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1. Introduction 

In 2008, Maurice Bergsma and Pieter Spronck 

proposed an AI architecture, named ADAPTA [1], 

for a deeply simplified version of the Turn Based 

Strategy (TBS) videogame Advance WarsTM. The 

aim of this work is to extend the proposed concepts 

to the actual game and lay the foundation for 

possible future researches on the topic of AI for 

Turn Based Strategy (TBS) videogames, which 

features a general scarce literature. 

The project is built on top of an open-source 

version of the game, called Commander Wars [2]. 

2. ADAPTA overview 

The purpose of the ADAPTA architecture is to 

create an AI which is able to adapt to the player 

and change its strategy across different matches. Its 

aim is not necessarily to win, but instead is to create 

an interesting experience for the player to keep 

them in the flow [3]. 

The architecture is structured modularly: it is 

divided into several Tactical Modules and a 

Strategic Module. Each Tactical Module has its 

own behavior and controls in general a subset of 

units. Tactical Modules are divided into Adapta 

Modules and Building Modules: the firsts control 

units, the seconds decide which units should be 

built. Each Tactical Module proposes a bid for each 

unit, ranging from 0 to 1, indicating the usefulness 

of that unit for their own tactic.  

A Strategic Module controls the Tactical Modules 

by assigning them a weight at the start of the match 

to adjust its strategy. 

 

 

Figure 2-a ADAPTA modules overview 

Since the modules must share a limited number of 

assets (units), the Adapta AI (which is the AI built 

with the ADAPTA architecture) receives the bids 
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of the modules and then assigns each unit to the 

modules which had overall the highest, weighted, 

bid. 
 

 

 

Figure 2-b unit assignment and processing of 

modules 

Each module can be responsible for any 

subcategory of units or actions in general. In theory 

all the modules could be purely scripted and 

behavioral, each accounting a specific subtask. In 

this scenario the ADAPTA would behave in a 

similar way to Dynamic Scripting [4]. 

Given a specific configuration of modules, the 

Strategic Module tracks a history of past matches 

and uses it to assign the weights of the modules for 

the next match, to change the overall strategy 

adopted.  

First it evaluates the historic value of each module, 

which is calculated as follows: 
 

ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐_𝑣𝑎𝑙𝑢𝑒(𝑚) =
∑ 𝑤𝑚,ℎ ∗ 𝑟ℎ ∗ 𝑝ℎ𝐻

ℎ=0

∑ 𝑝ℎ𝐻
ℎ=0

 

 

Where h is the index of the past match (0 is the most 

recent, H is the history capacity),  𝑤𝑚,ℎ is the weight 

assigned to module m at past match h, 𝑟ℎ is the 

outcome of match h, 𝑝ℎ is the past multiplier, a 

value in range [0,1] which gives more or less 

importance to past matches. This allows to 

evaluate, based on previous matches, the 

contribution of each module to the overall victory 

or loss of the module. This is not per se a value 

which promotes better performing modules, 

because the aim of the Strategic Module is not 

necessarily to win. This historic value, which 

ranges from -1 to 1, is passed as argument in a 

simple gaussian, which has mean 𝜇 representing 

the aim of the Strategic Module. If is set to 0, it will 

try to change its configuration in order to achieve a 

tie with the opponent. If the past configurations for 

instance have brought to a solid win, the modules 

with more responsibility for that will be penalized. 
 

 
(a) 𝜇 = 0, 𝜎2 = 0.1 
tries to tie, spiked 

weights distribution 

 
(b) 𝜇 = 0.5, 𝜎2 = 0.3 

Tries to slightly win, 

smoother distribution 

Figure 2-c Strategic Module configuration 

examples 

 In the above picture, historic values are placed on 

the x in the range [-1,1], while the final weight is 

the gaussian value in that point. 

To avoid converging to uniform distribution of 

weights, the Strategic Module can be configured to 

have a degree of noise, both in single weights and 

both a chance of extracting a fully random 

configuration. 

3. MIN Module 

The Multi Influence Network Module, or MIN for 

short, is the extension of the one implemented in 

the original paper [1], applied to the real game.  

It is a module which is dedicated to the 

Extermination concept of the 4 X’s (Exploration, 

Expansion, Exploitation, and Extermination).  

The core logic is the computation of the optimal tile 

for a unit through the use of Influence Maps [5]. An 

influence map accounts and propagates a weight 

relative to each element considered relevant, 

according to a propagation function. 

The general formula for evaluating the influence 

on a tile is: 

𝐼(𝑥, 𝑦)  =  ∑ 𝑝(𝑤(𝑜), 𝛿(𝑜, 𝑥, 𝑦)) 

𝑂

𝑜

 

Where 𝑂 is the set of the objects accounted by the 

map, 𝑝(𝑊, 𝑑) is a propagation function of a weight 

vector 𝑊 and a distance 𝑑, 𝑤(𝑜) is a function which 

converts the object into a vector of weights, and 

𝛿(𝑜, 𝑥, 𝑦) is a distance function which evaluates the 

distance in game tiles of object 𝑜 from the tile with 

coordinates (𝑥, 𝑦). 

The set of objects accounted by the specific map 

depends on the map chosen. For the MIN, several 

types of maps were created: there is a set of 3 
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learnable maps which propagates learned weights 

for allied units, enemies, or both; a set of 2 maps 

which propagates values based on damage dealt 

and taken according to the game’s damage chart, 

and a map which assigns an influence based on 

each tile on the map. A MIN Module can be 

configured to have any number of this maps, even 

replicated, since in any case the weights assigned 

to each maps are learned and could bring different 

meanings to different units. 

Since there are different types of units in Advance 

Wars, some information may be shared. The MIN 

Module hence has a set of local (l) and global (g) 

maps: local maps are relative to each type of unit, 

while global are computed for the whole module. 

The final influence of the output map for each type 

of unit is computed as such: 

𝐼(𝑥, 𝑦) =  ∑ 𝑖𝑙(𝑥,𝑦)

𝐿

𝑙

∗ 𝑤𝑙 + ∑ 𝑖𝑔(𝑥,𝑦) ∗ 𝑤𝑔

𝐺

𝑔

 

 

 

Figure 3-a MIN Module output computation 

Which is a weighted sum of every local and global 

map. Even if the map is global, the weight used by 

a type of unit (e.g., Infantry) is still local, because it 

can exploit in a different way global information. 

A MIN Module is configured with any number and 

types of local and global maps (although some 

maps can only be local or global). Local maps are 

replicated once per supported type of units, global 

maps are computed once. Since they are computed 

at the start of turn, before moving a unit its 

influence map is updated by adjusting the 

influence of every element accounted that has 

changed since last computation. For performance 

reason this doesn’t recompute the map and the 

operation is performed only when needed. 

The propagation of unit influences is performed 

stepwise, which means that tiles reachable or 

attackable by a unit in the same number of turns 

will have the same influence. 

 

Evolution is performed by simply converting the 

weights which define a MIN Module’s maps into a 

vector of weights, and performing a classical 

genetic algorithm approach. It was adopted a 

custom fitness function to slightly boost better 

offspring and penalize worse ones: 
 

𝑓𝑐𝑢𝑠𝑡
′ =  (𝑓 + 𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛 )4 

 

Where 𝑓𝑚𝑎𝑥 and 𝑓𝑚𝑖𝑛 are the boundaries of the 

obtainable fitness. 

It was also included the option to perform a form 

of Transfer Learning, which allows to transfer all 

the possible information from a MIN Module to a 

new one with a different configuration. This allows 

to train a MIN Module in a more contained 

environment and then to pass its knowledge to a 

new module which is trained in a different 

environment with a superset of units and/or in a 

different maps, starting with a set of non-random 

weights associated to the units used by the 

previous module already trained. The transferred 

weights can be relearned but can be used as a more 

stable basis of weights w.r.t. a starting random one. 

4. CNN Module 

The CNN Module is an experimental approach 

which makes use of Convolutional Neural 

Networks for evaluating and processing a game 

state map. 

The CNN is adapted from a segmentation 

problem: the input is the game map and the output 

is still a representation of the game map. The idea 

is to read gradually local points of the map and 

building a state which represents the knowledge of 

the current game, to be then applied to the map. 

Compared to classical image segmentation 

problem, Advance Wars features a strongly 

smaller sized input, however each tile carries way 

more information than a pixel and is hence deeper. 

A tile is in fact fully defined by its terrain and its 
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unit, and each one has a set of unique feature to 

account for. To summarize them and reduce 

complexity by keeping only the more meaningful, 

a CNN Module can include a customized set of 

features both for terrains and units.  

For terrains is defense value, movement type, 

owner, and a static feature.  

For units is move points, the ability to capture, 

movement type, ammos, and a static feature. 

Some features (movement type and static features) 

can be replicated more than once with different 

meanings, making the input deeper. Static feature 

are heuristics that can be defined in configuration, 

to summarize some concept (like, for units, 

goodness against vehicles in general) and reduce 

input size. Additionally units’ static features 𝑠𝑓 are 

multiplied by the owner (-1 if opponent, +1 ally) 

and their health (range [0,10]) to account for their 

state in game: 
 

𝑠′𝑓 =  𝑠𝑓 ∗ 𝑜𝑤𝑛𝑒𝑟(𝑢) ∗ ℎ𝑝_𝑟𝑎𝑡𝑖𝑜(𝑢) 
 

The game map sized 𝑤 ∗ ℎ is hence adapted to an 

input map sized 𝑤 ∗ ℎ ∗ 𝑑 where 𝑑 is the number of 

total features. 

The output map is instead deep as the number of 

units supported by the CNN Module. Each slice of 

the output map is the final map relative to a type 

of unit, which indicates the desirability of acting on 

that tile. The CNN Module has also the ability to 

make infantry units capture buildings. 

 

Figure 4-a Computation of CNN Module's input map 

The evolution of the CNN is performed through 

NEAT [6], in particular an application which uses 

Compositional Pattern Producing Networks 

(CPPN), called HyperNEAT [7]. The idea is to 

evolve networks which from the simplest structure 

become more complex over time in different ways; 

these networks act like functions in a  

N-dimensional space, creating patterns.  

 

 

Figure 4-b CPPN encoding and patterns (from [7]) 

In this context, CNN kernels of the network are 

disposed in a 3D space (Figure 4-c), with 

parametrized distances. The CNN itself is hence 

fixed once configured, but the weights are learned 

through the use of this technique. 
 

 

Figure 4-c CNN disposition in 3D space 

It is still possible to evolve the CNN Module 

through classic genetic algorithms. 

5. Experiments and results 

5.1. Training environment 

The training process of every Adapta Module 

consists in a series of matches made in ad hoc 

custom maps. Each one makes use of the basic 

elements of the game in different ways to tackle 

different aspects. All maps are on the small side of 

the spectrum of Advance Wars maps, since bigger 

maps do not necessarily demonstrate the potential 
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of a method, but complexity and/or training time 

explodes as the map grows in size. 
 

Table 5-1 Complexity of a small Advance Wars 

Map and other board games [8] 
 

Game Possible configurations Board size 

Checkers 5 ∗ 1020 8x8 

Chess 8.7 ∗ 1045(𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑) 8x8 

Shogi ≅ 1071 9x9 

Go ≅ 2.089 ∗ 10170 19x19 

Advance Wars ≅ 1095(𝑟𝑎𝑤 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒) 8x8 
 

 

All the matches are pre-deployed, for simplicity of 

training and evaluation. The opponents faced are 

the ones already built in the open-source project, 

which are named Very Easy AI and Normal AI, 

which has 3 configurations: normal, offensive, 

defensive. 
 

 
(a) – Training map 1 

 
(b) – Training map 2 

 
(c) – Training map 3 

 
(d) – Training map 4 

Figure 5-a training maps 

The trainee can be trained in any number of maps, 

but in any case is placed in both sides because the 

slight asymmetry of the maps can force a different 

playstyle. 

Also since there is some degree of randomness in 

the training, namely because of the luck mechanic 

in the game (which is a very minor variable most 

of the times, at most increases by 10% the damage) 

and because of the behavior of the opponent AI, the 

training is performed multiple times on the same 

map. At the cost of increasing training time, this 

increases stability of solutions and selective 

pressure. 

Since the experiments were done in pre-deployed 

maps, the fitness is evaluated mainly accounting 

for the army strength ratio (𝑎𝑟), evaluated as: 

𝑎𝑟 =
𝐴𝑙𝑎𝑠𝑡_𝑡𝑢𝑟𝑛

𝐴𝑓𝑖𝑟𝑠𝑡_𝑡𝑢𝑟𝑛
 

Where 𝐴𝑡 is the value of the army at a certain turn 

𝑡, defined as: 

𝐴𝑡 = ∑ 𝑣𝑎𝑙(𝑢) ∗ ℎ𝑝_𝑟𝑎𝑡𝑖𝑜(𝑢)

𝑈

𝑢

 

𝑈 is the set of units composing the army, 𝑣𝑎𝑙(𝑢) is 

the unique value in War Funds (the in-match 

currency of the game) of the unit, ℎ𝑝_𝑟𝑎𝑡𝑖𝑜(𝑢) is the 

percentage of HP left to unit 𝑢. 

𝑎𝑟  evaluates the percentage of strength left to a 

predeployed army. 

For MIN Modules fitness is evaluated returning 

𝑎𝑟
𝑎𝑙𝑙𝑦  in case of victory and − 𝑎𝑟

𝑜𝑝𝑝𝑜𝑛𝑒𝑛𝑡 in case of 

loss. For multiple matches the partial fitnesses of 

each match are summed up. Has range [-1, 1], for 

N matches [-N, +N]. 

For CNN Module it is evaluated a variant which 

sums 1 to positivize the fitness, averages the partial 

fitnesses and after averaging sums +1 for each 

victory obtained. Has range [0, 2] for each match 

and [0, 2+N] for N matches. 

5.2. Experiments 

Meaningful experiments to be mentioned are: 
 

MIN Module 1 and 2 

MIN Module 1 was trained in map 2, which is the 

one featuring the simplest complexity in terms of 

units. It obtained a solid win margin and managed 

to stabilize also average fitnesses above 0. 

Module 2, trained on map 3 which features a bit 

more variety in terms of unit types, still managed 

to find a good solution but not as dominant, 

highlighting the difference in results with a relative 

increase in search space, and both proving the 

potential of the MIN Module. 
 

Module 3 and 4 

These two modules were trained both on map 1, 

which is the biggest and with the highest number 

of units, with the same configuration. However 

Module 3 started with previous knowledge 

transferred by MIN Module 1. Although the best 

absolute result was obtained by Module 4, the 

average fitnesses graph shows the improvement 

given by the transfer learning. 
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Figure 5-b Average fitness of MIN Module 3 and 4 

by generation 
 

CNN Modules 1, 2, 3 

CNN Module 1 is set up as the most complex of the 

3 in terms of CNN configuration, and didn’t 

manage to win against the Very Easy AI. 

CNN Module 2 is trained in the same map (3) but 

is simpler, and managed to win a match, still 

obtaining an overall loss, however. The same is 

true for CNN Module 3, which was trained in map 

2. Both shown however a better average 

performance, may indicating that simpler models 

suits better for contained environments, or the 

models simply managed to find a better solution 

because of the search space more limited. Also 

having managed to win shows that the CNN 

Module has the potential to bring interesting 

behaviors, but its training is more challenging. 
 

Strategic Module 

As a final experiment, a Strategic Module was 

made playing against several different AIs in map 

Training 2.  

Its aim was set to 0, so that it tries to change 

strategy in order to tie.  

First 12 matches were against the Normal AI, then 

12 matches against Very Easy, and then Offensive 

Normal AI. After that the cycle repeats. 

The Adapta AI assigned was configured to have 2 

behavioral modules (offensive and defensive), 2 

MIN Modules and 2 CNN Modules. 
 

 

Figure 5-c Strategic Module results 

Considering that this module keeps memory only 

of the last 16 matches, it is not really necessary to 

test it on long runs of matches because there’s no 

learning and the overall trend is constant.  

The results show that the Strategic Module’s 

change in weight configurations brought a 

different matches outcome, both with the same and 

with different AIs, which is in line with the aim of 

the overall ADAPTA architecture. Similar 

experiments in other maps obtained comparable 

results. 

6. Conclusions 

The results obtained were in line with the scope of 

the work. 

The MIN Module has proven to be capable of 

achieving interesting and valid behaviors. 

The CNN Modules didn’t achieve notable results 

but the ones obtained can still suggest that it can be 

a valid approach. 

This works could be utilized a foundation for 

future researches, both applied to this same game, 

tackling different problems or the same ones in 

different ways, or to other TBS games, given that 

the strong point of this architecture is its 

customizability. 
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