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Abstract

The physical parameters driving the growth and the recurrence of Glioblastoma Multi-
forme (GBM) are highly specific to each patient. For this reason, finding a mathematical
model that allows an accurate parameter estimation from neuroimaging data becomes of
fundamental importance if we want to propose a computational framework that could
help clinicians with decision-making. In general, parameter estimation requires a high
computational cost, often unsuitable for clinical use if not assisted with techniques to
reduce the complexity of starting problem.

In this thesis, we propose a diffuse interface model of GBM growth based on mixture
theory, which consists of a Cahn-Hilliard equation coupled with a reaction-diffusion equa-
tion to describe the evolution of the nutrient for cancer cells. The specificity of each
patient is modelled via a set of numerical parameters, which dictate the peculiar growth
of the tumour and whose prediction is the final objective of the proposed methodology.
Starting from a full-order discretization of the proposed model based on the finite ele-
ment method, we obtain a reduced-base model (ROM) through the proper orthogonal
decomposition technique (POD). For the solution of the PDEs system, we use FEniCSx,
a powerful computing platform, while its reduction is computed thanks to the Python
library RBniCSx. By means of a neural network-based approach, we build a map between
the parameter space and the solution in the reduced space that describes the concentration
of the tumour over time. As a tool to estimate patient-specific parameters, we propose
an approach based on a second neural network trained to predict the parameters of the
model based on the tumour distribution in two separate time instants. In this way, the
computational effort focused on the training phase, that requires the FOM to be solved
several times starting from the same initial condition, is balanced by the rapidity in the
estimation of the parameters once the information on the actual evolution of the tumour
at a second time instant is available. Such an approach may be exploited in clinical prac-
tice to deduce the parameters of the model from imaging data.

Keywords: Glioblastoma Multiforme, Proper Orthogonal Decomposition, Reduced Or-
der Model, Parameters Estimation





Sommario

I parametri fisici che determinano la crescita e ricomparsa del glioblastoma multiforme
(GBM) sono altamente specifici per ciascun paziente. Per questo motivo, la ricerca di mod-
elli matematici che permettano una stima adeguatamente accurata dei parametri a partire
da immagini cliniche è di fondamentale importanza se si vuole aiutare il personale medico
nel prendere decisioni. In generale, la stima dei parametri richiede un alto costo com-
putazionale, spesso incompatibile per l’utilizzo clinico, se non coadiuvata a tecniche per
ridurre la complessità del problema di partenza. In questa tesi, proponiamo un modello ad
interfaccia diffusa per la crescita del GBM, che consiste in una equazione Cahn-Hilliard
accoppiata ad un’equazione di reazione-diffusione per descrivere l’evoluzione del nutri-
ente delle cellule tumorali. La specificità per ciascun paziente è modellata attraverso dei
parametri numerici, che dettano la crescita peculiare di ciascun tumore e la cui predizione
è l’obiettivo finale della metodologia proposta. Partendo da una discretizzazione full-order
del modello proposta (FOM), otteniamo un modello a basi ridotte (ROM) attraverso la
tecnica di Proper Orthogonal Decomposition (POD). Per la soluzione del sistema di PDE
e la sua riduzione, utilizziamo le librerie FEniCSx e RBniCSx. Utilizzando un approccio
basato su reti neurali, costruiamo una mappa tra lo spazio dei parametri e la soluzione
proiettata sullo spazio ridotto che descrive la concentrazione tumorale nel tempo. Per
stimare i parametri specifici del paziente, proponiamo l’utilizzo di un’ulteriore rete neu-
rale allenata a predire i parametri del modello basandosi sulla distribuzione del tumore in
due istanti di tempo distinti. In questo modo, lo sforzo computazionale concentrato nel
training delle reti, che richiede che il FOM sia risolto molte volte partendo dalle medesime
condizioni iniziali, è bilanciato dalla rapidità con cui i parametri vengono stimati una volta
disponibile l’informazione sulla evoluzione reale del tumore ad un secondo instante tem-
porale. Questo metodo potrebbe essere sfruttato in un caso reale per dedurre i parametri
del modello dalle immagini cliniche in possesso.

Parole chiave: Glioblastoma Multiforme, Proper Orthogonal Decomposition, Reduced
Order Model, Stima dei parametri.





v

Contents

Abstract i

Sommario iii

Contents v

Introduction 1

1 Elements of brain physiology 3
1.1 Brain anatomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Glioblastoma multiforme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Tumor growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Pathophysiology of Glioblastoma Multiforme . . . . . . . . . . . . . 7
1.2.3 Therapy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Imaging Techniques 13
2.1 Magnetic Resonance Imaging . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Diffusion Tenosor Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 A diffuse interface model of GBM growth 17
3.1 Kinematics of mixture theory . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Solid tumours as biphasic mixtures . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Boundary and initial condition . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Nondimensionalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5 Biological parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.6 Numerical framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Reduced Order Model 29
4.1 Reduced Basis Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Proper Orthogonal Decomposition . . . . . . . . . . . . . . . . . . . . . . . 30



4.3 Surrogate POD with a Neural Network approach . . . . . . . . . . . . . . 33
4.3.1 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.2 Direct Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.3 Inverse Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Numerical Results 41
5.1 Patient Specific Parameters Estimation on a Two-Dimensional Geometry . 41

5.1.1 Direct Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.1.2 Inverse Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.1.3 Estimation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2 Description of the used geometrical mesh and a FOM evolution . . . . . . 48
5.3 Patient Specific Parameters Estimation on a Real Domain . . . . . . . . . 51

5.3.1 Direct Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3.2 Inverse Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3.3 Estimation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6 Conclusions 59

Bibliography 63

List of Figures 69

List of Tables 73

Ringraziamenti 75



1

Introduction

Glioblastoma multiforme (GBM) is the most complex and deadly type of brain cancer. In
addition to the typical characteristics of cancer (e.g., uncontrolled cellular proliferation,
intense resistance to apoptosis, and rife genomic instability), GBM has a high invasive
potential and grows along white matter fibres or vessels, imitating the physical structures
of the brain’s extracellular environment. The resulting diffuse infiltration and the inability
of many conventional drugs to penetrate the blood-brain barrier make GBM particularly
aggressive and difficult to treat. Indeed, even after extensive surgery and therapies, the
median patient survival does not exceed 10 to 16 months and the five-year survival rate
is approximately 5%. For these reasons, mathematical models able to describe its prolif-
eration are of fundamental importance. Indeed, they represent an in in silico counterpart
of the patient, which can be used to predict the evolution of the disease and the effects
of treatments.

In this work, we construct a thermodynamically consistent mathematical model of GBM
spreading based on mixture theory. The brain is described as a mixture of healthy and
cancer cells behaving as a highly viscous fluid. The governing equations are a Cahn-
Hilliard type equation, coupled with a growth term and coupled with a reaction-diffusion
equation describing its nutriment behaviour. This lead to a highly non-linear system of
partial differential equations that can be numerically solved by means of the finite element
method.

Nonetheless, the approximation of such a problem on a 3D domain requires a huge com-
putational effort. This can be a huge issue if we consider in addition that the tumour
development, and consequently the parameter of the model are strongly patient-specific.
So without further elaboration, the resolution of the model itself remains unfeasible from
a clinical point of view.

To face this challenging problem, some techniques, such as the Proper Orthogonal De-
composition (POD) can be used to reduce the computational complexity. In Chapter 4
we modified the original numerical model, also called Full Order Model (FOM), obtaining
a reduced version, the so-called Reduced Order Model (ROM), that keeps all the infor-
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mation needed to describe the evolution of the tumour over time. Indeed, it is possible
to properly construct a basis of much fewer elements than the one of the FOM and still
reconstruct the solution, named also snapshot, approximately well.

Such a simplification is of primary importance when we want to perform an estimation of
patient-specific parameters. Indeed many optimization algorithms and other mathemati-
cal methods compute the solution several times in order to retrieve optimal parameters.

Here, we exploit the power of artificial neural networks to provide results in a negligible
time once the networks are sufficiently trained. The problem of finding the coefficient
of the ROM solution at each time-step and the parameter estimation, when a couple of
snapshots are given, are both mapped through a neural network.

Finally, in Chapter 5 we present some results of the developed numerical platform. All
the numerical simulations are computed via FEniCSx, which is a powerful computational
tool for solving partial differential equations. The computational effort of the simulations
phase, which can start as soon as we get information on the actual status of the patient and
which includes enough simulation to train the neural networks, is balanced by the rapidity
of a patient-specific prediction once we collect a second information on the evolution of
the tumour growth.

For these reasons, the method presented in this work makes it possible in a realistic case
to predict the future growth of the tumour making the therapy more effective.
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1| Elements of brain physiology

In this Chapter, we introduce some elements of brain physiology necessary to construct
the mathematical model presented in the following Chapters. First, we provide a brief
overview of the brain anatomy, emphasising the main actors involved in tumour devel-
opment. Second, we describe the dynamics of tumour growth and, specifically, of the
glioblastoma multiforme.

1.1. Brain anatomy

The brain (or encephalon), is one of the most complex organs in a vertebrate’s body. Each
human brain contains about 85 billion cells devoted to the transmission of electric signals
[34]. Such cells are called neurons. The brain plays a key role in coordinating voluntary
and involuntary actions and in the collection and transmission of signals through the
body. From an anatomical point of view, the brain can be subdivided into three main
regions (see Fig. 1.1).

• Cerebrum. It is the largest section and is composed of the right and left hemi-
spheres. It is responsible for the interpretation of external stimuli (touch, vision,
hearing, taste and smell) as well as the processing of speech, reasoning, emotions
and learning, and it orchestrates movements.

• Cerebellum. It lies below the cerebrum and is responsible for balance, the ability
to stay upright, the synchronization of motions, and the capacity for concentration;

• Brainstem. The brainstem can be in turn divided into the midbrain (or mesen-
cephalon), the pons and the medulla oblongata. It is the lowest part of the brain
and wires the brain to the spinal cord. The brainstem (truncus cerebri) controls the
most elementary biological functions, including consciousness, the sleep-wake cycle,
and regulation of the respiratory and circulatory systems.

As for all other organs, the brain is composed of cells that identify the peculiar role of the
organ, which together form the parenchyma and cells whose function is to connect, support
and provide nutrients for the parenchyma itself, whose collection is named stroma. In
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Figure 1.1: Brain anatomy: the three main sections of the human brain (cerebrum,
cerebellum and brainstem). The brainstem (truncus cerebri) is in turn subdivided into
midbrain (mesencephalon), pons and medulla oblongata. [3]

particular, the encephalon parenchyma consists of neurons and neuroglia whereas stroma
is mostly made up of blood vessels and connective tissue.

Neurons are specialized cells, unable to reproduce themselves, but with the capability to
be electrically stimulated to process and transmit information. They look like globular
bodies called soma, from which long cable, named axon, and multiple filaments, dendrites,
branch off. To be more clear, axons are long filaments that normally transmit action
potentials out from the cell body. The axon’s role is to convey information to various
neurons, muscles, and glands. Dendrites are instead short and thickly branched in such
a way that can connect with multiple axons afferent to different neurons via a biological
structure called synapses. They serve a crucial function in integrating synaptic inputs
and controlling the amount of electrical stimuli to which the neuron generates action
potentials.

Neuroglia, or glial cells, are specialized in several ways in order to support and maintain
neurons. One of their functions is to produce the myelin sheath, i.e. a white lipid sub-
stance that can surrounds axons to improve the conductibility of electrical signals. Axons
surrounded by myelin sheaths are called myelinated axons.

The presence of such a substance is an indicator of different sections of the brain having
specific functions. Indeed, within the brain, we can identify the so-called white and grey
matter, see Fig. 1.2. White matter is mostly made up of myelinated long-range axons,
while neuron bodies and dendrites mainly lie in grey matter. Grey matter is largely linked
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Figure 1.2: Distribution of withe and grey matter in the brain. [4]

to processing and cognition. As a coordinator of communication between various brain
areas, white matter instead has the aim of modulating the dispersion of action potentials.
In other words, grey matter houses the information processing centres and white matter
allows the connections between these areas.

1.2. Glioblastoma multiforme

In the following, we briefly describe the pathophysiology a peculiar kind of aggressive
brain cancer, the glioblastoma multiforme. First, we review some basic facts about tumour
growth in general. Then, we enter more into detail specifying the peculiar characteristic
of the glioblastoma multiforme.

1.2.1. Tumor growth

The ordinary cell life cycle ends with cell death. Such a process can be the result of
necrosis, i.e. a traumatic cell death brought by acute cellular damage, or apoptosis,
a form of programmed cell death which aims at controlling the number of cells in the
organism. The two best-understood activation mechanisms for this phenomenon are the
so-called intrinsic pathway and the extrinsic pathway. [11]

• The intrinsic pathway is activated by intracellular signals generated when cells un-
dergo chemical stresses and depend on the release of proteins from the intermem-
brane space of mitochondria.

• The extrinsic pathway is activated by extracellular ligands binding to cell-surface
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death receptors, which leads to the formation of the death-inducing signalling com-
plex.

In contrast to necrosis, apoptosis is a well-controlled process that brings benefits to the
organism’s life cycle. Sometimes, cell apoptosis does not take place for endogenous reasons
(e.g. error in cell division) or exogenous ones (smoke, chemicals, metals or pathogens).
Specifically, when a mutation in the DNA occurs, the cell tries to fix it. If such a process
fails, the cell tries to induce apoptosis. When even this mechanism goes wrong and
the cell is able to ignore growth-inhibiting signals from its neighbours, an uncontrolled
proliferation of these mutated cells takes place.

Although the process of mutation accumulation may take years to complete, many factors
can speed up the process. Some of these factors are exposure to carcinogens and other
harsh environmental factors able to induce DNA mutations.

The uncontrolled cell replication results in a mass of aberrant cells that may alter the
surrounding microenvironment to enhance its own survival. This cascade of malfunctions
is called carcinogenesis and leads to the formation of a tumour, also known as neoplasm.
[25]

Tumours can be subdivided into benign and malignant tumours depending on the expected
behaviour of the specific neoplasm. Indeed, benign neoplasms remain localized where the
initial mutation took place. Conversely, malignant neoplasms may invade the surrounding
tissue and, in most cases, can metastasize to distant organs [38].

To summarize what features different tumours have in common, in 2000, cancer researchers
Hanahan and Weinberg [31] pointed out six hallmarks that are essential alterations in cell
physiology that collectively decree malignant growth:

1. self-sufficiency in growth signals;

2. insensitivity to growth-inhibitory signals;

3. evasion of apoptosis;

4. limitless replicative potential (immortality);

5. sustained angiogenesis (the formation of new blood vessels);

6. tissue invasion and metastasis (the spread of the tumour to another organ).

Yet, in 2011, other distinct attributes of cancer cells have been proposed to be functionally
important for the development of cancer and might therefore be added to the list of core
hallmarks [30]. Two such attributes are particularly compelling:
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(a) (b)

Figure 1.3: Acquired Capabilities of Cancer. (a) Cancers have acquired the same set
of functional capabilities during their development, albeit through various mechanistic
strategies. (b) An increasing body of research suggests that two additional hallmarks of
cancer are involved in the pathogenesis of some and perhaps all cancers. One involves
the capability to modify or reprogram, cellular metabolism in order to most effectively
support neoplastic proliferation. The second allows cancer cells to evade immunological
destruction, in particular by T and B lymphocytes, macrophages, and natural killer cells.

7. capability reprogramming of cellular energy metabolism in order to support contin-
uous cell growth and proliferation;

8. active evasion by cancer cells from attack and elimination by immune cells.

These features make the tumour a disease difficult to treat. Nowadays, cancer is the second
leading cause of death globally according to the World Health Organization: worldwide,
an estimated 19.3 million new cancer cases and almost ten million cancer deaths occurred
in 2020 [55]. Hence, it is not difficult to understand the importance of a thorough and
complete investigation of all the mechanisms involved in tumour genesis, proliferation and
elimination.

1.2.2. Pathophysiology of Glioblastoma Multiforme

Glioblastoma Multiforme (GBM) is the most widespread and aggressive malignant tumour
among glial neoplasms. Also known as gliomas, glial neoplasms are a heterogeneous group
of brain tumours that originates in cerebral parenchyma starting from glial cells. In
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general, symptoms are different and vary according to the location manifesting as a focal
neurological deficit, encephalopathy or convulsions. Gliomas, according to the World
Health Organization grading system, are classified on a scale from I to IV associated with
the malignity of the tumour ([39]-[27]). Each category of glioma is indeed labelled in the
following way:

• Grade I: tumours in this category are characterized by a low proliferation rate. They
are benign and frequently treatable by surgical excision.

• Grade II: this category includes low-aggressive tumours with a long characteristic
diffusion time. These tumours are characterized by infiltration of the parenchyma.
Thus, they cannot be treated only with surgery.

• Grade III: in this case, cancer cells start to lose the morphological and functional
traits of the original tissue (anaplasia). This condition guarantees a faster prolifer-
ation of the neoplasm.

• Grade IV: these are tumours that have built their own vascular network, providing
nutrients to a larger number of cells and making them more resistant to radiotherapy
and chemotherapy.

In this classification, GBM is a tumour (specifically, an astrocytic tumours) of IV grade.

Glioblastoma represents 15% of all intracranial neoplasms and 60-75% of astrocytic tu-
mours [60] (see Table 1.1). GMB mostly affects adults and typically develops in the
cerebral hemispheres and less frequently in the brainstem or spinal cord. Glioblastoma
is composed of a heterogeneous collection of cancer cells. Unless extremely rare circum-
stances, it does not spread outside of the central nervous system structures, so it remains
circumscribed to the cerebral tissue like in other brain tumours. Moreover, GBM has a
dramatic invasive potential and resistance to common therapies: even when treated with
the standard therapy (i.e. the Stupp protocol [52]-[53]), the median patient survival does
not exceed 10-16 months [32] and the five-years survival rate is about 5% ([28]-[44]). Be-
sides the common hallmarks of cancer, glioblastoma shows a peculiar growth along white
matter fibres or along vessels, following physical structures in the brain’s extracellular
environment, making it impenetrable to many conventional drugs. For the same reasons,
GBM tends to show three-dimensional irregular spreading patterns [33].

Glioblastoma usually arises as:

• a primary tumour: i.e. the carcinogenesis starts de novo and thus, it is not the
evolution of lower-grade neoplasms;
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Glioma type Name Grade Incidence

Astrocytic Pilocytic astrocytoma I 5-6%

Subependymal gian cell astrocytoma I <1%

Diffusely infiltrating astrocytoma II 10-15%

Anaplastic Astrocytoma III 10-15%

Glioblastoma multiforme IV 12-15%

Oligodendroglial Oligodendroglioma II 2.5%

Anaplastic oligodendroglioma III 1.2%

Oligoastrocytic Oligoastrocytoma II 1.8%

Anaplastic oligoastrocytoma III 1%

Ependymal Subependymoma I 0.7%

Myxopapillary ependymoma I 0.3%

Ependymoma II 4.7%

Anaplastic ependymoma III 1%

Table 1.1: Classification of gliomas according to WHO classification of tumours of the
central nervous system [51].

• a secondary tumour: it takes place from the progression of lower-grade neoplasms,
in particular as an aggravation of Fibrillary astrocytoma (grade II) and Anaplastic
astrocytoma (grade III).

Although GBM is very rare (incidence rate is 3.2 per 100,000 population [23]), it is
particularly aggressive and fast. Indeed, it has a rapid progression of 2–3 months [49].
During this period, the 10 most prevalent symptoms (with their incidence rate) are:

• seizures (37%);

• cognitive deficits (36%);

• drowsiness (35%);

• dysphagia (30%);

• headache (27%);

• confusion (27%);

• aphasia (24%);
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• motor deficits (21%);

• fatigue (20%);

• dyspnea (20%).

1.2.3. Therapy

The currently approved treatment schedule is known as Stupp protocol. It entails a (par-
tial) surgical excision of the tumour. The removed tumour mass is only partially removed
to avoid damage to the brain structures. In order to facilitate the surgery, the excision is
made following radiotherapy and chemotherapy.

Radiotherapy is a therapy utilizing ionizing radiation administered as part of cancer treat-
ment to control or eliminate malignant cells. Radiation therapy may be curative for certain
types of cancer if they are confined to one location of the body.

Chemotherapy, instead, is a pharmacological treatment that kills rapidly dividing cells
using strong chemicals. Chemotherapy is most often used to treat cancer because cancer
cells grow and divide considerably more rapidly than healthy cells.

Surgery

Choosing the right surgical technique is crucial in order to remove as much tumour mass
as possible. Indeed, only a total excision of the tumour (greater than 98% of the tumour
mass volume) appears to confer some survival advantages [24]. GBM invariably recurs
despite surgical intervention. The protocol usually involves a second intervention in order
to reduce the probability of the tumour mass proliferating again in the brain parenchyma.

The healing process is significantly more difficult for recurrences than for first manifesta-
tions, but the suggested therapy improves the quality of life and life expectancy.

Radiotherapy

The goal of radiotherapy, which is typically administered after surgery, is to damage the
DNA of any tumour cells that have persisted after the operation because they infiltrate
the region around the tumour mass. For this reason, it is directed at the part of the brain
affected by the operation and a slight external margin. The patient’s likelihood of survival
rises if radiation is successful in killing these cells before they can fix their DNA and start
growing again. The therapy procedure is broken down into numerous daily sessions with
various radiation dosages, depending on the age of the patient.
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Figure 1.4: The standard Stupp protocol: radiotherapy is administrated at 2 Gy/day five
days per week, for six weeks; concomitant chemotherapy with temozolomide at a daily
dose of 75 mg/m2 from beginning until ending of radiotherapy; six cycles of adjuvant
chemotherapy at a dose of 150 mg/m2 (only first cycle) and 200 mg/m2 (remaining cycles).
Image adapted from [45].

Chemotherapy

Chemotherapy is combined with radiation to force tumour cells that have evaded radio-
therapy into apoptosis by disrupting DNA organization. The addition of chemotherapy,
however, appears to offer glioblastoma patients just a modest benefit (at least in terms of
median survival). Although the use of nitrosoureas (anti-cancer medications, e.g. temo-
zolomide) did not significantly extend median life in all patients, some individuals ap-
peared to benefit from longer survival when chemotherapy was added.
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2| Imaging Techniques

In order to construct patient-specific predictions of GBM growth, we need to reconstruct
the computational domain starting from medical imaging techniques. In this Chapter, we
provide an overview of the two primary imaging methods for reconstructing brain tumour
morphology: Diffusion Tensor Imaging (DTI) and Magnetic Resonance Imaging (MRI).
These methods start from medical pictures to give a computational reconstruction of the
brain, aiding in the creation of a realistic geometry and taking into account the anisotropy
of the brain tissue. Without getting into technical details, which are outside the scope of
this work, we summarize the operating principles of MRI and DTI in the chapter to help
the reader to have insight into the main steps involved. For more information on these
techniques, we refer to [43] and [37].

2.1. Magnetic Resonance Imaging

Magnetic Resonance Imaging, also known as Magnetic Resonance Tomography (MRT)
is a technique that allows the reconstruction of detailed body images by exploiting the
physical principle of nuclear magnetic resonance. Indeed, it consists of immersing the
patient in a static magnetic field B0 and mapping the response of hydrogen nuclei which
create a signal that is processed to form an image of the body in terms of the density
of those nuclei in a specific region. Its safety and ability to reproduce images with big
contrast and high resolution in all spatial directions, make MRI advantageous with respect
to X-rays (which exploit ionizing radiation).

From a physical point of view, it happens that the spins of the protons situated in the
magnetic field tend to align with it. Nevertheless, since protons contain an intrinsic
magnetic dipole moment due to their spin, the combination of the external field and spin
results in a precession around the direction B0 (as shown in Fig. 2.1). Indeed, a charge in
motion produce a magnetic moment µ which combined with the provided static magnetic
field B0 generates a mechanical moment M = µ×B0 Precession occurs according to an
angular frequency known as the Larmor frequency ω.
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Figure 2.1: Representation of the precession motion of an atom identified as a sphere
around the direction of the external magnetic field B0 [5].

When the applied magnetic field is sufficiently strong, the magnetic dipoles of the protons
tend to align with it in orientations that depend on the energy of the nuclei, since the
spin-up and spin-down verses reflect two distinct energy situations, at low and high en-
ergies, respectively. Because of its high energy consumption, the spin-down state occurs
less frequently than the other. This results in macroscopic magnetization based on the
direction and polarity of the magnetic field itself.

The magnetic field is then disturbed by a radio-frequency impulse, i.e. a fluctuating
magnetic field wave with the same Larmor frequency so that the resonance condition can
occur. This results in a drop in longitudinal magnetization and a rise in transverse mag-
netization, which is no longer null. If the pulse is turned off, the protons will eventually
revert to their original state, with the longitudinal magnetization returning to its maxi-
mum value and the transverse magnetism disappearing. Such a recovery of the original
state, with null magnetization M, is hypothesized to occur exponentially and be regulated
by two defining time constants [37]:

Mz(t) =M0(1− e−t/T1)

Mx(t) =M0e
−t/T2

(2.1)

(2.2)

where Mz denotes the magnitude of the longitudinal magnetization, Mx is the magnitude
of the transverse magnetization, T1 is the longitudinal relaxation time and represents
the characteristic time for the quantity Mz to rise up from 0 to M0. Finally, T2 is the
transverse relaxation time and is proportional to the time needed to fall down to 0 from
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M0 (fig. 2.2).

Figure 2.2: Pulse sequence and signal for a free-induction-decay measurement for the
components Mz and Mx of M [37].

From a chemical viewpoint, T1 and T2 are both related to the freedom of motion of
molecules. In particular, T1 has bigger values for water and other aqueous substances
(due to the low interaction between molecules) as well as for solid structures (since stiff
inter-molecular connections impede their energetic interaction). Meanwhile, it is smaller
for solutions and parenchyma (in relation to the amount of water contained) and for
adipose tissues. T2 shows the opposite behaviour being lower for former cases and greater
for the latter. The resulting image of this technique exploiting the increasing phase and
the decreasing phase is shown in Fig. 3.1.

2.2. Diffusion Tenosor Imaging

Diffusion Tensor Imaging (DTI) is a technique that exploits the diffusivity of water
molecules in the three spatial directions to measure anisotropies in the distribution of
nutrient and tumour diffusion within each voxel of the image, i.e. each volume element.
This approach reveals variations in the thermal diffusive motion of protons (of water
molecules) in a biological tissue; the more dramatic these variations are, the clearer the
area of interest appears. This allows us to map the orientations of the brain fibres, which
are bundles of axons that connect cortical areas within the same cerebral hemisphere. In
this respect, DTI is employed to evaluate the integrity of the white matter, specifically
to investigate possible demyelinating disorders (such as multiple sclerosis), degenerative
diseases (such as Alzheimer’s disease), and brain cancers that invade fibre bundles.

After detailing the mathematical model in the next chapters, we will perform simulations
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Figure 2.3: Comparison between a T1-weighted and a T2-weighted MRI brain imaging. In
the T1 image, grey matter appears dark, whilst the cerebrospinal fluid is the darkest and
white matter is the brightest. Conversely, in the T2 image, the grey matter is brighter
than white matter, while the fluid is the brightest [8].

Figure 2.4: Brain images acquired in magnetic resonance imaging with DTI. From left to
right: find the coronal section, axial section and sagittal section [7].

on a brain geometry that was created from MRI and DTI data. Thanks to these techniques
it is even possible to point-wise define the diffusion tensor D and the preferred direction
tensor T which respectively describe the diffusion of the nutrient (oxygen) in the spatial
direction and the preferential motility of the tumour.
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GBM growth

In this Chapter, we introduce a mathematical model which describes the morphological
development of a solid tumour. In contrast to liquid tumours, which are constituted
of cancerous cells in suspension in body fluids, solid tumours are a compact mass of
tissue that grows preserving the physiological structure of healthy tissue, namely they are
composed of the parenchyma and the stroma.

The development of a solid tumour is influenced by several elements. The principal ones
are cell-cell and cell-matrix interaction, the mechanical stress stored within the tumour,
cell motility, the degree of heterogeneity in cell proliferation, the distribution of nutrients
and the rate of consumption. These aspects are highly patient-specific, as shown in [10].
Thus, a mathematical model which describes tumour growth should take into account
this variability over patients in order to be as accurate as possible.

Understanding the specificity of a cancerous tumour model parameters for each clinical
case may be essential for preventing its spread to surrounding tissue [20]. For these
reasons, patient-specific mathematical models of tumour growth are of utmost importance.

In literature, many different approaches to tumour modelling have been developed. The
proposed models can be roughly divided into two classes.

• Sharp interface models. These models postulate the existence of a zero-thickness
interface between the tumour and the healthy tissue. Although this model represents
faithfully the physical state having a truly sharp interface, a thin transition region
also requires an adaptive grid with elements having a very fine size. Thus, these
models usually have a higher computational cost [48].

• Diffuse interface models: The interface between the tumour and the surrounding
environment is represented by a narrow (but of finite thickness) transition layer. The
transition region is in this case modelled as a smoothed function. This approach
eliminates the need to enforce complicated boundary conditions across the phases
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Figure 3.1: Different modellization for the transition between phases at interface layer.
On the left (a), is the sharp interface model case. On the right (b), the diffuse interface
model case [58].

that would have to be satisfied if the interfaces were assumed sharp. The diffuse
interface methodology also has the advantage that there is no need to explicitly
track the interface as is required in the sharp interface framework [59].

In this Chapter, we propose a mathematical model based on the second approach. Specif-
ically, the model provided here is a continuous diffuse-interface model based on mixture
theory. In the following, we follow the approach described in [12, 29]. For a detailed
description of mixture theory, the reader is referred to [13, 26].

3.1. Kinematics of mixture theory

Mixture theory is the application of the methodologies of one-component continuum me-
chanics to media that are composed of several distinct constituents. The characteristic
size of each component of the mixture (in our case, the cells of the brain) is much smaller
than the characteristic size of the body under consideration (i.e. the brain). Therefore,
it is reasonable to assume that each component can occupy a fraction of each volume
element of the system.

The fundamental assumption of this theory is that the space in a mixture may be co-
occupied at every location by its components, each of which can be seen as a continuum
in its own right.
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Figure 3.2: The transformations χi from the reference configuration B0
i to the configura-

tion as a mixture Bt at a generic time t [41].

In the theory of mixtures, the reference configuration of each i-th constituent is represented
as a regular subset B0

i of (material) points Xi (fig.3.2). Each material point is assumed to
be composed of at least one of the N constituents, in the following called phases, which
can be either liquids or solids.

The actual placement of the material point Xi at a specific time t is described by the
function χi : B0

i × [t0, t1]→ R3. We denote by x the actual position at time t of the point
Xi, that can contains material from all constituents, i.e.

x = χi(Xi, t). (3.1)

Let Bt
i be the actual configuration at time t of the body, so that

Bt
i = χi(B0

i , t).

Tue union of all these points gives us the actual configuration of the whole mixture that
over time is pointed as Bt = ∪iBt

i .

In particular, the function χi(·, t), where t is a given instant of time, is assumed to be
invertible, so that

Xi = χ−1
i (x, t). (3.2)
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From this, one can straightforwardly define the Eulerian velocity at time t of the i-th
constituent as

vi(x, t) =
∂χi(Xi, t)

∂t

∣∣∣∣
χ−1
i (x,t)

(3.3)

We now consider a generic scalar function ψ(x, t) it is possible to express its material (or
Lagrangian) derivative as:

ψ̇ =
dψ(x, t)

dt
=
∂ψ(x, t)

∂t
+ v(x, t) · ∇xψ(x, t) (3.4)

Where ∇x is the spatial gradient.

Moreover, it is useful to define a mean value among the velocity of each constituent
weighted on their concentration, the average velocity of the mixture:

v =
N∑
i=1

ϕivi (3.5)

We now take a spherical neighbourhood centred in x, indicated as

Uε (x) =
{
xε ∈ R3 s.t. ∥x− xε∥ < ε

}
.

Given a subset P ⊆ Bt, we indicate its volume by V (P). The set P can contain different
constituents. For each of them, we indicate the mass of the ith constituent contained in
the subset P by mi(P , t). The volume occupied by such a material is denoted by Vi(P , t).
We remark that V (P) is generally different from Vi(P , t).

We are now able to introduce the following quantities:

• the true mass density :

γi(x, t) = lim
ε→0

mi(Uε (x) , t)
Vi(Uε (x) , t)

, (3.6)

• the apparent mass density :

ρi(x, t) = lim
ε→0

mi(Uε (x) , t)
V (Uε (x))

. (3.7)

Thereby, we can introduce the volume fraction ϕi, a quantity that represents the ratio of
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the volume of the ith phase over the total volume:

ϕi(x, t) = lim
ε→0

Vi(Uε (x) , t)
V (Uε (x))

=
ρi(x, t)

γi(x, t)
. (3.8)

Finally, the density of the whole mixture is defined as:

ρ(x, t) = lim
ε→0

M(Uε (x) , t)
V (Uε (x))

= lim
ε→0

1

V (Uε (x))

N∑
i=1

mi(Uε (x) , t) =
N∑
i=1

ρi(x, t), (3.9)

where M(P , t) is the mass of the mixture in P at time t. Under the hypothesis of full
saturation, i.e. each point of the control volume is fully occupied by the N constituents,
we have

N∑
a=1

Vi(Uε (x) , t) = V (Uε (x)) =⇒
N∑
a=1

ϕi(x, t) = 1 ∀x ∈ Bt ∀t ∈ [t0, t1]. (3.10)

We now introduce the continuity equations. For each constituent we enforce that, in
each subset B∗

t ∈ Bt with volume V ∗
t , the variation of total mass equals the produc-

tion/consumption of the source term, namely

d

dt

∫
B∗
t

ρidB =

∫
B∗
t

ΓidB ∀i = 1, ..., N (3.11)

where Γi(x, t) is the mass source term per unit volume.

Now, we can exploit sequentially Reynold’s theorem and divergence theorem to obtain

d

dt

∫
B∗
t

ρidB =

∫
B∗
t

∂ρi
∂t
dB +

∮
∂B∗

t

ρivi · n dS =

∫
B∗
t

{
∂ρi
∂t

+∇ · (ρivi)

}
dB ∀i = 1, ..., N

(3.12)

Where n is the outward normal versor of the surface element dS. Since the control volume
B∗
t is arbitrary, the continuity equations can be cast in local form. Indeed, from Eq. (3.12)

we get
∂ρi
∂t

+∇ · (ρivi) = Γi ∀i = 1, ..., N (3.13)

Dividing by the true mass density γi(x, t), we obtain:

∂ϕi

∂t
+∇ · (ϕivi) =

Γi

γi
a.e.∀i = 1, ..., N (3.14)
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that describes the evolution over time of the volume fraction of the phase i over time.

3.2. Solid tumours as biphasic mixtures

We now specialize in the setting of mixture theory to model the GBM growth. We
assume that the brain is a mixture composed of a cellular phase with volume fraction
ϕc(x, t) representing the tumour and a liquid phase with volume fraction ϕl(x, t) which
represents the health host tissue (similarly to the model proposed in [46]). Under these
conditions, the saturation constraint (3.10) simplifies into

ϕc(x, t) + ϕl(x, t) = 1. (3.15)

We also assume that the two phases have a density roughly equal to the one of water γ.
As we have seen in the previous section, the following form of the mass balance holds
true:

∂ϕi

∂t
+∇ · (ϕivi) =

Γi

γ
i ∈ {c, l} (3.16)

To enforce the incompressibility of the whole mixture, we prescribe that Γc = −Γl. Indeed,
if we sum the two continuity equations in (3.16), we obtain

∇ · (ϕcvc + ϕlvl) = ∇ · v = 0 (3.17)

where we have used the saturation constraint (3.15) and v is the average velocity of the
mixture defined in (3.5).

We introduce the scalar field ϕ, defined as the difference between the volume fractions

ϕ = ϕc − ϕl. (3.18)

By subtracting the two coninuity equations (3.16)

∂(ϕi − ϕc)

∂t
+∇ · (ϕivi − ϕcvc) =

Γi − Γc

γ
(3.19)

Let Jc and Jl be the mass fluxes of the two phases with respect to the mixture velocity v

Jc = γϕc(vc − v),

Jl = γϕl(vl − v).

(3.20)

(3.21)
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By introducing J = 1
γ
(Jc − Jl) and subtracting Eqs. (3.20)-(3.21), we get

ϕcvc − ϕlvl = ϕv + J . (3.22)

We can use Eq. (3.22) to rewrite Eq. (3.19) as follows

∂ϕ

∂t
+∇ · (ϕv) +∇ · J =

Γ

γ
with Γ = Γc − Γl. (3.23)

We assume that the mixture is very viscous. Furthermore, the mixture is free of external
forces. We use a diffuse interface technique to determine a thermodynamically consistent
formulation for the mass flux. We take the following definition of Helmholtz free energy:

F (ϕ) =

∫
Bt

(
κΨ(ϕ) +

ϵ2

2
|∇ϕ|2

)
dBt, (3.24)

where Bt, the region occupied by the brain is assumed to be with fixed boundaries over
time. From now on we omit the time specification and we refer to the domain with the
symbol B. The two addends represent the intra-phase energy density and the interface
energy arising from the interaction between the two different phases, respectively [9].

In this specific case, we take as cell-cell interaction potential Ψ(ϕ) a function with a
double-well shape, such that its minima are attained in ϕ = 1 and ϕ = −1, corresponding
to the two pure phases. A simple admissible choice is given by

Ψ(ϕ) =
1

4
(1− ϕ2)2. (3.25)

Fick’s first law assumes that diffusion is proportional to the concentration gradient: the
flux flows from regions of high concentration to regions of low concentration, with a
magnitude proportional to the concentration gradient (spatial derivative). In simpler
terms, Fick’s law prescribes that a solute moves from a region of higher concentration to
a region of lower concentration across a concentration gradient [54].

We can exploit this law to postulate J to be proportional to the gradient of a chemical
potential µ = δF (ϕ)

δϕ
, where δ is the Gâteaux functional derivative.

Definition 3.2.1 (Gâteaux derivative). Let X and Y be normed spaces, let U be an open
subset of X, let f : U → Y be a function, and let x0 ∈ U . If there is some T ∈ B(X, Y ),
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where B(X, Y ) is a linear map, such that for all v ∈ X we have

lim
t→0

f (x0 + tv)− f (x0)
t

= Tv (3.26)

then we say that f is Gâteaux differentiable at x0 and call T the Gâteaux derivative of f
at x0 [15].

Thus, we assume that

J = − 1

M0

T∇µ (3.27)

where M0 is a friction coefficient. T here represent the preferential motility tensor, which,
as said in Section 2.2, takes into account for the anisotropy in the growth of the tumour
that prefers to move along brain fibres.

To close the model, we prescribe that Γ depends on the local oxygen concentration by
setting

Γ = Γ(ϕ, n) = νγ
( n
ns

− δ
)
h(ϕ). (3.28)

Here, ν is the tumour cells proliferation rate, n represents the local concentration of the
oxygen, ns is a physiological value for oxygen concentration in brain tissue , δ is the
hypoxia threshold, and h(ϕ) is a function that allows the proliferation in the natural
range of ϕ.

The function h should be constitutively prescribed. It should turn off tumour cell pro-
liferation when ϕ = −1, i.e. when we are in the correspondence of the absence of the
tumour. A possible choice for h is given by

h(ϕ) = max(min(1,
1

2
(1 + ϕ)), 0) (3.29)

The dynamic of oxygen concentration is modelled by means of a reaction-diffusion equa-
tion. Indeed, we prescribe for the variable n the following evolution in time

∂n

∂t
= ∇ · (D∇n) + Sn

(
1− n

ns

)
ns

3
(2− ϕ)− δnnh(ϕ), (3.30)

where D is the diffusivity tensor of the nutrient, Sn is the oxygen supply rate and δn is
the oxygen consumption rate.
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To sum up, we now present the complete closed system of partial differential equations:

∂ϕ

∂t
= ∇ ·

( 1

M0

T∇µ
)
+ ν(n− δ)h(ϕ),

µ = κΨ′(ϕ)− ϵ2∆ϕ,
∂n

∂t
= ∇ · (D∇n) + Sn

(
1− n

ns

)
ns

3
(2− ϕ)− δnnh(ϕ).

(3.31a)

(3.31b)

(3.31c)

Here, we introduce T, the tensor of preferential mobility, which embodies the spatial
anisotropy in the tumour growth.

3.3. Boundary and initial condition

It now remains to define the boundary and initial conditions used in the simulations before
moving on to the nondimensionalization of the model. Specifically, as an initial condition
on ϕ0 (x) = ϕ(x, 0) we chose an exponential distribution in space centred at the centre
of gravity of the region occupied by the tumour during the growth x0. From this, we
retrieve µ0 (x) = µ(x, 0) computing the operators on ϕ0 and n0 (x) = n(x, 0) by simply
solving the stationary version of the nutrient equation:

ϕ0 = 2e−α0∥x−x0∥4 − 1 inB,

µ0 = κΨ′(ϕ0)− ϵ2∆ϕ0 inB,

0 = ∇ · (D∇n0) + Sn

(
1− n0

ns

)
ns

3
(2− ϕ)− δnn0h(ϕ) inB.

(3.32a)

(3.32b)

(3.32c)

Since both tumour and nutrient cannot diffuse beyond the skull , we impose the homoge-
neous Neumann on the boundary ∂B for all three variables considered:

∇ϕ · n = 0 on ∂B,

∇µ · n = 0 on ∂B,

∇n · n = 0 on ∂B,

(3.33a)

(3.33b)

(3.33c)

where n is the outward normal vector.

3.4. Nondimensionalization

It is useful to derive the nondimensionalized form of the system of equation (3.31). To
pursue this aim, we adopt as characteristic quantities Lcar, Tcar and ϵcar, respectively
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characteristic length, characteristic time and characteristic diffuse interface thickness .
If the first two are fixed for an obvious reason since the growth model relies on spatial
and temporal features, the latter is chosen for its dependency on the mesh. For the
nondimensionalization we set the following characteristic quantities:

- Tcar = 0.5 day

- Lcar = 10mm

- ϵcar = 30Pa1/2mm

In such a way, we obtain the following nondimensional quantities:

• µ̂ = L2
car

ϵ2car
µ

• n̂ = 1
ns
n

• ν̂ = Tcarν

• M̂0 =
L4

car
ϵ2carTcar

M0

• ϵ̂ = 1
ϵcar
ϵ = 1

• k̂ = L2
car

ϵ2car
k

• δ̂ = δ

• δ̂n = Tcarδn

• Ŝn = TcarSn

• D̂ = Tcar
L2

car
D

Given that, the system (3.31) is written in the nondimensionalized variables as follows:

∂ϕ̂

∂t
= ∇ ·

( 1

M̂0

T∇µ̂
)
+ ν(n̂− δ)h(ϕ),

µ̂ = κ̂Ψ′(ϕ)−∆ϕ,

∂n̂

∂t
= ∇ · (D∇n̂) + Sn (1− n̂)

1

3
(2− ϕ)− δnn̂h(ϕ).

(3.34a)

(3.34b)

(3.34c)

For the sake of simplicity, from now on we can omit the hat symbol.

3.5. Biological parameters

The selection and calibration of equations parameters are crucial steps to have realistic
simulations. The identification of patient-specific parameters is a key step to transferring
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Parameter description Range of values Ref.

M0 Tumour inter-phase friction 1377.86− 5032.2 ( Pa day) /mm2 Swabb et al [56]

ν Tumour cells proliferation rate 0.012− 0.5 day −1 Swanson et al [57] and Martinez-Gonzalez et al [40]

Sn Oxygen supply rate 103 − 105 day −1 Chatelain et al [18]

δn Oxygen consumption rate 103 − 105 day −1 Martinez-Gonzalez et al [40]

κ Brain Young modulus 106.66− 1533.3 Pa Clatz et al [19]

δ Hypoxia threshold 0.1− 0.33 Bedogni and Powell [14]

Table 3.1: Biological range found in literature for the parameters of the model.

the mathematical model proposed in this thesis to clinical settings. Here, parameters
are chosen in a range compatible with current measurements that we have found in the
literature, as reported in Table 3.1. Accordingly, we identify a set of admissible non-
dimensional parameters P = [ν,M0, κ, δ, δn, Sn]:

Pbio = {[0.1, 0.4], [2000.0, 4000.0], [600.0, 900.0], [0.2, 0.3],

[5000.0, 50000.0], [5000.0, 50000.0]}

3.6. Numerical framework

In this section, we describe the discretization approach used to numerically solve the
system (3.34). The mesh of the brain is acquired via the techniques described in Ch.2.
The domain is partitioned in tetrahedral elements. We refer to this partition as Th. Then,
we divide the temporal interval [0,T] into N discrete sub-intervals ∆t = T/N . The n-th
simulation time-point tn = n∆t with n = 0, ..., N . Next, we introduce the finite element
space Vh =

{
χ ∈ C0(Ω) : χ|Kj

∈ P1(Kj) ∀Kj ∈ Th
}
⊂ H1(Ω), which is the space of

continuous functions that are polynomial of grade 1 (P1) when restricted on the element
Kj. Vh is a subset of the Hilbert space H1(Ω) that contains L2(Ω) functions whose first
weak derivative is in L2(Ω) too.

Thus, given the initial data (ϕ0
h, n

0
h) ∈ Vh× Vh we obtain the following discrete problem:

(
ϕn+1
h − ϕn

h

∆t
, φh

)
= − 1

M0

(
T∇µn+1

h ,∇φh

)
+ ν

((
nn+1
h − δ

)
h (ϕn

h) , φh

)
(
µn+1
h , vh

)
=
(
∇ϕn+1

h ,∇vh
)
+ κ

(
Ψ′

c

(
ϕn+1
h

)
, vh
)
+ κ (Ψ′

e (ϕ
n
h) vh)(

nn+1
h − nn

h

∆t
, qh

)
= −

(
D∇nn+1

h ,∇qh
)
+ Sn

((
1− nn+1

h

) 1
3
(2− ϕn

h) , qh

)
− δn

(
nn+1
h h (ϕn

h) , qh
)

(3.35a)

(3.35b)

(3.35c)

where (·, ·) denotes the standard L2 inner product over Ω . In order to ensure the gradient
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stability of the scheme, we prescribe the following splitting for the Cahn-Hilliard potential
(as suggested in [16]):

- Ψc

(
ϕn+1
h

)
=

(ϕn+1
h )

4
+1

4

- Ψe (ϕ
n
h) = −

(ϕn
h)

2

2

Decomposing the potential in such a way, i.e. in a convex term Ψc that we can treat with
an implicit scheme and a concave term Ψe that is treated with an explicit scheme, ensures
the solution to be stable over time [50].
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The complexity of the direct problem makes the discrete system 3.35 expensive, from a
computational point of view, to be solved. For this reason, in this chapter, we investigate a
technique able to reduce the degree of freedom of the problem making the computation of
the solution easier. In particular, we apply the Reduced Basis method using basis functions
calculated by the Proper Orthogonal Decomposition (POD). Since the full order model
is nonlinear, we bypass the projection of the problem on the reduced space exploiting
interpolation through Neural Networks (POD-NN) [35].

4.1. Reduced Basis Methods

Reduced basis (RB) methods are computational reduction techniques for the fast and
accurate assessment of input-output relationships: the output is written as a functional
of the solution of a parametrized partial differential equation (PDE), with the set of
parameters serving as the input [47].

An RB approximation aims to capture the key properties of the input/output behaviour
of a system by enhancing computing efficiency and by controlling the approximation error
between the reduced-order solution and the full-order solution (the parametrized PDE).
Particularly, the objective is to approximate a PDE solution with a few degrees of freedom
as opposed to the many degrees of freedom required for a full-order approximation.

In fact, the idea behind computational reduction strategies is the assumption (often oc-
curring in real work) that the behaviour of a system may be adequately characterized by
a limited number of dominant modes. In this manner, we only need to solve the full-order
issue for a small number of instances of the input via a computationally intensive Offline
step in order to generate a smaller set of basis solutions.

By describing the reduced solution as a linear combination of the basis solutions and using
a Galerkin projection onto this reduced space, it is possible to execute a large number of
low-cost reduced-order simulations at a very cheap Online stage for fresh instances of the
input.
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One of the most popular strategies to construct basis functions and reduced spaces is
the Proper Orthogonal Decomposition which reduces the dimensionality of a system by
transforming the original variables into a new set of uncorrelated variables (called POD
modes, or principal components). The first few modes ideally retain most of the energy
present in all of the original variables.

4.2. Proper Orthogonal Decomposition

Starting from the Full Order Model (FOM) described in Ch.3.2 we use proper orthogonal
decomposition (POD) reduced-order modelling to obtain a Reduced Order Model (ROM)
of the full-order system. This method consists in catching the predominant dynamic
of the physical field via some already computed solution, the snapshots. Starting from
them, it is possible to construct a subspace of reduced dimension through Singular Values
Decomposition (SVD) approach. Then, projecting the operators on it, it is possible
to compute a solution on this reduced space, simplifying the complexity of the whole
problem. We start by calculating the POD basis of a set Pk of parameters from the
snapshots matrices associated with θ = ϕ, µ, n, i.e. the matrices whose columns are the
nodal values of the solution at a specific time-step Fθk = [f 0

θk, ..., f
N
θk] for that particular

evolution k that comprises N+1 steps. Then applying the following steps, we retrieve a
ROM basis

{
ξθkl
}
l=1,...,NPOD

:

• prescribe the amount of required information that the POD basis should cover ic ∈
(0, 1];

• compute the trace tr(F t
θkFθk) of the correlation matrix F t

θkFθk = (fm
θk, f

l
θk)ml ∈

M(N + 1,R), where (·, ·) is the chosen inner product;

• set NPOD
θk = min

{
m,
(∑

i≤m λki

)
/tr(F t

θkFθk) ≤ ic
}

;

• evaluate the pair eigenvalues-eigenvectors {λki, νik}i=1,...,NPOD
θk

of F t
kFk;

• set ξθks =
1√
λks

∑
j (ν

s
k)j f

j
θk where (1 ≤ s ≤ NPOD

f ).

In particular, we start for each parameters set Pk from a snapshot matrix for each vari-
able: Fϕ = [ϕ0

k, ..., ϕ
N
k ], Fµ = [µ0

k, ..., µ
N
k ] and Fn = [n0

k, ..., n
N
k ]. After computing the

eigensystem we choose Nk
POD as:

Nk
POD = max

{
NPOD

kϕ , NPOD
kµ , NPOD

kn

}
(4.1)

To obtain the same dimension for each field, basis is completed with the remaining Nk
POD−
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NPOD
θk basis, i.e. {ξθkl}l=1,...,NPOD

θk
, where θ ∈ {ϕ, µ, n}. We emphasize that POD basis

elements are finite element functions.

Now we reason similarly as before but this time we let k vary, in the sense that until this
point, we only endowed the ROM basis of parameter-specific information of the evolution
over time, but we want a basis able to capture tumour behaviour over the parameters.

In order to build up such a basis, we consider the matrices

Fθ =
[
ξθ11, ..., ξ

θ
1N1

POD
, ..., ξθM1, ..., ξ

θ
MNM

POD

]
with θ ∈ {ϕ, µ, n}, where M is the number of parameters sets chosen to build up the basis.
We evaluate once again the pair eigenvalues-eigenvectors, this time for the matrix F t

θFθ

obtaining {λθi , νθi}i=1,...,NPOD with θ ∈ {ϕ, µ, n}, where NPOD is such that the required
information contents of the POD bases satisfy ic = 0.95; that is, the POD basis contain
at least 95.00% of the snapshot information for each variable. Then, for each variable we
compute, ξθs = 1√

λθ
s

∑
j

(
νθs
)
j
ξθj where 1 ≤ s ≤ NM

POD and j = 11, ...,MNPOD.

The final results of the basis construction phase are the following ROM basis Pθ, θ ∈
{ϕ, µ, n}, that retain most of the information present in all of the original variables:

Pϕ =
{
ξϕl

}
l=1,...,NPOD

, Pµ =
{
ξµl

}
l=1,...,NPOD

, Pn =
{
ξnl

}
l=1,...,NPOD

.

We make now a projection of the variables:

ϕn
h =

NPOD∑
i=1

αn
i ξ

ϕ
i , µn

h =

NPOD∑
i=1

βn
i ξ

µ
i , nn

h =

NPOD∑
i=1

ηni ξ
n
i . (4.2)

Substituting Equations 4.6 into Equation 3.35 and choosing vh ≡ ξϕm, wh ≡ ξµm, qh ≡ ξnm,
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we obtain the following ROM system:

NPOD∑
i=1

αn+1
i − αn

i

∆t

(
ξϕi , ξ

ϕ
i

)
= − 1

M0

NPOD∑
i=1

βn+1
i

(
T∇ξµi ,∇ξ

ϕ
i

)
+ ν

((
NPOD∑
i=1

ηn+1
i ξni − δ

)
h

(
NPOD∑
i=1

αn
i ξ

ϕ
i

)
, ξϕi

)
NPOD∑
i=1

βn+1
i (ξµi , ξ

µ
i ) = ϵ2

NPOD∑
i=1

αn+1
i

(
∇ξϕi ,∇ξ

µ
i

)
+ κ

(
Ψ′

c

(
NPOD∑
i=1

αn+1
i ξϕi

)
, ξµi

)

+ κ

(
Ψ′

e

(
NPOD∑
i=1

αn
i ξ

ϕ
i

)
, ξµi

)
NPOD∑
i=1

ηn+1
i − ηni
∆t

(ξni , ξ
n
i ) = −

NPOD∑
i=1

ηn+1
i (D∇ξni ,∇ξni )

+ Sn

((
1−

NPOD∑
i=1

ηn+1
i ξni

)
g

(
NPOD∑
i=1

αn
i ξ

ϕ
i

)
, ξni

)

− δn

((
NPOD∑
i=1

ηn+1
i ξni

)
h

(
NPOD∑
i=1

αn
i ξ

ϕ
i

)
, ξni

)

(4.3a)

(4.3b)

(4.3c)

Where the initial conditions are given by α0
i =

(
ϕ0
h, ξ

ϕ
i

)h
and η0i = (n̂0

h, ξ
n
i )

h. We now
replace the steady terms using:

V1,ij :=
(
ξϕi , ξ

ϕ
j

)
, U1,ij :=

(
ξµi , ξ

µ
j

)
, W1,ij :=

(
ξni , ξ

n
j

)
,

V2,ij :=
(
T∇ξµi ,∇ξ

ϕ
j

)
, U2,ij :=

(
ξϕi , ξ

µ
j

)
, W2,ij :=

(
D∇ξni ,∇ξnj

)
.
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In such a way, the system is simplified as follows:

NPOD∑
i=1

αn+1
i − αn

i

∆t
V1,ij = −

1

M0

NPOD∑
i=1

βn+1
i V2,ij

+ ν

((
NPOD∑
i=1

ηn+1
i ξni − δ

)
h

(
NPOD∑
i=1

αn
i ξ

ϕ
i

)
, ξϕi

)
NPOD∑
i=1

βn+1
i U1,ij = ϵ2

NPOD∑
i=1

αn+1
i U2,ij + κ

(
Ψ′

c

(
NPOD∑
i=1

αn+1
i ξϕi

)
, ξµi

)

+ κ

(
Ψ′

e

(
NPOD∑
i=1

αn
i ξ

ϕ
i

)
, ξµi

)
NPOD∑
i=1

ηn+1
i − ηni
∆t

W1,ij = −
NPOD∑
i=1

ηn+1
i W2,ij

+ Sn

((
1−

NPOD∑
i=1

ηn+1
i ξni

)
g

(
NPOD∑
i=1

αn
i ξ

ϕ
i

)
, ξni

)

− δn

((
NPOD∑
i=1

ηn+1
i ξni

)
h

(
NPOD∑
i=1

αn
i ξ

ϕ
i

)
, ξni

)

(4.4a)

(4.4b)

(4.4c)

In order to face the non-linearities given in the terms containing the functions Ψ and h,
we solve this system of equations via Newton method.

4.3. Surrogate POD with a Neural Network approach

As we have seen in the previous section, the Reduced order model (4.4) is highly nonlinear.
The naive application of the reduced basis method required the projection of the matrices
representing the model on the reduced space of any new instance of the parameters. For
this reason, the computational time of the ROM is similar to or even higher than the
one of the FOM. To overcome this issue, in this work, we exploit Neural Networks to
directly approximate the mapping of the parameters into the set of ROM coefficients.
Using such a data-driven technique (POD-NN) [35], indeed, we are no longer interested
in the dynamics of the ROM but just in the value of coefficient over time obtained by
projecting the FOM solution onto the reduced space.
Let us consider a generic set of parameters σ. To this set, it corresponds a unique
evolution of the FOM. Thus, projecting the solution at each time step t onto the reduced
space generated by the reduced basis {ξθl }l=1,...,NPOD

θ
, where θ ∈ {ϕ, µ, n}, we obtain a

set of coefficient {atl}l=1,...,NPOD
θ

. With this information, it is possible to train a neural
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network whose results entail a drastic decrease in computational effort.

4.3.1. Neural Networks

Following [35], an artificial neuron represents a simplified model of a biological neuron.
Let us consider the neuron j represented on in Fig.4.1a. Suppose that it is connected with
m sending neurons {s1, ..., sm} and n receiving (target) neurons {r1, ..., rn}.

(a) (b)

Figure 4.1: Representation of a generic neuron j of an artificial neural network, including
(right) or not (left) a bias neuron. On the left, the neuron accumulates the weighted inputs
{ws1,jys1 , ..., wsm,jysm} respectively coming from the sending neurons {s1, ..., sm}; on the
right, the neuron accumulates the weighted inputs {ws1,jys1 , ..., wsm,jysm ,−θj} respectively
coming from the sending neurons {s1, ..., sm, b}, with b the bias neuron. In both situations,
the neuron then fires yj, sent to the target neurons {r1, ..., rn} through the synapsis
{wj,r1 , ..., wj,rn} . The neuron threshold is reported in brackets within the neuron. [35].

Referring to the output of a generic neuron α at time t with yα(t) ∈ R, we weight it with a
value wα,β when it is connected to the neuron β in the adjacent layer. Notice that time is
discretized in the context of atificial neural networks (ANNs) by adding the timestep ∆t.
Clearly, this is not realistic from a biological standpoint; yet, it simplifies the implemen-
tation significantly. To simplify the notation, we shall not indicate dependence on time
unless it is absolutely required. Three functions fully describe an artificial neuron j: the
propagation function, the activation function and the output function. The propagation
function fprop collects the vectorial input p = [ys1 , ..., ysm ]

T ∈ Rm into a scalar uj often
called net input, i.e.,

uj = fprop(ws1,j, ..., wsm,j, ys1 , ..., ysm).
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A common choice is to pick fprop as the weighted sum:

fprop(ws1 , ..., wsm , ys1 , ..., ysm) =
m∑
k=1

wsk,jysk

At each timestep, the activation state aj, also known simply as activation, quantifies to
which extent neuron j is currently active or excited. This is determined by the activation
function

fact(uj; θj) = fact

(
m∑
k=1

wsk,jysk ; θj

)
which combines the weighted input with the threshold θj ∈ R. There exist various choices
for the activation function. In this work, the LeakyReLU activation function is chosen:

LeakyReLU(x) =

x, if x ≥ 0

negative_slope× x, otherwise
(4.5)

where negative_slope is the gradient of the negative part of the function that should be
enough small [17]. Here negative_slope= 0.1.

Figure 4.2: The activation function LeakyReLU with a negative slope of 0.1 [6].

To conclude, the output function fout calculates the scalar output yi ∈ R based on the
activation state aj of the neuron:

yi = fout(aj)

Here, as it is often chosen, fout is the identity function.
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The connectivity of neurons inside a network determines the network’s topology or archi-
tecture. Several network designs, often suited to a particular use, have been presented
in the literature. In function regression tasks, feedforward neural networks, commonly
known as perceptrons have been favoured over all others.
In a feedforward neural network, neurons are organized in layers, with one input layer of
MI source neurons, K hidden layers of Hk computing neurons, k = 1, ...K, and an output
layer of MO computing neurons. As a defining trait, neurons in a layer can only form
connections with neurons in the subsequent output-facing layer. When an input vector
p ∈ RMI is provided to the network through the source nodes, the signal for the neurons
in the first hidden layer is generated. The outputs of each hidden layer in turn feed the
neurons in the subsequent layer. In this manner, information is sent to the output layer,
whose outputs compose the components of the network’s total output q ∈ RMO .
A feedforward network thereby creates a map between the input space RMI and the out-
put space RMO . This makes this network design well-suited for approximating continuous
functions. Indeed, multi-layer perceptrons (MLPs), i.e. NN with at least one hidden layer,
as found in [21] and [22] by Cybenko, satisfy the following properties:

i) MLPs with one hidden layer and differentiable activation functions can approximate
any continuous function;

ii) MLPs with two hidden layers and differentiable activation functions can approxi-
mate any function.

Hence, there is no need to deploy MLPs with more than two hidden layers in many practi-
cal situations. Unfortunately, (i) and (ii) do not provide any practical recommendations
for either the number of hidden neurons or the number of samples necessary to train the
network; these values must be determined by a trial-and-error approach.



4| Reduced Order Model 37

Figure 4.3: A three-layer feedforward neural network consisting of three input neurons,
two hidden layers of six neurons each, and four output neurons. Within each link, the
flow of information is left to right [35].

4.3.2. Direct Problem

In this section, we specify what is presented in the previous section. Namely, the neural
network used in this phase is a map NNθ : RNP+1 → RNPOD

θ which retrieve from a set of
parameter P = [ν,M0, κ, δ, δn, Sn] of cardinality NP (given in Section 3.2), the coefficient
of the basis function of the reduces space with dimension NPOD for the variable (see Algo-
rithm 4.1). Here, we take a collection of inputs for each set in P completed with a specific
time parameter. In such a way, we obtain the input vector Pt = [ν,M0, κ, δ, δn, Sn, t] where
[ν,M0, κ, δ, δn, Sn] ∈ Pbio and t = 0, ..., T , with T is the final time-step. The associated
output is the list of coefficients of the solution projected on the ROM space at time t,
i.e. {atθi} ∈ RNPOD . Having these coefficients {atθi}, it is possible to retrieve the whole
solution at time t through:

ϕt
h =

NPOD∑
i=1

atϕiξ
ϕ
i , µt

h =

NPOD∑
i=1

atµiξ
µ
i , nt

h =

NPOD∑
i=1

atniξ
n
i . (4.6)

The training is performed on a data set of NData input-output pair that is split into a
train set with NTrain elements, that is about 70 − 80% of the whole data set, and a test
set with NTest elements, with the remaining instances of the data set. The values for each
simulation are specified in the presentation of the numerical results (Chapter 5).

For all the cases we exhibit, the specific propagation, activation and output functions
are selected to be the ones presented in 4.3.1, i.e. the weighted sum for the propagation
function, the LeakyReLU as the activation function and just the identity for the output
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function. Moreover, the loss function used is the mean squared error e defined as:

e =
1

n

n∑
i=1

(
Yi − Ŷi

)2
(4.7)

where Yi is the vector of observed values of the variable being predicted, Ŷi is its predicted
value, and n is the number of data on which we are computing the error on. The min-
imization algorithm used, which objective is to detect the minimum of the loss function
e, is the Limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm (L-BFGS) [42].

Algorithm 4.1 Direct Problem Algorithm

Require: MRI(t = 0),DTI(t = 0), {ξϕs }s=1,...,NPOD

1: for k in range (1, NSimulations) do
2: Pk = [νk,M0k, κk, δk, δnk, Snk]← rand(Pbio); #Pick a random parameters set
3: Perform ϕk ← FOM(Initialization,Pk); #Solve FOM given i.c. and parameters
4: for t in range (1, NSteps) do
5:

[
at1, ..., a

t
NPOD

]
← Projection(ϕk(t), {ξϕs }); #Project phi on the ROM basis

6: (MOutput)NSteps(k−1)+t = [νk,M0k, κk, δk, δnk, Snk, t];
7: (MInput)NSteps(k−1)+t =

[
a01, ..., a

0
NPOD

, aT1 , ..., a
T
NPOD

]
;

8: end for
9: end for

10: Training Phase NNϕ :
11: NTrain = 0.75NData;
12: Train ←MInput[1 : NTrain], MOutput[1 : NTrain];
13: Test ←MInput[NTrain + 1 : NData], MOutput[NTrain + 1 : NData];
14: Compute [at1, ..., a

t
NPOD

]← NNϕ (ν,M0, κ, δ, δn, Sn, t)

4.3.3. Inverse Problem

The final objective of this methodology is the resolution of an inverse problem, that is
the prediction of the patient-specific parameters of a clinical case starting from a pair of
images obtained via the techniques presented in Chapter 2.

To achieve this aim, until this point, we have proposed a method able to speed up the
computational time of the resolution of the direct problem. It is indeed fundamental to
simulate several possible evolutions of the tumour growth, starting from a given initial
condition, if we want to trace back the parameters that entail the specific evolution that
comprises the actual distribution of tumour retrieved from the images.

Motivated by the results of the direct problem, which are obtained via a neural network
that ensures a satisfyingly precise solution while drastically cutting drastically computa-
tional costs, it is reasonable to apply the same method for the inverse problem. Namely,
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we try once again to properly train a different neural network able to map the pair of
tumour distributions projected onto the ROM space into the parameter space Pbio.

Exploiting the features of the Reduced Order Model, which relies on very few degrees of
freedom with respect to the FOM, we can, indeed, construct an input vector that embodies
the information given by non-consecutive snapshots of the evolution of the tumour in the
brain.

The approach we followed consists in starting from the results of two different brain
tumour states, at times t0 and t1, which can be represented in the Full Order Space, i.e.
ϕ(t0) and ϕ(t1) (see Algorithm 4.2). At this point, the two solutions can be projected
on the Reduced Order Space obtaining the coefficients {αt0

ϕ1, ..., α
t0
ϕNPOD

} from ϕ(t0) and
αt1
ϕ1, ..., α

t1
ϕNPOD

from ϕ(t1).

Then the coefficients are concatenated in a single vector containing the information of
both of the snapshots [αt0

ϕ1, ..., α
t0
ϕNPOD

, αt1
ϕ1, ..., α

t1
ϕNPOD

] ∈ R2NPOD
ϕ that is the input of this

neural network.

With this information, a map NNinv between the concatenated vector of the coefficients
of the two time-steps and the specific parameters [ν,M0, κ, δ, δn, Sn] ∈ Pbio relating to the
same patient can be defined. Namely, we train a neural network NNinv : R2NPOD

ϕ → RNP

which approximate this map. Specifically:

(ν,M0, κ, δ, δn, Sn) = NNinv
(
αt0
ϕ1, ..., α

t0
ϕNPOD

, αt1
ϕ0, ..., α

t1
ϕNPOD

)
.

Where t0 is the time-step of the first snapshot while t1 is the one of the second snapshots.

Once again, the training is performed on a data set of NData input-output pair that is split
into a train set with NTrain elements, that is about 70− 80% of the whole data set, and a
test set with NTest elements, with the remaining instances of the data set. The values for
each simulation are specified in the presentation of the numerical results (Chapter 5).

For all the cases we exhibit, the specific propagation, activation and output functions
are selected to be the ones presented in 4.3.1, i.e. the weighted sum for the propagation
function, the LeakyReLU as the activation function and just the identity for the output
function. Moreover, the loss function used is the mean squared error e defined in 4.7. The
minimization algorithm used is L-BFGS.
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Algorithm 4.2 Inverse Problem Algorithm

Require: MRI(t = 0),DTI(t = 0),MRI(t = T ),Ptarget,{ξϕs }s=1,...,NPOD

1: for k in range (1, NData) do
2: Pk ← rand(Pbio); #Pick a random set of parameters
3: Perform ϕk ← FOM(Initialization,Pk);#Solve FOM given i.c. and parameters
4:

[
a01, ..., a

0
NPOD

]
← Projection(ϕk(t = 0), {ξϕs });#Project phi on the ROM basis

5:
[
aT1 , ..., a

T
NPOD

]
← Projection(ϕk(t = T ), {ξϕs });

6: (MOutput)k = [Pk];
7: (MInput)k =

[
a01, ..., a

0
NPOD

, aT1 , ..., a
T
NPOD

]
;

8: end for
9: Training Phase NNinv :

10: NTrain = 0.75NData;
11: Train ←MInput[1 : NTrain], MOutput[1 : NTrain];
12: Test ←MInput[NTrain + 1 : NData], MOutput[NTrain + 1 : NData];
13: Compute Pguess ← NNinv

(
a01, ..., a

0
NPOD

, aT1 , ..., a
T
NPOD

)
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5| Numerical Results

In this Chapter, we run through all the steps of the numerical simulations that lead to
the final results. The overall implementation framework exploits the functionalities given
by the platform FEniCSx which is a popular open-source framework for solving partial
differential equations. The implementation of the used code heavily relies on two of its
components:

• Dolfinx, a C++/Python library providing data structures and algorithms for finite
element meshes, automated finite element assembly, and numerical linear algebra
[1];

• Unified Form Language UFL which is a domain-specific language for declaration of
finite element discretizations of variational forms. More precisely, it defines a flexible
interface for choosing finite element spaces and defining expressions for weak forms
in a notation close to mathematical notation [2].

All codes are parallelized and the time specifics showed in the following sections rely on
a multi-thread CPU with 20 cores.

5.1. Patient Specific Parameters Estimation on a Two-

Dimensional Geometry

In this section, we test the whole process to retrieve the parameter of the model specific
to a singular patient on a two-dimensional mesh.

As we have stated in Chapter 4, in order to compute patient-specific parameters, a re-
duction of the degrees of freedom of the problem is needed if we ask for a result in a
reasonable time. The pathway that we have followed in this work is to face the direct
problem of computing the solution given the parameters in a restricted amount of time
by exploiting a reduced basis method that exploits the POD for the construction of the
reduced space. In such a way we can compute a great number of reduced solutions, start-
ing from randomly picked parameters, that are useful to enlarge our data set of fictitious
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clinical cases. The construction of the ROM basis is obtained through RBniCSx [36], a
library useful to implement reduced-order modelling techniques.

Then, we can train a neural network to map the inverse problem. Starting from the
reduced solution obtained in the previous step indeed, we can simulate the real evolution
of a GBM by following the procedure exposed in Section 4.3.3. The starting point in the
real case is the collection of two functions obtained by a chosen image technique that are
then projected onto the reduced space and subsequently concatenated to form the input
vector.

5.1.1. Direct Problem

To compute a solution in a feasible time it is important to reduce the degrees of freedom of
the spaces we want to find the solution in. As described in Chapter 4, Proper Orthogonal
Decomposition is a suitable technique to pursue this aim.

Unfortunately, as it is shown below, the classical approach which entails the projection of
the operators on the ROM basis, without an interpolation method which approximates
the nonlinear convex term in the double-well potential (such as DEIM), does not improve
the time effort.

For this reason, here we take advantage of one of its variations, POD-NN, which exploits
a neural network NNϕ to approximate the map between the parameter and the coefficient
of the function representing the concentration of tumour obtained after its projection of
the ROM space. POD-NN make it possible to overcome the projection of the operators
cutting drastically computational costs.

In this case, the basis is built up starting from M = 32 set of different parameters and
we have put the dimension of the ROM basis to NPOD = 30. This is due to µ that, as it
is shown in Table 5.1, requires a ROM space of greater dimension in order to make POD
technique precise, with respect to ϕ and n that could only rely on about ten element for the
base to keep the same ic ≈ 0.95. This dependency on the number of basis NPOD introduce
a trade-off between the accuracy of the Reduced Order Model and its computational effort.

With the POD-NN approach, a greater basis entails a negligible computational effort in
terms of the computation of the reduced order solution since the projection operation is
still of the order of seconds. On the other hand, it increases the degree of freedom of the
ROM nullifying our objective of reduction that is fundamental to ensure that the training
can be done on simple neural networks in few time.

Furthermore, we observe that improve accuracy becomes useless from a point on, since
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the shape and dimension of the tumour are well traced even if some oscillation arouses
(see Figure 5.3).

Eigenvalues for ϕ Eigenvalues for µ Eigenvalues for n

Table 5.1: Ratio of ordered eigenvalues over the greatest of them for the physical variables
ϕ, µ and n over the square mesh.

Once we have fixed the dimension of the Reduced Order Space, it is possible to reproduce
multiple simulations to build up a data set big enough for training the neural network
NNϕ. Here, the number of data points is NData = 45000 divided in NTrain = 33000

training points and NTest = 12000 testing points. The neural network NNϕ consists of 3
layers of 50 nodes each. In Fig. 5.1 the train and test absolute errors, computed as the
mean error e respectively on the test and on the trial, are exhibited.

Figure 5.1: Absolute mean square error e over the epochs in the training of the neural
network NNϕ. The error over the train set is coloured in blue while the error over the
test set is coloured in orange.
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5.1.2. Inverse Problem

Starting from a large number of reduced solutions it is possible to train the map NNinv.
Here again, we exploit a 3-layer neural network, where each layer is of 50 neurons, for the
propagation function the weighted sum, as activation function the LeakyReLU and just
the identity for the output function.

Has specified in Section 4.3.3, here we construct the input data as the collection of the
coefficient of two snapshots, obtaining a vector [αt0

ϕ1, ..., α
t0
ϕNPOD

, αt1
ϕ1, ..., α

t1
ϕNPOD

] ∈ R2NPOD
ϕ

for each set of parameters P .

The number of data points, in this case, is NData = 22500 divided in NTrain = 16500

training points and NTest = 6000 testing points. The results in terms of error are exhibited
in Fig.5.2.

Figure 5.2: Relative mean square error e over the epochs in the training of the neural
network NNinv. The error over the train set is coloured in blue while the error over the
test set is coloured in orange.

5.1.3. Estimation results

This section is a comparison of the evolution of the concentration of tumour over time in
terms of shape and computational time effort over a square of dimension 100 × 100 mm
with a mesh of triangular-shaped elements. Starting from this set of parameter

(ν,M0, κ, δ, δn, Sn) = (0.26132, 3823.48, 732.125, 0.30654, 26951.7, 69628.5) (5.1)
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we retrace all the steps described before.

We have placed the tumour at the centre of the domain as a circle of radius
√
10 mm. So

the initial condition reads:

ϕ0(x, y) = IΩ where Ω = {x, y ∈ R2 s.t. (x− 50.0)2 + (y − 50.0)2 < 10.0}

Tensor T is of the form T = [[3.0, 0.0], [0.0, 1.0]] to let the tumour grow faster along the
horizontal direction. The temporal interval T comprises 100 days.

From this, simulating the FOM solution over time with different sets of parameters picked
from the biological range Pbio. With enough snapshots (here we have simulated M=32
different sets of parameters), it is possible to construct the ROM basis via the POD
method. As we said, the number of basis is NPOD = 30.

The next step is to simulate with random parameters (in this case 900 simulations) the
Reduced Order problem retrieving an adequate amount of coefficient for the reduced basis.
In such a way, we have constructed a data set big enough to train the map NNϕ from the
parameter of the model, plus the time-step, and the coefficient of the projected solution
at that time-step. This method let us to compute the solution in a lower amount of time
with respect to the FOM and ROM solutions (see Table 5.2).

After, we construct the data set for the inverse problem which holds fewer datapoints w.r.t
the direct problem due to its complexity. Indeed, the inverse problem can only rely on a
couple of time-steps of the whole simulation, while the direct problem takes information
from all the steps, instead.

Actually, in order to enlarge our data set, we couple randomly pairs of snapshots equally
distant in time. Namely, in this example, the simulation covers 100 days, so if we suppose
we can take two clinical images 70 days apart, we can pretend the initial condition to be
the distribution in one of the first 30 days and then take 70 days from that instant to
see how the tumour has evolved. Choosing a timestep of dT = 2 days, we can rely on
15 couples of snapshots for each parameter set. NNinv can be trained at this point as
described in the previous section.

Given that, we imagine starting from two tumour distributions distant in time, and we
obtain the patient-specific parameters in a time comparable to the resolution of the inverse
neural network. For the set of parameters (5.1) we obtain these estimated parameters:

(ν,M0, κ, δ, δn, Sn) = (0.26168, 3643.48, 750.072, 0.30218, 25157.7, 86628.5) (5.2)
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which entail an evolution as in Figure 5.3 and 5.3.

Simulation Elapsed time
Full Order Model 61.5 s

Reduced Order Model 310 s
Reduced Order Model - Neural Network 5 s

Table 5.2: Computational time for the different used techniques.

(a) t=0

(b) t=25 (c) t=50

Figure 5.3: Evolution of a GMB. Plot of the solution ϕ along a straight line intersecting
the tumour. From left to right, the plot for each used method at t= 0, 25, 50 time-steps
is shown. In black, the solution computed via the Full Order Model; in orange, the so-
lution computed via the classical Proper Orthogonal Decomposition; in red, the solution
computed via the Neural Network variation of the POD; in blue, the solution computed
via FOM starting from the parameter obtained in the inverse problem. FOM solution is
indistinguishable from the one obtained via the inverse problem, entailing a good estima-
tion of the parameter.



5| Numerical Results 47

t=0 days t=50 days t=100 days
Full Order Model

Reduced Order Model

ROM with Neural Network

Parameter Estimation

Table 5.3: Evolution of a GMB. From left to right, the solution ϕ for each used method
at t= 0, 50, 100 days are shown. From top to bottom: the solution computed via the Full
Order Model; the solution computed via the classical Proper Orthogonal Decomposition;
the solution computed via the Neural Network variation of the POD; the solution com-
puted via FOM starting from the parameter obtained in the inverse problem.
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5.2. Description of the used geometrical mesh and a

FOM evolution

We start this section by presenting the mesh used in the simulations on the brain. In
this work, we compute solutions over a realistic brain-shaped mesh with 32293 vertices
and 196778 tetrahedral elements. The brain mesh is represented in Fig. 5.4. This domain
represents a real clinical case obtained via MRI and DTI techniques, see Chapter 2. For
each simulation, a piecewise linear basis function is chosen, so that the degrees of freedom
of the solution corresponds to the number of vertices.

Figure 5.4: Brain mesh. Respectively sagittal, axial and coronal view

In order to capture with an adequate accuracy, the geometrical mesh is refined in the
neighborhood where the tumour is placed in the initial instant. In such a way, we can
have a better description in terms of tumour shape over time neglecting the dynamic far
from it since the concentration vanishes at each time-step. In Figure 5.5 we exhibit the
proposed mesh refinement that is compared with the actual placement of the tumour at
initial state.
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Figure 5.5: Sagittal section of the brain refined geometrical mesh. On the left, a view on
the refinement applied in the neighbourhood of the tumour placement. On the right, the
mesh labeled according to the different occupation zones. The area in blue (1.0) is that
occupied by the tumour, in light blue (2.0) by the white matter, in ochre (3.0) by the
grey matter and in red (4.0) by the cerebrospinal fluid.

Moreover, Diffusion Tensor Imaging gives us the information on how water diffuses into the
various areas of the brain. Specifically, DTI provides information on both the intensity
and directions of the movement of water molecules in the brain and such information
is contained in the nutrient diffusion tensor D (Figure 5.6). Brain can obviously be
represented as an anisotropic space such that a tensor is required to describe the diffusion
since the probabilities of the molecule moving along the 3 orthogonal axes are neither
identical nor independent. The same holds true for the tensor of tumour preferential
motility T (Figure 5.7). Tensors are both symmetric, this means that we can rely on just
six component to describe their three-dimensional distribution.

Given the mesh, we start computing the evolution of the Full Order Model described
in section 3.6. In Table 5.4, the results at time-steps t = 0, 30, 60 are exhibited. In
this case, the tumour is supposed to start from a globular shape centred in (x, y, z) =

(19.3, 30.8, 3.0)[cm] whose concentration ϕ0 at initial time is distributed as :

ϕ0(x, y, z) = 2e−100((x−19.3)2+(y−30.8)2+(z−3.0)2)
2

− 1

The parameters of the models are randomly picked in the parameters biological range
Pbio presented in Section 3.5 are the following:

• ν = 0.373555 day−1
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Nutrient Diffusion Tensor - D

Figure 5.6: The six components of tumour preferential motility tensor D.

• M0 = 3330.444 (Pa · day)/mm2

• k = 754.808Pa

• δ = 0.248254

• δn = 12064.87 day−1

• Sn = 40078.0 day−1

As we have seen in Chapter 1, GBM is a fast-growing tumour. It is, indeed, evident that
in 60 time-steps, i.e. 30 days, its volume covers a dramatic portion of the whole brain.
Moreover, the concentration of nutrient n complementary follows the behaviour of the
tumour development as expected, being poor in the region where the concentration of
tumour is higher while approximately 1 elsewhere, see Table 5.5.
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Tumour Preferential Motility Tensor - T

Figure 5.7: The six components of tumour preferential motility tensor T.

5.3. Patient Specific Parameters Estimation on a Real

Domain

In this section, we follow the approach we used in the two-dimensional test case to retrieve
the parameter of the model specific to a singular patient but on the real brain mesh we
presented in Section 5.2

5.3.1. Direct Problem

We rely on the Proper Orthogonal Decomposition variation with Neural Network to ap-
proximate the map between the parameter and the coefficient of the function representing
the concentration of tumour obtained after its projection of the ROM space. We remem-
ber that since POD-NN make it possible to overcome the projection of the operators,
computational costs are drastically cut.

In this case, we construct a basis starting with a bigger set of parameters, in particular, we
take M = 64 different sets. We have chosen even to enlarge the ROM basis to NPOD = 40

(first 6 elements are exhibited in Figure 5.8). Indeed, as it is shown in Table 5.6, µ
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Plane t=0 t=30 t=60

yz
xz

xy

Table 5.4: Evolution of a GMB. From left to right, the solution for the Full Order Model
of the concentration of tumour variable ϕ at t= 0, 15, 30 days is shown. From top to
bottom, sagittal, coronal and axial views at each time-step are exhibited.

requires a ROM space of greater dimension in order to make the POD technique precise,
with respect to ϕ and n that could only rely on about ten elements for the base to keep
the same ic ≈ 0.95. As it can be seen in Figure 5.11, this choice ensures a better reduced
solution in the sense that it follows almost completely the original FOM solution without
to many oscillations.

Once we have fixed the dimension of the Reduced Order Space, it is possible to reproduce
multiple simulations to build up a data set big enough for training the neural network
NNϕ. Here, the number of data points is NData = 45000 divided in NTrain = 33000

training points and NTest = 12000 testing points. The neural network NNϕ consist of 3
layer of 100 nodes each. In Fig. 5.9 the train and test absolute errors, computed as the
mean square distance, are exhibited.
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Plane t=0 t=30 t=60
yz

xz
xy

Table 5.5: Evolution of a GMB. From left to right, the solution for the Full Order Model
of the concentration of nutrient variable n at t= 0, 15, 30 days is shown. From top to
bottom, sagittal, coronal and axial views at each time-step are exhibited.

5.3.2. Inverse Problem

Starting from a large number of reduced solutions it is possible to train the map NNinv.
Here, we have built up a 3-layer neural network, where each layer is of 100 neurons.
The specific propagation, activation and output functions are selected to be the ones
presented in 4.3.1, i.e. the weighted sum for the propagation function, the LeakyReLU as
the activation function and just the identity for the output function. We infer as in the
test case to build up a proper data set. Namely, in this example, the simulation covers 30
days, so if we suppose we can take two clinical images 20 days apart, we can pretend the
initial condition to be the distribution in one of the first 10 days and then take 20 days
from that instant to see how the tumour has evolved. Since we have chosen a timestep of
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Figure 5.8: The first six elements (out of NPOD = 40) of the reduced order model basis
for the tumour concentration variable ϕ.

dT = 0.5 days, we can rely on 20 couples of snapshots for each parameter set. NNinv can
be trained at this point as described in the previous section.

In 5.10, we can see how the train and the trial relative errors decrease. It can be observed
that both trail and test relative mean square error flatten around 0.15.

Although this result appears to be non-optimal in order to catch the exact parameter
of a patient, the following simulations show that the specific behaviour is actually well
captured. This is mainly due to the little sensitivity of some of the parameters, for
which, even if the predicted values have a non-negligible deviation from the actual ones,
the consequent tumour spreading is not so affected in terms of precision of tracking the
actual solution.

5.3.3. Estimation results

This section is a comparison of the evolution of the concentration of tumour over time in
terms of shape and computational time effort. Starting from this set of parameter

(ν,M0, κ, δ, δn, Sn) = (0.35605, 3860.68, 700.390, 0.24015, 21041.0, 41978.3) (5.3)

we retrace all the steps described in previous Chapters.
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Eigenvalues for ϕ Eigenvalues for µ Eigenvalues for n

Table 5.6: Ratio of ordered eigenvalues over the greatest of them for the physical variables
ϕ, µ and n over the brain mesh.

Figure 5.9: Absolute mean square error e over the epochs in the training of the neural
network NNϕ. The error over the train set is coloured in blue while the error over the
test set is coloured in orange.

Emulating a clinical case, after a first Magnetic Resonance Imaging, we suppose the
patient to start from a globular tumour mass distributed as

ϕ0(x, y, z) = 2e−100((x−193)2+(y−308)2+(z−30)2)
2

− 1.

where spatial quantities are expressed in mm. From this, simulating the FOM solution
over time with different sets of parameters picked from the biological range Pbio. With
enough snapshots (here we have simulated M = 64 different sets of parameters), it is
possible to construct the ROM basis via the POD method. As we said, the number of
basis is NPOD = 40.

The next step is to simulate with random parameters (in this case 750 simulations) the
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Figure 5.10: Relative mean square e over the epochs in the training of the neural network
NNinv. The error over the train set is coloured in blue while the error over the test set is
coloured in orange.

Reduced Order problem retrieving an adequate amount of coefficient for the reduced basis.
Since the ROM solution using POD without the neural network variation takes much more
time to be computed, as can be seen in Table 5.7, we prefer to simulate the FOM and
then project over the reduced basis. In such a way, we have constructed a data set big
enough to train the map NNϕ from the parameter of the model, plus the time-step, and
the coefficient of the projected solution at that time-step.

Once again, we train NNinv as explained in the previous subsection.

Given that, we are ready for the patient to take a second MRI, from which we can obtain
the patient-specific parameters in a time comparable to the resolution of the inverse neural
network. For the set of parameters (5.3) we obtain these estimated parameters:

(ν,M0, κ, δ, δn, Sn) = (0.36982, 3950.38, 776.890, 0.25159, 25142.4, 36982.5) (5.4)

which entail an evolution as in Figure 5.11 and Table 5.8. As we can see in Figure 5.11d,
the volume fraction is well-tracked over time entailing a good estimation both in terms of
tumour morphology.
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Simulation Elapsed time
Full Order Model 920 s

Reduced Order Model 5190 s
Reduced Order Model - Neural Network 5 s

Table 5.7: Computational time for the different used techniques.

(a) t=0 days (b) t=15 days

(c) t=30 days (d) Volume fraction over time

Figure 5.11: Evolution of a GMB. Plot of the solution ϕ along a straight line intersecting
the tumour (a),(b)and (c). The plot for each used method at t= 0, 15, 30 days is shown. In
black, the solution computed via the Full Order Model; in orange, the solution computed
via the classical Proper Orthogonal Decomposition; in red, the solution computed via the
Neural Network variation of the POD; in blue, the solution computed via FOM starting
from the parameter obtained in the inverse problem. FOM solution is indistinguishable
from the one obtained via the inverse problem, entailing a good estimation of the param-
eter.
In (d), the volume fraction of tumour over time. In blue, the actual evolution; in orange,
the predicted one.
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t=0 days t=15 days t=30 days
Full Order Model

Reduced Order Model

ROM with Neural Network

Parameter Estimation

Table 5.8: Evolution of a GMB. From left to right, the solution ϕ for each used method at
t= 0, 15, 30 days are shown. From top to bottom: the solution computed via the Full Order
Model; the solution computed via the classical Proper Orthogonal Decomposition; the
solution computed via the Neural Network variation of the POD; the solution computed
via FOM starting from the parameter obtained in the inverse problem.
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Glioblastoma multiforme (GBM) is one of the most aggressive and complex tumours in the
central nervous system, attacking the glial cells. Compared with other types of cancers,
it has a very high mortality rate, from 70% to 96% according to the age of the patient
and has an incidence of 2-3 new cases per year per 100,000 inhabitants in industrialised
countries. Adjuvant therapy is able to slow down the disease progression but it is unable
to prevent its recurrence after surgical treatment. For all these reasons, much clinical
attention is devoted to designing new therapeutic strategies to fight GBM.

Although discrete, hybrid, and continuous models of GBM growth have been proposed in
the mathematical literature, they are not yet clinically applicable due to the difficulty of
constructing a patient-specific model that is accurate and predictive enough to aid clinical
decision-making.

In this work, we presented a continuous physics-based model and its computational ap-
plication for simulating the personalized growth and progression of GBM.

The thesis is organized as follows. Chapter 1 is devoted to a presentation of the biological
background that is needed to understand the phenomenology of a growing tumour better.

In Chapter 2, various imaging techniques in order to obtain patient-specific data are
discussed. It is important to remark that a good estimation of the tumour growth and
recurrence depends on a correct mapping of the morphology of the brain tissue, of the
tumour shape at a particular instant and of the direction of preferential motility both for
the tumour and its nutrient. It is possible, indeed, to retrieve via Diffusion Tensor Imaging
(DTI) a patient-specific distribution for the tensors D and T, respectively denoting the
diffusion preferential direction and the areas where the tumour grows faster, extracted
with a multi-compartment algorithm.

In Chapter 3, we construct the mathematical model of GBM growth. The Cahn-Hilliard
type equation used to describe the tumour concentration distribution implies some non-
linear terms that make the Full Order Model (FOM) expensive from a computational point
of view. For the solution of the full order PDEs system, we make use of FEniCSx, a power-
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ful open-source computing platform. The implementation of the used code heavily relies
on two of its components: Dolfinx, a C++/Python library providing data structures and
algorithms for finite element meshes, automated finite element assembly, and numerical
linear algebra and Unified Form Language UFL which is a domain-specific language for
declaration of finite element discretizations of variational forms.

To reduce the degrees of freedom of the problem it is possible to find in literature different
techniques. Here, we have studied the impact of the Proper Orthogonal Decomposition
method in the construction of the Reduced Order Model (ROM), which reduces the dimen-
sionality of a system by transforming the original variables into a new set of uncorrelated
variables (called POD modes, or principal components). In this way, the first few modes
ideally retain most of the energy present in all of the original variables. Thus, it is possible
to cut down the number of degrees of freedom (d.o.f) from thousands d.o.f (32293 for the
brain mesh presented in Chapter 5) to tens d.o.f (40 as showed in Section 5.3.1).

The Full Order Model reduction is computed thanks to the C++/Python library RBniCSx

[36] that contains a set of functions for performing several reduced order modelling tech-
niques.

As we can see from the results, without the usage of a discrete empirical interpolation
method, which has to be appropriately adapted in order to deal with highly nonlinear
parabolic partial differential equations, the resolution of a ROM is actually more de-
manding from a computational standpoint, taking almost 7-8 times more computational
effort in terms of elapsed time (see Table 5.7).

In this work, we propose an alternative approach that relies on the power of the Neural
Networks (NN) to cut computational costs after proper training. Indeed coupling the
POD method for constructing the basis with a neural network (POD-NN) to map the
space of the parameters into the space of the coefficient for the reduced order basis, we
move all the computational effort at the starting analysis of the tumour evolution. In
such a way, we have built up a network that predicts all the possible evolutions from a
physiological point of view. The gain, in terms of computational time, is about 100:1
when we compare the elapsed time for computing the reduced solution using POD and
its NN-based variation, once the training is performed.

This simplification is of primary importance when we want to perform an estimation of
patient-specific parameters. The reduction of the degrees of freedom is, in fact, essential to
the construction of a second simple neural network that allows predicting the parameters
from a pair of snapshots distant in time. Indeed, we rely on a map that goes from the
space of the pairs of reduced coefficients of the solution to the space of parameters. From
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the training phase of this network, we obtain a relative mean square error of about 15%
on the parameters prediction, for the realistic domain case. This result seems not to affect
the difference between the actual and predicted evolution.

The computational effort of the simulations phase, which can start as soon as we get
information on the actual status of the patient and which includes enough simulation to
train the neural networks, is balanced by the rapidity of a patient-specific prediction once
we collect a second piece of information on the evolution of the tumour growth. The
elapsed time for the estimation of the parameters is indeed of the order of seconds (5 s
in our simulations) since it only requests the evaluation of the trained map at a specific
point given by the projected couple of snapshots onto the ROM space.

In a real clinical case, thus, starting from a first image of the actual status of the patient,
we can retrace all the steps previously described in order to set a predicted growth, specific
to the patient, once a second image is obtained.

Future developments in the approach presented in this work can be the addition in the
mathematical model of factors taking into account the adjuvant therapy. Moreover, since
this method is heavily dependent on the initial conditions and on the used mesh geom-
etry, another interesting evolution could be the creation of a data set able to map the
patient-specific parameters over different initial conditions and mesh geometries without
re-training networks for each patient.





63

Bibliography

[1] DOLFINx. URL https://github.com/FEniCS/dolfinx.

[2] Unified form language (ufl). URL https://github.com/FEniCS/ufl.

[3] brain stem, . URL https://en.wiktionary.org/wiki/brain_stem.

[4] Gray and white matter, . URL https://www.ncbi.nlm.nih.gov/books/

NBK553239/figure/article-36416.image.f1/.

[5] Magnetic resonance imaging (mri), principi fisici di formazione del segnale e di acqui-
sizione delle immagini. URL http://www.dmf.unisalento.it/~denunzio/allow_

listing/CORSO_TIDM/Presentazione_benedetta_tafuri_mri.pdf.

[6] Leakyrelu. URL https://pytorch.org/docs/stable/generated/torch.nn.

LeakyReLU.html.

[7] White matter fiber architecture from the connectome scanner dataset., . URL http:

//humanconnectomeproject.org.

[8] Case western reserve university school of medicine., . URL http://casemed.case.

edu/clerkships/neurology/NeurLrngObjectives/MRI.htm.

[9] A. Agosti, C. Cattaneo, C. Giverso, D. Ambrosi, and P. Ciarletta. A computa-
tional framework for the personalized clinical treatment of glioblastoma multiforme.
ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Ange-
wandte Mathematik und Mechanik, 98(12):2307–2327, 2018. doi: https://doi.org/
10.1002/zamm.201700294. URL https://onlinelibrary.wiley.com/doi/abs/10.

1002/zamm.201700294.

[10] A. Agosti, P. Ciarletta, H. Garcke, and M. Hinze. Learning patient-specific parame-
ters for a diffuse interface glioblastoma model from neuroimaging data. Mathematical
Methods in the Applied Sciences, 43(15):8945–8979, 2020.

[11] B. Alberts. Molecular biology of the cell. Garland Publishing, New York, NY, 6
edition, Nov. 2014.

https://github.com/FEniCS/dolfinx
https://github.com/FEniCS/ufl
https://en.wiktionary.org/wiki/brain_stem
https://www.ncbi.nlm.nih.gov/books/NBK553239/figure/article-36416.image.f1/
https://www.ncbi.nlm.nih.gov/books/NBK553239/figure/article-36416.image.f1/
http://www.dmf.unisalento.it/~denunzio/allow_listing/CORSO_TIDM/Presentazione_benedetta_tafuri_mri.pdf
http://www.dmf.unisalento.it/~denunzio/allow_listing/CORSO_TIDM/Presentazione_benedetta_tafuri_mri.pdf
https://pytorch.org/docs/stable/generated/torch.nn.LeakyReLU.html
https://pytorch.org/docs/stable/generated/torch.nn.LeakyReLU.html
http://humanconnectomeproject.org
http://humanconnectomeproject.org
http://casemed.case.edu/ clerkships/neurology/NeurLrngObjectives/MRI.htm
http://casemed.case.edu/ clerkships/neurology/NeurLrngObjectives/MRI.htm
https://onlinelibrary.wiley.com/doi/abs/10.1002/zamm.201700294
https://onlinelibrary.wiley.com/doi/abs/10.1002/zamm.201700294


64 | Bibliography

[12] D. Ambrosi and L. Preziosi. On the closure of mass balance models for tumor growth.
Mathematical Models and Methods in Applied Sciences, 12:737–754, 2002.

[13] G. A. Ateshian. On the theory of reactive mixtures for modeling biological growth.
Biomechanics and modeling in mechanobiology, 6:423–445, 2007.

[14] B. Bedogni and M. B. Powell. Hypoxia, melanocytes and melanoma–survival and
tumor development in the permissive microenvironment of the skin. Pigment cell &
melanoma research, 22(2):166–174, 2009.

[15] J. Bell. Fréchet derivatives and gâteaux derivatives. Department of Mathematics,
2014.

[16] H. Byrne and L. Preziosi. Modelling solid tumour growth using the theory of mix-
tures. Mathematical medicine and biology: a journal of the IMA, 20(4):341–366,
2003.

[17] G. Castaneda, P. Morris, and T. Khoshgoftaar. Evaluation of maxout activations in
deep learning across several big data domains. Journal of Big Data, 6, 08 2019. doi:
10.1186/s40537-019-0233-0.

[18] C. Chatelain, T. Balois, P. Ciarletta, and M. B. Amar. Emergence of microstructural
patterns in skin cancer: a phase separation analysis in a binary mixture. New Journal
of Physics, 13(11):115013, 2011.

[19] O. Clatz, M. Sermesant, P.-Y. Bondiau, H. Delingette, S. K. Warfield, G. Malandain,
and N. Ayache. Realistic simulation of the 3-d growth of brain tumors in mr images
coupling diffusion with biomechanical deformation. IEEE transactions on medical
imaging, 24(10):1334–1346, 2005.

[20] V. Cristini, H. B. Frieboes, R. Gatenby, S. Caserta, M. Ferrari, and J. Sinek. Mor-
phologic instability and cancer invasion. Clinical Cancer Research, 11(19):6772–6779,
2005.

[21] G. Cybenko. Continuous valued neural networks with two hidden layers are sufficient,
department of computer science. Trfts. University, 31, 1988.

[22] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics
of control, signals and systems, 2(4):303–314, 1989.

[23] M. E. Davis. Glioblastoma: Overview of disease and treatment. Clin. J. Oncol.
Nurs., 20(5):S2–8, Oct. 2016.

[24] L. M. DeAngelis and P. Y. Wen. Primary and Metastatic Tumors of the Nervous



| Bibliography 65

System. McGraw-Hill Education, New York, NY, 2022. URL accessmedicine.

mhmedical.com/content.aspx?aid=1198036521.

[25] T. Deisboeck, Z. Wang, P. Macklin, and V. Cristini. Multiscale cancer mod-
eling. Annual review of biomedical engineering, 13, 07 2010. doi: 10.1146/
annurev-bioeng-071910-124729.

[26] M. Epstein. The elements of continuum biomechanics. John Wiley & Sons, 2012.

[27] F. B. Furnari, T. Fenton, R. M. Bachoo, A. Mukasa, J. M. Stommel, A. Stegh, W. C.
Hahn, K. L. Ligon, D. N. Louis, C. Brennan, L. Chin, R. A. DePinho, and W. K.
Cavenee. Malignant astrocytic glioma: genetics, biology, and paths to treatment.
Genes Dev., 21(21):2683–2710, Nov. 2007.

[28] M. L. Goodenberger and R. B. Jenkins. Genetics of adult glioma. Cancer Genet.,
205(12):613–621, Dec. 2012.

[29] M. E. Gurtin. Generalized ginzburg-landau and cahn-hilliard equations based on a
microforce balance. Physica D: Nonlinear Phenomena, 92(3-4):178–192, 1996.

[30] D. Hanahan and R. Weinberg. Hallmarks of cancer: The next generation.
Cell, 144(5):646–674, 2011. ISSN 0092-8674. doi: https://doi.org/10.1016/j.
cell.2011.02.013. URL https://www.sciencedirect.com/science/article/pii/

S0092867411001279.

[31] D. Hanahan and R. A. Weinberg. The hallmarks of cancer. Cell, 100(1):57–70, Jan.
2000.

[32] H. L. P. Harpold, E. C. Alvord, Jr, and K. R. Swanson. The evolution of mathematical
modeling of glioma proliferation and invasion. J. Neuropathol. Exp. Neurol., 66(1):
1–9, Jan. 2007.

[33] H. Hatzikirou, A. Deutsch, C. Schaller, M. Simon, K. Swanson, N. Bellomo, and
P. Maini. Mathematical modelling of glioblastoma tumour development: A review.
Mathematical Models and Methods in Applied Sciences, 24:1779–1794, 11 2005. doi:
10.1142/S0218202505000960.

[34] S. Herculano-Houzel. The human brain in numbers: a linearly scaled-up primate
brain. Front. Hum. Neurosci., 3:31, Nov. 2009.

[35] J. Hesthaven and S. Ubbiali. Non-intrusive reduced order modeling of nonlinear
problems using neural networks. Journal of Computational Physics, 363, 02 2018.
doi: 10.1016/j.jcp.2018.02.037.

accessmedicine.mhmedical.com/content.aspx?aid=1198036521
accessmedicine.mhmedical.com/content.aspx?aid=1198036521
https://www.sciencedirect.com/science/article/pii/S0092867411001279
https://www.sciencedirect.com/science/article/pii/S0092867411001279


66 | Bibliography

[36] J. S. Hesthaven, G. Rozza, and B. Stamm. Certified Reduced Basis Methods for
Parametrized Partial Differential Equations. SpringerBriefs in Mathematics. Springer
International Publishing, 2015. ISBN 978-3-319-22469-5.

[37] R. K. Hobbie and B. J. Roth. Sound and ultrasound. In Intermediate Physics for
Medicine and Biology, pages 343–357. Springer New York, New York, NY, 2007.

[38] W. L. Kemp, D. K. Burns, and T. G. Brown. Chapter 4. Neoplasia. The McGraw-Hill
Companies, New York, NY, 2008. URL accessmedicine.mhmedical.com/content.

aspx?aid=57050916.

[39] P. Kleihues, D. N. Louis, B. W. Scheithauer, L. B. Rorke, G. Reifenberger, P. C.
Burger, and W. K. Cavenee. The WHO classification of tumors of the nervous
system. J. Neuropathol. Exp. Neurol., 61(3):215–25; discussion 226–9, Mar. 2002.

[40] A. Martínez-González, G. F. Calvo, L. A. Pérez Romasanta, and V. M. Pérez-García.
Hypoxic cell waves around necrotic cores in glioblastoma: a biomathematical model
and its therapeutic implications. Bulletin of mathematical biology, 74:2875–2896,
2012.

[41] J. Merodio and R. Ogden. Basic equations of continuum mechanics. In Constitu-
tive Modelling of Solid Continua, Solid mechanics and its applications, pages 1–16.
Springer International Publishing, Cham, 2020.

[42] J. Morales. A numerical study of limited memory bfgs methods. Applied Math-
ematics Letters, 15(4):481–487, 2002. ISSN 0893-9659. doi: https://doi.org/10.
1016/S0893-9659(01)00162-8. URL https://www.sciencedirect.com/science/

article/pii/S0893965901001628.

[43] S. Mori. In S. Mori, editor, Introduction to Diffusion Tensor Imaging. Else-
vier Science B.V., Amsterdam, 2007. ISBN 978-0-444-52828-5. doi: https://doi.
org/10.1016/B978-044452828-5/50025-9. URL https://www.sciencedirect.com/

science/article/pii/B9780444528285500259.

[44] Q. T. Ostrom, H. Gittleman, J. Fulop, M. Liu, R. Blanda, C. Kromer, Y. Wolinsky,
C. Kruchko, and J. S. Barnholtz-Sloan. CBTRUS statistical report: Primary brain
and central nervous system tumors diagnosed in the united states in 2008-2012.
Neuro. Oncol., 17 Suppl 4(suppl 4):iv1–iv62, Oct. 2015.

[45] G. Powathil, M. Kohandel, S. Sivaloganathan, A. Oza, and M. Milosevic. Mathemat-
ical modeling of brain tumors: effects of radiotherapy and chemotherapy. Physics

accessmedicine.mhmedical.com/content.aspx?aid=57050916
accessmedicine.mhmedical.com/content.aspx?aid=57050916
https://www.sciencedirect.com/science/article/pii/S0893965901001628
https://www.sciencedirect.com/science/article/pii/S0893965901001628
https://www.sciencedirect.com/science/article/pii/B9780444528285500259
https://www.sciencedirect.com/science/article/pii/B9780444528285500259


| Bibliography 67

in Medicine & Biology, 52(11):3291, may 2007. doi: 10.1088/0031-9155/52/11/023.
URL https://dx.doi.org/10.1088/0031-9155/52/11/023.

[46] G. Pozzi, B. Grammatica, L. Chaabane, M. Catucci, A. Mondino, P. Zunino, and
P. Ciarletta. T cell therapy against cancer: A predictive diffuse-interface mathe-
matical model informed by pre-clinical studies. Journal of Theoretical Biology, 547:
111172, 2022. ISSN 0022-5193. doi: https://doi.org/10.1016/j.jtbi.2022.111172. URL
https://www.sciencedirect.com/science/article/pii/S0022519322001709.

[47] A. Quarteroni and S. Quarteroni. Numerical models for differential problems, vol-
ume 2. Springer, 2009.

[48] V. Ramanuj, R. Sankaran, and B. Radhakrishnan. A sharp interface model for
deterministic simulation of dendrite growth. Computational Materials Science, 169:
109097, 2019.

[49] S. Ratti, M. V. Marvi, S. Mongiorgi, E. O. Obeng, I. Rusciano, G. Ramazzotti,
L. Morandi, S. Asioli, M. Zoli, D. Mazzatenta, P.-G. Suh, L. Manzoli, and L. Cocco.
Impact of phospholipase c β1 in glioblastoma: a study on the main mechanisms of
tumor aggressiveness. Cellular and Molecular Life Sciences, 79(4):195, Mar 2022.
ISSN 1420-9071. doi: 10.1007/s00018-022-04198-1. URL https://doi.org/10.

1007/s00018-022-04198-1.

[50] M. Á. Rodríguez Bellido, F. M. Guillén González, and G. Tierra Chica. Numerical
methods for solving the cahn-hilliard equation and its applicability to mixtures of
isotropic and nematic flows with anchoring effects. Mixing and Mixtures in Geo-and
Biophysical Flows: A Focus on Mathematical Theory and Numerical Methods 2016
(2016), pp. 1-68., 2016.

[51] C. Sarkar, A. Jain, and V. Suri. Current concepts in the pathology and genetics of
gliomas. Indian J. Cancer, 46(2):108–119, Apr. 2009.

[52] R. Stupp, M. Gander, S. Leyvraz, and E. Newlands. Current and future developments
in the use of temozolomide for the treatment of brain tumours. Lancet Oncol., 2(9):
552–560, Sept. 2001.

[53] R. Stupp, W. P. Mason, M. J. Van Den Bent, M. Weller, B. Fisher, M. J. Taphoorn,
K. Belanger, A. A. Brandes, C. Marosi, U. Bogdahn, et al. Radiotherapy plus
concomitant and adjuvant temozolomide for glioblastoma. New England journal of
medicine, 352(10):987–996, 2005.

[54] B. Sundén. Chapter 9 - transport phenomena in fuel cells. In

https://dx.doi.org/10.1088/0031-9155/52/11/023
https://www.sciencedirect.com/science/article/pii/S0022519322001709
https://doi.org/10.1007/s00018-022-04198-1
https://doi.org/10.1007/s00018-022-04198-1


68 6| BIBLIOGRAPHY

B. Sundén, editor, Hydrogen, Batteries and Fuel Cells, pages 145–166. Aca-
demic Press, 2019. ISBN 978-0-12-816950-6. doi: https://doi.org/10.1016/
B978-0-12-816950-6.00009-9. URL https://www.sciencedirect.com/science/

article/pii/B9780128169506000099.

[55] H. Sung, J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, and
F. Bray. Global cancer statistics 2020: Globocan estimates of incidence and mor-
tality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clini-
cians, 71(3):209–249, 2021. doi: https://doi.org/10.3322/caac.21660. URL https:

//acsjournals.onlinelibrary.wiley.com/doi/abs/10.3322/caac.21660.

[56] E. A. Swabb, J. Wei, and P. M. Gullino. Diffusion and convection in normal and
neoplastic tissues. Cancer research, 34(10):2814–2822, 1974.

[57] K. R. Swanson, E. C. Alvord Jr, and J. Murray. A quantitative model for differential
motility of gliomas in grey and white matter. Cell proliferation, 33(5):317–329, 2000.

[58] S. Torabi, S. Wise, J. Lowengrub, A. Rätz, and A. Voigt. A new method for simulating
strongly anisotropic cahn-hilliard equations. 3, 01 2007.

[59] S. Wise, J. Lowengrub, H. Frieboes, and V. Cristini. Three-dimensional multispecies
nonlinear tumor growth—i: Model and numerical method. Journal of Theoreti-
cal Biology, 253(3):524–543, 2008. ISSN 0022-5193. doi: https://doi.org/10.1016/j.
jtbi.2008.03.027. URL https://www.sciencedirect.com/science/article/pii/

S0022519308001525.

[60] R. M. Young, A. Jamshidi, G. Davis, and J. H. Sherman. Current trends in the
surgical management and treatment of adult glioblastoma. Ann. Transl. Med., 3(9):
121, June 2015.

https://www.sciencedirect.com/science/article/pii/B9780128169506000099
https://www.sciencedirect.com/science/article/pii/B9780128169506000099
https://acsjournals.onlinelibrary.wiley.com/doi/abs/10.3322/caac.21660
https://acsjournals.onlinelibrary.wiley.com/doi/abs/10.3322/caac.21660
https://www.sciencedirect.com/science/article/pii/S0022519308001525
https://www.sciencedirect.com/science/article/pii/S0022519308001525


69

List of Figures

1.1 Brain anatomy: the three main sections of the human brain (cerebrum,
cerebellum and brainstem). The brainstem (truncus cerebri) is in turn
subdivided into midbrain (mesencephalon), pons and medulla oblongata. [3] 4

1.2 Distribution of withe and grey matter in the brain. [4] . . . . . . . . . . . 5
1.3 Acquired Capabilities of Cancer. (a) Cancers have acquired the same set

of functional capabilities during their development, albeit through various
mechanistic strategies. (b) An increasing body of research suggests that
two additional hallmarks of cancer are involved in the pathogenesis of some
and perhaps all cancers. One involves the capability to modify or repro-
gram, cellular metabolism in order to most effectively support neoplastic
proliferation. The second allows cancer cells to evade immunological de-
struction, in particular by T and B lymphocytes, macrophages, and natural
killer cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 The standard Stupp protocol: radiotherapy is administrated at 2 Gy/day
five days per week, for six weeks; concomitant chemotherapy with temo-
zolomide at a daily dose of 75 mg/m2 from beginning until ending of ra-
diotherapy; six cycles of adjuvant chemotherapy at a dose of 150 mg/m2

(only first cycle) and 200 mg/m2 (remaining cycles). Image adapted from
[45]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Representation of the precession motion of an atom identified as a sphere
around the direction of the external magnetic field B0 [5]. . . . . . . . . . 14

2.2 Pulse sequence and signal for a free-induction-decay measurement for the
components Mz and Mx of M [37]. . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Comparison between a T1-weighted and a T2-weighted MRI brain imaging.
In the T1 image, grey matter appears dark, whilst the cerebrospinal fluid
is the darkest and white matter is the brightest. Conversely, in the T2

image, the grey matter is brighter than white matter, while the fluid is the
brightest [8]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16



70 | List of Figures

2.4 Brain images acquired in magnetic resonance imaging with DTI. From left
to right: find the coronal section, axial section and sagittal section [7]. . . 16

3.1 Different modellization for the transition between phases at interface layer.
On the left (a), is the sharp interface model case. On the right (b), the
diffuse interface model case [58]. . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 The transformations χi from the reference configuration B0
i to the configu-

ration as a mixture Bt at a generic time t [41]. . . . . . . . . . . . . . . . . 19

4.1 Representation of a generic neuron j of an artificial neural network, includ-
ing (right) or not (left) a bias neuron. On the left, the neuron accumu-
lates the weighted inputs {ws1,jys1 , ..., wsm,jysm} respectively coming from
the sending neurons {s1, ..., sm}; on the right, the neuron accumulates the
weighted inputs {ws1,jys1 , ..., wsm,jysm ,−θj} respectively coming from the
sending neurons {s1, ..., sm, b}, with b the bias neuron. In both situations,
the neuron then fires yj, sent to the target neurons {r1, ..., rn} through the
synapsis {wj,r1 , ..., wj,rn} . The neuron threshold is reported in brackets
within the neuron. [35]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 The activation function LeakyReLU with a negative slope of 0.1 [6]. . . . 35
4.3 A three-layer feedforward neural network consisting of three input neurons,

two hidden layers of six neurons each, and four output neurons. Within
each link, the flow of information is left to right [35]. . . . . . . . . . . . . 37

5.1 Absolute mean square error e over the epochs in the training of the neural
network NNϕ. The error over the train set is coloured in blue while the
error over the test set is coloured in orange. . . . . . . . . . . . . . . . . . 43

5.2 Relative mean square error e over the epochs in the training of the neural
network NNinv. The error over the train set is coloured in blue while the
error over the test set is coloured in orange. . . . . . . . . . . . . . . . . . 44

5.3 Evolution of a GMB. Plot of the solution ϕ along a straight line intersecting
the tumour. From left to right, the plot for each used method at t= 0, 25, 50
time-steps is shown. In black, the solution computed via the Full Order
Model; in orange, the solution computed via the classical Proper Orthogo-
nal Decomposition; in red, the solution computed via the Neural Network
variation of the POD; in blue, the solution computed via FOM starting
from the parameter obtained in the inverse problem. FOM solution is in-
distinguishable from the one obtained via the inverse problem, entailing a
good estimation of the parameter. . . . . . . . . . . . . . . . . . . . . . . 46



| List of Figures 71

5.4 Brain mesh. Respectively sagittal, axial and coronal view . . . . . . . . . 48
5.5 Sagittal section of the brain refined geometrical mesh. On the left, a view

on the refinement applied in the neighbourhood of the tumour placement.
On the right, the mesh labeled according to the different occupation zones.
The area in blue (1.0) is that occupied by the tumour, in light blue (2.0)
by the white matter, in ochre (3.0) by the grey matter and in red (4.0) by
the cerebrospinal fluid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.6 The six components of tumour preferential motility tensor D. . . . . . . . . 50
5.7 The six components of tumour preferential motility tensor T. . . . . . . . . 51
5.8 The first six elements (out of NPOD = 40) of the reduced order model basis

for the tumour concentration variable ϕ. . . . . . . . . . . . . . . . . . . . 54
5.9 Absolute mean square error e over the epochs in the training of the neural

network NNϕ. The error over the train set is coloured in blue while the
error over the test set is coloured in orange. . . . . . . . . . . . . . . . . . 55

5.10 Relative mean square e over the epochs in the training of the neural network
NNinv. The error over the train set is coloured in blue while the error over
the test set is coloured in orange. . . . . . . . . . . . . . . . . . . . . . . . 56

5.11 Evolution of a GMB. Plot of the solution ϕ along a straight line intersecting
the tumour (a),(b)and (c). The plot for each used method at t= 0, 15, 30
days is shown. In black, the solution computed via the Full Order Model; in
orange, the solution computed via the classical Proper Orthogonal Decom-
position; in red, the solution computed via the Neural Network variation
of the POD; in blue, the solution computed via FOM starting from the pa-
rameter obtained in the inverse problem. FOM solution is indistinguishable
from the one obtained via the inverse problem, entailing a good estimation
of the parameter. In (d), the volume fraction of tumour over time. In blue,
the actual evolution; in orange, the predicted one. . . . . . . . . . . . . . 57





73

List of Tables

1.1 Classification of gliomas according to WHO classification of tumours of the
central nervous system [51]. . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Biological range found in literature for the parameters of the model. . . . . 27

5.1 Ratio of ordered eigenvalues over the greatest of them for the physical
variables ϕ, µ and n over the square mesh. . . . . . . . . . . . . . . . . . . 43

5.2 Computational time for the different used techniques. . . . . . . . . . . . . 46
5.3 Evolution of a GMB. From left to right, the solution ϕ for each used method

at t= 0, 50, 100 days are shown. From top to bottom: the solution computed
via the Full Order Model; the solution computed via the classical Proper
Orthogonal Decomposition; the solution computed via the Neural Network
variation of the POD; the solution computed via FOM starting from the
parameter obtained in the inverse problem. . . . . . . . . . . . . . . . . . 47

5.4 Evolution of a GMB. From left to right, the solution for the Full Order
Model of the concentration of tumour variable ϕ at t= 0, 15, 30 days is
shown. From top to bottom, sagittal, coronal and axial views at each
time-step are exhibited. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.5 Evolution of a GMB. From left to right, the solution for the Full Order
Model of the concentration of nutrient variable n at t= 0, 15, 30 days is
shown. From top to bottom, sagittal, coronal and axial views at each
time-step are exhibited. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.6 Ratio of ordered eigenvalues over the greatest of them for the physical
variables ϕ, µ and n over the brain mesh. . . . . . . . . . . . . . . . . . . 55

5.7 Computational time for the different used techniques. . . . . . . . . . . . . 57



74 | List of Tables

5.8 Evolution of a GMB. From left to right, the solution ϕ for each used method
at t= 0, 15, 30 days are shown. From top to bottom: the solution computed
via the Full Order Model; the solution computed via the classical Proper
Orthogonal Decomposition; the solution computed via the Neural Network
variation of the POD; the solution computed via FOM starting from the
parameter obtained in the inverse problem. . . . . . . . . . . . . . . . . . 58



75

Ringraziamenti

Un ringraziamento speciale va al mio relatore, il professore Pasquale Ciarletta, non solo
per avermi dato la possibiltà di lavorare su un tema che mi appassiona da sempre ma per
essermi stato di costante supporto e stimolo durante questo progetto. Un grazie sincero
va anche al professore Paolo Zunino che è stato di grandissimo aiuto per oltrepassare gli
ostacoli che si sono presentati nelle varie strade che abbiamo provato a percorrere. Un
immenso grazie al dottor Davide Riccobelli, fondamentale nel raggiungimento dei risultati
ottenuti, che oltre a dispensare utili consigli è stato di grandissima disponibilità e sostegno.
Ringrazio poi il dottor Francesco Ballarin che mi ha dato la possibilità di utilizzare la sua
libreria per i metodi a basi ridotte e che mi ha giudato nell’apprendimento delle sue
funzionalità. Un grazie va anche al professor Andrea Manzoni per il suo preziosissimo
apporto nella costruzione del modello ridotto.




	Abstract
	Sommario
	Contents
	Introduction
	Elements of brain physiology
	Brain anatomy
	Glioblastoma multiforme
	Tumor growth
	Pathophysiology of Glioblastoma Multiforme
	Therapy


	Imaging Techniques
	Magnetic Resonance Imaging
	Diffusion Tenosor Imaging

	A diffuse interface model of GBM growth
	Kinematics of mixture theory
	Solid tumours as biphasic mixtures
	Boundary and initial condition
	Nondimensionalization
	Biological parameters
	Numerical framework

	Reduced Order Model
	Reduced Basis Methods
	Proper Orthogonal Decomposition
	Surrogate POD with a Neural Network approach
	Neural Networks
	Direct Problem
	Inverse Problem


	Numerical Results
	Patient Specific Parameters Estimation on a Two-Dimensional Geometry
	Direct Problem
	Inverse Problem
	Estimation results

	Description of the used geometrical mesh and a FOM evolution
	Patient Specific Parameters Estimation on a Real Domain
	Direct Problem
	Inverse Problem
	Estimation results


	Conclusions
	Bibliography
	List of Figures
	List of Tables
	Ringraziamenti

