

EXECUTIVE SUMMARY OF THE THESIS

Extension of the ADAPTA architecture applied to the

videogame Advance Wars

TESI MAGISTRALE IN COMPUTER SCIENCE AND ENGINEERING – INGEGNERIA INFORMATICA

AUTHOR: LORENZO CARNAGHI

ADVISOR: DANIELE LOIACONO

ACADEMIC YEAR: 2020-2021

1. Introduction

In 2008, Maurice Bergsma and Pieter Spronck

proposed an AI architecture, named ADAPTA [1],

for a deeply simplified version of the Turn Based

Strategy (TBS) videogame Advance WarsTM. The

aim of this work is to extend the proposed concepts

to the actual game and lay the foundation for

possible future researches on the topic of AI for

Turn Based Strategy (TBS) videogames, which

features a general scarce literature.

The project is built on top of an open-source

version of the game, called Commander Wars [2].

2. ADAPTA overview

The purpose of the ADAPTA architecture is to

create an AI which is able to adapt to the player

and change its strategy across different matches. Its

aim is not necessarily to win, but instead is to create

an interesting experience for the player to keep

them in the flow [3].

The architecture is structured modularly: it is

divided into several Tactical Modules and a

Strategic Module. Each Tactical Module has its

own behavior and controls in general a subset of

units. Tactical Modules are divided into Adapta

Modules and Building Modules: the firsts control

units, the seconds decide which units should be

built. Each Tactical Module proposes a bid for each

unit, ranging from 0 to 1, indicating the usefulness

of that unit for their own tactic.

A Strategic Module controls the Tactical Modules

by assigning them a weight at the start of the match

to adjust its strategy.

Figure 2-a ADAPTA modules overview

Since the modules must share a limited number of

assets (units), the Adapta AI (which is the AI built

with the ADAPTA architecture) receives the bids

Executive summary Lorenzo Carnaghi

2

of the modules and then assigns each unit to the

modules which had overall the highest, weighted,

bid.

Figure 2-b unit assignment and processing of

modules

Each module can be responsible for any

subcategory of units or actions in general. In theory

all the modules could be purely scripted and

behavioral, each accounting a specific subtask. In

this scenario the ADAPTA would behave in a

similar way to Dynamic Scripting [4].

Given a specific configuration of modules, the

Strategic Module tracks a history of past matches

and uses it to assign the weights of the modules for

the next match, to change the overall strategy

adopted.

First it evaluates the historic value of each module,

which is calculated as follows:

ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐_𝑣𝑎𝑙𝑢𝑒(𝑚) =
∑ 𝑤𝑚,ℎ ∗ 𝑟ℎ ∗ 𝑝ℎ𝐻

ℎ=0

∑ 𝑝ℎ𝐻
ℎ=0

Where h is the index of the past match (0 is the most

recent, H is the history capacity), 𝑤𝑚,ℎ is the weight

assigned to module m at past match h, 𝑟ℎ is the

outcome of match h, 𝑝ℎ is the past multiplier, a

value in range [0,1] which gives more or less

importance to past matches. This allows to

evaluate, based on previous matches, the

contribution of each module to the overall victory

or loss of the module. This is not per se a value

which promotes better performing modules,

because the aim of the Strategic Module is not

necessarily to win. This historic value, which

ranges from -1 to 1, is passed as argument in a

simple gaussian, which has mean 𝜇 representing

the aim of the Strategic Module. If is set to 0, it will

try to change its configuration in order to achieve a

tie with the opponent. If the past configurations for

instance have brought to a solid win, the modules

with more responsibility for that will be penalized.

(a) 𝜇 = 0, 𝜎2 = 0.1
tries to tie, spiked

weights distribution

(b) 𝜇 = 0.5, 𝜎2 = 0.3

Tries to slightly win,

smoother distribution

Figure 2-c Strategic Module configuration

examples

 In the above picture, historic values are placed on

the x in the range [-1,1], while the final weight is

the gaussian value in that point.

To avoid converging to uniform distribution of

weights, the Strategic Module can be configured to

have a degree of noise, both in single weights and

both a chance of extracting a fully random

configuration.

3. MIN Module

The Multi Influence Network Module, or MIN for

short, is the extension of the one implemented in

the original paper [1], applied to the real game.

It is a module which is dedicated to the

Extermination concept of the 4 X’s (Exploration,

Expansion, Exploitation, and Extermination).

The core logic is the computation of the optimal tile

for a unit through the use of Influence Maps [5]. An

influence map accounts and propagates a weight

relative to each element considered relevant,

according to a propagation function.

The general formula for evaluating the influence

on a tile is:

𝐼(𝑥, 𝑦) = ∑ 𝑝(𝑤(𝑜), 𝛿(𝑜, 𝑥, 𝑦))

𝑂

𝑜

Where 𝑂 is the set of the objects accounted by the

map, 𝑝(𝑊, 𝑑) is a propagation function of a weight

vector 𝑊 and a distance 𝑑, 𝑤(𝑜) is a function which

converts the object into a vector of weights, and

𝛿(𝑜, 𝑥, 𝑦) is a distance function which evaluates the

distance in game tiles of object 𝑜 from the tile with

coordinates (𝑥, 𝑦).

The set of objects accounted by the specific map

depends on the map chosen. For the MIN, several

types of maps were created: there is a set of 3

Executive summary Lorenzo Carnaghi

3

learnable maps which propagates learned weights

for allied units, enemies, or both; a set of 2 maps

which propagates values based on damage dealt

and taken according to the game’s damage chart,

and a map which assigns an influence based on

each tile on the map. A MIN Module can be

configured to have any number of this maps, even

replicated, since in any case the weights assigned

to each maps are learned and could bring different

meanings to different units.

Since there are different types of units in Advance

Wars, some information may be shared. The MIN

Module hence has a set of local (l) and global (g)

maps: local maps are relative to each type of unit,

while global are computed for the whole module.

The final influence of the output map for each type

of unit is computed as such:

𝐼(𝑥, 𝑦) = ∑ 𝑖𝑙(𝑥,𝑦)

𝐿

𝑙

∗ 𝑤𝑙 + ∑ 𝑖𝑔(𝑥,𝑦) ∗ 𝑤𝑔

𝐺

𝑔

Figure 3-a MIN Module output computation

Which is a weighted sum of every local and global

map. Even if the map is global, the weight used by

a type of unit (e.g., Infantry) is still local, because it

can exploit in a different way global information.

A MIN Module is configured with any number and

types of local and global maps (although some

maps can only be local or global). Local maps are

replicated once per supported type of units, global

maps are computed once. Since they are computed

at the start of turn, before moving a unit its

influence map is updated by adjusting the

influence of every element accounted that has

changed since last computation. For performance

reason this doesn’t recompute the map and the

operation is performed only when needed.

The propagation of unit influences is performed

stepwise, which means that tiles reachable or

attackable by a unit in the same number of turns

will have the same influence.

Evolution is performed by simply converting the

weights which define a MIN Module’s maps into a

vector of weights, and performing a classical

genetic algorithm approach. It was adopted a

custom fitness function to slightly boost better

offspring and penalize worse ones:

𝑓𝑐𝑢𝑠𝑡
′ = (𝑓 + 𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛)4

Where 𝑓𝑚𝑎𝑥 and 𝑓𝑚𝑖𝑛 are the boundaries of the

obtainable fitness.

It was also included the option to perform a form

of Transfer Learning, which allows to transfer all

the possible information from a MIN Module to a

new one with a different configuration. This allows

to train a MIN Module in a more contained

environment and then to pass its knowledge to a

new module which is trained in a different

environment with a superset of units and/or in a

different maps, starting with a set of non-random

weights associated to the units used by the

previous module already trained. The transferred

weights can be relearned but can be used as a more

stable basis of weights w.r.t. a starting random one.

4. CNN Module

The CNN Module is an experimental approach

which makes use of Convolutional Neural

Networks for evaluating and processing a game

state map.

The CNN is adapted from a segmentation

problem: the input is the game map and the output

is still a representation of the game map. The idea

is to read gradually local points of the map and

building a state which represents the knowledge of

the current game, to be then applied to the map.

Compared to classical image segmentation

problem, Advance Wars features a strongly

smaller sized input, however each tile carries way

more information than a pixel and is hence deeper.

A tile is in fact fully defined by its terrain and its

Executive summary Lorenzo Carnaghi

4

unit, and each one has a set of unique feature to

account for. To summarize them and reduce

complexity by keeping only the more meaningful,

a CNN Module can include a customized set of

features both for terrains and units.

For terrains is defense value, movement type,

owner, and a static feature.

For units is move points, the ability to capture,

movement type, ammos, and a static feature.

Some features (movement type and static features)

can be replicated more than once with different

meanings, making the input deeper. Static feature

are heuristics that can be defined in configuration,

to summarize some concept (like, for units,

goodness against vehicles in general) and reduce

input size. Additionally units’ static features 𝑠𝑓 are

multiplied by the owner (-1 if opponent, +1 ally)

and their health (range [0,10]) to account for their

state in game:

𝑠′𝑓 = 𝑠𝑓 ∗ 𝑜𝑤𝑛𝑒𝑟(𝑢) ∗ ℎ𝑝_𝑟𝑎𝑡𝑖𝑜(𝑢)

The game map sized 𝑤 ∗ ℎ is hence adapted to an

input map sized 𝑤 ∗ ℎ ∗ 𝑑 where 𝑑 is the number of

total features.

The output map is instead deep as the number of

units supported by the CNN Module. Each slice of

the output map is the final map relative to a type

of unit, which indicates the desirability of acting on

that tile. The CNN Module has also the ability to

make infantry units capture buildings.

Figure 4-a Computation of CNN Module's input map

The evolution of the CNN is performed through

NEAT [6], in particular an application which uses

Compositional Pattern Producing Networks

(CPPN), called HyperNEAT [7]. The idea is to

evolve networks which from the simplest structure

become more complex over time in different ways;

these networks act like functions in a

N-dimensional space, creating patterns.

Figure 4-b CPPN encoding and patterns (from [7])

In this context, CNN kernels of the network are

disposed in a 3D space (Figure 4-c), with

parametrized distances. The CNN itself is hence

fixed once configured, but the weights are learned

through the use of this technique.

Figure 4-c CNN disposition in 3D space

It is still possible to evolve the CNN Module

through classic genetic algorithms.

5. Experiments and results

5.1. Training environment

The training process of every Adapta Module

consists in a series of matches made in ad hoc

custom maps. Each one makes use of the basic

elements of the game in different ways to tackle

different aspects. All maps are on the small side of

the spectrum of Advance Wars maps, since bigger

maps do not necessarily demonstrate the potential

Executive summary Lorenzo Carnaghi

5

of a method, but complexity and/or training time

explodes as the map grows in size.

Table 5-1 Complexity of a small Advance Wars

Map and other board games [8]

Game Possible configurations Board size

Checkers 5 ∗ 1020 8x8

Chess 8.7 ∗ 1045(𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑) 8x8

Shogi ≅ 1071 9x9

Go ≅ 2.089 ∗ 10170 19x19

Advance Wars ≅ 1095(𝑟𝑎𝑤 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒) 8x8

All the matches are pre-deployed, for simplicity of

training and evaluation. The opponents faced are

the ones already built in the open-source project,

which are named Very Easy AI and Normal AI,

which has 3 configurations: normal, offensive,

defensive.

(a) – Training map 1

(b) – Training map 2

(c) – Training map 3

(d) – Training map 4

Figure 5-a training maps

The trainee can be trained in any number of maps,

but in any case is placed in both sides because the

slight asymmetry of the maps can force a different

playstyle.

Also since there is some degree of randomness in

the training, namely because of the luck mechanic

in the game (which is a very minor variable most

of the times, at most increases by 10% the damage)

and because of the behavior of the opponent AI, the

training is performed multiple times on the same

map. At the cost of increasing training time, this

increases stability of solutions and selective

pressure.

Since the experiments were done in pre-deployed

maps, the fitness is evaluated mainly accounting

for the army strength ratio (𝑎𝑟), evaluated as:

𝑎𝑟 =
𝐴𝑙𝑎𝑠𝑡_𝑡𝑢𝑟𝑛

𝐴𝑓𝑖𝑟𝑠𝑡_𝑡𝑢𝑟𝑛

Where 𝐴𝑡 is the value of the army at a certain turn

𝑡, defined as:

𝐴𝑡 = ∑ 𝑣𝑎𝑙(𝑢) ∗ ℎ𝑝_𝑟𝑎𝑡𝑖𝑜(𝑢)

𝑈

𝑢

𝑈 is the set of units composing the army, 𝑣𝑎𝑙(𝑢) is

the unique value in War Funds (the in-match

currency of the game) of the unit, ℎ𝑝_𝑟𝑎𝑡𝑖𝑜(𝑢) is the

percentage of HP left to unit 𝑢.

𝑎𝑟 evaluates the percentage of strength left to a

predeployed army.

For MIN Modules fitness is evaluated returning

𝑎𝑟
𝑎𝑙𝑙𝑦 in case of victory and − 𝑎𝑟

𝑜𝑝𝑝𝑜𝑛𝑒𝑛𝑡 in case of

loss. For multiple matches the partial fitnesses of

each match are summed up. Has range [-1, 1], for

N matches [-N, +N].

For CNN Module it is evaluated a variant which

sums 1 to positivize the fitness, averages the partial

fitnesses and after averaging sums +1 for each

victory obtained. Has range [0, 2] for each match

and [0, 2+N] for N matches.

5.2. Experiments

Meaningful experiments to be mentioned are:

MIN Module 1 and 2

MIN Module 1 was trained in map 2, which is the

one featuring the simplest complexity in terms of

units. It obtained a solid win margin and managed

to stabilize also average fitnesses above 0.

Module 2, trained on map 3 which features a bit

more variety in terms of unit types, still managed

to find a good solution but not as dominant,

highlighting the difference in results with a relative

increase in search space, and both proving the

potential of the MIN Module.

Module 3 and 4

These two modules were trained both on map 1,

which is the biggest and with the highest number

of units, with the same configuration. However

Module 3 started with previous knowledge

transferred by MIN Module 1. Although the best

absolute result was obtained by Module 4, the

average fitnesses graph shows the improvement

given by the transfer learning.

Executive summary Lorenzo Carnaghi

6

Figure 5-b Average fitness of MIN Module 3 and 4

by generation

CNN Modules 1, 2, 3

CNN Module 1 is set up as the most complex of the

3 in terms of CNN configuration, and didn’t

manage to win against the Very Easy AI.

CNN Module 2 is trained in the same map (3) but

is simpler, and managed to win a match, still

obtaining an overall loss, however. The same is

true for CNN Module 3, which was trained in map

2. Both shown however a better average

performance, may indicating that simpler models

suits better for contained environments, or the

models simply managed to find a better solution

because of the search space more limited. Also

having managed to win shows that the CNN

Module has the potential to bring interesting

behaviors, but its training is more challenging.

Strategic Module

As a final experiment, a Strategic Module was

made playing against several different AIs in map

Training 2.

Its aim was set to 0, so that it tries to change

strategy in order to tie.

First 12 matches were against the Normal AI, then

12 matches against Very Easy, and then Offensive

Normal AI. After that the cycle repeats.

The Adapta AI assigned was configured to have 2

behavioral modules (offensive and defensive), 2

MIN Modules and 2 CNN Modules.

Figure 5-c Strategic Module results

Considering that this module keeps memory only

of the last 16 matches, it is not really necessary to

test it on long runs of matches because there’s no

learning and the overall trend is constant.

The results show that the Strategic Module’s

change in weight configurations brought a

different matches outcome, both with the same and

with different AIs, which is in line with the aim of

the overall ADAPTA architecture. Similar

experiments in other maps obtained comparable

results.

6. Conclusions

The results obtained were in line with the scope of

the work.

The MIN Module has proven to be capable of

achieving interesting and valid behaviors.

The CNN Modules didn’t achieve notable results

but the ones obtained can still suggest that it can be

a valid approach.

This works could be utilized a foundation for

future researches, both applied to this same game,

tackling different problems or the same ones in

different ways, or to other TBS games, given that

the strong point of this architecture is its

customizability.

7. Bibliography

[1] M. Bergsma and P. Spronck, "Adaptive Spatial Reasoning

for Turn-based Strategy Games," Tilburg centre for

Creative Computing, Tilburg University, The Netherlands,

Tilburg, 2008.

[2] R. Muller, "CommanderWars project:

https://github.com/Robosturm/Commander_Wars".

[3] J. Schell, "The Experience is in the Player's Mind - Focus,"

in The Art of Game Design: A Book of Lenses, Burlington,

Morgan Kaufmann Publishers (Elsevier), 2008, pp. 118-123.

[4] P. Spronck, M. Ponsen, I. Sprinkhuizen-Kuyper and E.

Postma, "Adaptive game AI with dynamic scripting,"

Springer Science + Business Media, LLC, 2006.

[5] P. Tozour, "Using a Spatial Database for Runtime Spatial

Analysis," in AI Programming Wisdom 2, Charles River

Media, 2004, pp. 381-390.

[6] K. O. Stanley, "Evolving Neural Networks through

Augmenting topologies," The MIT Press Journals, Austin,

2002.

[7] K. O. Stanley, J. Gauci and D. D'Ambrosio, "A Hypercube-

Based Indirect Encoding for Evolving Large-Scale Neural

Networks," Orlando, Florida, 2009.

[8] "Game Complexity - Wikipedia," [Online]. Available:

https://en.wikipedia.org/wiki/Game_complexity.

