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Abstract

Mobile robots for inspection purposes have been increasingly studied, de-

veloped and perfected to achieve new possibilities and face new challenges.

In this context, a particular challenging scenario is the motion planning for

autonomous mobile robots with movement related constraints. The scope

of this thesis is to develop a motion planning routine capable of managing

constraints arising from the presence of a tether cable on a robot, more

specifically a rover designed for subfloor inspection. The dynamic motion

planning RRTX algorithm was implemented with the herein developed geo-

metric approach, followed by improvements in the system structure and

communication to increase the autonomy of the rover. Simulations, per-

formance comparisons and experimental tests were conducted to investigate

the functionality, efficiency and reliability of the developed method, with

results indicating an operating time reduction of 90% if compared to the

previous algorithm, a success rate of effectively 100% and an improved com-

munication system remarkably efficacious, especially with the implementa-

tion of the devices integration by shared environment. The outcomes signal

the achievement of a fast, efficient and most of all promising solution for the

dynamic motion planning for tethered robots with constraints.
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Sommario

I robot mobili per l’ispezione sono stati sempre più studiati, sviluppati

e perfezionati per raggiungere nuove possibilità e affrontare nuove sfide.

In questo contesto, uno scenario particolarmente impegnativo è la piani-

ficazione del movimento dei robot mobili autonomi con restrizioni del mo-

vimento. Lo scopo di questa tesi è sviluppare una routine di pianificazione

del movimento in grado di gestire le restrizioni derivanti dalla presenza

di un cavo di tethering su un robot, nello specifico un rover progettato

per l’ispezione del sottopavimento. L’algoritmo di pianificazione dinam-

ica del movimento RRTX è stato implementato con l’approccio geomet-

rico qui sviluppato, seguito da miglioramenti nella struttura del sistema e

nella comunicazione per aumentare l’autonomia del rover. Simulazioni, con-

fronti prestazionali e prove sperimentali sono state condotte per valutare

la funzionalità, l’efficienza e l’affidabilità del metodo sviluppato. I risultati

mostrano una riduzione del tempo operativo del 90% rispetto all’algoritmo

precedente, un tasso di successo effettivo del 100% e un migliore sistema di

comunicazione notevolmente efficace, soprattutto grazie all’implementazione

dell’integrazione dei dispositivi per ambiente condiviso. I risultati segnalano

il raggiungimento di una soluzione veloce, efficiente e soprattutto promettente

per la pianificazione dinamica del movimento dei robot allacciati con restriz-

ioni.
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Chapter 1

Introduction

Mobile Robotics, although recently developed if compared to other fields of

study, has a longstanding existence in the imaginary of mankind. From the

automaton and golem of the Greek and Hebrew myths, passing by the auto-

mated humanoid of Leonardo da Vinci and the robota of Karl Kapek, to the

middle of the 20th century, when the imagination begun to come to fruition

as a result of the great technological advances made and motivated by the

Space Race [1]. Since then, mobile robots have expanded their presence to

many other fields of work besides the space and neighbouring planets, such

as deep seas, caves, skies, buildings and streets, covering a vast range of ap-

plications, for instance rescue operations, logistics, professional and personal

service, military use, exploration or inspection. The latter particularly, the

inspection robots, have been extensively studied and developed in the past

decades mostly because of their important role in assuring safety and effi-

ciency on the execution of challenging tasks. Herein the research progresses

as a mobile robot designed for inspection is improved to handle dynamic

environments in an autonomous, reliable and efficient manner. It is to be

hoped that the progress here made may in some way contribute to such

significant field of research and help future developments in the area.
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1.1 General Overview

Since any material or structure is naturally susceptible to deterioration and

prone to failure, long-lasting structures require maintenance to assure the

proper operation, delivery of expected results and safety for any living

creature in contact with it. Such applies for example to industrial ma-

chinery, power-plants, transmission lines, oil pipes, tunnel-structures and

buildings. With the development of more reliable mobile robots, inspection

robots capable of handling such tasks and fully or partially substituting

human inspections became a reality.

The field of inspection robots is per se a diverse area of study and de-

velopment, aggregating robots of all shapes and sizes that ultimately share

with each-other the main purpose of substituting a human being in a task

that for a given reason is impossible or inconvenient to be performed by

humans. Several are the reasons to support the necessity for the tasks to

be performed by a mobile robot, but amidst them it can be highlighted

the necessity for inspection in environments that present potential harm to

human beings or that are inaccessible and the requirement of performing re-

petitive time-demanding assignments that need reliability, i.e. a methodical

inspection aiming to avoid human caused errors [2].

As examples of the former, it can be pointed: inspections in mining

sites [3, 4], nuclear power-plants [5] and transmission power lines [6], due

risk of explosions and gas leaks, radiation or lethal high voltages, as well

as inspections in oil extraction equipment underseas [7, 8] and pipelines

for oils, gases and chemicals [9, 10], which occasionally can be done by

humans but more often than not are located in depths that render the

access inconvenient at minimum or are highly expensive to be executed by

humans. For the latter, it can be given as an example: structural inspections

in large structures, such as in ship hulls [11], aircraft surfaces [12] and civil

structures [13, 14].
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Concerning inspection robots, it is not unusual for such robots to have

a cable, formally known in the literature as umbilical cord or tether cable,

physically connecting the robot to its centre of operation, where the user gen-

erally is located and from where the robot is deployed. The tether provides

power to the robots, enables a fast and reliable exchange of data and al-

lows the user to retrieve the robot in case of malfunction, which can play a

major safety role depending on the application [7]. As an example, [5] pro-

poses a tethered service rover equipped to clean debris resultant from the

Chernobyl disaster, mostly motivated by another unsuccessful attempt with

the cordless German robot MF-2 that stopped working after seven minutes

of contact with extremely high radiation, remaining among the debris until

it was removed in a special operation. Figure 1.1 presents a blueprint and

a 3D render of the robot Pioneer, introduced in [5].

Figure 1.1: Pioneer, a tethered rover designed to remove debris from the Chernobyl

disaster. Extracted from [5].

In order to stress the importance and convenience of the tether cable for

some applications, it is worth to point that robots presented in [4, 5, 7, 8, 9,

10, 11, 12, 13] have all some sort of tether cable attached to them. Never-

theless, the presence of a umbilical cord brings with itself a set of problems,
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especially concerning the cable dynamics and motion of the robots. Such

problems are enhanced when the robot must move autonomously, i.e. a ro-

bot not tele-operated, requiring from the motion planning of the robot to

take into consideration the tether cable, as is the case herein presented.

The rover, object of the present work, is a tethered inspection rover

designed for a tight space unpractical for human inspection, the subfloor

of houses in Amatrice, Italy. The rover was first introduced in [15], which

presented the prototyping and full development of the hardware of the rover

along with a preliminary version of the motion planning with the constraint

consideration. A review of the project and specifications of the rover in

addition to the description of the context and motivation behind its project

can be read in Chapter 3 of the present work. The aforementioned rover

can be seen in its upper view in the Figure 1.2.

Figure 1.2: The inspection rover targeted herein.

The scope of the present work is therefore the development and imple-

mentation of a suitable, fast and reliable method of path-planning for the

rover presented in [15]. The path-planning method must be able to not only

respond in adequate manner to the constraints imposed by the presence of

the tether but also substantially improve the speed and functionality of the
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motion planning of the rover such that the rover becomes capable of handling

environments containing unexpected obstacles not previously mapped.

1.2 Thesis Outline

The current work is structured as follows: Chapter 2 presents in greater

detail the problem being addressed, followed by a concise review of the

state of the art and lastly by the methodology used for the research and

development of the work. Chapter 3 proceeds to present a review of the

project of the rover, developed and presented in [15]. In this chapter, the

motivation and project specifications of the rover are briefly introduced,

succeeded by an overview of the hardware and software developed, and at

last the results obtained and future developments left.

Chapter 4 then shows the new motion planning algorithm chosen, as

well as the constraint approach development. The chapter also presents

an overview of the final version of the algorithm, currently running on the

rover, and describes the simulations and performance tests carried out, with

emphasis on the simulation results. Thereafter, Chapter 5 addresses the dif-

ferent modes of interaction between the PC and the Raspberry Pi, and the

implementation tests performed with the rover. The results are then presen-

ted and briefly discussed. The last chapter, Chapter 6, concludes the work

by providing an overview of the whole development, analysing the results

obtained and introducing the future prospects. Finally, on the Appendix A,

data regarding the performance comparison realised is presented.
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Chapter 2

Tethered Motion Planning

Literature Review

The field of motion planning has been heavily studied since even before the

development of affordable mobile robots, due to its significance also to in-

dustrial robotics [16]. Aiming at attaining more efficient, reliable and fast

algorithms, new methods are in constant development and well established

ones are under a persistent perfecting. Furthermore, the frontier of techno-

logy is ceaselessly pushed as new and more complex applications demand

new approaches for the motion planning problem. Such is the case of the

motion planning for tethered inspection robots in challenging environments

with regard to the space of operation.

In this context, a brief review of the literature concerning motion plan-

ning for tethered robots is presented as follows. A proper statement of the

problem targeted by the current work is shown prior to it, with the objective

of guiding the understanding of the motivations and requirements that con-

ducted the development of the here presented motion planning algorithm.
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2.1 Problem Statement

The problem addressed consists of implementing a reliable motion plan-

ning algorithm that first and foremost is capable of handling the fact that

there are unknown obstacles inside the subfloor gap to which the rover was

designed to inspect, as it can be followed in Chapter 3. The rover must,

therefore, be able to re-plan its trajectory at any given moment during the

mission. Secondly, the path computed must take into consideration the pres-

ence of the tether and its interaction with the obstacles when defining which

path constitute a feasible one. The constraint imposed by the tether must

be managed in such manner that in does not interfere with the dynamic

path-planning.

To summarise, the motion planning problem of the rover is a dynamic

path-planning problem with constraints related to the feasibility of path as

a consequence of the presence of a tether cable. Figure 2.1 shows graphically

the scope as a Venn diagram containing the two main areas tackled, with

the present thesis being represented by the star in the intersection of the

two.

Tether Dynamics

Tethered Robots 

Dynamic Motion
Planning

Figure 2.1: Venn diagram representing the scope of the thesis.
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2.2 State of the Art

The literature describing dynamic motion planning for tethered robots is

rather limited. In this respect, it is worth to point primarily the work from

[17], which focus on planning the trajectory of the tethered extreme extra-

planetary terrain exploration rover Axel, from NASA, considering a map not

fully known and using a motion planning based on an A∗ heuristic search

algorithm. The application, however, considers a single goal mission on a

steep plane, where the anchor point for the rover is in the upper part and the

goal in the lower part of the plane, as a way to simulate a crater, analogous

to the ones on the Moon and in Mars. Once the goal is reached, the rover

is reeled back to its anchor position. Although the idea of reeling the cable

during the operation is appealing, the fact that the specificities of the mission

fulfilled by Axel and by the rover centre of this work are quite different,

another approach had to be taken. Figure 2.2, taken from [17], shows the

type of environment for which the rover and method aforementioned were

developed.

Figure 2.2: Simplified model of an extreme terrain. Extracted from [17].

As a matter of fact, for the static path-planning with a tether situation,

most of the works reviewed tackle the tether interaction with the obstacles

present in a map in a point-to-point linear approach, that is without consid-

ering closed trajectories. That is the case of [18] for example, which presents

a space discretisation algorithm to find the feasible single goal shortest tra-
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jectories for robots with constraints imposed by cables in a planar map with

static obstacles. In [19], a multi-goal scenario is briefly considered, but the

main goal is regarding the length constraint imposed by the tether in that

context rather than assuring a trajectory that would not incur in entangle-

ment of the cable.

Another line of study focuses on the tether dynamics while the robot is

moving. Albeit many works, including the work here presented, take as an

assumption the use of an ideal frictionless cable, that does not correspond

to reality and cannot be always neglected. Another often disregarded beha-

viour concerns the curve characteristic of the cable and also its movement as

a consequence of the movement of the rover to which it is attached. Taking

these characteristics into consideration tends to harshly increase the com-

plexity of the problem being approached and whether or not they can be

neglected depends on the scope of the work.

As examples of works that focus on the behaviour of the cable, it can be

pointed [20], where a method to approximate the shape and configuration

of the cable in proposed, considering a scenario similar to [17] in which

the rover or the anchor point is equipped with a reel. Additionally, [21]

performs a substantial approach of possible behaviours of the tether on a

planar mobile robot while proposing a cell decomposition method to generate

the configuration space based on what the author calls cable events. Such

analysis of the dynamics of the cables, although relevant to the present

thesis, does not fall within its scope.

Regarding the dynamic path-planning for mobile robots, independently

of whether they have an umbilical cord or not, the topic is still in active

development and is often considered one of the most challenging topics in

mobile robotics. Such is the case of [22], which uses probabilistic representa-

tion for the prediction of dynamic environments, computing the probabilistic

risk of collision and planning the trajectories accordingly. In other words,
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the probabilistic position of the obstacles based on the available data con-

cerning their behaviour is used to compute paths with a lower probability of

coming across a new obstacle. Therefore, a scenario where the obstacles are

positioned with a determined dispersion is recommended for this method,

as well as the information about their behaviour, such as for example an

environment with a flux of pedestrians.

In [23], a potential field method equipped to handle dynamic environ-

ments is presented, where both relative position and velocity of the planar

mobile robot in respect to the goal and the obstacles are considered in the

planning. Moreover, [24] presents a method called Partial Motion Planning,

focusing on the real-time constraint imposed by the motion in highly dy-

namic environments, where the obstacles may also be moving. Successive

random trees are created and spanned for a predetermined period of time

while the rover executes its mission traversing the ICS-free path computed

in the previous step, with ICS standing for inevitable collision states. As

an example of an optimisation-based method, it can be pointed [25], which

uses spline parametrisation in combination with B-spline relaxations and

a receding horizon approach to compute smooth paths in highly dynamic

environments for both holonomic and nonholonomic mobile robots.

The optimal motion planning method CHOMP, or Covariant Hamilto-

nian Optimisation for Motion Planning, presented in [26], although not ex-

plicitly equipped to operate in dynamic environments, is said to be suited

for many real-world planning queries, quickly converging to a locally op-

timal trajectory, and to excel in obstacle handling. Combined with methods

to identify unknown obstacles using the hardware available in the rover, an

adaptation of this method could lead to an adequate dynamic environment

response. As exposed in Chapter 4 however, the RRTX method [27] was

found better suited considering the specificities of the problem at hand and

a geometry based approach was developed to include the tether constraint in



12 Chapter 2. Tethered Motion Planning Literature Review

the motion planning algorithm. A more complete description of the RRTX

algorithm can also be observed in Chapter 4.

2.3 Methodology

The workflow of the present thesis includes firstly the thorough review of

the previous work, that is [15], where the rover was initially proposed and

developed. Subsequently, a review of the literature was performed con-

sidering the defined problem addressed and scope of this work. Once the

computational approach to be taken for the dynamic motion planning was

determined, the implementation in a computer program was realised. There-

after, regarding the constraints imposed by the presence of the tether, the

approach used to deal with the constraint was developed and incorporated

in the motion planning.

Afterwards, simulations were performed to assess the quality and per-

formance response of the method created. Comprising the test phase were

also comparative performance tests with a method taken as a staple refer-

ence in the literature and, subsequently, experimental tests with the rover

embedding the developed method, to evaluate the response of the method

in the real-case scenario. Hardware adaptations in the embedded systems

of the rover were also made as they were needed in this phase. Finally, the

results were analysed and the documentation concerning the thesis project

realised was written.
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Review of the Rover

The robot, centre of the present thesis and first presented in [15], is a differ-

ential drive tethered rover designed to inspect structures characterised by

their difficult access due to limited dimensions. The rover is equipped with

sensors to provide data about the structure being examined, further ana-

lysed to assess the condition of the section inspected, as well as a camera,

whose image is constantly shared with the PC of the user linked with the

rover via the umbilical cable, and sensors to aid the motion and localisation

of the rover.

Concerning the control of the rover, it can be tele-operated or move

autonomously from user provided initial instructions. When tele-operated,

referred in [15] as manual mode, it behoves the user to cautiously plan the

trajectory to be traversed such that the tether cable does not entwine by

encircling a column of the building. For the autonomous operation, focused

herein, the system of the rover must be responsible for choosing a path

that does not incur in the cable being entangled in the columns. Figure 3.1

displays the rover with its upper part opened, making visible its internal

hardware.
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Figure 3.1: The rover and its internal hardware. Extracted from [15].

3.1 Context of the Project

The motivation behind the development of the rover comes from the neces-

sity of inspection of the subfloors in houses built in the Italian region of

Amatrice, in the Central Apennines, after the earthquake that struck the

region in the year of 2016. More specifically, the rover was designed to in-

spect the subfloor of the Soluzioni Abitative d’Emergenza (transl. Emergency

Housing Solutions), or SAE, built to house the survivors of the earthquake

who lost their homes or were told by the authorities to evacuate their houses

due to risk of structural collapse after the seismic event. SAE are single-

family container-like housing units, available in three different sizes of 40,

60 and 80 m2, subdivided into rooms. In total, 3702 SAE were planned to

be built in the region of Amatrice [28]. Figure 3.2 shows one of the SAE

built in Amatrice, in the front, while in the back the remains of a collapsed

building from the earthquake can be seen.

As mentioned before, the structure of the houses being investigated are

the subfloors. By subfloors, it must be understood the layer of material,
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Figure 3.2: SAE in Amatrice. Extracted from [28].

in this case wood, serving as the house pavement and standing above the

ground floor where the house is built upon by a structure of beams and

columns. Figure 3.3 presents an example of subfloor as found in the SAE.

As it can be observed, the use of subfloors generate a tight gap between the

wood structure and the ground of generally a few centimetres. In the SAE

case, these structures began to present infiltration problems.

Figure 3.3: Subfloor made of wood with wooden structure. Extracted from [29].

Although the inspection and identification of infiltration points can be
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made with static devices, such method is very limited, as pointed by [15],

not producing the desired results. In this context, it is necessary a means

of inspecting the narrow gap between the subfloor and the ground in a

non-invasive manner, to identify possible infiltration spots and apply the

appropriate measures before bigger sections or the whole floor are completely

compromised. The inspection rover is developed therefore as a solution to

the aforementioned necessity.

3.2 Hardware Overview

The rover developed by [15] was designed respecting the spatial requirements

of the environment to be inspected, the most severe one being naturally

the height of the rover. The subfloor gap has a height of approximately

12 centimetres, so obligatorily the height of the rover must be below this

limit. Figure 3.4 provides a scheme containing all the hardware of the rover,

mechanical and electronic, as well as their connections. The subsequent

sections address more specifically, but briefly, each hardware component

involved in the operation of the rover.

3.2.1 Mechanical Components

Chassis

The chassis of the rover is characterised by a box with protection grade IP67,

which although heavier than the plastic ABS alternative, has a stronger

structure. The dimensions of the box are 28cm of length, 17cm of width

and 9cm of height, therefore under the dimension limits. Holes were made

to allow the passage of cables and for the wheel axis to be attached.
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Figure 3.4: Scheme of the hardware connection. Extracted from [15].

Wheels

Regarding the wheels, the model chosen was the RMNA100, with a diameter

of 10cm and made of rubber. Thus, the overall height of the rover remains

under the limit required. A caster well was also added on the rear part

of the rover to provide stability, totalising three wheels on the rover. As

seen in Chapter 5, the RMNA100 wheels proved to be inadequate for the

application intended upon testing.

Motor

The motor used to move the rover are NEMA17 bipolar stepper motors.

Presenting a holding torque of 0.4Nm and 1.8◦ of rotation per step, or

200 steps per rotation, this motor presents a satisfactory precision and, if

a slipless movement is assured, the counting of the steps can be used to

determine or validate the localisation of the rover. This topic is as well

further discussed in Chapter 5.



18 Chapter 3. Review of the Rover

3.2.2 Electronic Components

Driver

The driver implemented was the DRV8825, after the driver L298N proved

to be unsatisfactory due to overheating. According to [15], the DRV8825,

although fragile, also presented a better performance for continuous move-

ments. It is also worth to remark that a capacitor is used in the power

supply of the driver to avoid damage due to destructive LC voltage spikes.

Each driver is connected to the Arduino board by three signal wires, for step

control, direction and motor activation, and connected to the motor by four

wires, corresponding to the two pairs of windings present in the motor.

Communication

The two Fathom-X boards were embedded in the rover and attached to the

PC to enable the communication between the Raspberry Pi and the PC over

the power line. The board, intended for applications with umbilical cords,

transfer Ethernet over power at 80 Mbps over two wires and supports cables

of up to 300 metres. Inside the rover, the Ethernet cable being used was a

flat one, later changed for a round Ethernet cable during the development

of the present work due to the latter providing not only a better transfer

rate but also, and more importantly, higher durability.

Power Supply and DC-DC Converter

The power required by the rover is provided by a 36V DC power source,

i.e. an AC-DC converter, which through five LM2596 DC-DC converters

provides the right voltages to all the electronic components in the rover.

More especifically, starting from the power source, downstream is the first

Fathom-X board, connected via Ethernet cable to the PC and via power

cable to the rover, powered by 12V through a converter. Inside the rover,
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another converter powers the second Fathom-X, connected with the Rasp-

berry Pi, with 12V, and two dedicated converters power the drives, and

consequently the motors, with 10V. A last converter powers the Raspberry

Pi and the Arduino with the required 5V.

3.2.3 Sensors

Temperature and Humidity

The DHT22 is a broadly used temperature and humidity sensor compatible

with Arduino and Raspberry Pi. The sensor allegedly is able to read humid-

ity levels for 0% to 100% with at most 5% of inaccuracy, and temperatures

from −40◦ to 80◦C. During the field tests performed by [15], the accuracy

of the sensor was verified to be harshly different from the nominal value.

Gas Sensor

The MQ135 gas sensor used provides a part per million count regarding the

gases present in the air, in spite of that it is not capable of distinguishing

the gases being read. The sensor is directly connected to the Arduino board.

Raspberry Pi Camera

This camera is intended to be used with a Raspberry Pi, so little to no short-

coming was expected from its implementation. The quality of the camera

image and its frame rate, especially when used with the Raspberry Pi 4

instead of the Raspberry Pi 3, greatly increases the functionality and in-

spection capabilities of the rover.

Inertia Measurement Unit

The BNO055 IMU sensor is a powerful and versatile sensor, being able to

provide information about the linear acceleration, angular velocity, mag-

netometer measurements and temperature of the rover in both raw and
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processed forms. Currently, it is being used to acquire the angular posi-

tion of the rover, assuring a precise value for its orientation. The sensor is

connected with the Arduino board through I2C protocol.

LiDAR

An important sensor in the operational framework of the rover is the Ter-

aRanger Evo 60m Time-of-Flight distance sensor. The TeraRanger Evo 60m

sensor is robust, versatile and accurate, providing to the Raspberry Pi to

which it is connected the distance value of the obstacle or wall immediately

in front of the rover, with a range that varies from 0.5 to 60 metres, yet also

depending on conditions such as lighting and reflectiveness of materials. As

explained in greater detail in Chapter 5, the use of the LiDAR sensor was

changed, from being use to estimate the linear distance traversed by the

rover to identify unknown obstacles on the path being followed by the rover

and enable the transmission of a subsequent instruction from the Raspberry

Pi to the Arduino board.

3.3 Software Overview

The control structure embedded in the rover is divided in two levels, the

low-level headed by the Arduino board and the high-level headed by the

Raspberry Pi. The PC, also part of the high-level section, interacts with

and controls the Raspberry Pi, being also pertinent to include in the software

overview. Figure 3.5 depicts a scheme of the hierarchy of the software in the

control system of the rover.

3.3.1 Arduino

The Arduino routine is responsible for the direct activation and movement

of the motors, in addition to acquire data from the MQ135 and BNO055
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Figure 3.5: Software hierarchy. Extracted from [15].

sensors. The board, connected to the Raspberry Pi via SPI communication,

receives messages which are concatenated in a buffer, that in turn is read

and distributed in pertinent variables used in the movement routines. The

messages received are read by interrupt routines, independent of whether

or not the program is executing the movement routines at a given moment.

This fact, for example, allows the movement to be halted at any moment by

the transmission of the appropriate instruction.

3.3.2 Raspberry Pi

The Raspberry Pi autonomous routine essentially reads the list contain-

ing the points composing the trajectory computed and converts them into

instructions, which are then sent to the Arduino to move the motors. Fur-

thermore, the routine manages the camera and computes the orientation

of the rover, whenever a rotation is necessary, and read the measurements

from the TeraRanger Evo 60m and from the DHT22. For the manual mode,

the main difference concerns the routines to obtain from the user the input

instructions to be sent to the Arduino in order to move the rover, that is
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the Raspberry Pi program acts as a mediator in this scenario between the

Arduino controlling the motors and the user providing the commands.

3.3.3 PC

The motion planning routine presented in [15] is an adapted version of the

RRT* path-planning algorithm. The RRT* algorithm is briefly explained in

Chapter 4. The adaptation consists in the constraint approach developed to

handle the presence of a tether on the rover. To do so, for every path found,

successive points are evaluated with the purpose of investigating if any of the

known obstacles is surrounded by the trajectory in such a way that the sum

of the relative angles of the points is greater than 180◦. Figure 3.6 shows an

illustration of the idea behind the angle computation and evaluation.

Figure 3.6: Illustration of the angle evaluation. Extracted from [15].

Whenever a violation is found, the first point to characterise the viola-

tion is transformed into an auxiliary obstacle and the path is recomputed.

Figure 3.7 presents the flowchart of the adapted RRT* algorithm, where the

above-mentioned processed can be observed. The main disadvantage of such

approach is briefly addressed in the introduction of Chapter 4, while a con-

cise review of the dynamic environment problem is made. Finally, the high
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number of angle computations and comparisons and the fact that the al-

gorithm may be subjected to several executions prior to achieving a feasible

result constraint-wise render the algorithm considerably slow, with execu-

tion times of 5 minutes on the PC and 15 minutes on the Raspberry Pi for

a point-to-point trajectory. Such times are impractical, especially consider-

ing a dynamic environment that may possibly require multiple executions

during the mission, i.e. after the rover is already deployed.

Figure 3.7: Flowchart of the adapted RRT* algorithm. Extracted from [15].

3.4 Results

Concerning the results of the development of the rover, [15] highlights the

construction of a rover that meets the requirements of the project, with

functional integrated system, data acquisition and two modes of operation,

manual and autonomous, as well as a path-planning algorithm equipped to

handle the constraints imposed by the tether. It is mentioned, however,

that the rover exhibits a slight misplacement in respect to the expected

position when performing tests with the autonomous mode, and also that
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the cable interferes with the proper rotation movement of the rover. These

comments later on play a significant role in the test phase of the present

work, as observed in Chapter 5. More importantly, it was verified that

the subfloor gap contains unexpected obstacles, as can be observed from

Figure 3.8, that due to not being considered in the initial motion planning

approach gravely hinder the autonomous operation of the rover. This finding

was the main drive for the research and development of the motion planner

algorithm capable of handling unexpected obstacles and suited for the rover

here presented.

Figure 3.8: Picture taken by the rover during the inspection test. High humidity in the

subfloor and unexpected obstacles can be observed. Adapted from [15].



Chapter 4

Path-Planning Program

Development

As stated in Chapter 2, the motion planning problem of the rover can be

summarised as a dynamic path-planning problem with constraints related

to the path. The vast majority of existing motion planning algorithms were

developed to tackle static environments, that is, environments where the

map used as the base for the path-planning does not change along the ex-

ecution of the designated path, whichever algorithm was used to compute

it, or in other words, all the obstacles are static. Although not every al-

gorithm is prepared to deal with dynamic environments, given that static

environments are simply easier to manage planning-wise being therefore the

stepping stone for the development of the motion planning field of work, real

environments are rarely static [30].

Environments with possible unknown existing obstacles, such as the real

environment of this project, can also be considered as dynamic environ-

ments. In other words, an obstacle that is not present in the map and

is suddenly identified by the sensors of the mobile robot and inserted in

the map as an obstacle is similar in behaviour to a previously existing dy-

namic obstacle, especially to one with random movement. In this context,
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a path-planning algorithm must be found such as to treat the dynamic en-

vironment scenario but also considering the constraints introduced by the

tether, as previously described in Chapter 2.

However, motion planning for a tethered planar mobile robot is a highly

not-trivial problem, as states [19], even for static environments, at least on

an optimal level. The combination of the two non-trivial problems, still

undergoing research and development, i.e. the search for optimal or approx-

imately optimal dynamic motion planning algorithms and the search for

algorithms able to deal with constraints like the ones imposed by tethers in

an optimal way, results in a challenging situation, especially optimality-wise.

The search for optimality can end in a somewhat “short blanket” situation,

where either optimality or approximated optimality can be achieved for the

path-planning situation or for the constraint situation, but not simultan-

eously for both.

The course of action initially chosen and later followed in the present

thesis was to first tackle the dynamic planning problem, and to further

adapt the algorithm to somehow manage the tether constraint on a satis-

factory manner, operation and computational-wise. Considering the worst

case scenario, where such adaptation does not meet a computational ad-

equate solution, a solution as the one applied to the previously developed

static algorithm, described in Chapter 3, can be applied even though it is

not optimal [30], that is, for every path found that violates the constraints,

the motion planning algorithm must be executed again, but with an altered

map containing inserted auxiliary obstacles.

4.1 RRTX Path-Planning Dynamic Algorithm

According to [31], motion planning methods can be categorised into five

main different types, and none of these types is able to manage every existing

motion planning problem. The motion planners in [31] are categorised as
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complete methods, grid methods, sampling methods, virtual potential fields

methods and nonlinear optimisation methods. As summarised by [32], some

of the best path-planning algorithms can be classified in two categories, both

also present in the categorisation proposed by [31], which are optimisation

techniques and sampling methods.

Two methods were initially considered as candidates for the dynamic

path-planning algorithm based on their main features and scope of action:

the CHOMP [26], an optimisation method that would possibly require ad-

aptations, and the RRTX [27, 33]. Upon a comparison of their advantages,

the RRTX was chosen as the algorithm to be implemented and further on

modified to handle the constraints of the rover. It is worth noting that the

RRTX method falls in the sampling methods category. A sampling method

was chosen based on the already vast utilisation of such methods for mo-

tion planning in mobile robots, as RRT and RRT* methods serve as a solid

reference for satisfactory asymptotically optimal results.

Also it is worth to remark that, as presented in chapter 3, the previous

path-planning algorithm present in the rover was a modified version of the

RRT*, so choosing another sampling method would provide not only a con-

tinuity to the development of the motion planning algorithm of the rover,

but also render feasible a more straightforward comparison between the two

algorithms performance. Furthermore, regarding the advantages of RRTX

in respect to other sampling method algorithms, the RRTX as presented in

[27] has a similar computational efficiency as methods suited to handle static

environments while still being able to handle highly dynamic environments.

4.1.1 RRTX Main Characteristics

The very core of the RRTX path-planning method is naturally the same

as the RRT, the basic rapid-exploring random tree method. Briefly sum-

marising, the RRT method builds a tree composed by nodes, each one be-
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ing a configuration q ∼ (x, y, θ) of the robot to which the motion is being

planned. Customarily, the starting node, i.e. the root of the tree, is the goal

node. The consecutive nodes are created by randomly sampling configura-

tion points qrand on the already known map and taking as new configuration

points qnew to become nodes in the tree, those within a determined expand

distance dexp between the nearest node in the tree qnear and the random

point qrand.

Figure 4.1: Rapidly-exploring Random Tree operation.

If the new node qnew is not located within and its path does not cross

a static obstacle, then it is finally attached to the tree and a new random

configuration is assigned. When a fixed number of iterations, a fixed time

or when the tree reaches the starting point of the robot, the algorithm stops

and the least costly path is chosen [34]. The follow-up method, the RRT*

[35], rewires the tree during the execution of the algorithm every time there

is shortest path between two nodes, hence avoiding loops and fostering less

costly paths [31].

The RRTX method shares the same basic operation as the RRT and

RRT*, but distinguishes itself due to its ability to handle dynamic environ-

ments by erasing the branches of its tree that are affected by the presence
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of a dynamic obstacle, being therefore a dynamic path-planning algorithm.

Moreover, with other sampling methods of the rapidly-exploring random

tree family of methods, the RRT# [36, 37] and the SPRT [38], the RRTX

shares the idea of maintaining a consistent tree throughout the execution

of the algorithm. According to [36], a tree is fully consistent if for every

node v, the cost-to-goal g(v) is equal to the look-ahead estimate of the

cost-to-goal, defined as lmc(v). A fully consistent tree guarantees that the

topology obtained for the tree after the algorithm execution contains the

best cost-to-goal for each and every node.

Instead of using the same metric of full consistency for the trees, the

RRTX builds trees that are ǫ-consistent, i.e. the consistency of the tree

is kept under an arbitrarily defined value ǫ. The formal definition of ǫ-

consistent can be observed in the inequality 4.1.

g(v)− lmc(v) < ǫ (4.1)

Where the look-ahead cost-to-goal for a given node v, lmc(v), is defined

as:

lmc(v) = minu∈N+(v)dπ(v, u) + lmc(u) (4.2)

Being u a node belonging to N+(v), the set of outgoing neighbour nodes

of the node v, and dπ(v, u) the length of the feasible trajectory π(v, u), which

in the present case is the Euclidean distance between nodes v and u, given

the differential dynamics of the rover.

Furthermore, concerning the computational cost of the RRTX method,

its most remarkable advantage lies in the fact that the RRTX has an amort-

ised computational cost equal to the amortised computational cost of the

RRT and RRT* methods, i.e. Θ(log n) with n being the number of nodes in

the tree. The amortised analysis consists of computing the average of the

running time per operation of a sequence of operations, considering their



30 Chapter 4. Path-Planning Program Development

respective worst-case [39]. Such analysis is particularly recommended for

algorithms that have expensive operations with rare occurrences that some-

how limit in number or cost the expensive operations that may occur in the

future [40], which is a precise description of the RRTX algorithm.

According to [27], two strategies related to the rewiring cascades present

in the algorithm are responsible for the amortised cost of Θ(log n), faster

than the RRT# method, with Θ(log2 n). Briefly summarising, the two

strategies comprehend stopping rewiring cascades once ǫ-consistency is at-

tained and managing node connectivity information in a more efficient man-

ner. These approaches reduce the RRTX iteration time when compared with

RRT# and the cost propagation when compared with RRT*, while asymp-

totic convergence to the optimal solution is maintained.

4.1.2 RRTX Program Development

Although there was a version of the RRTX algorithm available in the pro-

gramming language Julia [41], the available computer program was consider-

ably outdated and hence, not operational, demanding thorough review of it

and replacement of all the outdated syntax as well as deprecated functions.

Using an outdated version instead of the current Julia version available on

the other hand could lead to future problems and an inescapable need of

rewriting and adapting the program to an updated version later on.

As a consequence it was decided to write an operating routine of the

algorithm taking as base the algorithm depicted in [27]. The programming

language of choice was Python [42], due to it being well-established in the

scientific community as well as in the industry and more importantly, due

to Python being the native language of the Raspbian OS running in the

Raspberry Pi embedded in the rover, whose integration with the other sys-

tems of the rover, i.e. the Arduino board and the TeraRanger LiDAR sensor,

was already built and operational. Changing the motion planning algorithm
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to another programming language would therefore imply in adaptations to

integrate both the motion planning and the routine being used to commu-

nicate with the Arduino board, responsible for moving the motors of the

rover.

The version of RRTX written on Python for this thesis used as structural

basis the RRT and RRT* routines provided by [43] and available as part of

the open source software project PythonRobotics. The use of such routines

provided a solid operational base upon which the RRTX algorithm was

written as a computer program itself, with the adaptations of the common

basic routines present in the RRT and RRT* programs, such as steering and

rewiring, necessary to fit the procedure of the algorithm, and the inclusion of

the many routines that compose the characteristic operation of the RRTX ,

such as the look-ahead cost-to-goal and ǫ-consistency related routines.

The same RRT* provided by [43] was used with the purpose of the per-

formance comparison with the finished version of RRTX , as presented after-

wards in this chapter. Finally, an example of an execution of the algorithm

with the respective tree computed can be observed in Figure 4.2.

Figure 4.2: Example of a RRTX execution with starting point at (15, 2.5) and goal

point at (25, 40).
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Problems Encountered

During the development of the RRTX routine a few problems emerged.

Initially, there were problems with the spanning of the tree generated by

the algorithm, solved with adjustments in the parameters used and in the

rewiring and steering functions. The second remarkable problem to emerge

concerns the branch deletion once a new obstacle is identified, i.e. concerning

the disconnection and removal of all the nodes affected by the new obstacle

inserted in the map, characterising the dynamic environment.

The branch deletion routines were apparently generating orphan nodes

not detected and deleted by those routines. By orphan node, it must be

understood any node whose connection with its parent node was severed

by the obstacle introduced in the map and the child nodes of the referred

orphan node, which will become orphan nodes themselves once their parent

node is deleted for being an orphan node. Through investigation of such

occurrences, which were happening frequently but not on every execution,

it was verified the existence of ghost node parents, that is nodes that were

parents of other nodes, but did not figure in the node list of the tree gen-

erated. Such where the nodes serving as roots for the non deleted orphan

branches.

Figure 4.3 depicts an example of the aforementioned problem. Static

obstacles are presented as blue circles, nodes as blue dots, the dynamic

obstacle as a red circle and the orphan branch marked with red rectangle.

After the introduction of the obstacle in red, all the branches affected by

the obstacle should have been erased, but as evident in the figure, all the

orphan nodes were properly erased except for the seven orphan nodes inside

the red rectangle. These nodes are all child nodes of a ghost node parent.

To solve the problem, the deletion routines were rewritten and changes

were made to reinforce the erasure and removal of every node considered

orphan and their respective child nodes from the node list. Apart from that,
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Figure 4.3: Example of a wrong branch deletion.

a routine was created to run through the node list, identify ghost nodes and

fix them by reassigning them to the correspondent node in the list, and thus

reinforcing parent-child relationship. This routine was also later on used to

reassure consistent proper relationships when the tree is reloaded.

The cause for the existence of ghost nodes was not completely tracked

down, remaining as possible reason for the problem irregularities when hand-

ling the nodes and node addresses by Python. Through the relationship

check routine, it was also possible to perceive that such irregularities indeed

happen, although very rarely, even when the program is running for a static

environment, rendering necessary the scan and subsequent fixing of the node

list. However, it is not possible to run the relationship check routine every

iteration, given that it is computational costly to the algorithm, as shown

in the performance comparison section, causing it to have an exponentially

increasing computational time.

4.2 Constraint Problem

As presented in chapter 3, the constraint problem imposed by the presence of

a tether on the rover and by a map with columns and random obstacles was

solved in [15] through the computation of the rotation angle of the obtained

paths around the known obstacles present in the map. Upon a rotation angle

greater than 180◦ around a known obstacle, an auxiliary obstacle would be
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placed in a node position in the vicinity of the known obstacle, in such a

way that the recomputed path would not encircle the obstacle again. Albeit

functional, this approach had a high computational toll, remarkably due to

the extensive angle computations made and due to the fact that each time a

path was unfeasible, the whole tree was being recomputed, which as already

mentioned in the present chapter and stated by [30], is a non-optimal way

of dealing with dynamic environments.

In this context, the solution found and proposed in the present work is to

approach the constraint problem from a geometrical perspective. The main

idea of the geometrical approach starts from the condition that the rover

will start and end its path at the same point, that is the entrance point from

which the rover will access the environment to which the rover was designed

to inspect, in this case the house subfloors in Amatrice, is the same as the

exit point. Such condition is naturally aligned with the purpose and design

of the rover, given that any tethered inspection vehicle is expected to return

to its base point, i.e. the origin of the tether, after its operation. From this

condition, it is trivial to verify that any operation, feasible or not, will be a

closed path.

The closed path formed may then as well be seen as a polygon, which in

turn can be defined as a set of straight line segments that together bound

a closed plane figure [44]. The obtained polygon can be used to identify

whether or not there is a obstacle encircled by the trajectory of the rover,

and consequently, by its tether. That derives from the fact that whenever

the trajectory of the rover encircles an obstacle, i.e. an unfeasible traject-

ory, be it locally or considering the full closed path, the coordinates of the

problematic obstacle will be invariably contained inside the boundaries of

the obtained polygon.

The main idea of the geometric approach can be then summarised as

follows: a feasible path is any path whose polygon obtained from the closed
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trajectory of the rover has no obstacles within its boundaries.

During the conception of the geometrical approach, the existence of self-

intersecting polygons was overlooked. However, during the implementation

phase, the problems brought by these particular kind of polygons emerged,

demanding adaptions on the written routine so the working principle of

the geometrical approach was maintained. Figure 4.4 shows a rough visual

sketch of the geometric approach idea, that is for the trajectory in red to

be feasible, the chequered area must not include any of the black dots. The

trajectory and polygon is represented in 4.4 by the line in red, the goals by

the squares in blue, the columns of the building, that is the known obstacles,

by the black dots, the area inside the polygon by the chequered pattern and

the initial and final point by the green triangle.

Figure 4.4: Sketch of the geometric approach for the constraint problem.

4.2.1 Geometric Approach Implementation

The implementation of the geometric approach lies heavily on the use of the

Python package Shapely [45], developed to manipulate and analyse planar

geometric objects regardless of data formats or coordinate systems. From

a set of ordered points it is possible through Shapely to create a geometric

object of the class polygon. With the polygon obtained, all that remains is
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to perform the spatial analysis, namely the point-in-polygon query, of the

object.

To solve the well-known and studied point-in-polygon computational

problem, addressed for example in [46, 47], Shapely makes use of binary

predicates, i.e. functions that point whether a condition is true or false, to

assess topological relationships between geometrical objects. In the present

case, the geometric objects are the polygon representing the trajectory and

the points representing the obstacles, and the relationship of belonging being

assessed is expressed by the binary predicate within, provided by Shapely.

Alternatively, the binary predicate contains could have been used, in that

case evaluating whether or not the polygon contains the points instead of

whether the point is within the boundaries of the polygon [48].

It is important to remark that, although not trivial, the point-in-polygon

query performed by Shapely is highly computationally efficient, later verified

for example by the computation of hundreds of queries in far less than a

second during the executions of the RRTX algorithm with the developed

constraint approach. The feasibility of the geometric approach depended

heavily on how efficient the point-in-polygon query, henceforward referred

in the present work as polygon check, was handled by Python using the

Shapely package. In that context, the computational feasibility requirement

of the geometric approach was satisfied.

With the polygon check operational, the rest of the constraint approach

was built around it. In other words, by having a reliable way to separate

feasible and unfeasible trajectories, it was possible to built routines such

that a feasible solution is typically achieved, i.e. impossibility of finding

a feasible trajectory for a determined set of goal points happens scarcely,

and no unfeasible trajectory is ever provided as a result of the program.

Such routines, explained in more detail subsequently, make use of the tree

created and utilised to find the route connecting the starting point and the
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goal point, and of the ability of the tree of cutting its own branches and re-

spanning again, provided by the RRTX algorithm having in mind dynamic

environments.

The first characteristic, the tree structure, is used to obtain more pos-

sible routes that connect starting and goal points. The RRTX algorithm,

as do the other sampling method algorithms, returns the most cost efficient

path connecting starting and goal points considering the randomly built tree

obtained in a particular execution of the algorithm, however by no means

such path is the only trajectory that connects the two points. With a prop-

erly spanned tree, which is deeply related to the parameters chosen for the

algorithm execution, there is a suitable number of alternative not necessar-

ily cost efficient possible paths that can be used, without having to re-span

the tree, to experiment new path arrangements in search of compositions

that form feasible trajectories according to the polygon check. The idea is

represented graphically by the Figure 4.5.

goal

star�

goal

star�

Figure 4.5: Example of the alternate path implementation. (a) Unfeasible trajectory

in red with alternative possible paths in grey. (b) Feasible trajectory in green using a

suitable alternative possible path, even though it is not the most cost effective one.

The second characteristic, the ability to re-span the tree, is used when no

arrangement with the available possible paths produces a feasible trajectory.
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In that scenario, the course of action taken was to place a virtual obstacle on

top of the nearest node to the problematic obstacle, that being the obstacle

inside the polygon. The RRTX therefore interprets the virtual obstacle

as a new obstacle and following its dynamic environment approach, erases

the branches severed by the new obstacle, re-spanning the tree around the

obstacle. Nevertheless, the obstacle does not exist in reality being only an

auxiliary resource for the purpose of the constraint approach, leading to it

being erased right after the execution of the tree re-spanning. As a result, a

new path to the goal is found, as well as new possible paths to be tested in

case the first keeps encircling the obstacle and rendering the path unfeasible.

Regarding the developed algorithm for the virtual obstacle placement, it is

worth to remark that it cannot be place atop or considerably close to starting

or goal nodes, otherwise the tree will not be able to span from the starting

point or to reach and connect with the goal point. The idea of the tree

re-span implementation can be seen in Figure 4.6.

(a) (b)

Figure 4.6: Example of the tree re-span implementation. (a) Unfeasible trajectory in

red with alternative possible paths in grey. (b) Feasible trajectory in green using a

suitable path computed after the placement of the virtual obstacle atop the closest

node from the problematic obstacle, the blue square.

The foregoing processes were organised and implemented in the form of
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an integrated algorithm, which is presented in pseudocode in Algorithm 1.

As it can be seen, the constraint approach is composed by five main

processes. They are the identification of the problematic sub-paths, based

on the already identified problematic obstacles, the search for alternative

paths that eliminate one or more of the problematic obstacles from inside

the polygon, re-spanning of the tree, alternative path search in reverse order

of the problematic paths and ultimately in shuffled order. The maximum

number of attempts and condition for re-spanning the tree can be adjusted

arbitrarily and, for all the results presented henceforth, a maximum num-

ber of two attempts and the condition of only re-spanning the tree in the

first attempt were chosen, since they presented a good compromise between

performance and execution time.

In Algorithm 2 the implementation of the possible paths solution briefly

described previously and displayed in Figure 4.5 is shown.

Since more that one feasible alternative sub-path can be found, the whole

list of possible paths is investigated and the one with the lower simple cost is

taken, except when one of the possible paths attempted results in the whole

trajectory being feasible, corresponding to the third row of the algorithm,

to which the constraint approach is terminated and the trajectory found

registered, for the sake of time efficiency of the algorithm.

Algorithm 3 depicts the second solution method where virtual obstacles,

or Vobs in the algorithm pseudocode, are used to guide the tree to a desirable

region, as can also be observed in Figure 4.6.

The algorithm loads the old tree for the specific problematic sub-path

being examined and re-spans its tree with the virtual obstacles in place,

attaining a new sub-path and new possible sub-paths to be tested, if the

new sub-path is still inadequate.

Once the testing of the performance of the constraint approach started, it

was verified that the process of generating the polygon, that is the geometric
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Algorithm 1: Constraint Approach

1 while attempt < max number do

2 foreach sub path ∈ path list do

3 Obslocal, Vobs ← Id Problem Paths(sub path);

4 if Possible Path Sol(possible paths) 6= True then

5 prob path← prob path ∪ {sub path};

6 foreach sub path ∈ prob path do

7 if Possible Path Sol(possible paths) = True then

8 prob path← prob path\{sub path};

9 if prob path = ∅ then

10 return path list;

11 if first attempt then

12 foreach sub path ∈ prob path do

13 path list← ReSpanningTree(sub path, tree, Vobs);

14 problem obs← PolyCheck(path list, Obscoord);

15 if problem obs = ∅ then

16 return path list;

17 if Possible Path Sol(possible paths) = True then

18 prob path← prob path\{sub path};

19 foreach sub path ∈ reverse(prob path) do

20 if Possible Path Sol(possible paths) = True then

21 prob path← prob path\{sub path};

22 if prob path = ∅ then

23 return path list;

24 foreach sub path ∈ shuffle(prob path) do

25 if Possible Path Sol(possible paths) = True then

26 prob path← prob path\{sub path};

27 if prob path = ∅ then

28 return path list;

29 return path list;
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Algorithm 2: Possible Paths Solution

1 foreach possible path ∈ possible path list do

2 problem obs← PolyCheck(possible path,Obscoord);

3 if problem obs = ∅ then

4 path list← (path list\{sub path}) ∪ {possible path};

5 return True;

6 if Obslocal = ∅ then

7 cost← get cost(possible path);

8 if cost < min cost then

9 min cost← cost;

10 aux path = possible path;

11 if aux path 6= ∅ then

12 path list← (path list\{sub path}) ∪ {aux path};

13 return True;

14 return False;

Algorithm 3: Re-Spanning Tree

1 pathnew, node list, possible paths← RePlan(goal list, tree, Vobs);

2 path list← (path list\{sub path}) ∪ {pathnew};

3 pp list← (pp list\{possible pathsold}) ∪ possible paths;

4 trees← (trees\{treeold}) ∪ node list;

5 Obslocal ← Id Problem Paths(sub path);

6 return path list, possible paths list;
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object corresponding to a polygon for Shapely, was faulty. More specifically,

the polygon was created in such a way that depending on the trajectory used

to generate it, there could be holes inside of the polygons and, if there was

an obstacle inside these holes, they would not be recognised as problematic

ones. That is, due to these unwanted holes the constraint approach is prone

to result in false positive cases. Such generated faulty polygons are classified

as self-intersecting polygons [44].

Self-Intersecting Polygons

As the name indicates, self-intersecting polygons compose a category of poly-

gons whose edges intersect each-other at least once. As previously exposed,

depending on the number and form of the intersections, non-filled areas, or

simply putting holes, may be present inside the confines of the polygon, as

can be observed for example in the Figure 4.7. Polygons such as the one in

the figure lead to false positive results whenever an obstacle is located inside

one of these non-filled areas, like the non-coloured area in the centre of the

triangle in Figure 4.7.

Figure 4.7: Trivial example of a self-intersecting polygon.

Upon brief investigation it was verified that considering the set of points

used to build the polygon, independently of whether or not it would result in

a self-intersecting polygon, it was necessary to obtain its respective concave

hull and with it proceed with the geometric approach. The concave hull

comprehends the external hull characterised by a set of points, which in

opposition to the more common convex hull, may contain internal angles
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superior to 180◦. The use of the concave hull as the polygon utilised in

the geometric approach instead of merely the polygon built by the edges

composing the computed trajectory would eliminate every non-filled area

inside the polygon, if the polygon was a self-intersecting one and such area

was present. An example of an occurrence of a false positive from a self-

intersecting polygon built from a planned trajectory can be observed in

Figure 4.8, where the area in cyan was the one considered as part of the

polygon, or the filled area, by the geometric approach while the area in white

containing the obstacle was interpreted as not being part of the polygon, i.e.

the non-filled area.

Figure 4.8: An example of an obtained self-intersecting polygon incurring in a false

positive result from the geometric approach.

Initially, an attempt was made to apply the alpha-shape method [49] for

creating a concave-hull to the set of points available, but the results were

not satisfactory. The alpha-shape algorithms used were heavily dependent

on the parameters used, especially the α parameter that names the method,

and thus the fact that the same algorithm must be used for a vast variety of

different polygons both in shape and size rendered it unusable, even when an

algorithm to optimally define such α value was applied. The results would

exclude or not consider points in such a way that the final polygon obtained
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had a different hull if compared with the shape of the original trajectory,

including nonexistent areas or erasing existing ones. Notwithstanding the

undesired results achieved, the algorithm would take a considerable amount

of time to execute, which, given the high number of polygon checks required

for a single planned trajectory, would also preclude the use of alpha-shape

for the geometric approach due to the computational time constraint.

Given the unreliability of the alpha-shape algorithms for the present ap-

plication, a solution within the Shapely library was then investigated. Upon

a series of successive operations of merger between the straight lines com-

posing the trajectory, creation of a set of sub-polygons and finally merger of

the sub-polygons into one single polygon, the intended result was ultimately

achieved. The computational feasibility of the new process to construct the

polygon was examined and, despite containing more steps and transitioning

between different geometrical objects within the Shapely library, the new

process presented no considerable toll in the computational time in respect

to the previous faulty version. The working algorithm currently in use to

built the polygon from the planned trajectory and with it perform the geo-

metric approach can be accessed in Algorithm 4. Apart from the third and

sixth rows, every function seen in the algorithm is part of the Shapely lib-

rary and their formal definitions, parameters and examples can be verified

in [45].

Figure 4.9 shows the aforementioned algorithm being applied to the same

trajectory presented in Figure 4.8 and, as it can be seen, the concave-hull

was successfully extracted from the trajectory, eliminating the possibility of

false positives.

At last, the geometric approach for the constraint problem imposed by

the tether presented itself as a feasible and suitable solution. The approach

correctly identifies feasible and unfeasible paths and within an adequate

computational time, does not impact expressively the overall time of the
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Algorithm 4: Polygon Creation

1 lines← MultiLineString(path list);

2 line unary union← unary union(lines);

3 if type(line unary union) = ‘LineString’ then

4 line list merge← line unary union;

5 else

6 line list← list(line unary union);

7 line list merge← linemerge(line list);

8 result← polygonize full(line list merge);

9 polygon← unary union(result);

10 return polygon;

Figure 4.9: The new polygon, that is the concave-hull, of the trajectory shown in Figure

4.8.
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whole motion planning algorithm.

4.3 Final Program Overview

In the current section, the final version of the motion planing routine with

all the adaptations and additions made due to the constraint problem and to

the integration between routines is presented with emphasis in such changes.

The first remarkable modification was the addition of routines to allow the

algorithm to work with multiple goals, essential for creating the closed tra-

jectory and further perform the polygon check. In case only one goal is

inserted, the routine computes the path to the goal and automatically mir-

rors the result to add the returning path. Moreover, since during the tests

it was verified that repeated nodes in the path list introduce at best a delay

in the operation, successive repeated nodes are currently simplified to just

one node.

When more than one goal is initially set prior to the execution, the goals

are entered in a list. The goals in the list are then sorted by their Euclidean

distance in respect to the rover and each individual sub-path is computed, as

well as their respective trees and possible paths stored. For the computation

of the sub-paths, starting by the set starting node and the first goal in the

goal list, every successive sub-path is characterised by the starting point

being the last goal point used and the goal point being the consecutive goal

point in the list. After the last goal in the list is processed, another sub-path

is computed having as stating point the last goal in the list and as goal the

original starting point of the rover. In doing so, considering a multi-goal

situation, the trajectory is closed and the final position of the rover is its

first position.

Thus, for a number n of goals, there will be precisely n + 1 sub-paths

to be computed and further on processed by the geometric approach. An

example of a multi-goal execution can be observed in Figure 4.10.
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Figure 4.10: Example of a multi-goal execution with five goals and geometric approach

to constraint problem.

In terms of program structure, a main routine is responsible for obtaining

the goals, sorting them if necessary and calling the core routine, responsible

for the planning and constraint approach. It is worth to remark that, in

case the constraint approach fails to find a feasible path, a last attempt is

made before the user is notified about the failure of the execution. During

simulations, it was observed that most situations where no feasible path was

found generally involved a high number of goals, usually horizontally distant

from each-other. In this context, the final attempt, hereinafter referred as

two-steps solution, consists in separating the goals horizontally, creating two

sub-divisions of the map, here called west and east. The whole core routine

is then re-applied, now on the two separated lists of goals generated. The

main routine can be observed in Algorithm 5.

In the main routine, firstly, the goals are sorted and the core routine is

executed. The resulting trajectory is then processed and, if a feasible path

is not found, the map is divided into two sections, as it can be verified in

the fourth row of Algorithm 5. The core routine is then called two times in

succession, to compute the trajectory of the two closed trajectories created.

In the fifteenth row the successive repeated nodes are simplified to just one,
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Algorithm 5: Main Routine

1 goal list← sort(goal list);

2 path list, result← Core(goal list, obstacle list);

3 if result = False then

4 West goals, East goals← geo sort(goal list);

5 W path list, W result← Core(West goal list, obstacle list);

6 E path list, E result← Core(East goal list, obstacle list);

7 path list←W path list ∪ E path list;

8 result← True (Two-Steps);

9 if W result = False then

10 path list← E path list;

11 if E result = False then

12 path list←W path list;

13 if W result = False & E result = False then

14 result← False;

15 path list← remove repeated nodes(path list);

16 create txt file(path list);

17 return path list, trees;
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due to the issue previously discussed in the present chapter. It must be

remarked that the result is only considered a failure, or a complete failure,

if both west and east trajectories cannot be computed for determined list of

goals, as it can be seen in rows 13 and 14.

As for the core routine, it can be observed in Algorithm 6.

Algorithm 6: Core Routine

1 if size(goal list) = 1 then

2 back path← reverse(goal list);

3 goal list← goal list ∪ {back path};

4 path, node list, possible paths← Plan(goal list, obstacle list);

5 if path = ∅ then

6 Error: exit

7 problem obs← PolyCheck(path list, Obscoord);

8 if problem obs 6= ∅ then

9 path list, prob paths, problem obs← Constraint Approach()

10 result← True;

11 if problem obs 6= ∅ then

12 result← False;

13 return path list, result;

The core routine essentially executes the planning of all sub-paths and

applies the constraint approach to the closed trajectory found. If one of

the sub-paths is not feasible, i.e. a start-to-goal path cannot be found, the

execution halts and the user is invited to review the selected goals and to

try again. In case the first closed trajectory found already succeeds in the

polygon check, that is it is feasible, naturally the constraint approach is not

executed. Conversely when the constraint approach has to be performed,

if after the execution there are still obstacles inside the formed polygon, in

other words the search for a feasible trajectory failed, the algorithm outputs
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a negative result, which as seen in Algorithm 5, is the trigger to initiate the

two-steps solution. Otherwise, if the constraint approach is successful, the

path and a positive result variable are shared with the main routine at the

end of the algorithm.

Figure 4.11 shows an example were the feasible trajectory was obtained

making use of the aforementioned final attempt. One list of goals compre-

hends all the nodes west of the 20 metres mark, or the centre column of

obstacles, while the second list comprehends the remaining nodes to the

east. Since the two now separated goal lists share the same starting point,

from the operational point of view it is not an issue to separate the two

trajectories and yet confine them in the same execution, or mission, of the

rover. The result would be similar to two independent missions.

Figure 4.11: Example of a feasible trajectory obtained in two steps, i.e. using the map

partition strategy.

In case after all the attempts no feasible trajectory is found, the user will

be notified and advised to either try again or to choose different goals. Since

the trees for every sub-path are random and the success of the geometric ap-

proach depends on finding a combination of sub-paths that does not encircle

an obstacle, it can occur that a combination is not found, even though it

might exist in the specific execution. Although the routines were written to
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prioritise promising sub-paths and increase the number of combinations at-

tempted, given the great number of possible paths per sub-path computed,

to try every possible combination would be computational demanding and

impractical. Among the additions to foster the look for a feasible combin-

ation, it is the consecutive reshuffling of the order of the sub-paths being

examined, as it can be observed in Algorithm 1.
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PATH
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OBSTACLE

END

RE-PLAN

POLYGON
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NO DIVIDE
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NO
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Input: 
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Figure 4.12: Simplified flowchart of the main and core routines.

4.4 Simulation Results and Performance Analysis

Following the development of the motion planning for dynamic environments

with support to cable-imposed constraints, simulations were made to assess

first and foremost the validity of the method, i.e. if the herein proposed

method is effectively working for an adequate range of situations and, more

importantly, if it is reliable. Subsequent tests evaluated the performance

of the method as well as compared the RRTX algorithm with the RRT* in

terms also of performance for different scenarios.

Naturally, through the different phases of the development of the al-
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gorithm and its routines, countless simulations were made to examine its ex-

ecution and thus implement corrections and improvements. The major two

examples of the aforesaid were described anteriorly in the present chapter,

concerning the branch deletion problem and the self-intersecting polygons

problem. The tests presented in the following sections, however, were per-

formed using the up-to-date version of the program. Throughout the tests,

especially the simulations, repeatability was prioritised in order to obtain

robust data expressing the average behaviour of the method for a wide range

of situations, and with such data, evaluate the performance and draft the

possible limits of operation of the rover with respect to the planning.

4.4.1 Simulations

For the first test after the completion of the algorithm, complete trajectories

for randomised goal points were computed. The number of goals initially

ranged from one to five goals, or two to six sub-paths, later expanded to nine

goals, or ten sub-paths, when it was verified that the program was able to

handle such number without a drastic loss of its performance. As the number

of goals increases, naturally the difficulty of the task increases accordingly,

which was perceived through a higher number of two-steps solutions in com-

parison to the executions with less goals. From that, it can be taken that

the limit for operation is not necessarily of nine goals, but the value was

taken as the maximum for the present tests due to presenting a high dens-

ity of points, considering the size of the map used, a considerable level of

difficulty for the motion planning algorithm and due to characterising the

round number of ten sub-paths in the trajectory.

More importantly, during the tests absolutely no case of false positive

was verified, confirming that the corrected version of the geometric approach

is indeed reliable. Regarding the map utilised, for comparison purposes the

same map applied in [15] was also used for the tests, being it the map
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Figure 4.13: Example of a successful execution with five goals.

representing the subfloor of a house with dimensions 38× 48 metres and 12

columns distributed in four rows of three columns each. The map can be

observed in Figure 4.13, which displays an example of a simulation with a

successful result. On the top of the figure it can be seen the status of the

result as well as the time taken to compute the path in seconds, in this case

94.34 seconds approximately, or 1 minute and 34 seconds.

To better grasp the behaviour of the algorithm, successive tests were

made with one, four and nine goals. In these simulations, the success rate,

computational time and simple cost, i.e. the length the rover would traverse

with the computed trajectory, were registered over 100 samples. The results

can be observed in the following sections.

Single Goal Trajectory

The first batch of simulations was performed with a single goal, randomly

positioned in the free area of the map. Since the return path from the goal

position, that is from goal to start, is simply the mirrored points from start

to goal, there is no need for the constraint approach and thus, such routines

are not activated. Consequently, the average time of execution reflects the

average time of execution per sub-path for the motion planning algorithm,
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Figure 4.14: Single goal execution with random goal point.

Figure 4.15: Violin plot of the time for 100 single random goal executions.

not considering the constraint approach. Figure 4.14 shows a single goal

execution, with the goal being decided randomly.

As it can be seen in the violin plot of Figure 4.15, the average time of

execution is approximately 5.8 seconds. As aforementioned, this corresponds

to the general average time of a sub-path computation. From the violin plot

in Figure 4.15, it can be seen that the time does not have a great variance,

oscillating for this set of samples from 3.97 to 8.18 seconds.

The second group of single goal simulations were made with a fixed goal
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Figure 4.16: Single goal execution with goal point at (32, 42).

Figure 4.17: Violin plot of the simple cost for 100 single fixed goal executions.

located at (32, 42), being 50 metres apart from the start point, again defined

at (2, 2). The average time of execution was approximately 6.04 seconds,

therefore in accordance with the previous experiments.

The average simple cost of the path is approximately 51.59 metres, which

shows that within a certain range of tolerance, the algorithm finds feasible

trajectories close to the unfeasible optimal one, in this case a 50 metre

straight line form the start point to the goal.

The Figure 4.17 displays the violin plot presenting the average value of
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Figure 4.18: Violin plot of the time for 100 single fixed goal executions.

the cost and its distribution. Considering the minimum value of 50.01 and

the maximum value of 57.57, the cost does not present a great variation

for the single goal example and its distribution is higher near the minimum

value, as expected from an approximately optimal algorithm. Figure 4.18

shows the violin plot for the execution time referent to the same samples.

Compared to Figure 4.15, the behaviour presented in Figure 4.18 is consist-

ently similar.

Four Goals Trajectory

From two goals on, the constraint approach routines start being applied.

Therefore, the first set of tests here presented to consider the behaviour of

the geometric approach developed is the simulation with four goals, or five

sub-paths. First, four random goals were positioned in the free space of the

map. In case a feasible path was not found, as described in more detail in

the previous section, the map was equally divided in two partitions, and

the sub-paths and geometric approach recomputed. Figure 4.19 depicts an

example of an execution were a feasible path was found without the need of

map partition.
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Figure 4.19: Four goals execution with random goal points.

Figure 4.20: Four goals execution with random goal points and two-steps execution.

Conversely, Figure 4.20 presents an example were the map partition was

necessary and ultimately guaranteed a feasible result. As stated before, this

approach is herein referred as two-steps, given that it is characterised by

the second and last attempt, or step, to find a feasible trajectory in the

algorithm, as well as it produces two distinct feasible trajectories, notwith-

standing within the same mission.

Regarding the success rate of the algorithm, as can be seen in Figure

4.21, 80% of the executions resulted in success without requiring the two-

steps solution, 20% were successful making use of the two-steps solution and
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Figure 4.21: Success rate of four goals execution with random goal points.

no execution resulted in failure, that is in no feasible path being found.

The violin plot of the execution time displays an interesting character-

istic, which is the minimum value for the time equals approximately the

number of sub-paths computed times the shortest times for a single goal ex-

ecution. That is a reflex of the executions where a feasible path was either

found with the need for the measures applied in the geometric approach,

i.e. the first path found was already feasible, or a feasible path was quickly

found amidst the available sub-paths and no further search or re-span of the

tree was necessary. The aforementioned violin plot can be seen in Figure

4.22, where the minimum time computed was 24.11 seconds, the maximum

153.56 seconds and the average, 53.29 seconds.

The second group of simulations performed with four goals was charac-

terised by four fixed goals instead of random ones, although the four goals

used were selected randomly prior to the first execution. The goals utilised

were located at (4, 19), (21, 2), (17, 20) and (33, 44), as can be seen in Figure

4.23 through an example of a successful execution.

The success rate can be observed in Figure 4.24, with 89% of success

results and 11% of two-steps results. Such results strongly show the random

characteristic of both the path-planning and the geometric approach, i.e.
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Figure 4.22: Violin plot of the time for 100 four random goals executions.

Figure 4.23: Four goals execution with fixed goal points.
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Figure 4.24: Success rate of four goals execution with fixed goal points.

for the same four goals 11% of the samples were not able to find a result on

the first attempt of the algorithm, resorting to the two-steps one. Hence,

whether the feasibility of the trajectory for a given number of goals can be

attained or not does not necessarily depend, or rather it does not depend

only, on the locations of the goals, even though their position indeed play

a major role in determining the difficulty of the task imposed and thus

influence in the success to two-steps ratio.

Although for the case of four goals it is not trivial to derive the optimal

trajectory, even if it is unfeasible, the violin plot of Figure 4.25 is useful

to stress once more the approximately optimal behaviour of the algorithm,

as it can be observed by the higher distribution of results near the lower

extremity of the plot, i.e. the minimum value registered.

Regarding the execution time, Figure 4.26 shows that the results for this

configuration of goals heavily tend to shorter times of execution. The success

rate of the samples and the distribution of results presented in the plot of

Figure 4.26 corroborate to the perception that the goals picked configure a

low difficult task, for example.
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Figure 4.25: Violin plot of the simple cost for 100 four fixed goals executions.

Figure 4.26: Violin plot of the time for 100 four fixed goals executions.
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Figure 4.27: Nine goals executions with random goal points.

Nine Goals Trajectory

The last test group to be simulated was characterised by nine goals, defined

randomly in the first set of 100 test and fixed in the second set. Computing

ten sub-paths is notably more demanding for the geometric approach, since

a greater area is generally covered, more obstacles are prone to initially be

located inside the polygon area and consequently more available sub-paths

must be analysed and matched and, in case no feasible path is found, be

re-planned according to the strategy presented in this chapter. Figure 4.27

show respectively an example of an execution where the feasible trajectory

was found in the first attempt and an example with the two-steps approach,

both for randomly defined goals.
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Figure 4.28: Success rate of nine goals execution with random goal points.

As it can be observed from the bar graph in Figure 4.28, the success rate,

54%, and two-steps solution rate, 45%, are more balanced, due to the higher

complexity of the tasks. Moreover, differently from the previous simulations

here presented, it was verified a 1% rate of failure, which means that no

feasible path was found, after both attempts.

Regarding failures, two remarks are significant. The first concerning the

two-steps solution, that can naturally result in one of the sub-trajectories

feasible and another unfeasible. Such cases in the present set of simulations

comprehend approximately 35.56% of the two-steps results shown, the abso-

lute majority corresponding to feasible trajectories for the west goals only,

or the goals located in the left half of the plane, on account of the start

point being located in such partition, at (2, 2). To verify such assertion, a

second set of simulations was made with the same conditions, except for

the starting goal, placed instead at (20, 2). The simulations showed 69% of

direct successes and 31% of two-steps solutions, with no complete or par-

tial failures registered, which stresses the influence of the starting position

over the results obtained. The average and maximum execution times also

presented a slight difference, with a reduction of 30 seconds on each. It is

also important to highlight that the partial failure does not mean that the
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remaining goals characterise an unfeasible goal list, just that it must be re-

computed, preferably as a single mission, or broken down in more missions

with less goals.

The second remark concerns the complete failure, which similarly to the

aforementioned failure in the two-steps does not imply that the goals to

which the algorithm fail to find a feasible trajectory are unfeasible goals.

Due to the difficulty level and the intrinsic randomness of the process, a

simple recomputation can lead to a feasible trajectory, either in a single

or two-steps solution, or if the failure persists, the mission can be divided

in simpler missions and recomputed, since it is notable that the level of

complexity swiftly decreases with the number of sub-paths to be computed.

With respect to the execution time, the same behaviour observed in the

previous simulations regarding the minimum time values registered is veri-

fied. As the violin graph in Figure 4.29 exposes, the minimum computation

time, 51.54 seconds, is close to the average of a singe path computation times

the number of sub-paths computed, in this case ten. The overall behaviour,

however, is slightly different, since due to the increase in the complexity, the

distribution is more widespread, or in other words, more executions take a

longer time to find a feasible trajectory than in comparison with the previous

simulations with one and four goals.

The last simulations performed were nine goals executions consider-

ing fixed goals randomly defined beforehand. The goals were positioned

at (8, 13), (5, 24), (28, 2), (31, 15), (16, 31), (27, 23), (6, 36), (35, 12) and

(31, 36), as can be seen in Figure 4.30. The first example in the figure

presents a direct success, the second a two-steps solution and the third, an-

other two-steps solution except that in this case achieved within a longer

time and with a different and more complex trajectory as a result, in order

to once more highlight the randomness characteristic of the results.

As it can be better verified on the nine fixed goals simulation results in
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Figure 4.29: Violin plot of the time for 100 nine random goals executions.

Figure 4.31, the difficulty of the task highly depends on the location of the

goals, so in respect to the random goals simulations, the fixed goals simula-

tions may present either a higher number of two-steps results or of success

results depending on the difficulty inherent to the goals chosen. Naturally,

harder tasks also rend the algorithm more prone to failure results, as already

discussed.

For this particular set of goals, the predominant results were two-steps

solutions, totalling 83% of the results, against 17% of direct successes and

no complete failures. Concerning the 83% of two-steps solutions, approxim-

ately 9.64% presented a partial failure, that is one of the two sub-trajectories,

mostly the east and farthest from the starting point one, resulted as unfeas-

ible and hence failed.

The violin plot in Figure 4.32 reinforces the idea of a demanding task.

Differently from the previous simulations, most of the execution here are loc-

ated near the upper extreme of the graph, indicating that the majority of the

computations took a considerable amount of time and involved searching for

possible alternate paths, re-span of the random tree for many sub-paths and

the repetition of these procedures in case the two-steps routine is executed.
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Figure 4.30: Nine goals executions with fixed goal points.
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Figure 4.31: Success rate of nine goals execution with fixed goal points.

The average of the execution time nevertheless is still under 5 minutes, being

in this case 238.78 seconds.

The violin plot for the simple cost of the simulations exhibits a partic-

ularly interesting characteristic, as it can be verified in Figure 4.33. It can

be observed two distinct distributions for the cost, the lower one concerning

the success on the first attempt and the second and more expressive one,

regarding the two-steps results, which inherently are characterised by longer

paths to be traversed and consequently higher simple costs.

Considerations and Remarks

The foremost and main consideration to be done relates to the overall execu-

tion time. It is reported in [15] that the average time of the modified RRT*

algorithm implemented in the rover and described in Chapter 3 is around

5 minutes per sub-path computed. Therefore, for a four goals scenario, for

example, the modified RRT* would take around 25 minutes to find a feas-

ible path. Comparing such execution time with the results herein presented,

considering the worst cases registered, i.e. the maximum execution times,

the RRTX with geometric approach represents an expressive reduction of
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Figure 4.32: Violin plot of the time for 100 nine fixed goals executions.

Figure 4.33: Violin plot of the simple cost for 100 nine fixed goals executions.
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Figure 4.34: Bar graph of the average execution time per number of goals.

90% in the time used for planning the trajectory, rendering it well suited

to deal with both dynamic environments and the cable constraints, at least

with respect to time.

The bar graph in Figure 4.34 provides a general panorama of the execu-

tion time over different numbers of goals, rendering possible to observe the

growth tendency of the execution time as a function of the main operational

parameter. The data being shown corresponds to the average execution time

for each number of goals, from one to nine, for 25 samples of random goal

executions.

Another important remark is related to the routines equipped to handle

the dynamic environment. Although their performance was not explicitly

analysed in the present section, the fact that these routines are used as part

of the geometric approach provided their evaluation. The re-span operation

managed throughout the simulations to add new obstacles and successfully

erase branches, regrowing the three around the imposed virtual obstacles in

search for alternative routes to avoid the existing problematic obstacles. The

execution time of a re-span operation varies from around 8 to 15 seconds,

with outliers close to 20 seconds being registered on rarer occasions. Such
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is the execution time expected and verified when performing experimental

tests with unexpected obstacles being avoided by the rover.

Last remark involves the Raspberry Pi execution of the algorithm. Given

simulations and experiments, the Raspberry Pi 4 installed in the rover to

substitute the previous hardware presented an adequate execution time, al-

beit slower than the simulations on the PC, as expected. The average com-

putational time on the Raspberry Pi is around 1.5 times the computational

times here presented, that is for the worst cases where the algorithm took

around 6 minutes and 30 seconds to find a feasible trajectory, the Raspberry

Pi execution takes around 10 minutes, for example. Such characteristic only

affects the Raspberry Pi single operation mode presented in the Chapter 5,

since this mode of operation is the only one where the planning is computed

on the Raspberry Pi and not on the PC. More strict limits of operation can

be determined for this mode of operation in case it is necessary to assure an

execution time close to 5 minutes, for instance.

4.4.2 RRTX Performance Comparison

In order to attest the performance of the RRTX algorithm, base of the

method herein presented, in comparison to the staple RRT* algorithm, base

of the previous method, a series of simple tests were made. An additional

motivation was also the comparison made in [27], where it is said that the

amortised computational cost of the RRTX is similar to those of the RRT

and RRT* algorithm, notwithstanding the tests here performed did not

intend to evaluate the amortised cost.

The tests were characterised by simple point-to-point path computations

in different maps, where the overall time and the time per iteration were re-

gistered and compared. With such data, it is possible to evaluate how the

growth of the tree affects the execution time of the algorithm, which con-

sequently aids in defining execution parameters for the operation. Moreover,
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Figure 4.35: The maps used for the performance analysis.

the simple cost of the solutions found and the number of nodes computed

for a fixed number of iterations were also registered as a mean to better

assess the behaviour of each algorithm.

The maps used were based in [50], where reference maps are presented

with the specific purpose of motion planning algorithm testing. Three maps

were used, the original map representing the subfloor where the rover must

operate, a simplified labyrinth and an open map with randomly positioned

obstacles with different sizes. For each map, a fixed number of iterations was

defined and 100 samples were collected from each algorithm. Afterwards,

the results were compared. Figure 4.35 shows the three maps used for the

tests in the performance analysis. The same maps can be observed in greater

detail in Appendix A.

Initially, the RRTX exhibited a highly exponential tendency of growth

in computational time as the number of iterations, and thus the tree would

grow as well, while the RRT* displayed a linear pattern of growth, as ex-

pected. Upon close inspection, it was observed that one of the routines to

reinforce tree integrity, mentioned previously, was causing the exponential

behaviour due to being called and scanning the growing tree during each it-

eration. The structure of the algorithm was then reviewed and fixed to not

incur in overly expensive computational operations, while still reinforcing

the integrity of the tree.

After the repetition of the tests, the RRTX program written for the

present work still presented an exponential growth, nonetheless significantly
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diminished compared to the prior version, in such a way that for a range of

iterations the performance response of both algorithms is considerably close.

Overall, however, the RRT* still presented a quicker response in respect

to computational time and a linear growth with respect to the number of

iterations. Regarding the other data collected, the behaviour of the two

algorithms, as expected from two approximately optimal methods, is rather

similar.

Figure 4.36 displays three violin plots corresponding to the comparison

between the iteration time of the RRTX and the RRT* motion planning

algorithms for the three aforementioned maps. As it can be observed, the

iteration time for the RRTX algorithm presented a higher value on average

if compared to the one of RRT* across the three graphs. However its distri-

bution lies towards the lower extremity of the graphs, which along with the

general low iteration times observed, grant a feasible and similar operation

with respect to RRT* for a certain maximum number of iterations.

For the sake of brevity, more graphs containing the data and results here

described can be observed in Appendix A.
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Figure 4.36: Violin plots of the iteration time for RRTX and RRT* considering the

three maps used.
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Chapter 5

Device Integration and

Experimental Results

As presented in [15] and reviewed in Chapter 3, the previous operation struc-

ture of the rover implied in the motion planning algorithm being executed

once on the PC, then transferring the resultant path via Ethernet cable to

the Raspberry Pi embedded in the rover who would in turn read the nodes

composing the path and transfer them via SPI communication to the Ar-

duino board controlling the stepper motors. Therefore, it was not required

from the previous operation structure to quickly and constantly exchange in-

formation between the PC and the Raspberry Pi, or in other words between

the planning routine and the movement routine. Apart from the video of

the screen capture of the Raspberry Pi being shared with the PC, the only

data being exchanged was a single text file transferred manually, i.e. with

the direct intervention of the user, through the VNC software.

The current operation structure, however, demands that data be fre-

quently exchanged between the PC and the Raspberry Pi in both directions,

apart as mentioned before from the screen sharing. Not only is necessary

that the trajectory be shared with the movement program, but also that the

position of the rover and obstacles must be shared with the motion plan-
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ning routine so that the path be recomputed according to RRTX dynamic

environment obstacle routines. Preferably, such communication should be

performed without any addition of hardware and in the most automated

way possible, aiming at reducing the role of the user in coordinating the

movement of the rover and thus allowing the user to focus on the super-

vising of the operation and inspection of the structures through the camera

of the rover.

5.1 Device Integration

In this context, three modes of operation were defined for the rover:

• The first being similar to the previous operation structure, where the

user has to manually transfer the files between the PC and the Rasp-

berry Pi.

• The second mode of operation using only the Raspberry Pi to perform

both the planning and the movement and, therefore, not demanding

any transference of files.

• And the third mode creating a shared environment between both

devices such that, similarly to the second mode of operation, the trans-

ference of files is not needed.

5.1.1 Separated Environments Operation

The first mode of operation is characterised by the two devices, the PC and

the Raspberry Pi, operating separately in its respective environments. All

the exchanges of data between the two devices must be mediated by the

user via the VNC software transfer option. Although the transfer time by

itself is irrelevant, it indeed takes a short but relevant amount of time for

the user to select, transfer the data files and execute once more the routines.
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Furthermore it is worth to also remark that the whole process is more prone

to errors.

Regarding the files being transferred, apart from the text file previously

mentioned containing the trajectory, the file being exchanged with the PC

with the purpose of re-planning the path in case of an unknown obstacle

was saved as a .npz file. A .npz file is a binary file that can be written and

read by the NumPy scientific Python library [51] and is capable of storing

several NumPy array structures. Although having the limitation of only

being read with the use of the NumPy library, the .npz files are lighter

and faster to read, as well as reinforce data structure consistency between

different programs communicating to each-other.

In the context of the rover operation, the .npz file contains three arrays,

which are: the position of the rover when an unknown obstacle is found; the

location of the obstacle in the map; the last and next node with respect to

the position of the rover in the trajectory being followed. In the Figure 5.1

it is possible to observe a simplified scheme of the above-mentioned mode

of operation.

.npz

.txt

RPiPC

Plan Move

Figure 5.1: Simplified scheme of the Separated Environments Operation.

5.1.2 Raspberry Pi Single Operation

The second mode of operation, here called Raspberry Pi single operation, is

mainly characterised by the execution of both the planning and movement
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routines inside the Raspberry Pi, delegating to the PC only the monitoring of

the video captured by the camera of the rover through VNC screen sharing.

This mode of operation was made possible only because the present planning

routine, as shown in the algorithm performance analysis in Chapter 4, has

a feasible computational time even when executed on the Raspberry Pi,

which has a reduced processing power. However, it is worth to stress that

the Raspberry Pi embedded in the rover was upgraded, from version 3 model

B+, as presented in [15], to version 4 model B.

For the integration of the planning and the moving routines, a new

routine was written merging the two operations into one single continuous

execution. Thus, all the data exchange is made inside the same program and

no file transfer is needed. Compared to the shared environment approach

there are no relevant advantages, but in case transferring is preferred to be

avoided or the rover must to be run blind, that is, without constant screen

sharing with the PC during the movement phase, the current mode of op-

eration presents itself as a viable option. Figure 5.2 shows the simplified

scheme of the Raspberry Pi single operation mode.

RPiPC Plan

Move
+

Figure 5.2: Simplified scheme of the Raspberry Pi Single Operation.

5.1.3 Shared Environment Operation

The third and last mode of operation is the most advantageous of the three

of them. It allows the user to operate on both devices as one, since all the

routines and files in this mode of operation are located in the same storage
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unit, i.e. the shared environment. Effectively, the storage unit being used

is the Raspberry Pi memory but through Samba [52], a Raspberry Pi im-

plementation of the Service Message Block protocol targeted to file sharing

over a network [53], any file on a predefined folder can be simultaneously

accessed and edited by a device using Windows or Mac OS and with the

proper credentials. It worth to remark that, on both operational systems,

the connection with Raspberry via SMB protocol is native, i.e. no additional

software is required.

Making use of Samba therefore, the routines were adapted in such a way

that they could operate without the intervention of the user. A shared folder

was created where both the files for the motion planning and movement of

the rover were to be allocated. Such programs produce, similarly to the first

mode of operation, a .txt and a .npz file whenever a new path was generated

or the movement of the rover started respectively. The two routines also wait

in stand-by mode until a new .npz or .txt is generated, respectively when

an unexpected obstacle or the end of the trajectory is reached and when the

path is re-planned after encountering an obstacle.

This mode of operation, in similar fashion to the second mode of op-

eration here presented, requires only for the user to introduce the initial

parameters of the execution, such as start point, goal points and initial at-

titude and to execute the routines in their respective devices. After both

programs are started, the planning being executed on the PC and the move-

ment one being executed on the Raspberry Pi, the rest of the operation

proceeds autonomously until the end of the trajectory is reached, includ-

ing the possibility of unexpected obstacles. Figure 5.3 presents a simplified

scheme of the shared environment mode of operation.

There were two main concerning points regarding the shared environ-

ment operation. The first was whether using the Ethernet cable for the

PC-Raspberry Pi communication via Samba would interfere with the VNC
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Figure 5.3: Simplified scheme of the Shared Environment Operation.

software being used to share the screen and control the Raspberry Pi through

the PC. The second, whether synchronisation problems could occur while

two programs are generating files, standing-by and reading the newly gener-

ated files, as errors could occur in case one routine tries to read a file while

it is being re-written, or if it happens to read an outdated version of a file

and derive wrong instructions from it.

The initial operation tests quickly showed that the first possible problem

was not verified, that is there was no problem in using the Ethernet cable

for both the VNC screen sharing and control function and the Samba shared

environment. The second concerning point was discarded after further oper-

ation tests, when it was verified that the rover had no synchronisation prob-

lems whenever a .npz or .txt was generated and read. Since both files are

light, their writing speed is fast enough to not incur is misreads. Moreover,

modifications were made prior to the tests such that every time a file is read,

it is immediately erased, in this manner avoiding accumulation of outdated

files. In other words, at any given moment there will be either one or no .txt

and .npz in the shared folder.

Finally, experimental tests were conducted to investigate the behaviour

of the method and the three modes of operation in a real-case scenario.

The tests contributed to validate the work developed, but also to acquire

information regarding necessary future improvements and developments.
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5.2 Experimental Tests

The experimental tests constitute an important part of the process of valid-

ation and analysis of the method developed. With the experiments, it was

expected to evaluate the response of the method in the real case scenario,

analyse its actual feasibility and the issues derived from the real application,

possibly neglected during development and simulations. More specifically,

the capability of the rover of moving in a dynamic environment, especially

considering time constraints, and its interaction with the PC according to

the modes of operation defined in the previous section, as well as how the

rover would physically interact with the tether, given that problems in this

aspect are indeed mentioned by [15].

The area utilised for the experiments was a hall with approximately 13

metres of length, 7 metres of width and granite floor. The hall had also two

access points to the electrical network in the floor, initially considered for the

role of obstacles in the simulations, for the sake convenience. A simplified

map of the area as well as a picture taken during one of the experiments

can be observed in Figure 5.4. The rover can also be observed in the lower

right corner.

5.2.1 Problems Encountered

With the start of the experimental tests, it became evident that some of the

previous problems introduced in [15] considerably hindered the capability

of the rover of moving properly and hence performing the tasks designated.

Additionally, new problems not previously mentioned were verified. In a

similar fashion, these problems would affect in some degree the proper op-

eration of the rover and prevent it from achieving the desired results. The

main problems encountered and worth mentioning are the error in attitude

processing, the overheating of the Raspberry Pi, the manoeuvres involving

the rover passing over its cable, and the most grave one, the angular and
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Figure 5.4: Experiments area.

linear errors in the displacement of the rover.

The attitude processing issue caused the rover to misinterpret its own

attitude for certain angle configurations. The most remarkable one was the

180◦ rotation, i.e. when the next point on the list containing the nodes of the

trajectory required an exact 180◦ rotation, to which the rover would interpret

as a 0◦ rotation, that is no rotation, and move ahead instead of revolving

and moving in the opposite direction. Similar situations would occur for

rotation movements such 90◦ and −90◦ rotations. The routine being used to

generate the instructions sent to the Arduino board was composed, rotation-

wise, by a series of comparison statements to define the attitude of the rover

based on the nodes in the path list and, upon review, it was found that the

comparisons did not include a range of situations, such as the ones above-

mentioned. After the correction of such comparisons to include all possible

attitude situations, the problem was considered and effectively verified as

solved. It is worth to remark however that the problem described exposes

the fact that albeit the rover has an IMU sensor, no feedback is provided to

the Raspberry Pi regarding odometry or the attitude of the rover.

The overheating issue was verified after around two hours of continuous
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or nearly continuous operation. After the Raspberry Pi indicated over-

heating through an icon in the screen being shared, the movement of the

rover, most probably due to severed communication with the Arduino board,

becomes either erratic or ceases completely. To mitigate the problem, as

already expressed, the Raspberry Pi was substituted for a newer model con-

taining also heat dissipators and a fan. The power being fed to the system

was also corrected through an adjustment in the DC-DC converter connec-

ted to the Raspberry Pi, providing 5V , since the Raspberry Pi was also

showing the alert sign for low power.

Regarding more general grievous problems, i.e. the tether related issues

and the movement inconsistency, no definitive solution was found and im-

plemented, although for the former a solution was proposed and for the later

some were attempted, while the source of the problems was being investig-

ated. The tether related problems, whereas having a single cause, can be

divided into two, the rotation over the cable and the crossing of the cable

while performing a linear movement. The referred cause for both problems

is the fact that the rover cannot cross, or pass over, the cable, likely due to

a combination of low traction with inadequate wheels for the task. When

striving to do so, the wheels start to slip and the rover moves incorrectly,

losing its proper sense of position, since the localisation of the rover is per-

formed by the computation of its odometry, without any feedback from the

sensors.

The problem of the rotation over the tether, previously pointed by [15],

is characterised by the rover encountering its own tether while attempting

to perform a rotation. One possible solution would be to attach a tail-like

structure in the rear part of the rover without increasing the radius of the

imaginary circle circumscribing the rover, such that the tether is always kept

at some distance from the wheels during rotation. This idea might be seen

graphically in the Figure 5.5. Notwithstanding the proposed solution might
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not eradicate the problem, it might drastically reduce its occurrence and

impact. As for the experiments, during every rotation of the rover, the user

would hold the tether above the rover, so it would not interfere.

Figure 5.5: Sketch of the solution proposed.

One of the greatest impediments to the proper testing of the algorithm

developed was the fact that during linear movement, the rover presents

itself as not able to cross over its own tether. As it can be seen from figures

previously shown in the previous chapter, the feasible trajectories required

for the rover to pass over its own cable, typically many times per mission.

Moreover, [15] describes that upon testing in floors with more dirt or sandier

grounds, the rover displays slippage, which as already mentioned is rather

problematic. The first and foremost solution to be attempted is to change

the wheels of the rover to off-road wheels that offer a higher grip. If such

solution fails to extinguish the problem, a more powerful motor must be

sought.

Finally, the issue that more severely affected the performance of the

rover was the deviation in the movement of the rover due to the inconsistent

operation of the motors. The initial lurch, as described by [15], is caused by

the asynchronous activation of the motors, however the experiments point

to more reasons that most probably combine themselves to cause such un-

desired yaw. One of the possible additional factors is of mechanical order,

being it an uneven resistance to rotation in the wheels, i.e. one of the wheels

requiring less effort from the motor to be spun than the other. Another pos-
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sible factor might be related to faulty wiring or other electrical disturbances.

The signal sent from the Arduino board to the driver was verified, but no

anomaly was found, as can be observed in Figure 5.6 where the driver is

receiving pulses, measured by an oscilloscope, corresponding to a rotation

of the left wheel at a constant speed of 10 steps per second.

Figure 5.6: Arduino to driver signal analysis.

To aggravate the situation, a swerve was also observed occasionally at the

end of a point-to-point trajectory, which increases the attitude error of the

rover, as well as a general linear deviation, that is the rover was not moving

linearly the amount requested. The average angular displacement measured

is around 2.5◦, which matches the value presented by [15], nevertheless the

angular displacement proven not to be negligible as previously proposed,

despite it being small. Even if the other two forms of displacement were

not present, the accumulation of small errors on every point-to-point move

would incur in drastic errors in the final position and even in the obstacle

avoidance, considering that every trajectory consists of many point-to-point

segments. With the inclusion of all perceived forms of displacement error,

the movement of the rover is rendered completely unreliable. Figure 5.7



86 Chapter 5. Device Integration and Experimental Results

shows an illustration of the movement of the rover considering in the upper

part only the initial lurch of 2.5◦, in the figure increased to 5◦ for better

visibility, and in the lower part all the displacement errors observed.

Figure 5.7: Displacement error illustrated.

It is worth to remark that the rover exhibited, during the experiments,

an average linear misplacement of minus 20 centimetres. Figure 5.8 exhibits

a picture taken after a three metres straight movement experiment. The

orange dot marks the precise position where the rover should have ended

considering its starting point, and the orange dashed line demonstrates the

trajectory that ideally should have been followed.

Among the attempts of solution for the problem, it can be remarked the

inspection and alteration of the low-level program, the alteration of the odo-

metry system used and the inspection of the power supply and conditions of

operation of the driver, as already partially mentioned. Of these attempts,

the only one to show visible results was the alteration of the odometry. The
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Figure 5.8: Straight movement experiment showing the displacement error.

low-level with alternated activation and deactivation of the motors and with

simultaneous control of the motors did not present any difference concern-

ing the behaviour of the rover. In the same fashion, the driver investigation

lead to no useful results, except from the realisation that in certain occa-

sions the driver seems to have overheated, due to the melting marks on the

breadboard. Some of the melting marks can be see in Figure 5.9.

The alteration of the odometry was made by using the step counter,

intrinsic to the Arduino stepper library being used, to control how much

the motor should move, instead of the Time-of-Flight TeraRanger sensor

previously being used for the odometry, which albeit considerably precise,

is prone to small variations and errors, especially if considered the data

acquisition update rate in the Raspberry Pi routine. The TeraRanger sensor

is currently being used therefore to assess whether the rover finished the

movement sequence, so another movement instruction can be sent to the

Arduino. This is done by comparing two successive measures of the sensor
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Figure 5.9: Driver relative to the left motor.

within an interval of around 2.5 seconds and if the measures are equal, given

a small threshold, the rover is considered as stopped and the subsequent

instruction is sent, if it is the case. The same routine is responsible for

checking the path ahead for unexpected obstacles, however with a higher

update rate, with a check every 0.1 second. Whenever the sensor registers

that its lower limit of 0.5 metre was reached, the rover stops and the new

obstacle ahead is added to the obstacle list, followed by the appropriated

re-plan routines of the RRTX method.

The odometry being performed by Arduino in conjunction with the Ter-

aRanger sensor culminated to more precise linear movements, yet the initial

and final lurch are still present. The use of the sensor for obstacle identific-

ation also proved to work satisfactorily, however it requires improvements

especially regarding the adequate estimation of the size of the obstacle, since

for bigger obstacles the approach presents risks of collision due to undersiz-

ing of the obstacle in the perspective of the routine.
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5.2.2 Operation Assessment

Notwithstanding all the aforementioned issues, simple tests were made to

verify the operation of the method as a whole and its interaction with the

other systems, as well as the overall system integration in the context of the

three modes of operation. Primarily, for simple straight trajectories, that is a

single goal whose goal lies directly ahead of the starting goal, the movement

and connection of the devices for the separated and shared environment

modes of operation were analysed. It was observed that successive repeated

goals in the path list introduce a delay in the operation, given that the

rover has to read the node and process the information that no movement

or rotation should be performed. Successive repeated nodes occur because,

as expressed in Chapter 4, the starting point of a sub-path in the motion

planning is defined as the goal of the previous sub-path computed, even for

single goals. Thus the path output of the algorithm was adapted to remove

such repeated goals, rendering the operation more smooth. For the tests, a

single goal task was then comprised by three goals, the starting point, the

goal point and lastly the starting point once more. Furthermore, the goals

were positioned always around three metres from the start point, to limit

the deviations and facilitate the experiments.

Figure 5.10 presents an example of the referred experiments, with the fol-

lowing path re-planning performed after the unexpected obstacle was iden-

tified.

The separated mode of operation, apart from the inconvenience of trans-

ferring the files manually, worked as expected. The shared environment

mode, a novelty for the rover, also responded superbly, guaranteeing a fully

automated operation with the supervision of the user and no signs of syn-

chrony problems. After evaluating the behaviour of the method for simple

single goal trajectories, a small box-like object was placed on a position

between the starting point and the goal point, which for both modes con-
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Figure 5.10: Example of an experiment sample for a straight movement.
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sidered produced satisfactory results, i.e. the obstacle was recognised, pro-

cessed by the RRTX with constraint approach and thereafter the new path

was processed by the Raspberry Pi, which proceeded to send the new move-

ment instructions to the Arduino board. Since a single goal was being

computed and later re-planned, the whole process took seconds only, in ac-

cordance to the results previously presented in Chapter 4. Subsequently, the

Raspberry Pi single mode of operation was tested under the same circum-

stances, presenting thus similar successful results, with the only difference

of a slightly higher time of operation, which for a small number of goals is

a negligible difference.

The last test was similar to the previous one, with the exception that

one goal was added, totalling two goals forming a triangular trajectory. The

three modes of operation were able to plan the path, start the movement,

identify the obstacle, update the trajectory and resume the movement to-

wards the next goal and after it return to the starting point. The whole mis-

sion elapsed in an acceptable time. Although the results were overall positive

for the experimental tests, more demanding experiments are absolutely ne-

cessary, not merely to validate the method developed in circumstances more

similar to the real-case scenario but as well to foster the perfecting of the

method with the aim of achieving more robustness and reliability.

In Figure 5.11 it is possible to observe an experiment sample with two

goals forming a triangular trajectory, instead of a straight movement. Sim-

ilarly to the previous example, the path is re-planned after the unexpected

obstacle was correctly identified.



92 Chapter 5. Device Integration and Experimental Results

Figure 5.11: Example of an experiment sample for a two goals movement.



Chapter 6

Conclusion

The fields of mobile robotics for dynamic environments and tethered mo-

bile robotics are both challenging areas, object of countless researches in

the latest years, but the intersection of the two topics remains scarcely ex-

plored. In this context, the present thesis aimed in developing an algorithm

capable of managing both situations, the dynamic environment and the

tether imposed constraints on the mobile robot. The former was tackled by

the existing dynamic motion planning algorithm RRTX , written in Python

and adapted for the purposes of the thesis, and the latter was approached

by a method herein developed which makes use of intuitive notions and a

geoprocessing Python library to quickly evaluate the feasibility of computed

paths. The entirety of the work completed was intended for the specific

implementation in a tethered rover developed for infiltration inspection in

the subfloors of SAE units built in Amatrice, Italy.

Throughout the development of the work, many hindrances were en-

countered, from the implementation of the motion planning to the con-

straint approach to the experimental tests performed. Nevertheless, such

hindrances were by-passed, fixed or adapted such that a reliable and effi-

cient method for the dynamic planning of a tethered rover was achieved.

Simulations were accomplished to assess the performance of the algorithm
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on a range of operation scenarios and the execution time, success rate and

cost of the solutions were evaluated.

The data collected point to a fast algorithm suited for the dynamic envir-

onment to which the rover was developed, with a success rate of effectively

100% and a reduction in execution time of 90% if compared with the previ-

ous algorithm implemented. Such progress guarantees also a higher limit of

operation with respect the number of goals, once time ceases to be a hard

constraint on the operation. Albeit the maximum number of goals utilised

in the simulations presented in this thesis was set to nine goals for conveni-

ence, two more than applied by the previous algorithm, it does does not

reflect the maximum limit of the method, remaining to be defined by the

time and complexity constraints of the mission stipulated by the user.

The communication system of the rover has also been improved, hence-

forth including more modes of operation, with emphasis on the shared en-

vironment mode, and therefore expanding the possibilities of the rover re-

garding its functionalities. Principally, it must be highlighted the significant

improvement of accomplishing a method capable of not only managing the

tether constraints efficiently, but also equipped to handle dynamic envir-

onments, not contemplated in the previous algorithm. The experimental

tests however were not enough to analyse thoroughly the performance of

the method in the real-case scenario, being only capable, due to the limita-

tions imposed by the movement issues of the rover, to verify if the algorithm

is operational and test the different modes of device integration.

6.1 Future Developments

The main future development of the current work is concerning the hard-

ware and low-level software of the rover. As presented in Chapter 5, many

were the problems faced regarding the movement of the rover, being required

therefore a full review and improvement of the hardware and low-level soft-
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ware such that problems such as the displacement errors, lack of motor

traction, inadequate wheels and cable crossing when rotating cease to ex-

ist and the rover succeed to move smoothly as necessary. The sensors and

wiring of the rover must also be contemplated in the review, such that the

rover can be better equipped for the inspection to which it is destined.

To conclude, the final outcome attained is a functional algorithm pre-

pared to and efficient in addressing dynamic environments with tether re-

lated constraints. Modifications must be made in the rover and more ex-

perimental tests performed to render the rover fully prepared to be safely

deployed in real missions.
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Appendix A

Performance Comparison

In the present appendix, more details regarding the comparison carried out

between the RRTX and the RRT* are provided. More precisely the iteration

time comparison between the two algorithms is deepened in respect to the

brief discussion made in Chapter 4 and the specifications of the samples col-

lected is described. The performance comparison served its purpose of better

understanding the behaviour of the algorithm chosen for motion planning,

investigating its viability and defining its internal operational parameters.

A.1 Test Description

As stated in Chapter 4, three maps were used to perform the point-to-

point, i.e. single goal, executions used to evaluate the iteration time and cost

efficiency of the RRTX and RRT* algorithms. The first map utilised was

the same map applied for the simulations of the routines developed herein,

representing the subfloor for which the rover was designed to inspect. The

second and third maps were derived from [50], which proposes ideal maps

to test the performance of motion planning algorithms. The former was

drawn as a simple labyrinth map and the latter, an open map with bigger

dimensions in comparison with the first two and multiple different sized
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obstacles. It can be observed in Figure A.1, Figure A.2 and Figure A.3

respectively the three maps here referred.

Figure A.1: First map used for the performance analysis.

Figure A.2: Second map used for the performance analysis.

Regarding the execution parameters, as for the simulations in Chapter 4,

100 samples were collected for each algorithm and map. Start and goal pos-

itions were kept constant throughout the simulations, as well as operational

parameters such as expand distance and maximum number of iterations.

Since the parameters employed by both algorithm are very similar yet not

equal, trivial adaptations were necessary. Remarkably, the radius used in

the listing of the near nodes to a particular node in the tree, and also for the

culling neighbours process in the RRTX , is an arbitrary value in the RRT*
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Figure A.3: Third map used for the performance analysis.

routine while in the RRTX it is computed through the Lebesgue measure

and the estimated available free space in the map. When properly set, nev-

ertheless, the values virtually coincide.

Another relevant parameter is the number of iterations, crucial to in-

vestigate the iteration time. For the first and third maps, the algorithms

were configured to execute 1000 iterations, which is notably beyond the ne-

cessary to find successful path in the referred maps, yet ideal to evaluate the

growth, if there is any, of the computational time while the tree spans and

increases in number of nodes. For the second map, due to it being slightly

more demanding for both algorithms, the maximum number of iterations

was set to 1500 iterations. Furthermore, the success rate for this map was

also registered, while for the other two maps this measurement was proven

unnecessary due to a 100% success rate by both algorithms.

A.1.1 First Map

The first map, being the one that simulates the work environment of the

rover, was the most significant one in terms of analysis. The starting point

utilised in the map by both algorithms was placed at (15, 2.5), while the

goal at (25, 40). As expected, especially considering the high number of it-
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erations and overgrowth of both trees, the average cost of the paths found

is approximately the same and considerably close to the optimal solution,

with a error margin of less than 10%, as was also observed in the simu-

lations presented in Chapter 4. Regarding the overall computational time

taken to finish the 1000 iterations, the average for the RRTX corresponded

to approximately 31.51 seconds, while the RRT* registered 22.04 seconds.

The most expressive result can however be observed in Figure A.4, which

represents through plotted points the average time employed to compute

each one of the 1000 iterations, considering the 100 samples executed. Such

graph complement the first graph shown in Figure 4.34.

Figure A.4: Iteration time over number of iterations for the first map.

As it can be observed by Figure A.4, the RRTX algorithm in green,

presents a slight exponential tendency of growth, while the RRT* presents

a linear, almost constant, tendency. Below 700 iterations, nonetheless, the

behaviour of the two algorithm can be considered substantially close.

A.1.2 Second Map

The second map, as already stated, presented itself as a more difficult task

for both algorithms. Upon gathering and analysing the data, it was verified
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that, for the parameters set for both algorithms, only 44.62% of the RRTX

executions were successful, against 46.18% of the RRT* executions, which

once more indicates a fairly similar behaviour by the two motion planning

algorithms. The costs were also similar, with the RRTX only marginally

more efficient, reinforcing the characteristic of approximate optimality ob-

served on both algorithms in the previous test. Concerning the overall time,

the RRTX in the present test displayed a significantly greater computational

time, of nearly two minutes, while the average time for the RRT* remained

close to 30 seconds. Figure A.5 shows the plotted points regarding the iter-

ation time for second map test.

Figure A.5: Iteration time over number of iterations for the second map.

It is worth to note that only the executions where both algorithms were

successful were registered and used for the data analysis, i.e. all the data

utilised for the computation of the average values of cost, overall time and

iteration time refers to 100 successful executions, obtained out of 511 at-

tempts. Regarding the behaviour observed in the graph, the discrepancy

between the RRTX and the RRT* is considerably more pronounced, albeit

below 600 iterations the behaviours are relatively close.
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A.1.3 Third Map

Finally, the last test performed applied the map presented in Figure A.3.

The obstacles in the map were generated randomly, however the same map

was employed for every sample and to both algorithms. The general results

obtained from the test were comparable to the ones obtained from the test

with the first map, except that the computational time for the RRTX in the

present example is, on average, six times greater than the one from RRT*.

The two of them are, however, significantly small, with RRTX presenting an

average time of 12.24 seconds while the RRT* presents 2.14 seconds. The

time per iteration for this test can be observed in Figure A.6.

Figure A.6: Iteration time over number of iterations for the third map.

From the Figure A.6, it can be observed that the iteration time values for

both algorithms are moderately smaller than the ones presented in Figure

A.4 and Figure A.5. Moreover, the difference between the two tendencies is

more accentuated, insomuch that maximum value to which the behaviours

of the two algorithms is sufficiently close is smaller, around 500 iterations.
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A.1.4 Conclusion

Considering the results attained with the tests and the analysis performed,

it can be concluded that the behaviour of the RRTX algorithm used in this

thesis, despite being different from, i.e. less computationally efficient than,

the RRT*, is sufficiently close to it under a certain limit of operation, of

about 600 iterations. This limit was applied to the final version of the code

and is implicit in the results presented in Chapter 4. Since a description

of the algorithm complexity compared with the RRT* supported by data is

not available on [27], only theoretical and qualitative descriptions, it remains

uncertain whether the exponentiality of the results is a consequence of any

internal routine written for this specific thesis but not present in the original

algorithm, as it was the tree integrity enforcer routine previously removed,

mentioned in Section 4.4.2. Further investigation in this sense may be ne-

cessary for a better understanding and improvement of the algorithm, with

the goal of achieving a more robust, efficient and reliable dynamic motion

planning routine.


