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Abstract

Cardiovascular diseases are the primary cause of mortality worldwide, affecting mil-
lions of people every year. Although advancements in medical practice are continu-
ously improving the diagnosis and treatment techniques, computer-based simulations
of the cardiac function are gradually becoming a powerful tool to better understand
the heart function and to support clinical decision-making.

Even though some area of heart modeling reached a certain level of maturity,
whole heart models are a far-reaching endeavour and are still in their infancy. This
thesis provides a detailed fully coupled multiscale mathematical and numerical model
of cardiac electromechanics (EM) of the whole human heart.

Two crucial factors for accurate numerical simulations of cardiac EM, which are
also essential to reproduce the synchronous activity of the heart, are: i) reconstruct-
ing the muscular fiber architecture that drives the electrophysiology signal and the
myocardium contraction; ii) accounting for the interaction between the heart and the
circulatory system, that determines pressures and volumes loads in the heart chambers.
With the aim of facing the challenges formerly described, the main contributions in
this thesis move along two strands: i) on the one hand, develop a unified mathematical
framework, based on Laplace-Dirichlet-Rule-Based-Methods (LDRBMs), to prescribe
myocardial fibers orientation in computational full heart geometries; ii) on the other
hand, provide a biophysically detailed 3D EM model coupled with a 0D closed-loop
lumped parameters model for the haemodynamics of the whole circulatory system.

This thesis gives a deeper account of existing biventricular LDRBMs, introducing
also some modeling improvements, and presents a new biatrial LDRBM, which is able
to quantitatively reproduce the atrial fiber architecture and can be easily applied to
any arbitrary geometries. Systematic comparison of LDRBMs were performed in terms
of meaningful electrophysiological and mechanical biomarkers computed as output of
numerical EM simulations in physiological conditions. The validity of the proposed
models were demonstrated through simulations on a realistic full heart geometry,
showing that the obtained results match the experimental data available in literature.

In conclusion, the whole heart EM model of this thesis includes a detailed myocar-
dial fibers architecture, simulates the electrophysiology, the mechanical activation and
the mechanics of ventricles and atria, and is strongly coupled with a 0D closed-loop
model of the whole cardiovascular system.

Keywords: Cardiac electromechanics, Cardiac fiber architecture, Electromechanical
simulations, Laplace-Dirichlet-Rule-Based-Methods, Whole heart modeling.
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Sommario

Le malattie cardiovascolari sono la principale causa di mortalità nel mondo, affliggendo
milioni di persone ogni anno. Sebbene i progressi nella pratica medica migliorino
continuamente le tecniche di diagnosi e trattamento, le simulazioni computerizzate
della funzione cardiaca stanno gradualmente diventando un potente strumento per
comprendere meglio la funzione cardiaca e per supportare le decisioni cliniche.

Anche se alcune aree della modellazione cardiaca hanno raggiunto un certo livel-
lo di maturità, i modelli di cuore integrato, a causa della loro enorme complessità
matematica e numerica, sono ancora nella loro infanzia. Questa tesi fornisce un mo-
dello matematico e numerico, completamente accoppiato, dell’elettromeccanica (EM)
cardiaca dell’intero cuore umano.

Due fattori cruciali per poter ottenere delle simulazioni numeriche accurate di EM
cardiaca, essenziali anche per riprodurre l’attività sincrona del cuore, sono: i) rico-
struire l’architettura delle fibre muscolari che guida sia il segnale elettrofisiologico che
la contrazione del miocardio; ii) tener conto in modo appropriato dell’interazione tra il
cuore e il sistema cardiocircolatorio, che determina pressioni e carichi di volume nelle
camere cardiache. Con l’obiettivo di affrontare le sfide precedentemente descritte, i
principali contributi di questa tesi si muovono lungo due filoni: i) da un lato, sviluppa-
re un quadro matematico unificato, basato sui Laplace-Dirichlet-Rule-Based-Methods
(LDRBM), per prescrivere l’orientamento delle fibre miocardiche nelle geometrie com-
putazionali di cuore totale; ii) d’altra parte, fornire un modello dettagliato di EM 3D
accoppiato con un modello 0D a ciclo chiuso per l’emodinamica dell’intero sistema
cardiocircolatorio.

Questa tesi fornisce un resoconto più approfondito dei LDRBM ventricolari esisten-
ti, introducendo anche alcuni miglioramenti modellistici, e presenta un nuovo LDRBM
atriale, che è in grado di riprodurre quantitativamente l’architettura delle fibre atriali
e può essere facilmente applicato a qualsiasi geometria. Il confronto sistematico dei
LDRBM è stato eseguito in termini di indicatori elettrofisiologici e meccanici significa-
tivi, calcolati come risultato di simulazioni numeriche di EM in condizioni fisiologiche.
La validità dei modelli proposti è stata dimostrata attraverso simulazioni su una geo-
metria realistica di cuore totale, dimostrando che i risultati ottenuti sono compatibili
con i dati sperimentali disponibili in letteratura.

In conclusione, il modello di EM di cuore totale, presentato in questa tesi, include
un’architettura dettagliata delle fibre miocardiche, simula l’elettrofisiologia, l’attiva-
zione meccanica attiva e passiva di ventricoli e atri ed è fortemente accoppiato con un
modello 0D a ciclo chiuso dell’intero sistema cardiovascolare.

Parole chiave: Elettromeccanica cardiaca, Architettura delle fibre cardiache, Si-
mulazioni di elettromeccanica, Laplace-Dirichlet-Rule-Based-Methods, Modellazione a
cuore intero.
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Chapter 1
Introduction

Cardiovascular diseases (CVD) represent the primary cause of morbidity and mortality
worldwide, affecting millions of people every year [241, 257]. These are estimated as
31% of all deaths1. The 85% of all CVD deaths are due to heart failure2. One of
the indirected reason behind such grim statistics is our limited understanding of the
mechanisms driving these pathologies [148].

Although experimental research and advancements in medical practice are contin-
uously improving the diagnosis and treatment techniques, computational modeling of
the cardiac function [92, 20, 18, 124, 159, 234, 78] are gradually becoming a cornerstone
in precision-medicine [172]. Computer-based numerical simulations provide a powerful
tool to better understand the heart function in both physiological and pathological
scenarios to improve and support clinical decision-making in cardiac diseases [172,
223, 227].

The mathematical modeling of the beating heart and its pumping action is an
highly complex task involving several difficulties related to the complexity of its func-
tion. A single heartbeat involve multiphysics and multiscale processes. The cor-
responding mathematical models describing each physical sub-mechanism, involved
in the heart function, require therefore multiphysics and multiscale numerical ap-
proaches, making the numerical modeling of the whole cardiac activity very challeng-
ing [188].

Even though heart modeling reached a certain level of maturity, whole heart mod-
els are a far-reaching endeavour and a field of current investigation. Four chambers
cardiac models are still in their infancy: until today, the most comprehensive simu-
lation of the entire cardiac function, including multiscale process in the tissue, blood
haemodynamics in the heart chambers and valve dynamics, is the UT heart simulator
developed by the research team of Tokio University [237].

This thesis is dedicated to develop a detailed fully-coupled multiscale mathematical
and numerical model of the electrical and mechanical activity of the whole human
heart. Our model includes state of the art models, based on human physiology, for
both the cardiac electrophysiology and muscle mechanics, and also takes into account
the presence of the whole circulatory system. A topic to which we devote particular
attention is the detailed reconstruction, by means of a mathematical model, of all

1https://www.world-heart-federation.org
2https://www.who.int/cardiovascular_diseases/en/
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Chapter 1. Introduction

Figure 1.1: (a) Blood flow through the heart; (b) The heart inside the whole circulatory
system. Images taken from www.pediatricheartspecialists.com (a) and www.

pinterest.it (b).

the main characteristic features of the cardiac muscular architecture, which is the
main driver of the heart contraction-relaxation. We demonstrate the validity of the
proposed model through simulations on realistic whole heart geometry.

In this introductory chapter, we provide a brief overview on the anatomy and
the physiology of the heart function (Section 1.1), then we focus on the mathematical
modeling, with particular attention on the cardiac muscular architecture and the heart
electromechanical activity (Section 1.2). In the end, we detail the main objectives and
the original contributions of this thesis (Section 1.3).

1.1 Overview of heart anatomy and physiology

The heart is a four chambers muscular organ whose function is to pump the blood
throughout the whole circulatory system. It is divided into the left atrium (LA) and
left ventricle (LV), forming the left heart, and the right atrium (RA) and right ventricle
(RV), defining the right heart. Both sides act in a synchronized fashion: the left side
pumps the oxygenated blood through the systemic arteries into the organs (systemic
circulation), meanwhile the right one recycles the deoxygenated blood through the
systemic veins into the lungs (pulmonary circulation) [188, 187]. The left and right
hearts are separated by the inter-atrial and inter-ventricular septa, which prevent the
mixing of oxygenated and deoxygenated blood, whereas the atria and the ventricles are
connected by the atrioventricular valves (mitral valve, MV, and tricuspid valve, TV)
that regulate the blood transfer from the upper to lower cavities. The four chambers
are connected to the circulatory system: the ventricles with the aorta through the
aortic valve (AV) and with the pulmonary artery via the pulmonary valve (PV); LA
with the left and right pulmonary veins (LPV, RPV), whereas RA with superior and
inferior caval veins (SCV, ICV), see Figure 1.1.
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1.1. Overview of heart anatomy and physiology

Figure 1.2: Representation of the multiscale cardiac muscle. Images taken from [41],
www.kenhub.com and www.biologyonline.com.

1.1.1 The cardiac muscular architecture

The heart wall is made up of three layers: the internal thin endocardium, the external
thin epicardium, that is surrounded by the pericardium (a membrane that isolates
the heart from other organs), and the thick muscular cardiac tissue, the myocardium.
Most of the myocardium is occupied by cardiomyocytes, striated excitable muscle cells
specialized in the cardiac function, that are joined together in linear arrays. Each
cell contains several myofibrils, which are stretched chains of sarcomeres, the basic
contractile units of cardiac muscle. The result of cluster cardiomyocytes, locally or-
ganized as composite laminar sheet (or cleavage) planes, defines the muscular fiber
(also called myofibers) orientations. Aggregations of myofibers give rise to the fiber-
reinforced heart structure defining the cardiac muscular architecture [134, 232, 86,
128]. A schematic representation of the multiscale myocardial fiber-structure is shown
in Figure 1.2. Ventricular muscular fibers are well-organized as two intertwined spirals
wrapping around the heart, clockwise on the sub-epicardium and counter-clockwise
on the sub-endocardium, defining the characteristic myocardial helical structure [134,
232]. Local orientation of myofibers are identified by their angle on the tangent plane
and on the normal plane of the heart, called the helical and the sheet angles, respec-
tively [232, 243], see Figure 1.2. The transition inside the myocardial wall is charac-
terized by a continuous change in helical angle from about 60o to 90o at the epicardial
surface to nearly 0o in the mid-wall region to −20o to −60o at the endocardium [134,
232, 242], with circumferential and longitudinal fiber orientations predominant in RV
with respect to LV [214, 154, 9, 211], see Figures 1.3(a-b).

Atrial fibers architecture is very different from that of the ventricles, where my-
ofibers are aligned in a regular pattern [232]. Indeed, fibers in the atria are arranged
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Figure 1.3: Anatomical dissection of myocardial fibers in ventricles (a-b) and atria (c).
Atrial fibers revealed by sub-millimiter Diffusion Tensor Magnetic Resonance Imaging,
DT-MRI (d). Images taken from [214, 212, 167].

in individual bundles running along different directions throughout the wall chambers.
Preferred orientation of myofibers in the human atria is characterized by multiple over-
lapping structures, which promote the formation of separate attached bundles [57],
Figure 1.2 also 1.3(c-d).

The complex cardiac muscular architecture is the backbone of a proper pumping
function and has a strong influence in the contraction of the heart [200, 185, 62, 163].

1.1.2 The heart electromechanical activity

The heart contraction, which is responsible for the blood pumping, is triggered by a
series of electrochemical reactions occurring in the myocardium. Each heartbeat is
initiated by an electrical signal, spontaneously generated in the sinoatrial node (SAN,
the heart natural pacemaker located in the upper part of RA) consisting of self-
excitable cells [36]. This impulse produces an electrical wave that propagates from
RA to LA across all the cardiomyocytes, causing a rapid variation of their potential
difference across the cell membrane, the so-called transmembrane potential [72]. The
cell membrane depolarizes and the transmembrane potential increases from a negative
resting value to a positive value (deporalization), remains nearly constant (plateau) and
then returns to the resting value (polarization). This event is known as action potential
and induces a release of calcium ions concentration by a complex biochemical reactions
inside the cells [72]. The above intracellular mechanism produces the kinetic activation
of the sarcomeres causing the shortening of the cardiac myofibers [112]. The highly
organized structure of the fibers translates in the macroscopic muscle deformation
enabling the atrial contraction. The transmembrane potential drives faster along the
myofibers [200, 185] allowing the electric signal to reach the atrioventricular node
(AVN, located between RA and the ventricles). AVN acts as a filter to ensure that
the atria contract before the signal enters into the ventricular fast cardiac conduction
system, CCS (mainly composed by the so-called Purkinje network, a sub-endocardial
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Figure 1.4: (a) CCS anatomy; (b) Characteristic action potential of cardiomyocytes;
(c) Graphical representation of the electromechanical activity of the heart. Images
taken from www.alamy.com and [225].

highly conductive system). CCS is responsible for the coordinated propagation of the
electric signal in the ventricles [239]. Then, similarly to what happens in the atria,
the signal travels from cell to cell throughout the myocardial muscle, allowing the
ventricular twisting. Finally, this synchronized heart contraction governs the blood
pressure inside the cardiac chambers, determining a ruled opening of the heart valves
and ensuring, at each heartbeat, the physiological blood flow throughout the heart
chambers and into the circulatory system [187, 112]. A schematic representation of
the electromechanical activity of the heart is outlined in Figure 1.4. Each cardiac
cycle can be summarized into the following three phases (see also Figure 1.4):

� Atrial systole: SAN generates an action potential yielding the contraction of
both atria, forcing the blood flow from the atria to the ventricles. At this stage,
TV and MV are opened, while AV and PV are closed.

� Ventricular systole: The activation front reaches AVN allowing, after a timed
delay, the signal propagation into the ventricles, causing their contraction and
the closing of MV and TV. The ventricular pressure raises until it overcome the
pressures of the aorta and of the pulmonary artery, triggering AV and PV to
open and the consequent ejection of the blood from the ventricle.

� Relaxation: AV and PV close and when the pressure of ventricles reaches that
of atria, MV and TV open again. At the end of this phase, a slow filling phase
(from the atria to the ventricles) begins. In the cardiac cycle, the relaxation
period of the heart muscle is named diastole.
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Figure 1.5: Sketch of the building blocks of a cardiac EM mathematical model. The
references highlight the corresponding coupling quantities between each subsystem.

1.2 An overview of mathematical models for the
cardiac electromechanics

The heart can be regarded as a complex system that involves different interacting phys-
ical phenomena at the molecular, cellular, tissue and organs levels: electrophysiology,
EP (which drives the electrical potential propagation across the cardiomyocytes), me-
chanical activation, MA (governing the activation-contraction mechanism inside the
sarcomeres), active and passive tissue mechanics, TM (of the fiber-muscle deforma-
tion), and fluid haemodynamics (of blood flow inside the heart chambers).

In mathematical modeling, these (single) physics are referred to as “core models”,
expressed by system of Ordinary Differential Equations (ODEs) and Partial Differen-
tial Equations (PDEs) and tightly coupled together [188]:

� The EP core model is set forth by a system of PDEs, such as the bidomain, the
monodomain or the eikonal equations coupled with an ionic model, a system of
ODEs characterizing the ionic fluxes dynamics across the cell membrane [72, 71,
246, 247, 47, 6, 145]. EP model needs to integrate the presence of CCS often
providing a number of early activation points, that surrogate faster endocardial
activation [43, 127, 59], or using physiologically-relevant methods that emulate
the structure of CCS network [252, 251, 46, 218, 126, 82];

� The MA core model can be described by means of PDEs or Monte Carlo approx-
imations of physics-based models [195, 261, 106]. However, due to the their
huge computational costs, involved in their numerical solution, phenomenolog-
ical models of system of ODEs, owing to represent the complex mechanisms
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behind the generation of active force at subcellular level, are typically pre-
ferred [125, 149, 196, 194, 204];

� The TM core model can be represented by the elastodynamics equation in the frame-
work of non-linear elasticity by adopting, for the passive mechanics a suitable
hyperelastic constitutive law [160, 102, 103, 89, 90, 12], and for the active parts,
either an active stress [188, 7, 249, 248] or active strain paradigm [204, 23];

� The fluid core model can be described with either a 3D “full” model or a 0D “re-
duced” one. In the former, the blood haemodynamics is modeled employing
the incompressible Navier-Stokes equations for a Newtonian fluid. In the latter,
the fluid pressure, acting on the endocardia, is taken into account by means of
ODE-based models [188, 187].

When the blood haemodynamics is modeled by means of a 3D fluid model, we
generate a Fluid-Structure Interaction (FSI) problem also known as electrofluidme-
chanics (EFM) model [188, 237, 69, 213, 158]. Whereas, employing a 0D model, the
fluid pressure, acting on the endocardia, is taken into account by means of ODE-based
models, thus obtaining an electromechanics (EM) model of the heart [233, 78, 21, 19,
198].

In addition, the interaction mechanisms among the four chambers are also reg-
ulated by the systemic and pulmonary circulations. Therefore, an EM/EFM model
needs to account for the coupling with the rest of the circulatory system (say, the
complements of the four heart chambers), usually represented by simplified lumped-
parameter Windkessel models [204, 53, 139, 80, 209, 130, 184] or, less common, closed-
loop systems [19, 198, 113, 96]. A schematic representation of the building blocks
constituting a mathematical model of cardiac EM is shown in Figure 1.5.

Finally, EM/EFM models should properly consider the strongly anisotropic nature
of the cardiac fiber architecture by accurately prescribing their orientations, which is
crucial in order to obtain physically meaningful results [30, 25]. Local fiber directions
are mapped based on histological sectioning informations, taken from measurements on
ex-vivo hearts [232, 253, 154, 93], or on digital processing (structure tensor methods)
of high-resolution volumetric imaging techniques [95, 269, 268, 167, 179], sometimes
using a statistical atlas heart [250, 161, 174]. In cases where neither histological
nor imaging information is available, myofiber structures are typically incorporated
by using rule-based methods, that estimate the fiber orientations associated to each
element of the volumetric mesh from pre-established patterns derived from histo-
anatomical findings [204, 176, 26, 260, 58]. Figure 1.6 shows a summary of the methods
most commonly used to obtain the cardiac fiber architecture.

1.2.1 Cardiac fibers modeling overview

In computational models of cardiac EM/EFM, a major issue consists in modeling the
complex arrangement of myocardial fibers that characterizes the cardiac tissue. Ag-
gregations of myofibers determine how the electric potential propagates within the
muscle [232, 200, 185, 176]. Indeed, the electrical propagation is three-four times
faster along the fiber direction than along its orthogonal plane [110]. Moreover, also
the muscle mechanical contraction, which is triggered by the propagation of the elec-
tric potential thorough the tissue, strongly depends on the fibers orientation [62, 163,
87, 164, 39, 81]. For instance, the essential ventricular twisting is attributed to the
arrangement of the myocardial helical fibers [230]. However, while it is well recognized
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Figure 1.6: Diagram showing the main sources of information at muscular tissue level
and the methods used to prescribe the cardiac fiber architecture in EM/EFM models.

that myofibers orientation is crucial for the construction of a realistic EM model, their
architecture has been explored only in a few works and it is not fully understood [163,
87, 233, 21, 81, 182]. Recently, it has been shown that myofiber orientations are dis-
persed around a predominant direction [3, 228]. However, the modeling of contraction
caused by dispersed myofibers was addressed in EM models only in [130, 63].

Over the years, myofibers orientation has been studied using mainly histological
data, anatomical dissections and Diffusion Tensor Imaging (DTI) acquisitions [232,
9, 211, 8, 104, 95, 167, 97, 165, 240, 100, 98, 16, 51, 93], see Figure 1.3. DTI is
a Magnetic Resonance Imaging (MRI) technique able to produce useful structural
information about heart muscle fibers and largely applied to explanted ex-vivo hearts,
coming from animal experiments [104, 95, 217, 267, 174] or from human corpses [134,
167]. However, acquired in-vivo DTI protocol lasts hours and generally produces a
noisy low-resolution fibers reconstruction [243, 5, 143]. Furthermore, there is a paucity
of imaging data on atrial fibers orientation with respect to the ventricles, mainly due
to imaging difficulties in capturing the thin atrial walls [57]. Only recently, ex vivo
atrial fibers have been analysed owing to submillimeter Diffusion Tensor MRI (DT-
MRI) [167, 268, 269], see Figure 1.3(d). Moreover, since the atrial thickness is smaller
than the DTI voxel size, it is not possible to obtain in-vivo myofibers in the atria [101].
All the above considerations make nowadays DTI techniques unusable to reconstruct
accurate 3D myofibers field in the common clinical practice.

Because of the difficulties to acquire patient-specific data of fibers distribution,
different methodologies have been proposed to provide a realistic surrogate of fiber
orientation for in-vivo cardiac geometries [204, 134, 242, 26, 58, 101, 266, 120, 64].
Among these, atlas-based methods map and project a detailed fiber field, previously
reconstructed on an atlas, on the geometry of interest, exploiting DT-MRI or histo-
logical data; see [134] for the ventricles and [101, 202] for the atria. However, these
methods require complex registration algorithms and the results depends on the orig-
inal atlas data upon which they have been built.
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Alternative strategies for generating myofiber orientations are the so called Rule-
Based Methods (RBMs) [30, 183, 154, 32]. RBMs describe fiber orientations with
mathematically sound rules based on histological or DTI observations and require in-
formation only about the myocardial geometry [232]. These methods parametrize the
transmural and apico-basal directions in the entire myocardium to assign orthotropic
(longitudinal, transversal and normal) myofibers; see [204, 26, 58, 25, 266, 183] for the
ventricles and [242, 120, 64, 67, 180] for the atria.

A particular class of RBMs, which relies on the solution of Laplace boundary-value
problems, is known as Laplace-Dirichlet-Rule-Based Methods (LDRBMs), addressed
in [204, 26, 58, 25, 266] for the ventricular case. LDRBMs define the transmural and
apico-basal directions by taking the gradient of solutions corresponding to suitable
Dirichlet boundary conditions. These directions are then properly rotated to match
histological observations [86, 9, 211]. The above procedure ensures a smooth and
continuous change in fibers directions throughout the whole myocardium.

Most of existing ventricular RBMs refer to LV only and usually introduce an ar-
tificial basal plane located well below the cardiac valves. Only recently, a LDRBM,
that takes into account fiber directions in specific cardiac regions, such as RV, the
inter-ventricular septum and the outflow tracks, has been developed [58]. This has
provided a great improvement in RBMs since RV exhibits a different fiber orienta-
tion with respect to LV [134, 95, 217, 115]. The presence of a discontinuity in the
inter-ventricular septal fibers is a crucial matter, still very debated [115, 34].

Regarding the atria, several RBMs have been developed. They either use semi-
automatic rule-based approaches [242, 120, 64, 67, 180, 119, 123, 201] or prescribe
manually the fiber orientations in specific atrial regions [94, 256, 108, 220]. Recently,
atlas-based methods, in which fiber directions of a reference atrial geometry are warped
on a target geometry, have been introduced [101, 202, 215, 141, 203]. All the former
procedures require manual intervention introducing, for example, various distinct land-
marks, seed-points and a network of auxiliaries lines [120, 64]. Furthermore, they are
often designed for specific atrial morphologies [242, 120]. Moreover, no LDRBMs have
been proposed so far for the atria. As a matter of fact, an extension of the ventric-
ular LDRBMs is not straightforward, mainly because the atrial fibers architecture is
characterized by the presence of multiple overlapping bundles running along differ-
ent directions, differently from the ventricles one where myofibers are aligned along
regular patterns. Hence, a processing procedure for generating atrial fibers field still
remains a knotty procedure [64, 65].

1.2.2 Electromechanical modeling overview

Several of the past computational studies have focused their attention only on either
the cardiac EP or TM, even if the electrical and mechanical functions of the heart
are highly interconnected. The vast majority of EP modeling studies ignored any
effects due to mechanical deformation and, vice versa, most TM modeling studies did
not represent explicitly any feedback of deformation on EP [89, 13, 151, 244, 245,
207]. Indeed, in the cardiac modeling community, fully coupled EM models are still
an exception rather than the common rule [188, 244]. Only in the last decade, great
efforts have been spent to develop computational models of cardiac EM [92, 20, 18,
124, 159, 234, 78] with increasingly biophysical detail, by properly taking into account
the interacting physical phenomena contributing to the heart EM [172, 223, 227, 41,
48]. However, most of the existing EM models refer to LV only [204, 198, 139, 80,
209, 130, 184] and neglect the important effects of the right ventricular deformation
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on the heart pumping function [163]. Only in the last decade, EM models have been
purposely developed for biventricular geometries [19, 96, 224, 42, 83, 49, 4, 75] and,
very recently, have been applied to four chambers hearts [233, 19, 78, 175, 124].

From a mathematical point of view, the effect of the electrochemical system on EP
is represented by the so-called mechanoelectrical feedback, which influences the speed
of propagation of the travelling wave: this is satisfactorily achieved by considering the
monodomian/bidomain equations in a deforming medium, as well as accounting that
some ionic channels opening is regulated by stretching [187, 130, 73]. At TM level,
the direct coupling between the electrochemical model and tissue deformations is the
prominent active contraction, which is typically expressed by considering an active
stress formulation, where one-dimensional active tension, along the fiber, is imposed
in the stress tensor [188, 7]. However, purely one-dimensional active stress cannot
describe the macroscopic orthotropic behaviour of cardiac TM and more general or-
thotropic active stress formulations [249, 248] (or as an alternative the more complex
orthotropic active strain formulations [204, 23]) were proposed. This orthotropic ac-
tivation was able to better fit experimental data, but no clear explanation of the
forces in the direction orthogonal to the fibers field was given. It has been argued
that cross-fibre active contraction may be related to myofiber orientations that are
dispersed around a predominant direction [3, 228]. Recently, based on experimental
measures [132], cross-fibers active tension has been introduced in [87, 207, 77, 264,
88] to model the contraction caused by dispersed myofibers. However, this aspect has
been addressed in EM models only in [130, 63].

From the numerical point of view, once the discretized core models are obtained,
a central topic concerns the numerical strategy selected for the integrated coupled
model: i.e. how the isolated problems are solved with respect to each other. Usually,
electromechanical coupling has been achieved by either a monolithic approach, where
the approximated equation are simultaneously solved in a single large system, or a
segregated algorithm, where the approximated problems are solved sequentially (in a
suitable order) [53, 80]. Monolithic solvers usually show better accuracy and stability
properties with respect to segregated ones, but they are much more computationally
demanding [96, 80]. Segregated solvers, that require less computational resources at
the cost of a reduced accuracy and stability, are becoming popular for solving cardiac
EM [20, 204, 78, 42, 83, 248, 22]. Recently, segregated solvers have been formulated
so that different time step size, for the single core models, can be used, thus leading to
the so called segregated-staggered algorithms [78, 53]. Moreover, segregated-staggered
solvers have been extended allowing to adopt different resolution in space and time,
thus leading to the segregated-intergrid-staggered (SIS) numerical schemes [209, 199,
177]. This is physically motivated by the fact that different space-time resolutions are
required for the single core models: namely, EP requires a fine space-time discretiza-
tion, to capture the fast transients and the steep depolarization wavefront [20, 181];
in contrast, TM can be solved with coarser resolutions, due to the smoother spatial
and slower temporal scales governing the cardiac deformation [20, 89].

Two crucial aspects for an accurate numerical simulation of the cardiac EM, which
are also essential to reproduce the synchronous activity of the heart, are:

i) properly imposing the mechanical boundary conditions able to replicate the realistic
motion of the heart;

ii) accounting for the interaction between the heart and the whole circulation.

The motion of the heart underlies different constrains involving the interplay of
ventricles, atria and the pericardium in which the heart is embedded. On the one
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hand, the pericardium has a direct impact on the cardiac motion, constraining the
epicardium to slide on the parietal pericardium [263, 175]. On the other hand, the
atrioventricular plane displacement (AVD) is considered to be the major contributor
to the ventricular pumping function [38]. The pericardium effect is properly taken into
account using contact mechanics [74] or applying normal Robin boundary conditions
on the epicardium [175, 235]. However, the majority of ventricular EM models have
limitations in reproducing the longitudinal systolic shortening, as excluding the atria
from the geometry requires to fix the basal plane or restrict its radial motion [260, 75,
68, 50, 153]. This is in contrast with physiological contraction where the AVD moves
significantly downwards in the apico-basal direction [38].

The coupling between the circulatory system haemodynamics and the cardiac TM
determines pressures and volumes in the heart chambers [80, 19, 113, 54, 87, 260].
From a physical point of view, this coupling is most accurately described by an FSI
problem [158, 111, 262]. This is relevant for investigating blood flow patterns or wall
shear stresses, but often not needed for simulating cardiac EM. Typically, EM models
are coupled with Windkessel-type preload/afterload models for the circulatory system
comprising 2-, 3-, 4-elements [60, 133, 221, 231, 258, 265]. In these models, the different
phases of the pressure-volume loop (PV-loop) are managed by solving different sets
of differential equations, one for each phase [80, 53, 62, 248]. Still, more meaningful
and physiologically sound interface conditions can be obtained by coupling the 3D EM
model with a 0D closed-loop model of the complete circulatory system for the whole
cardiac cycle. [198, 33, 15, 144, 162]. A further advantage of the latter approach is
that closed-loop circulation models do not require to be adapted through the different
phases of the cardiac cycle [159, 19, 54, 199]. However, solving efficiently the coupling
between the EM model and the closed-loop model for the whole cardiovascular system
is a challenging task [19]. This coupled problem has been so far addressed only in a
few works, namely [198, 96, 19, 113, 233].

1.2.3 Whole heart electromechanical modeling overview

In the last decades, several cardiac computational models were developed to study
pathological conditions affecting either the electrical or mechanical response in indi-
vidual heart chambers. The origin of heart diseases is often local: e.g., fibrillation
and myocardial infarction are typical electrical and mechanical dysfunctions. How-
ever, heart diseases almost always progress to affect the entire organ, impacting on
the electrical and mechanical function of all four chambers [131]. In the quest for a
more quantitative understanding of the heart functioning both in health and diseased
scenarios, it became fundamental to model and simulate the entire heart as an whole
organ [244]. Only recently, the scientific community moved to model and simulate the
electro-mechanical response of the whole heart [22, 74, 20, 213, 124, 175, 235, 233,
234, 78, 117].

The step zero of any computational whole heart EM simulation consists in the
so-called preprocessing procedure, which includes the generation of a computational
heart mesh, the embedding of the cardiac fiber architecture and the recovering of the
so-called stress-free reference configuration. This procedure is particularly important
if we aim at realistic patient-specific simulations, since obtaining in-vivo data (with
non invasive measurements) is a very complex task not routinely performed in current
clinical procedures [140].

The discretization of a whole heart geometry can be obtained starting from seg-
mented medical images, acquired from imaging techniques such as MRI or Computed
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Figure 1.7: The Zygote heart CAD model [107] reconstructed from high-resolution
CT-scan, representing an average healthy heart. Image taken from [37].

Tomography (CT) scan, or using detailed Computer Aided Design (CAD) models (see
Figure 1.7). Given the geometry, the creation of a whole heart mesh is a challenging
procedure mainly because the atrial wall is about an order of magnitude thinner than
the ventricular wall. In addition, atria are typically entangled and their geometry can
be quite involved, further complicating the heart meshing [22]. Furthermore, generat-
ing a whole heart mesh, starting from medical images data or CAD models, requires
several meshing tools to move from a surface to a volumetric mesh and labelling of
surfaces and volumes in order to impose specific electrical or mechanical tissue prop-
erties and boundary conditions. Along this side, promising results have been shown
in [66, 146], where several meshing tools specific for cardiac modeling have been pre-
sented. One of the first high-resolution four chamber three-dimensional unstructured
mesh, including the atria and a portion of the major vessels, was presented in [20].
Recently, a publicly available virtual cohort of about twenty linear tetrahedral four
chamber meshes was reported in [234].

Prescribing the myofibers architecture is significantly more challenging in full heart
geometries. Many of the existing four chambers heart models embed only the ventric-
ular fibers [234, 20], include simplified architecture for the atria [124] or adopt different
methodologies for considering the atrial fibers [233, 78, 175], either by using different
RBMs for the ventricle and the atria [175, 78, 74] or by mapping the atrial fibers
from ex-vivo DT-MRI dataset, using the so-called universal coordinate system [233,
203]. To the best of our knowledge, none of whole heart computational studies makes
use of a unified methodology to directly embed reliable and detailed cardiac myofiber
architecture that takes into account different fiber orientations specific of the four
chambers [176].

Cardiac geometries, acquired from medical images (typically during the diastolic
phase), are not in principle stress free, due to the blood pressure acting on the endocar-
dia. Therefore, given the whole heart mesh embedded with the fiber architecture, the
computation of the reference configuration consists in the estimation of the unloaded
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(i.e. stress-free) heart shape, which will revert back to the original reconstructed ge-
ometry when inflated with the measured end diastolic pressure. Several methods exist
for estimating the reference configuration [85, 76]. The simplest one is the backward
displacement method [222, 35, 118, 158]. Nevertheless, this inverse problem has been
shown to produce non-unique solutions, especially when buckling may occur, due the
thin RV wall or the intricate atrial geometry [85]. Recently, novel methodologies,
based on relaxation techniques [191], have been successfully proposed and applied to
recover the reference configuration in LV [140, 199] and biventricular geometries [177].

Attempting to build human whole organ EM models requires to integrate all
the mathematical, numerical and computational issues previously highlighted in Sec-
tion 1.2.2. Among them, the use of high resolution meshes becomes particularly
challenging due to the larger size of a human heart and the overall increase in degrees
of freedoms (DOFs) needed for discretizing both the ventricles and the atria [20].
This automatically translates in high computational costs for modeling the heart EP:
bidomain/monodomain equations are usually coupled with simplified ionic models [22,
117], although recently advanced cellular models are being included in heart simula-
tions with the help of High Performance Computing (HPC) resources [78, 37, 176]; as
an alternative, reaction-eikonal models are preferred due to the significant computa-
tional savings in the space-time resolutions [145, 233].

Recently, four chamber studies focused their attention on ventricular contraction,
investigating the importance of modeling the pericardium in order to reproduce phys-
iological AVD [235, 233, 175, 74]. Only few whole heart EM models consider the atrial
contraction, which is usually described by means of phenomenological MA atrial mod-
els [124, 233, 78, 74, 175].

Furthermore, only in the last few years, whole heart EM models begin to incor-
porate the presence of the whole cardiovascular system, strongly coupling the 3D EM
model with a 0D closed-loop model [233, 78]. Currently, the modeling of whole heart
EM remains an open problem.

1.3 Objectives of the thesis

With the aim of facing the computational challenges formerly described in Section 1.2,
the main objectives of this thesis move along three strands:

1. Fibers architecture: develop a novel unified mathematical framework, based on
LDRBMs, to prescribe myocardial fibers orientation in computational biventricular
and biatrial geometries;

2. Electromechanics: provide a biophysically detailed biventricular 3D EM model
coupled with a 0D closed-loop lumped parameters model for the haemodynamics
of the whole circulatory system;

3. Whole heart: extend the unified LDRBMs mathematical framework and the
biventricular 3D-0D model to the whole heart. Present a preprocessing proce-
dure for the generation of a whole heart mesh. Perform full heart EP and EM
simulations.

The ultimate goal of this thesis is to provide a fully-coupled multiscale mathematical
and numerical model of the electrical and mechanical activity of the human heart. The
main contribution to the whole heart EM model, presented in this thesis, is given by
the generation a detailed whole heart myocardial fiber architecture, which is able to
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reproduce almost all the features of both the atria and the ventricles. Besides a very
detailed muscular architecture, the whole heart EM includes state of the art models,
based on human physiology, for the atrial and ventricular EP [72, 47, 247], and takes
into account both MA and TM of the four chambers, which are strongly coupled with
a closed-loop model of the whole cardiovascular system. The validity of the model is
demonstrated through simulations on a realistic whole heart geometry [107].

1.3.1 Original contributions

The following major challenges are addressed in this thesis:

1. Fiber architecture:

• Review existing ventricular LDRBMs, providing a communal mathematical
description. Introduce also some modeling improvements with respect to
the existing literature [26, 204, 58], extending the ventricular LDRBMs in
order to include specific fiber directions for RV;

• Propose for the first time an atrial LDRBM which is able to quantitatively
reproduce all the important features, such as fiber bundles, needed to pro-
vide a realistic atrial musculature architecture. Unlike most of the existing
RBMs, the new method, tested both on idealized and realistic atrial ge-
ometries, can be easily applied to any arbitrary geometries;

• Compare the results of the new atrial LDRBM with the fiber orienta-
tions obtained by the RBM proposed in [242, 67], to histo-anatomical pic-
tures [100, 51, 97, 212] and to DT-MRI fiber data [167];

• Carry out a systematic comparison, on realistic and idealized cardiac ge-
ometries, of the effect produced by different LDRBMs on EP for relevant
meaningful biomarkers (e.g. activation times) computed from numerical
simulations. For the ventricles, study the importance of including different
fiber orientations in RV and investigate the effect of the inter-ventricular
septal fibers discontinuity. For the atria, analyse the strong effect of the
complex bundles fiber architecture on the electric signal propagation.

2. Electromechanics:

• Present a 3D biventricular EM model coupled with a 0D closed-loop model
of the whole cardiovascular system, discussing in detail the coupling condi-
tions that stand behind the 3D and the 0D models;

• Introduce a boundary condition for the mechanical problem that accounts
for the neglected part of the domain located on top of the biventricular
basal plane and that is consistent with the principles of momentum and
energy conservation;

• Perform EM simulations in physiological conditions using the 3D-0D model,
showing that our results match the experimental data of relevant mechan-
ical biomarkers available in literature [137, 238, 138, 236, 31, 61, 219];

• Study how different configurations in cross-fiber active contraction, that
surrogate the myofibers dispersion, affect EM simulations;

• Investigate the effect of several myofiber architectures on EM simulations.
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Figure 1.8: Graphical map of the thesis. Chapter 2 deals with myocardial fibers for
biventricular and biatrial geometries. Chapter 3 presents the 3D-0D biventricular
model. Chapter 4 provides the framework to perform full heart EP and EM simula-
tions, extending the methodologies of Chapter 2 and 3 to the whole heart.

3. Whole heart:

• Provide a detailed description of the process behind the generation of a
whole heart mesh, starting from an acquired cardiac geometry;

• Present a unified framework, based on LDRBMs, for generating myocardial
fibers directly on the whole heart. The methodology is straightforward and
can be easily applied to any four chambers heart geometry;

• Extend the biventricular 3D-0D model to whole heart geometries. With
this aim, present a 3D-0D model for the whole heart, composed by a 3D
description of cardiac EM in all the four chambers and a 0D representation
of the whole circulatory system, which includes the haemodynamics of all
heart chambers;

• Illustrate numerical results, including the full heart LDRBM, of EP and EM
simulations, with physiological activation sites, in a realistic computational
domain of the heart.

1.3.2 Structure of the thesis

This thesis is organized along the following chapters. A graphical map illustrating the
main topic and the link of these chapter is shown in Figure 1.8.

Chapter 2: we review existing ventricular LDRBMs presented in a unified
mathematical description. Then, we detail the new LDRBM for atrial fibers
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Chapter 1. Introduction

generation. We briefly explain the mathematical model and numerical meth-
ods used to perform EP simulations. Afterwards, we present numerical results
where we show a comparison among different LDRBMs in terms of meaningful
electrophysiological biomarker, computed as output of numerical simulations.
Moreover, we compare the results of the atrial LDRBM with the fiber orienta-
tions obtained by another RBM and also to anatomical and DT-MRI data;

Chapter 3: we fully describe the biophysically detailed biventricular 3D-0D
model. We present the new basal boundary condition for the mechanical prob-
lem. We detail the numerical approximation of the coupled 3D-0D model, care-
fully inspecting the coupling conditions of these heterogeneous models. We re-
port the results of several electromechanical simulations in physiological con-
ditions using the proposed 3D-0D model. We investigate the effect on EM of
different myofiber architectures. Furthermore, we study at which extent different
configurations in cross-fibers active contraction affect EM simulations;

Chapter 4: we present a preprocessing procedure for whole heart EM simula-
tion which includes: the generation of a whole heart mesh, the prescription of
the myocardial fibers and the computation of the reference configuration. We
detail how to extend to whole heart geometries the biventricular 3D-0D model.
Then, we illustrate numerical results of the whole heart EP and EM simulations;

Finally, we draw our conclusion and outline several possible future developments.

All the mathematical and numerical methods described in this thesis have been im-
plemented within lifex, a new in-house high-performance C++ Finite Elements (FE)
library mainly focused on cardiac applications based on deal.II FE core [14] (https:
//www.dealii.org). A first public binary release of lifex (including the fiber gen-
eration package) is freely available online (https://lifex.gitlab.io/), under an
open-source license (https://doi.org/10.5281/zenodo.5810269) [2].

All the numerical simulations were executed using either the iHeart cluster (Lenovo
SR950 192-Core Intel Xeon Platinum 8160, 2100 MHz and 1.7TB RAM) at MOX,
Dipartimento di Matematica, Politecnico di Milano or the GALILEO supercomputer
at Cineca (8 nodes endowed with 36 Intel Xeon E5-2697 v4 2.30 GHz). To analyse
the results we used ParaView (https://www.paraview.org) an open-source, multi-
platform data analysis and visualization application.

This thesis contains results which have already been published or accepted for publi-
cation in [176, 177].
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Chapter 2
Modeling the cardiac muscular
architecture

In this chapter, we provide a review, based on a unified mathematical description, for
existing Laplace-Dirichlet-Rule-Based Methods (LDRBMs) in the ventricles [26, 204,
58], introducing also some modeling improvements (Section 2.1). In particular, we
extend ventricular LDRBMs in order to include specific fiber directions for RV. We
also propose a novel LDRBM for atrial fibers generation (Section 2.2). Afterwards,
we introduce the mathematical and numerical model used to perform cardiac elec-
trophysiology (EP) simulations (Section 2.3). Then, after a brief description related
to the setting of numerical simulations (Section 2.4), we carry out a systematic com-
parison of the effect produced by different ventricular LDRBMs on EP, in terms of
meaningful biomarkers (e.g. activation times), computed from numerical simulations
(Section 2.5). Moreover, we test the new method for atrial fibers generation, both
on idealized and realistic geometries, investigating the strong effect of the complex
atrial fiber architecture on the electric signal propagation (Section 2.6). Finally, we
compare the results of the novel atrial LDRBM with the fiber orientations obtained
by another Rule-Based Method (RBM) [67] and also to anatomical [100, 51, 97, 212]
and DT-MRI data [167] (Section 2.7). Part of the results presented in this chapter
have been published in [176].
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2.1. Ventricular Laplace-Dirichlet Rule-Based Methods

2.1 Ventricular Laplace-Dirichlet Rule-Based Meth-
ods

LDRBM is a particular class of RBMs for generating the myocardial fibers architec-
ture, strictly related to the solution of Laplace boundary-value problems [204, 26, 58,
25, 266]. The keystone of any LDRBM is to properly define several inter and intra ven-
tricular/atrial directions by taking the gradient of solutions of Laplace problems with
suitable Dirichlet boundary conditions. These directions define the “flat” myofibers,
that are then properly rotated in order to match histological and DT-MRI observa-
tions [86, 9, 211]. The above procedure ensures a smooth and continuous change in
myofiber directions throughout the whole myocardial muscle.

2.1.1 Original ventricular LDRBMs

We start by giving a review of three popular LDRBMs introduced so far in the lit-
erature for the ventricles: specifically, we consider three LDRBMs proposed by Rossi
et al. [204], by Bayer et al. [26] and by Doste et al. [58]. For each LDRBM, we first
provide details on the original algorithm and then we propose a unified mathematical
framework of such methods, highlighting similarities and differences, together with
some improvements for the biventricular case.

Rule-Based Method by Rossi et al.

The ventricular LDRBM by Rossi et al. [204, 188] (in what follows R-RBM) is a mod-
ified version of the algorithm studied in [266] for generating fibers in left ventricular
geometries [204], then extended to the biventricular ones in [188]. R-RBM is based
on the definition of the transmural direction. In particular, the idea is to compute
the sheetlet directions assuming that the orientation of collagen sheets is radial in the
transmural direction of the ventricles (i.e. from epicardium to endocardium).

Considering a biventricular computational domain, Ωbiv, the first step of R-RBM
consists in defining the boundary ∂Ωbiv as

∂Ωbiv = Γvepi ∪ Γbase ∪ Γ`v ∪ Γrs ∪ Γrv−s

where Γvepi is the ventricular epicardium, Γbase the ventricular basal plane, Γ`v the
left ventricular endocardium, Γrs the right ventricular septum and Γrv−s the right
ventricular endocardium excluding the septum. Specifically, the right septum Γrs is
identified exploiting the distance between LV and RV endocardia, see Figure 2.1(a).

The second step of R-RBM defines a normalized transmural distance, φ, by solving
a Laplace problem with proper boundary conditions (see Figure 2.1(b))

−∆φ = 0 in Ωbiv,

φ = 0 on Γvepi ∪ Γrs,

φ = 1 on Γ`v ∪ Γrv−s,

∇φ · n = 0 on Γbase.

After solving the Laplace problem for φ, a local reference frame is build in each element
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Chapter 2. Modeling the cardiac muscular architecture

Figure 2.1: Procedure to generate myofibers with the original R-RBM.

of the biventricular mesh

êt =
∇φ
‖∇φ‖

,

ên =
nbase − (nbase · êt)êt
‖nbase − (nbase · êt)êt‖

,

êl = ên × êt,

where ∇φ is the gradient of the potential φ and nbase is the vector normal to the
ventricular base and pointing apex-to-base (so that the term nbase − (nbase · êt)êt
represents the projection of nbase on the plane orthogonal to êt). The vector êt is the
transmural direction , ên is the apico-basal (normal) direction, and êl is the “flat”
fiber (longitudinal) direction, see Figure 2.1(c). Finally, the fiber field f is obtained
by rotating êl around the êt axis by the helical angle α

f = R′êt(α)êl,

where the rotation matrix R′êt(α) is given by the Rodrigues’ formula

R′êt(α) = I + sin(α)[êt]x + 2 sin2(α/2)[êt ⊗ êt − I],

with the matrix [êt]x defined as

[êt]x =

 0 −[êt]z [êt]y
[êt]z 0 −[êt]x
−[êt]y [êt]x 0

 .
The rotation helical angle α = α(φ) is given by the following linear relationship be-
tween φ and α

α = αepi(1− φ) + αendoφ,

where αepi and αendo are fixed angle rotation on the epicardium and endocardium, re-
spectively. For further details about the original R-RBM see [204, 188]. The procedure
to generate myofibers with R-RBM is outlined in Figure 2.1.
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Figure 2.2: Procedure to generate myofibers with the original B-RBM.

Rule-Based Method by Bayer et al.

Bayer et al. [26] developed another LDRBM (in what follows B-RBM), for assigning
ventricular fiber orientations, introducing two major novelties. The former is the use
of Laplace-Dirichlet solutions to define both the transmural and apico-basal directions
in the whole myocardium [25]. The latter consists in using the bi-direction spherical
interpolation (bislerp) [226, 121] to manage the fiber orientations in order to guar-
antee a smooth and continuous change in the fiber field, particularly in the proximity
of the septum and around the inter-ventricular junctions [26].

Considering a biventricular computational domain, Ωbiv, the first step of B-RBM
consists in defining the boundary ∂Ωbiv as

∂Ωbiv = Γvepi ∪ Γbase ∪ Γ`v ∪ Γrv ∪ Γa`v,

where Γvepi is the ventricular epicardium, Γbase the ventricular basal plane, Γ`v the
left ventricular endocardium, Γrv the right ventricular endocardium and Γa`v the
ventricular apex, selected as the LV epicardial point furthest from the ventricular
base [26]; see Figure 2.2(a).

The second step of B-RBM requires to solve the Laplace equations in the domain
Ωbiv with proper boundary conditions, in order to compute three different transmural
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distances φ`, φr and φepi and an apico-basal (normal) distance ψ (see Figure 2.2(b)):
−∆φ` = 0 in Ωbiv

φ` = 1 on Γ`v

φ` = 0 on Γvepi ∪ Γrv

∇φ` · n = 0 on Γbase

,


−∆φr = 0 in Ωbiv

φr = 1 on Γrv

φr = 0 on Γvepi ∪ Γ`v

∇φr · n = 0 on Γbase

,


−∆φepi = 0 in Ωbiv

φepi = 1 on Γvepi

φepi = 0 on Γ`v ∪ Γrv

∇φepi · n = 0 on Γbase

,


−∆ψ = 0 in Ωbiv

ψ = 1 on Γbase

ψ = 0 on Γa`v

∇ψ · n = 0 on Γvepi

.

Gradients of the above Laplace solutions are used to define the apico-basal direction,
∇ψ, and the transmural directions, ∇φ`, ∇φr or ∇φepi. Then, to construct a unique
right-handed axis system in each point of the computational domain Ωbiv, B-RBM
exploits three functions axis, bislerp, orient. The function axis

Pi = [êl, ên, êt] = axis(∇ψ,∇φi) =


êt = ∇φi

‖∇φi‖
ên = ∇ψ−(∇ψ·êt)êt

‖∇ψ−(∇ψ·êt)êt‖
êl = ên × êt

i = `, r, epi,

takes as inputs two vector, ∇ψ and either ∇φr, ∇φ` or ∇φepi, then returns an orthog-
onal matrix, Pi = [êl, ên, êt] (with i = `, r, epi,), where êl, ên, êt are the longitudinal,
normal and transmural directions, respectively. The function bislerp

Pab = bislerp(Pa, Pb, η),

where η ∈ [0, 1] is an interpolation factor, is used to interpolate two orthonormal axis
system (Pa, Pb) continuously within the whole myocardium, obtaining an interpolated
axis system Pab. When η → 0 implies that Pab → Pa, while η → 1 entails Pab → Pb.
Specifically, bislerp is used first on P` and Pr, defining P`r = bislerp(P`, Pr, η),
and then to obtain the unique axis system Q = bislerp(P`r, Pepi, η). The function
orient

[f ,n, s] = orient(Q,α, β) = QRêt(α)Rêl(β),

with

Rêt(α) =

cos(α) −sin(α) 0
sin(α) cos(α) 0

0 0 1

 , Rêl(β) =

1 0 0
0 cos(β) sin(β)
0 −sin(β) cos(β)

 , (2.1)

takes as inputs Q, the coordinate system, α, and β, the fiber and sheet orientation
angles, respectively, and gives as output, [f ,n, s], an orthonormal axis system, where
f is the fiber, n the sheet-normal, and s the sheet directions, see Figure 2.2(c).

Finally, to assign fiber orientations throughout the whole myocardium B-RBM
exploits four functions representing the desired α and β angle rotations within the
septum (s) and the ventricular walls (w):

αs(d) = αendo(1− 2d),

αw(d) = αendod+ αepi(1− d),

βs(d) = βendo(1− 2d),

βw(d) = βendod+ βepi(1− d),
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where d ∈ [0, 1] is the transmural normalized distance, and αendo, αepi, βendo and βepi
are fixed angle rotation on the epicardium and endocardium. For further details about
the original B-RBM see [26]. The procedure to generate myofibers field with R-RBM
is outlined in Figure 2.2.

Rule-Based Method by Doste et al.

Both R-RBM and B-RBM have the common issue of being mainly focused on based-
biventricular computational models (meaning that they include an artificial basal
plane well below the cardiac valves). To overcome this limitation, Doste el al. [58]
proposed a LDRBM (hereafter named D-RBM) for generating cardiac muscle fibers
in a full biventricular geometry, without the need to cut it with a basal plane. In
addition, D-RBM prescribes the fiber orientations separately in each ventricle and
includes specific fiber architecture in the inter-ventricular septum and outflow tracks1

(OT), following observation from histological studies [58].

Considering a biventricular computational domain, Ωbiv, the first step of D-RBM
consists in defining the boundary ∂Ωbiv as

∂Ωbiv = Γvepi ∪ Γ`v ∪ Γrv ∪ Γa`v ∪ Γarv ∪ Γmv ∪ Γav ∪ Γtv ∪ Γpv,

where Γvepi is the ventricular epicardium, Γ`v the left ventricular endocardium, Γrv
the right ventricular endocardium, Γa`v the left apex, Γarv the right apex (selected
as the RV epicardial point furthest from the septal surface [216]) and Γrings = Γmv ∪
Γav ∪Γtv ∪Γpv the four valve rings, with Γmv, Γav, Γtv and Γpv the rings of MV, AV,
TV and PV, respectively (see Figure 2.3(a)).

Laplace problems are solved in the domain Ωbiv with different boundary conditions,
to compute the transmural distance φ, the left and right apico-basal and apico-OT
distances ψab,`, ψab,r and ψot,`, ψot,r, respectively (see Figure 2.3(b)):

−∆φ = 0 in Ωbiv

φ = 2 on Γ`v

φ = −1 on Γrv

φ = 0 on Γvepi

∇φ · n = 0 on Γrings

,


−∆ψab,` = 0 in Ωbiv

ψab,` = 0 on Γa`v

ψab,` = 1 on Γmv

∇ψab,` · n = 0 on ∂Ωbiv/(Γa`v ∪ Γmv)

,


−∆ψab,r = 0 in Ωbiv

ψab,r = 0 on Γarv

ψab,r = 1 on Γtv

∇ψab,r · n = 0 on ∂Ωbiv/(Γarv ∪ Γtv)

,


−∆ψot,` = 0 in Ωbiv

ψot,` = 0 on Γa`v

ψot,` = 1 on Γav

∇ψot,` · n = 0 on ∂Ωbiv/(Γa`v ∪ Γav)

,


−∆ψot,r = 0 in Ωbiv

ψot,r = 0 on Γarv

ψot,r = 1 on Γpv

∇ψot,r · n = 0 on ∂Ωbiv/(Γarv ∪ Γpv)

.

1LV and RV outflow tracks are the AV and PV annular rings, respectively.
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Figure 2.3: Procedure to generate myofibers with the original D-RBM.

Moreover also the following inter-ventricular distances ψw,`, and ψw,r are computed:

−∆ψw,` = 0 in Ωbiv

ψw,` = 1 on Γa`v ∪ Γmv

ψw,` = 0 on Γav

∇ψw,` · n = 0

on ∂Ωbiv/(Γa`v ∪ Γmv ∪ Γav)

,



−∆ψw,r = 0 in Ωbiv

ψw,r = 1 on Γarv ∪ Γtv

ψw,r = 0 on Γpv

∇ψw,r · n = 0

on ∂Ωbiv/(Γarv ∪ Γtv ∪ Γpv)

.

The boundary conditions for φ are assigned in order to discriminate the two ventricles
(positive and negative values for LV and RV, respectively), and also to take into
account that two-third of the septum belong to LV and one-third to RV [58].

The next step of D-RBM consists in building the orthonormal coordinate system,
needed to define the myofiber orientations, using gradients of the Laplace solutions
previously computed. The transmural direction (êt) is obtained by taking the nor-
malized gradients of ∇φ. The longitudinal direction (ên), defined separately in each
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ventricle, is a weighted sum of apico-basal (∇ψab,i) and apico-OT (∇ψot,i) directions,
exploiting the inter-ventricular distances ψw,i (with i = `, r):

∇ψi = ψw,i∇ψab,i + (1− ψw,i)∇ψot,i i = `, r.

Thus, ên is retrieved by projecting the gradients of ∇ψl and ∇ψr for LV and RV,
respectively, on the plane orthogonal to êt. Then, the longitudinal direction (êl) is
the cross-product of the previously computed directions. Finally, the local coordinate
system, [êl, ên, êt], is set up in each nodal point of the mesh:

êt = ∇φ
‖∇φ‖

ên = ∇ψi−(∇ψi·êt)êt
‖∇ψi−(∇ψi·êt)êt‖

êl = ên × êt

i = `, r.

The last step of D-RBM provides rotations of the fiber, αi, and sheet, βi, angles
for LV (i = `) and RV (i = r). The vector êl is rotated around êt by an angle αi and
then êt is rotated around êl by an angle βi

[f ,n, s] = [êl, ên, êt]Rêt(αi)Rêl(βi),

where Rêt , and Rêc are the matrices previously defined in (2.1), and f , n, and s
represent the fiber, sheet-normal and sheet directions, respectively (see Figure 2.3(c)).
The expressions for αi and βi angles are the following

αi(d) = αendo,id+ αepi,i(1− d) βi(d) = βendo,id+ βepi,i(1− d) i = `, r,

where d ∈ [0, 1] is the transmural normalized distance. Moreover, OT regions are
identified by ψw,` = 0, and ψw,r = 0. Thus, the angle values in OT regions can be
fixed by selecting the mesh points where ψw,i = 0 (i = `, r). An optional feature of
D-RBM is the possibility of setting septal discontinuity between the two ventricles
by exploiting the intersection zone of both ventricles and using the solution φ that
discriminate LV from RV (see [58] for further details). The procedure to generate
myofibers with D-RBM is outlined in Figure 2.3.

2.1.2 A unified description for ventricular LDRBMs

The three ventricular LDRBMs under review (R-RBM, B-RBM and D-RBM) can be
embedded in a unified mathematical description (presented in [176]), characterized by
the following shared steps which are hereby reported:

1. Labelled mesh: Provide a labelled mesh of the ventricular domain Ωbiv to define
specific partitions of the boundary ∂Ωbiv, see Figure 2.4;

2. Transmural distance: A transmural distance is defined to compute the distance
of the epicardium from endocardial surfaces;

3. Transmural direction: The transmural distance gradient is used to build the
unit transmural direction êt of the ventricles, see Figure 2.4;

4. Normal direction: An apico-basal direction (directed from the apex towards the
ventricular base) is introduced and it is used to build the unit normal direction
ên, orthogonal to the transmural one, see Figure 2.4;
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Figure 2.4: Left: Representation of the three directions employed by a LDRBM for an
idealized biventricular domain Ωbiv whose border ∂Ωbiv is partitioned in the ventricular
epicardium Γvepi, left Γ`v and right Γrv ventricular endocardium and the ventricular
base Γbase, ∂Ωbiv = Γvepi∪Γ`v∪Γrv∪Γbase. For visualization purpose, only directions
on the left ventricular endocardium Γ`v are represented. In blue: unit transmural
direction, êt; In green: unit normal direction, ên; In red: unit longitudinal direction,
êl. Right: zoom on a slab of the left ventricular myocardium Ωbiv showing the three
final myofibers orientations f , s, n.

5. Local coordinate system: Build for each point of the ventricular domain an
orthonormal local coordinate axial system composed by êt, ên and the unit
longitudinal direction êl (orthogonal to the previous ones), see Figure 2.4;

6. Rotate axis: Finally, properly rotate the reference frame with the purpose of
defining the myofiber orientations: f the fiber direction, n the cross-fiber direc-
tion and s the sheet direction, see Figure 2.4(Right). Rotations are chosen in
order to match histology and DTI observations.

To characterize the ventricular distances computed by the three LDRBMs, it is
useful to introduce the following generalized Laplace-Dirichlet problem

−∆χ = 0 in Ωbiv,

χ = χa on Γa,

χ = χb on Γb,

∇χ · n = 0 on Γn,

(2.2)

for a generic unknown χ and suitable boundary data χa, χb ∈ R set on generic parti-
tions of the ventricular boundary Γa, Γb, Γn, with Γa∪Γb∪Γn = ∂Ωbiv. The variable χ
will assume different meanings depending on the step and LDRBM considered. More-
over, the values χa, χb are fixed in order to evaluate specific ventricular distances
between boundary partitions Γa, Γb.

We detail in what follows the six points aforementioned. We refer to Figures 2.5, 2.6
and 2.7, showing a schematic representations of the unified mathematical description
for R-RBM, B-RBM, and D-RBM, respectively, on a biventricular domain Ωbiv.
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2.1. Ventricular Laplace-Dirichlet Rule-Based Methods

Figure 2.5: Schematic procedure of R-RBM for a biventricular geometry with an
artificial basal plane.

1. Labelled mesh: prescribing the ventricular boundary ∂Ωbiv. R-RBM, B-RBM,
and D-RBM define the following boundaries:

Γvepi : the ventricular epicardium, Γbase : the ventricular base,

Γ`v : the left ventricular endocardium, Γrv : the right ventricular endocardium.

Moreover, R-RBM subdivides the right ventricular endocardium Γrv into the right
septum Γrs and the remaining part Γrv−s such that Γrv = Γrs ∪ Γrv−s, see step 1 in
Figure 2.5. This subdivision is usually performed manually by the user, thus intro-
ducing some arbitrariness during the septum selection. For B-RBM and D-RBM the
left ventricular apex Γa`v is also introduced, whereas the right ventricular apex Γarv
for D-RBM solely (see step 1 in Figures 2.6 and 2.7). Furthermore, D-RBM requires
boundary labels for the four valve rings: Γmv (MV), Γav (AV), Γtv (TV) and Γpv
(PV), see step 1 in Figure 2.7. It is also useful to define Γrings = Γlring ∪Γrring, with
Γlring = Γmv ∪ Γav and Γrring = Γtv ∪ Γpv. Notice that in B-RBM we considered the
union of the four valve rings as the ventricular base Γbase = Γrings. This allows the
use of B-RBM also in the case of a full biventricular geometry, see step 1 in Figure 2.6.
In summary, the three methods define the boundary ∂Ωbiv as follows:

R-RBM : ∂Ωbiv = Γvepi ∪ Γ`v ∪ Γrs ∪ Γrv−s ∪ Γbase,

B-RBM : ∂Ωbiv = Γvepi ∪ Γ`v ∪ Γrv ∪ Γrings ∪ Γa`v,

D-RBM : ∂Ωbiv = Γvepi ∪ Γ`v ∪ Γrv ∪ Γmv ∪ Γav ∪ Γtv ∪ Γpv ∪ Γa`v ∪ Γarv.

2. Transmural distance: definition of transmural distances (generally indicated
with the letter φ) obtained by solving Laplace-Dirichlet problems of the form (2.2).
In particular, for R-RBM, the transmural distance φ is found by solving (2.2) with
χa = 1 on Γ`v ∪ Γrv−s, χb = 0 on Γvepi ∪ Γrs, and Γn = Γbase. For D-RBM, φ
is found by solving (2.2) with χa = 2 on Γ`v, χa = −1 on Γrv, χb = 0 on Γvepi,
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Chapter 2. Modeling the cardiac muscular architecture

Figure 2.6: Schematic procedure of B-RBM for a full biventricular geometry.

LDRBM type Transmural distances χa Γa χb Γb Γn

R-RBM φ 1 Γ`v ∪ Γrv−s 0 Γvepi ∪ Γrs Γbase

B-RBM
φ` 1 Γ`v 0 Γvepi ∪ Γrv Γrings
φr 1 Γrv 0 Γvepi ∪ Γ`v Γrings
φepi 1 Γvepi 0 Γ`v ∪ Γrv Γrings

D-RBM φ
2 Γ`v 0 Γvepi Γrings-1 Γrv

Table 2.1: Transmural distance boundary conditions for R-RBM, B-RBM and D-RBM
used in step 2.

and Γn = Γrings. B-RBM requires to solve three Laplace problems (2.2) in order to
compute three different transmural distances φ`, φr and φepi. We refer the reader
to Table 2.1 for the specific choices in problem (2.2) made by the three methods.
Notice that in D-RBM the boundary conditions χa are assigned in order to identify
the two ventricles (positive and negative values for LV and RV, respectively) and to
associate roughly two-thirds of the septum to LV and one-third to RV [58] (see step 2
in Figures 2.5, 2.6 and 2.7).

3. Transmural direction: after solving the Laplace problems for finding the trans-
mural distances φ, φl, φr, φepi, their gradients define the transmural directions γ (see
step 3 in Figures 2.5, 2.6 and 2.7). In particular, we have:

R-RBM : γ = ∇φ,
B-RBM : γ = ∇φi, i = `, r, epi,

D-RBM : γ = ∇φ.
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2.1. Ventricular Laplace-Dirichlet Rule-Based Methods

Figure 2.7: Schematic procedure of D-RBM for a full biventricular geometry.

4. Normal direction: definition of the normal direction k. In R-RBM, this is
done using the vector nbase, i.e. the outward normal to the ventricular base, that is
k = nbase (see step 4 in Figure 2.5). For the other two LDRBMs, further variables
(identified by the letter ψ) are introduced: they are found by solving the Laplace
problem in the form (2.2) with suitable boundary conditions. Specifically, for B-RBM
the vector k is the gradient of the solution ψ (k = ∇ψ) obtained with χa = 1 on
Γrings, χb = 0 on Γa`v, and Γn = Γvepi ∪ Γ`v ∪ Γrv, see step 4 in Figure 2.6. In
D-RBM, instead, two normal directions are introduced, one for each ventricle:

k = ψw,i∇ψab,i + (1− ψw,i)∇ψot,i, i = `, r, (2.3)

where i = `, r refer to LV and RV, respectively, so that the normal direction is a
weighted sum of apico-basal (∇ψab,i) and apico-outflow-tract (∇ψot,i) directions, ob-
tained using an inter-ventricular interpolation function ψw,i [58]; the latter are given
again by solutions of problems like (2.2) (see step 4a and 4b in Figure 2.7). In par-
ticular, ψab,`, ψab,r, ψot,`, ψot,r, ψw,`, ψw,r are found by solving (2.2) with χa = 1
on Γa and χb = 0 on Γb, where Γa and Γb are boundary subsets listed in Table 2.2.
Summing up, the different methods compute the normal direction k as follows (see
step 4 in Figures 2.5, 2.6 and 2.7):

R-RBM : k = nbase,

B-RBM : k = ∇ψ,
D-RBM : k = ψw,i∇ψab,i + (1− ψw,i)∇ψot,i, i = `, r.

5. Local coordinate system: building an orthonormal local coordinate system
(defined by letter Q) at each point of the domain Ωbiv. All the three methods make
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Scalar potentials Γa Γb Γn

ψab,` Γmv Γa`v Γvepi ∪ Γ`v ∪ Γrv ∪ Γav ∪ Γrring
ψab,r Γtv Γarv Γvepi ∪ Γ`v ∪ Γrv ∪ Γpv ∪ Γlring
ψot,` Γav Γa`v Γvepi ∪ Γ`v ∪ Γrv ∪ Γmv ∪ Γrring
ψot,r Γpv Γarv Γvepi ∪ Γ`v ∪ Γrv ∪ Γtv ∪ Γlring
ψw,` Γmv ∪ Γa`v Γav Γvepi ∪ Γ`v ∪ Γrv ∪ Γrring
ψw,r Γtv ∪ Γarv Γpv Γvepi ∪ Γ`v ∪ Γrv ∪ Γlring

Table 2.2: Scalar potentials used in D-RBM to build the normal direction.

use of the following function axis:

P = [êl, ên, êt] = axis(k,γ) =


êt = γ

‖γ‖ ,

ên = k−(k·êt)êt
‖k−(k·êt)êt‖ ,

êl = ên × êt,
(2.4)

which takes as input a normal direction k and a transmural direction γ and returns
the orthonormal system P whose columns are the three orthonormal directions êl, ên,
êt which represent the longitudinal, the normal and the transmural unit directions,
respectively. For R-RBM we have Q = axis(k,∇φ). For B-RBM three orthonormal
coordinate systems are introduced, that is P` = axis(k,∇φ`), Pr = axis(k,∇φr)
and Pepi = axis(k,∇φepi), which are then interpolated through the function bislerp

to obtain a continuous orthonormal coordinate system within the whole myocardium.
Hence, B-RBM performs the following steps to obtain the final orthonormal coordinate
system Q (see step 5 in Figure 2.6):

P`r = bislerp(P`, Pr, η),

Q = bislerp(P`r, Pepi, η).

D-RBM, instead, defines two different coordinate systems for LV and RV as a conse-
quence of the normal directions defined in (2.3) (see step 5 in Figure 2.7):

Qi = axis(ψw,i∇ψab,i + (1− ψw,i)∇ψot,i,∇φ), i = `, r.

6. Rotate axis: the orthonormal coordinate system, defined for each point of the
myocardium at the previous step, should be aligned in order to match histological
knowledge about fiber and sheet orientations. To this aim, the three LDRBMs intro-
duce a rotation of êl, ên, êt by means of suitable angles: the longitudinal direction êl
rotates counter-clockwise around êt by an angle αi, whereas the transmural direction
êt is rotated counter-clockwise around êl by an angle βi, where i = `, r depend on LV
or RV the point belongs to. Indeed, it is known that in LV and RV the fiber orienta-
tions feature a change in direction at the inter-ventricular septum [115]. In order to
obtain a local orthonormal coordinate system, direction ên is rotated accordingly.

These rotations produce a map [êl, ên, êt]
αi,βi−−−→ [f ,n, s] from the original coordi-

nate system [êl, ên, êt] to a new coordinate system [f ,n, s], by means of the function
orient:

[f ,n, s] = orient(Q,αi, βi) = [êl, ên, êt]Rêt(αi)Rêl(βi), i = `, r,
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2.1. Ventricular Laplace-Dirichlet Rule-Based Methods

where f is the fiber direction, n is the sheet-normal direction and s is the sheet
direction.

For all the three methods the rotation angles αi = αi(di) and βi = βi(di) are
functions of the position within the myocardium, in particular of the transmural nor-
malized distance di ∈ [0, 1], i = `, r, defined as:

R-RBM : d` = dr = φ,

B-RBM : d` = φ` dr = φr,

D-RBM : d` = φ/2 dr = |φ|.

Accordingly, the rotation angles are written by means of the following linear relation-
ships:

αi(di) = αepi,i(1−di)+αendo,idi, βi(di) = βepi,i(1−di)+βendo,idi, i = `, r, (2.5)

where αendo,`, αepi,`, αendo,r, αepi,r, βendo,`, βepi,`, βendo,r and βepi,r are suitable rota-
tion angles on the epicardium and endocardium chosen in order to match histological
observations. For instance, classical values for the helical angles found in the literature
are αepi,` = +60o, αendo,` = −60o, αepi,r = −25o, αendo,r = +90o [134, 86, 9, 99, 210].

In order to differentiate between LV and RV and to apply the correct angles, we
propose here to use the solution of an additional Laplace problem (2.2) in the unknown
χ = ξ with χa = 1 on Γ`v, χb = −1 on Γrv, and Γn = Γbase ∪ Γvepi

2. In particular,
positive values of ξ identify LV, whereas negative ones RV [24]. This new feature
enables to perform different rotations for LV and RV (see steps 6 in Figures 2.5, 2.6
and 2.7) that is crucial in order to generate realistic fiber fields. An alternative method
has been proposed in [58] but only for D-RBM. It is worth mentioning that the original
R-RBM [204, 188] introduces a rotation, by means of the Rodrigues’ formula, to obtain
the fiber field f only. Here we propose an extension in order to define also n and s.

Further, B-RBM exploits two other functions representing the rotation angles
within the septum:

αs(di) = αendo,i(1− 2di), βs(di) = βendo,i(1− 2di), i = `, r,

whereas with similar expressions, D-RBM introduces also the possibility to set specific
fiber and sheet angles rotation in the OT regions (see [26] and [58] for further details).

We conclude pointing out that B-RBM and D-RBM can be applied to the full biven-
tricular geometry and to the based biventricular one (that is obtained with an artificial
basal plane well below the cardiac valves). Indeed, in the based biventricular geometry
the whole procedure for B-RBM and D-RBM remains the same as long as the ring
labels are replaced by the base label, Γrings = Γbase. On the contrary, R-RBM is less
suitable for a full biventricular geometry because it is not able to strictly identify the
normal direction k as the outward normal to the ventricular rings. Besides, the right
septum Γrs can be very arbitrary to define for a full biventricular geometry.

2Let us observe that, for B-RBM Γbase = Γrings in the case of a full biventricular geometry.
Moreover, for D-RBM solely χa = 2 in order to be compliant with the transmural distance.
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Type χ χa Γa χb Γb Γn

BIA
ξ 1 Γ`a -1 Γra ∂Ωbia/(Γ`a ∪ Γra)

φ
1 Γ`a 0 Γaepi ∪ Γtop,` ∪ Γtop,r ∂Ωbia/(Γ`a ∪ Γra ∪ Γaepi ∪ Γtop,` ∪ Γtop,r)-1 Γra

LA

ψab
2 Γrpv 1 Γmv ∂Ωbia/(Γrpv ∪ Γlpv ∪ Γmv ∪ Γlap)0 Γlpv -1 Γlap

ψr 1 Γmv 0 Γlpv ∪ Γrpv ∂Ωbia/(Γmv ∪ Γlpv ∪ Γrpv)
ψv 1 Γrpv 0 Γlpv ∂Ωbia/(Γrpv ∪ Γlpv)
ψsw 1 Γmv 0 Γlpv ∪ Γtop,` ∪ Γlap Ωbia/(Γmv ∪ Γlpv ∪ Γtop,`)

ψw
1 Γmv−s 0 Γtop,` ∂Ωbia/(Γmv−s ∪ Γmv−f ∪ Γtop,`)-1 Γmv−f

RA

ψab
2 Γicv

1 Γtv
∂Ωbia/(Γicv ∪ Γscv ∪ Γtv ∪ Γrap ∪ Γcs)-1 Γrap

0 Γscv -2 Γcs
ψr 1 Γtv 0 Γtop,r ∂Ωbia/(Γtv ∪ Γtop,r)

ψv
1 Γicv -1 Γrap ∂Ωbia/(Γicv ∪ Γscv ∪ Γrap)0 Γscv

ψw
1 Γtv−s 0 Γtop,r ∂Ωbia/(Γtv−s ∪ Γtv−f ∪ Γtop,r)-1 Γtv−f

Table 2.3: Boundary data chosen in the Laplace problem (2.2) for the inter-atrial
distances (BIA) ξ, φ and the intra-atrial distances ψi (i = ab, r, v, sw,w) in LA and RA.

2.2 Atrial Laplace-Dirichlet Rule-Based Method

In this section, we present a novel LDRBM for the generation of atrial myofibers, which
is able to qualitatively reproduce all the important features, such as the fiber bundles,
needed to provide a realistic atrial musculature architecture. Our newly developed
method has been proposed in [176], and in this thesis we present its extension to the
biatrial geometries.

The atrial LDRBM is inspired by [203] where Laplace problems are introduced
to map variables between two geometries and by LDRBMs, purposely built for the
ventricles, presented in Section 2.1 [26, 204, 58]. The extension of the latter is not
straightforward due to the nature of the atrial bundles which run in different directions.
For this reason, the atrial LDRBM combines the gradient of several harmonic functions
to represent the fiber bundles.

In what follows we detail the four steps of the atrial LDRBM. We refer to Figure 2.8
for a schematic representation of the method in a realistic biatrial geometry.

1. Labelled mesh: label the mesh of the biatrial computational domain Ωbia to
define the boundary partitions ∂Ωbia (see step 1 in Figure 2.8):

∂Ωbia =Γaepi ∪ Γtop,` ∪ Γtop,r ∪ Γ`a ∪ Γra ∪ Γ`ap ∪ Γrap∪
Γlpv ∪ Γrpv ∪ Γicv ∪ Γscv ∪ Γmv ∪ Γtv ∪ Γcs

where Γaepi is the atrial epicardium, Γ`a, Γra the left and right atrial endocardium,
Γ`ap, Γrap the left and right atrial appendage, Γlpv, Γrpv LPV and RPV rings, Γicv,
Γscv ICV and SCV rings, Γmv, Γtv MV and TV rings and Γcs the coronary sinus
appendage. In particular, Γmv and Γtv are further subdivided in a part facing the
atrial septum Γmv−s, Γtv−s and the other related to the free wall Γmv−f , Γtv−f ,
such that Γmv = Γmv−s ∪ Γmv−f and Γtv = Γtv−s ∪ Γtv−f (see step 1 in Figure 2.8).
Furthermore, Γtop,` and Γtop,r are the boundary labels connecting the top upper region
of the anterior LPV to anterior RPV rings and ICV to SCV rings, respectively (see
step 1 in Figure 2.8).
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Figure 2.8: Schematic procedure of the atrial LDRBM in a realistic biatrial geometry.
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Figure 2.9: Definition of the bundles and their dimension throughout the biatrial
domain following the rules reported in Algorithms 1, 2, 3 and 4; (a) Complete bun-
dles selection in LA and RA; (b,e): bundles selection in RA following Algorithm 2;
(c,f): bundles selection in LA following Algorithm 4. (d) Selection of the inter-atrial
connection (IC), crista terminalis (CT), pectinate muscles (PM) bundles following Al-
gorithms 1 and 3, respectively. τi (for the i-th bundle) is the parameter related to the
bundle dimension.

2. Laplace problems: definition of biatrial distances, obtained by solving Laplace
problems in the form of (2.2) with proper Dirichlet boundary conditions on the atrial
boundaries, see step 2 in Figure 2.8. Specifically, the transmural φ and the inter-
atrial ξ distances are introduced, see step 2a in Figure 2.8. Moreover, several intra-
atrial distances ψi are computed, see step 2b in Figure 2.8. Refer to Table 2.3 for
the specific choices in problem (2.2) made by the atrial LDRBM. In particular, ψab
is the solution of a Laplace problem (2.2) with different boundary data prescribed on
the right atrial appendage Γrap, the rings of the caval veins (Γicv,Γscv), TV ring Γtv
and the coronary sinus appendage Γcs for RA, and the left atrial appendage Γ`ap, the
pulmonary vein rings (Γlpv,Γrpv) and MV ring Γmv for LA; ψr stands for the distance
between TV ring Γtv and Γtop,r (RA) and between MV ring Γmv and the union of the
pulmonary veins rings Γlpv ∪ Γrpv (LA); ψv represents the distance between the caval
veins for the RA and among the pulmonary veins for LA; ψw is the distance between
the MV/TV ring of the free (Γmv−f/Γtv−f ) and the septum (Γmv−s/Γtv−s) walls
for LA/RA . Finally, ψsw is computed for LA solely prescribing suitable boundary
conditions for LPV rings Γlpv, MV ring Γmv and the the boundary labels connecting
LPV to RPV rings Γtop,`, see step 2b in Figure 2.8.
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Algorithm 1 . computeBIA: bundles selection for biatrial geometry

Let τBBicr, τBBicl, τBBic, τFOicr, τFOicl, τFOic, τCSicr, τCSicl and τCSic the parameters
referring to IC bundles.

if (ξ ∈ [τBBicr, τBBicl] and ψRA
v ≤ τBBic)

set k = ∇φ, γ = ∇ξ −→ BBIC

flip(êl,êt)
else if (ξ ∈ [τFOicr, τFOicl] and ψLA

ab ≥ τFOic and ψRA
v > τBBic)

set k = ∇φ, γ = ∇ξ −→ FOIC

else if (ξ ∈ [τCSicr, τCSicl] and ψRA
v > τBBic and ψRA

ab ≤ τCSic )
set k = ∇φ, γ = ∇ξ −→ CSIC

flip(êl,êt)
else

set γ = ∇φ
if ξ ≥ 0 computeLA

else computeRA

Note: we use ψRA
i and ψLA

i to distinguish LA and RA distances. Moreover, the
function flip(êl,êt) flips the longitudinal êl and the transmural êt directions.

3. Bundles selection: definition of the atrial bundles and their dimensions through-
out the domain Ωbia, in order to match histology and DTI observations. With this
aim, the atrial LDRBM first selects LA, RA and the inter-atrial connection (IC) re-
gions, following the rules reported in Algorithm 1 (computeBIA) and then compute
LA and RA bundles, exploiting the rules reported in of Algorithms 2 (computeRA),
3 (computePM) and 4 (computeLA). During this bundles selection procedure, a
unique intra-atrial distance ψi, among those defined in step 2, is assigned for each
point in Ωbia (see step 3 in Figure 2.8 and also Figure 2.9). Moreover, at this step,
the atrial LDRBM defines a unique transmural γ and normal k directions, by tak-
ing the gradient of a specified inter-atrial distance, γ = ∇φ,∇ξ, and of a specific
intra-atrial distance, k = ∇ψi, respectively. Following Algorithms 1-4, the principal
anatomical atrial regions are introduced: for RA, superior (SCV) and inferior caval
veins (ICV), tricuspid valve ring (TV), right appendage (RAA), right septum (RAS),
inter-caval bundle (IB), crista terminalis (CT), coronary sinus musculature (CSM)
and right atrial later wall (RAW), see Figure 2.9(b,e); for LA, left (LPV) and right
pulmonary veins (RPV), mitral valve ring (MV), left appendage (LAA), left septum
(LAS), bachmann’s bundle (BB), left atrial lateral wall (LAW) and roof (LAR), see
Figure 2.9(c,f); for IC, the bachmann’s bundle (BBIC), the fossa ovalis (FOIC) and the
coronary sinus (CSIC) connections, see Figure 2.9(c). Moreover, in order to specify
the bundles dimension, the parameters τi are introduced: for RA τtv, τicv, τscv, τraa,
τcsm, τsw,r, τct+ , τct− , τib, τras refer to TV, ICV, SCV, RAA, CSM, RAW, upper and
lower limit of CT, IB and RAS bundles, respectively; for LA τmv, τrpv, τlpv, τsw,`,
τlaa,in, τlaa,up, τbb, τlaw, refer to MV, RPV, LPV, LAS, LAA, BB, LAW bundles, re-
spectively (see Figure 2.9); for IC, τBBicr, τBBicl, τBBic, τFOicr, τFOicl, τFOic, τCSicr,
τCSicl, τCSic refer to BBIC, FOIC and CSIC connections. As an optional feature, the
atrial LDRBM allows to embed the pectinate muscles bundles (PM) in RAW and
RAA, exploiting the procedure outlined in Algorithm 3, which requires to specify the
parameters pmthick, pmrange, pmend and the numbers Nraa, Nraw of PM in RAA and
RAW, respectively. The complete bundles selection procedures for the atrial LDRBM
are fully detailed in Algorithms 1-4 (see also step 3 in Figure 2.8 and Figure 2.9).
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Algorithm 2 . computeRA: bundles selection for RA

Let toll � 1 and τtv, τicv, τscv, τraa, τcsm, τsw,r, τct− , τct+ , τib, τras, Nraw and Nraa
be the parameters referring to the related bundles.

if ψr ≥ τtv set k = ∇ψr −→ TV
else

if ψv ≥ τicv set k = ∇ψv −→ ICV
else if ψv ≤ τscv

if ψr ≥ τraa
if PM=true computePM(0, Nraa) −→ PM
else set k = ∇ψab −→ RAA

else set k = ∇ψv −→ SCV

else
if (ψab ≤ τcsm and ψv ≥ 0.5 and ψsw ≥ τsw,r) set k = ∇ψab −→ CSM
else

if ψr ≤ τraw
if (ψw ≥ τct− and ψw ≤ τct+)

if |φ| ≥ (1− toll) set k = ∇ψw −→ CT
else set k = ∇ψab −→ RAW

else if ψw ≥ τct+
if (ψw ≤ 0 and ψr ≤ τib) set k = ∇ψv −→ IB
else if (ψw ≤ 0 and ψr > τib) set k = ∇ψab −→ RAW
else

if ψr ≥ τras set k = ∇ψr −→ RAS
else set k = ∇ψv −→ IB

else
if PM=true computePM(τscv, Nraw) −→ PM
else set k = ∇ψab −→ RAW

else
if ψw ≥ τsw,r set k = ∇ψr −→ RAS
else

if PM=true computePM(τscv, Nraw) −→ PM
else set k = ∇ψab −→ RAW

Algorithm 3 . computePM(ζ,N): PM bundle selection in RA

Let ζ and N the generic input parameters, toll� 1 and pmthick, pmrange and pmend

the parameters referring to PM bundles.

for n=1:N
PMi = ζ + (n− 1) pmthick + (n− 1) pmrange;
PMf = ζ + npmthick + (n− 1) pmrange;
PMs = ζ + npmthick + n pmrange;

if |φ| ≥ (1− toll) and ψv ≤ pmend and ψv ≥ PMi and ψv ≤ PMf

set k = ∇ψv −→ PM

if (|φ| ≥ (1− toll) and ψv > PMf and ψv < PMs) or ψv > pmend or ψv < ζ
set k = ∇ψab −→ RAW

if |φ| ≤ (1− toll) set k = ∇ψab −→ RAW
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Algorithm 4 . computeLA:bundles selection for LA

Let τmv, τrpv, τlpv, τsw,`, τlaa,in, τlaa,up, τbb, τlaw be the parameters referring to the
related bundles.

if ψsw ≥ τmv set k = ∇ψsw −→ MV
else

if ψv ≤ τrpv set k = ∇ψv −→ RPV
else if ψv ≥ τlpv set k = ∇ψv −→ LPV
else

if ψw ≥ τsw,`
if ( ψab ≤ τlaa,in and ψr ≥ τlaa,up) set k = ∇ψab −→ LAA
else

if ψr ≥ τbb set k = ∇ψr −→ BB
else set k = ∇ψab −→ LAS

else
if ψsw ≥ τlaw set k = ∇ψv −→ LAW
else set k = ∇ψab −→ LAR

4. Local coordinate system: definition of the myofiber orientations by rotating
an orthonormal local coordinate system, [êl, ên, êt] built at each point of the atrial
domain. This step is performed in the same way as for the ventricles, by applying first
the function axis, which takes as inputs the transmural direction γ together with the
unique normal direction k, and then exploiting the function orient

Q = [êl, ên, êt] = axis(k,γ), [f ,n, s] = orient(Q,α, β). (2.6)

A transmural fibers variation can be prescribed in each atrial bundle, in two combined
ways:

1. by defining the unique normal direction k, within the function axis, as a linear
combination of the gradients of two intra-atrial distances

k = (1− |φ|)∇ψj + |φ|∇ψk j, k = ab, r, v, sw,w

2. by setting a linear relationships for the angles α = αi(|φ|) and β = βi(|φ|) in the
function orient

αi = αepii(1− |φ|) + αendoi |φ|, βi = βepii(1− |φ|) + βendoi |φ|,

where αepii , αendoi , βepii and βendoi are fixed rotation angles on the epicardium
and endocardium of the i-th bundle, respectively.

The three unit directions correspond to the final fiber, sheet and sheet-normal direc-
tions f , n and s (see step 4 in Figure 2.8).

2.2.1 Atrial LDRBM rules

The atrial LDRBM presented in Section 2.2, based on the procedure of Algorithms
1-4 and the definition of the local coordinate system (2.6), prescribes a fiber field f
based on the following rules derived from histo-anatomical observations and DT-MRI
fiber data [167, 212, 97, 100, 98, 51, 203], see Figures 2.9:
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Figure 2.10: Schematic procedure of the atrial LDRBM in a realistic RA (a) and LA
(b) geometries.
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R1: Circular fiber arrangements are prescribed around LPV, RPV, SCV, ICV, CSM,
TV, MV, and encircle both appendages (RAA and LAA) [167, 212, 203];

R2: Fibers direction of CT runs longitudinally from the base of SCV to ICV [210];

R3: PM fibers run on the endocardial surface, almost parallel to each other and
perpendicular to CT fibers [67];

R4: RA structures like IB and RAW are vertically oriented, whereas those of RAS
are parallel to CT [97, 100];

R5: BB fibers run longitudinally in the same direction of those of MV [51];

R6: LAS fibers are almost aligned (parallel) to the nearby RAS [67];

R7: Directions of LAR and LAW descend perpendicularly to MV, while fibers of
LAS present a smooth transition going to LAS and LAA [67, 98, 203].

2.2.2 LDRBM for single atrial chamber

The atrial LDRBM, presented in Section 2.2 for the biatrial case, can also be applied
to generate fibers architecture to single RA or LA chamber. The LA and RA version
of the our novel atrial LDRBM has been proposed in [176].

In the single chamber atrial LDRBM, the inter-atrial solution ξ is no longer com-
puted and the transmural distance φ is found by solving (2.2) with χa = 1 on the
atrial endocardium Γaendo = Γra,Γ`a and χb = 0 on the atrial epicardium Γaepi and
Γn = ∂Ωbia/(Γaendo∪Γaepi). The intra-atrial solutions ψi for RA or LA are computed
as detailed in step 2 of the biatrial LDRBM, see Figure 2.10. Finally, the bundles selec-
tion procedure is performed starting directly from Algorithms 2 (computeRA) and 3
(computePM) for RA, while from Algorithm 4 (computeLA) for LA. A schematic
representation of the atrial LDRBM applied to single RA and LA chamber is sketched
in Figure 2.10.

2.3 Modeling cardiac electrophysiology

In this section we briefly introduce the mathematical model for the description of the
EP activity in the cardiac tissue, that is the monodomain equation endowed with
suitable ionic models for human action potential [188, 57, 72, 255, 181, 245, 151].
For further details, we refer the reader to Section 3.1, where we fully present the
mathematical models associated to the core physics.

Cardiac tissue is an orthotropic material, arising from the cellular organization of
the myocardium in fibers, laminar sheets and sheet-normals, which is mathematically
modelled by the conductivity tensor

D = σff ⊗ f + σss⊗ s+ σnn⊗ n, (2.7)

where σf , σs and σn are the conductivities along fiber (f), sheet (s), and sheet-
normal (n) directions, respectively. Given a computational domain Ω (with either
Ω = Ωbiv,Ωbia) and a time interval (0, T ], the monodomain equations read:
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Find, for each t, the transmembrane action potential u : Ω× (0, T ]→ R and the ionic
vector variable w : Ω× (0, T ]→ Rnw , such that

χm

[
Cm

∂u

∂t
+ Iion(u,w)

]
−∇ · (D∇u) = Iapp, in Ω× (0, T ],

∂w

∂t
−H(u,w) = 0 in Ω× (0, T ],

D∇u · n = 0 on ∂Ω× (0, T ],

u = u0, w = w0, in Ω× {0}.

(2.8a)

(2.8b)

(2.8c)

(2.8d)

where χm is the surface area-to-volume ratio of cardiomyocytes, Cm is the specific
trans-membrane capacitance per unit area, Iapp is an external applied current which
serves to initiate the signal propagation, Iion and H ∈ Rnw are the reaction terms,
linking the macroscopic action potential propagation to the cellular dynamics. The
unknown w, encoding the gating-variables (representing the fraction of open channels
per unit area across the cell membrane) and the concentration of specific ionic species,
is a nw–th dimensional vector function fulfilling a system of differential algebraic
equations. Specifically, we used the Courtemanche-Ramirez-Nattel (CRN98, nw = 20)
in case of atrial action potential and the ten-Tusscher-Panfilov (TTP06, nw = 18) for
the ventricular one (for further details see [47] for CRN98 and [247] for TTP06).
Furthermore, system (2.8) is equipped with suitable initial conditions (2.8d) for u and
w and homogeneous Neumann boundary conditions (2.8c) for u on the boundary ∂Ω.

Regarding the numerical discretization of the monodomain system (2.8), we refer to
Section 3.2, where we detail the numerical methods of the different core models. Here,
we just mention that for the time discretization of system (2.8) we consider Finite
Difference (FD) with Backward Difference Formulae approximation (BDF) employing
an explicit treatment of the reaction term [189]. Moreover, the diffusion term is
treated implicitly, whereas the ionic terms explicitly [72, 181, 254]. Regarding the
space discretization, we use Finite Element Method (FEM) with continuous FE on
hexahedral meshes. Moreover, the discretization of the ionic current term Iion is
performed following the Ionic Current Interpolation (ICI) approach [244, 188, 105,
109, 13, 116].

2.4 Setting of numerical simulations

In this section we describe the setting related to the numerical simulations, that will
be presented in Sections 2.5 and 2.6. In Section 2.4.1, we first detail the procedure
to build labelled FE meshes, used for prescribing the atrial and ventricular fibers by
means of LDRBMs. In Section 2.4.2, we address the issue of estimating the parameters
employed in EP simulations.

2.4.1 Labelling procedure for LDRBMs

In order to build FE meshes, a preprocessing procedure was applied to every ventric-
ular and atrial geometries used for the generation of ventricular and atrial fibers by
means of LDRBM, presented in Sections 2.1 and 2.2. For this preprocessing phase
we rely on the novel semi-automatic meshing tool proposed in [66] which consists
of multiple steps including labelling, geometry smoothing and hexahedral FE mesh
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2.4. Setting of numerical simulations

Figure 2.11: Preprocessing procedure applied to build a ventricles Finite Elements
(FE) mesh [66]. Left: smoothing and labelling procedure; Right: FE mesh of hexahe-
dral elements.

generation, see Figure 2.11. Specifically, the Vascular Modelling Toolkit vmtk soft-
ware [11] (http://www.vmtk.org) together with a new meshing tool were used to
perform such pre-processing phase.

The labelling procedures carried out in this work, for the ventricular and atrial
LDRBMs, are detailed in what follows. We remark however that our labelling proce-
dure is not crucial for the applicability of the ventricular and atrial LDRBMs. Indeed,
they are perfectly compatible with other labelling processes presented in other works
(see for example [58, 235]).

For the atria, the first labelling step consists in extracting the endocardium and
the epicardium from the unlabelled surface model. Then, labels of the pulmonary
and caval veins and the atrioventricular valves rings are selected by connecting the
points laying on the border zone of the endocardium to the corresponding epicardial
points, see Figure 2.12(b) (for further details about the connection procedure we refer
to [66]). Furthermore, the label Γtop,i in RA (i = r) and LA (i = `) is carried out
by manually producing a straightforward band connecting the top upper elements of
SCV and ICV, for RA, and anterior LPV to anterior RPV, for LA, see Figure 2.12(a).
Finally, TV and MV rings Γtv, Γmv in RA and LA, respectively, are subdivided in
one part facing the atrial septum Γtv−s, Γms−s and another one related to the free
wall Γtv−s, Γmv−f , such that Γtv = Γtv−s ∪ Γtv−f and Γmv = Γmv−s ∪ Γmv−f : this
subdivision is produced by clipping the TV/MV ring with a plane passing through
Γtop,i band, see Figure 2.12(a).

For the ventricles, the first labelling step consists in extracting the epicardium
and the right and left endocardia from the unlabelled surface model. Moreover, for
R-RBM, the right endocardium Γrv is subdivided into the right septum Γrs and the
remaining part Γrv−s such that Γrv = Γrs∪Γrv−s: this labelling subdivision is achieved
by selecting a threshold in the distance between right and left endocardia, see step 1 in
Figure 2.5. Furthermore, concerning a based biventricular geometry, the final labelling
step consists in producing an upper basal plane between the ventricular endocardium
and epicardium, see step 1 in Figure 2.5. Regarding a complete biventricular model,
labels of the four valve rings (Γmv MV, Γav AV, Γtv TV and Γpv PV) are defined by
selecting a threshold in the distance from the corresponding atrial rings for Γmv and
Γtv and from the aortic and pulmonary OT roots for Γav and Γpv, respectively (see
Figure 2.12(c)).

41

http://www.vmtk.org


Chapter 2. Modeling the cardiac muscular architecture

Figure 2.12: Labelling procedure performed to impose the boundary conditions for
the ventricular and atrial LDRBMs (presented in Sections 2.1 and 2.2). (a) Labelling
procedure for the top band Γtop,r and the tricuspid valve Γtv (such that Γtv = Γtv−s∪
Γtv−f ) in RA: n̂ is the normal of the plane passing trough Γtop,r while Γscv and Γicv are
the rings of the caval veins; (b) labelling procedure for LPV rings Γlpv in LA: yellow
and blue points lay on the epicardial and endocardial border zone, respectively; (c)
result of the labelling procedure for the four valve rings (Γmv MV, Γav AV, Γtv TV
and Γpv PV) in a complete biventricular geometry. For further details refer to [66].
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Muscle type (ionic model) σf [mS/cm] σs[mS/cm] σn[mS/cm]

Ventricles (TTP06) 1.07 0.49 0.16
Atria (CRN98) 7.00 0.77 0.77

Table 2.4: Conductivity values σf , σs and σn obtained after the fitting procedure,
displayed in Figure 2.13, for the ventricles (using TTP06) and for the atria (using
CRN98).

2.4.2 On the choice of physical parameters and numerical set-
tings

The numerical approximation of the monodomain system (2.8) requires the follow-
ing physical data: the transmembrane capacitance per unit area Cm, the membrane
surface-to-volume ratio χm and the conductivities along the three direction of the my-
ofibers σf , σs and σn appearing in the conductivity tensor D. The values chosen for

the first two quantities are Cm = 1 µF/cm
2

and χm = 1400 cm−1, which are within
the physiological acceptable range of values reported in [183, 187, 205, 150].

The conductivity values σf , σs and σn were fitted by an iterative procedure de-
scribed in [45] (see also [64, 20]) in order to match the following conduction velocity
values [20, 64, 17, 55]:

ventricles : vf = 60 cm/s vs = 40 cm/s vn = 20 cm/s,

atria : vf = 120 cm/s vs = 40 cm/s vn = 40 cm/s,

where vf , vs and vn are the conduction velocities in the fiber f , sheet s and normal
n directions. In Figures 2.13(a) and 2.13(b) we show the results of this fitting proce-
dure. The estimated values for σf , σs and σn are reported in Table 2.4. Finally, to
initiate the signal propagation in the cardiac muscle, the monodomain system (2.8)
requires to specify the external applied current Iapp(x, t). In this work Iapp(x, t) was
modeled as a series of spherical impulses (with radius 2.5 mm and duration 3 ms)
applied in spherical subsets of the domain and prescribed alongside the ventricular
and atrial endocardia. Its amplitude is 50000 µA/cm3, for both atrial and ventricular
domains, in agreement with [150]. We used this value for all the simulations, while
the stimuli locations will be specified for each case reported in Sections 2.5 and 2.6.
Regarding the mesh element size h and the time step ∆t, related to the space and time
discretizations of the system (2.8), accuracy constraints are imposed when biophysical
models (as CRN98 [47] and TTP06 [247]) are used: h = 100–500 µm and ∆t = 1–
50 µs [181, 254, 150]. These strong restrictions are motivated mainly by the fast
upstroke of cellular depolarization which produces a step-like wavefront over a small
spatial extent [135]. For the space discretization, we used continuous bilinear FE (Q1)
on hexahedral meshes with an average mesh size of h = 350 µm, an acceptable value
at least for linear finite element approximation and for physiological cases [244, 188,
105, 109, 13]. Concerning the time discretization, we used BDF of order σ = 3 with a
time step of ∆t = 50 µs. Although, the most common time discretization used in lit-
erature for the monodomain system (2.8) is BDF1 (commonly known as the backward
Euler method), which requires a time step at most of 10 µs [254], BDF3 allows us to
use a larger value of ∆t to obtain the same accuracy of BDF1. To confirm this, in
Figures 2.13(c) and 2.13(d) we report a comparison between BDF3 with ∆t = 50 µs
and BDF1 ∆t = 10 µs on a benchmark problem proposed in [150].
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Figure 2.13: Top (a,b): Fitting procedure used to estimate the conductivity σ re-
quired to match specific conduction velocity v [45]; (a): using the TTP06 ionic model
to obtain 60, 40 and 20 cm/s; (b): using the CRN98 ionic model to obtain 120 and 40
cm/s. The values for σf , σs and σn are reported in Table 2.4. Bottom (c,d): Com-
parison between BDF3 and BDF1 time discretization for the monodomain equation
(2.8), endowed with the TTP06 ionic model, in the slab benchmark problem [150];
(c): plot of the activation time alongside the slab diagonal (displayed in black on the
Right); Red: BDF1; Blue: BDF3. (d): activation time in a clipped slice of the slab
for BDF3 time discretization.
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2.5 Numerical results for cardiac fibers and electro-
physiology in the ventricles

This section is dedicated to present numerical results related to both the fibers gen-
eration and EP simulations in the ventricles. These have been performed on either
idealized and realistic human biventricular models: we built idealized geometry, adopt-
ing the prolate spheroid coordinate system [224, 192], while, as realistic geometry, we
consider the 3D Zygote model [107], a complete heart geometry reconstructed from
high-resolution CT-scans representing an average healthy heart.

We show various comparisons among the three LDRBMs for ventricular fiber gen-
eration, presented in Section 2.1. Specifically, we compare the fiber fields, generated by
the three methods, and we investigate the influence of the different fibers orientation
in terms of activation times, computed as output of numerical EP simulations. We
first present the above analysis on the idealized biventricular geometry (Sections 2.5.1-
2.5.2) and then on the Zygote biventricular model (Sections 2.5.3-2.5.4).

2.5.1 Idealized ventricular fibers

The first comparison among the three ventricular LDRBMs was performed on a well
established idealized biventricular geometry that has been used in several computa-
tional studies [266, 224, 192, 84, 83, 4] and for ventricular volume estimation from
2D images [142]. The heart ventricles are approximated as two intersecting truncated
ellipsoids.

We constructed the idealized biventricular geometry using the prolate spheroid
coordinate systems in the built-in CAD engine of gmsh, an open source 3D finite
element mesh generator (http://gmsh.info); see Figure 2.14. For details about the
geometrical definition of the idealized biventricular model, we refer to [192, 4].

Fiber orientations obtained for the three LDRBMs (R-RBM, B-RBM and D-RBM)
in the idealized biventricular model are shown in Figures 2.14(a-f). The input angles
values αendo,`, αepi,`, αendo,r, αepi,r, βendo,`, βepi,`, βendo,r and βepi,r were chosen for
all the three methods based on the observations of histological studies in the human
heart [134, 86, 9, 99, 210, 136, 229] (see also [58]):

αepi,` = −60o, αendo,` = +60o, αepi,r = −25o, αendo,r = +90o;

βepi,` = +20o, βendo,` = −20o, βepi,r = +20o, βendo,r = 0o.
(2.9)

We observe that all the LDRBMs represent the characteristic helical structure of
LV and a compatible fiber orientations both in the right endocardium, not facing to the
septum, and in the right epicardium, far enough from the inter-ventricular junctions.
Most of the differences occur in the right ventricular endocardium facing the septum
(see Figures 2.14(a-c)), in the inter-ventricular junctions between the two ventricles
and in the right epicardial lower region (see Figures 2.14(d-f)).

We computed the difference diffi,j of the fiber field f among the three methods,
defined as:

diffi,j(x) = 1− |f i(x) · f j(x)| i, j = R,B,D (i 6= j), (2.10)

where fR, fB and fD are the vector fiber fields of R-RBM, B-RBM and D-RBM, re-
spectively. If f i and f j are parallel, diffi,j = 0, otherwise diffi,j = 1 when orthogonal.
The result of these comparisons is reported in Figures 2.14(g), 2.14(h) and 2.14(i). As
expected, most of the discrepancies are found in the septum, in the inter-ventricular
junctions and in the right epicardial lower region.
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Figure 2.14: Comparison among LDRBMs in the idealized biventricular model.
Streamlines of the vector f is depicted for R-RBM (a,d), B-RBM (b,e) and D-RBM
(c,f). White arrows represent the main fibers direction in specific ventricular regions
(displayed in red for the epicardium and in blue for the endocardium); the dashed
line in Figure (f) highlights the inter-ventricular junctions discontinuity of D-RBM.
Top: Frontal view; Centre: apex view; Bottom: Differences diffi,j among the three
LDRBMs, diffR,B (g), diffR,D (h) and diffD,B (i); only values diffi,j ≥ 0.25 are dis-
played.

2.5.2 Electrophysiology in idealized ventricles

In order to evaluate the influence of the three LDRBMs fiber architectures in the elec-
tric signal propagation through the cardiac muscle, we performed three EP simulations
(with the setting detailed in Section 2.4.2), one for each LDRBM. To initiate the ac-
tion potential propagation we applied four endocardial stimuli: two for each ventricle,
one in the mid-septal zone and one in the lateral endocardial wall. In Figures 2.15(a-
c) we report the activation maps obtained with the three fibers configurations. The
activation time of a given point in the cardiac muscle is computed as the time when
the transmembrane potential derivative du

dt reaches its maximal value. The activation
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Figure 2.15: Top: Activation time for R-RBM (a), B-RBM (b) and D-RBM (c) in
the idealized biventricular model. Bottom: Absolute difference among the activation
maps, ∆AR,B (d), ∆AR,D (e) and ∆AD,B (f).

pattern for all the three methods are very similar in LV and RV, while most of the
differences are visible in the septum, see Figures 2.15(a), 2.15(b) and 2.15(c). We
computed also the absolute difference ∆Ai,j(x) in the activation pattern among the
different methods as:

∆Ai,j(x) = |Ai(x)−Aj(x)| i, j = R,B,D (i 6= j), (2.11)

where AR, AB and AD are the activation times for R-RBM, B-RBM and D-RBM,
respectively (see Figures 2.15(d), 2.15(e) and 2.15(f)).

The most remarkable differences in both ∆AR,B and ∆AR,D are exhibited in the
septum, particularly in the part facing the right endocardium, while ∆AB,D does
not exceeds 15 ms, see Figures 2.15(d), 2.15(e) and 2.15(f). Also in the activation
maps, as expected, we retrieve differences in the septum zone caused by the different
fiber orientations on that region made by the three methods, as seen in the fibers
comparison, see Figure 2.14.

Finally, we evaluated the maximal discrepancies, Mi,j = maxx∈Ωbiv
∆Ai,j(x),

among the three methods, which are:

MR,B = 35 ms, MR,D = 33 ms, MB,D = 15 ms.

The location of both MR,B and MR,D is in the lower part of the right ventricular
septum, while MB,D is placed in the lower anterior region of LV, see Figures 2.15(d),
2.15(e) and 2.15(f). Considering a total activation time of about Amax = 120 ms for
the all biventricular muscle, the maximum relative differences, M%

i,j = Mi,j/Amax,
among the three ventricular LDRBMs are

M%
R,B = 29%, M%

R,D = 28%, M%
B,D = 13%.
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The different orientations of the septal fibers produced a significant impact in terms
of EP numerical results. A dissimilar activation pattern and timing were observed
at the septum, especially in the right endocardial region, confirmed by the highest
discrepancy between R-RBM and the other two methods reaching 28-29% of the total
activation time (Figure 2.15). Conversely, D-RBM and B-RBM yield almost the same
activation pattern, thanks to the extensions introduced in B-RBM (Figure 2.15). The
above results confirmed the importance of including specific fiber orientations in RV
with respect to those of LV.

2.5.3 Realistic ventricular fibers

The second comparison among the ventricular LDRBMs was performed on a realis-
tic full biventricular geometry. For this purpose, we used the Zygote solid 3D heart
model [107]. In order to obtain a smooth endocardium in both ventricles, we re-
moved all the papillary muscles and the trabeculae carneae, using the CAD mod-
eller SolidWorks (https://www.solidworks.com) in combination with the software
Meshmixer (http://www.meshmixer.com); see Figure 2.16. Considering the charac-
teristics of the electrical signal propagation, and the anatomical constituents of the
valvular and sub-valvular apparatus, we expect our calculations should not be sub-
stantially influenced by the papillary muscles elimination. Furthermore, according to
the motivations highlighted at the end of Section 2.1.2, we performed a comparison in
the full biventricular model only between B-RBM and D-RBM.

Fiber orientation for B-RBM and D-RBM in the Zygote full biventricular model
are displayed in Figures 2.16(a-b) and 2.16(d-e). We prescribed the same input angle
values used for the ideal geometry, reported in Equation (2.9). Moreover, for D-RBM
we also specified the angles in the OT regions as follows [58]:

αepi,OT = 0o, αendo,OT = +90o, βepi,OT = 0o, βendo,OT = 0o. (2.12)

The two LDRBMs well reproduce the helical structure of LV up to MV ring and
exhibit a similar fiber orientation pattern in whole cardiac muscle, apart from the re-
gion among TV, PV and AV rings and far enough from the inter-ventricular junctions,
see Figures 2.16(a-b) and 2.16(d-e). B-RBM presents a roll up in the fiber directions
just after the AV ring, while D-RBM has a more longitudinal fiber orientations in
that region, see Figure 2.16(a) and 2.16(d). As also observed in the idealized case, the
B-RBM fiber field in the inter-ventricular junctions has a smooth change passing from
LV to RV, whereas D-RBM produces a strong discontinuity in the transition across
the two ventricles, see Figure 2.16(b) and 2.16(e).

We evaluated the mismatch of the fiber fields diffD,B, defined in (2.10), between B-
RBM and D-RBM. Indeed, diffD,B highlights the most relevant differences of the two
methods in the septum, in the inter-ventricular junctions, in the regions of TV, PV
and AV rings and around the right ventricular apex, see Figures 2.16(g) and 2.16(h).

2.5.4 Electrophysiology in realistic ventricles

We performed two EP simulations (with the setting detailed in Section 2.4.2), one
with B-RBM and one with D-RBM. Two stimuli were here applied to each ventricle:
one in the mid-septal zone and one in the lateral endocardial wall. Figures 2.16(c)
and 2.16(f) depict the computed activation times, which result very similar in the
whole myocardium. Figure 2.16(i) shows the absolute difference between the two
activation maps, ∆AD,B(x) = |AD(x)−AB(x)|, where AB and AD are the activation
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Figure 2.16: Comparison for B-RBM and D-RBM in a realistic full biventricular
model. Top (a-c): B-RBM. Centre (d-f): D-RBM. Bottom (g-i): differences be-
tween B-RBM and D-RBM. Streamlines of the vector f : top (a,d) and lateral views
(b,e). White arrows represent the main fibers direction in specific ventricular regions
(displayed in red for the epicardium and in blue for the endocardium); dashed line in
Figures (d,e) highlights the inter-ventricular junctions discontinuity of D-RBM. Differ-
ence in the fiber orientations diffD,B (g,h), only the values diffi,j ≥ 0.25 are displayed.
Activation maps using B-RBM and D-RBM: B-RBM (c) and D-RBM (f). Absolute
difference among B-RBM and D-RBM activation maps, ∆AD,B (i).

times for B-RBM and D-RBM, respectively. We observe some discrepancies in the
activation pattern near TV, PV and AV rings, and also in the endocardium near
the right ventricular apex, although ∆AD,B does not exceeds the value 14 ms, see
Figure 2.16(i). The maximal relative discrepancy among the two methods is MD,B =
maxx∈Ωbiv

∆AD,B(x) = 14 ms, corresponding to

M%
D,B = MD,B/Amax = 10 %,

with Amax = 140 ms the total activation time. The location of MD,B is in the lower
part of the endocardium just above the right ventricular apex, see Figure 2.16(i).
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2.6 Numerical results for cardiac fibers and electro-
physiology in the atria

This section is dedicated to present numerical results related to both the fibers gener-
ation and EP simulations in the atria. These have been performed on either idealized
and realistic human atrial models. We construct idealized LA and RA geometries,
starting form LA and RA NURBS surface representations presented in [171, 168]. As
realistic geometries, we use the Zygote 3D heart [107] and the atrial model presented
in [242, 67], in what follows referred to as Riunet geometry 3 (from the name of the
data repository, which includes the geometry and the fiber orientations obtained by a
RBM proposed in [67]). In particular, the 3D Zygote heart geometry, being a very de-
tailed model of the human heart, demonstrates the applicability of the atrial LDRBM
to arbitrary patient-specific scenarios.

We present the fiber generation results of the new atrial LDRBM (presented in
Section 2.2) to reconstruct LA, RA and biatrial fiber architectures. We show LA and
RA fiber bundles reconstruction applied to an idealized case (Section 2.6.1) and to
realistic geometries (Section 2.6.2). Then, we illustrate the results of the new LDRBM
applied to realistic biatrial models (Section 2.6.3). Finally, we investigate the influence
of atrial fibers in EP simulations: we compare the fiber activation map with respect
to a one obtained with an isotropic electrical propagation and then we studied how a
change in size of a single bundle affects the total activation sequence (Section 2.6.4).

2.6.1 Idealized atrial fibers

We began applying the novel atrial LDRBM on idealized geometries. To construct
them, we started by taking the surface representations of RA and LA, adopted in [171,
168], generated as separated NURBS patches. For each atrium, we created the
corresponding triangular mesh using the constructive geometry module of Netgen

(https://ngsolve.org). We considered this triangular mesh as the endocardium of
our 3D model. To generate the atrial epicardium we extruded (using the vmtk soft-
ware [11]) the endocardial surface by 2 mm, which correspond to an average thickness
of the atrial wall [101, 27]. Finally, we produced 3D labelled hexahedral mesh follow-
ing the preprocessing procedure described in Section 2.4.1, and then we applied our
RA and LA LDRBM for single atrial chamber, see Figures 2.17(a-d) and 2.18(a). The
input values of the parameters τi, which define the bundles dimension of the atrial
LDRBM, are reported in Tables 2.5 and 2.6 for RA and LA, respectively. Moreover,
Nraa = Nraw = 0 implying that we do not prescribe any PM in RA endocardium, see
Figure 2.18(a).

2.6.2 Realistic atrial fibers

Afterwards, we treat the case of realistic RA and LA taken from the Zygote 3D
heart model [107] and from the Riunet repository (https://riunet.upv.es/handle/
10251/55150). In particular, concerning the Riunet geometry, we extracted both
the endocardium and the epicardium (using ParaView), we removed all the inter-
atrial connections (using vmtk) and then we created the corresponding 3D labelled
hexahedral mesh (using the procedure described in Section 2.4.1). Fibers generated
by our atrial LDRBM are shown in Figures 2.17(e-h) and 2.18(b) for the Zygote
geometry and Figures 2.17(i-n) and 2.18(c) for the Riunet model.

3Freely available online at https://riunet.upv.es/handle/10251/55150.
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Figure 2.17: Atrial LDRBM fiber generation applied to idealized (a-d) and realis-
tic (e-n) models (Zygote (e-h) and Riunet (i-n) geometries) of RA and LA. Frontal
(a,c,e,g,i,m) and dorsal (b,d,f,h,l,n) views of the atria. SCV, ICV: superior and inferior
caval veins; LPV, RPV: left and right pulmonary veins; TV, MV: tricuspid and mitral
valve rings; RAA, LAA: right and left appendage; RAS, LAS: right and left septum;
RAW, LAW: right and left atrial lateral wall; LAR: left atrial roof; IB: inter-caval
bundle; IST: isthmus; BB: Bachmann’s Bundle; CSM: Coronary Sinus Musculature.

RA τtv τicv τscv τraa τcsm τsw,r τraw τct− τct+ τib τras

Ideal 0.90 0.90 0.10 1.00 0.10 -0.15 0.50 (30o-30o) -0.13 -0.10 0.12 (20o-30o) 0.20
Zygote 0.90 0.90 0.215 0.55 0.10 -0.15 0.75 (0o-30o) -0.27 -0.22 0.44 (20o-20o) 0.28
Riunet 0.90 0.88 0.15 0.52 0.10 0.01 0.50 (0o-30o) -0.095 -0.075 0.40 (20o-20o) 0.05

Table 2.5: Bundle parameters used for fibers generation in the idealized (Ideal) and
realistic (Zygote and Riunet) RA. We use the convention τi(αendo-αepi) to set a linear
transmural angle variation for α inside the i-th bundle, while τi alone to imply αendo =
αepi = 0o.
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Figure 2.18: Endocardial RA fiber architecture in the atrial LDRBM for idealized (a)
and realistic (b-c) models: Zygote (b) and Riunet (c). Dorsal view of the endocar-
dial fibers in RA coloured by means of the bundles selection procedure (see step 3
in Section 2.2). RAW: right atrial lateral wall; IB: inter-caval bundle; CT: crista
terminalis.

LA τmv τrpv τlpv τsw,l τlaa,in τlaa,up τbb τlaw

Ideal 0.75 0.14 0.85 0.08 0.7 0.35 0.45 0.16
Zygote 0.90 0.15 0.835 0.04 0.45 0.60 0.45 0.65
Riunet 0.90 0.20 0.80 0.03 0.50 0.55 0.75 0.24

Table 2.6: Bundle parameters used for fibers generation in the idealized (Ideal) and
realistic (Zygote and Riunet) LA and RA.

The input values of the parameters τi, which define the bundles dimension of
the atrial LDRBM, are reported in Tables 2.5 and 2.6 for RA and LA, respectively.
Moreover, Nraa = Nraw = 0 implying that we do not prescribe the any PM in RA
endocardium, see Figure 2.18(b-c). We observe that the atrial LDRBM qualitatively
capture the complex arrangement of fiber directions in almost all the principal anatom-
ical atrial regions (see Figure 2.17):

RA: SCV, ICV, TV, RAA, RAS, IB, CT, isthmus (IST), CSM and RAW;

LA: LPV, RPV, MV, LAA, LAS, BB, LAW and LAR.

Following the atrial LDRBM rules defined at the end of Section 2.2, circular fiber
arrangements are exhibited around LPV, RPV, SCV, ICV, TV, MV, and encircle CSM
and both appendages (RAA and LAA), see Figures 2.17(a-d) and 2.17(e-g). Fibers
direction of CT runs longitudinally on the endocardial surface from the base of the
SCV to the ICV, see Figures 2.17(d) and 2.17(h). RA structures like the IB and
RAW are vertically oriented, whereas those of RAS are almost parallel to the CT, see
Figures 2.17(c-d) and 2.17(g-h). IST fibers have the same direction of those of the
TV, see Figures 2.17(d) and 2.17(h). LAS fibers present a smooth transition going
to LAA and the adjacent region of RAS (Figures 2.17(a,b) and 2.17(e,f)), while BB
fibers run longitudinally in the same direction of those of MV (Figures 2.17(a,e,i)).
Directions of LAR and LAW fibers descend perpendicularly to MV (Figures 2.17(b)
and 2.17(f)).
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Figure 2.19: Atrial LDRBM fiber generation applied to realistic biatrial geometries:
Zygote (a-b) and Riunet (c-d). (a) Transmural fibers architecture for BB, LPV and
RPV in the Zygote geometry; BBIC connects RA to LA. (c) All the inter-atrial connec-
tions BBIC, FOIC, CSIC are displayed for the Riunet biatrial model. (b-d) Endocardial
RA fiber architecture for the biatrial geometry of Zygote (b) and Riunet (c), revealing
the presence of CT and PM.
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BIA-IC τBBicr τBBicl τBBic τFOicr τFOicl τFOic τCSicr τCSicl τCSic

Zygote -0.99 0.99 0.45 -0.93 0.87 1.15 -0.80 0.60 0.60
Riunet -0.97 0.98 0.45 -0.93 0.93 1.2 -0.92 0.92 0.20

Table 2.7: Bundle parameters used for IC fibers generation in realistic biatrial geom-
etry (Zygote and Riunet).

BIA-RA τtv τicv τscv τraa τcsm τsw,r τraw τct− τct+ τib τras

Zygote 0.90 0.90 0.215 0.55(30o-30o) 0.10 -0.15 0.75 (30o-30o) -0.27 -0.22 0.44 (20o-20o) 0.28
Riunet 0.90 0.90 0.18 0.52(30o-30o) 0.10 0.01 0.50 (30o-30o) -0.095 -0.075 0.40 (20o-20o) 0.06

Table 2.8: Bundle parameters used for RA fibers generation in realistic biatrial ge-
ometry (Zygote and Riunet). We use the convention τi(αendo-αepi) to set a linear
transmural angle variation for α inside the i-th bundle, while τi alone to imply
αendo = αepi = 0o.

BIA-PM Nraw Nraa pmthick pmrange pmend

Zygote 12 6 0.02 0.02 0.66
Riunet 13 3 0.025 0.025 0.88

Table 2.9: Bundle parameters used for PM fibers generation in realistic biatrial geom-
etry (Zygote and Riunet).

BIA-LA τmv τrpv τlpv τsw,l τlaa,in τlaa,up τbb τlaw

Zygote 0.90 0.15 (90o-0o) 0.835 (90o-0o) 0.04 0.43 0.60 0.45 0.65 (20o-0o)
Riunet 0.90 0.20 0.80 0.03 0.50 0.55 0.75 0.24

Table 2.10: Bundle parameters used for LA fibers generation in realistic biatrial
geometry (Zygote and Riunet). We use the convention τi(αendo-αepi) to set a lin-
ear transmural angle variation for α inside the i-th bundle, while τi alone to imply
αendo = αepi = 0o.

2.6.3 Biatrial fibers

Finally, we apply the atrial LDRBM to realistic biatrial models. With this aim the
entire Riunet model, which includes IC, is considered. Meanwhile, in order to create a
biatrial Zygote geometry, we physically connect RA to LA embedding IC coming from
the Riunet model (using vmtk). Following the Algorithms 1-4 of LDRBM presented
in Section 2.2, biatrial fiber architectures are generated for the Zygote geometry (see
Figures 2.19(a-b)) and for the Riunet model ( see Figures 2.17(c-d)).

The input values of the parameters τi, which define the bundle dimensions of the
biatrial LDRBM, are reported in Tables 2.7, 2.8, 2.9 and 2.10 for IC, RA, PM and LA,
respectively. Moreover, for the Zygote model we define a further transmural variation
in BB (see Figure 2.19(a)) by defining the unique normal direction k as (see also
point 1 in step 4 of Section 2.2)

k = (1− |φ|)∇ψr + |φ|∇ψab.

We observe that the biatrial LDRBM captures the arrangement of fiber directions
in all the principal anatomical atrial regions of RA, with the inclusion of PM (see
Figures 2.19(b-d)), of LA, with the prescription of different transmural variations
(e.g. in BB, LPV and RPV), see Figure 2.19(a). Moreover, it physically includes the
principal IC connecting RA to LA: BBIC, FOIC, see Figure 2.19(c).
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Figure 2.20: Comparison between the activation maps of EP simulations performed
with the atrial LDRBM fiber generation and the isotropic model on the Zygote geome-
tries. Left (a,d): Fibers simulation; Centre (b,e): Isotropic simulation. Right (c,f):
absolute difference ∆AiF,I in the activation times for LA (i = `) and RA (i = r). Top
(a,b,c): LA; Bottom (d,e,f): RA.

Figure 2.21: Comparison between EP simulations with different values of τmv in the
atrial LDRBM fiber generation for the Zygote LA. Dashed lines in white represent
the limit of the MV bundle. Left (a): τmv = 0.65; Centre (b): τmv = 0.85; Right (c):
absolute difference ∆A in the activation times.

2.6.4 Atrial electrophysiology

In order to analyse the influence of atrial fiber bundles in the electric signal propagation
we performed several EP simulations (with the setting specified in Section 2.4.2) on
the realistic Zygote LA and RA geometries.

Firstly, we made a comparison with an isotropic model. For the atrial LDRBM
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fiber parameters, we considered those reported in Tables 2.5 and 2.6. The fiber EP
simulations were carried out using the conductivity values of Table 2.4, while the
isotropic EP simulations by setting in (2.7) σf = σs = σn = 7.0 mS/cm, that is a
representative value chosen for the conductivity along the atrial fiber direction (see
Table 2.4). To initiate the signal propagation in RA we applied a single stimulus
in SAN which lies in the musculature of CT at the anterolateral junction with the
SCV [100]. For LA we stimulated at the location of the main IC to surrogate the
electric signal coming from RA: in the centre of BB (representing the BBIC); in the
centre of LAS (standing for FOIC); in the limbs of CSM at the bottom of LAW
(surrogating the CSIC) [208]. Activation of FOIC and CSIC were delayed, with respect
to the BBIC stimulus, by 14 ms and 52 ms, respectively.

Figure 2.20 displays the results of the comparison among simulations performed
with the atrial LDRBM fibers and the isotropic model for both RA and LA. Both
the activation pattern and activation time present significant differences. To provide
a quantification, we computed the absolute difference ∆AiF,I in the activation time:

∆AiF,I(x) = |AiF(x)−AiI(x)| i = r, `, (2.13)

where i = r, ` refer to LA (i = `) and RA (i = r) and AiF and AiI are the activation
times obtained by the simulations with and without fibers, respectively. Most of the
differences occur at LPV and LAA for LA, and at RAA and TV for RA. Finally, we
computed the maximal discrepancy, M i

F,I = maxx∈Ωbia
∆AiF,I(x), i = `, r:

M `
F,I = 60 ms (52 %), Mr

F,I = 48 ms (44 %),

where in brackets we reported the relative values computed as M i
F,I/A

i
max, with

A`max = 116 ms and Armax = 108 ms the total activation times. For RA Mr
F,I is

placed in RAA, while for LA M `
F,I is located in LPV.

Then, we investigated how a local change in a single LA bundle (the MV one)
affects the total activation pattern. We performed two EP simulations with the same
fiber setting used for the comparison with an isotropic model, except for the value of
τmv, which was set equal to 0.65 and 0.85, and excluding the presence of BB bundle.
Figures 2.21(a-b) depict the corresponding generated fibers: notice that with τmv =
0.65 the MV bundle is thicker with respect to the one obtained with τmv = 0.85, see
Figures 2.21(a-b). We also reported the absolute difference in the computed activation
times for the two fiber architectures, see Figure 2.21(c). The maximal discrepancy,
located in LAA, is of 28 ms which corresponds to 24% of the total activation time for
LA (116 ms).

The atrial EP simulations revealed a strong influence of the complex atrial fiber
architecture on the electric signal propagation. The activation pattern and timing,
induced by the atrial LDRBM fibers, were consistently different from the isotropic
model (Figure 2.20) in accordance with the previous findings [120, 64]. Furthermore,
EP simulations, embedded with the atrial LDRBM fibers, provided a total activation
time of 108 ms for RA and 116 ms for LA (Figure 2.20). These values are compatible
with the timings predicted in [44] for RA (102 ms) and in [120] for LA (115 ms).

2.7 Towards the validation of atrial fibers

In order to verify the reliability of the atrial LDRBM, we compare the results of the
novel atrial LDRBM with anatomical pictures [100, 51, 97, 212] (Section 2.7.1), with
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Figure 2.22: Comparison between anatomical atrial dissections in a normal human
atria and fibers obtained by the atrial LDRBM in the Riunet and Zygote geometries.
Fiber orientations, displayed with dashed lines in anatomical pictures, are compared
with fiber generated by the atrial LDRBM rules (R1-R7). ICV, SCV: inferior and
superior caval veins; CT: crista terminalis; CS: coronary sinus; LV: left ventricle;
TV, MV: tricuspid and mitral valve rings; LPV: left pulmonary superior (LS) and
inferior (LI) veins; RPV: right pulmonary superior (RS) and inferior (RI) veins; BB:
Bachmann’s Bundle. Anatomical pictures are readapted from [100, 51, 97, 212].

the fiber orientations obtained by another RBM [67] (Section 2.7.2) and with DT-MRI
fiber data [167] (Section 2.7.3).

2.7.1 Comparison with anatomical data

We provide a graphical comparison of the results obtained in the Riunet and Zygote
geometries, by means of the LDRBM, with anatomical pictures of atrial dissections
in a normal human heart taken from [100, 51, 97, 212], see Figure 2.22. The fiber
directions predicted by the atrial LDRBM rules showed an excellent agreement with
the anatomical studies, sustaining the validity of rules R1-R7 (Section 2.2).
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Figure 2.23: Fiber orientations (rendered in red glyphs) comparison in the Riunet
geometry between the atrial LDRBM and RBM in [67] for RA and LA. First column
(a,e): RBM in [67] for LA; Second column (b,f): atrial LDRBM for LA; Third column
(c,g): RBM in [67] for RA; Fourth column (d,h): atrial LDRBM for RA; Black arrows
represent the main fibers direction in specific atrial regions; FO: Fossa Ovalis; BB:
Bachmann’s Bundle.

BIA-RA τtv τicv τscv τraa τcsm τsw,r

JHU-geo 0.90 0.90 (90o-0o) 0.10 (90o-0o) 0.50 0.60 (90o-90o) -0.30

BIA-RA τraw τct− τct+ τib τras
JHU-geo 0.75 (0o-−20o) -0.22 -0.22 0.40 0.40 (90o-90o)

Table 2.11: Bundle parameters used for RA fibers generation in the reconstructed real
biatrial geometry. We use the convention τi(αendo-αepi) to set a linear transmural
angle variation for α inside the i-th bundle, while τi alone to imply αendo = αepi = 0o.

2.7.2 Comparison with another Rule-Based Method

The results obtained by our novel fiber generation strategy in the Riunet geometry
were compared with those previously reported in [67]4, prescribed by means of a RBM
incorporating a detailed regional description of fiber directions provided by anatomical
observations [242, 67]. Specifically, RBM in [67] was built by a manual subdivision
of the atrial geometry in several regions to embed a detailed fibers description [67].
This model includes also IC bundles, i.e. the Bachmann’s Bundle (BB), the limb of
Fossa Ovalis (FO) and the connections of the Coronary Sinus Musculature (CSM). We
removed IC from the Riunet model, in order to separately apply the atrial LDRBM
for RA and LA. The fibers field generated by our LDRBM (Figure 2.23), owing to a
suitable choice of the input parameters τi (Tables 2.5 and 2.6), is in excellent agreement
with the finding of RBM previously proposed [67], reproducing almost the same fiber
orientations among the different atrial bundles.

4Freely available online at https://riunet.upv.es/handle/10251/55150
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BIA-LA τmv τrpv τlpv τsw,l τlaa,in τlaa,up τbb τlaw

JHU-geo 0.85 0.15 0.85 (90o-0o) 0.05 0.60 (40o-40o) 0.80 (40o-40o) 0.40 (0o-40o) 0.50 (90o-90o)

Table 2.12: Bundle parameters used for LA fibers generation in the reconstructed real
biatrial geometry. We use the convention τi(αendo-αepi) to set a linear transmural
angle variation for α inside the i-th bundle, while τi alone to imply αendo = αepi = 0o.

2.7.3 Comparison with DT-MRI fiber data

We compare the fiber generation results of LDRBM with DT-MRI fiber data in a
reconstructed real biatrial geometry [167]. Moreover, we investigate the differences in
using LDRBM and DT-MRI fibers in EP simulations.

DT-MRI fiber data and the segmented tetrahedral biatrial mesh are from the
study of Pashakhanloo et al. [167] (in which ex-vivo human biatrial anatomies were
obtained from high resolution sub-millimeters DT-MRI) and were procured by the
Trayanova Lab (http://www.trayanovalab.org/) of Johns Hopkins University (JHU).
Starting from the volumetric segmented mesh we extracted (using vmtk [11, 66] and
Meshmixer5 software) LA and RA endocardia and the biatrial epicardium. Then,
we produced 3D labelled hexahedral mesh following the procedure described in Sec-
tion 2.4.1. Finally, we projected DT-MRI fiber data, embedded in the segmented
tetrahedral biatrial mesh, into the hexahedral mesh by means of a linear projection
interpolation (using vmtk).

For the atrial LDRBM, we considered the parameters detailed in Tables 2.11 and
2.12. In addition, we fix Nraa = Nraw = 0, and we prescribe further transmural angle
variations in LAS, by setting a linear relationship for the angle α at endocardium
(αendo = 0o) and epicardium (αendo = −40o), and in BB, by defining the unique
normal direction k as a linear combination of ψr and ψab (see also points 1-2 in step 4
of Section 2.2). Finally, since no IC were prescribed for this case, LA and RA fibers are
computed using the function computeLA and computeRA, for positive and negative
values of ξ, respectively (see Algorithm 1, 2, 4 of Section 2.2).

Figure 2.24 displays the comparison between the fibers generated by LDRBM (see
Figures 2.24(a,d)) and those coming from DT-MRI data (see Figures 2.24(b,e)). The
two architectures reproduce globally the same fiber orientations among the different
atrial bundles, with visible major differences only in a restricted zone of LAA, at the
top of RAA, in the region embracing SCV (see Figures 2.24(a,b)) and in the inter-atrial
septal junction (see Figure 2.24(d,e)).

To quantitative compare the atrial LDRBM and DT-MRI fibers, we compute the
difference between the two architecture, defined as:

diff(x) = 1− |fDTMRI(x) · fLDRBM(x)|, (2.14)

where fDTMRI, fLDRBM are the vector fiber fields associated to DT-MRI data and
LDRBM, respectively. The two fiber architectures match quite well with most of the
discrepancies arising only in LAA, RAA, SCV and inter-atrial septal junctions, with
value diff > 0.3 (see Figure 2.24(c,f)).

In order to evaluate the influence of using LDRBM and DT-MRI fiber archi-
tectures in the electric signal propagation, we performed three different EP simu-
lations: one with DT-MRI fiber data, another with LDRBM fibers and the last
one with an isotropic model. We considered the conductivity parameters detailed

5http://www.meshmixer.com
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Figure 2.24: Comparison between the atrial LDRBM fibers and the DT-MRI fiber
data, in a reconstructed biatrial real geometry. Left: Fiber vector fields f are rendered
in Glyphs for LDRBM (a-d) and DT-MRI data (b-e) in the anterior (a-b) and posterior
view (d-e). Right: differences between LDRBM and DT-MRI fibers, computed as
diff(x) = 1 − |fDTMRI(x) · fLDRBM(x)|. Colour-bar saturated for values diff ≥ 0.3.
Top: frontal view; Bottom: anterior view.

in Table 2.4 for both the simulations with LDRBM and DT-MRI fibers. Whereas,
the isotropic simulation is carried out by setting in the conductivity tensor (2.7),
σf = σs = σn = 7.0 mS/cm. To initiate the action potential propagation we applied
a single stimuli in SAN region (located near SCV in RA).

In Figure 2.25, we report the comparison of the activation maps obtained with
the three configurations. The total activation time is around 130 ms, for both the
simulations with LDRBM and DT-MRI fibers, while the isotropic model produces a
remarkably different value of 92 ms, see Figures 2.25(a-c). Moreover, the activation
patters, coming from DT-MRI and LDRBM fibers, are compatible with only marginal
discrepancies in LAA and RAA appendages, and near TV and MV regions, see Fig-
ures 2.25(a-b).

Finally, we compute the absolute difference ∆ADTMRI,i(x) in the activation pattern
among the different configurations as

∆ADTMRI,i(x) = |ADTMRI(x)−Ai(x)| i = LDRBM, Iso, (2.15)

where ADTMRI, ALDRBM and AIso are the activation times for DT-MRI, LDRBM and
isotropic simulations, respectively (see Figures 2.25(d,e)). The discrepancies between
the simulations with LDRBM and DT-MRI fibers exceed the 15 ms (i.e. 11% of the
total activation time) only in restricted zones of TV, MV and LAA (Figure 2.25(d)),
while it extend almost over the whole LA volume between the simulations with DT-
MRI fibers and the isotropic model.
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Figure 2.25: Comparison among the activation maps of EP simulations with LDRBM
fibers, DT-MRI fiber data and the isotropic model, in a reconstructed biatrial real
geometry. Top-Left (a): LDRBM fiber simulation; Top-Centre (b): DT-MRI fiber
simulation; Top-Right (b): Isotropic simulation. Bottom: absolute difference ∆Ai

in the activation times for i=DTMRI-LDRBM (d) and i=DTMRI-Iso (e); colour-bar
saturated for values ∆Ai ≥ 15 ms; boxed figures show the volumetric differences.
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Chapter 3
Modeling the biventricular cardiac
electromechanics

In this chapter, we introduce the biventricular 3D-0D model, composed by a bio-
physically detailed 3D electromechanics (EM) model, which includes electrophysiol-
ogy (EP), mechanical activation (MA) and tissue mechanics (TM), strongly coupled
with a 0D closed-loop lumped parameters haemodynamics model of the whole circu-
latory system, including the heart blood flow. We begin by carefully detailing the
mathematical formulation of the different core models, composing the 3D-0D model,
plus the coupling condition between the 3D EM and the 0D fluid models (Section 3.1).
Moreover, we provide an effective boundary condition for the mechanical problem that
accounts for the neglected part of the domain located above the biventricular basal
plane. Then, we illustrate the space and time numerical discretizations of the differ-
ent core models, carefully addressing the coupling approach to solve, at the algebraic
level, the 3D-0D coupled problem (Section 3.2). Afterwards, we present physiological
EM simulations using the 3D-0D model (Section 3.3). Specifically, we show that our
results match the experimental data of relevant mechanical biomarkers available in
literature [137, 238, 138, 236, 31, 61, 219]. Furthermore, we study at which extent
different configurations in cross-fibers active contraction, that surrogate the myofibers
dispersion, affect EM simulations. Finally, we investigate the impact of using different
myofiber architectures on EM simulations. The results presented in this chapter have
been accepted for publication in [177].
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3.1. 3D-0D closed-loop model for cardiac electromechanics

3.1 3D-0D closed-loop model for cardiac electrome-
chanics

In this section, we provide a detailed mathematical description of the multiphysics
and multiscale 3D biventricular EM model coupled with a 0D closed-loop (lumped
parameters) hemodynamical model of the whole cardiovascular system, including the
heart blood flow. Our model features several extensions and novel additions with
respect to the previous papers [198, 199], that are limited to LV.

The 3D-0D model includes a detailed myofiber architecture, characterizing the
different fiber orientations of LV and RV, and it comprises four core models supple-
mented by suitable coupling conditions between the 3D EM and the 0D fluid models.
The core models are related to the different interacting physical phenomena (at the
molecular, cellular, tissue and organ levels) involved in the heart pumping function1:
cardiomyocytes EP (E ) [130, 72, 73, 155], sarcomere MA (A ) [204, 153, 206, 125,
195, 196], myocardial TM (M ) [90, 89, 160, 103] and blood circulation (C ) [198, 96,
19, 113, 33, 15, 190]. The coupling conditions are established by the conservation
constraints (V ) [198].

In the following sections, we first briefly recall the fiber generation methods used
to reconstruct the cardiac muscular architecture in biventricular geometries (Sec-
tion 3.1.1). Then, we detail the different core models (E − A −M − C ) and the
coupling conditions (V ) comprising the 3D-0D model (Sections 3.1.2−3.1.7). Finally,
we show the strategy to reconstruct the unloaded (i.e. stress-free) configuration (Sec-
tion 3.1.8).

3.1.1 Fibers generation

We denote by Ω0
biv the computational domain occupied by the cardiac muscle tissue

at rest (reference configuration), see Figure 3.1(a), representing the region occupied
by LV and RV, whose boundary ∂Ω0

biv is partitioned into the epicardium Γ0
vepi, the

left Γ0
`v and right Γ0

rv endocardial surfaces and the biventricular base Γ0
base (namely

an artificial basal plane located well below the cardiac valves), so that we have

∂Ω0
biv = Γ0

vepi ∪ Γ0
`v ∪ Γ0

rv ∪ Γ0
base.

To prescribe the cardiac muscle fiber architecture in the biventricular computa-
tional domain Ω0

biv, we use Laplace-Dirichlet-Rule-Based Methods (LDRBMs), see
Section 2.1. Specifically, we consider three LDRBM types: R-RBM [188], B-RBM [26]
and D-RBM [58]. For further details about LDRBMs, we refer the reader to Sec-
tion 2.1. Here, we just recall that LDRBMs define the transmural φ, the apico-basal
ψ and the inter-ventricular ξ distances as the solutions of suitable Laplace boundary-
value problems of the type (2.2), see Figure 3.1(b). Then, for each point of the
biventricular domain, the transmural and apico-basal distances are used to build an
orthonormal local coordinate axial system [êl, ên, êt] owing to

êt = ∇φ
‖∇φ‖ , ên = ∇ψ−(∇ψ·êt)êt

‖∇ψ−(∇ψ·êt)êt‖ , êl = ên × êt,

defined as the unit transmural, longitudinal and normal directions, respectively. Fi-
nally, the reference frame [êl, ên, êt] is properly rotated with the purpose of defining

1We indicate with a calligraphic letter the name we give to the mathematical core model.
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Chapter 3. Modeling the biventricular cardiac electromechanics

Figure 3.1: Left (a): representation of a biventricular reference domain Ω0
biv whose bor-

der is partitioned in Γ0
vepi, Γ0

base, Γ0
`v and Γ0

rv. Top Right (b): solutions of the Laplace
problem (2.2) defining φ the transmural, ψ the apico-basal and ξ the inter-ventricular
distances that are used to prescribe the myofiber orientations using LDRBM of type
D-RBM. Bottom Right (c): fiber field f0 obtained using D-RBM.

the myofiber orientations:

[êl, ên, êt]
αi,βi−−−→ [f0,n0, s0], i = `v, rv

where f0 is the fiber, n0 the sheet-normal and s0 the sheet directions in the reference
configuration, respectively. Moreover, i = `v, rv refers to LV or RV, and αi and βi are
suitable helical and sheetlet angles following linear relationships

θi(di) = θepi,i(1− di) + θendo,idi, with θ = α, β and i = `v, rv,

in which di ∈ [0, 1] is the transmural normalized distance and θendo,i, θepi,i are suitable
prescribed rotation angles on the endocardium and epicardium, see Figure 3.1(c). To
embed different myofiber orientations for LV and RV, we employ the inter-ventricular
distance ξ in which positive values of ξ identify the LV, whereas negative values refer to
the RV [176]. Moreover, we define the normalized inter-ventricular distance ξ̂ ∈ [0, 1]
by rescaling ξ, see Figure 3.1(b).

An example of LDRBM boundary-value solutions for the fiber generation procedure
(of D-RBM type) is sketched in Figure 3.1(b). For further details about ventricular
LDRBMs we refer the reader to Section 2.1.
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3.1. 3D-0D closed-loop model for cardiac electromechanics

3.1.2 Electrophysiology Core Model (E )

The mathematical description of electric activity in the cardiac tissue is expressed
by EP core model, comprising two building blocks: a system of ODE, describing the
activity at cellular-level, and a PDE related to the transmembrane potential propaga-
tion through the cardiac muscle [71, 72]. In this thesis, we consider the monodomain
equation endowed with a suitable ionic model for the human action potential [246,
247, 47].

Given the computational domain Ω0
biv and the time interval t ∈ (0, T ], the mon-

odomain system (E ), written in Lagrangian coordinates, reads as follows

Electrophysiology (E ) :

Find, for each t, the transmembrane action potential u : Ω0
biv × (0, T ] → R, and the

ionic variables vector w : Ω0
biv × (0, T ]→ Rnw such that

Jχm

[
Cm

∂u

∂t
+ Iion(u,w)

]
−∇ · (JF−1D F−T∇u) = JχmIapp

in Ω0
biv × (0, T ],

∂w

∂t
−H(u,w) = 0 in Ω0

biv × (0, T ],(
JF−1D F−T∇u

)
·N = 0 on ∂Ω0

biv × (0, T ],

u = u0, w = w0 in Ω0
biv × {0}.

(3.1a)

(3.1b)

(3.1c)

(3.1d)

Specifically, w = {wk}nw

k=1 encodes the gating-variables (representing the fraction of
open channels per unit area across the cell membrane) and the concentration of specific
ionic species. Among them, one ionic variables (let say w1) represents the intracel-
lular calcium ions concentration [Ca2+]i, indicated in what follows with wCa. The
constant χm represents the surface area-to-volume ratio of cardiomyocytes, while Cm
stands for the trans-membrane capacitance per unit area. The reaction terms Iion
and H (specified by the ionic model at hand) couple together the action potential
propagation and the cellular dynamics. Specifically, we use the human ventricular ten
Tusscher-Panfilov ionic model (TTP06, nw = 18 of which 12 gating variables and 6
ionic concentrations), which is able to accurately describe ions dynamics across the
cell membrane, at least in physiological conditions; see [247] for details on the specific
definition of w, H and Iion related to TTP06.

The action potential propagation is driven by the diffusion term∇·(JF−1DF−T∇u),
appearing in (3.1a), where we introduced the deformation gradient tensor F = I+∇d
with J = det(F) > 0. In the former expression for F, d is the cardiac tissue displace-
ment, which is given by the solution of TM core model (M ), that will be provided
later in Section 3.1.4. The diffusion tensor reads:

D = σf (φfast)
Ff0 ⊗ Ff0

|Ff0 |2
+ σs(φfast)

Fs0 ⊗ Fs0

|Fs0 |2
+ σn(φfast)

Fn0 ⊗ Fn0

|Fn0 |2
,

where σf (φfast), σs(φfast), σn(φfast) are the fiber, sheet and sheet-normal conductiv-
ities, respectively, defined as

σk(φfast) =

{
σk,fast if φfast ≤ ε, k = f, s, n,

σk,myo if φfast > ε, k = f, s, n,
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Chapter 3. Modeling the biventricular cardiac electromechanics

Figure 3.2: Left: solution φfast of the Laplace problem (2.2) built as a function of the
transmural distance φ. Right: selection of the fast endocardial layer φfast ≤ ε [127]
and the five spherical impulses in LV and RV endocardia: in the anterior para-septal
wall, in the left surface of inter-ventricular septum and in the bottom of postero-basal
area, for LV; in the septum and in the free endocardial wall, for RV.

where σk,fast and σk,myo (with k = f, s, n) are the prescribed conductivities inside
and outside the fast endocardial layer, defined as φfast(φ) ≤ ε (with ε� 1) and built
as a function of the transmural distance as (see Figure 3.2)

φfast(φ) = 1−
∣∣∣∣ 2 (φ−min(φ))

max(φ)−min(φ)
− 1

∣∣∣∣ . (3.2)

The electric current Iapp, stimulating the heart tissue, originates from the Purkinje
network [252, 46, 126]. In this thesis, we do not explicitly model the Purkinje network
(as for instance done in [252, 46, 126]). Instead, to surrogates the effect of the Purkinje
network (as done in [127]), we combined a series of spherical impulses, taken along LV
and RV endocardia where an electrical stimulus is applied, with the fast endocardial
conduction layer, see also Figure 3.2. To model the spherical stimuli, we set:

Iapp = Iapp(x, t) =

{
Imax

∑Napp

k=1 1S(x,xk) if mod(t, THB) ∈ [t0app,k, t
0
app,k + tapp]

0 otherwise

where Imax is the electrical impulse amplitude and S(x,xk) = |x−xk|2 ≤ δ2
app, with

{xk}
Napp

k=1 , the spherical region wherein the k-th stimulus, with radius δapp, initial time
t0app,k and duration tapp, is applied at every heartbeat with period THB

2.
Finally, problem (E ) is closed by the initial conditions (3.1d) and equipped with

homogeneous Neumann boundary condition (3.1c), where N represents the generic
outer vector normal, taken in the reference configuration, to the boundary surface.

Notice that, in the case of a fixed domain (i.e with d = 0 which implies F = I and
J = 1) we retrieve the monodomain expression (2.8) presented in Section 2.3.

2For further details about the specific values chosen for δapp, tapp, THB and Imax we refer to
Table 3.1 (see also Section 2.4.2)
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3.1. 3D-0D closed-loop model for cardiac electromechanics

3.1.3 Activation Core Model (A )

Among the ionic species involved in the ionic dynamics of cardiac EP, calcium ions
enter inside the cell a few instants after the beginning of the cell excitation. In turn,
the increase of calcium concentration, triggering the activation of the thin filaments
inside the sarcomeres, play a key role in the active force generation mechanism.

In this thesis, we model MA of cardiac tissue by using a system of ODEs (A ),
standing for an Artificial Neural Network (ANN) based model: the so called RDQ18-
ANN (recently proposed in [196]), which surrogates the high-fidelity RDQ18 [195]. The
RDQ18 model is based on a biophysically detailed description of the microscopic active
force generation mechanisms taking place at the scale of sarcomeres [29, 195]. The
RDQ18-ANN model has the great advantage of strikingly reducing the computational
burden associated to the numerical solution of the RDQ18 model, yet reproducing its
results with a very good accuracy, as shown in [196].

Given the computational domain Ω0
biv and the time interval t ∈ (0, T ], the MA

core model (A ) reads as follows

Activation (A ) :

Find, for each t, the two-variable state vector s : Ω0
biv × (0, T ]→ R2, such that

∂s

∂t
= K(s, wCa, SL) in Ω0

biv × (0, T ],

s = s0 in Ω0
biv × {0},

(3.3a)

(3.3b)

where K represents a suitable function associated to ANN, previously trained from a
collection of simulations obtained with the high-fidelity RDQ18 model [194, 196].

The model (A ) has two inputs: the first one is the scalar field wCa, denoting the
intracellular calcium ions concentration [Ca2+]i over the domain Ω0

biv, provided by
the TTP06 ionic model (3.1b), which gives a description of the intracellular calcium
dynamics directly from one of the ionic variables wCa ∈ w; the second one is the scalar
field SL, denoting the elongation of the sarcomeres belonging to each region of the
domain Ω0

biv, defined as

SL = SL0

√
I4f (d),

where SL0 stands for the sarcomere length at rest and I4f = Ff0 · Ff0 is a measure
of the tissue stretch along the fibers direction. This creates a feedback between the
mechanical model (M ) and the force generation model (A ) [198].

The RDQ18-ANN output is the permissivity P ∈ [0, 1] which is obtained as a
function of s, P = G(s), where G is a linear function defined in [196]. Since P is
the fraction of the contractile units in the force-generation state, the active tension
is given by Ta = Tmaxa P , where Tmaxa denotes the tension generated when all the
contractile units are generating force (i.e. for P = 1), see [196] for further details.

To differentiate the active tension in LV and RV, we define a spatial heterogeneous
active tension

Ta(s,x) = Tmaxa G(s)
[
ξ̂(x) + C`rv(1− ξ̂(x))

]
,

where ξ̂ ∈ [0, 1] is the normalized inter-ventricular distance, defined in Section 3.1.1,
and C`rv ∈ (0, 1] represents the left-right ventricular contractility ratio, see Fig-
ure 3.1(b). Finally, problem (A ) is closed by the initial condition (3.3b).

69



Chapter 3. Modeling the biventricular cardiac electromechanics

3.1.4 Mechanics Core Model (M )

The heart muscle can be described as an anisotropic hyperelastic viscous medium,
whose architecture is characterized by the presence of the muscular fibers. Indeed, the
heart passive mechanical response spreads into three mutually orthogonal preferential
directions, namely the fiber f0, the sheet s0 and the sheet-normal n0 directions, which
form a local orthogonal frame of reference spanning the whole cardiac domain Ω0

biv, see
Section 3.1.1. In this thesis we disregard the visco-elastic properties of the heart [91,
157] and we simply assume that the cardiac muscular tissue is represented by an
hyperelastic material constitutive relation. Many transversely isotropic or orthotropic
constitutive laws have been proposed in the literature so far (see e.g. [160, 102, 103,
89, 90, 12]), accounting for the different response along the myofiber directions f0, s0

and n0. Meanwhile, the tissue active contraction is typically expressed, either within
an active stress [188, 7, 249, 248] or active strain formalism [204, 23].

In this thesis, the mechanical response of the cardiac tissue is described by the
momentum conservation equation (M ) under the hyperelasticity assumption and by
adopting an active stress approach [89, 160], employing the orthotropic Guccione
constitutive law [90].

Given the computational domain Ω0
biv and the time interval t ∈ (0, T ], the TM

core model (M ) reads as follows

Mechanics (M ) :

Find, for each t, the displacement d : Ω0
biv × (0, T ]→ R3, such that

ρs
∂2d

∂t2
−∇ ·P(d, Ta(s,x)) = 0 in Ω0

biv × (0, T ],

P(d, Ta(s,x))N = Kvepid + Cvepi ∂d

∂t
on Γ0

vepi × (0, T ],

P(d, Ta(s,x))N = −π`v(t) JF−TN on Γ0
`v × (0, T ],

P(d, Ta(s,x))N = −πrv(t) JF−TN on Γ0
rv × (0, T ],

P(d, Ta(s,x))N = |JF−TN|
[
π`vv

base
`v + πrvv

base
rv

]
on Γ0

base × (0, T ],

d = d0,
∂d

∂t
= ḋ0 in Ω0

biv × {0},

(3.4a)

(3.4b)

(3.4c)

(3.4d)

(3.4e)

(3.4f)

where ρs is the density. Within the active stress formulation, the first Piola-Kirchhoff
stress tensor P = P(d, Ta) is additively decomposed according to

P(d, Ta) =
∂W(G)(F)

∂F
+Ta(s,x)

[
nf

Ff0 ⊗ f0√
I4f

+ns
Fs0 ⊗ s0√
I4s

+nn
Fn0 ⊗ n0√
I4n

]
, (3.5)

where the first term represents the passive mechanics with W(G) being the strain en-
ergy density function, whereas the second one stands for the orthotropic active stress,
with Ta(s,x) the active tension provided by the activation model (A ). Moreover,
I4s = Fs0 · Fs0 and I4n = Fn0 · Fn0 are the tissue stretches along the sheet and
sheet-normal directions, respectively, and nf , ns and nn the prescribed proportion of
active tension along the fiber, sheet and sheet-normals directions, respectively. In this
thesis we adopt the orthotropic active stress formulation (3.5), which surrogates the
contraction caused by dispersed myofibers [87, 88, 77, 207, 79].

To model the passive behaviour of the cardiac tissue, we employ the orthotropic
Guccione constitutive law [90], according to which the strain energy function is defined
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3.1. 3D-0D closed-loop model for cardiac electromechanics

as

W(G) =
a

2

(
eQ − 1

)
+
κ(G)

2
(J − 1) log(J),

where the second term is the volumetric energy with the bulk modulus κ(G), which
penalizes large variation of volume to enforce a weakly incompressible behaviour [173,
56], and the exponent Q reads

Q = bffE
2
ff + bssE

2
ss + bnnE

2
nn + bfs

(
E2
fs + E2

sf

)
+ bfn

(
E2
fn + E2

nf

)
+ bsn

(
E2
sn + E2

ns

)
,

where a is the stiffness scaling parameter, Eij = Ei0 · j0, for i, j ∈ {f, s, n} and
i0, j0 ∈ {f0, s0,n0}, are the entries of E = 1

2 (C− I), i.e the Green-Lagrange strain
tensor, being C = FTF the right Cauchy-Green deformation tensor.

Finally, problem (M ) is closed by the initial conditions (3.4f) and equipped with
proper boundary conditions (3.4b)−(3.4e) detailed in what follows. We remark that
the boundary conditions (3.4b)−(3.4e) are one of the possible choices for the mechan-
ical problem (3.4). However, for the sake of exposition, we decide to consider (3.4f)
as the (M ) core model.

Epicardial boundary condition

The heart is surrounded by the pericardium membrane, that prevents the cardiac mo-
tion from large stretching and protects the heart from external shocks. The pericardial
cavity is filled with a lubricating serous fluid to ensure minimal friction of the heart
wall with nearby organs, when the myocardium contracts and relaxes [263, 175].

To model the mechanical constraint provided by the pericardium [80, 175, 235], we
impose at the epicardial boundary Γ0

vepi a generalized Robin boundary condition (3.4b)

by defining the tensors Kvepi and Cvepi as

Kvepi = Kvepi
‖ (N⊗N− I)−Kvepi

⊥ (N⊗N), (3.6)

Cvepi = Cvepi‖ (N⊗N− I)− Cvepi⊥ (N⊗N), (3.7)

where Kvepi
⊥ , Kvepi

‖ , Cvepi⊥ , Cvepi‖ ∈ R+ are the stiffness and viscosity parameters of the

epicardial tissue in the normal and tangential directions, respectively. In this way, the
epicardial tissues surrounding the heart wall are modeled as a system of springs and
dashpots that mimic the elastic and viscous effects, respectively. Hence, the coefficient
Kvepi
⊥ and Kvepi

‖ represent the spring stiffness per unit area, while Cvepi⊥ , Cvepi‖ are the

dashpot viscosities per unit area. For simplicity, we use a unique set of parameters
for the epicardial region of LV and RV.

Endocardial boundary condition

The endocardial surfaces of LV and RV are in contact with the blood inside the
cardiac chambers. To accurately model the coupling between the blood and the heart
muscle, FSI models can be adopted. In this thesis, we neglect the shear stresses
produced by the fluid on the endocardial wall, rather we consider only the effect of
fluid pressure, that we assume to be constant in the whole endocardial cavities of
LV and RV, respectively. Therefore, normal stress boundary conditions (3.4c)–(3.4d)
were imposed at the endocardia Γ0

`v and Γ0
rv of both ventricles, where π`v(t) and πrv(t)

represent the pressures exerted by the blood in LV and RV, respectively.
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Notice that, in the 3D-0D model (that will be presented hereafter in Section 3.1.7),
the fluid pressures π`v(t) and πrv(t), acting on LV and RV endocardia, are given by the
coupling between the TM (M ) and the fluid circulation (C ) problems, thanks to the
coupling conditions (V ). Both the circulation model (C ) and the coupling conditions
(V ) are detailed later in Sections 3.1.5 and 3.1.6, respectively.

Basal boundary condition

The base Γ0
base is an artificial boundary and, as such, it must be provided with suit-

able boundary conditions that account for the effect of the neglected part of the
domain above the ventricular basal plane considered. In the TM core model (M ), we
set on Γ0

base the energy-consistent boundary condition (3.4e) in the weighted-stress-
distribution form, where

vbase`v (t, ξ̂) =
ξ̂
∫

Γ0
`v
JF−TNdΓ0∫

Γ0
base

ξ̂ |JF−TN|dΓ0

, vbaserv (t, ξ̂) =
(1− ξ̂)

∫
Γ0
rv
JF−TNdΓ0∫

Γ0
base

(1− ξ̂) |JF−TN|dΓ0

, (3.8)

with ξ̂ the normalized inter-ventricular distance defined in Section 3.1.1. The bound-
ary condition (3.4e) represents the extension to the biventricular geometries of the
energy-consistent boundary condition originally proposed in [196] for LV. The com-
plete derivation of the energy-consistent boundary conditions are hereafter detailed.

Energy-consistent boundary condition in biventricular geometries

The energy-consistent boundary condition (3.4e), accounting for the effect of the ne-
glected part of the domain located above the biventricular base Γ0

base, is consistently
with the principles of momentum and energy conservation [196]. It represents a gen-
eralization, for biventricular geometries, of the boundary condition proposed in [196].

In what follows, we denote by Ωtf,`v (respectively Ωtf,rv) the volume occupied at
time t, within LV (respectively, RV), by the fluid located below the base. Moreover,
we employ the tilde symbol (∼) to refer to volumes and surfaces located on top of

the ventricular base. Specifically, we denote by Ω̃tf,`v and Ω̃tf,rv the fluid volumes in

LV and RV, located above the base. Similarly, we denote by Γ̃tvepi, Γ̃t`v and Γ̃trv the
epicardial, and endocardial (left and right) surfaces located above the ventricular base.

Finally, we denote by Γ̃tbase the ventricular base surface itself, but endowed with outer
normal vector directed towards the apex, differently than for Γtbase.

Following the derivation of [196] and by defining T = J−1PFT as the Cauchy
stress tensor, the balance of momentum, with a quasi-static approximation, entails

0 =

∫
Ω̃t

∇ ·T dx =

∫
∂Ω̃t

Tn dΓt =

=

∫
Γ̃t
vepi

Tn dΓt +

∫
Γ̃t
`v

Tn dΓt +

∫
Γ̃t
rv

Tn dΓt +

∫
Γ̃t
base

Tn dΓt.
(3.9)

The normal stress on the endocardium is given by Tn = −π`vn and Tn = −πrvn
(on Γ̃t`v and Γ̃trv, respectively), while we assume negligible the load on the epicardium

(i.e. Tn = 0 on Γ̃tvepi). Thanks to the divergence (Gauss) theorem, it is possible to
write the endocardial terms of Equation (3.9) as integrals over Γt`v and Γtrv. Indeed,
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we have the identities:

0 =

∫
Ωt

f,`v∪Ω̃t
f,`v

∇π`v dx =

∫
Γt
`v

π`vn dΓt +

∫
Γ̃t
`v

π`vn dΓt,

0 =

∫
Ωt

f,rv∪Ω̃t
f,rv

∇πrv dx =

∫
Γt
rv

πrvn dΓt +

∫
Γ̃t
rv

πrvn dΓt,

from which we have∫
Γ̃t
`v
π`vn dΓt = −

∫
Γt
`v
π`vn dΓt,

∫
Γ̃t
rv
πrvn dΓt = −

∫
Γt
rv
πrvn dΓt.

Hence, for the Equation (3.9), we end up with∫
Γt
base

Tn dΓt = −
∫

Γ̃t
base

Tn dΓt = −
∫

Γ̃t
`v

π`vn dΓt −
∫

Γ̃t
rv

πrvn dΓt =

=

∫
Γt
`v

π`vn dΓt +

∫
Γt
rv

πrvn dΓt,

which entails, by considering the pull-back, to the reference configuration∫
Γt
base

Tn dΓt =

∫
Γ0
`v

π`v JF−Tn dΓ0 +

∫
Γ0
rv

πv JF−Tn dΓ0. (3.10)

Equation (3.10) provides the overall stress acting on the ventricular base. However,
we need some additional assumptions to define the point-wise distribution of stress,
among the infinitely many satisfying Equation (3.10). In the original derivation of the
energy-consistent boundary condition [196], at this stage, a uniform stress distribution
assumption is made. However, while this assumption is reasonable in a single-ventricle
geometry, it is unrealistic when the ventricular base surrounds both ventricles. Indeed,
the blood pressures acting in LV are typically much larger than those in RV. For this
reason, we propose to distribute stress over the basal surface not uniformly, but rather
according to a weight function ζ : Γ0

base → [0, 1], that indicates the fraction of stress
attributable to the pressure acting on LV, relative RV, at each base point. Hence, we
assume that, on Γ0

base, we have:

Tn = ζ

∫
Γ0
`v
π`v JF−Tn dΓ0∫

Γt
base

ζ dΓ
+ (1− ζ)

∫
Γ0
rv
πrv JF−Tn dΓ0∫

Γt
base

(1− ζ) dΓ
, (3.11)

which reads, in the reference configuration:

Pn = |JF−Tn|

[
ζ
∫

Γ0
`v
π`v JF−Tn dΓ0∫

Γ0
base
|JF−Tn| ζ dΓ0

+
(1− ζ)

∫
Γ0
rv
πrv JF−Tn dΓ0∫

Γ0
base
|JF−Tn| (1− ζ) dΓ0

]
. (3.12)

In what follows we consider three different choices for the weight function ζ, corre-
sponding to as many boundary condition formulations (see also Figure 3.3):

� Uniform stress distribution. By setting ζ ≡ 1
2 , we recover the case of stress

uniformly distributed on the whole Γ0
base boundary:

Pn =
|JF−Tn|∫

Γ0
base
|JF−Tn|dΓ0

[∫
Γ0
`v

π`v JF−Tn dΓ0 +

∫
Γ0
rv

πrv JF−Tn dΓ0

]
(3.13)
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Figure 3.3: Different choices of the basal boundary corresponding to the three type of
formulations for the energy consistent biventricular boundary condition: (a) for the
uniform stress distribution over each base Γ0

base,`v and Γ0
base,rv; (b) for the uniform and

weighted stress distributions, with the weight function ζ ≡ 1
2 and ζ ≡ ξ̂, respectively.

� Uniform stress distribution over each base. Let us suppose to split the
base into two subsets Γ0

base,`v and Γ0
base,rv, respectively denoting the portion of

ventricular base surrounding LV and RV. Then, we define ζ as the indicator
function of the set Γ0

base,`v (that is ζ = 1 on Γ0
base,`v, while ζ = 0 on Γ0

base,rv).
In this case, we get:

Pn =
|JF−Tn|∫

Γ0
base,`v

|JF−Tn|dΓ0

∫
Γ0
`v

π`v JF−Tn dΓ0 on Γ0
base,`v

Pn =
|JF−Tn|∫

Γ0
base,rv

|JF−Tn|dΓ0

∫
Γ0
rv

πrv JF−Tn dΓ0 on Γ0
base,rv

(3.14)

� Weighted stress distribution. Finally, we consider the case in which we set
ζ = ξ̂ (as defined in Section 3.1.1). The function ξ̂ is defined such that we

have ξ̂ ' 1 on Γ0
base,`v, ξ̂ ' 0 on Γ0

base,rv and we have a smooth transition
on the septum. With this choice, the energy-consistent boundary condition of
Equation (3.12) reads

Pn = |JF−TN|
[
π`v(t)v

base
`v (t, ξ̂) + πrv(t)v

base
rv (t, ξ̂)

]
, (3.15)

having defined the vectors vbase`v and vbaserv as in Equation (3.8).

Based upon our experience, the uniform stress distribution approach usually does not
provide meaningful results. Indeed, since the stress is redistributed on the whole base
without accounting for the closeness to the two chambers, a net angular momentum
results on the elastic body, making it rotate during systole. Conversely, both the uni-
form stress distribution approach over each base and the weighted stress distribution
approach overcome this issue, thanks to a more realistic distribution of the stress.
While the two strategies globally provide very similar results, the latter allows for a
smoother solution close to the interface between the left and right bases. For this
reason, in this thesis we adopt the weighted stress distribution approach.
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3.1. 3D-0D closed-loop model for cardiac electromechanics

3.1.5 Blood circulation Core Model (C )

EM models need to account for the interaction with the circulatory system [190]. In
this thesis, we describe the blood haemodynamics through the entire cardiovascular
network, by means of a 0D closed-loop lamped-parameters model, inspired by [96, 33]
and recently proposed in [198]. Specifically, systemic and pulmonary circulations are
modeled with resistance-inductance-capacitance (RLC) circuits, one for the arterial
part and the other one for the venous part. The heart chambers are described by
time-varying elastance elements and non-ideal diodes stand for the heart valves [198];
see Figure 3.4.

Given the time interval t ∈ (0, T ], the 0D closed-loop circulation model is repre-
sented by a system of ODEs:

dV`a(t)

dt
= Qpulven(t)−Qmv(t),

dV`v(t)

dt
= Qmv(t)−Qav(t),

dVra(t)

dt
= Qsysven(t)−Qtv(t),

dVrv(t)

dt
= Qtv(t)−Qpv(t),

Csysar

dpsysar (t)

dt
= Qav(t)−Qsysar (t),

Csysven

dpsysven(t)

dt
= Qsysar (t)−Qsysven(t),

Cpular

dppular (t)

dt
= Qpv(t)−Qpular (t),

Cpulven

dppulven(t)

dt
= Qpular (t)−Qpulven(t),

Lsysar

Rsysar

dQsysar (t)

dt
= −Qsysar (t)− psysven(t)− psysar (t)

Rsysar
,

Lsysven

Rsysven

dQsysven(t)

dt
= −Qsysven(t)− pra(t)− psysven(t)

Rsysven
,

Lpular

Rpular

dQpular (t)

dt
= −Qpular (t)− ppulven(t)− ppular (t)

Rpular

,

Lpulven

Rpulven

dQpulven(t)

dt
= −Qpulven(t)− p`a(t)− ppulven(t)

Rpulven

,

(3.16a)

(3.16b)

(3.16c)

(3.16d)

(3.16e)

(3.16f)

(3.16g)

(3.16h)

(3.16i)

(3.16j)

(3.16k)

(3.16l)

where:

p`v(t) = pex(t) + E`v(t) (V`v(t)− V0,`v) , (3.17a)

prv(t) = pex(t) + Erv(t) (Vrv(t)− V0,rv) , (3.17b)

p`a(t) = pex(t) + Ela(t) (V`a(t)− V0,la) , (3.17c)

pra(t) = pex(t) + Era(t) (Vra(t)− V0,ra) , (3.17d)

Qmv(t) =
p`a(t)− p`v(t)

Rmv(p`a(t), p`v(t))
, Qav(t) =

p`v(t)− psysar (t)

Rav(p`v(t), p
sys
ar (t))

, (3.17e)

Qtv(t) =
pra(t)− prv(t)

Rtv(pra(t), prv(t))
, Qpv(t) =

prv(t)− ppular (t)

Rpv(prv(t), p
pul
ar (t))

. (3.17f)
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Figure 3.4: 0D closed-loop model for the circulatory system. The state variables
corresponding to pressures and fluxes are depicted in orange and blue, respectively.
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In this model, p`a(t), pra(t), p`v(t), prv(t), V`a(t), Vra(t), V`v(t) and Vrv(t) refer
to pressures and volumes in LA, RA, LV and RV, respectively. The variables Qmv(t),
Qav(t), Qtv(t) and Qpv(t) indicate the flow rates through MV, AV, TV and PV, respec-
tively. Furthermore, psysar (t), Qsysar (t), psysven(t) and Qsysven(t) are pressures and flow rates
of the systemic circulation (arterial and venous). Similarly, ppular (t), Qpular (t), ppulven(t)
and Qpulven(t) define pressures and flow rates of the pulmonary circulation (arterial and
venous). Moreover, pex(t) represents the exerted pressure by the respiration and the
organs surrounding the heart. For the four cardiac chambers, time varying elastances
Ela(t), E`v(t), Era(t) and Erv(t) are analytically prescribed by means of

E`v(t) = Eact,max`v e`v + EA`v, Erv(t) = Eact,maxrv erv + EArv,

Ela(t) = Eact,max`a e`a + EA`a, Era(t) = Eact,maxra era + EAra,

with

eiv(t) =


1
2

[
1− cos

(
π t

T
(i)
vc

)]
0 ≤ t ≤ T (i)

vc ,

1
2

[
1 + cos

(
π

(t−T (i)
vc )

T
(i)
vr

)]
T

(i)
vc < t ≤ T (i)

vc + T
(i)
vr ,

0 T
(i)
vc + T

(i)
vr < t ≤ THB,

for i = `, r,

eia(t) =



1
2

[
1 + cos

(
π

(t+THB−t(i)ar )
Tar

)]
0 ≤ t ≤ t(i)ar + T

(i)
ar − THB,

0 t
(i)
ar + T

(i)
ar − THB < t ≤ t(i)ac ,

1
2

[
1− cos

(
π

(t−t(i)ac )

T
(i)
ac

)]
t
(i)
ac < t ≤ t(i)ac + T

(i)
ac ,

1
2

[
1 + cos

(
π

(t−t(i)ar )

T
(i)
ar

)]
t
(i)
ac + T

(i)
ac < t ≤ THB,

for i = `, r,

where T
(i)
vc , T

(i)
ac are the duration of the (left i = ` and right i = r) ventricular and

atrial contraction, T
(i)
vr , T

(i)
ar are the duration of the (left i = ` and right i = r)

ventricular and atrial relaxation, t
(i)
vc , t

(i)
ac the time beginning of the (left i = ` and

right i = r) ventricular and atrial contraction and THB is the heartbeat period. The
above parameters are physiologically calibrated with values ranging from EA`a, EA`v,
EAra, EArv – when the chambers are at rest – to (EA`a + Eact,max`a ), (EA`v + Eact,max`v ),
(EAra + Eact,maxra ), (EArv + Eact,maxrv ) – when the chambers are contracted. Finally,
Rmv(p1, p2), Rav(p1, p2), Rtv(p1, p2) and Rpv(p1, p2) define the behaviour of valves as
diodes, according to:

Ri(p1, p2) =

{
Rmin, p1 < p2

Rmax, p1 ≥ p2

for i ∈ {mv, av, tv, pv},

where p1 and p2 stand for the pressures ahead and behind the valve leaflets with
respect to the flow direction, whereas Rmin and Rmax are the minimum and maximum
resistance of the valves.

Introducing the vector c(t) defined as

c(t) = (V`a(t), V`v(t), Vra(t), Vrv(t), p
sys
ar (t), psysven(t), ppular (t), ppulven(t),

Qsysar (t), Qsysven(t), Qpular (t), Qpulven(t))T ,
(3.18)

which includes pressures, volumes and fluxes of the different compartments composing
the vascular network, Systems (3.16)–(3.17) can be expressed, as the core model (C ),
in the following compact form
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Circulation(C ) :

Find, for each t, the unknown vector c(t) : (0, T ]→ Rnc , such that
dc(t)

dt
= G(t, c(t)) for t ∈ (0, T ],

c(0) = c0 t = 0,

(3.19a)

(3.19b)

where G is a proper function that collects the whole right hand sides of Equa-
tions (3.16) and (3.17). Finally, Equation (3.19b) closes the system (3.19).

3.1.6 Coupling conditions (V )

In the 0D closed-loop haemodynamics model (3.19), cardiac chambers are surrogates
by simplified 0D counterparts in the form of time-varying elastance elements. To
couple the 0D circulation model (3.19) with the 3D EM biventricular model, given
by (E )–(A )–(M ), we follow the strategy proposed in [198] and here extended to the
biventricular case: we replace, in the circulation model, the time-varying elastance
elements representing 0D LV and RV models with their corresponding 3D mechanical
descriptions, obtaining the coupled 3D-0D closed-loop model depicted in Figure 3.5.
Hence, the pressure-volume relationships between p`v, prv and V`v, Vrv are no longer
prescribed by Equations (3.17a)-(3.17b), but by the 3D TM model resolution. More
precisely, in place of Equations (3.17a)-(3.17b), we introduce the volume-consistency
coupling conditions (V )

Volume constraints (V ) :{
V 3D
`v (d(t)) = V`v(c(t)) for t ∈ (0, T ],

V 3D
rv (d(t)) = Vrv(c(t)) for t ∈ (0, T ],

(3.20a)

(3.20b)

where V`v and Vrv are LV and RV volumes within the 0D circulation model, while

V 3D
`v and V 3D

rv represent the 3D ventricular volume for LV and RV computed as:

V 3D
i (d(t)) =

∫
Γ0
i

J(t) ((h⊗ h) (x + d(t)− bi)) · F−T (t) N dΓ0 i = `v, rv,

wherein h is a vector orthogonal to LV/RV centreline (i.e. lying on the biventricular
base) and bi (i = `v, rv) lays inside LV/RV [198]. Notice that, subtracting to the
space coordinate x + d(t) that of a point bi improves the accuracy of the formula
when the ventricular base changes its orientation [198].

Thanks to the coupling conditions (3.20), the 3D TM model (M ) must satisfy
at each time t ∈ (0, T ] the volume-consistency coupling conditions (V ). Moreover,
having introduced two additional scalar Equations (i.e (3.20a)-(3.20b)), two additional
unknowns arise from the 3D TM model: the left π`v(t) and right πrv(t) ventricular
pressures act as Lagrange multipliers associated to the constraint (V ). Hence, we
introduce the 3D-0D (M )− (C ) coupled problem as follows:
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Figure 3.5: Biventricular 3D-0D closed-loop model for the circulatory system, cou-
pling the biventricular 3D-EM model and the 0D-fluid model. The state variables
corresponding to pressures and fluxes are depicted in orange and blue, respectively.
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Find, for each t, the displacement d : Ω0
biv×(0, T ]→ R3 and the pressures π`v, πrv : (0, T ]

→ R such that

ρs
∂2d

∂t2
−∇ ·P(d, Ta(s,x)) = 0 in Ω0

biv × (0, T ],

P(d, Ta(s,x))N = Kvepid + Cvepi ∂d

∂t
on Γ0

vepi × (0, T ],

P(d, Ta(s,x))N = −π`v(t) JF−TN on Γ0
`v × (0, T ],

P(d, Ta(s,x))N = −πrv(t) JF−TN on Γ0
rv × (0, T ],

P(d, Ta(s,x))N = |JF−TN|
[
π`v(t)v

base
`v + πrv(t)v

base
rv

]
on Γ0

base × (0, T ],

V 3D
`v (d(t)) = V`v(c(t)) for t ∈ (0, T ],

V 3D
rv (d(t)) = Vrv(c(t)) for t ∈ (0, T ],

d = d0,
∂d

∂t
= ḋ0 in Ω0

biv × {0},

π`v = π`v,0, πrv = πrv,0 t = 0.

(3.21a)

(3.21b)

(3.21c)

(3.21d)

(3.21e)

(3.21f)

(3.21g)

(3.21h)

(3.21i)

Moreover, to ensure the continuity of the pressures between the 3D TM and the
0D circulation models, we introduce the following the pressure-consistency coupling
conditions

Pressure constraints:{
p`v(t) = π`v(t) for t ∈ (0, T ],

prv(t) = πrv(t) for t ∈ (0, T ].

(3.22a)

(3.22b)

Therefore, we introduce the coupled 3D-0D version of the circulation model (C ) as:
Find, for each t, the unknown vector c(t) : (0, T ]→ Rnc , such that

dc(t)

dt
= GB(t, c(t), p`v(t), prv(t)) for t ∈ (0, T ],

p`v(t) = π`v(t) for t ∈ (0, T ],

prv(t) = πrv(t) for t ∈ (0, T ],

c(0) = c0, t = 0.

(3.23a)

(3.23b)

(3.23c)

(3.23d)

where GB is a proper function that collects the right hand sides of Equations (3.16)
and (3.17), apart from those corresponding to the pressures of LV and RV (3.17a)-
(3.17b).

We remark that the following coupling strategy for the 3D-0D model, where the
pressures of both ventricles act as Lagrange multipliers associated to the volume-
consistent constrains, has been proved to be complaint with the principles of con-
servation of mechanical energy, which is achieved in virtue of the energy consistent
boundary conditions, that account for the interaction among the cardiac chambers
within the computational domain. In particular, the power exerted by the cavity
pressures in the 3D EM model balances that exchanged with the 0D circulation model
at the coupling interface [198]. For the derivation of the balance of mechanical energy
for the 3D-0D model, we refer the reader to [198].
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3.1.7 The coupled electromechanical problem

Putting together the five building blocks (E )–(A )–(M )–(C )–(V ), just detailed, we
get the 3D-EM-0D-fluid problem, a system of coupled PDEs and ODEs.

Given the computational domain Ω0
biv and the time interval t ∈ (0, T ], our complete

3D-0D biventricular model reads:

3D-0D Biventricular model

Jχm

[
Cm

∂u

∂t
+ Iion(u,w)

]
−∇ · (JF−1D F−T∇u) = JχmIapp

in Ω0
biv × (0, T ],

∂w

∂t
−H(u,w) = 0 in Ω0

biv × (0, T ],(
JF−1D F−T∇u

)
·N = 0 on ∂Ω0

biv × (0, T ],

∂s

∂t
= K(s, [Ca2+]i, SL) in Ω0

biv × (0, T ],

ρs
∂2d

∂t2
−∇ ·P(d, Ta(s,x)) = 0 in Ω0

biv × (0, T ],

P(d, Ta(s,x))N = Kvepid + Cvepi ∂d

∂t
on Γ0

vepi × (0, T ],

P(d, Ta(s,x))N = −p`v(t) JF−TN on Γ0
`v × (0, T ],

P(d, Ta(s,x))N = −prv(t) JF−TN on Γ0
rv × (0, T ],

P(d, Ta(s,x))N = |JF−TN|
[
p`v(t)v

base
`v + prv(t)v

base
rv

]
on Γ0

base × (0, T ],

dc(t)

dt
= GB(t, c(t), p`v(t), prv(t)) for t ∈ (0, T ],

V 3D
`v (d(t)) = V`v(c(t)) for t ∈ (0, T ],

V 3D
rv (d(t)) = Vrv(c(t)) for t ∈ (0, T ],

(3.24a)

(3.24b)

(3.24c)

(3.24d)

(3.24e)

(3.24f)

(3.24g)

(3.24h)

(3.24i)

(3.24j)

(3.24k)

(3.24l)

where the model unknowns are

u : Ω0
biv × (0, T ]→ R, w : Ω0

biv × (0, T ]→ Rnw , s : Ω0
biv × (0, T ]→ Rns ,

d : Ω0
biv × (0, T ]→ R3, c : (0, T ]→ Rnc , p`v : (0, T ]→ R, prv : (0, T ]→ R,

Finally, the model is closed by the initial conditions in Ω0
biv × {0}:

u = u0, w = w0, s = s0, d = d0,
∂d

∂t
= ḋ0, c = c0, p`v = p`v,0, prv = prv,0.

Notice that, in the 3D-0D problem (3.24) the continuity of the pressures, expressed
by the coupling condition (3.22), is implicitly recovered by the coupling approach for
the 3D mechanical model (M ) and the 0D closed-loop hemodynamical model (C ) by
means of the volume conservation constraints (V ), where the pressures of LV and RV
act as Lagrange multipliers. Hence, Equation (3.22a) and (3.22b) are not formally
included in the 3D-0D problem (3.24).

We remark that the number of equations, in the 3D-0D problem (3.24), balances
with the number of unknowns: we have in total 1 + nw + ns + 3 + nc + 2 unknowns
and equations, respectively.

3.1.8 Reference configuration and initial displacement

Cardiac geometries are acquired from in vivo medical images through imaging tech-
niques. In principle, these geometries are not stress free, due to the blood pressure
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Figure 3.6: Schematic representation of the strategy used to recover the reference con-
figuration and to set the mechanics initial condition. The red and blue lines represent
the Klotz curves [114] (i.e. the pressure-volume relationship of the relaxed ventricles)
for LV and RV. The black lines represent schematic pressure-volume loops.

acting on the endocardia. Therefore, we need to estimate the unloaded (i.e. stress-free)
configuration (also named reference configuration) to which the 3D-0D model (3.24)

refers. To recover the reference configuration Ω0
biv, starting from a geometry Ω̂biv

(where a pressure p̂`v > 0 and p̂rv > 0 acts on LV and RV endocardia, respectively)
acquired from medical images (typically during the diastolic phase), we extend to the
biventricular geometries the procedure proposed for LV in [198]. We assume that the

configuration Ω̂biv is acquired during the diastole, when the biventricular geometry
is loaded with pressures π`v = p̂`v, πrv = p̂rv and a residual active tension Ta = T̂a
is present. To recover the reference configuration Ω0

biv we solve the following inverse
problem:
Find the domain Ω0

biv such that, if we inflate Ω0
biv by d, solution of the differential

problem3

∇ ·P(d, Ta(s,x)) = 0 in Ω0
biv,

P(d, Ta(s,x))N + Kvepid = 0 on Γ0
vepi,

P(d, Ta(s,x))N = −π`v JF−TN on Γ0
`v,

P(d, Ta(s,x))N = −πrv JF−TN on Γ0
rv,

P(d, Ta(s,x))N = |JF−TN|
[
π`vv

base
`v (ξ̂) + πrvv

base
rv (ξ̂)

]
on Γ0

base,

(3.25)

obtained for π`v = p̂`v, πrv = p̂rv and Ta = T̂a, we get the domain Ω̂biv.

3The problem (3.25) is derived from (M ) setting aside the time dependent terms.
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After recovering Ω0
biv, we inflate the biventricular reference configuration Ω0

biv by
solving again problem (3.25) (but now as a forward problem), where we set the pres-
sures π`v = ped`v and π`v = pedrv with the superscript ed stands for the end-diastolic
phase. In this way we obtain the end-diastolic configuration for the biventricular ge-
ometry. Hence, the solution d of the problem (3.25) and the pressures ped`v and pedrv
are set as initial conditions d0 (for d), p`v,0 (for p`v) and prv,0 (for prv) in the 3D-0D
problem (3.24). The above procedure is represented in Figure 3.6. For the numerical
resolution of the above inverse problem we refer to [199], where several algorithms,
based on fixed-point iteration schemes, are proposed.

3.2 Numerical approximation of the 3D-0D model

In this section, we illustrate the numerical discretization of the 3D-0D problem (3.24).
Specifically, we follow the segregated-intergrid-staggered (SIS) approach proposed
in [199, 209], which is extended here to the biventricular case. In the SIS numer-
ical scheme, the core models (E ) − (A ) − (M ) − (C ) are solved sequentially in a
segregated manner by using different resolutions in space and time, to properly han-
dle the different space-time scales of the core models, contributing to both cardiac EM
and blood circulation [159, 188, 187].

We begin by introducing, in Sections 3.2.1 and 3.2.2, the space and time discretiza-
tions of the 3D-0D problem (3.24), explaining how the core models (E )−(A )−(M )−
(C ) are reciprocally solved within the adopted SIS numerical scheme. Then, in Sec-
tion 3.2.3, we detail how to solve, at the algebraic level, the 3D-0D coupled problem.
In Section 3.2.4, we summarize the SIS numerical scheme. Finally, in Section 3.2.5,
we explain the strategy that we adopt to reach a limit-cycle.

3.2.1 Space discretization

For the space discretization, we use continuous Finite Element Method (FEM) built
on hexahedral meshes [186]. We consider two nested meshes Ωh1 and Ωh2 of the
computational domain Ω0

biv, where h1 and h2, with h1 < h2, represent the mesh sizes.
The mesh Ωh1

is built by uniformly refining Ωh2
[1, 40]. We adopt the finer mesh Ωh1

for (E ), where it is essential to accurately capture the dynamics of travelling waves,
while the coarser one Ωh2

is used for both (A ) and (M ), which feature larger spatial
scale [20, 199, 73], see Figure 3.7.

We employ an efficient intergrid transfer operator between the two nested grids
Ωh1

and Ωh2
, which allows to evaluate the feedback between (E ) and (A )−(M ) [199].

The intergrid transfer operator can be generalized to the case of locally-refined non
conforming nested grids. For more details about this strategy, we refer the reader
to [209].

We denote by ah(t) ≈ a(t), with either h = h1, h2, the semi-discretized FE approx-
imation of the generic (scalar ah, vectorial ah or tensorial Ah) variable a(t) : Ω0

biv ×
(0, T ] → Rd, defined over the computational mesh Ωh1

(h = h1) or Ωh2
(h = h2).

Meanwhile, we identify by ah(t) the vector collecting the DOFs associated with ah(t),
with either h = h1, h2.

We introduce the following finite dimensional space:

X rh = {vh ∈ C0(Ω
0

biv) : vh|K ∈ Qr(K) ∀K ∈ Ωh}, r ∈ N+, h = h1, h2,

where Qr(K) is the space of polynomials of degree less than or equal to r (with r ≥ 1),
over a mesh element K of either Ωh1 (h = h1) or Ωh2 (h = h2).

83



Chapter 3. Modeling the biventricular cardiac electromechanics

Figure 3.7: Nested meshes Ωh1 (on the left) and Ωh2 (on the right), with h1 < h2,
used for space discretization of the 3D-0D model: the finer mesh Ωh1

for (E ), while
the coarser one (Ωh2

) for both (A ) and (M ).

The FE approximation of the generic ah and the corresponding vector ah collecting
all the DOFs are then expressed respectively by

ah(t) =

Na∑
i=1

ai(t)ϕi and ah(t) = [ai(t), . . . , aNa(t)]T ,

where {ϕi}
Na
i=1 is the set of basis functions for the FE space [X rh1

]d withNa = dim([X rh1
]d)

and ai (i = 1, . . . , Na) are the nodal values (DOFs) of the FE approximation variable,
entering in the vector ah.

Electrophysiology (Eh1)

The semi-discretized in space formulation (Eh1
) of the monodomain system (3.1) reads:

Find (uh1
(t),wh1

(t)) ∈ X rh1
× [X rh1

]nw for all t ∈ (0, T ], given uh1
(0) and wh1

(0), such
that

χmCm

∫
Ωh1

Jh1
u̇h1

(t)ϕi dΩ + χm

∫
Ωh1

Jh1
Iion(uh1

(t),wh1
(t))ϕi dΩ +

+

∫
Ωh1

(Jh1
F−1
h1

DF−Th1
∇uh1

(t)) · ∇ϕi dΩ− χm
∫

Ωh1

Jh1
Iapp(t)ϕi dΩ = 0,

∀i = 1, . . . , Nu,∫
Ωh1

ẇh1(t) ·ϕi dΩ−
∫

Ωh1

H(uh1(t),wh1(t)) ·ϕi dΩ = 0,

∀i = 1, . . . , Nnw ,

(3.26a)

(3.26b)

where the over-dot notation is used for the time derivative and {ϕi}Nu
i=1 and {ϕi}

Nnw
i=1

are the sets of basis functions for the FE spaces X rh1
and [X rh1

]nw , with Nu = dim(X rh1
)

and Nnw = dim([X rh1
]nw), respectively. Moreover, wh1

(t) and uh1
(t) are the semi-

discretized versions of the transmembrane potential and the ionic vector variable,
respectively. The tensor Fh1 , with Jh1 = det(Fh1), is the interpolated deformation
tensor, obtained through the following procedure [1, 209]:
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3.2. Numerical approximation of the 3D-0D model

� First ∇dh2
is recovered from Ωh2

, thanks to an L2 projection [209], from the
approximated solution dh2

of problem (Mh2
) (that will be presented shortly in

this section);

� Then ∇dh2 is interpolated on Ωh1 , exploiting our intergrid transfer operator
between nested meshes [209], obtaining ∇dh1 ;

� Finally, we build Fh1 = Ih1 +∇dh1 directly on Ωh1 .

Introducing the vectors uh1
(t) and wh1

(t) collecting the DOFs associated with
uh1

(t) and wh1
(t), respectively, Equation (3.26) can be written as a system of non-

linear ODEs:
M(J)u̇h1

(t) +K(dh1
(t))uh1

(t) + Iion(uh1
(t),wh1

(t))− Iapp(t) = 0 ∀t ∈ (0, T ],

M(1)ẇh1
(t)−H(uh1

(t),wh1
(t)) = 0 ∀t ∈ (0, T ],

uh1
(0) = u0,h1

, wh1
(0) = w0,h1

t = 0,

(3.27)
where the following matrices and vectors have been defined

M(J)
ij = χmCm

∫
Ωh1

Jh1
ϕjϕi dΩ,

M(1)
ij =

∫
Ωh1

ϕj ·ϕi dΩ,

Kij(dh1
(t)) =

∫
Ωh1

(Jh1F
−1
h1

DF−Th1
∇ϕj) · ∇ϕi dΩ,

(
Iion(uh1

(t),wh1
(t))
)
i

= χm

∫
Ωh1

Jh1
Iion(uh1

(t),wh1
(t))ϕi dΩ,

(Iapp(t))i = χm

∫
Ωh1

Jh1
Iapp(t)ϕi dΩ,

(
H(uh1

(t),wh1
(t))
)
i

=

∫
Ωh1

H(uh1
(t),wh1

(t)) ·ϕi dΩ.

For the evaluation of the nonlinear term Iion(uh1
(t),wh1

(t)), three strategies are
available (see [188, 116, 170, 169] for further details). Here, we use the so-called ionic
current interpolation (ICI) approach [116], which yields a faster assembly of the ionic

term [116]. Specifically, denoting by {xKq }
Nq

q=1 and {ωKq }
Nq

q=1 the quadrature nodes and
weights of a generic mesh element K ∈ Ωh1

, the term Iion(uh1
(t),wh1

(t)) is firstly
evaluated at the DOFs and then interpolated at the quadrature nodes, i.e.∫

Ωh1

Iion(uh1
(t),wh1

(t))ϕi dΩ ≈

≈
∑

K∈Ωh1

 Nq∑
q=1

Nu∑
j=1

Iion (uj(t),wj(t))ϕj(x
K
q )ϕi(x

K
q )ωKq

 .

(3.28)

Activation (Ah2
)

The semi-discretized in space formulation (Ah2
) of MA core model (3.3) reads:
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Find sh2
(t) ∈ [X rh2

]2 for all t ∈ (0, T ], given sh1
(0), such that∫

Ωh2

ṡh2
(t) ·ϕi dΩ−

∫
Ωh2

K(sh2
(t), wCa,h2

(t), SLh2
(t)) ·ϕi dΩ = 0,

∀i = 1, . . . , Nns ,

(3.29)

where {ϕi}
Nns
i=1 is the set of basis functions for the FE space [X rh2

]2 with Nns =
dim([X rh2

]2). Furthermore, sh2(t) is the semi-discretized activation vector variable and
wCa,h2(t) is obtained by interpolating the intracellular calcium concentration variable
of TTP06 ionic model from Ωh1

to Ωh2
, using the intergrid transfer operator between

nested meshes [209]. On the other hand, SLh2
(t) is directly obtained by SLh2

=
SL0

√
I4f (dh2

), where I4f,h2
(t) = Fh2

(t)f0 ·Fh2
(t)f0. Finally, the output of (Ah2

) is
Ta,h2

(t), which denotes the semi-discretized active tension, evaluated as

Ta,h2(t) = Tmaxa G(sh2(t))
[
ξ̂h2 + C`rv(1− ξ̂h2)

]
.

Introducing the vector sh2
(t) collecting the DOFs associated with sh2

(t), Equa-
tion (3.29) can be written as a system of ODEs:{

M(2)ṡh2
(t)−K(sh2

(t), wCah2
(t), SLh2

(t)) = 0 ∀t ∈ (0, T ],

sh2
(0) = s0,h2

t = 0,
(3.30)

where the following matrices and vectors have been defined

M(2)
ij =

∫
Ωh2

ϕj ·ϕi dΩ,(
K(sh2

(t), wCah2
(t), SLh2

(t))
)
i

=

∫
Ωh2

K(sh2(t), wCa,h2(t), SLh2(t)) ·ϕi dΩ.

Finally, the semi-discretized active tension, evaluated in the DOFs, reads:

Tah2
(t) = Tmaxa G(sh2

(t))
[
ξ̂
h2

+ C`rv(1− ξ̂h2
)
]
.

Mechanics (Mh2
)

The semi-discretized in space formulation (Mh2) of TM core model (3.4) reads:
Find dh2

(t) ∈ [X sh2
]3 for all t ∈ (0, T ], given dh2

(0) and ḋh2
(0), such that∫

Ωh2

ρsd̈h2
(t) ·ϕi dΩ +

∫
Ωh2

P(dh2
(t), Ta,h2

(t)) : ∇ϕidΩ +

−
∫

Γvepi
h2

[
(Nh2

⊗Nh2
)
(
Kvepi
⊥ dh2

(t) + Cvepi⊥ ḋh2
(t)
)

+

+(Nh2 ⊗Nh2 − I)
(
Kvepi
‖ dh2(t) + Cvepi‖ ḋh2(t)

)]
·ϕi dΓ +

+ p`v(t)

∫
Γ`v
h2

Jh2
F−Th2

Nh2
·ϕi dΓ− p`v(t)

∫
Γbase
h2

|Jh2
F−Th2

Nh2
|vbase`v,h2

·ϕi dΓ +

+ prv(t)

∫
Γrv
h2

Jh2
F−Th2

Nh2
·ϕi dΓ− prv(t)

∫
Γbase
h2

|Jh2
F−Th2

Nh2
|vbaserv,h2

·ϕi dΓ = 0

∀i = 1, . . . , Nd,

(3.31)
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3.2. Numerical approximation of the 3D-0D model

where4 we denoted by [X rh2
]3 the finite dimensional subspace of vector valued functions

and by {ϕi}
Nd

i=1 its basis, with Nd = dim([X rh2
]3), and we introduced

vbase`v,h2
= ξ̂h2

∫
Γ`v
h2

Jh2F
−T
h2

Nh2 dΓ∫
Γbase
h2

ξ̂h2
|Jh2

F−Th2
Nh2
| dΓ

,

vbaserv,h2
= (1− ξ̂h2

)

∫
Γrv
h2

Jh2
F−Th2

Nh2
dΓ∫

Γbase
h2

(1− ξ̂h2)|Jh2F
−T
h2

Nh2 | dΓ
.

Moreover, Ta,h2(t) is given by the solution of problem (Ah2), previously described.
Denoting by dh2

(t) the vector collecting the DOFs associated with dh2(t), the
corresponding algebraic formulation of Equation (3.31) reads:

ρsM(2)d̈h2
(t) + F ḋh2

(t) + Gdh2
(t) + S(dh2

(t), Tah2
(t))+

− p`v(t)B`v(dh2
(t))− prv(t)Brv(dh2

(t))+

+ p`v(t)P `v(dh2
(t)) + prv(t)P rv(dh2

(t)) = 0 ∀t ∈ (0, T ],

dh2
(0) = d0,h2

, ḋh2
(0) = ḋ0,h2

t = 0,
(3.32)

where the following matrices and vectors have been defined

Si(dh2
(t), Tah2

(t)) =

∫
Ωh2

P(dh2
(t), Ta,h2

(t)) : ∇ϕi dΩ,

Fij =

∫
Γvepi
h2

[
Cvepi‖ (Nh2

⊗Nh2
− Ih2

)− Cvepi⊥ (Nh2
⊗Nh2

)
]
ϕj ·ϕi dΓ,

Gij =

∫
Γvepi
h2

[
Kvepi
‖ (Nh2

⊗Nh2
− Ih2

)−Kvepi
⊥ (Nh2

⊗Nh2
)
]
ϕj ·ϕi dΓ,

(Bk(dh2
(t)))i =

∫
Γbase
h2

|Jh2
F−Th2

Nh2
|vbasek,h2

·ϕi dΓ, k = `v, rv.

(P k(dh2
(t)))i =

∫
Γk
h2

Jh2
F−Th2

Nh2
·ϕi dΓ, k = `v, rv.

Equations (3.27), (3.30) and (3.32) provide the splitted semi-discretization in space
of the entire 3D EM model.

3.2.2 Time discretization

For the time discretization, we employ Finite Difference (FD) schemes [189] in a
staggered approach: different time step sizes are used for the core models (E )− (A )−
(M )−(V )−(C ), allowing to separate and properly manage the temporal scales related
to the cardiac 3D-0D problem (3.24).

We consider a coarse uniform subdivision 0 = t0 < t1 < · · · < tN = T of the
time interval [0, T ] with a time step size ∆t, and a finer one with τ = ∆t/Nsub, where
Nsub ∈ N, see Figure 3.8. We adopt the finer time-grid, with τ , to account for the
faster dynamics of (E ), and the coarser one, with ∆t, for (A ) − (M ) − (V ) − (C ),

4Notice that in the space discretization (3.31) of the TM core model (3.4), we set π`v = p`v and
πrv = prv in order to be complaint with the 3D-0D problem (3.24).
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Figure 3.8: Graphical representation of the time advancement scheme.

which are characterized by a larger temporal scales [20, 199, 73]. In particular, the
cardiac EP model is solved by means of the Backward Difference Formulae (BDF)
discretization of order σ ≥ 2 (BDFσ), adopting an implicit-explicit (IMEX) scheme,
denoted by (EIMEX) [193, 199, 152]. For the MA we employ an explicit BDF1 time
scheme, marked as (AE), whereas for TM we use a fully implicit scheme, indicated by
(MI)− (VI) [199]. Finally, we utilize an explicit BDF1 for (CE) [199], see Figure 3.8.

To denote a generic variable at the n-th time step, we use the n superscript, e.g.
an ≈ a(tn). Finally, we denote by anh ' ah(tn) (with either h = h1, h2) the vector
collecting the DOFs associated to the fully discretized FEM problem, for the generic
variable a(t) (scalar a, vectorial a or tensorial A).

We begin our time advancing scheme, from tn to tn+1, with the problem (EIMEX),

which is the time discretization of the system (3.27). Once we set t
n+ m

Nsub = tn +mτ ,
for m = 1, . . . , Nsub, (EIMEX) reads as follows:

� We find w
n+ m

Nsub

h1
defined on Ωh1

by solving:

αBDFσ

τ
M(1)w

n+ m
Nsub

h1
=

1

τ
M(1)wn

h1,BDFσ +H(u
n+ m

Nsub

h1,EXTσ,w
n+ m

Nsub

h1,EXTσ,w
n+ m

Nsub

h1
),

(3.33)
where αBDFσ and wn

h1,BDFσ are the terms associated to the BDFσ discretization
of the time derivative ẇh1

, while the subscript EXTσ denotes the extrapolation
to time step n + m

Nsub
, from previous time steps, given by the BDFσ at hand

[70]. Specifically, for the ionic variables 5 we employ an explicit (extrapolation)

treatment of the ionic concentration variables (indicated withw
n+ m

Nsub

h1,EXTσ) to avoid
the solution of a nonlinear system. This does not compromise the stability of the
scheme, thanks to the non-stiff dynamics of concentrations. On the other hand,

we use an implicit treatment of the gating variables (referred tow
n+ m

Nsub

h1
), due to

the severe CFL condition on the time step induced by an explicit scheme. Indeed,
thanks to the linear dynamics of the gating variables, such implicit handling does
not require the solution of a system of linear or nonlinear equations [193]. The
following approach is an extension, to the BDFσ case, of the first order IMEX
scheme proposed in [193].

5We recall that the ionic vector variable w is constituted by the ionic concentrations and gating
variables. More precisely, the 18 ionic variables TTP06 model embeds 6 ionic concentrations (fea-
turing a nonlinear but non-stiff dynamics) and 12 gating variables (linear but with an highly stiff
dynamics) [193].

88



3.2. Numerical approximation of the 3D-0D model

� We interpolate dnh2
on the finer mesh Ωh1

once per time step, at t = tn, obtaining

dnh1
. We use w

n+ m
Nsub

h1
from (3.33) and dnh1

to find u
n+ m

Nsub

h1
over Ωh1 by solving:(αBDFσ

τ
M(J) +K(dnh1

) + Iionu

(
u
n+ m

Nsub

h1,EXTσ,w
n+ m

Nsub

h1

))
u
n+ m

Nsub

h1
=

1

τ
M(J)unh1,BDFσ − Ĩ

ion
(
u
n+ m

Nsub

h1,EXTσ,w
n+ m

Nsub

h1

)
+ Iapp

(
t
n+ m

Nsub

)
,

(3.34)

where Iionu is the derivative of the terms of Iion that linearly depends on uh1
,

while Ĩ
ion

collects all the other terms.

After having solved (EIMEX), by means of Equations (3.33) and (3.34) for Nsub steps,
we advance, from tn to tn+1, (AE)–(MI)–(VI)–(CE) in the following way:

� We interpolate the calcium ionic variable wn+1
Ca,h1

from (3.33) on the coarser mesh

Ωh2
, obtaining wn+1

Ca,h2
, and we find sn+1

h2
by solving (AE) as follows:

1

∆t
M(2)sn+1

h2
=

1

∆t
M(2)snh2

+K(snh2
, wCa

n+1
h2

, SLnh2
). (3.35)

where SLnh2
is obtained using SLnh2

= SL0

√
I4f (dnh2

). Finally, we evaluate the
fully discretized active tension, obtained as

Ta
(n+1)
h2

= Tmaxa G
(
s

(n+1)
h2

) [
ξ̂
h2

+ C`rv(1− ξ̂h2
)
]
.

� We use Ta
(n+1)
h2

, to update dn+1
h2

, pn+1
`v and pn+1

rv by solving the system (MI)–(VI):

(
ρs

1

∆t2
M(2) +

1

∆t
F + G

)
dn+1
h2

+ S(dn+1
h2

, Ta
(n+1)
h2

)+

+ pn+1
`v P `v(d

n+1
h2

) + pn+1
rv P rv(d

n+1
h2

)+

− pn+1
`v B`v(d

n
h2

)− pn+1
rv Brv(d

n
h2

) =

= ρs
2

∆t2
M(2)dnh2

− ρs
1

∆t2
M(2)dn−1

h2
+

1

∆t
Fdnh2

,

V 3D
`v (dn+1

h2
) = V`v(c

n),

V 3D
rv (dn+1

h2
) = Vrv(c

n).

(3.36)

� Finally, we update cn+1, using pn+1
`v and pn+1

rv , by solving (CE) with the forward
Euler method (BDF1):

cn+1 = cn + ∆tGB

(
tn, cn, pn+1

`v , pn+1
rv

)
. (3.37)

In the next Section 3.2.3, we provide details about the numerical resolution, at the
algebraic level, of the coupled problem (3.36). We refer the reader to Sections 3.1.6
and 3.2.1 for a detailed description of the terms involved in the problem (3.36).

3.2.3 Numerical solution of the 3D-0D coupled problem

Equation (3.36) is a non-linear saddle-point problem, which is numerically solved by
means of a Newton strategy employing the Schur complement reduction [28].
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The fully discretized version of (MI) − (VI), expressed by the system (3.36), can
be compactly written as: 

rd(dn+1
h , pn+1

`v , pn+1
rv ) = 0

rp`v (dn+1
h ) = 0

rprv (dn+1
h ) = 0

(3.38)

where we moved all the terms to the right hand side and rp`v , rprv and rd are suitable
functions. Moreover, h = h2 is understood.

We solve the non-linear saddle-point problem (3.38) by means of the following New-
ton algorithm (where the temporal index n+ 1 is understood) using, at the algebraic
level, the Schur complement reduction [28]:

� We initialize, for j = 0, d
(0)
h = dnh, p

(0)
`v = pn`v and p

(0)
rv = pnrv

� For j = 1, 2, . . . , we solve the linear systemJ
(j−1)
d,d J

(j−1)
d,p`v

J
(j−1)
d,prv

J
(j−1)
p`v,d

0 0

J
(j−1)
prv,d

0 0


∆d

(j)
h

∆p
(j)
`v

∆p
(j)
rv

 =

r
(j−1)
d

r
(j−1)
p`v

r
(j−1)
prv

 , (3.39)

where

J
(j−1)
d,d = ∂

∂drd(d
(j−1)
h , p

(j−1)
`v , p

(j−1)
rv ),

J
(j−1)
d,p`v

= ∂
∂p`v

rd(d
(j−1)
h , p

(j−1)
`v , p

(j−1)
rv ), J

(j−1)
d,prv

= ∂
∂prv

rd(d
(j−1)
h , p

(j−1)
`v , p

(j−1)
rv ),

J
(j−1)
p`v,d

= ∂
∂drp`v (d

(j−1)
h ), J

(j−1)
prv,d

= ∂
∂drprv (d

(j−1)
h ),

� We update

d
(j)
h = d

(j−1)
h −∆d

(j)
h , p

(j)
`v = p

(j−1)
`v −∆p

(j)
`v and p

(j)
rv = p

(j−1)
rv −∆p

(j)
rv .

� When the convergence criterion (based on the increment) is satisfied, we set

dn+1
h = d

(j)
h , pn+1

`v = p
(j)
`v and pn+1

rv = p
(j)
rv .

We solve the saddle-point problem (3.39) via Schur complement reduction [28]. Specif-
ically, system (3.38) can be written as

Jd,d∆dh + Jd,p`v∆p`v + Jd,prv∆prv = rd

Jp`v,d∆dh = rp`v
Jprv,d∆dh = rprv

, (3.40)

where for simplicity we omitted the superscript (j). Deriving ∆dh form the first
equation of (3.40) we have

∆dh = J−1
d,d(rd − Jd,p`v∆p`v − Jd,prv∆prv)

Jp`v,dJ
−1
d,drd − Jp`v,dJ

−1
d,dJd,p`v∆p`v − Jp`v,dJ

−1
d,dJd,prv∆prv = rp`v

Jprv,dJ
−1
d,drd − Jprv,dJ−1

d,dJd,p`v∆p`v − Jprv,dJ−1
d,dJd,prv∆prv = rprv

. (3.41)

System (3.41) can be written as
∆dh = J−1

d,d(rd − Jd,p`v∆p`v − Jd,prv∆prv)

Jp`v,dJ
−1
d,dJd,p`v∆p`v + Jp`v,dJ

−1
d,dJd,prv∆prv = Jp`v,dJ

−1
d,drd − rp`v

Jprv,dJ
−1
d,dJd,p`v∆p`v + Jprv,dJ

−1
d,dJd,prv∆prv = Jprv,dJ

−1
d,drd − rprv

. (3.42)
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Introducing

αLL = Jp`v,dwL, αLR = Jp`v,dwR, αRL = Jprv,dwL, αRR = Jprv,dwR,

bL = Jp`v,dv − rp`v , bR = Jprv,dv − rprv ,
with

wL = J−1
d,dJd,p`v wR = J−1

d,dJd,prv , v = J−1
d,drd. (3.43)

System (3.42) reads: 
∆dh = v −wL∆p`v −wR∆prv

αLL∆p`v + αLR∆prv = bL

αRL∆p`v + αRR∆prv = bR

. (3.44)

Solving Equation (3.44) we obtain

∆dh = v −wL∆p`v −wR∆prv,

∆p`v =
bLαRR + bRαLR

αLLαRR − αRLαLR
, ∆prv =

bRαLL + bLαRL

αLLαRR − αRLαLR
. (3.45)

Notice that we have to the solve three linear systems (3.43) in order to obtain the
solution (3.45).

3.2.4 Segregated-Intergrid-Staggered scheme

In summary, for the numerical approximation of the 3D-0D coupled model (3.24) we
follow the approach proposed in [199], which is extended here to the biventricular
case. The core models (E ) − (A ) − (M ) − (C ) are solved sequentially in a segre-
gated manner by using different resolutions in space and time, to properly handle the
different space and time scales of the core models contributing to both cardiac EM
and blood circulation [159, 188, 187]. For this reason we call this numerical approach
Segregated-Intergrid-Staggered (SIS).

For the space discretization, we use FEM with continuous FE and hexahedral
meshes. We consider two nested meshes Ωh1

and Ωh2
of the computational domain

Ω0
biv (with h1 < h2), where Ωh1

is built by uniformly refining Ωh2
[1, 40]. We adopt

the finer mesh Ωh1
for (E ), while the coarser one Ωh2

is used for both (A ) and (M ).
We employ an efficient intergrid transfer operator between the nested grids Ωh1

and Ωh2 , which allows to evaluate the feedback between (E ) and (A )− (M ) [199]. In
[199], the displacement field d is interpolated on Ωh1 and ∇d is assembled on the fine
mesh directly. Here, we follow the more effective strategy proposed in [209], where ∇d
is recovered on Ωh2

thanks to an L2 projection [1]. Then, ∇d is interpolated on Ωh1
.

For the time discretization, we use FD schemes [189]. The cardiac EP model is
solved by employing BDFσ (with σ ≥ 2). We adopt an IMEX scheme, denoted by
(EIMEX) with the ICI approach, where the diffusion term is treated implicitly, whereas
the ionic and reaction terms explicitly [199, 152]. For MA, TM and fluid problems
we employ the BDF1 scheme, where (AE) and (CE) advanced in time with an explicit
method, whereas a fully implicit scheme is used for (MI)− (VI) [199].

We use two different time steps, ∆t for (AE)−(MI)−(VI)−(CE) and τ = ∆t/Nsub
for (EIMEX), with Nsub ∈ N. We first update the variables of (EIMEX), then those of
(AE) and finally, after updating the unknowns of (MI)− (VI), we update the ones of
(CE), see Figure 3.9.

The whole algorithm for the SIS numerical scheme is reported in Figure 3.9.
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Figure 3.9: Graphical representation of the SIS numerical scheme employed to numer-
ically solve the 3D-0D problem (3.24).

3.2.5 Setting initial conditions for the multiphysics problem

The numerical results of the 3D-0D biventricular model typically feature a tempo-
ral transient, which lasts for several heartbeats and converges to a periodic solution,
known as limit cycle. The outputs of clinical interest should be computed from the
numerical solution that is associated with the limit cycle. To reduce the compu-
tational overhead of reaching a periodic solution, we follow the strategy proposed
in [197], aimed at accelerating the convergence towards the limit cycle. This strategy
– named 3D-0D-3D V-cycle – comprises three stages (see Figure 3.10). In a first step,
three heartbeats are simulated with the 3D-0D model. Then, based on the PV-loops
obtained from the previous 3D-0D model, a 0D emulator of each ventricle is built
with the aim of surrogating the pressure-volume relationships, and substituted to the
3D model. These emulators, coupled with the 0D model of blood circulation for the
remaining compartments, allow to simulate the transient phase toward a periodic solu-
tion in less than one minute of computational time on a standard laptop. Finally, the
state obtained by means of this fully 0D model is used to initialize the 3D-0D model,
and three additional heartbeats are simulated. Overall, the computational cost of
reaching the limit cycle amounts to that of simulating six heartbeats, regardless of
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Figure 3.10: Graphical display of the 3D-0D-3D V-cycle for the initialization of a
numerical simulation employing the 3D-0D biventricular model. See [197] for further
details.

the number of cycles required to converge to a periodic solution. As a matter of fact,
the computational time required by the 0D surrogate model is negligible compared
to that of the full-order 3D-0D model. More details on this procedure are available
in [197].

To find an initial guess for the remaining variables, we initialize the ionic model
by running a 1000-cycle long single-cell simulation. Similarly, we initialize the force
generation model by means of a single-cell simulation with a constant calcium input
(corresponding to the final calcium concentration of the single-cell ionic simulation)
and a reference sarcomere length SL = 2.2 mm.

3.3 Numerical results for biventricular electrome-
chanics

In this section, we presents some biventricular EM simulations that employ the 3D-0D
model discussed in Sections 3.1 and 3.2.

We organize this section as follows. After a brief description regarding the setting
of the numerical simulations (Section 3.3.1), we compare the results of a physiological
EM simulation with a comprehensive set of experimental data available in literature
(Section 3.3.2). Then, in Section 3.3.3 we investigate how different cross-fibers active
contraction arrangements affect the electromechanical simulations, by setting different
combinations of nf , ns and nn, i.e. of the prescribed proportion of active tension
along the myofibers, see Equation (3.5). Finally, in Section 3.3.4 we evaluate the
impact of different myofiber architectures, obtained by three types of LDRBMs, on
the biventricular pumping function.
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Variable Value Unit Description

Electrophysiology
THB 0.8 s Heartbeat duration
χm 1 µF/cm2 Surface-to-volume ratio
Cm 1400 cm−1 Transmembrane capacitance
ε 0.01 − Threshold of the fast conduction layer
(σ`,fast, σt,fast, σn,fast) (4.28, 1.96, 0.64) mS/cm Fast layer conductivities
(σ`,myo, σt,myo, σn,myo) (1.07, 0.49, 0.16) mS/cm Myocardial conductivities
Imax 50 · 103 µA/cm3 Applied current value
tapp 3.0 ms Applied current duration
t0LV,app (0.0,0.0,0.0) ms Applied current LV initial times

t0RV,app (5.0,5.0) ms Applied current RV initial times

δapp 2.5 mm Applied current radius

Mechanics
ρs 103 kg m−3 Tissue density

Kvepi
‖ 2 · 104 Pa m−1 Normal stiffness of epicardium

Kvepi
⊥ 2 · 105 Pa m−1 Tangential stiffness of epicardial tissue

Cvepi⊥ 2 · 104 Pa s m−1 Normal viscosity of epicardial tissue

Cvepi‖ 2 · 103 Pa s m−1 Tangential viscosity of epicardial tissue

a 0.88 · 103 Pa Material stiffness
κ(G) 50 · 103 Pa Bulk modulus
bff 8 − Fiber strain scaling
bss 6 − Radial strain scaling
bnn 3 − Cross-fiber in-plain strain scaling
bfs 12 − Shear strain in fiber-sheet plane scaling
bfn 3 − Shear strain in fiber-normal plane scaling
bsn 3 − Shear strain in sheet-normal plane scaling

Reference Configuration
p̂`v 600 Pa Residual left ventricular pressure
p̂rv 400 Pa Residual right ventricular pressure

T̂a 350 · 103 Pa Residual active tension
C`rv 1 − Residual contractility ratio

Activation
SL0 2 mm Reference sarcomere length
Tmaxa 840 · 103 Pa Maximum tension
C`rv 0.60 − Contractility ratio

Table 3.1: Input parameters of the 3D EM model.

3.3.1 Settings of numerical simulations

All the simulations are performed on a realistic biventricular geometry processed from
the Zygote 3D heart [107], a CAD-model representing an average healthy human
heart reconstructed from high-resolution CT-scan. To build the computational mesh
associated with the biventricular Zygote model, we use the vmtk software [10] (http:
//www.vmtk.org) by exploiting the semi-automatic meshing tool recently proposed
in [66].

For the space discretization, we used continuous bilinear FE (Q1) and we employ
two nested meshes where for the mechanical and activation problems we adopt a mesh
size of 3 mm, while for the electrophysiology problem we employ a mesh size four time
smaller [199]. For the time discretization, we use BDF2 with τ = 50µs for EP problem
and BDF1 with ∆t = 500µs for TM, MA and fluid problems [199, 176].

The parameters of the 3D-0D model used for all the simulations presented in
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Variable Value Unit Description

Circulation
Rsysar 0.416 mmHg s mL−1 Resistance of systemic arterial system
Rsysven 0.260 mmHg s mL−1 Resistance of systemic venous system
Rpular 0.048 mmHg s mL−1 Resistance of pulmonary arterial system
Rpulven 0.036 mmHg s mL−1 Resistance of pulmonary venous system
Csysar 1.62 mL mmHg−1 Capacitance of systemic arterial system
Csysven 60.00 mL mmHg−1 Capacitance of systemic venous system
Cpular 5.00 mL mmHg−1 Capacitance pulmonary arterial system
Cpulven 16.00 mL mmHg−1 Capacitance of pulmonary venous system
Lsysar 5 · 10−3 mmHg s2 mL−1 Impedance of systemic arterial system
Lsysven 5 · 10−4 mmHg s2 mL−1 Impedance of systemic venous system
Lpular 5 · 10−4 mmHg s2 mL−1 Impedance pulmonary arterial system
Lpulven 5 · 10−4 mmHg s2 mL−1 Impedance of pulmonary venous system
EA`a 0.09 mmHg mL−1 Left atrium elastance amplitude
EAra 0.06 mmHg mL−1 Right atrium elastance amplitude
EB`a 0.07 mmHg mL−1 Left atrium elastance baseline
EBra 0.07 mmHg mL−1 Right atrium elastance baseline
T ac`a 0.17 − Duration of left atrium contraction (w.r.t. Thb)
T acra 0.17 − Duration of right atrium contraction (w.r.t. Thb)
tac`a 0.80 − Initial time of left atrium contraction (w.r.t. Thb)
tacra 0.80 − Initial time of right atrium contraction (w.r.t. Thb)
T ar`a 0.17 − Duration of left atrium relaxation (w.r.t. Thb)
T arra 0.17 − Duration of right atrium relaxation (w.r.t. Thb)
V0,la 4.0 mL Left atrium resting volume
V0,ra 4.0 mL Right atrium resting volume
Rmin 75 · 10−4 mmHg s mL−1 Valves minimal resistance
Rmax 75 · 103 mmHg s mL−1 Valves maximum resistance

Table 3.2: Input parameters of the 0D closed-loop hemodynamical model.

Physics/Fields Linear solver (preconditioner) Abs. tol.

Fiber Laplace problems GMRES(AMG) 10−10

Monodomain model CG (AMG) 10−10

Activation GMRES (AMG) 10−10

Mechanics GMRES (AMG) 10−10

Reference configuration GMRES (AMG) 10−6

Table 3.3: Tolerances of the linear solver for the different core models.

Physics/Fields non-linear solver Rel. tol. Abs. tol.

Mechanics Newton 10−10 10−8

Reference configuration Newton 10−6 10−4

Table 3.4: Tolerances of the non-linear solver for the mechanical problem.
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Section 3.3 are listed in Tables 3.1 and 3.2. In particular, Table 3.1 contains the
parameters of the 3D EM model (referred to E , A , M ) and Table 3.2 those of the
0D closed-loop hemodynamical model (C ). Moreover, for the TTP06 ionic model,
we use the parameters (for epicardium cells) reported in [247], while for the RDQ18-
ANN model, we employ those in [196]. Tables 3.3 and 3.4 report the setting used
for the linear and non-linear solvers, respectively. The settings related to LDRBMs,
adopted for prescribing the fiber architectures, will be specified for each case reported
in Sections 3.3.2 – 3.3.3.

To approach the limit cycle, we initialize all the numerical simulations following the
procedure illustrated in Section 3.2.5 (see also [197]). Then, we perform three further
heartbeats using the fully framework of the 3D-0D model presented in Sections 3.1
and 3.2. We neglected the first two, so that all the reported results refer to the last
heartbeat.

In all the simulations we adopted the same pacing protocol in which five ventricular
endocardial areas are activated by spherical impulses (see Table 3.1): in the anterior
para-septal wall, in the left surface of inter-ventricular septum and in the bottom of
postero-basal area, for LV; in the septum and in the free endocardial wall, for RV [176,
59], see also Figure 3.2. This, combined with the fast endocardial conduction layer
(see Section 3.1.2), surrogates the action of the Purkinje network [127, 252].

3.3.2 Baseline physiological simulation

We present a human EM simulation in physiological conditions related to the Zygote
biventricular geometry.

For the fibers generation we adopted D-RBM [176, 58] (see Section 3.1.1). The
input angle values were chosen according to observations based on histological studies
in the human heart [134, 9]:

αepi,LV = −60◦, αendo,LV = +60◦, αepi,RV = −25◦, αendo,RV = +90◦;

βepi,LV = +20◦, βendo,LV = −20◦, βepi,RV = +20◦, βendo,RV = 0◦.
(3.46)

Moreover, to surrogate the effect of dispersed myofibers, we set in (3.5) nf = 0.7,
ns = 0 and nn = 0.3 for the proportion of active tension along the fiber, sheet and
normal directions, respectively [87, 3].

Figure 3.11 illustrates the time evolution of calcium ions concentration (a), the
mechanical deformation (b, e), the activation times (c), the PV-loop curves for both
ventricles and the time evolution of pressures and volumes of the four chambers (d).
Specifically, in Figure 3.11(a) we display the time evolution of the TTP06 ionic model
calcium transient showing the physiological wave propagation up to the complete de-
polarization of both ventricles (t = 0.12 s). In Figure 3.11(b) we report different snap-
shots of the biventricular geometry warped by the displacement vector. As expected,
at the beginning of the contraction the volumes of both ventricles remain nearly con-
stant while the pressure increases (t = 0.0 − 0.10 s); during the ejection phase, the
ventricular contraction is clearly visible, with the basal plane that moves towards the
bottom while the apex remains almost fixed. Moreover, a significant thickening of the
myocardium wall takes place (t = 0.35 s). Then, the ventricles start to relax. This
leads to a slow recovery of the initial volumes (t = 0.45 ÷ 0.60 s). Finally, in Fig-
ure 3.11(c) we display the simulated activation map in which both the total activation
time (120 ms) and the activation pattern are in accordance with the literature [176,
59]. PV-loops morphologies, showed in Figure 3.11(c), for both LV and RV, are in
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Figure 3.11: Baseline electromechanical simulation; (a) calcium transient at five time
instants in the cardiac cycle; (b) mechanical displacement magnitude (with respect to
the reference configuration) at five time instants of the heartbeat where 0.35 s is the
end of systole. (c) activation map; (d, left) PV-loop LV (orange) and RV (blue); (d,
right) pressures (top) and volumes (bottom) transient during the cardiac cycle for the
four chambers; (e) mid ventricular slices at the end of systole, showing LFS on the
left and WT on the right.
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Mechanical biomarkers Literature values Simulation results Description

EDVLV (mL) 142 ± 21 [137] 137 Left end diastolic volume
EDVRV (mL) 144 ± 23 [138] 138 Right end diastolic volume
ESVLV (mL) 47 ± 10 [137] 48 Left end systolic volume
ESVRV (mL) 50 ± 14 [138] 49 Right end systolic volume
EFLV (%) 67 ± 5 [137] 66 Left ventricular ejection fraction
EFRV (%) 67± 8 [238] 65 Right ventricular ejection fraction
PLV (mmHg) 119 ± 13 [236] 117 Left systolic pressure peak
PRV (mmHg) 35 ± 11 [31] 35 Right systolic pressure peak
LFS (%) 13-21 [61] 21 Longitudinal fractional shortening
WT (%) 18-100 [219] 41 Fractional wall thickening

Table 3.5: Comparison between the simulation results, employing the 3D-0D biventric-
ular model, and literature values of mechanical biomarkers in physiological conditions
(references are reported in the Table, see also [130, 260]).

accordance with other physiological PV-loop curves found in literature[137]. In Ta-
ble 3.5 we compare some relevant mechanical biomarkers obtained by our numerical
simulation with those provided by the data reported in the literature [137, 238, 138,
236, 31, 61, 219]. Notice that all the values in Table 3.5, related to the ventricular
volumes, are expressed with absolute values, in mL, estimated for an adult subject, as
reported in the quoted references. However, we are aware that in the clinical practice
the ventricular volumes are always indicated as “indexed ventricular volumes”, by
dividing the ventricular volume for the Body Surface Area of the related patient.

The chosen mechanical biomarkers were: i) left and right end diastolic/systolic vol-
umes (EDVLV, EDVRV, ESVLV, ESVRV), representing the maximal and minimal left
and right ventricular volumes achieved during the heartbeat, computed as the maxi-
mal (EDVLV, EDVRV) and minimal (ESVLV, ESVRV) volumes in the PV-loop curves,
see Figure 3.11(d); ii) left and right ventricular ejection fractions (EFLV, EFRV), which
represent the amount of blood that is pumped by LV and RV during a cardiac cycle,
computed as

EFi(%) =
EDVi − ESVi

EDVi
100 i = LV,RV;

iii) left and right ventricular systolic pressure peaks (PLV, PRV), the maximal pressures
reached in LV and RV, computed as the maximal pressures in the PV-loop curves, see
Figure 3.11(d); iv) the systolic longitudinal fractional shortening (LFS), standing for
the fractional displacement between the epicardial apex and the base [130], evaluated
as

LFS(%) =
L0 − L

L0
100,

where L0 and L are the apico-basal distance measured at the beginning (t = 0.0 s) and
at the end of systole (t = 0.35 s), see Figure 3.11(e); v) the systolic wall thickening
(WT), representing the fractional cardiac wall thickening [130], measured as

WT(%) =
T− T0

T
100,

where T0 and T are the cardiac wall thickening at the beginning (t = 0.0 s) and at
the end of systole (t = 0.35 s), see Figure 3.11(e).

All the above mechanical biomarkers, obtained by our numerical simulation, fall
within the physiological range (references in Table 3.5).

98



3.3. Numerical results for biventricular electromechanics

Cross-fiber configuration EFLV EFRV SVLV SVRV

i) nf = 0.7, ns = 0.3, nn = 0 45 % 44 % 70.69 mL 71.04 mL
ii) nf = 1, ns = 0.3, nn = 0 54 % 53 % 79.40 mL 79.50 mL
iii) nf = 1, ns = 0, nn = 0 65 % 64 % 89.14 mL 89.08 mL
iv) nf = 0.7, ns = 0, nn = 0.3 66 % 65 % 89.27 mL 89.23 mL
v) nf = 1, ns = 0, nn = 0.3 69 % 67 % 91.14 mL 91.09 mL

Table 3.6: Ejection fraction (EFi) of the left (i = LV) and right (i = RV) ventricles
for the different cross-fibers active contraction cases i−v. The stroke volume (SVi) of
the two ventricles is also shown.

3.3.3 Cross-fibers active contraction in cardiac electromechan-
ics

To surrogate the dispersion effect in the cardiac fibers, we analyse several cross-fibers
active contraction arrangements, by setting in (3.5) different combinations of nf , ns
and nn, i.e. the prescribed proportion of active tension along the myofibers. Five
different sets were chosen: i) nf = 0.7, ns = 0.3, nn = 0; ii) nf = 1, ns = 0.3, nn = 0;
iii) nf = 1, ns = 0, nn = 0; iv) nf = 0.7, ns = 0, nn = 0.3; v) nf = 1, ns = 0,
nn = 0.3. Apart from the prescribed proportion of active tension, the settings are the
same as the baseline simulation6 presented in Section 3.3.2.

Figure 3.12(a) shows the PV-loops from the five cases. An active tension along the
sheet direction (ns > 0, cases i and ii) produces a PV-loop with a reduced area com-
pared to case iii with no cross-fibers active contraction. Conversely, an active tension
along the normal direction (nn > 0, cases iv and v) yields a PV-loop with an increased
area. Table 3.6 displays, for all the cases, the ejection fraction (EFi) and the stroke
volume (SVi = EDVi − ESVi) of the left (i = LV) and right (i = RV) ventricles. The
maximal cardiac work is achieved for case v while the minimal for case i. The above
analysis shows that the active tension along the sheet direction (ns > 0) counteracts
the myofiber contraction, while the one along the normal direction (nn > 0) enhances
the cardiac work, in accordance to [87, 88, 79].

In order to better appreciate the differences among the arrangements of cross-
fibers active contraction , we further compared cases i and iv with case iii. In these
particular cases, the proportion of active tension sums up to 1 (nf + ns + nn = 1),
meaning that the myofibers contraction is redistributed along the three directions:
case iii (nf = 1, ns = 0, nn = 0) is a pure fiber contraction, in the following denoted
by f configuration; case i (nf = 0.7, ns = 0, nn = 0.3) is a contraction in the fiber
and normal directions, hereafter indicated by f -n configuration; case iv (nf = 0.7,
ns = 0.3, nn = 0) is a contraction along the fiber and sheet directions, named f -s
configuration.

Figure 3.12(b) illustrates the mechanical displacements at the end of systole (0.35 s)
for the three considered configurations (f , f -n and f -s). Both the apico-basal short-
ening and the wall thickening is dramatically reduced for f -s configuration. Almost
the same mechanical contraction is achieved for f and f -n configurations with a
slightly more pronounced longitudinal shortening and wall thickening for f -n configu-
ration. The LFS and WT are reported in Table 3.7. We also evaluate the components

6Notice that case iv is the baseline simulation.
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Figure 3.12: Cross-fibers active contraction simulations; (a) PV-loops from several
cross-fibers active contraction arrangements built by setting in (3.5) different com-
binations of nf , ns and nn; (b) mechanical displacements (top) and mid ventricular
slices at the end of systole (0.35 s), showing LFS (middle) and WT (bottom) for
redistributed cross-fibers active contraction configurations: a pure fiber f (blue), a
fiber-normal f -n (orange) and a fiber-sheet f -s (green) contractions; (c) circumferen-
tial stress Sff (top-right) at the peak pressure time instant (0.1 s) and the time trace
of the average, minimum and maximum axial stresses Sff (top-left), Sss (bottom-left)
and Snn (bottom-right) for f , f -n and f -s configurations.
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Cross-fiber configuration LFS WT

iii) f 17 % 30 %
iv) f -n 21 % 41 %
i) f -s 7 % 8 %

Table 3.7: LFS and WT for the three configurations of redistributed myofibers active
contraction (f , f -n and f -s).

of the mechanical stress by means of the following indicators [199]:

Sff = (Pf0) · Ff0
|Ff0|

, Sss = (Ps0) · Fs0

|Fs0|
, Snn = (Pn0) · Fn0

|Fn0|
,

where f0, s0 and n0 are the myofiber directions, P is the first Piola-Kirchhoff stress
tensor and F is the deformation gradient tensor. The metric Saa (with a = f, s, n)
measures the axial stresses along the circumferential (a = f), radial (a = s) and
longitudinal (a = n) directions.

Figure 3.12(c) displays, for the three configurations f , f -n and f -s, the circum-
ferential stress (Sff ) at the peak pressure time instant (0.1 s) and the time trace of
the average, minimum and maximum axial stresses Sff , Sss and Snn. The circumfer-
ential stress at the peak pressure instant is much higher, especially on LV side, for f -s
configuration with respect to the other two. Conversely, f -n configuration produces
the lowest circumferential stress. Almost the same considerations hold for the time
trace of the three axial stresses during the complete cardiac cycle, see Figure 3.12(c).

The previous results reveal that the configuration f -n allows to obtain a more
efficient cardiac contraction with a much lower axial stress with respect to f configu-
ration. On the contrary, f -s configuration yields an unphysiological cardiac contrac-
tion with EF, LFS and WT below the physiological range reported in literature (see
Tables 3.5-3.7).

3.3.4 Impact of myofiber architecture on the electromechanical
function

We investigate the effect of different myofibers architecture on the biventricular EM
model, by considering three types of LDRBMs: D-RBM, B-RBM and R-RBM (see
Section 3.1.1). Apart from the employed LDRBM, used to prescribe the myofibers
architecture, all the other settings, including the fiber input angles (3.46), are the
same as the baseline simulation7 presented in Section 3.3.2.

Fiber orientations obtained for the three LDRBMs (D-RBM, B-RBM and R-RBM)
in the Zygote biventricular model are shown in Figure 3.13(a). For a detailed compari-
son among the three LDRBMs we refer the reader to Section 2.5 (see also [176]), where
pure EP simulations were considered. Here, we are instead interested in the effect of
fibers architecture on mechanical quantities obtained by means of EM simulations. We
recall that B-RBM produces a smooth change in the fiber field in the transition across
the two ventricles, while R-RBM and D-RBM a strong discontinuity [176]. Moreover,
R-RBM and D-RBM feature a linear transition passing from the endocardium to the
epicardium, while B-RBM employs a bidirectional spherical interpolation bislerp

(see [176, 26, 58, 188]). In Figure 3.13(b) the PV-loop curves (for both ventricles)

7Notice that the case with D-RBM is the baseline simulation.
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Figure 3.13: Results of EM simulations employing different LDRBMs (R-RBM, B-
RBM and D-RBM) to generate the fiber architecture; (a) fiber orientations obtained
for the three LDRBMs in the Zygote biventricular model; (b) PV-loop curves, for LV
(top) and RV (bottom), obtained with the three LDRBMs: D-RBM (orange), B-RBM
(blue) and R-RBM (green); (c) mechanical displacements (top) and mid ventricular
slices at the end of systole (0.35 s), showing LFS (middle) and WT (bottom) obtained
by D-RBM (orange), B-RBM (blue) and R-RBM (green); (d) circumferential stress
Sff (top-right) at the peak pressure instant (0.1 s) and the time trace of the aver-
age, minimum and maximum axial stresses Sff (top-left), Sss (bottom-left) and Snn
(bottom-right) for the three LDRBMs.
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Mechanical biomarkers D-RBM B-RBM R-RBM

EDVLV (mL) 137 145 138
EDVRV (mL) 138 136 139
ESVLV (mL) 48 58 50
ESVRV (mL) 49 49 50
EFLV (%) 66 60 64
EFRV (%) 65 64 64
PLV (mmHg) 117 114 117
PRV (mmHg) 35 34 33
LFS (%) 21 25 20
WT (%) 41 36 38

Table 3.8: Comparison of relevant mechanical biomarkers among EM simulations using
D-RBM,B-RBM and R-RBM for the myofiber architecture.

are displayed, while in Table 3.8 some relevant mechanical biomarkers are compared
among the simulation results. The left ventricular PV-loop area of B-RBM is shifted
towards larger volumes with respect to the ones of D-RBM and R-RBM that show
almost a compatible PV-loop for LV, see Figure 3.13(b, top). Moreover, the left sys-
tolic pressure peak decreases for B-RBM with respect to D-RBM and R-RBM, see
Figures 3.13(b, top) and Table 3.8. As a consequence, the left ventricular ejection
fraction obtained with B-RBM (60%) is smaller than those obtained with D-RBM
and R-RBM (66% and 65%, respectively), see Table 3.8. On the contrary, small dif-
ferences are observed for the right ventricular PV-loops with only a slightly larger
ejection fraction for D-RBM, see Figure 3.13(b, bottom) and Table 3.8.

Figure 3.13(d) shows the circumferential stress (Sff ) at the peak pressure in-
stant (0.1 s) and the time trace of the average, minimum and maximum axial stresses
Sff , Sss and Snn. The patterns of Sff are very similar for the three methods, see
Figure 3.13(d, top-right). Instead, the time traces of the axial stresses present sev-
eral discrepancies. Specifically, Sff reveals lower values obtained by B-RBM with
respect to D-RBM and R-RBM, see Figure 3.13(d, top-left). This is associated to
a lower cardiac work produced by B-RBM (EFLV = 60%) compared to D-RBM
and R-RBM (EFLV = 66%, 64%, respectively). On the contrary, the longitudinal
stress Snn presents an opposite trend, see Figure 3.13(d, bottom-right). This is as-
cribed to a larger apico-basal shortening for B-RBM (LFS = 25%) with respect to
D-RBM and R-RBM (LFS = 21%, 20%, respectively). Meanwhile, larger values of
the radial stress Sss are observed for D-RBM with respect to B-RBM and R-RBM,
see Figure 3.13(d,bottom-right), associated to a larger wall thickening of D-RBM
(WT = 41%) against the ones of R-RBM and B-RBM (WT = 38%, 36%, respec-
tively).

The previous results highlight that there is a strong interaction on the cardiac
pump function between the LV and RV [163, 259]. A different fibers architecture in
the transmural wall (from epicardium to endocardium) and a different septal fibers
interconnection between the two ventricles affect the ventricular cardiac pump work,
in particular the LV one. Indeed, a biventricular myofibers architecture has much
more information (e.g. in the inter-ventricular septum) compared to a stand-alone LV
model.
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Chapter 4
Towards the electromechanical
modeling of the whole heart

In this chapter, we extend the biventricular 3D-0D model presented in Chapter 3, to
the whole heart. More precisely, we consider a 3D description of cardiac electrome-
chanics (EM) in all the four chambers and a 0D representation of the circulatory
system, which includes the cardiac blood haemodynamics. Our whole heart 3D-0D
model includes a detailed myocardial fiber architecture and embeds state of the art
human models for the atrial and ventricular electrophysiology (EP). Moreover, the
model simulates mechanical activation (MA) and tissue mechanics (TM) of the atria
and the ventricles, which are strongly coupled with a closed-loop lumped-parameters
model of the whole cardiovascular system. We begin by presenting a Laplace-Dirichlet
Rule-Based Method (LDRBM) for generating myocardial fibers directly on the whole
heart (Section 4.1). The methodology, based on the combination of the atrial and
ventricular LDRBMs presented in Chapter 2, can be easily applied to any four cham-
bers heart geometry. Then, we describe the 3D-0D whole heart model, detailing the
modeling differences with respect to the 3D-0D biventricular model (Section 4.2). Fur-
thermore, we discuss the strategy employed to couple the 3D EM and the 0D fluid
models. Finally, after presenting a procedure for the generation of a whole heart mesh,
we illustrate numerical results of EP and EM simulations with physiological activa-
tion sites in a four chamber realistic computational domain of the heart (Section 4.3).
The results presented in this chapter, for the whole heart EP simulation, have been
published in [176].
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4.1. Whole heart Rule-Based Method

4.1 Whole heart Rule-Based Method

In this section we present a LDRBM for the generation of full heart myofibers ar-
chitecture, that is able to reproduce all the important characteristic features of the
four chambers, needed to provide a realistic cardiac musculature. Our newly devel-
oped method is built upon the combination of the ventricular and atrial LDRBMs
presented in Chapter 2 and on the novel definition of several inter-heart harmonic
functions, which couple together the different LDRBMs for the atria and the ventri-
cles. With this aim, the heart LDRBM combines the gradient of the inter-heart and
intra-heart harmonic functions to properly represent the whole cardiac fiber architec-
ture.

Following the backbone structure of LDRBMs presented in Sections 2.1 and 2.2,
we detail hereafter the steps of the new heart LDRBM. We refer to Figure 4.1 for a
schematic representation of the method in a realistic heart geometry.

1. Labelled mesh: label the mesh of the heart computational domain Ωheart to
define the boundary partitions ∂Ωheart = ∂Ωbiv ∪ ∂Ωbia (see step 1 in Figure 4.1)
where

∂Ωbia =Γaepi ∪ Γtop,` ∪ Γtop,r ∪ Γ`a ∪ Γ`a,caps ∪ Γra ∪ Γra,caps ∪ Γ`ap∪
Γrap ∪ Γlpv ∪ Γrpv ∪ Γicv ∪ Γscv ∪ Γmv ∪ Γmv,caps ∪ Γtv ∪ Γtv,caps,

∂Ωbiv =Γvepi ∪ Γlv ∪ Γrv ∪ Γav ∪ Γpv ∪ Γpv,cap ∪ Γa`v ∪ Γarv,

with Γaepi, Γvepi the atrial and ventricular epicardia; Γ`a, Γra, Γ`v and Γrv the left
and right atrial and ventricular endocardia; Γ`a,caps and Γra,caps the cut vein caps of
LA and RA; Γa`v, Γarv the left and right ventricular apices; Γ`ap, Γrap the left and
right atrial appendage; Γlpv, Γrpv left and right pulmonary vein (LPV, RPV) rings;
Γicv, Γscv inferior and superior caval vein (ICV, SCV) rings; Γmv, Γtv mitral (MV)
and tricuspid (TV) valve rings, further subdivided in a part facing the atrial septum
Γmv−s, Γtv−s and the other related to the free wall Γmv−f , Γtv−f , such that Γmv =
Γmv−s ∪ Γmv−f and Γtv = Γtv−s ∪ Γtv−f ; Γmv,caps and Γtv,caps the atrioventricular
caps of MV and TV; Γtop,` and Γtop,r the top upper region connecting the anterior
LPV to RPV rings and ICV to SCV rings; Γav, Γpv aortic (AV) and pulmonary (PV)
valve rings; Γpv,cap PV cap; see step 1 in Figure 4.1.

2. Laplace problems: definition of several inter-heart and intra-heart distances,
obtained by solving Laplace problems in the form of

−∆χ = 0 in Ωheart,

χ = χa on Γa,

χ = χb on Γb,

∇χ · n = 0 on Γn,

(4.1)

with proper Dirichlet boundary conditions on the heart boundaries, see step 2 in
Figure 2.8. Specifically, the transmural φ and two inter-heart ξ and ω distances are
introduced. In particular, ξ and ω are used to discriminate the left from the right
heart and the atria from the ventricles, respectively (see step 2a in Figure 4.1). Then,
several intra-heart distances ψi are computed, see step 2b in Figure 4.1. In particular,
ψab, ψr, ψv, ψw and ψsw stand for the same inter-atrial distances introduced in the
atrial LDRBM, described in Section 2.2. Meanwhile, ψab,`, ψab,r, ψot,`, ψot,r, ψw,`
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Figure 4.1: Schematic procedure of the heart LDRBM in a realistic whole heart ge-
ometry.
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Type χ χa Γa χb Γb

HEART
φ

1 Γ`a ∪ Γ`v 0 Γaepi ∪ Γvepi ∪ Γmv ∪ Γtv ∪ Γtop,` ∪ Γtop,r-1 Γra ∪ Γrv
ξ 1 Γ`a ∪ Γ`v -1 Γra ∪ Γrv
ω 1 Γ`a ∪ Γra -1 Γ`v ∪ Γrv

LA

ψab
2 Γrpv 1 Γmv
0 Γlpv -1 Γlap

ψr 1 Γmv 0 Γlpv ∪ Γrpv
ψv 1 Γrpv 0 Γlpv
ψsw 1 Γmv 0 Γlpv ∪ Γtop,` ∪ Γlap

ψw
1 Γmv−s 0 Γtop,`-1 Γmv−f

RA

ψab
2 Γicv

1 Γtv
-1 Γrap

0 Γscv -2 Γcs
ψr 1 Γtv 0 Γtop,r

ψv
1 Γicv -1 Γrap0 Γscv

ψw
1 Γtv−s 0 Γtop,r-1 Γtv−f

BIV

ψab,` 1 Γmv 0 Γa`v
ψab,r 1 Γtv 0 Γarv
ψot,` 1 Γav 0 Γa`v
ψot,r 1 Γpv 0 Γarv
ψw,` 1 Γmv ∪ Γa`v 0 Γav
ψw,r 1 Γtv ∪ Γarv 0 Γpv

Table 4.1: Boundary data chosen in the Laplace problem (4.1) for the inter-heart
distances (HEART) φ, ξ and ω, and the intra-heart distances (LA, RA, BIV) ψi,
where i = ab; r; v; sw;w in LA and RA, while i = ab, `; ab, r; ot, `; ot, r;w, `;w, r for
LV and RV (BIV). It is understood that Γn = ∂Ωheart/(Γa ∪ Γb) for each Laplace
problem (4.1).

and ψw,r refer to the same inter-ventricular distances introduced in the ventricular
D-RBM, described in Section 2.1; see step 2b in Figure 4.1. We refer to Table 4.1 for
the specific choices in problem (4.1) made by the heart LDRBM.

3. Heart bundles selection: definition of the heart bundles and their dimensions
throughout the domain Ωheart, in order to match histology and DTI observations.
With this aim, the heart LDRBM first sorts the atria from the ventricles by exploiting
the inter-heart distance ω: positive value (ω ≥ 0) are assigned to the atria and negative
ones (ω < 0) to the ventricles. Afterwords, the heart LDRBM defines a unique
transmural γ and normal k directions, for each point in Ωheart, by taking the gradient
of a specified inter-heart distance, γ = ∇φ,∇ξ, and of a specific intra-heart distance,
k = ∇ψi, respectively. For the atria, it follows the rules reported in Algorithm 1
(computeBIA), to compute inter-atrial connection (IC), LA and RA bundles (see
step 3 of Section 2.2). For the ventricles, on the other hand, it exploits the steps 3-4
of the ventricular LDRBMs, detailed in Section 2.1. The complete bundles selection
procedure for the heart LDRBM is fully detailed in Algorithm 5 (computeHEART),
see step 3 in Figure 4.1 and also Figure 4.2).

109



Chapter 4. Towards the electromechanical modeling of the whole heart

Figure 4.2: Complete bundles selection in the whole heart domain following the rules
reported in Algorithms 1, 2, 3, 4 and 5; Left: frontal view; Right: posterior view.

Algorithm 5 computeHEART: bundles selection for whole heart geometry

if ω ≥ 0
computeBIA

else
if ξ ≥ 0
γ = ∇φ , k = ψw,`∇ψab,` + (1− ψw,`)∇ψot,` −→ LV

else
γ = ∇φ , k = ψw,r∇ψab,r + (1− ψw,r)∇ψot,r −→ RV

4. Local coordinate system and rotations: definition of the myofiber orientations
[f ,n, s] by rotating an orthonormal local coordinate system, [êl, ên, êt] built at each
point of the heart domain, using the transmural γ and normal k directions computed
in the previous step. This is performed in the same way as for the other LDRBMs,
by applying first the function axis, which takes as inputs the transmural direction γ
together with the normal direction k, and then exploiting the function orient (see
Section 2.1):

Q = [êl, ên, êt] = axis(k,γ), [f ,n, s] = orient(Q,α, β). (4.2)

As done for the atrial LDRBM (see step 4 of Section 2.2), a transmural fibers variation
can be prescribed in each heart bundle, in two combined ways: by defining the unique
normal direction k = (1 − |φ|)∇ψj + |φ|∇ψk (j 6= k) as a linear combination of the
gradients of two intra-heart distances, within the function axis; and/or by setting a
linear relationships for the angles αi = αepii(1−|φ|)+αendoi |φ| and βi = βepii(1−|φ|)+
βendoi |φ|, inside the function orient, where αepii , αendoi , βepii and βendoi are fixed
rotation angles on the epicardium and endocardium of the i-th bundle, respectively.

The three unit directions correspond to the final fiber, sheet and sheet-normal
directions f , n and s (see step 4 in Figure 4.1).
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Figure 4.3: Representation of a labelled Heart reference domain Ω0
heart; Top (a-b):

Volume Ω0
heart partitioned in Ω0

heart = Ω0
biv∪Ω0

bia∪Ω0
caps, where Ω0

biv and Ω0
bia are LV,

RV and LA, RA regions, respectively, while Ω0
caps represents the planes for the valves

and for the cut veins. Bottom (c-d): Border ∂Ω0
heart partitioned in ∂Ω0

heart = Γ0
epi ∪

Γ0
`v∪Γ0

`a∪Γ0
rv∪Γ0

ra∪Γ0
a,rings∪Γ0

`a,caps∪Γ0
ra,caps∪Γ0

pv,ring∪Γ0
pv,cap∪Γ0

mv,caps∪Γ0
tv,caps.

4.2 3D-0D closed-loop model for the whole heart

In this section, we extend the biventricular 3D-0D model, presented in Chapter 3 to
the whole heart. With this aim, we consider a 3D description of cardiac EM for the
whole heart and a 0D representation of the circulatory system, which includes the
haemodynamics of the cardiac chambers.

The 3D-0D heart model includes a detailed myofiber architecture obtained thanks
to the heart LDRBM (presented in Section 4.1), which is able to account for the
different fiber orientations of LA, RA, LV and RV. Moreover, the 3D-0D heart model
comprises the core models for the cardiac EP, the sarcomere MA, the myocardial TM
and blood haemodynamics, plus four coupling conditions, between the 3D EM and
the 0D fluid models, established by volume conservation constraints.

We denote by Ω0
heart the computational heart domain in the reference configura-

tion, see Figure 4.3(a), representing the region occupied by LV, RV, LA and RA at
rest. We split the domain Ω0

heart in Ω0
heart = Ω0

biv ∪Ω0
bia ∪Ω0

caps, where Ω0
biv and Ω0

bia

are the regions occupied by the LV, RV and LA, RA, respectively, while Ω0
caps repre-

sents the planes for the valves and for the cut veins, see Figure 4.3(b). The boundary
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∂Ω0
heart is partitioned into

∂Ω0
heart =Γ0

epi ∪ Γ0
`v ∪ Γ0

`a ∪ Γ0
rv ∪ Γ0

ra ∪ Γ0
mv,caps ∪ Γ0

tv,caps∪
Γ0
a,rings ∪ Γ0

`a,caps ∪ Γ0
ra,caps ∪ Γ0

pv,ring ∪ Γ0
pv,cap,

where Γ0
epi is the heart epicardium, Γ0

`v, Γ0
`a, Γ0

rv and Γ0
ra are the left, right ventricular

and atrial endocardia; Γ0
mv,caps and Γ0

tv,caps are the atrioventricular caps of MV and
TV; Γ0

a,rings are the atrial SCV, ICV, LPV and RPV rings; Γ0
`a,caps and Γ0

ra,caps are

LA and RA epicardial caps; Γ0
pv,ring and Γ0

pv,cap are the PV ring and epicardial cap
of RV, respectively.

4.2.1 The coupled 3D-0D whole heart problem

Given the computational domain Ω0
heart and the time interval t ∈ (0, T ], our complete

3D-0D Heart model reads as follows:

3D-0D Whole Heart model

Jχm

[
Cm

∂u

∂t
+ Ĩion(u,w)

]
−∇ · (JF−1D̃ F−T∇u) = JχmIapp

in Ω0
heart × (0, T ],

∂w

∂t
− H̃(u,w) = 0 in Ω0

heart × (0, T ],(
JF−1D̃ F−T∇u

)
·N = 0 on ∂Ω0

heart × (0, T ],

∂s

∂t
= K(s, [Ca2+]i, SL) in (Ω0

biv ∪ Ω0
bia)× (0, T ],

ρs
∂2d

∂t2
−∇ · P̃(d, T̃a(s,x)) = 0 in Ω0

heart × (0, T ],

P̃(d, T̃a(s,x))N = Kepid + Cepi ∂d

∂t
on Γ0

epi × (0, T ],

P̃(d, T̃a(s,x))N = Kpvd + Cpv ∂d

∂t
on (Γ0

pv,cap ∪ Γ0
pv,ring)× (0, T ],

P̃(d, T̃a(s,x))N = −p`v(t) JF−TN on Γ0
`v × (0, T ],

P̃(d, Ta(s,x))N = −prv(t) JF−TN on Γ0
rv × (0, T ],

P̃(d, T̃a(s,x))N = −p`a(t) JF−TN on (Γ0
`a ∪ Γ0

`a,caps)× (0, T ],

P̃(d, T̃a(s,x))N = −pra(t) JF−TN on (Γ0
ra ∪ Γ0

ra,caps)× (0, T ],

P̃(d, T̃a(s,x))N = 0 on (Γ0
mv,caps ∪ Γ0

tv,caps)× (0, T ],

d = 0 on Γ0
a,rings × (0, T ],

dc(t)

dt
= GH(t, c(t), p`v(t), prv(t), p`a(t), pra(t)) for t ∈ (0, T ],

Ṽ 3D
`v (d(t)) = V`v(c(t)) for t ∈ (0, T ],

Ṽ 3D
rv (d(t)) = Vrv(c(t)) for t ∈ (0, T ],

Ṽ 3D
`a (d(t)) = V`a(c(t)) for t ∈ (0, T ],

Ṽ 3D
ra (d(t)) = Vra(c(t)) for t ∈ (0, T ].

(4.3a)

(4.3b)

(4.3c)

(4.3d)

(4.3e)

(4.3f)

(4.3g)

(4.3h)

(4.3i)

(4.3j)

(4.3k)

(4.3l)

(4.3m)

(4.3n)

(4.3o)

(4.3p)

(4.3q)

(4.3r)
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where the generalized variables with the tilde symbol (∼) are detailed hereafter.
The model unknowns are the transmembrane action potential u, the ionic variables

vector w, the state variables of the active force generation model s, the tissue mechan-
ical displacement d, the state vector of the circulation model c (including pressures,
volumes and fluxes of the different compartments composing the vascular network, see
Equation (3.18)) and the pressures of the four heart chambers p`v, prv, p`a and pra.
Finally, the model is closed by the initial conditions in Ω0

heart × {0}:

u = u0, w = w0, s = s0, d = d0,
∂d

∂t
= ḋ0,

c = c0, p`v = p`v,0, prv = prv,0, p`a = p`a,0, pra = pra,0.

Equations (4.3a)-(4.3c) represent the EP core model. With respect to the 3D-0D
biventricular case (3.24), the 3D-0D heart model employs two different ionic models
to properly describe the cardiac EP: TTP06 [247] for the ventricles and CRN98 [47]
for the atria. To account for this ionic heterogeneity, we introduced the following
generalized diffusion tensor D̃ as

D̃ = σf
Ff0 ⊗ Ff0

|Ff0 |2
+ σs

Fs0 ⊗ Fs0

|Fs0 |2
+ σn

Fn0 ⊗ Fn0

|Fn0 |2
,

with σk =


σk(φfast) in Ω0

biv

σ
(a)
k in Ω0

bia

0 in Ω0
caps

for k = f, s, n,

and the generalized reaction terms Ĩion and H̃ as

Ĩion =


Iion in Ω0

biv

I(a)
ion in Ω0

bia

0 in Ω0
caps

, H̃ =


H in Ω0

biv

H(a) in Ω0
bia

0 in Ω0
caps

,

where σ
(a)
k , I(a)

ion and H(a) refer to CRN98 ionic model for the atria (see [47] for details

on the definition of I(a)
ion and H(a)), while σk(φfast), Iion and H are the terms related

to the TTP06 ionic model for the ventricles, see Section 3.1.2. Moreover, thanks to

the generalized terms (D̃, Ĩion and H̃) the volume domain Ω0
caps is a non conductive

region, which electrically isolates the atria from the ventricles.
Equation (4.3d) stands for the MA core model. Both in the ventricular (Ω0

biv) and
in the atrial domain (Ω0

bia), the RDQ18-ANN model, described in Section 3.1.3, has
been considered [196]. However, to account for the different intracellular calcium ionic
concentration [Ca2+]i, provided by the TTP06 and CRN98 ionic models, the function
K takes as input the calcium variable of TTP06 (wCa) in Ω0

biv and the one of CRN98

(w
(a)
Ca ) in Ω0

bia

K(s, wCa, SL) in Ω0
biv,

K(s, w
(a)
Ca , SL) in Ω0

bia.

Moreover, to account for different active tensions between the ventricles and the atria,
we defined a generalized active tension T̃a as

T̃a =

{
Ta(s,x) = Tmaxa G(s) [ξ(x) + C`rv(1− ξ(x))] in Ω0

biv,

T
(a)
a (s,x) = T

max,(a)
a G(s) [ξ(x) + C`ra(1− ξ(x))] in Ω0

bia,
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where Tmaxa and T
max,(a)
a denote the maximal tension prescribed for the ventricles

and the atria, respectively; C`rv, C`ra ∈ (0, 1] represent the left-right ventricular and
atrial contractility ratio, respectively; ξ ∈ [0, 1] is the inter-heart distance, defined in
Section 4.1, see also Figure 4.1.

Equations (4.3e)−(4.3m) act as the TM core model. The 3D-0D heart model
exploits the same active stress formalism presented in Section 3.1.4 for the biventricular
case. For the active part of the heart Ω0

biv and Ω0
bia, we use the Guccione orthotropic

model [90], presented in Section 3.1.4, while purely passive tissues Ω0
caps (veins and

valve planes) are characterized by a Neo–Hookean model [160]. In addition to the
passive material behaviour, we describe the active response to electrical activation
with an orthotropic active stress formulation for the ventricles in Ω0

biv. Instead, one-
dimensional active tension, along the fiber, is imposed in the stress tensor for the
atria in Ω0

bia. Finally, incompressibility of all tissues is enforced with a penalty method.
Therefore, we introduced in Equation (4.3e), the generalized first Piola-Kirchhoff stress

tensor P̃ = P̃(d, T̃a), defined as

P̃ =



∂W(G)(F)

∂F
+ Ta(x, s)

[
nf

Ff0⊗f0√
I4f

+ ns
Fs0⊗s0√
I4s

+ nn
Fn0⊗n0√
I4n

]
in Ω0

biv,

∂W(G)(F)

∂F
+ T

(a)
a (x, s)Ff0⊗f0√

I4f
in Ω0

bia,

∂W(N)(F)

∂F
in Ω0

caps,

(4.4)

where W(G) is the Guccione constitutive law, defined in Section 3.1.4, and W(N) is
the Neo–Hookean strain energy density function, defined as

W(N) =
µ

2

(
J−

2
3 F : F− 3

)
+
κ(N)

4

[
(J − 1)

2
+ log2(J)

]
,

with the shear modulus µ and the bulk modulus κ(N).

For the mechanical boundary conditions, we impose:

• generalized Robin boundary conditions (4.3f)−(4.3g) on the epicardial bound-
ary Γ0

epi and on PV cap and ring Γ0
pv,cap ∪ Γ0

pv,ring, to model the mechanical
constrains provided by the pericardium and the pulmonary valve, respectively.
In accordance to Equations (3.6), we define the following tensors

Kk = Kk
‖ (N⊗N− I)−Kk

⊥(N⊗N) i = epi, pv,

Ck = Ck‖ (N⊗N− I)− Ck⊥(N⊗N) i = epi, pv,

where Kk
‖ , Kk

⊥, Ck‖ , Ck⊥ ∈ R+ are the stiffness and viscosity parameters of the

tissue in the normal and tangential directions to the surface Γ0
pv,cap ∪ Γ0

pv,ring

(k = pv) and Γ0
epi (k = epi), respectively;

• normal stress boundary conditions (4.3h)−(4.3k) on LV, RV, LA and RA en-
docardia Γ0

`v, Γ0
rv, Γ0

`a and Γ0
ra, where p`v(t), prv(t), p`a(t) and pra(t) are the

pressures exerted by the blood in LV, RV, LA and RA, respectively. Moreover,
to model the continuity of pressure from LA to the pulmonary veins and from
RA to the caval veins, normal stress boundary conditions are applied also on LA
and RA caps, Γ0

`a,caps and Γ0
ra,caps, with p`a(t) and pra(t), respectively;
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4.2. 3D-0D closed-loop model for the whole heart

• homogeneous Neumann boundary conditions (4.3l) on the atrioventricular valves
caps Γ0

mv,caps ∪ Γ0
tv,caps;

• homogeneous Dirichlet boundary conditions (4.3m) on the atrial rings Γ0
a,rings

to account for the constrain imposed by the pulmonary and caval veins.

Coupling conditions in the 3D-0D heart model

To couple the 3D EM heart model, given by Equations (4.3a)−(4.3m), with the 0D
fluid model (3.19) (see Section 3.1.5), we follow the same strategy, presented in Sec-
tion 3.1.6, for the 3D-0D biventricular model and here extended to the whole heart.
Specifically, we replace the time-varying elastance elements, representing LV, RV, LA
and RA in the circulation model, with their corresponding 3D description, obtain-
ing the coupled 3D-0D heart model sketched in Figure 4.4. The 3D heart model
replaces Equations (3.17a)−(3.17d) for all the pressure variables of the 0D circula-
tion model and, in place, it introduces the four volume-consistency coupling condi-
tions (4.3o)−(4.3r), where V`v, Vrv, V`a and Vra are LV, RV, LA and RA volumes
within the 0D circulation model and V 3D

i (with i = `v, rv, `a, ra) represents the 3D
ventricular volume for the four heart chambers, computed by exploiting the divergence
(Gauss) theorem

Ṽ 3D
i (d(t)) =

1

3

∫
Γ0
pool,i

J(t) (x + d(t)− bi) · F−T (t) N dΓ0 i = `v, rv, `a, ra,

where Γ0
pool,i are the blood pools of LV, RV, LA and RA1, defined as

Γ0
pool,i = Γ0

i ∪ Γ0
mv,caps for i = `v, `a,

Γ0
pool,i = Γ0

i ∪ Γ0
tv,caps for i = rv, ra.

Moreover, bi is a vector that lays inside LV, RV, LA or RA. Notice that in the 3D-
0D heart model the volume integral are exactly computed because Γ0

pool,i are closed
surfaces.

The 3D-0D coupled model must satisfy at each time t ∈ (0, T ] the volume-consistency
coupling conditions (4.3o)−(4.3r). Moreover, having introduced four additional equa-
tions (i.e (4.3o)−(4.3r)), four additional unknowns are associated to the 3D-0D model:
the pressure of all the four chambers, p`v(t), prv(t), p`a(t) and pra(t), are no longer
determined by the 0D circulation model, but rather act as Lagrange multipliers as-
sociated to the constraints (4.3o)−(4.3r). Hence, the 0D “reduced” circulation model
is expressed by Equation (4.3n) where GH is a proper function that collects the
right hand sides of Equations (3.16) and (3.17), apart from those corresponding
to (3.17a)−(3.17d).

We remark that with the above coupling approach, both the continuity of volumes
and pressures, between the 3D EM and the 0D circulation models, are ensured (see
Section 3.1.6 for further details).

4.2.2 Heart reference configuration and initial displacement

To recover the reference configuration Ω0
heart, to which the 3D-0D heart model (4.3)

refers, we adopt the same procedure presented for the biventricular model in Sec-
tion 3.1.8 and here extend to the whole heart case.

1Concerning the caps surfaces Γ0
mv,caps and Γ0

tv,caps, the volume integral are indeed computed
only on the cap surface facing to the corresponding heart chamber.
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Chapter 4. Towards the electromechanical modeling of the whole heart

Figure 4.4: 3D-0D coupling between the 3D EM heart model and the 0D fluid model.
The state variables corresponding to pressures and fluxes are depicted in orange and
blue, respectively.
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4.2. 3D-0D closed-loop model for the whole heart

Figure 4.5: Schematic representation of the strategy used to recover the reference
configuration Ω0

heart and to set the mechanics initial condition in the 3D-0D heart
model (4.3).

To recover the reference configuration Ω0
heart, starting from a geometry Ω̂heart

acquired from medical images during the diastolic phase, when the heart is loaded
with the pressures π`v = p̂`v, πrv = p̂rv, π`a = p̂`a, πra = p̂ra and with a residual
active tension T̃a = T̂a, we solve the following inverse problem:
Find the domain Ω0

heart such that, if we inflate Ω0
heart by d, solution of the mechanical

problem 

∇ · P̃(d, T̃a(s,x)) = 0 in Ω0
heart,

P̃(d, T̃a(s,x))N + Kepid = 0 on Γ0
epi,

P̃(d, T̃a(s,x))N + Kpvd = 0 on Γ0
pv,cap ∪ Γ0

pv,ring,

P̃(d, T̃a(s,x))N = −π`v JF−TN on Γ0
`v,

P̃(d, T̃a(s,x))N = −πrv JF−TN on Γ0
rv,

P̃(d, T̃a(s,x))N = −π`a JF−TN on Γ0
`a ∪ Γ0

`a,caps,

P̃(d, T̃a(s,x))N = −πra JF−TN on Γ0
ra ∪ Γ0

ra,caps,

P̃(d, T̃a(s,x))N = 0 on Γ0
mv,caps ∪ Γ0

tv,caps,

d = 0 on Γ0
a,rings,

(4.5)

obtained for π`v = p̂`v, πrv = p̂rv, π`a = p̂`a, πra = p̂ra and T̃a = T̂a, we get the
domain Ω̂heart.

After recovering Ω0
heart, we inflate the heart reference configuration Ω0

heart by
solving again (4.5) (but now as a forward problem), where we set the pressures π`v =
ped`v , πrv = pedrv, π`a = ped`a and πra = pedra, with the superscript ed stands for the
end-diastolic phase. Thus, the solution d of the problem (4.5) and the pressures ped`v ,
pedrv, p

ed
`a, pedra are set as initial conditions d0 (for d), p`v,0 (for p`v), prv,0 (for prv),

p`a,0 (for p`a) and pra,0 (for pra) in the 3D-0D heart problem (4.3). For the numerical
resolution of the above inverse problem we refer to [199], where several algorithms,
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based on fixed-point iteration schemes, are proposed.

4.2.3 Numerical approximation of the 3D-0D whole heart prob-
lem

For the numerical approximation of the 3D-0D heart model (4.3) we adopt the same
Segregated-Intergrid-Staggered (SIS) numerical scheme, presented in detail for the
biventricular 3D-0D model in Section 3.2. The core models, contributing to both
cardiac EM and blood circulation, are solved sequentially once per time step in a
segregated manner, by using different resolutions in space and time: we consider two
nested meshes Ωh1

and Ωh2
of the computational domain Ω0

heart (with h1 < h2). We
adopt the finer mesh Ωh1 for EP, while the coarser one Ωh2 for both MA and TM,
and we employ an efficient intergrid transfer operator between the nested grids Ωh1

and Ωh2
, which allows to evaluate the feedback between the different core models.

Moreover, the cardiac EP model is solved with a finer time step τ with respect to the
other core models, which are solved with a time resolution ∆t = Nsubτ , with Nsub ∈ N.
In the SIS numerical scheme, we first update the variables of EP, then those of MA
and finally, after updating the unknowns of TM, constrained by volume-consistency
coupling conditions (4.3o)−(4.3r), we update the circulation variables. The whole
algorithm for the SIS numerical scheme is reported in Figure 3.9. We refer the reader
to Section 3.2 for further details about the space-time discretization of the different
core models in the SIS numerical scheme.

In what follows, we illustrate the extension, to the whole heart, of the numerical
solution of the 3D-0D coupled problem, presented in Section 3.2.3 for the biventricular
model.

In the 3D-0D heart model (4.3), we couple the 3D TM model (4.3e)−(4.3m)
with the 0D closed-loop model (4.3n) by means of the volume conservation con-
straints (4.3o)-(4.3r), where the pressures p`v, prv, p`a and pra act as Lagrange mul-
tipliers.

Introducing the discrete times tn = n∆t (with n ≥ 0) and denoting by anh2
'

ah2
(tn) the fully discretized FEM approximation of the generic (scalar a, vectorial a

or tensorial A) variable a(t), the fully discretized version of the 3D TM model coupled
with 0D fluid model, at each time step tn+1, reads:

Given T̃a
(n+1)

h2
, find dn+1

h2
, pn+1

`v , pn+1
rv , pn+1

`a and pn+1
ra by solving:



(
ρs

1

∆t2
M(2) +

1

∆t
(Fepi + Fpv) + Gepi + Gpv

)
dn+1
h2

+ S̃(dn+1
h2

, T̃a
(n+1)

h2
)+

+ pn+1
`v P `v(d

n+1
h2

) + pn+1
rv P rv(d

n+1
h2

)+

+ pn+1
`a P `a(dn+1

h2
) + pn+1

ra P ra(dn+1
h2

) =

= ρs
2

∆t2
M(2)dnh2

− ρs
1

∆t2
M(2)dn−1

h2
+

1

∆t
(Fepi + Fpv)dnh2

,

V`v(c
n) = Ṽ 3D

`v (dn+1
h2

),

Vrv(c
n) = Ṽ 3D

rv (dn+1
h2

),

V`a(cn) = Ṽ 3D
`a (dn+1

h2
),

Vra(cn) = Ṽ 3D
ra (dn+1

h2
).

(4.6)
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where

M(2)
ij =

∫
Ωh2

ϕj ·ϕi dΩ, S̃i =

∫
Ωh2

P̃(dn+1
h2

, T̃a
(n+1)

h2
) : ∇ϕi dΩ,

(Fk)ij =

∫
Γk
h2

[
Ck‖ (Nh2

⊗Nh2
− Ih2

)− Ck⊥(Nh2
⊗Nh2

)
]
ϕj ·ϕi dΓ, k = epi, pv,

(Gk)ij =

∫
Γk
h2

[
Kk
‖ (Nh2

⊗Nh2
− Ih2

)−Kk
⊥(Nh2

⊗Nh2
)
]
ϕj ·ϕi dΓ, k = epi, pv,

(P k)i =

∫
Γk
h2

Jn+1
h2

(Fn+1
h2

)−TNh2
·ϕi dΓ, k = `v, rv, `a, ra,

with

Ωh2
= (Ω0

heart)h2
,

Γepih2
= (Γ0

epi)h2
, Γpvh2

= (Γ0
pv,cap)h2

∪ (Γ0
pv,ring)h2

,

Γ`vh2
= (Γ0

`v)h2
, Γ`ah2

= (Γ0
`a)h2

∪ (Γ0
`a,caps)h2

,

Γrvh2
= (Γ0

rv)h2
, Γrah2

= (Γ0
ra)h2

∪ (Γ0
ra,caps)h2

.

The fully discretized version of the system (4.6), can be compactly written as:

rd(dn+1
h , pn+1

`v , pn+1
rv , pn+1

`a , pn+1
ra ) = 0

rp`v (dn+1
h ) = 0

rprv (dn+1
h ) = 0

rp`a(dn+1
h ) = 0

rpra(dn+1
h ) = 0

, (4.7)

where we moved all the terms to the right hand side and rp`v , rprv ,rp`a , rpra and rd
are suitable functions; h = h2 is understood. We solve the non-linear saddle-point
problem (4.7) by means of the Newton algorithm:

� We initialize, for j = 0, d
(0)
h = dnh, p

(0)
`v = pn`v, p

(0)
rv = pnrv, p

(0)
`a = pn`a and

p
(0)
ra = pnra;

� For j = 1, 2, . . . , we solve the linear system
J

(j−1)
d,d J

(j−1)
d,p`v

J
(j−1)
d,prv

J
(j−1)
d,p`a

J
(j−1)
d,pra

J
(j−1)
p`v,d

0 0 0 0

J
(j−1)
prv,d

0 0 0 0

J
(j−1)
p`a,d

0 0 0 0

J
(j−1)
pra,d

0 0 0 0




∆d

(j)
h

∆p
(j)
`v

∆p
(j)
rv

∆p
(j)
`a

∆p
(j)
ra

 =


r

(j−1)
d

r
(j−1)
p`v

r
(j−1)
prv

r
(j−1)
p`a

r
(j−1)
pra

 , (4.8)

where

J
(j−1)
d,d = ∂

∂drd(d
(j−1)
h , p

(j−1)
`v , p

(j−1)
rv , p

(j−1)
`a , p

(j−1)
ra ),

J
(j−1)
d,pi

= ∂
∂pi

rd(d
(j−1)
h , p

(j−1)
`v , p

(j−1)
rv , p

(j−1)
`a , p

(j−1)
ra ), i = `v, rv, `a, ra,

J
(j−1)
pi,d

= ∂
∂drpi(d

(j−1)
h ), i = `v, rv, `a, ra;
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� We update

d
(j)
h = d

(j−1)
h −∆d

(j)
h , p

(j)
`v = p

(j−1)
`v −∆p

(j)
`v , p

(j)
rv = p

(j−1)
rv −∆p

(j)
rv ,

p
(j)
`a = p

(j−1)
`a −∆p

(j)
`a and p

(j)
ra = p

(j−1)
ra −∆p

(j)
ra ;

� When the convergence criterion (based on the increment) is satisfied, we set

dn+1
h = d

(j)
h , pn+1

`v = p
(j)
`v , pn+1

rv = p
(j)
rv , pn+1

`a = p
(j)
`a and pn+1

ra = p
(j)
ra .

We solve the saddle-point problem (4.8) via Schur complement reduction [28]. Specif-
ically, the linear System (4.8) can be compactly written as(

Jd,d Jd,p

Jp,d 0

)(
∆dh
∆p

)
=

(
rd
rp

)
, (4.9)

where for simplicity we omitted the superscript (j) and we introduced the following
vectors

Jd,p =
(
Jd,p`v Jd,prv Jd,p`a Jd,pra

)
, Jp,d =

(
Jp`v,d Jprv,d Jp`a,d Jpra,d

)T
,

∆p =
(
∆p`v ∆prv ∆p`a ∆pra

)T
, rp =

(
rp`v rprv rp`a rpra

)T
.

System (4.9) reads: {
Jd,d∆dh + Jd,p ·∆p = rd

Jp,d∆dh = rp
. (4.10)

Deriving ∆dh form the first equation of (4.10) we have{
∆dh = J−1

d,drd − J−1
d,dJd,p ·∆p

Jp,dJ
−1
d,drd − Jp,dJ−1

d,dJd,p ·∆p = rp
. (4.11)

Introducing
v = J−1

d,drd, w = J−1
d,dJd,p, (4.12)

Equation (4.11) can be written as{
∆dh = v −w ·∆p
Jp,dw ·∆p = Jp,dv − rp

, (4.13)

Solving (4.13), we obtain the solution of the saddle-point problem (4.8) in the form of

∆dh = v −w`v∆p`v −wrv∆prv −w`a∆p`a −wra∆pra,
Jp`v,dw`v Jp`v,dwrv Jp`v,dw`a Jp`v,dwra

Jprv,dw`v Jprv,dwrv Jprv,dw`a Jprv,dwra

Jp`a,dw`v Jp`a,dwrv Jp`a,dw`a Jp`a,dwra

Jpra,dw`v Jpra,dwrv Jpra,dw`a Jpra,dwra




∆p`v
∆prv
∆p`a
∆pra

 =


Jp`v,dv − rp`v
Jprv,dv − rprv
Jp`a,dv − rp`a
Jpra,dv − rpra

 .

(4.14)

Notice that we have to the solve five linear systems (4.12), which are

Jd,dv = rd, Jd,dw`v = Jd,p`v , Jd,dwrv = Jd,prv , Jd,dw`a = Jd,p`a , Jd,dwra = Jd,pra ,

in order to obtain the solution for ∆dh, ∆p`v, ∆prv, ∆p`a and ∆pra of Equation (4.14).
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4.3. Numerical results: whole heart simulations

Figure 4.6: Procedure for the generation of the Zygote whole heart mesh. Left (a-b):
Generating accurate boundary tags for biatrial and biventricular geometries; Centre
(c-d): Connecting different heart chambers by means of closed annular rings and cap
planes; Right (e-f): Labelled whole heart volumetric mesh.

4.3 Numerical results: whole heart simulations

In this section, we present numerical results related to both the fiber generation and
EP/EM simulations, employing the full heart LDRBM and the 3D-0D whole heart
model, discussed in Sections 4.1 and 4.2, respectively. These have been performed on
the realistic 3D Zygote heart, a CAD-model representing an average healthy human
heart reconstructed from high-resolution CT-scan [107]. As it is a very detailed ge-
ometry of the human heart, it demonstrates the applicability of the proposed models
to arbitrary patient-specific scenarios.

We organize this section as follows. We begin illustrating a procedure for the
generation of a whole heart mesh, starting from an acquired cardiac geometry (Sec-
tion 4.3.1). Then, in Section 4.3.2, we present the whole heart fiber generation applied
to the Zygote heart. Finally, we show numerical results of EP and EM simulations,
using the 3D-0D whole heart model, with physiological activation sites and includ-
ing the myofibers generated by the full heart LDRBM, in the realistic computational
domain of the Zygote heart (Sections 4.3.3 and 4.3.4).

4.3.1 Whole heart mesh generation

The generation of a computational whole heart mesh is of crucial importance in order
to properly simulate the cardiac function. Practically, the starting point is a set of
unprocessed polygonal surfaces coming either from segmented images, acquired from
medical imaging techniques such as MRI or CT-scan, or from template CAD models.
These surfaces need ad-hoc processing to move from surfaces to a volumetric whole
heart labelled mesh, in order to suitable impose specific electrical or mechanical tissue
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Figure 4.7: Whole heart Zygote labelled FE meshes. (a): FE mesh of tetrahedral
elements; (b): FE mesh of hexahedral elements, exploiting the tet-hex algorithm [66].

properties and boundary conditions.
To build the whole heart Zygote mesh, we rely on the Vascular Modelling Toolkit

vmtk software [11] (http://www.vmtk.org), together with the new semi-automatic
meshing tools proposed in [66]. In particular, our cardiac mesh generation consists of
multiple steps, which includes:

1. Generating accurate boundary tags;

2. Connecting different heart chambers;

3. Connecting together several volumetric meshes.

1. Generating accurate boundary tags: we start the Zygote whole heart mesh
generation by using the biatrial and biventricular triangular labelled surfaces, cre-
ated from the labelling procedures detailed in Section 2.4.1 (see also Figure 2.11).
Figures 4.6(a-b) show the biatrial (BIA) and the biventricular (BIV) labelled surface
triangular meshes, respectively composed by:

BIA : atrial epicardium (including the top LA and RA bands), LA and RA endocar-
dia, MV and TV rings (both subdivided in one part facing the atrial septum
and another one related to the free wall), LPV and RPV rings, SCV and ICV
rings, see Figure 4.6(a);

BIV : ventricular epicardium, LV and RV endocardia, MV and TV rings, AV and PV
rings, see Figure 4.6(b).
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2. Connecting different heart chambers: to physically join together the atria
to the ventricles, we first extract from both BIA and BIV the MV and TV rings,
and then we connect MV and TV rings of the atria to the corresponding ones of the
ventricles, by means of the surface-connector algorithm (see [66] for further details
about this procedure). In this way, we obtain a closed surface for both MV and TV
annulus, see Figure 4.6(c). Finally, we create closed TV and MV caps by capping the
internal upper and lower rings of MV and TV annuli, see Figure 4.6(d).

To provide closed surfaces for cut-veins of the caval veins in RA, the pulmonary
veins in LA and the outflow track in RV, we first extrude each ring (of SCV, ICV, LPV,
RPV and PV) along its mean outward normal. Then, we connect the extruded rings to
the corresponding original ones, by means of the surface-connector algorithm [66], see
Figure 4.6(c). Finally, as done for the atrioventricular valve planes, we create closed
caps for each cut-vein by capping the inner and the outer rings, see Figure 4.6(d).

The above procedures ensure the construction of a set of conforming triangular
closed tagged surfaces of the whole heart, composed by atria, ventricles and the planes
for the valves and for the cut veins, see Figure 4.6(e).

3. Connecting together several volumetric meshes: the final step of the Zygote
whole heart mesh generation consists in creating tetrahedral volumes separately for
the atria, the ventricles, the valves and the cut vein planes, obtaining in this way a set
of conforming tetrahedral volumes, which are finally appended together to build the
whole heart tagged volumetric mesh, see Figure 2.11(d). The whole heart tetrahedral
mesh is then converted to an hexahedral one, obtained by subdividing each tetrahedron
into four hexahedra, exploiting the tet-hex algorithm [66], see Figure 4.7.

4.3.2 Whole heart myocardial fibers generation

For the fibers generation in the whole heart Zygote mesh, we adopt the full heart
LDRBM, presented in Section 4.1.

The input angles values for the ventricles αendo,`, αepi,`, αendo,r, αepi,r, βendo,`,
βepi,`, βendo,r and βepi,r were chosen based on the observations of histological studies
in the human heart [134, 86, 9, 99, 210, 136, 229]:

αepi,` = −60o, αendo,` = +60o, αepi,r = −25o, αendo,r = +90o;

βepi,` = +20o, βendo,` = −20o, βepi,r = +20o, βendo,r = 0o.
(4.15)

Furthermore, we specified also the angles in the outflow track (OT) regions of PV and
AV, as follows [58]:

αepi,OT = 0o, αendo,OT = +90o, βepi,OT = 0o, βendo,OT = 0o. (4.16)

Finally, we set the position of LV apex Γa`v equal to that of RV apex Γa`v, selected
as the LV epicardial point furthest from MV caps Γmv,caps, see step 1 in Section 4.1.

Regarding the atria, the input values of the parameters τi, which define the di-
mensions of biatrial bundles, are reported in Tables 4.2 and 4.3 for RA and LA,
respectively. In addition, we fix Nraa = Nraw = 0, implying that we do not prescribe
any PM in RA endocardium. Finally, although possible in the heart LDRBM, no IC
bundles are prescribed. Hence, LA and RA fibers are computed using the function
computeLA and computeRA, for positive and negative values of ξ, respectively (see
Algorithms 1, 2, 4 of Section 2.2 and Algorithm 5 of Section 4.1).
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Figure 4.8: Fiber generation, employing the full heart LDRBM, applied to the real-
istic Zygote Heart model. (a): Anterior view; (b): Posterior view; (c): Apex view;
(d): Frontal view. For visualization purpose we removed the valve and cut vein planes.

Figure 4.8 displays the Zygote heart geometry equipped with the prescribed LDRBM
fibers. We observe that the full heart LDRBM well reproduce the characteristic he-
lical structure of the ventricles up to MV and TV regions, presenting circular fiber
arrangements around PV-OT and AV-OT, see Figure 4.8(a,c,d). Moreover, circum-
ferential and longitudinal fiber orientations are predominant in RV with respect to
LV, with a strong discontinuity in the transition across the two ventricles around the
inter-ventricular junctions, see Figure 4.8(c,d).

The complex arrangement of fiber directions in almost every anatomical atrial
regions are well captured by the full heart LDRBM. In particular, following the atrial
LDRBM rules, reported in Section 2.2.1, circular fiber arrangements are exhibited
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4.3. Numerical results: whole heart simulations

Figure 4.9: (a): Stimuli applied in the four chamber model to mimic the Cardiac
Conduction System (CCS); SAN: Sino-Atrial Node; BB: Bachmann’s Bundle; FO:
Fossa Ovalis; CSM: Coronary Sinus Musculature; AVN: Atrio-Ventricular Node; AL:
Left Anterior; PL: Left Posterior; SL, SR: Left and Right Septum; ER: Right Endo-
cardium. (b-c): Activation maps computed from EP simulation; posterior (b) and
frontal (c) views.

RA τtv τicv τscv τraa τcsm τsw,r

Zygote heart 0.90 0.90 0.215 0.55 0.00 -0.15

RA τraw τct− τct+ τib τras
Zygote heart 0.75 (0o-30o) -0.22 -0.22 0.44 (20o-20o) 0.28

Table 4.2: Bundle parameters used for RA fibers generation in the Zygote heart geom-
etry. We use the convention τi(αendo-αepi) to set a linear transmural angle variation
for α inside the i-th bundle, while τi alone to imply αendo = αepi = 0o.

LA τmv τrpv τlpv τsw,l τlaa,in τlaa,up τbb τlaw

Zygote heart 0.90 0.15 0.835 0.04 0.43 0.60 0.75 0.65 (20o-0o)

Table 4.3: Bundle parameters used for LA fibers generation in the Zygote heart geom-
etry. We use the convention τi(αendo-αepi) to set a linear transmural angle variation
for α inside the i-th bundle, while τi alone to imply αendo = αepi = 0o.

around LPV, RPV, SCV, ICV, TV, MV and both appendages (RAA and LAA), see
Figure 4.8(a,b). RA fiber structures like IB and RAW are vertically oriented, whereas
those of RAS are almost parallel to TV, Figure 4.8(b). LAS fibers present a smooth
transition going to LAA and the adjacent region of RAS. Directions of LAR and LAW
fibers descend perpendicularly to MV, see Figure 4.8(a).

4.3.3 Whole heart electrophysiology

We employ the whole heart LDRBM fiber architecture to perform an EP simulation
of the Zygote heart. To model the EP activity in the cardiac tissue we used the mon-
odomain equation endowed with TTP06 and CRN98 ionic models for the ventricles
and for the atria, respectively (see Sections 2.3 and 4.2.1), with the settings described
in Section 2.4.2. The interactions among atria and ventricles are based on the following
assumptions on the cardiac conductions system (CCS), showed in Figure 4.9(a).
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Chapter 4. Towards the electromechanical modeling of the whole heart

Figure 4.10: Evolution of the transmembrane potential for the ventricles uV and for
the atria uA in the Zygote EP simulation, during a cardiac cycle. (a) full heart frontal
view; (b) clipped internal view. For visualization purpose we removed the valve and
cut vein planes.
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4.3. Numerical results: whole heart simulations

The ventricles are electrically isolated from the atria by the atrioventricular grooves [8];
the atria are electrically separated by the insulating nature of the atrial septum (divid-
ing RA from LA) apart from muscular continuity at the rim of Fossa Ovalis [100]. The
CCS pathway is modelled as a series of spherical delayed stimuli along the heart geom-
etry that mimic the electrical atrial connections, the Atrio-Ventricular Node (AVN)
delay and the main area of ventricular electrical activation: specifically, when the
transmembrane potential front reaches these points a stimulus current is triggered,
see Figure 4.9(a). Notice that, although the Purkinje network system should be used
to account for a detailed ventricular activation (see e.g. [252, 166]), for the sake of
simplicity several spherical endocardial stimuli were applied to each ventricle [59].

The CCS electric signal originates at the Sino-Atrial Node (SAN, t = 0 ms) and
travels from RA to LA through three electrical atrial connections, the Bachmann’s
Bundle (BB, t = 28 ms), the rim of Fossa Ovalis (FO, t = 42 ms) and the Coronary
Sinus Musculature (CSM, t = 80 ms) [100, 208]. When the electric signal reaches the
AVN, located at the lower back section of the inter-atrial septum near the coronary
sinus opening, it is subject to a delay (90 ms), that allows the complete activation
of the atria before ventricles electric propagation starts [100]. Finally, ventricular
endocardial areas are activated: in the anterior para-septal wall (AL), in the left
surface of inter-ventricular septum (SL) and in the bottom of postero-basal area (PL),
for LV; in the septum (SR) and in the free endocardial wall (ER), for RV, 5 ms after
the onset of LV stimuli [59]; see Figure 4.9(a).

Figure 4.9(b-c) depicts the activation maps computed by the Zygote heart EP
simulation. We obtained a physiologically compatible timing for the heart activation
[188, 72, 187]: the complete atrial depolarization occurs after about 120 ms, while
that of ventricles after about t = 270 ms. The last region to be activated is LAA for
the atria, while the postero-basal area of RV for the ventricles, both in accordance
with [208, 59].

The transmembrane potentials evolution for the ventricles uV and for the atria
uA are shown in Figures 4.10. As expected, the electric signal initiates at SAN and
spreads from RA to LA. Then, after the delay of AVN, the ventricles start to acti-
vate. The atrial repolarization arises during ventricular depolarization. Finally, after
the isoelectric ventricular activity, the whole heart return to the depolarized initial
configuration, see Figure 4.10.

4.3.4 Whole heart electromechanics

We present an human heart EM simulation in physiological conditions in the Zygote
heart, employing the 3D-0D whole heart model, presented in Section 4.2. For the
fiber generation of the cardiac muscular architecture we adopted the heart LDRBM
described in Section 4.1.

Regarding the space discretization of the 3D-0D whole heart model, we used con-
tinuous bilinear FE (Q1) and we employed two nested meshes, where for TM and MA
problems we adopted an average mesh size of 1.5 mm, while for EP problem a mesh
size two time smaller. Meanwhile, for the time discretization, we used BDF1 with
τ = 50µs for EP problem and with ∆t = 20 τ for TM, MA and fluid problems [199,
176].

The parameters of the 3D-0D heart model are listed in Tables 4.4 and 4.5, see
also Section 4.2. Specifically, Table 4.4 contains the parameters of the 3D EM model
and Table 4.5 those of the 0D closed-loop hemodynamical model. Moreover, for the
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Chapter 4. Towards the electromechanical modeling of the whole heart

Variable Value Unit Description

Electrophysiology
THB 0.8 s Heartbeat duration
χm 1 µF/cm2 Surface-to-volume ratio
Cm 1400 cm−1 Transmembrane capacitance
ε 0.05 − Threshold of the fast conduction layer
(σ`,fast, σt,fast, σn,fast) (5.00, 2.50, 0.75) mS/cm Fast ventricular layer conductivities
(σ`,myo, σt,myo, σn,myo) (1.00, 0.50, 0.15) mS/cm ventricular conductivities

(σ
(a)
` , σ

(a)
t , σ

(a)
n ) (7.00, 0.70, 0.70) mS/cm atrial conductivities

Imax 50 · 103 µA/cm3 Applied current value
tapp 3.0 ms Applied current duration
δapp 2.5 mm Applied current radius

Mechanics
ρs 103 kg m−3 Tissue density

Kepi
‖ 2 · 104 Pa m−1 Normal stiffness of epicardium

Kepi
⊥ 2 · 105 Pa m−1 Tangential stiffness of epicardial tissue

Cepi⊥ 2 · 104 Pa s m−1 Normal viscosity of epicardial tissue

Cepi‖ 2 · 103 Pa s m−1 Tangential viscosity of epicardial tissue

Kpv
‖ 2 · 104 Pa m−1 Normal stiffness of pulmonary caps

Kpv
⊥ 2 · 105 Pa m−1 Tangential stiffness of pulmonary caps

Cpv⊥ 2 · 104 Pa s m−1 Normal viscosity of pulmonary caps
Cpv‖ 2 · 103 Pa s m−1 Tangential viscosity of pulmonary caps

Guccione law :
a 0.88 · 103 Pa Material stiffness
κ(G) 50 · 103 Pa Bulk modulus
bff 8 − Fiber strain scaling
bss 6 − Radial strain scaling
bnn 3 − Cross-fiber in-plane strain scaling
bfs 12 − Shear strain in fiber-sheet plane scaling
bfn 3 − Shear strain in fiber-normal plane scaling
bsn 3 − Shear strain in sheet-normal plane scaling
Neo-Hookean law :
µ 105 Pa Shear modulus
κ(N) 5 · 105 Pa Bulk modulus

Reference Configuration
p̂`v 650 Pa Residual left ventricular pressure
p̂rv 450 Pa Residual right ventricular pressure
p̂`a 800 Pa Residual left atrial pressure
p̂ra 600 Pa Residual right atrial pressure

T̂a 350 · 103 Pa Residual ventricular active tension

T̂
(a)
a 350 · 103 Pa Residual atrial active tension
C`rv 1 − Residual ventricular contractility ratio
C`ra 1 − Residual atrial contractility ratio

Activation
SL0 2 mm Reference sarcomere length
Tmaxa 800 · 103 Pa Ventricular maximum tension

T
max,(a)
a 400 · 103 Pa Atrial maximum tension
C`rv 1 − Ventricular contractility ratio
C`ra 1 − Atrial contractility ratio

Table 4.4: Input parameters of the 3D EM heart model.

128



4.3. Numerical results: whole heart simulations

Variable Value Unit Description

Circulation
Rsysar 0.640 mmHg s mL−1 Resistance of systemic arterial system
Rsysven 0.260 mmHg s mL−1 Resistance of systemic venous system
Rpular 0.032 mmHg s mL−1 Resistance of pulmonary arterial system
Rpulven 0.036 mmHg s mL−1 Resistance of pulmonary venous system
Csysar 1.200 mL mmHg−1 Capacitance of systemic arterial system
Csysven 60.00 mL mmHg−1 Capacitance of systemic venous system
Cpular 10.00 mL mmHg−1 Capacitance pulmonary arterial system
Cpulven 16.00 mL mmHg−1 Capacitance of pulmonary venous system
Lsysar 5 · 10−3 mmHg s2 mL−1 Impedance of systemic arterial system
Lsysven 5 · 10−4 mmHg s2 mL−1 Impedance of systemic venous system
Lpular 5 · 10−4 mmHg s2 mL−1 Impedance pulmonary arterial system
Lpulven 5 · 10−4 mmHg s2 mL−1 Impedance of pulmonary venous system
Rmin 75 · 10−4 mmHg s mL−1 Valves minimal resistance
Rmax 75 · 103 mmHg s mL−1 Valves maximum resistance

Table 4.5: Parameters of the 0D closed-loop model in the 3D-0D heart model.

Physics/Fields Linear solver (preconditioner) Abs. tol.

Fiber Laplace problems GMRES(AMG) 10−10

Monodomain model CG (AMG) 10−8

Activation GMRES (AMG) 10−10

Mechanics GMRES (AMG) 10−8

Reference configuration GMRES (AMG) 10−6

Table 4.6: Tolerances of the linear solver for the different 3D-0D heart core models.

Physics/Fields non-linear solver Rel. tol. Abs. tol.

Mechanics Newton 10−8 10−6

Reference configuration Newton 10−6 10−4

Table 4.7: Tolerances of the non-linear solver for the 3D-0D heart mechanical problem.

TTP06 and CRN98 ionic models, we use the parameters2 reported in [247] and [47],
respectively, while for the RDQ18-ANN model, we employed those in [196]. Tables 4.6
and 4.7 report the setting used for the linear and non-linear solvers, respectively. The
setting related to the heart LDRBM, adopted for prescribing the fiber architectures,
is detailed in Section 4.3.2. Moreover, to surrogate the effect of ventricular dispersed
myofibers, we fixed in (4.4) nf = 1, ns = 0 and nn = 0.4 for the proportion of active
tension along the fiber, sheet and normal directions, respectively [87, 3, 177].

To approach the limit cycle, we performed five heartbeats using the fully frame-
work of the 3D-0D model presented in Section 4.2. All the reported results refer to the
last heartbeat. Moreover, we initialized both the ionic models (TTP06 and CRN98)
by running a 1000-cycle long single-cell 0D simulation. Similarly, we initialized the
force generation model by means of a single-cell 0D simulation with a constant cal-
cium inputs (corresponding to the final calcium concentrations of the single-cell ionic
simulations of TTP06 and CRN98) and a reference sarcomere length SL = 2.2 mm.

2For the TTP06 ionic model we used the endocardium cells parameters [247].
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Chapter 4. Towards the electromechanical modeling of the whole heart

Figure 4.11: Evolution of the mechanical displacement magnitude (with respect to the
reference configuration) in the Zygote heart EM simulation during a cardiac cycle. (a)
full heart frontal view; (b) clipped internal view.
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4.3. Numerical results: whole heart simulations

Figure 4.12: (a) Evolution of the calcium transient for the ventricles CaV (of TTP06)
and for the atria CaA (of CRN98) in the Zygote heart EM simulation during a cardiac
cycle; (b) pressures (left), volumes (centre) and PV-loop (right) for LV (orange), RV
(blue), LA (green) and RA (yellow). Moreover, also the pressures psysar (red) and ppular

(violet) are plotted.

The pacing protocol, composed by atrial and ventricular endocardial spherical
stimuli, is the same as the whole heart EP simulation showed in Section 4.3.3. More-
over, in the ventricles we combined the impulses with the fast endocardial conduction
layer (see Section 3.1.2) in order to surrogates the action of the Purkinje network [127,
252].

Figure 4.11 illustrates the time evolution of the mechanical displacement magni-
tude, in the Zygote heart EM simulation, during a cardiac cycle. Specifically, we
report different snapshots of the atrial (in the first line) and of the ventricular (in the
second line) contraction of the heart geometry, warped by the displacement vector
(taken with respect to the reference configuration). At the beginning, we observe a
passive filling phase (from the atria to the ventricles) with a slow increase of ventric-
ular volumes (t = 0.0 ÷ 0.13 s). Then, the atrial systole, also named “atrial kick”,
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Chapter 4. Towards the electromechanical modeling of the whole heart

Figure 4.13: Schematic representation of the measured Longitudinal Fractional Short-
ening (LFS) in the Zygote heart EM simulation: (a) mid heart slice at the beginning
of the heartbeat (t = 0.00 s), showing the apico-basal distance L0; (b) mid heart slice
at the end of systole (t = 0.44 s), showing the apico-basal distance L.

occurs, with the consequent decrease of atrial volumes and increase of the ventricular
ones (t = 0.26 ÷ 0.32 s). During the ventricular contraction, the ejection phase is
clearly visible, with the atrioventricular plane that moves towards the bottom of the
heart, while the apex remains almost fixed. Moreover, a significant thickening of the
ventricular wall takes place (t = 0.39 ÷ 0.44 s). Then, the ventricles start to relax.
This leads to a slow recovery of the heart initial volumes (t = 0.52÷ 0.60 s).

Figure 4.12(a) shows the physiological wave propagation of calcium ions concen-
trations (coming from TTP06 and CRN98) CaV and CaA, during a cardiac cycle, for
the ventricles and the atria, respectively. Following the electrical activity of the heart,
the release of calcium originates at the SAN, (t = 0.04 s) and travels from RA to LA
(t = 0.08÷ 0.12s) up to the complete activation of atria (t = 0.20 s). The AVN delay
(∼ 0.09 s) ensures that the atria contract before ventricular endocardial areas are ac-
tivated (t = 0.30 s). The calcium wave spreads from LV to RV (t = 0.30 ÷ 0.34 s) up
to the complete activation of both ventricles (t = 0.44 s). Finally, after the ventricular
contraction, the calcium concentration goes back to its resting value (t = 0.64 s).

Figure 4.12(b) displays the PV-loop curves and the time evolution of pressures
and volumes of the four chambers. During the atrial contraction the volume of both
ventricles increases while the pressure remains almost constant (t = 0.00÷ 0.30 s). At
this stage, MV and TV are opened, while AV and PV are closed. Then, the ventricular
systole starts: at the beginning the volume of the ventricles is almost constant while
the pressure increases. This produces the ventricular contraction and the closing of MV
and TV. The ventricular pressures raise until they overcame the aorta and pulmonary
artery pressures (psysar and ppular ), triggering AV and PV to open with a rapid volume
decrease in both ventricles, due to the blood ejection (t = 0.30 ÷ 0.60 s). Finally,
the ventricles relax, AV and PV close and when the ventricular pressures reach those
of the atria, MV and TV open again and a slow filling phase (from the atria to the
ventricles) begins (t = 0.60÷ 0.80 s).

In Table 4.8 we compare some relevant mechanical biomarkers obtained by our
numerical simulation with those provided by the data reported in the literature [122,
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Mechanical biomarkers Literature values Simulation results Description

EFLV (%) 50-75 [122] 51 Left ventricular ejection fraction
EFRV (%) 48 ± 5 [147] 48 Right ventricular ejection fraction
PLV (mmHg) 119 ± 13 [236] 140 Left ventricle pressure peak
PRV (mmHg) 35 ± 11 [31] 30 Right ventricle pressure peak
PLA (mmHg) 12-14 [178] 14 Left atrium pressure peak
PRA (mmHg) 1-8 [52] 8 Right atrium pressure peak
LFS (%) 13-21 [61] 21 Longitudinal fractional shortening

Table 4.8: Comparison between the simulation results, employing the 3D-0D whole
heart model, and literature values of mechanical biomarkers in physiological conditions
(references are reported in the Table).

147, 236, 31, 178, 52, 61]. The chosen mechanical biomarkers were: i) left and right
ventricular ejection fractions (EFLV, EFRV), which represent the amount of blood that
is pumped by LV and RV during a cardiac cycle, computed as

EFi(%) =
EDVi − ESVi

EDVi
100 i = LV,RV,

where EDVi and ESVi (with i = LV,RV) represent the maximal and minimal (left
i = LV and right i = RV) ventricular volumes achieved during the heartbeat, com-
puted as the maximal and minimal volumes in the PV-loop curves, see Figure 4.12(b);
ii) left and right atrial and ventricular systolic pressure peaks (PLV, PRV, PLA, PRA),
the maximal pressures reached in LV, RV, LA and RA, computed as the maximal
pressures in the PV-loop curves, see Figure 4.12(b); iii) the systolic longitudinal frac-
tional shortening (LFS), standing for the fractional displacement between the apex
and the atrioventricular plane [130], evaluated as

LFS(%) =
L0 − L

L0
100,

where L0 and L are the apico-basal distance measured at the beginning (t = 0.0 s) and
at the end of systole (t = 0.44 s), see Figure 4.13.

Apart from the left ventricular systolic pressure peak (PLV), with a slightly higher
value, all the other mechanical biomarkers, obtained by our numerical simulation, fall
within the physiological range (references in Table 3.5).
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This thesis presented a fully-coupled multiscale mathematical and numerical model
of the electrical and mechanical activity of the whole human heart, wherein the main
contribution is given by the generation of the full heart myofibers, described by means
of a newly developed Rule-Based Method (RBM).

The whole heart fiber architecture is built upon a new Laplace-Dirichlet Rule-
Based Method (LDRBM), a particular class of RBM strictly related to the solution
of Laplace boundary-value problems [176]. The latter is based on the novel definition
of several inter-heart and intra-heart harmonic functions, which couple together the
different LDRBMs for the atria and the ventricles [176, 58]. To properly reproduce the
characteristic features of the cardiac fiber bundles in all the four chambers, the heart
LDRBM uses the gradient of inter-heart and intra-heart harmonic functions combined
with a precise definition of the boundary sections, where boundary conditions are pre-
scribed for the harmonic problems (see Section 4.1). This strategy makes the fibers
less open to subjective variability. On the other hand, the heart fiber bundles dimen-
sion could be adapted case by case changing the parameters involved in the RBM.
The proposed methodology was demonstrated to quantitatively replicate the complex
arrangement of the fiber directions in almost every anatomical atrial and ventricular
regions: the helical structure of LV, the characteristic fibers of RV, the outflow tracks
(OT) regions and the fiber bundles of LA and RA, including the inter-atrial connec-
tions (see Section 4.3.2). The heart LDRBM is computationally inexpensive, efficient
and easy to implement, and it allows to include realistic cardiac muscle fibers architec-
ture on whole heart geometries of arbitrary shape. As a consequence, it is possible to
generate patient specific heart fibers, fed by input parameters inferred from histology
or DT-MRI studies, through an automated and computationally efficient procedure.

Apart from a very detailed myocardial fiber architecture, the whole heart model
of this thesis considers a 3D description of cardiac electromechanics (EM) in all the
four chambers and a 0D representation of the circulatory system, which includes the
cardiac blood haemodynamics (see Section 4.2). The 3D EM part comprises:

i) the cardiac electrophysiology (EP), described by means of the monodomain equa-
tion endowed with state of the art human ionic models for the ventricle (TTP06 [247])
and the atria (CRN98 [47]), which are able to accurately describe ions dynamics
across the cell membrane in physiological conditions;

ii) the sarcomere mechanical activation (MA), based on an Artificial Neural Network
(ANN) model, known as the RDQ18-ANN model (recently proposed in [196]), which
is able to represent in detail the sophisticated microscopic active force generation
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mechanisms, taking place at the scale of sarcomeres, with the great advantage of
strikingly reducing the computational burden associated to the numerical solution
of the RDQ18 full order model [195];

iii) the myocardial tissue mechanics (TM), for both the atria and the ventricles, rep-
resented adopting, for the passive behaviour, the Guccione constitutive law [90] and,
for the active part, an orthotropic active stress formulation [89], which surrogates
the contraction caused by dispersed myofibers [87].

The whole heart EM model, comprising EP-MA-TM, is strongly coupled with a 0D
closed-loop lamped parameters model (recently proposed in [198]) for the blood haemo-
dynamics through the entire cardiovascular network, where systemic and pulmonary
circulations (both arterial and venous) are modeled with RLC circuits. The heart
chambers are described by time-varying elastance elements and non-ideal diodes stand
for the heart valves (see Section 3.1.5). The coupling between the 0D-fluid and 3D-EM
models is achieved by means of the volume-consistency coupling conditions, where the
pressures of all the four chambers act as Lagrange multipliers associated to the volume
constraints (see Sections 3.1.6 and 4.2.1). The above coupling approach, between the
3D EM and the 0D circulation models, ensures both the continuity of volumes and
pressures and is complaint with the principles of conservation of mechanical energy
[198, 199].

The numerical approximation of the 3D-0D heart model included: finite Element
Method (FEM) with continuous FE and hexahedral meshes, for the space discretiza-
tion, and Finite difference (FD) schemes with Backward Difference Formulae of order
σ ≥ 1 (BDFσ), for the time discretization. The Segregated-Intergrid-Staggered (SIS)
numerical scheme was adopted. The core models, contributing to both cardiac EM
and blood circulation, are solved sequentially once per time step in a segregated man-
ner, by using different resolutions in space and time, to properly handle the different
space-time scales of the core models (see Sections 4.2.3 and 3.2).

The validity of the whole heart 3D-0D model was demonstrated through EM and
EP simulations (see Sections 4.3.3 and 4.3.4), with physiological activation sites in
a four chamber realistic computational domain of the Zygote heart, a CAD-model
representing an average healthy human heart reconstructed from high-resolution CT-
scan [107]. As it is a very detailed geometry of the human heart, it demonstrates the
applicability of the proposed whole-heart model to arbitrary patient-specific scenarios.
EP simulation of the whole heart produced a physiologically compatible timing for
the cardiac activation [188, 187, 72] in accordance with previous reports [59, 208];
see Section 4.3.3. In EM simulation of the whole heart, some relevant mechanical
biomarkers, obtained by our simulation, are compared with those provided by the data
reported in the literature [122, 147, 236, 31, 178, 52, 61]. Almost all the mechanical
biomarkers fall within the physiological range; see Section 4.3.4.

The proposed 3D-0D whole heart model, presented in this thesis, provides an
important contribution to the whole heart modeling and to perform full heart EM
simulations, allowing both the study of four chambers heart clinical cases as well as
investigating medical questions.
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Besides the above mentioned achievements of the 3D-0D whole heart model, this thesis
obtained the following results:

• it provided a novel unified framework, based on LDRBMs, for generating cardiac
muscle fibers in biventricular and biatrial computational domain (see Chapter 2);

• it reviewed existing ventricular LDRBMs, proposed by Rossi et al. [204] (R-RBM),
by Bayer et al. [26] (B-RBM) and by Doste et al. [58] (D-RBM), by means of a
communal mathematical description. Some extensions were also introduced allowing
the inclusion of different fiber orientations in LV and RV for R-RBM and B-RBM,
the rotation of all the myofiber vectors for R-RBM, and the fibers generation up to
cardiac valve rings for B-RBM (see Section 2.1);

• it proposed a novel LDRBM for the generation of atrial myofibers, which is able to
reproduce all the important features, such as the fiber bundles, needed to provide
a realistic atrial musculature architecture. The newly developed method has been
proposed in [176], and in this thesis has been presented the extension to the bia-
trial geometries. The novel methodology makes the fibers less open to subjective
variability. On the other hand, the bundles dimension could be adapted case by
case changing the parameters involved in the method. Therefore, unlike most of
the existing atrial RBM requiring manual or semi-automatic interventions, the new
method can be easily adapted to any arbitrary geometry (see Section 2.2);

• it carried out systematic comparisons of ventricular LDRBMs, performed on either
idealized and realistic human biventricular geometries. R-RBM and B-RBM were
able to recover almost the same fiber orientations of D-RBM thanks to the proposed
extensions. However, some local differences persist in the methods utilized (see Sec-
tion 2.5). Furthermore, the influence of the different ventricular fibers architecture
on EP signal propagation in terms of activation times, computed as output of nu-
merical simulations, was investigated, highlighting the importance of including a
proper fiber orientation for RV (see Section 2.5);

• it presented the fiber generation results of the new atrial LDRBM to reconstruct
LA, RA and biatrial myofiber architectures, both in idealized and realistic geome-
tries. The new LDRBM quantitatively captures the complex arrangement of fiber
directions in almost all the anatomical atrial regions, including the inter-atrial con-
nections (see Sections 2.6 and 2.7). This was demonstrated through comparisons
with another RBM, with anatomical atrial dissections and with DT-MRI fiber data.

• it analysed the influence of atrial fiber bundles by means of EP simulations in real-
istic and real geometries (coming from DT-MRI data). Specifically, the comparison
between the fiber activation map and an isotropic electrical propagation or a change
in size of a single bundle strongly affect the total activation sequence in the atria.
These results putted in evidence the strong effect of the atrial bundles in the electric
signal propagation and the importance of including a detailed fiber architecture in
EP atrial models (see Sections 2.6 and 2.7);

• it presented a 3D biventricular EM model coupled with a 0D closed-loop model of
the whole cardiovascular system, providing a rigorous mathematical and numerical
formulation of the 3D-0D model, and detailing the approach to couple the 3D and
the 0D models (see Chapter 3). The biventricular 3D-0D model was the building
block for the 3D-0D whole heart model (see Chapter 4);
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• it introduced a boundary condition for the mechanical problem that accounts for
the neglected part of the domain located on top of the biventricular basal plane
and that is consistent with the principles of momentum and energy conservation.
In particular, the energy-consistent boundary condition (proposed for LV in [196])
was extended to the weighted-stress distribution form, applicable to biventricular
geometries (see Section 3.1.4);

• it carried out several numerical biventricular EM simulations aimed at reproduc-
ing physiological quantities like the PV-loops. The results quantitatively matched
the experimental data of all the relevant mechanical biomarkers available in litera-
ture [137, 238, 138, 236, 31, 61, 219], such as the end systolic and diastolic volumes,
the ejection fractions, the systolic pressure peaks, the longitudinal fractional short-
ening and the fractional wall thickening (see Section 3.3.2);

• it studied different configurations in cross-fibers active contraction, which surrogate
the dispersion effect in the cardiac fibers. These results proved that an active tension
along the sheet-normal direction enhances the cardiac work, whereas along the sheet
direction it has the opposite effect. Moreover, an active contraction in the sheet-
normal direction allows to obtain a more efficient cardiac pumping function with
a much lower axial stress with respect to a pure fiber configuration. Conversely, a
sheet active contraction yields unphysiological ejection fraction, longitudinal short-
ening and wall thickening. These results putted in evidence that the proportion of
active tension along the sheet direction should be avoided in the framework of an
orthotropic active stress (see Section 3.3.3);

• it evaluated the impact of different myofibers architecture on the biventricular EM,
showing the importance of considering a biventricular model with respect to a stand-
alone LV model. A different fibers architecture in the transmural wall and in the
inter-ventricular septum influence the ventricular cardiac pump work, in particular
the LV one. This highlighted the strong interaction on the cardiac pump function
between LV and RV, and consequently the importance of considering the two cham-
bers together during ventricular EM simulations. The continuous interrelationships
between right and left ventricular functions are well known not only in physiolog-
ical conditions, but particularly in pathological situations, for which any pressure
and/or volume overload of a ventricle is instantaneously reflected in impairment of
the function of the contralateral ventricle (see Section 3.3.4);

• it provided a detailed description of the process behind the generation of whole
heart mesh, starting from an acquired cardiac geometry. The following procedure
was applied to generate labelled volumetric mesh of a realistic whole heart geometry,
employed for EP and EM simulations (see Section 4.3.1).

Future directions and improvements

Several possible improvements and prospectives arise from th work carried out in this
thesis:

• further investigations should be performed to establish which ventricular LDRBM
better reproduces the anatomical ground truth. In particular, concerning the septal
fibers, standard anatomical observations claim that the fibers are almost continuous
through the septum [99, 210], though recent studies support the thesis of septal
fibers discontinuity [115, 34];
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• the validation of the atrial LDRBM, presented in Section 2.7.3, based on the com-
parison between the LDRBM fibers and the DT-MRI fiber data, should be extended
to more than one biatrial geometries, in order to verify the adaptability of the pro-
posed methodology to inter-patient variations;

• the EP at cellular and tissue levels was modelled as homogeneous through the whole
heart. Although in principle this assumption is a well accepted approximation for
the ventricular tissues of healthy individuals, several atrial regions exhibit distinct
EP properties. These should be taken into consideration to achieve a more realistic
activation/repolarization pattern [67, 129], particularly when reproducing patho-
logical conditions affecting the atrial chambers [57];

• the Purkinje network was not explicitly modelled (as for instance done in [252, 46,
126]). Instead, to surrogates the effect of the Purkinje network (as done in [127]),
a series of spherical impulses, taken along LV and RV endocardia where an electri-
cal stimulus is applied, was combined with the fast endocardial conduction layer.
Although this approximation is reasonable in physiological condition, the Purkinje
network should be explicitly modelled in order to achieve a more realistic activation
sequence in the ventricles, in particular when attempting to reproduce pathological
conditions, like for instance the Left Bundle Branch Block [156, 252];

• the RDQ18 activation model does not take into account the feedback of the shorten-
ing velocity along the muscle fibers on the subcellular force generation mechanism.
This effect (known as the force-velocity relationship) entails that when the tissue
rapidly contracts, the force generated decreases, thus making the pressure transient
smoother. Hence, the sharp pressure peaks shown in Figures 3.11(d) and 4.12(b)
would be smoothed by using a model that takes into account the force-velocity re-
lationship, such as the RDQ20 model, as shown in [194]. The integration of a the
recently developed RDQ20 force generation model [195] into the multiscale 3D-0D
cardiac model will be the subject of a future work.

• the proposed whole heart fibers generation methodology is computationally inex-
pensive, efficient and easy to implement, and it allows to include realistic cardiac
muscle fibers architecture on whole heart geometries of arbitrary shape. As a con-
sequence, it is possible to generate patient cohorts heart fibers. Recently, a publicly
available virtual cohort of about twenty linear tetrahedral four chamber meshes was
reported in [234]. However, these heart meshes embed only the ventricular fibers.
The application of the heart LDRBM will easily extend this cohort to include full
heart muscular architecture;

• the whole heart EM simulation, presented in Section 4.3.4, needs further calibrations
in order to better reproduce realistic atrial PV-loops.
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Knowles, R. Razavi, and O. Dössel. “Patient-specific volumetric atrial models
with electrophysiological components: a comparison of simulations and mea-
surements”. In: Biomedizinische Technik/Biomedical Engineering 55 (2010).

[120] M.W. Krueger, V. Schmidt, C. Tobón, F.M. Weber, C. Lorenz, D.U.J. Keller, H.
Barschdorf, M. Burdumy, P. Neher, G. Plank, et al. “Modeling atrial fiber ori-
entation in patient-specific geometries: a semi-automatic rule-based approach”.
In: International Conference on Functional Imaging and Modeling of the Heart.
2011, pp. 223–232.

[121] J.B. Kuipers et al. Quaternions and Rotation Sequences. Vol. 66. Princeton
University Press, 1999.

[122] V. Kumar, A.K. Abbas, N. Fausto, and J.C. Aster. Robbins and Cotran patho-
logic basis of disease. Elsevier Health Sciences, 2014.

[123] S. Labarthe, Y. Coudiere, J. Henry, and H. Cochet. “A semi-automatic method
to construct atrial fibre structures: A tool for atrial simulations”. In: Computing
in Cardiology. 2012, pp. 881–884.

[124] S. Land and S.A. Niederer. “Influence of atrial contraction dynamics on car-
diac function”. In: International Journal for Numerical Methods in Biomedical
Engineering 34.3 (2018), e2931.

[125] S. Land, S. Park-Holohan, N.P. Smith, C.G. Dos Remedios, J.C. Kentish, and
S.A. Niederer. “A model of cardiac contraction based on novel measurements
of tension development in human cardiomyocytes”. In: Journal of Molecular
and Cellular Cardiology 106 (2017), pp. 68–83.

[126] M. Landajuela, C. Vergara, A. Gerbi, L. Dedè, L. Formaggia, and A. Quar-
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