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1. Introduction
Mass evacuation planning represents an impor-
tant challenge for Transportation and Safety En-
gineers, due to the inherent complexity of such
tragic situations: congestion and panic make
the flow on the road graph extremely difficult
to be dispersed. The transportation planning
is involved both in the simulation of the crowd
movement and in the management of resources
allocation on the emergency area (e.g. police
corps, military enforcement, emergency health-
care, etc.).
In this work, we focus mainly of the first prob-
lem, the flow simulation, in order to get some
summary information to optimize resources al-
location. After discussing the general framework
for the mathematical modelling of evacuations,
we present three different approaches to infras-
tructure management, split depending on the
degree of State intervention, power and coercion.
The simulation algorithms have been tested on
two small dummy graphs and, then, applied to
the real graph of Sioux Falls, South Dakota.

2. Scenarios tree
Firstly, we outlined the general modelling frame-
work for these kind of transportation problem.
The structure employed is the so-called Scenar-
ios tree, where every level is defined by the choice
of a mathematical modelling feature or a physi-
cal/practical issue of the emergency scenario.
These tree levels are:
• Predictability;
• Coercion level;
• Flow and time interval discretization;
• Game theory applications;
• Operations research applications.

The applications of mathematics are discussed
thoroughly, following the example given by [3].
The relationship among these modelling choices
and the third level (Flow and time interval dis-
cretization) is dealt with, in order to define the
most suitable framework to set our work within.
Predictability is the most defining feature of the
classification tree. In real evacuation practice,
we split between predictable emergencies, such
as hydrological phenomena or unexploded ord-
nances defusing, and unpredictable ones, e.g.
earthquake or relevant accidents in chemical
plants. The main difference underlined in this
work is the convenience to shift the computa-
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tion of flows and costs towards a probabilistic
approach, to consider their expected values. For
example, the general formula for the number of
people entering the road graph at discrete time
t is:

Nt = α ∗NTOT ∗ P (t) (1)

α is the percentage of the total evacuees NTOT

who decided to leave the affected area and
P (t) is the probability of getting into the graph
at time t (coming from a discrete probability
distribution).

For the coercion level, we distinguished 3 ap-
proaches: the Complete Coercion, the Simple
Information and the Partial Prescription. All
the scenarios have been modelled and compared
for the three graphs.
Summing up, we described an ideal predictable
emergency within a macroscopic, discrete frame-
work, resorting to an instrumental use of Game
Theory and to the so-called MILP branch of
Operations Research (Mixed-Integer Linear Pro-
gramming). We refer to an ideal flood in urban
area, where evacuees have to collect in a safe
point. After the zoning phase of the city/town,
we divide the area in three sections, S1, S2, S3,
from the most to the least dangerous. The save
point corresponds to a node in S3, labelled as
the last one of each graph, n. The framework
for the emergency is an intense flood: thus, we
can see S1, S2, S3 as areas of different altitude,
with S1, the most dangerous area, as the lowest
part of our ideal city/town, S3 as the highest
and reasonably safe one and S2 as the interme-
diate section, which should be evacuated as fast
as possibile, though safer than S1.

3. Complete Coercion
The first approach is also the least suitable for a
Western, democratic country; nevertheless, real
emergencies can never be faced without a mini-
mum amount of freedom limitation even in our
part of the world; on the opposite part, even
in dictatorships, it is really difficult to intervene
with absolute precision on the movement of ev-
ery single citizen. So, we can evaluate the results
of the first two approaches as extreme values,
taking into account that each real situation will
correspond to some sort of Partial Prescription.
Basically, this part of the paper is an expansion
of the model of [1], where Achrekar and Vogiatzis

developed a MILP formulation. This approach
allows to complete two tasks at the same time:

1. To define the exact number of citizens, i.e.
the flows, to have on each arc and to direct
to each node, ∀t;

2. To determine which arcs should be closed
or inverted to accelerate the evacuation.

Basically, we impose that the number of arcs
exiting a node must be constrained by a func-
tion of the number of arcs entering the node and
the quantity mi, the "number of divergences
allowed" for the node i. The model variables,
objective and costraints follow.

mi = divergences allowed for the node i

xij =

{
1 if the arc i → j is employed
0 else

yij =

{
1 if the arc i → j is inverted
0 else

f t
ij = flow about to leave i to go to j at time t

∆qti = users entering the graph from node i, at time t

min
n∑

i=1

∑
j∈FS(i)

T∑
t=1

rtjf
t
ij (2)

s.t.

xij ≥ yji, ∀i = 1, 2, . . . , n, j ∈ FS(i) (3)

∑
v∈FS(i)

xiv ≤
∑

k∈BS(i)

xki ∀i = 1, 2, . . . , n (4)

n∑
i=1

Ĉimi ≤ B̂ (5)

n∑
i=1

∑
j∈FS(i)

Cijyij ≤ B (6)

∑
j∈FS(i)

xij = 1 +mi, ∀i = 1, 2, . . . , n− 1 (7)

∑
v∈FS(i)

f t
iv −

∑
k∈BS(i)

gtki −∆qti = 0 (8)
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min

{
t, T−wij

}
∑

τ=max

{
0, t−wij+1

} f τ
ij ≤ Uijxij + Ujiyji (9)

f t
ij ≥ 0 (10)

gtij =

{
0 se t ≤ wij

f
t−wij

ij se t > wij

∆qti ≥ 0 ∀i = 1, 2, . . . , n− 1, (11)

xij ∈ {0, 1} (12)

yij ∈ {0, 1} (13)

mi ∈ N ∀i = 1, 2, . . . , n− 1 (14)

We intentionally avoided to declare exactly the
indexes of constraints for the long equations, for
the sake of readability. The linear parameters
of the objective function, rtj , are called danger
factors. They take into account the difference
between early and late arrivals at safety and can
be chosen in several ways to penalize more or
less those who need more time to get to the save
point. In our work, we put:

rtj =


t ∀j ∈ S1

r2(= 1) ∀j ∈ S2

r3(= 0) ∀j ∈ S3, j ̸= n

rtn = t− T

Essentially, this MILP problem returns us the
exact optimal schedule of departure from each
user’s origin node, their movement on each arc
of their own optimal path towards the final node,
and the updated topology after inverting some
streets traffic directions and forbidding the ac-
cess to some other. The intervention on these
features of the graph is subject to budget con-
straints (5, 6), both for practical feasibility and
to avoid unnecessary confusion to road users.

4. Simple Information
This section can be considered the core of
this work, since it relies heavily on Game
Theory and behavioural models, melting them
with the classic 4 phase model formulation for

flows assignment (e.g. see [2]). The model
presented hereafter is intended to be iterative:
we compute arc and path flows/costs at every
time interval t. In our case, t is equivalent to
1 minute, to get a proper compromise between
the realism of a small discretization timestep
and the time scale of users decisions.

4.1. Demand generation
The first step is the generation of evacuation
demand in each node. We decided to follow a
setting similar to the work of Achrekar and Vo-
giatzis, describing the time distribution of the
inlet of road users into the graph. Our assump-
tion is that users decide to enter the graph from
each starting node following a parabolic curve.
If the total horizon of the evacuation is τ , T < τ
will be the window available for citizens to get
off their house. Every user shall leave their ori-
gin before αT , with α ∈ (0, 1) (here, α = 0.8).
This modelling choice has been formulated like-
wise to the well-known Cournot’s monopoly, a
Game Theory establishment.{

∆qti = ci + bit− ait
2, t = 1, 2, ..., αT

∆qti = 0, t ≥ αT + 1

∆qti is the demand leaving its origin node i at
time t, while Qi is the overall demand from
that node. The parameters ai, bi and ci have
been chosen according to the following equations
(curve simmetry and conservation of demand):

bi = αTai (15)

αT∑
t=1

∆qti = Qi (16)

Together, they lead to:

Qi

αT
= ci +

1

6
(αT + 1)(αT − 1)ai (17)

Imposing the equality between the two compo-
nents (arbitrarily, for sake of simplicity), we get:

ci =
Qi

2αT
(18)

ai =
6ci

α2T 2 − 1
=

3Qi

αT (αT − 1)(αT + 1)
(19)

bi =
3Qi

(αT − 1)(αT + 1)
(20)
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4.2. Route choice model
This subsection can be considered the core of
this model. In short, we assume that users will
choose their own path depending on the fore-
casted cost of the arcs composing the path. This
virtual arc costs, wij , are proportional to the
real base costs, c̃ij (i.e. cij when arcs are com-
pletely empty). The proportion factor is the
danger parameter, rtij , depending on the zone
of the next node of the path; this parameter is
non-decreasing with respect to time, to account
for the increasing probability of accidents and
congestion and, at the same time, to describe a
risk-averse users’ approach. We underline that
the other, aforementioned set of danger parame-
ters has a rather different meaning, though quite
related.

wt
ij = rtij c̃ij (21)

rtij =


x se j ∈ S3,∀i
x+ yt se j ∈ S2,∀i
x+ yt+ zt2 se j ∈ S1,∀i

The other major assumption in our context
is that the reconstructed forecast of path cost
comes from the sum of two contributions:

1. the next forecasted arc cost;
2. and the Dijkstra-optimal path cost.

This modelling choice allows to represent the in-
dividualistic behaviour of evacuees during such
delicate situations, since we consider them to
consider only the fastest way from the actual
node to the save point. Moreover, we are consid-
ering the chance of a mixed preventive-adaptive
path choice, or re-routing, allowing the users to
change the selected path dynamically (as in real
situations).

htij = wt
ij +

∑
(u,v)∈DJ(j,t)

wt
uv (22)

DJ(j, t) is the ordered succession of arcs belong-
ing to the Dijkstra-optimal path from the node
j to the save point n at time t.
The last equation of this model subset is the es-
tablished Logit distribution for the path choice,
which, in our case, is rather a "arc-related" path
choice. The Logit input argument is the set of
forecasted path costs towards n.

ptij =
exp(−1

θh
t
ij)∑

v∈FS(i) exp(−
1
θh

t
iv)

(23)

4.3. Proximity flows
The following two parts of the model deal with
the flow distribution among the streets. We
identify two different kinds of flow variables:
• The so-called Arc flows, F t

ij , i.e. the actual
users’ flow on each arc at time t, with the
usual meaning;

• The Proximity flows, f t
ij , a representation

of the number of people headed towards the
node j, leaving node i between times t and
t+ 1.

The relationship between these variables is ex-
plained in the next subsection, 4.4. Essentially,
we need to balance the flows through each node
in order to apply the Logit probability and get
the mean number of users on the arcs. There-
fore, we set the conservation of people at each
node, taking into account the time necessary to
leave an arc:∑

v∈FS(i)

f t
iv = ∆qi(t) +

∑
k∈BS(i)

f
t−ztki
ki (24)

The quantity ztki is discussed thoroughly in the
thesis and is defined as follows:

ztki = ⌊ct−ztki
ki ⌋ (25)

Afterwards, we can split these flows according
to the path choice model.

f t
ij = ptij

( ∑
v∈FS(i)

f t
iv

)
(26)

4.4. Arc flows and costs update
We determine the arc flows as a linear combina-
tion of proximity flows of users who started their
own motion on the arc in the past. In analogy to
ztki, we skip the deep explanation of properties
of the number n(t); we just write the definition
of this fundamental variable.

F t
ij =

n(t)∑
k=1

f t−k
ij (27)

n(t) = max
{
k|ct−k

ij ≥ k
}

(28)

Finally, we can update the real arc costs with
the BPR-like function:

ctij = c̃ij

[
1 + β1

(F t
ij

uij

)β2
]

(29)
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5. Partial Prescription
The third and last approach could be interpreted
in a variety of ways; in this work, it can be seen
as an application of the Simple Information on
a different graph, that comes from the results of
the Complete Coercion. Basically, we look for a
performance enhancement of the evacuation by
intervening of the road graph topology.
The procedure applied in this work is the follow-
ing:

Figure 1: Procedure to compute time and vic-
tims and to build the second graph.

Figure 2: Procedure to compute the new inci-
dence and capacity matrices.

The function adopted to estimate (as an upper

bound) the likely victims is the following:

potential_victims(t) =
n−1∑
i=1

∑
j∈FS(i)

F t
ij (30)

6. Application: dummy graphs
These two dummy graphs have been created and
used in order to evaluate the correctness of the
models and to debug the related MATLAB al-
gorithms. We omit to discuss the parameters
employed in this simulations, referring to the
Chapters 4 and 5 and Appendix B of the the-
sis. We show each graph together with its twin,
arising from the procedure explained in figure 2.

Figure 3: 6-nodes dummy graphs and its opti-
mized counterpart.

Figure 4: 14-nodes dummy graphs and its opti-
mized counterpart.

We report in a table the results of these two
simulations, run with such features that allow
to show the differences in victims, time and ef-
ficiency among the three approaches. For the
smallest graph, the time window is τ = 50 min-
utes. We got:

S. I. C.C. P.P.

6-nodes 48 mins 25 mins 48 mins

Table 1: Time results for the 6-nodes graph.

The evacuation is completely successful; the
coercitive approach is extremely more efficient
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than the other two, requiring about half time
of both the prescriptive approach and the free
one.

S. I. C.C. P.P.

14-
nodes

5405 3998 5172

Table 2: Victims results for the 14-nodes graph.

The other evacuation process, with an insuffi-
cient time window of 200 minutes and a demand
of 14000 evacuees, can not be completed in any
scenario, since we got an elevated number of vic-
tims. The Complete Coercion proves again to be
the most useful, despite its difficulty of applica-
tion.

7. Application: real graph

Figure 5: Sioux Falls road graph. Source:
Github.

Figure 6: Sioux Falls road graph optimized
counterpart.

For the real application, we decided to use this
city in South Dakota due to the availability of
graphs attributes and data about the road trans-
port. For an evacuation demand of 200.000 cit-
izens, we set a time window of 20 hours, 1200
minutes. The evacuation is perfectly successful,
with a huge advance:

S. I. C.C. P.P.

Sioux
Falls

321 mins 300 mins 321 mins

Table 3: Time results for the Sioux Falls graph.

The C.C. MILP simulation required several at-
tempts to find a suitable time window; the last
one, referred in the table, required a run-time of
approximately 21 hours.

8. Conclusions
Even though the Complete Coercion reveals the
highest level of efficiency, it is extremely diffi-
cult to be applied in a real, Western scenario.
However, the difference with the other, free ap-
proaches is so small to be completely irrelevant.
Between these two, we suggest to adopt the Sim-
ple Information for the sake of simplicity, since it
does not require any form of direct intervention
of resources on the graph topology, allowing to
employ them in other circumstances. Also, this
helps to avoid confusion in road users.
In conclusion, we suggest to try other applica-
tions of these approaches, e.g. changing param-
eters, providing more than one save point, etc..
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