phikR12,phikR21,phikR22]=CharFun_2RS(models,u,dT,r, ...

68 delta,Q,params);

69 phikR1=phikR11+phikR12;

70 phikR2=phikR21+phikR22;

71 phikY1=phikR1;

72 phikY2=phikR2;

73 for m=2:M

74 A1=2/(b-a)*real(phikY1.*exp(-1i*a*u));

75 A2=2/(b-a)*real(phikY2.*exp(-1i*a*u));

76 A1(1)=0.5*A1(1);

77 A2(1)=0.5*A2(1);

78 phikZ1=MM*A1;

79 phikZ2=MM*A2;

80 phikY1=phikR1.*phikZ1;

81 phikY2=phikR2.*phikZ2;

82 end

83 Lambdak1=phikY1.*Vk;

84 Lambdak2=phikY2.*Vk;

85 Lambdak1(1)=0.5*Lambdak1(1);

86 Lambdak2(1)=0.5*Lambdak2(1);

87 Prices=zeros(2,1);

88 Prices(1)=sum(real(exp(-1i*u*a).*Lambdak1));

89 Prices(2)=sum(real(exp(-1i*u*a).*Lambdak2));

90

91 end

C.3 Different methods

C.3.1 Lattice method

1 function Prices=Lattice_Vanilla_2RS(N,alpha,S0,T,r,delta,K,Q,params)

2 % INPUTS

3 % N: Number of time steps

4 % alpha: 1 for a Call, -1 for a Put

5 % S0: Spot price

6 % T: Time-to-maturity

7 % r: Vector with the risk-free interest rates

8 % in the 2 states

126 Appendix C. Matlab codes

9 % delta: Vector with the dividend yields

10 % in the 2 states

11 % K: Strike price

12 % Q: Intensity matrix

13 % params: Cell array with the parameters of

14 % [model1,model2]

15 %

16 % OUTPUTS

17 % Prices: Prices in the 2 states of the Vanilla

18 % option obtained with the Lattice method

19 % under a regime-switching model

20

21 dt=T/N;

22 sigma1=params{1};

23 sigma2=params{2};

24 sigma=max(sigma1,sigma2)+(sqrt(1.5)-1)*(sigma1+sigma2)/2;

25 lambda1=sigma/sigma1;

26 lambda2=sigma/sigma2;

27 u=exp(sigma*sqrt(dt));

28 d=1/u;

29 pm_1=1-1/(lambda1ˆ2);

30 pm_2=1-1/(lambda2ˆ2);

31 pu_1=(exp((r(1)-delta(1))*dt)-d-pm_1*(1-d))/(u-d);

32 pu_2=(exp((r(2)-delta(2))*dt)-d-pm_2*(1-d))/(u-d);

33 pd_1=(u-exp((r(1)-delta(1))*dt)-pm_1*(u-1))/(u-d);

34 pd_2=(u-exp((r(2)-delta(2))*dt)-pm_2*(u-1))/(u-d);

35 P=expm(Q*dt);

36

37 % Lattice generation

38 Tree1='';

39 Tree2='';

40 for t=1:N+1

41 Tree1{t}=zeros(1,2*t-1);

42 Tree2{t}=zeros(1,2*t-1);

43 end

44 for n=1:length(Tree1 {end})

45 Tree1 {end}(n)=max(alpha*(S0*uˆ(N+1-n)-K),0);

46 Tree2 {end}(n)=max(alpha*(S0*uˆ(N+1-n)-K),0);

47 end

48

49 % Backward in time procedure

50 for t=N:-1:1

51 for n=1:length(Tree1{t})

52 Tree1{t}(n)=exp(-r(1)*dt)*(P(1,1)*(pu_1*Tree1{t+1}(n)+ ...

53 pm_1*Tree1{t+1}(n+1)+pd_1*Tree1{t+1}(n+2))+P(1,2)* ...

54 (pu_1*Tree2{t+1}(n)+pm_1*Tree2{t+1}(n+1)+pd_1* ...

C.3. Different methods 127

55 Tree2{t+1}(n+2)));

56 Tree2{t}(n)=exp(-r(2)*dt)*(P(2,1)*(pu_2*Tree1{t+1}(n)+ ...

57 pm_2*Tree1{t+1}(n+1)+pd_2*Tree1{t+1}(n+2))+P(2,2)* ...

58 (pu_2*Tree2{t+1}(n)+pm_2*Tree2{t+1}(n+1)+pd_2* ...

59 Tree2{t+1}(n+2)));

60 end

61 end

62 Prices=zeros(2,1);

63 Prices(1)=Tree1{1}(1);

64 Prices(2)=Tree2{1}(1);

65

66 end

C.3.2 FST method

1 function Prices=FST_Vanilla_2RS(N,L,alpha,models,S0,T,r,delta, ...

2 K,Q,params)

3 % INPUTS

4 % N: Number of grid points

5 % L: Parameter needed in choosing the grid domain

6 % alpha: 1 for a Call, -1 for a Put

7 % models: String vector containing the chosen models

8 % of the underlying dynamics in the two states

9 % S0: Spot price

10 % T: Time-to-maturity

11 % r: Vector with the risk-free interest rates

12 % in the 2 states

13 % delta: Vector with the dividend yields

14 % in the 2 states

15 % K: Strike price

16 % Q: Intensity matrix

17 % params: Cell array with the parameters of

18 % [model1,model2]

19 %

20 % FUNCTIONS

21 % CharFun_2RS: Returns the vectors necessary to build the

22 % block diagonal matrix phi(u,T)

23 %

24 % OUTPUT

25 % Prices: Prices in the 2 states of the Vanilla

26 % option obtained with the FST method

27 % under a regime-switching model

28

29 xmax=L;

30 xmin=-xmax;

128 Appendix C. Matlab codes

31 dx=(xmax-xmin)/(N-1);

32 x=xmin:dx:xmax;

33 wmax=pi/dx;

34 wmin=-wmax;

35 dw=2*wmax/N;

36 w=[0:dw:wmax,wmin+dw:dw:-dw];

37 [phi11,phi12,phi21,phi22]=CharFun_2RS(models,w,T,r, ...

38 delta,Q,params);

39 S=K*exp(x);

40 v_opt=max(alpha*(S-K),0);

41 v_opt1=real(ifft(fft(v_opt).*(phi11+phi12)));

42 v_opt2=real(ifft(fft(v_opt).*(phi21+phi22)));

43 Prices=zeros(2,1);

44 Prices(1)=interp1(S,v_opt1,S0,'pchip');

45 Prices(2)=interp1(S,v_opt2,S0,'pchip');

46

47 end

1 function Prices=FST_Digital_2RS(N,L,alpha,models,S0,T,r, ...

2 delta,K,Q,params)

3 % INPUTS

4 % N: Number of grid points

5 % L: Parameter needed in choosing the grid domain

6 % alpha: 1 for a Call, -1 for a Put

7 % models: String vector containing the chosen models

8 % of the underlying dynamics in the two states

9 % S0: Spot price

10 % T: Time-to-maturity

11 % r: Vector with the risk-free interest rates

12 % in the 2 states

13 % delta: Vector with the dividend yields

14 % in the 2 states

15 % K: Strike price

16 % Q: Intensity matrix

17 % params: Cell array with the parameters of

18 % [model1,model2]

19 %

20 % FUNCTIONS

21 % CharFun_2RS: Returns the vectors necessary to build the

22 % block diagonal matrix phi(u,T)

23 %

24 % OUTPUT

25 % Prices: Prices in the 2 states of the Digital

26 % option obtained with the FST method

27 % under a regime-switching model

28

C.3. Different methods 129

29 xmax=L;

30 xmin=-xmax;

31 dx=(xmax-xmin)/(N-1);

32 x=xmin:dx:xmax;

33 wmax=pi/dx;

34 wmin=-wmax;

35 dw=2*wmax/N;

36 w=[0:dw:wmax,wmin+dw:dw:-dw];

37 [phi11,phi12,phi21,phi22]=CharFun_2RS(models,w,T,r, ...

38 delta,Q,params);

39 S=K*exp(x);

40 if alpha==1

41 v_opt=K.*(S>K);

42 else

43 v_opt=K.*(S<K);

44 end

45 v_opt1=real(ifft(fft(v_opt).*(phi11+phi12)));

46 v_opt2=real(ifft(fft(v_opt).*(phi21+phi22)));

47 Prices=zeros(2,1);

48 Prices(1)=interp1(S,v_opt1,S0,'pchip');

49 Prices(2)=interp1(S,v_opt2,S0,'pchip');

50

51 end

1 function Prices=FST_Bermudan_2RS(N,M,L,alpha,models,S0,T,r, ...

2 delta,K,Q,params)

3 % INPUTS

4 % N: Number of grid points

5 % M: Number of time steps

6 % L: Parameter needed in domain truncation

7 % alpha: 1 for a Call, -1 for a Put

8 % models: String vector containing the chosen models

9 % of the underlying dynamics in the two states

10 % S0: Spot price

11 % T: Time-to-maturity

12 % r: Vector with the risk-free interest rates

13 % in the 2 states

14 % delta: Vector with the dividend yields

15 % in the 2 states

16 % K: Strike price

17 % Q: Intensity matrix

18 % params: Cell array with the parameters of

19 % [model1,model2]

20 %

21 % FUNCTION

22 % CharFun_2RS: Returns the vectors necessary to build the

130 Appendix C. Matlab codes

23 % block diagonal matrix phi(u,T)

24 %

25 % OUTPUT

26 % Prices: Prices in the 2 states of the Bermudan

27 % option obtained with the FST method

28 % under a regime-switching model

29

30 dT=T/M;

31 xmax=L;

32 xmin=-xmax;

33 dx=(xmax-xmin)/(N-1);

34 x=xmin:dx:xmax;

35 wmax=pi/dx;

36 wmin=-wmax;

37 dw=2*wmax/N;

38 w=[0:dw:wmax,wmin+dw:dw:-dw];

39 [phi11,phi12,phi21,phi22]=CharFun_2RS(models,w,dT,r, ...

40 delta,Q,params);

41 S=K*exp(x);

42 payoff=max(0,alpha*(S-K));

43 v_opt1=payoff;

44 v_opt2=payoff;

45 for i=M-1:-1:0

46 v_opt1Aux=real(ifft(fft(v_opt1).*phi11+fft(v_opt2).*phi12));

47 v_opt2Aux=real(ifft(fft(v_opt1).*phi21+fft(v_opt2).*phi22));

48 v_opt1=max(v_opt1Aux,payoff);

49 v_opt2=max(v_opt2Aux,payoff);

50 end

51 Prices=zeros(2,1);

52 Prices(1)=interp1(S,v_opt1,S0,'pchip');

53 Prices(2)=interp1(S,v_opt2,S0,'pchip');

54

55 end

1 function Prices=FST_Barrier_2RS(N,M,B,Rb,L,alpha,models,S0,T,r, ...

2 delta,K,type,Q,params)

3 % INPUTS

4 % N: Number of grid points

5 % M: Number of monitoring dates

6 % B: Barrier

7 % Rb: Rebate

8 % L: Parameter needed in choosing the grid domain

9 % alpha: 1 for a Call, -1 for a Put

10 % models: String vector containing the chosen models

11 % of the underlying dynamics in the two states

12 % S0: Spot price

C.3. Different methods 131

13 % T: Time-to-maturity

14 % r: Vector with the risk-free interest rates

15 % in the 2 states

16 % delta: Vector with the dividend yields

17 % in the 2 states

18 % K: Strike price

19 % type: 'Up' or 'Down'

20 % Q: Intensity matrix

21 % params: Cell array with the parameters of

22 % [model1,model2]

23 % FUNCTION

24 % CharFun_2RS: Returns the vectors necessary to build the

25 % block diagonal matrix phi(u,T)

26 %

27 % OUTPUTS

28 % Prices: Prices in the 2 states of the Out

29 % Barrier option obtained with the FST method

30 % under a regime-switching model

31

32 dT=T/M;

33 xmax=L;

34 xmin=-xmax;

35 dx=(xmax-xmin)/(N-1);

36 x=xmin:dx:xmax;

37 wmax=pi/dx;

38 wmin=-wmax;

39 dw=2*wmax/N;

40 w=[0:dw:wmax,wmin+dw:dw:-dw];

41 [phi11,phi12,phi21,phi22]=CharFun_2RS(models,w,dT,r, ...

42 delta,Q,params);

43 S=K*exp(x);

44 logB=log(B/S0);

45 if strcmp(type,'Up')

46 payoff=max(alpha*(S-K),0).*(x<logB)+Rb*(x>=logB);

47 else

48 payoff=max(alpha*(S-K),0).*(x>logB)+Rb*(x<=logB);

49 end

50 v_opt1=payoff;

51 v_opt2=payoff;

52 for i=M-1:-1:0

53 v_opt1_aux=real(ifft(fft(v_opt1).*phi11+fft(v_opt2).*phi12));

54 v_opt2_aux=real(ifft(fft(v_opt1).*phi21+fft(v_opt2).*phi22));

55 if strcmp(type,'Up')

56 v_opt1=v_opt1_aux.*(x<logB)+Rb*(x>=logB); % Up & Out

57 v_opt2=v_opt2_aux.*(x<logB)+Rb*(x>=logB);

58 else

132 Appendix C. Matlab codes

59 v_opt1=v_opt1_aux.*(x>logB)+Rb*(x<=logB); % Down & Out

60 v_opt2=v_opt2_aux.*(x<logB)+Rb*(x>=logB);

61 end

62 end

63 Prices=zeros(2,1);

64 Prices(1)=interp1(S,v_opt1,S0,'pchip');

65 Prices(2)=interp1(S,v_opt2,S0,'pchip');

66

67 end

C.3.3 PDE method

1 function Prices=PDE_Vanilla_2RS(N,M,alphaCP,S0,T,r,delta, ...

2 K,Q,Theta,params)

3 % INPUTS

4 % N: Number of grid points

5 % M: Number of time steps

6 % alphaCP: 1 for a Call, -1 for a Put

7 % S0: Spot price

8 % T: Time-to-maturity

9 % r: Vector with the risk-free interest rates

10 % in the 2 states

11 % delta: Vector with the dividend yields

12 % in the 2 states

13 % K: Strike price

14 % Q: Intensity matrix

15 % Theta: 0 for Forward Euler, 0.5 for Crank Nicolson,

16 % 1 for Backward Euler

17 % params: Cell array with the parameters of

18 % [model1,model2]

19 %

20 % OUTPUTS

21 % Prices: Prices in the 2 states of the Vanilla

22 % option obtained with the PDE method

23 % under a regime-switching model

24

25 sigma1=params{1};

26 sigma2=params{2};

27

28 % Grids

29 xmin1=(r(1)-delta(1)-sigma1ˆ2/2)*T-6*sigma1*sqrt(T);

30 xmax1=(r(1)-delta(1)-sigma1ˆ2/2)*T+6*sigma1*sqrt(T);

31 xmin2=(r(2)-delta(2)-sigma2ˆ2/2)*T-6*sigma2*sqrt(T);

32 xmax2=(r(2)-delta(2)-sigma2ˆ2/2)*T+6*sigma2*sqrt(T);

33 xmin=min(xmin1,xmin2);

C.3. Different methods 133

34 xmax=max(xmax1,xmax2);

35 dx=(xmax-xmin)/N;

36 dt=T/M;

37 x=linspace(xmin,xmax,N+1)';

38

39 % Matrices

40 alpha=@(r,delta,sigma,const) const* ...

41 (-(r-delta-sigmaˆ2/2)/(2*dx)+sigmaˆ2/(2*dxˆ2));

42 alpha1=alpha(r(1),delta(1),sigma1,1-Theta);

43 alpha2=alpha(r(2),delta(2),sigma2,1-Theta);

44 alphac1=alpha(r(1),delta(1),sigma1,-Theta);

45 alphac2=alpha(r(2),delta(2),sigma2,-Theta);

46

47 beta=@(r,sigma,const,lambda) -1/dt+const* ...

48 (-sigmaˆ2/dxˆ2-(r+lambda));

49 beta1=beta(r(1),sigma1,1-Theta,Q(1,2));

50 beta2=beta(r(2),sigma2,1-Theta,Q(2,1));

51 betac1=beta(r(1),sigma1,-Theta,Q(1,2));

52 betac2=beta(r(2),sigma2,-Theta,Q(2,1));

53

54 gamma=@(r,delta,sigma,const) const* ...

55 ((r-delta-sigmaˆ2/2)/(2*dx)+sigmaˆ2/(2*dxˆ2));

56 gamma1=gamma(r(1),delta(1),sigma1,1-Theta);

57 gamma2=gamma(r(2),delta(2),sigma2,1-Theta);

58 gammac1=gamma(r(1),delta(1),sigma1,-Theta);

59 gammac2=gamma(r(2),delta(2),sigma2,-Theta);

60

61 A_1=alpha1*ones(N-1,1); A_2=alpha2*ones(N-1,1);

62 B_1=beta1*ones(N-1,1); B_2=beta2*ones(N-1,1);

63 C_1=gamma1*ones(N-1,1); C_2=gamma2*ones(N-1,1);

64 M1_1=spdiags([A_1 B_1 C_1],[-1 0 1],N-1,N-1);

65 M1_2=spdiags([A_2 B_2 C_2],[-1 0 1],N-1,N-1);

66

67 A_1=alphac1*ones(N-1,1); A_2=alphac2*ones(N-1,1);

68 B_1=betac1*ones(N-1,1); B_2=betac2*ones(N-1,1);

69 C_1=gammac1*ones(N-1,1); C_2=gammac2*ones(N-1,1);

70 M2_1=spdiags([A_1 B_1 C_1],[-1 0 1],N-1,N-1);

71 M2_2=spdiags([A_2 B_2 C_2],[-1 0 1],N-1,N-1);

72

73 M3_1=diag((1-Theta)*Q(1,2)*ones(N-1,1));

74 M3_2=diag((1-Theta)*Q(2,1)*ones(N-1,1));

75 M4_1=diag((-Theta)*Q(1,2)*ones(N-1,1));

76 M4_2=diag((-Theta)*Q(2,1)*ones(N-1,1));

77

78 % Backward in time Loop

79 V_1=max(alphaCP*(S0*exp(x(2:end-1))-K),0);

134 Appendix C. Matlab codes

80 V_2=max(alphaCP*(S0*exp(x(2:end-1))-K),0);

81 BC_1=zeros(N-1,1);

82 BC_2=zeros(N-1,1);

83 for l=M-1:-1:0

84 if alphaCP==1

85 BC_1(end)=-gamma1*(S0*exp(xmax)-K*exp(-r(1)*(T-l*dt)))...

86 +gammac1*(S0*exp(xmax)-K*exp(-r(1)*(T-(l+1)*dt)));

87 BC_2(end)=-gamma2*(S0*exp(xmax)-K*exp(-r(2)*(T-l*dt)))...

88 +gammac2*(S0*exp(xmax)-K*exp(-r(2)*(T-(l+1)*dt)));

89 else

90 BC_1(1)=-alpha1*(K*exp(-r(1)*(T-l*dt))-S0*exp(xmin))...

91 +alphac1*(K*exp(-r(1)*(T-(l+1)*dt))-S0*exp(xmin));

92 BC_2(1)=-alpha2*(K*exp(-r(2)*(T-l*dt))-S0*exp(xmin))...

93 +alphac2*(K*exp(-r(2)*(T-(l+1)*dt))-S0*exp(xmin));

94 end

95 D_1=M2_1*V_1+M4_1*V_2;

96 D_2=M2_2*V_2+M4_2*V_1;

97 V_1=(M1_2*M1_1-M3_1*M3_2)\(M1_2*(D_1+BC_1)-M3_1*(D_2+BC_2));

98 V_2=(M3_2*M3_1-M1_1*M1_2)\(M3_2*(D_1+BC_1)-M1_1*(D_2+BC_2));

99 end

100 Prices=zeros(2,1);

101 Prices(1)=interp1(S0*exp(x(2:end-1)),V_1,S0,'spline');

102 Prices(2)=interp1(S0*exp(x(2:end-1)),V_2,S0,'spline');

103

104 end

Bibliography

[1] Bandorff-Nielsen, O.E., Normal inverse Gaussian distributions and stochastic

volatility modelling. Scand. J. Statist., 1997, Vol. 24, 1-13.

[2] Björk, T., Arbitrage Theory in Continuous Time. Oxford Finance Series. Oxford

University Press, Incorporated, 2009.

[3] Carr, P., Geman, H., Madan, D.B. and Yor, M., Stochastic Volatility for Lévy

Processes. Math. Finance, 2003, 13, 345-382.

[4] Carr, P., Geman, H., Madan, D.B. and Yor, M., The fine structure of asset

returns: An empirical investigation. Journal of Business, 2002, 75, 305-332.

[5] Cont, R., Empirical properties of asset returns: stylized facts and statistical

issues. Quantitative Finance Volume 1, 223-236, 2001.

[6] Cont, R. and Tankov P., Financial Modelling with Jump Processes. Chapman

& Hall/CRC Financial Mathematics Series, 2004.

[7] Fang, F. and Oosterlee, C.W., A novel pricing method for European options

based on Fourier-cosine series expansions. SIAM J. Sci. Comput., 2008, 31,

826-848.

[8] Fang, F. and Oosterlee, C.W., Pricing early-exercise and discrete barrier options

by Fourier-cosine series expansions. Numer. Math., 2009, 114, 27-62.

[9] Fusai, G. and Meucci, A., Pricing discretely monitored Asian options under

Lévy processes, J. Bank. Finance, 2008, 32, 2076-2088.

[10] Jackson, K.R., Jaimungal, S. and Surkov, V., Fourier space time stepping for

option pricing with Lévy models. J. Comput.Finance, 2008, 12, 1-29.

[11] Jacod, J. and Protter, Ph., Probability Essentials, Springer, 2 ed., 2004.

[12] Karlin, S. and Taylor, H. M., A Second Course in Stochastic Processes. Aca-

demic Press, New York, 1981.

136 Bibliography

[13] Kienitz, J. and Wetterau, D., Financial Modelling: Theory, Implementation

and Practice with MATLAB Source. Wiley Finance, 2012.

[14] Naik, V., Option valuation and hedging strategies with jumps in the volatility

of asset returns. J. Finance, 1993, 48, 1969-1984.

[15] Chang, C.-C., Chung S.-L. and Stapleton R.C., Richardson extrapolation tech-

nique for pricing American-style options. J. Futures Markets, 27(8): 791-817,

2007.

[16] Schoutens, W., Lévy Processes in Finance: Pricing Financial Derivatives, 2003

(Wiley).

[17] Tour, G., Thakoor, N., Khaliq, A. Q. M. and D. Y. Tangman, COS method

for option pricing under a regime-switching model with time-changed Lévy

processes. Quantitative Finance, 2018,18:4, 673-692.

[18] Yin, G. and Zhang, Q., Continuous-time markov chains and applications: a

singular perturbation approach. Springer, 1998.

[19] Yuen, F.L. and Yang, H., Option pricing with regime switching by trinomial

tree method. J. Comput. Appl. Math., 2010, 233, 1821-1833.

[20] Zhang, B. and Oosterlee, C.W., Efficient Pricing of European-Style Asian Op-

tions under Exponential Lévy Processes Based on Fourier Cosine Expansions.

SIAM J. Financ. Math., 2013, Vol. 4, 399-426.

[21] Zhang, B. and Oosterlee, C.W., Fourier Cosine expansions and put-call relations

for Bermudan options. Numer. Methods Finance, 2012, 12, 323-350.

	Introduction
	Preliminary notions
	Basic tools
	Black-Scholes
	Jump processes
	Poisson process
	Lévy processes
	Building Lévy processes
	Merton
	Kou
	VG
	NIG
	CGMY
	Meixner

	Stochastic time-changed Lévy processes
	CIR time change
	-OU time change

	Heston
	Option pricing

	Regime switching models
	Markov chain
	Transition and Intensity matrices

	Notation and pricing formula

	COS method
	Fourier Cosine series
	COS method under regime-switching
	Coefficients k for Plain Vanilla Options
	Truncation range
	Matrix exponentiation
	Two-state case

	Put-Call parity

	Calibration
	Calibration results

	Method’s efficiency and comparisons
	Lattice method
	FST method
	PDE method
	Numerical results

	Digital and butterfly options
	Numerical Example

	Bermudan options
	Pricing formula
	Coefficients k
	Computation of Hki(ci,di,tm)
	Numerical Example

	Barrier options
	Pricing formula
	Numerical Example

	American and continuously monitored barrier options
	Numerical Example

	Asian options
	Geometric Asian options
	Coefficients k
	Pricing formula

	Arithmetic Asian option
	Coefficients k
	Pricing formula
	Truncation range
	Clenshaw-Curtis quadrature

	Numerical Example
	Monte Carlo under a two-regime model

	Conclusion
	Cumulants
	Call Option Prices
	Matlab codes
	Auxiliary functions
	Characteristic Exponents
	Cumulants
	Functions k, k
	Coefficients k
	Computation of i
	Computation of M
	Put-Call parity
	Characteristic function under 2 regimes switching
	Black-Scholes dynamics under 2 regimes switching

	COS method
	Vanilla options
	Bermudan options
	Barrier options
	Asian options
	2RS Vanilla options
	2RS Digital and Butterfly options
	2RS Bermudan options
	2RS Barrier options
	2RS Asian options

	Different methods
	Lattice method
	FST method
	PDE method

	Bibliography

