
Politecnico di Milano
Department of Aerospace Science and Technology

Doctoral Programme in Aerospace Engineering

AI-augmented Guidance, Navigation and
Control for Proximity Operations of

Distributed Systems

Doctoral Dissertation of:
Stefano Silvestrini

Supervisor:
Prof. Michèle Lavagna
Tutor:
Prof. Francesco Topputo
Coordinator:
Prof. Pierangelo Masarati

Year 2020 – Cycle XXXIII

Ad Alberto.

Copyright © 2017-2020, Stefano Silvestrini

All Rights Reserved

Abstract

Future science and exploration missions will implement innovative mission
concepts to embark on daring endeavors exploiting cooperating intelligent
systems. The concept of Distributed Space Systems boosts the achievable
mission objectives due to the flexibility and adaptivity that the system inher-
ently possesses. For instance, large synthetic instrumentation can be built by
dedicated configurations of the system or very close-approach fly-by with small
bodies can be performed; moreover, the single-point failure, typical of large
satellites, is generally avoided in Distributed Systems and Formation Flying
architecture. All these features are achieved at the cost of a significant increase
in the on-board autonomy. Due to the relative distances involved, each agent
composing the system needs to be able to rapidly and autonomously react
to unforeseen events, such as collisions. To this end, it is critical that each
spacecraft is capable of planning, navigating and controlling itself in unknown
or partially-known environment, without ground-intervention.

The research work presented here focuses on the development and testing of a
full Guidance, Navigation & Control system aided by Artificial Intelligence tech-
niques. The enhancement provided by Artificial Intelligence techniques allow
the system to fly in uncertain environments by incrementally learning its math-
ematical modeling. The Thesis develops a number of methods to recover the
underlying dynamics by simply measuring relative state and processing it with
an Artificial Neural Network. This dynamics is then used to plan control action
and enhance the navigation and control synthesis. In particular, three methods
for dynamics reconstruction are developed, together with their mathematical

VII

foundation. The three approaches integrate the Artificial Neural Network at
different levels: from fully integrated, where the dynamics is completely encap-
sulated into an Artificial Neural Network, to partially integrated in which the
network learns either the unknown dynamical accelerations or reconstructs the
unknown parameters of the analytical expression. Such reconstruction scheme
is used in two different planning and control algorithms: Neural-Artificial
Potential Field method and Model-Based Reinforcement Learning. The former
is a fast and light algorithm that easily handles collision avoidance but lacks
of planning; the latter is able to generate plans and control the spacecraft
based on the learnt dynamics. Given the distributed planning architecture,
each spacecraft does not know how the rest of the system is evolving. For
this reason, it has been necessary to develop an AI-based routine coupling
Long-Short Term Memory and Inverse Reinforcement Learning to predict the
behavior of external agents, being either in free-motion or controlled-motion.

The algorithms, when compared to classical methods, showed superior per-
formance and constant increase in relevant Guidance, Navigation & control
metrics (navigation accuracy, maneuvers ∆v, etc.). Finally, in order to in-
crease the Technology Readiness Level of the algorithms, the work presents the
Processor-In-the-Loop testing campaign executed with relevant hardware: a
micro-controller unit and a single-board computer with similar computational
power with respect to flight-hardware. An end-to-end autocoding procedure has
been developed to transition from Model-In-the-Loop simulations to Processor-
In-the-Loop validation. The tests were deemed successful by evaluating the
execution times, resource utilization and achieved accuracy.

The outcome of the Thesis is a complete framework to integrate different
AI-based techniques to enhance existing, well-established, algorithms. The
methodology described here can easily be extended to other mission scenarios,
where the flexibility and adaptivity of the system is critical.

VIII

Acknowledgements

I have always deemed the acknowledgments section as the toughest and most
delicate part of a thesis. It is the hardest because you do not want to miss
anyone. It is the deepest because you would like to express your feelings, to
translate them in words. It goes without saying that I will miserably fail in
fulfilling both requirements, but I will certainly try my best.

The first person I would like to thank is my supervisor Prof. Michèle Lavagna.
Besides being a source of inspiration to become a researcher, I have always
been astonished by her passion and dedication. These are still common
acknowledgements that you may find in many other thesis works: the most
impressive achievement is the success in creating a group, welcoming me from
nowhere and to lay trust in each one of us. This is what makes you an incredible
Professor! Grazie, ad ASTRA!

Undoubtedly, I would have struggled a lot more in my life if I did not have
any special friends supporting me, always.

Pietro: probably the most suitable way to thank you is to tap on your shoulder
yelling a cold: "Grazie". You would appreciate this. Nevertheless, I must at
least mention how much I felt your support throughout the years. It would be
hard to condense our story in one paragraph so I will just point out significant
episodes: pista blandas, duna, ADP for Japan, Scotland, chocolate roll, sofa,
open-wine, socialism, Kaki,...even the keywords are too many. Thank you for
being such a friend!

IX

A special thought to Gianluca and Michela. An everlasting friend who met his
counterpart: a wonderful person. What’s more? Well, you are simply the most
natural and spontaneous support for whichever difficulty one may need to face.
The special bond is shared with your peculiar brother, Begi, who has been my
"Michela" in our unforgettable Poracci in Viaggio endeavors. Vi voglio bene!

A huge virtual hug (hard times!) to my everlasting friends, from Venice and
Milan: I fioi, Lorenzo, Jessica, Marta, Massimo, Stefania, Anna, Alessia and
all the others.

Now, a group of people deserves a dedicated paragraph: ASTRA. It has been
such a great time together and hopefully it will be the same for the next years.
Andrea, the first person I met at Politecnico, the first coffee and the first friend.
You have been such a great wall to hang on in difficult times and mentor in
most of the activities but, above all, a true and unique friend. Thank you!
Luca, what can I say? Being idiot together became our bonding: now I can tell
you, I was almost in tears when you left. It has been simply amazing having
you as a friend in these years and even though you live very far away (Torino)
I know I can always count on you and your van. Bear in mind that we are still
together for the PDA. Indeed, it is time to mention Vincenzo. What a master
and intimate friend: we shared so much in such a short time, one would think
that we should not have stopped...indeed, Bibbia is coming!

Capa, my classmate, you may have considered the idea of killing me throughout
the years but I truly admit that I shared with you deepest fears and best joys.
You are unique, for sure.

JP, my wonderful sherpa, you are the person who changed me the most,
definitely. I would have never spent so much money if had never met you.
Beside jokes and beside work, you have been a true motivation for life. I started
climbing thanks to you, I started skialp thanks to you. Most importantly, I
just had a lot of fun thanks to you. Grazie, so che apprezzi l’italiano. Another
person fell in your trap: Teo. What a special guy! I will never forget you
yelling at rocks and, of course, being the first student I supervised.

Vanni, the one and only Gramsci of DAER. I hardly laughed as much as I did
with you. Honestly, working with you has been great lately. You are a truly
kind-hearted person and I admire you. I admire you because you can solve the
Rubik’s cube in less than two minutes. Certainly, I admire you for thousands
of other aspects, but I prefer to mention only this, since I know I can fully
express myself and be sincere with you. Grazie!

Marghe, you are the one who balanced the group. I can tell you that most of
the projects we did together were successful, on time and exciting...maybe I
should finally give you all the credits! Thank you.

X

To all the others: Bucci, Paolo, Fabio, Pasqua, Brando, ASTRA. Thank you
but I am running out of space.

The doctoral dissertation is the last step of a student academic career. Although
very far in time, I do not want to miss the opportunity to thank my high school
teacher Prof. Del Maschio: you are the one who triggered the learning process,
stimulated my curiosity and motivated me. You embody all the fundamental
characteristics a teacher should have and, in case I will ever have the chance
to teach something, I aspire to do it as you did. Thank you!

The last paragraph of this section is dedicated to the most solid and eternal
bond of my life: my family. Fede, brother, we had the chance to live back
together after years apart and I think this was a critical brick paving the way
to the success of this path. You have been the most genuine support for every
single day of this life, the protective wings under which I could fully develop
myself. It would be hard to mention even a percentage of the joyful moments
together: in engineering terms, it cannot be discretized such continuous flow.
Thank you for helping me grow, think, behave. Together with you, a special
and unique dedication to my parents: the two pillars of my life. Nothing,
literally nothing, would have been possible without your unconditional support.
You will always be my life model. Indeed, you were my first teachers who
simply enlightened me on how to live.

Venezia-Milano,
20.01.2021

XI

Table of Contents

Abstract VII

Acknowledgements IX

List of Figures XVII

List of Tables XX

List of Acronyms XXIII

1 Introduction 1
1.1 Context & Motivation . 2
1.2 The Research Problem . 4

1.2.1 Objectives . 5
1.2.2 Research Questions . 5

1.3 Dissertation Overview . 6
1.4 Bibliographic Disclaimer . 8

2 Background & State of the Art 11
2.1 Uncertain Relative Dynamics . 12

2.1.1 Distributed Systems Relative Dynamics 13
2.1.1.1 Clohessy-Wilthsire Equations 13
2.1.1.2 Nonlinear Dynamical Model of J2-Perturbed Rel-

ative Motion 14
2.1.2 Relative Orbital Elements Parametrization 15

2.1.2.1 Coordinates Transformation 17

XIII

Table of Contents

2.1.3 Bounded Relative Orbits 19
2.1.4 Small Bodies Relative Dynamics 20

2.2 Guidance, Navigation & Control Subsystem 23
2.2.1 Relative Navigation . 24
2.2.2 Relative Guidance & Control 26

2.3 AI-aided GNC . 31
2.3.1 Machine Learning & Deep Learning 31
2.3.2 Artificial Neural Networks 34

2.3.2.1 Universal Approximation Theorem 35
2.3.2.2 Back-propagation Algorithm 36

3 Neural-Dynamics Learning & Navigation 39
3.1 Artificial Neural Network Models for Dynamics Reconstruction . . 40
3.2 Fully-Neural Dynamics Learning 42

3.2.1 Prediction Performance & Comparison: RNN vs MLP . . . 44
3.3 Dynamics Acceleration Reconstruction 47

3.3.1 Algorithm Architecture 47
3.3.2 Radial Basis Functions Neural Network 48

3.3.2.1 Neural Network Structure 48
3.3.2.2 Online Learning Algorithm 50

3.3.3 Adaptive Extended Kalman Filter 53
3.3.4 Application to Spacecraft Relative Navigation 56

3.3.4.1 Observer . 57
3.3.4.2 RBFNN-EKF 57
3.3.4.3 EKF - Nonlinear Propagation 57

3.3.5 Reconstruction and Navigation Performance 58
3.3.5.1 Orbital Scenario 58
3.3.5.2 Disturbance Reconstruction 59
3.3.5.3 Relative Navigation - Nominal Case 61
3.3.5.4 Relative Navigation - Non-nominal Case 64

3.4 Parametric Dynamics Reconstruction 64
3.4.1 The Parametric Identification Problem 64
3.4.2 Hopfield Neural Networks 65
3.4.3 Discrete-time Hopfield Neural Network 66
3.4.4 Gravity Field Identification of Small Solar System Objects 67
3.4.5 Applications to real dynamical environments 70

3.4.5.1 Case Studies: Castalia, Kleopatra and Phobos . 71
3.4.5.2 Binary System Didymos 72

3.4.6 Comparison with EKF-based Parameter Identification . . . 73
3.4.6.1 Filter formulation 74
3.4.6.2 Numerical results and comparison 74

4 Neural-Aided Guidance & Control 79

XIV

Table of Contents

4.1 Neural-Artificial Potential Field Guidance 80
4.1.1 Attractive Potential: Configuration Target 81
4.1.2 Repulsive Potential: Active Collision Avoidance 82
4.1.3 Natural Dynamics: Action Smoothing 83
4.1.4 Neural Control . 83

4.2 Neural-Artificial Potential Field Performance 84
4.2.1 Planar to Along-track . 85
4.2.2 Planar Synthetic Aperture Variation 87
4.2.3 Relative Plane Change 89
4.2.4 Formation Position Swap 91
4.2.5 Comparison . 94

4.2.5.1 Highly Perturbed Environment 94
4.3 Model-based Reinforcement Learning for Trajectory Planning . . . 98

4.3.1 Neural Planning and Control 99
4.3.2 Collision Avoidance Constraint 101

4.4 Model-based Reinforcement Learning Performance 102
4.4.1 In-Plane Maneuvers . 103
4.4.2 Out-of-Plane Maneuvers 106
4.4.3 Collision-Free Maneuvers 106

5 Environment and External Agent Uncertainty Prediction 113
5.1 Forced Dynamics Prediction for Collision Avoidance 114

5.1.1 Inverse Reinforcement Learning 115
5.1.1.1 Feature-Matching Approach 115
5.1.1.2 Inner Loop: Fast Quadratic Programming 117
5.1.1.3 Outer Loop: Unconstrained Optimization 118

5.1.2 Neural-Sequential Trajectory Forecasting 119
5.1.2.1 Long Short-Term Memory Network 119
5.1.2.2 Online Supervised Training 120

5.2 Numerical Test: Results & Discussion 120
5.2.1 Collision Avoidance Algorithms Comparison 122
5.2.2 Sensitivity on Controller Weights 125

6 Processor-In-the-Loop Implementation 129
6.1 Processor-In-the-Loop Simulation Setup 130

6.1.1 Microcontroller Unit . 130
6.1.2 Single-Board Computer Unit 132
6.1.3 Porting Procedure . 133

6.2 Processor-In-the-Loop Validation 135

7 Conclusions 141
7.1 Major Results & Findings . 142
7.2 Recommendations . 145

XV

Table of Contents

Bibliography 147

XVI

List of Figures

1.1 Proximity Operations of Distributed Space Systems. 4
1.2 Overview of the Thesis logical flow. 8

2.1 Derivation of cartesian models of relative dynamics. 14
2.2 Co-moving Local-Vertical-Local-Horizontal (LVLH) frame [2]. . . . 15
2.3 Schematics of the ROE formulation dynamical comparison with

respect to an high-fidelity propagation of the trajectory. 19
2.4 Comparison of the position error of the nonlinear Cartesian relative

dynamics and ROE formulation with respect to the high-fidelity
propagated trajectory. The initial conditions for the nonlinear
model are generated using the linear transformation (left) or the
nonlinear one (right). 20

2.5 Relative bounded orbits in perturbed models 21
2.6 Geometry of the MCR3BP . 21
2.7 Basic interfaces in a traditional GNC subsystem scheme. 24
2.8 Differences between Machine Learning and Deep Learning [43]. . . 32
2.9 Differences between model-based and model-free reinforcement

learning. In space we have deterministic representation of dynamical
model: it is smart to exploit them. Nevertheless, some scenarios
are unknown (e.g. Small bodies) or partially known (perturbations) 33

2.10 Elementary Artificial Neuron architecture. 37

3.1 System dynamics identification: different approaches to reconstruct
system dynamical behavior. 40

3.2 Dynamical reconstruction as a neural network model. 41
3.3 Two-layer MLP for dynamics identification. 44

XVII

List of Figures

3.4 Comparison between NARX, LRNN and MLP dynamical propaga-
tion for Ns = 100 planning steps. 45

3.5 Comparison between initialized (offline) and refined (online) net-
work prediction for Ns = 100 planning steps. 45

3.6 Nonlinear Autoregressive Exogenous Model. 46
3.7 Layer Recurrent Neural Network architecture. 47
3.8 Proposed architecture for the RBFNN-AEKF. 47
3.9 Architecture of the RBF neural network. The network processes

the estimated states yield an estimate of the disturbance term.
The input, hidden, and output layers have n, m, and j neurons,
respectively. Φi(x) denotes the radial Gaussian function at the
hidden node i. 49

3.10 Estimation of the disturbance acceleration term for LEO reference
orbit. The perturbations are in the order of 10−5 m

s2 . The plots
show the initial phase of the neural network learning, regarded as
the main learning process. From left to right: dx, dy and dz. . . . 60

3.11 Estimation of the disturbance acceleration term for LEO reference
orbit after the main learning process. The plots show the estimation
of the disturbance term by the neural network after the network
has converged. From left to right: dx, dy and dz. 61

3.12 RBFNN network approximation of the disturbance terms due to
J2 in ROE dynamics. The disturbance term is a vector γ ∈ R6. . . 62

3.13 Relative Position Error . 63
3.14 Relative Velocity Error . 63
3.15 The Hopfield Neural Network structure. 66
3.16 Results for the test case. 69
3.17 Cut on i = 45 ◦, R0 = 1 km and r/R0 = 3 as a function of α, β

and γ. 69
3.18 Asteroid Castalia results: a0 = 2Rmax, i0 = 135◦ circular orbit. . . 71
3.19 Asteroid Kleopatra results: a0 = 2Rmax, i0 = 135◦ circular orbit. . 72
3.20 Phobos case results: a0 = 3Rmax, i0 = 135◦ circular orbit. 72
3.21 Didymos system, Southern Halo. 73
3.22 SHE coefficients estimation using EKF. 75
3.23 Computational time comparison. Note that the HNN step-time is

negligible with respect to the EKF for state estimation. 76

4.1 GNC architecture overview. 84
4.2 Planar to Along-track (ALO) neural reconfiguration. 86
4.3 Control effort and estimation accuracy for the ALO neural recon-

figuration. 87
4.4 Relative distances between the formation spacecraft for the ALO

scenario. The dotted line represents the minimum safe distance
set for the simulations. 87

XVIII

List of Figures

4.5 Planar Synthetic Aperture Variation (SAV) neural reconfiguration. 88
4.6 Control effort and estimation accuracy for the SAV neural recon-

figuration. 89
4.7 Relative distances between the formation spacecraft for the SAV

scenario. The dotted line represents the minimum safe distance
set for the simulations. 89

4.8 Relative Plane Change (RPC) neural reconfiguration. 90
4.9 Control effort and estimation accuracy for the RPC neural recon-

figuration. 91
4.10 Relative distances between the formation spacecraft for the RPC

scenario. The dotted line represents the minimum safe distance
set for the simulations. 91

4.11 Position Swap (PS) neural reconfiguration. 92
4.12 Control effort and estimation accuracy for the PS neural reconfigu-

ration. 93
4.13 Relative distances between the formation spacecraft for the PS

scenario. The dotted line represents the minimum safe distance
set for the simulations. 93

4.14 Mean accuracy of NNAPF and APF in highly perturbed environ-
ment. The perturbation coefficient is the multiplicative term of J2
perturbation to generate the fictitious disturbance. 97

4.15 Convexification of the collision avoidance constraint. The sketch
shows two instant in time. 102

4.16 Formation geometry. 104
4.17 Accuracy in position control for the formation keeping in eccentric

orbit. 104
4.18 Formation reconfiguration following 30◦ yaw rotation of the syn-

thetic aperture. 105
4.19 Large reconfiguration following 30◦ yaw rotation of the synthetic

aperture. Dynamics reconstruction aids the MBRL algorithm as
the formation grows in size. 105

4.20 Safe-mode flight formation. Two strategies. 106
4.21 Cross-track reconfiguration from δe ⊥ δi to δe ‖ δi with aδi =

aδe = 2 km. 107
4.22 Reconfiguration examples in low-eccentricity orbit. 109
4.23 Collision avoidance constraint in low-eccentricity reconfiguration. . 109
4.24 Mean Squared Error of ANN state prediction during on-board

learning. 110
4.25 Mean Squared Error of ANN state prediction during on-board

learning. 111
4.26 Collision avoidance constraint in low-eccentricity reconfiguration. . 111

XIX

List of Figures

5.1 Scheme of neighboring agents identification and collision avoidance
using Inverse Reinforcement Learning. 116

5.2 LSTM network for neighbouring satellites thrusted-trajectory iden-
tification and prediction. The core of the LSTM are the cell (C),
the input gate (i), the output gate (o) and the forget gate (f) [78]. 120

5.3 Comparison between the IRL predicted trajectory and the hypo-
thetical trajectory the spacecraft would have if it was in natural
motion. 122

5.4 Prediction error for subsequent time steps Ts. 123
5.5 Close intersecting reconfiguration. The relative distances between

the agents are shown. MBRL-ND coupled with natural dynamics
prediction for collision avoidance violates the constraints during
close approach. 123

5.6 Neighboring satellite’s trajectory. Predicted trajectories based on
IRL, LSTM and natural dynamics are shown in colored dots. . . . 124

5.7 Map of RMS error of the neighboring agent trajectory prediction
based on CW-model, IRL algorithm and LSTM, left to right, as a
function of the number of observations and predictions. 125

5.8 Cumulative error for increasing ∆v reconfiguration. As the MBRL
controller is steered towards time-optimal reconfiguration, the IRL
algorithm is necessary for prediction. 126

5.9 An example of a trajectory generated by the MBRL controller
tuned towards fast control. 126

6.1 Hardware equipment for PIL validation. 130
6.2 Schematics of Processor-In-the-Loop verification and validation

process. 131
6.3 Embedded Coder workflow. 133
6.4 Processor-In-the-Loop (PIL) validation framework in MATLAB/Simulink. 134
6.5 Discrepancy in calculation between PIL and MIL simulations for

NNAPF run in MCUs F28379D. 136
6.6 Control output delivered by the embedded execution. 138
6.7 Discrepancy in calculation between PIL and MIL simulations for

MBRL run in BeagleBone Black single-board computer. 138
6.8 Statistics of execution times for the optimization solver used in the

embedded application. 138
6.9 Normalized probability for the execution times profiled in the PIL

simulation.From left to right, quadprog and fmincon are shown . . 139

XX

List of Tables

2.1 Relative navigation sensors . 27
2.2 Guidance & Control strategies used for relative and proximity

operations. 28

3.1 Chaser-Target Orbital Parameters 58
3.2 Root-mean-squared error of the disturbance estimation term for

the LEO reference orbit . 62
3.3 Filters RMSE Results . 64
3.4 Filters RMSE Results - Non-Nominal 64
3.5 HNN/EKF results compared for asteroid Castalia. The mean and

the standard deviation are computed on the last 5 periods while
the integral measure, int with the whole set of orbits. int is
computed as the sum of absolute errors over the number of
sample points e.g. int =

∑
k |ek|/N , with ek = Ck − Ĉk(tk). . . 77

4.1 Reference orbits for numerical simulations 85
4.2 Relative orbital elements of each spacecraft in the ALO reconfiguration 86
4.3 Relative orbital elements of each spacecraft in the SAV reconfiguration 88
4.4 Relative orbital elements of each spacecraft in the RPC reconfiguration 90
4.5 Relative orbital elements of each spacecraft in the PS reconfiguration 92
4.6 Comparison of control effort between standard APF reconfiguration

algorithm and the proposed NNAPF. Low-eccentricity scenario. . . 95
4.7 Comparison of navigation accuracy between standard APF recon-

figuration algorithm and the proposed NNAPF. Low-eccentricity
scenario. 95

XXI

List of Tables

4.8 Comparison of target configuration accuracy between standard
APF reconfiguration algorithm and the proposed NNAPF. Low-
eccentricity scenario. 95

4.9 Norm of the Relative Orbital Elements error (dimensionless) with
respect to the target ROE state. Low-eccentricity scenario. 96

4.10 Comparison of control effort between standard APF reconfiguration
algorithm and the proposed NNAPF. High-eccentricity scenario. . 96

4.11 Comparison of navigation accuracy between standard APF recon-
figuration algorithm and the proposed NNAPF. High-eccentricity
scenario. 96

4.12 Comparison of target configuration accuracy between standard
APF reconfiguration algorithm and the proposed NNAPF. High-
eccentricity scenario. 96

4.13 Norm of the Relative Orbital Elements error (dimensionless) with
respect to the target ROE state. High-eccentricity scenario. 97

4.14 ∆v for one orbit and accuracy for MBRL and MPC for FK. 103
4.15 ∆v and time of flight for MBRL and MPC for FR. 104
4.16 ∆v and time of flight for MBRL and MPC for SR. 105
4.17 Reference orbits for numerical simulations 108
4.18 ∆v and maneuvering time for MBRL and MPC for low-eccentricity

reference orbit. 108
4.19 ∆v and maneuvering time for MBRL and MPC for high-eccentricity

reference orbit. 110
4.20 ∆v and maneuvering time for MBRL and MPC for high-eccentricity

reference orbit for large-sized reconfiguration. 111

5.1 Numerical settings for simulation scenario 121
5.2 Prediction error for IRL, LSTM and natural dynamics model (ND). 124

6.1 Average and maximum execution time of GNC routines using a
single core TMS320C28x 32-Bit CPUs @200 MHz of TI C2000-
Delfino MCUs F28379D . 136

6.2 Average and maximum execution time of GNC routines using a
single core TMS320C28x 32-Bit CPUs @200 MHz of TI C2000-
Delfino MCUs F28379D . 136

6.3 Average and maximum execution time of MBRL routines using a
BeagleBone Black single-board computer. 137

XXII

List of Acronyms

AI Artificial Intelligence.
ANN Artificial Neural Network.
APF Artificial Potential Field.

CW Clohessy-Wiltshire Model.

DSS Distributed Space System.

EKF Extended Kalman Filter.
EO Earth Observation.

FF Formation Flying.
FK Formation Keeping.
FMA Feature Matching Approach.
FR Formation Reconfiguration.

GNC Guidance, Navigation & Control.

HNN Hopfield Neural Network.

IRL Inverse Reinforcement Learning.

LRNN Layer-Recurrent Neural Network.
LSTM Long-Short Term Memory.
LVLH Local-Vertical-Local-Horizontal.

XXIII

List of Acronyms

MBRL Model-Based Reinforcement Learning.
MCR3BP Modified Circular Restricted Three-Body Prob-

lem.
MPC Model Predictive Control.

NARX Nonlinear Autoregressive Network with Exoge-
nous Inputs.

P2BP Perturbed Two-Body Problem.
Ph.D. Philosophiae Doctor.
PIL Processor-In-the-Loop.

QP Quadratic Programming.

RBFNN Radial-Basis Function Neural Network.
RMSE Root Mean Squared Error.
RNN Recurrent Neural Network.
ROE Relative Orbital Elements.

SR Safe Reconfiguration.
SRP Solar Radiation Pressure.

TOF Time Of Flight.
TRL Technology Readiness Level.

XXIV

CHAPTER1
Introduction

Anyone whose goal is ’something higher’
must expect someday to suffer vertigo.
What is vertigo?
Fear of falling?
No, Vertigo is something other than fear of
falling. It is the voice of the emptiness
below us which tempts and lures us, it is
the desire to fall, against which, terrified,
we defend ourselves.

— Milan Kundera

During the last decades, new promising space mission concepts are being
developed to enable humanity to undertake daring explorations. Among those,
Formation Flying (FF) and Distributed Space System (DSS) are attracting the
interest of the whole space community. The idea of having multiple spacecraft
involved in proximity operations, in known or unknown environments, yields
several advantages in terms of achievable mission objectives. First of all, it
is claimed that unprecedented mission performance and objectives can be

Chapter 1. Introduction

attained using fractionated instruments, such as telescopes. The capability of
distributing the instrument and operating with interferometry measurements
yields the possibility of achieving very large synthetic apertures, improving
image quality. Secondly, the robustness of the entire mission is significantly
enhanced due to the distribution of mission tasks among the system. The
single-point failure, inherently present in large monolithic spacecraft mission,
is solved thanks to the presence of several autonomous agents. In particular,
in Distributed Space Systems each agent autonomously makes decisions by
measuring the relative state of the formation. The distributed concept solves
the typical shortcomings of centralized and decentralized approaches. The
former rely on a processing agent, which gathers information on the state of
the formation and delivers command to the fleet. This approach does not
improve robustness of the mission, being the decision process concentrated
in the centralized mothercraft. The latter comprise autonomous agents that
process their own information without interacting with the rest of the forma-
tion at all. Such approach limits the capability and the achievable mission
objectives of the formation due to the blindness of each agent with respect to
the others. Moreover, Distributed Space Systems increases the flexibility of
the mission thanks to the capability of reconfiguring the formation in orbit.
For instance, this means that the synthetic aperture can be varied while flying
or a certain formation global attitude can be adjusted in orbit. In this way,
several macroscopic objectives can be achieved with one single mission. The
platforms used for Distributed Space Systems are typically identical in a sort
of formation standardization. This implies a significant cost reduction as well
as limited time-to-flight for the entire formation. Such cost limitation allows
mission concepts in which low-cost agents are embarked into bigger satellites
and deployed into very risky operations, such as planetary or asteroid proximity
operations [1].

1.1 Context & Motivation

The context of the research covers the implementation of Distributed Space
Systems flying in formation to execute risky proximity maneuvers (e.g. close
asteroid fly-by, tight formation), see Fig. 1.1. As already mentioned, the
usage of such mission concept brings several advantages, such as increased
scientific performance, more flexibility and cost reduction. Among all the
spacecraft subsystems, the Guidance, Navigation and Control system is the
mostly affected. Indeed, it represents the brain of the satellite, being in charge
of planning, navigating and controlling the spacecraft. The challenges that
the GNC needs to face are caused by the short relative distances involved
and the uncertain environment that the spacecraft has to witness. To tackle
this, a high-level of autonomy is required. It consists in being able to react to
unforeseen events and to re-plan control action depending on the surrounding

2

1.1. Context & Motivation

environments. The reason for excluding human intervention as a feasible option
for mission implementation is that the close proximity requires rapid execution
and decisions, which are not guaranteed by the inherent delays present in the
ground-in-the-loop control.

Distributed Space Systems typically rely on multiple satellites of restricted
size and cost. This is mandatory in order to initialize and perform the mission
using a limited number of launches. Nevertheless, as the platforms become
smaller, the computational power lowers. Hence, on one hand, the higher level
of autonomy requires more sophisticated algorithms to be run; on the other
hand, the spacecraft is constrained in computational power by the size and
cost with respect to resources present on-board large monolithic satellites.

The realm of ground-robotics has already implemented techniques that try to
solve the same shortcomings, without considering the typical constraints of
space missions. Among such techniques falls the umbrella term of Artificial
Intelligence. Artificial Intelligence, here in this Thesis limited to the concept of
Artificial Neural Networks and the framework of Reinforcement Learning, rely
on extensive training before embarking the models into embedded applications.
Traditionally, to create a light algorithm, classical methods rely on linearization
or simplification of the mathematical models. The vast majority of the embed-
ded systems have been designed based on linear algebra and linearization. This
is true also for the space technology. Although, the linear design (and thinking)
has served our purposes very well in the past, it imposes constraints and limita-
tions on the potential of current technology for more demanding space missions.
Nature and generally universe has non-linear behavior. Putting linear systems
into a non-linear environment requires a lot of effort and resources from the
engineers in order to make it right. In addition, this extra effort and resources
are reflected in the design which becomes complex. One way to break the
barrier of the current technological limitation could be to move into non-linear
systems. Non-linear systems increase the capabilities of the technology and new
attributes emerge from its implementation. Of course, attention is required in
order to enhance the attributes that serve the objectives of the mission and
to depreciate the ones that create complications. One space application that
could greatly benefit from application of non-linear systems is the autonomous
Guidance, Navigation and Control of spacecraft, as remarked before. Indeed,
the demand of highly accurate relative GNC in a non-linear and unpredictable
harsh environment including time constraints compels the designers to consider
alternative methodologies and concepts. One of these ideas is to use adaptive
systems with non-linear elements. Here we go: Artificial Intelligence is a prod-
uct of a non-linear adaptive system. The way it can be manifested depends
on the technology level and the current knowledge. For instance, Artificial
Intelligence techniques could allow the spacecraft to achieve highly accurate
relative navigation when arriving to an unknown target or to plan and control

3

Chapter 1. Introduction

Monolithic Large-

Sized Satellites

Fractionated

Distributed Space

Systems

EC H2020

fundings

Figure 1.1: Proximity Operations of Distributed Space Systems.

the satellite in uncertain environments. However, there are several challenges
to be solved for application of AI techniques in autonomous GNC systems,
for instance inadequate data sets for training, demonstrate generalization to
different environment, capability to pre-train or transfer learning to speed
up the training during the real operations, or modeling mathematically the
performance behavior under different environmental conditions. Before moving
to the formalization of the research problem, four requirements have been
identified as guidelines in the development of the thesis. The autonomous GNC
shall rely on algorithms that feature:

• Accuracy: The Guidance, Navigation and Control system needs to rely
on accurate dynamical models in order to exploit the underlying physics
to estimate the state, to generate reference trajectories and to control
the orbital state.

• Flexibility: The Guidance, Navigation and Control System system
should be applicable to different mission scenario without major modifi-
cations.

• Adaptivity: The Guidance, Navigation and Control system should
be able to react to unforeseen events and refine its response to the
environment autonomously.

• Low Computational Resource: The Guidance, Navigation and Con-
trol system needs to be deployed and executed into on-board computers,
with limited computational resources. Thus, the algorithms shall be
suitable for embedded applications.

1.2 The Research Problem

The research problem arises from the necessity of having autonomous fast,
adaptive, flexible and accurate Guidance, Navigation & Control system in
microsatellites mission flying in uncertain environments.

4

1.2. The Research Problem

1.2.1 Objectives

The development of autonomy in space missions is the core engine of the
Thesis, given the context explained in Section 1.1. In particular, given the
listed requirements (accuracy, flexibility, adaptivity and low computational
power) and heritage of ground-robotics in Artificial Intelligence, the research
objective can be summarized in this way:

To analyze and implement AI-based learning algorithms for the refinement
of on-board dynamical model, reconfiguration planning and formation
control. To develop on-board AI-augmented autonomous guidance and
control algorithms for distributed space systems during proximity opera-
tions.

The research objective has been generated by the translation of research re-
quirements into AI-augmented GNC techniques. Indeed, by analyzing each
requirements, generated from the identified shortcomings of current technolo-
gies, one can build a workflow depicted in Fig. 1.2.

The Guidance, Navigation & Control system relies on mathematical model of
the environment to calculate the estimated states and planned control. The
accuracy and adaptivity of the algorithms is pursued by implementing online
learning based on AI-techniques. This allows the agent to learn the surrounding
environment as it flies, refining its mathematical representation on-board. The
refinement increases the accuracy of the model, on which GNC is synthesized
on-board, but also it captures variation of the environment, enhancing the
adaptivity of the algorithm. As stated, such refined model is integrated in the
control and planning routines. In this way, the learning procedures serves the
purpose of enhancing the whole GNC. Regardless of the environment, whatever
dynamics the agent learns, the planning and control are based on the AI-model
reconstructed on-board. For this reason, there is not a specificity of the mission
and the algorithms are flexible enough to be used either for asteroid proximity
or Earth-bounded close formation. Moreover, given the focus on Distributed
Space Systems, the objective is to develop AI-enhanced techniques that are
capable of predicting the whole system evolution without communication
requirements. Each agent should in principle be able to understand what the
rest of the fleet is doing by only observing them. This is required to prevent
collision while performing relative maneuvers simultaneously.

1.2.2 Research Questions

To fulfill the research objectives, a set of research questions, which will guide
the development of the Thesis is presented:

5

Chapter 1. Introduction

1. What are the traditional techniques? What are the identified shortcom-
ings of such approaches? What are the innovative aspects that need to
be added in order to fulfill the research objective?

2. How can we possibly construct on-board a model of the dynamics?
Is it possible to learn the dynamics in orbit, with limited or absent
initialization of the method offline?

3. How can we complement existing algorithm with the learnt dynamics?
What are the key aspects of the GNC loop that would benefit from the
AI-augmentation?

4. How can the whole Distributed Space System simultaneously operate
and control without sharing information on each others’ future plans?
How can the agent predict the behavior of the external environment?

5. Is it possible to embed the developed algorithms in representative hard-
ware to increase their TRL?

1.3 Dissertation Overview

The Thesis dissertation follows the research questions listed above. In par-
ticular, the logical flow is depicted in Fig. 1.2. The research work firstly
focused on developing methods to learn the dynamics on-board. In particular,
three approaches have been developed. The approaches propose incremental
integration of the Artificial Neural Networks in the on-board dynamics. In
particular, one technique encapsulates the full dynamics within a trained ANN.
Recurrent Neural Networks have shown superior performance in learning the
dynamics due to their inherent temporal behavior. The second technique
utilizes a Radial-Basis Function Neural Network to estimate online all the
unmodeled terms of the implemented analytical model. Finally, the third
method implements a Recurrent Neural Network for estimating uncertain
parameters of a given analytical model. The refinement of the dynamics serves
the purpose of enhancing the GNC algorithms. Indeed, an Artificial Potential
Field algorithm for Guidance and Control and an Extended Kalman Filter for
navigation have been coupled with the ANN-reconstructed dynamics, showing
significant improvement with respect to standard approaches. The Artificial
Potential Field Guidance and Control generates a guidance dynamics based
on the contribution of fictitious attractive potential, toward target state, and
repulsive one, generated to avoid collision. The method is very fast and light
but it may cause instability. Also, it does not optimize any control action,
which is not recommended for space missions. In order to solve several short-
comings of the Artificial Potential Field algorithm, an optimization-based
technique has been developed for Guidance and Control. The refined dynamics
is used to plan and control in closed-loop, in a similar fashion as the Model

6

1.3. Dissertation Overview

Predictive Control scheme. The developed technique is called Model-Based
Reinforcement Learning, or alternatively Neural-Predictive Control. In order
to develop an algorithm capable of predicting external agents behavior and
trajectories for collision avoidance, Inverse Reinforcement Learning is used
aided by a Long-Short Term Memory network. Basically, the latter method is
a recurrent neural network that predicts neighboring satellites’ trajectories; the
former tries to guess the cost function that delivers the observed trajectories
through a series of simple nested optimization. Finally, all the algorithms
have been tested in relevant hardware and their execution times evaluated
against available resource utilization. The test campaign was performed using
Processor-In-the-Loop simulations.

The thesis is structured as follows: Chapter 2 presents the background and
state-of-the-art of the autonomous GNC for distributed systems. In particular,
for each aspect of the GNC, it highlights the major shortcomings of traditional
methods as well as the assumptions used so far in literature.

Chapter 3 presents the whole development of AI-based dynamics learning. In
particular, all the aforementioned methodologies are presented and thoroughly
described. The advantages and disadvantages of each method is highlighted
and test cases are reported to show the reconstruction performance.

Chapter 4 focuses on the usage of the learnt dynamics to enhance the Guidance
and Control scheme. In detail, the Neural-aided Artificial Potential Field is first
described and tested. The remarkable results of enhancing the algorithm with
ANN-based dynamics are shown and highlighted. Subsequently, the Model-
Based Reinforcement Learning, fully relying on the ANN-based dynamics, is
derived and tested.

Chapter 5 discusses the methods to predict the behavior of external agents.
This feature is critical for the GNC algorithms in order to prevent collision
between concurrent agents that maneuvers simultaneously in a distributed
architecture. In particular, Inverse Reinforcement Learning is derived mathe-
matically and tested together with the developed Long-Short Term Memory
recurrent network.

Chapter 6 describes the experimental activities focused on the Processor-In-
the-Loop validation of the developed algorithms. The hardware suite and the
porting procedure are described, on top of the actual test results.

Finally, Chapter 7 reports the conclusions of the research work. In particular,
the major results and findings are highlighted and remarked before giving a
list of recommendations for future work.

7

Chapter 1. Introduction

Figure 1.2: Overview of the Thesis logical flow.

1.4 Bibliographic Disclaimer

During the years of my Philosophiae Doctor (Ph.D.), I presented updates of
my work in many conferences and I also had the possibility to publish part of
them in peer reviewed journals. Therefore, most of the work in this dissertation
has already been presented in different articles. The most significant are listed
below.

• S. Silvestrini, M. Lavagna, "Neural-based Predictive Control and Relative
Trajectory Identification Algorithms for Relative Spacecraft Maneuvers",
Journal of Guidance, Control and Dynamics, 2020 (under review)

• A. Pasquale, S. Silvestrini, A. Capannolo, P. Lunghi, M. Lavagna, Small
Bodies Non-Uniform Gravity Field Online/On-Board Learning through
Hopfield Neural Networks, Acta Astronautica, 2020 (under review)

• S. Silvestrini, M. Lavagna, "Neural-aided GNC Reconfiguration Algorithm
for Distributed Space System: Development and PIL test", Advances in
Space Research, 2021, doi:10.1016/j.asr.2020.12.014

• V. Pesce, S. Silvestrini, M. Lavagna, "Radial Basis Function Neural
Network aided Adaptive Extended Kalman Filter for Spacecraft Rel-
ative Navigation", Aerospace Science and Technology, vol. 96, 2020,
doi:10.1016/j.ast.2019.105527

8

https://doi.org/10.1016/j.asr.2020.12.014
https://doi.org/10.1016/j.ast.2019.105527

1.4. Bibliographic Disclaimer

• S. Silvestrini, M. Lavagna, "Processor-in-the-Loop Testing of AI-aided Al-
gorithms for Spacecraft GNC", 71st International Astronautical Congress,
The Cyberspace Edition, virtual, 12-14 October 2020

• S. Silvestrini, M. Lavagna, "Spacecraft Formation Relative Trajectories
Identification for Collision-Free Maneuvers using Neural-Reconstructed
Dynamics", AAS/AIAA SciTech Forum, Orlando, 6-10 January 2020,
doi:10.2514/6.2020-1918

• S. Silvestrini, M. Lavagna, "Inverse Reinforcement Learning for Collision
Avoidance and Trajectory Prediction in Distributed Reconfigurations",
70th International Astronautical Congress, Washington, USA, 21-25 Oc-
tober 2019

• A. Pasquale, S. Silvestrini, M. Lavagna, "Non-uniform gravity field model
on board learning during small bodies proximity operations", 70th In-
ternational Astronautical Congress, Washington, USA, 21-25 October
2019

• S. Silvestrini, M. Lavagna, "Model-based Reinforcement Learning for
Distributed Path Planning", 15th Symposium on Advanced Space Tech-
nologies in Robotics and Automation - ASTRA, ESA-ESTEC, 27-28 May
2019.

• S. Silvestrini, V. Pesce, M. Lavagna, "Distributed Autonomous Guidance,
Navigation and Control loop for Formation Flying Spacecraft Reconfigu-
ration", 5th CEAS Conference on Guidance, Navigation & Control, 3-5
April 2019

9

https://doi.org/10.2514/6.2020-1918

CHAPTER2
Background & State of Art

La casa é come un punto di memoria
Le tue radici danno la saggezza
E proprio questa é forse la risposta
E provi un grande senso di dolcezza
E provi un grande senso di dolcezza.

— Francesco Guccini

The challenges of autonomy in robotic systems, and in particular in space
elements, arise from the limited on-board knowledge of the environment in
which the agent operates. Such shortcoming descends from several motivations,
both practical and theoretical. On one hand, the representation we have of the
reality, i. e. what we call analytical models, are inherently approximation of the
true, unknown dynamics, which is influenced by unpredictable or unforeseen
events. On the other hand, even if we had a complete knowledge of the
dynamical behavior, it would be hardly manageable to be treated on-board,
due to the limited computational power typically available on the spacecraft.
Putting linear systems into a nonlinear environment requires a lot of effort and
resources from the engineers in order to make it right. In addition, this extra

Chapter 2. Background & State of the Art

effort and resources are reflected in the design which becomes complex. One
way to break the barrier of the current technological limitation could be to move
into adaptive non-linear systems. Non-linear systems increases the capabilities
of the technology and new attributes emerge from its implementation. As
already mentioned, and hereby stressed, the focus is to enhance the attributes
that serve the objectives of the mission and to depreciate the ones that create
complications. The most powerful approach is to develop non-linear adaptive
systems, which take advantage of a-priori knowledge of the environment, but
are able of reacting to external inputs while flying. The Guidance, Navigation
& Control system is thus equipped with the capability of adapting its response
to the actual inputs it receives from the environment. The way it adapts
depend on the level of intelligence that the spacecraft is designed to possess.
Artificial Intelligence is a product of a non-linear adaptive system. The way it
can be manifested depends on the technology level and the current knowledge.
For instance, Artificial Intelligence techniques could allow the spacecraft to
achieve highly accurate relative navigation when arriving to an unknown target
or to generate control and planning action in uncertain environments. As
explained in Chapter 1, the objective of this Thesis is to integrate traditional
algorithm with AI techniques that refine the modeling and planning tasks
according to the actual feedback received from the environment. This, as
stated, is extremely promising and transverse in its applicability every time
the mission faces partially known, or even completely unknown, scenarios.

The Chapter is organized as follows: Section 2.1 presents the analytical models
for the two scenarios of proximity dynamics, namely Earth-bounded relative
dynamics for distributed systems and proximity dynamics with small bodies
orbiting the Sun. Section 2.2 presents the Guidance, Navigation & Control
system, which is the basis on which the AI techniques have been developed
in this work. Finally, Section 2.3 reports the main elements belonging to
the general term of Artificial Intelligence that are employed, with proper
modifications, in this Thesis.

2.1 Uncertain Relative Dynamics

The analytical models that express the dynamical behavior of the systems in
different environments are hereby presented. In particular, as the derivation
develops, the nonlinearities and neglected perturbations are highlighted. The
reason for that is to stress the shortcomings of relying only on analytical models,
which are inherently approximations of the actual dynamics due to unknown or
unforeseen perturbations. In this Thesis, the relative and proximity dynamics is
taken as reference. This yield to potential mission scenarios: the first comprises
the relative dynamics of two spacecraft orbiting the same planet (e. g. Earth);

12

2.1. Uncertain Relative Dynamics

the second represents the environment around a small body, whose shape is
typically only partially known.

2.1.1 Distributed Systems Relative Dynamics

The Thesis uses a high-fidelity propagator as ground-truth for algorithm valida-
tion. The accurate orbital simulator is used to test the algorithms in a realistic
environment. In fact, the relative motion between target and chaser is obtained
by integrating separately the chaser and the target orbital dynamics considering
the perturbations acting on each spacecraft. In particular, the model considers
irregularities in the gravitational potential due to non-spherical distribution of
Earth’s mass, the presence of the Moon and the Sun as third-body, the effect
of the Solar Radiation Pressure (SRP) and the atmospheric drag. The adopted
Earth gravitational model is the EGM96 with harmonics up to the third degree
and order. On the other hand, the atmospheric drag force is computed by using
the Jacchia Reference Atmosphere model. The relative dynamics equations
here reported refers to those models that are used in the GNC-AI algorithms,
for potential on-board applications. In this Thesis, two approaches have been
alternatively adopted to model the relative dynamics. The first is referred to
Cartesian derivation that parametrizes the system state into position and veloc-
ity. The other method refers to the Relative Orbital Elements parametrization,
which uses a combination of the orbital parameters of the spacecraft orbits
to describe the dynamical behaviors. They are simplified models suitable for
low computational power spacecraft. In addition, linearized models allows the
analysis and synthesis of the algorithms, e. g. control margins and effectiveness.
The derivation of the Cartesian analytical model develops from the orbital
equations of motion of each spacecraft expressed in the inertial frame, as
schematized in Fig. 2.1.

2.1.1.1 Clohessy-Wilthsire Equations

The most common set of equations to describe the relative dynamics between
two spacecrafts are the well-known Clohessy-Wiltshire equations, which are
presented hereby. For a full derivation, the authors suggest to refer to [2].
With reference to Figure 2.2, the target spacecraft is in a nominal orbit at a
distance r0 from the attractor. If the chaser is in close proximity of the target,
the orbital radius can be expressed as r = r0 + δr. The equation of motion of
the chaser spacecraft is:

r̈ = −µ r
r3 (2.1)

where µ is the gravitational constant of the central body. Let us attach a
co-moving frame of reference centered on the target spacecraft center of mass,
as shown in Figure 2.2. The x axis is aligned with r0, the z is orthogonal to
the orbital plane along the positive angular momentum vector and the y axis

13

Chapter 2. Background & State of the Art

Figure 2.1: Derivation of cartesian models of relative dynamics.

completing the right-hand triad. Such reference frame is commonly known
as Local-Vertical-Local-Horizontal (LVLH). Substituting the definition of r
to Eq. 2.1 and expressing everything in the LVLH, the Clohessy-Wiltshire
equations are obtained for a circular reference target orbit:

δẍ− 3n2δx− 2nδẏ = 0
δÿ + 2nδẋ = 0
δz̈ + n2δz = 0

(2.2)

where n = 2π
T is the orbital mean motion and T is the reference orbital period.

2.1.1.2 Nonlinear Dynamical Model of J2-Perturbed Relative Motion
The nonlinear dynamical model for J2-perturbed relative orbit is described
in [3]. Hereby, the fundamental equations are solely reported; for a thorough
derivation, refer to [3]. With reference to Figure 2.2, the dynamics of the
spacecraft can be written as:

δẍ =2ωzδẏ − (n2
j − ω2

z)δx+ αzδy − ωxωzδz − (ζj − ζ)sisθ+
− r(n2

j − n2) + ax

δÿ =− 2ωzδẋ+ 2ωxδz − αzδx− (n2
j − ω2

z − ω2
x)δy + αxδz+

− (ζj − ζ)sicθ + ay

δz̈ =− 2ωxδẏ − ωxωzδx− αxδy − (n2
j − ω2

x)δz − (ζj − ζ)ci + αz

(2.3)

14

2.1. Uncertain Relative Dynamics

Figure 2.2: Co-moving Local-Vertical-Local-Horizontal (LVLH) frame [2].

where the contributing terms are:

n2 = µ

r3
0

+ kJ2
r5

0
− 5kJ2s

2
i s

2
θ

r5 , n2
j = µ

r3 + kJ2
r5 −

5kJ2r
2
JZ

r7

rJZ = (r0 + δx)sisθ + δysicθ + δzci, kJ2 = 3J2µR2
e

2

ωx = −kJ2s2isθ
hr3

0
, ωz = h

r2
0

αx = ω̇x = kJ2s2icθ
r5

0
+ 3ṙ0kJ2s2isθ

r4
0h

− 8k2
J2s

3
i cis

2
θcθ

r6h2

αz = ω̇z = −2hṙ0
r3

0
− kJ2s

2
i s2θ
r5

0
, ζ = 2kJ2sisθ

r4 , ζj = 2kJ2rJZ
r5

(2.4)

in which h is the orbital angular momentum, i orbital inclination, J2 is the
zonal harmonic coefficient 1.0826 · 10−3 for Earth, Re is the Earth radius, θ is
the orbital true anomaly and a = [ax, ay, az]T is the forced acceleration vector.
Last, sx and cx stand for sin(x) and cos(x), where x is a generic angle. The
spacecraft relative motion is actually described by 11 first-order differential
equations, namely (δx, δy, δz, δẋ, δẏ, δż) and (r0, ṙ0, h, i, θ). Nevertheless in
this work, the latter quantities are computed using the high-fidelity propagator
previously described. This can be representative of an on-board absolute state
estimator. Alternatively, these quantities can be included in the integration
step of the dynamical model.

2.1.2 Relative Orbital Elements Parametrization
The spacecraft formation dynamics is described using the relative orbital
elements, following the work done by D’Amico [4] The following quasi-singular

15

Chapter 2. Background & State of the Art

relative orbital elements are adopted:

δχ =



δa

δλ

δex

δey

δix

δiy


=



af−ar
ar

(Mf + ωf)− (Mr + ωr) + (Ωf − Ωr) cos(ir)
ef cos(ωf)− er cos(ωr)
ef sin(ωf)− er sin(ωr)

if − ir
(Ωf − Ωr) sin(ir)


(2.5)

where the subscript f stands for any follower spacecraft orbit, whereas the
subscript indicates the reference orbital elements. M is the mean anomaly, a
the semimajor axis, e the eccentricity, i the orbit inclination, ω the argument
of perigee and Ω the right ascension of the ascending node. It is important to
remark that in this work the reference orbit is the same for the n spacecraft
building up the formation. The benefit of using such model is that, if the
perturbations are neglected, the geometry of the relative motion with respect
to a reference orbit is uniquely determined by a set of invariant relative
orbital elements (ROE), except for the relative true anomaly, which follows the
Keplerian propagation. Indeed, the natural evolution of the dynamic system
can be described as:

˙δχ = Ak · δχ (2.6)

where

Ak =


0

...

−1.5n
... 06×5

04×1
...

 (2.7)

Guffanti and Koenig [5][6] later expanded the model to a J2 perturbed dynamics.
The complete dynamical model can be expressed as:

˙δχ = (Ak + AJ2) · δχ+Bu (2.8)

AJ2 =



0 0 0 0 0 0
−7

2(1 + η)(3 cos2 ir − 1) 0 exGFP eyGFP −FS 0
7
2eyQ 0 −4exeyGQ −(1 + 4Ge2

y)Q 5eyS 0
−7

2exQ 0 (1 + 4Ge2
x)Q 4exeyGQ −5exS 0

0 0 0 0 0 0
7
2S 0 −4exGS −4eyGS 2T 0


(2.9)

16

2.1. Uncertain Relative Dynamics

where the terms in Eq. 2.9 are:

k = γa
− 7

2
r η−4, η =

√
1− e2

r , γ = 3
4J2R

2
e

√
µ, ex = er cosωr,

ey = er sinωr E = 1 + η, G = 1
η2 , F = 4 + 3η, P = 3 cos2 ir − 1,

Q = 5 cos2 ir − 1, S = sin 2ir, T = sin2 ir

(2.10)

where J2 is the zonal harmonic coefficient 1.0826 · 10−3 for Earth, Re is the
Earth radius, µ = 3.986 · 1014m3s−2 is the Earth gravitational constant. The
control matrix is derived from Gauss Variational Equation (GVE) as in [7]:

B = 1
arnr



2
ηer sin νr 2

η (1 + er cos νr) 0
− 2η2

1+er cos νr 0 0
ηr sinωr + νr η (2+er cos νr) cos(ωr+νr)+ex

1+er cos νr
ηey

tan ir
sin(ωr+νr)
1+er cos νr

−ηr cosωr + νr η
(2+er cos νr) sin(ωr+νr)+ey

1+er cos νr
−ηex
tan ir

sin(ωr+νr)
1+er cos νr

0 0 η cos(ωr+νr)
1+er cos νr

0 0 η sin(ωr+νr)
1+er cos νr


(2.11)

where νr is the true anomaly.

2.1.2.1 Coordinates Transformation
The active collision avoidance maneuvers depend on the relative metric dis-
tance between two agents. The relative distance is naturally expressed in
the Cartesian Local-Vertical-Local-Horizontal (LVLH) reference frame. The
mapping between the Hill X = [x y z ẋ ẏ ż] state to the ROE δχ is required
to process the measurements and compute the guidance and control output.
The transformation matrices are derived by using the classical orbital elements
difference ∆OE = [∆a ∆M ∆ω ∆e ∆i ∆Ω] as follows:

JX
δχ = ∂X

∂∆OE ·
∂∆OE
∂δχ

, JδχX = ∂δχ

∂∆OE ·
∂∆OE
∂X (2.12)

where a is the semimajor axis, M is the mean anomaly, ω the argument of
perigee, e the eccentricity, i the inclination and Ω the right ascension of the
ascending node. The first-order approximation of the mapping between the
Hill state and classical osculating orbital elements yields [4][8]:

x = r

a
∆a− a · cos ν∆e+ ae sin ν√

1− e2 ∆M

y =
(
a+ r

1− e2

)
sin ν∆e+ a2

r
η∆M + r∆ω + r cos i∆Ω

z = r sin(ν + ω)∆i− r sin i cos(ν + ω)∆Ω

(2.13)

17

Chapter 2. Background & State of the Art

Differentiating Eq. 2.13 the full transformation is obtained:

ẋ =− ne sin ν
2
√

1− e2 ∆a+ n sin ν
√

1− e2
(
a3

r2

)
∆e+ en cos ν a

3

r2 ∆M

ẏ =

n√1− e2
(

1 + r

a(1− e2)

)(
a3

r2

)
cos ν + aen sin2 ν

(1− e2)
3
2

∆e+

− en sin ν a
3

r2 ∆M + aen sin ν√
1− e2 ∆ω

ż = an√
1− e2

(
sin i

[
sin(ν + ω) + e sinω

]
∆Ω+

+
[

cos(ν + ω) + e cosω
]
∆i
)

(2.14)

Combining Eq. 2.13 and 2.14 the transformation matrix between Hill state X
and classical orbital elements ∆OE, namely ∂X

∂∆OE and its inverse in Eq. 2.12.
To formulate the complete transformation the Jacobian of the transformation
between classical orbital elements and relative orbital elements δχ is required.
Such transformation is obtained from the definition of δχ for ∆OE → 0:

∂∆OE
∂δχ

=



a 0 0 0 0 0
0 1 sinω

e − cosω
e 0 cos i

sin i
0 0 − sinω

e
cosω
e 0 0

0 0 cosω sinω 0 0
0 0 0 0 1 0
0 0 0 0 0 sin i



∂δχ

∂∆OE =



1
a 0 0 0 0 0
0 1 1 0 0 cos i
0 0 −e sinω cosω 0 0
0 0 e cosω sinω 0 0
0 0 0 0 1 0
0 0 0 0 0 sin i



(2.15)

The just described model is exploited to perform the design of the relative
trajectories. However some concerns may arise with respect to the accuracy of
such model, reason for which a set of propagation tests have been performed,
in order to assess the level of confidence to pose into the ROE formulation.
The dynamics has indeed been compared to different Cartesian formulations
of the relative dynamics and to a high-fidelity orbital propagator[9, 10]. The
procedure for the validation of the ROE formulation with the high-fidelity
propagator is presented in Fig. 2.3. The selection of the initial conditions

18

2.1. Uncertain Relative Dynamics

Design

Propagation

kep2cart High fidelity

Propagation

Compare

Inertial to

relative

Figure 2.3: Schematics of the ROE formulation dynamical comparison with
respect to an high-fidelity propagation of the trajectory.

for the propagation of the Cartesian state is fundamental. An incoherence
among the different methods can arise for what concerns the different level
of linearization required by the translation of the ROE into the Cartesian
state. Indeed, different state propagations arise if such conversion is performed
through the nonlinear chain of transformations described in the bottom branch
Fig. 2.3 or through the direct linear transformation, as in the last conversion
of the upper branch of the graph. The former starts from the ROE and,
passing through the difference in orbital elements ∆OE and the reference
orbital elements OEref , recovers the inertial state which can be remapped
to the relative Cartesian state in the LVLH frame. The latter uses instead a
direct transformation from the initial ROE to the relative Cartesian frame,
implying a higher degree of linearization. Details on the two mapping can
be found in previous works[11]. Figure 2.4 presents the position error δr
accuracy obtained by a nonlinear Cartesian relative dynamics model, when
initialized with the linear transformation (left plot) and the nonlinear one
(right plot). The propagation of the ROE with the given formulation is also
presented for comparison. The position errors δr are computed with respect to
the trajectory propagated with the high-fidelity orbital simulator, over a time
span of a complete day. It is easy to appreciate the much higher drift rate of
the nonlinear Cartesian model exploiting the linearized initial condition, with
respect to the evolution using the nonlinear transformation. On the contrary,
as highlighted also in other works[12], when dealing with a linearized dynamics,
such as the Clohessy-Wiltshire equations, in order to keep the consistency
in terms of nonlinear effects, the linearized transformation ensures a better
representation of the system. Nevertheless this analysis gave also the hint on
the feasibility of exploiting the ROE with J2 perturbations for the design of
the relative trajectories, without introducing huge inaccuracies, as seen by the
plots in Fig.2.4, where a maximum of ∼2 km error is introduced over a 1 day
propagation arc.

2.1.3 Bounded Relative Orbits

This Thesis is focused on the presentation of a GNC architecture for spacecraft
formation flying. For this reason, the natural motion is not deeply analyzed.

19

Chapter 2. Background & State of the Art

0 5 10 15 20 25

0

5

10

15 NL

ROE

0 5 10 15 20 25

0

5

10

15 NL

ROE

Figure 2.4: Comparison of the position error of the nonlinear Cartesian
relative dynamics and ROE formulation with respect to the high-fidelity
propagated trajectory. The initial conditions for the nonlinear model are
generated using the linear transformation (left) or the nonlinear one (right).

Nevertheless, realistic formation are taken into account to generate initial and
final configurations. In order to reduce the fuel consumption for formation-
keeping actions, the configurations are chosen among the bounded relative
orbits group. To avoid the relative drift, it is critical that the relative motion
of the spacecrafts remains bounded. A fundamental concept in spacecraft
Formation Flying is the orbital energy-matching method to generate bounded
formations. The orbital energy of the satellites is a function of the semi-major
axis only:

E = − µ

2a (2.16)

Hence, it is sufficient to match the orbital energy of the reference orbit to
generate bounded formations. In order to work out relevant initial conditions,
being either in the Cartesian space or δχ, we refer to the δχ relative space, cfr.
Eq. 2.5. It is sufficient that δa = 0 for the relative orbital elements defining the
formation. Fig. 2.5 shows trajectories propagation based on energy-matching
initial conditions in perturbed models.

2.1.4 Small Bodies Relative Dynamics

Some assumptions are made both on the dynamical environment as well as the
output of the reconstruction in order to make addressable the problem of the
reconstruction of the gravitational field of an unknown, arbitrary shaped body
directly on-board of a spacecraft flying around it.

In this work two different dynamical environments are modeled: the one
associated with a single body, based on the so called Perturbed Two-Body
Problem (P2BP), as well as the one associated to a binary system of bodies,

20

2.1. Uncertain Relative Dynamics

Figure 2.5: Relative bounded orbits in perturbed models

Figure 2.6: Geometry of the MCR3BP

based on the Modified Circular Restricted Three-Body Problem (MCR3BP).
This, in order to test the scalability of the network to different dynamical

21

Chapter 2. Background & State of the Art

environments, both from the formulation as well as from the identification
performance point of view.

The Perturbed Two-Body Problem The detailed derivation of the dy-
namical environment model associated to a single body relays on the P2BP
model, that is extensively discussed in [13]. Here the equation of motion for a
reduced order model are briefly recalled. Under the assumption that the body
rotates about its principal inertia axis with uniform angular velocity Ω, the
equation of motion written in the body-fixed frame results:

ẍ− 2Ωẏ = Ω2x+ aT,x

ÿ + 2Ωẋ = Ω2y + aT,y

z̈ = aT,z

(2.17)

wherein the acceleration model adopted can be expressed as:

aT(r, s,dk−a) = aG(r) + aSRP(r, s) +
N∑
k=1

a3rdk(r,dk−a) (2.18)

being aG the gravitational acceleration due to the gravity field of the body,
aSRP the acceleration contribution due to the Solar Radiation Pressure (SRP)
and a3rdk the acceleration contribution due to the k-th third-body. In this
work, since the aim is to focus the attention on the gravity field reconstruction,
the other perturbations are neglected and the gravitational model used as the
reference one is the constant density polyhedron [14]. This model is a subclass
of the P2BP, called in this work Shape-Based Two-Body Problem (S2BP).

The Modified Circular Restricted Three-Body Problem The geometry
and the formulation of the MCR3BP starts from the CR3BP. The only difference
is that the two bodies are assumed to have a certain shape and not to be point
masses. Having defined the angular velocity associated to the two-body motion
of the primaries as:

ΩS =
√
G(m1 +m2)

d2
12

(2.19)

where m1 and m2 are the mass of the primary and the secondary, d12 the
distance between them and G the gravitational constant, and defining TS as
an inertial frame, fixed at the center of mass of the two primaries, and Ts a
synodic frame, the transformation matrix of a generic vector R expressed in
the TS frame to a vector r in the synodic frame is given by:

TΩS (t) =


cos(ΩSt) sin(ΩSt) 0
− sin(ΩSt) cos(ΩSt) 0

0 0 1

 (2.20)

22

2.2. Guidance, Navigation & Control Subsystem

In a similar way, the transformation matrix from the k-th body fixed frame
(with k = 1, 2) to the k-th inertial frame T kn , where T kn is centered in the k-th
body and parallel to the TS frame, is given by:

Tk
n(t) =


cos(Ωkt) sin(Ωkt) 0
− sin(Ωkt) cos(Ωkt) 0

0 0 1

 (2.21)

Then the position vector r, in the Ts frame can be expressed in the k-th body
fixed frame according to:

r(k) = Tk
n · TT

ΩS (r− lk) (2.22)

where here lk is the distance of the primary to the center of mass of the system
in the Ts reference. Note that the product Tk

n ·TT
ΩS can be re-arranged, having

defined the differential rotation as ∆Ωk = ΩS − Ωk, since:

TΩS · T
k
n
T =


cos(∆Ωkt) sin(∆Ωkt) 0
− sin(∆Ωkt) cos(∆Ωkt) 0

0 0 1

 = Tk
∆(t) (2.23)

The equation of motion in the Ts frame results, according to [13]:

r̈ + ΩS × (ΩS × r) + 2ΩS × r =

T1
∆(t)∇U1

(
r(1)

)
+ T2

∆(t)∇U2
(
r(2)

) (2.24)

This work implement a simpler version of Eq.2.24. In particular the bodies
are assumed to be locked with the respect to the synodic frame resulting in a
Shape-Based CR3BP (SCR3BP):

r̈ + ΩS × (ΩS × r) + 2ΩS × r = ∇U1 (r1) +∇U2 (r2) (2.25)

where here Ui(·) is the gravitational potential associated to the i-th body.

2.2 Guidance, Navigation & Control Subsystem

The Guidance, Navigation & Control subsystem is in charge of determining the
state, planning the steps and executing the actions in order to complete the
mission task. The GNC subsystem make use of a complex set of algorithms,
which translates the perception (sensors measurements) to actions (actuation).
Here, a brief summary of the main characteristics and state of art of the GNC
systems for relative and proximity operations is reported. The work developed
in the Thesis takes into account the opportunities and limitations described
here. The elementary interfaces in a traditional GNC scheme are shown in
Fig. 2.7.

23

Chapter 2. Background & State of the Art

Figure 2.7: Basic interfaces in a traditional GNC subsystem scheme.

2.2.1 Relative Navigation

The relative navigation task is to reconstruct the state of the spacecraft relative
to the target, being another spacecraft or the soil of a small-body. The
navigation algorithms processes the measurements coming from the navigation
sensors, reported in Table 2.1. Typically, the measurements acquisition is
coupled with a navigation filter. The navigation filter is in charge of refining
the estimate coming from the measurements, either by processing batches of
data or including knowledge of the dynamics. The most common technique for
measurements filtering is the well-known Kalman Filter. It is a powerful tool
for combining information in presence of uncertainty. It produces guesses about
where the system is going to be next and couples this with the information
coming from measurements. The Kalman filter entails a statistical technique
that describes the random structure of experimental measurements. In addition,
it provides information about the quality of the estimation (i.e. variance of
the estimation error). Finally, a feature of great interest for this Thesis, the
Kalman filter has a recursive structure that allows real-time execution (no
storing of observations or past estimates). A rigorous derivation of the Kalman
filter is outside of the scope, but it will be thoroughly reviewed and adapted
throughout the Thesis to favor the integration with AI-based techniques. For a
complete overview of the Kalman filter, the author suggests to refer to [15, 16].

Spacecraft absolute and relative navigation are key tasks in the Guidance
Navigation & Control (GNC) chain for current and future missions. Current
navigation algorithms rely on the accurate knowledge of the system dynamics.
This is possible whenever spacecrafts orbiting the Earth are considered, where
the environment can be accurately modeled to a great extent of accuracy.
Nevertheless, when dealing with relative approach with unknown bodies or
interplanetary missions, the modeling of the system dynamics yields inevitable
unmodeled uncertainties. This is mainly due to partial knowledge of the
operative scenario, e.g. orbital disturbances acting on the target spacecraft.
Furthermore, the growing interest towards micro-platforms, both for Earth
and interplanetary missions, has significantly reduced the spacecraft available

24

2.2. Guidance, Navigation & Control Subsystem

computational power; hence, very sophisticated models cannot be anymore
handled on-board. Such limitation leads to a degradation of performance of
the GNC subsystem [17]. In this framework, on one hand, the dynamical
model employed in the on-board algorithms needs to be simplified, on the
other hand, the accuracy of such model significantly deteriorates the GNC
performance [17], due to the absence of nonlinear terms as well as disturbances.
The Artificial Neural Networks (ANNs) are a powerful tool to bridge this
gap. ANNs are becoming increasingly important when dealing with uncertain
processes. In particular, their capability of approximating unknown functions
can be employed to reconstruct system nonlinearities, as well as unmodeled
environmental disturbances. The advantage of estimating such uncertainties
benefits the whole GNC process chain. In this framework, Gurfil et al. [18]
presented a nonlinear adaptive neural control method applicable to deep space
formation flying. Bae and Kim [19] developed a neural network aided sliding
mode control scheme for spacecraft formation flying. Recently, Zhou [20] pro-
posed a neural-network based reconfiguration control for spacecraft formation
in obstacle environments. Traditionally, the ANNs are solely employed for
disturbance estimation, yet the aim of the Navigation filter is to estimate the
system state. In past years, there have been attempts to couple ANNs with
Extended Kalman Filters (EKF). In particular, the most common approach
is to employ EKFs to train the ANNs [21]. In this configuration, the state of
the Kalman filter is augmented with the ANN weights. For a large network
this process increases the computational burden. Furthermore, the resulting
coupled structure cannot provide an estimate of the uncertainties, unless the
disturbance vector is added to the state vector and estimated as a constant
parameter. An alternative solution is to use the estimated disturbance term,
output of the ANN, directly in the dynamical propagation of the filter [22]. In
this way, instead of the state vector, the dynamics of the EKF is augmented
by an ANN that captures the unmodeled dynamics. The ANN learns online
the function describing the disturbance, i.e. the mismatch between the mea-
surement and the a-priori guess given by the model selected for the EKF.
However, in this case, the augmented dynamical model accuracy changes in
time and therefore, its covariance matrix has to be adapted at each step to
capture this variation. In the past years, few solutions have been proposed to
derive an efficient formulation for neural network aided filters. Gao et al. [23]
derived a Radial Basis Function Neural Network (RBFNN) - Kalman Filter
to improve the estimation accuracy for seam tracking during high-power fiber
laser welding. They proposed a coupled formulation where the RBFNN is
used to compensate for the model and noise uncertainties. However, they do
not consider any online adaptation of the filter covariance matrices. Similarly,
Stubberud et al. [22] developed a neuro-observer based on an EKF and a
multilayer feed-forward neural network. Their formulation involves two coupled
Kalman Filters, one to estimate the state and the other to tune the neural

25

Chapter 2. Background & State of the Art

network. Other authors also proposed neural network for system identification
based on offline training [24, 25]. Jwo and Huang [26] presented a neural
network aided EKF for DGPS positioning. The neural network is used for
noise identification to adaptively tune the EKF. However, their neural network
relies on an offline training using the steepest descent technique. Recently Harl
et al. [27] developed a reduced-order modified state observer for uncertainties
estimation in nonlinear systems. They also applied the proposed technique
to estimate the uncertain disturbances caused by J2 perturbation around the
Earth. Also in this case, the gain of the observer is user-selected and there is
not any kind of adaptation depending on the experienced scenario.

The problem of reconstructing the unknown acceleration terms of the dynamics,
as will be thoroughly detailed in the Thesis, is advantageous from a pure
guidance and navigation perspective. However, it lacks insight for what concerns
the direct knowledge of the perturbation sources (target shape or gravitational
properties), being them blended to the other perturbative effects in the overall
disturbance acceleration. In such sense, it is desirable to exploit a technique
dedicated to the reconstruction of the small body shape and gravity field, to
aid the navigation of the spacecraft, while enriching the science output of
the mission. There have been a number of studies that proposes different
applications of machine learning to this problem: in [28] a single layer forward
network, designed and trained by means of extreme learning machines, is shown
to be capable to learn the relationship between the spacecraft position and the
gravitational acceleration. In [29] instead neural reinforcement learning is used
to control a spacecraft around a celestial body whose gravity field is unknown.
However, in those cases those methods have to be trained before use. This
is possible if the target body shape is already available and so need detailed
a-priori knowledge of the target body.

2.2.2 Relative Guidance & Control

The relative guidance task is to generate and plan trajectories and actions to
fulfill mission objectives. The relative control task is to execute the actions,
most often in feedback loop, in order to follow the guidance plan. It outputs
the actuator required actions and instructions. Sometimes, especially in fully
on-board implementation the two tasks merge in a single algorithm. For this
reason they are here reported together. A lot of algorithms have been developed
for relative control in uncertain environment, or more interestingly, in mission
scenarios where multiple spacecrafts are involved. It is possible to summarize
the adopted strategies for distributed systems found in literature as reported
in Table 2.2.

The high-level of autonomy, and consequently increased complexity, is required
in distributed mission concept, in which the satellites are expected to react

26

2.2. Guidance, Navigation & Control Subsystem

Table 2.1: Relative navigation sensors

Sensor Measurements Accuracy Remarks
GPS-based Relative position

Absolute position
mm - cm Earth mission

Cooperative target re-
quired

RF-based Range
Range rate
LOS

cm - m Cooperative target
(transceiver, antennas
on target)

Radar Range
Range rate
LOS

m Uncooperative or coop-
erative targets

Vision-based Range
LOS
Relative attitude

µm - mm Cooperative (patterns,
LEDs) or uncooper-
ative targets (shape
known and complex
image processing)
Illumination con-
straints
Feature extracting
algorithms required

Laser-based Range
LOS
Relative attitude

mm Retroflectors on target
improves performance
High mass and power
Short operative range

27

Chapter 2. Background & State of the Art

Table 2.2: Guidance & Control strategies used for relative and proximity
operations.

Guidance/Control
Approach

Pros Cons

Optimal Control It generates optimal
trajectories

No feedback control
Hard to implement on-
board

Artificial Potential
Field

Simple to handle CA It may require excessive
∆V
It may lead to instabil-
ity

STM inversion Simple and analytic Simplified model
Hard to deal with CA

Impulsive control Strong heritage Modification for CA
Correction for drift

Continuous Linear Con-
trol (e.g. LQR)

Linear control theory
applicable

Continuous firing

Nonlinear Control (e.g.
CLF)

Eliminate potential in-
stability due to nonlin-
earities in the dynamics

Continuous firing

Model Predictive Con-
trol

Easy to generate op-
timal path with con-
straints

Computationally heav-
ier

28

2.2. Guidance, Navigation & Control Subsystem

autonomously to unforeseen events. In particular, the collision avoidance task
is critical in formation reconfiguration especially when the number of satellites
increases. The GNC algorithms can be implemented following a centralized [30],
decentralized or distributed architecture. The centralized architecture assumes
there is a master spacecraft that processes the information coming from all
the satellites, computes the guidance and control outcome and sends back
commands to each spacecraft [31]. Decentralized GNC implements identical
algorithms on-board each satellite, which is capable of computing its own action
based solely on on-board information [32]. Finally, distributed systems relies
on inter-satellite links: indeed, each satellite processes its own information and
at least one coming from another agent of the system [33]. On one hand, the
centralized architecture presents two different issues: first, it presents a single
failure point due to the presence of a master spacecraft; furthermore, the GNC
commands are sent to all the agents of the system, inserting complexity on the
communication link between the master and the other spacecrafts. On the other
hand, the decentralized approach solves the failure point aspect but lacks of a
system perception, as each satellite is limited to its own data. The distributed
architecture is selected to cope with the aforementioned shortcomings of the
centralized and decentralized approach. Even though formation flying missions
are not so numerous, in literature [31][33] the path-planning is seldom tackled
as an optimum problem solved for the trajectory of each satellite taking into
account the collision hazard constraint of the constructed trajectories. Both
centralized and distributed architecture have been studied [33]. Nevertheless,
the computational burden is high and difficult to handle, especially when on
board computational resources are very limited. Mixed Linear Programming
and Particle Swarm Optimization were proposed by Di Mauro et al. [31] to solve
an optimal continuous control law for satellite reconfiguration. Such approach
is hardly fitting the constraints imposed by the micro-platforms and does not
take into account any collision avoidance strategy. A strategy for convexifying
the collision constraint in optimal control has been reported by Chu [33].
Chernick et al. [34] presented an optimal control based on impulsive maneuver
leveraging Keplerian dynamics to determine optimal, predictable maneuvering
schemes, without taking into account the collision avoidance constraint. An
impulsive strategy based on the state transition matrix of the system is also
presented by Vadali and Alfriend [35]. Several authors have partially solved
the task of collision-free path-planning using behavior-based algorithms. Izzo
[36] presented a behavior-based algorithm, where the guidance desired velocity
is determined as a result of the summation of identified behavior (target
approach, collision avoidance, etc.). Similar to the behavior-based approach is
the calculation of the Artificial Potential Field [37]. The major difference is
that APF outputs desired acceleration, contrary to the behavior-based that
works with guided velocities. Steindorf et al. [38] proposed a guidance and
control approach based on the artificial potential field using relative orbital

29

Chapter 2. Background & State of the Art

elements. The authors include a passive collision avoidance strategy applicable
to satellite formations composed of two satellites. The relative motion between
spacecrafts flying in formation is typically reconstructed by state measurement
expressed in Cartesian coordinates in the Hill frame. Hence, a linear mapping is
developed to transform the Cartesian state to the relative orbital elements δχ,
and vice versa. Schaub [39] used a similar approach, where the mean orbital
elements difference were used. The navigation, control and guidance algorithms
are highly influenced by the dynamical models that are implemented on-board.
For the sake of limiting computational burden, seldom these dynamical models
are linearized or intentionally neglect disturbance terms, which might play
a role in the motion evolution. Several researchers have utilized Artificial
Neural Networks universal approximation theorem to work out the task of
estimating disturbances and unmodeled terms [40], nevertheless most of the
algorithms work off-line using large amount of data to be trained on. Being
confident that the neural reconstruction of disturbances/unmodeled terms
have proven the possibility to enhance the guidance and control for space
mission [18][19][20], an online strategy to reconstruct the dynamics is still
unexplored in literature. The literature is still poor with respect to algorithms
that can be implemented in a distributed architecture with low computational
power, actively managing the collision avoidance constraint between more
than two satellites. Distributed space systems composed of several micro-
satellites flying in formation are becoming increasingly attractive for the
space community. This concept can significantly impact the capabilities of
microsatellites mission (e.g. distributed Earth Observation (EO), distributed
antenna, etc.), enhancing flexibility and reducing mission failure points. As the
number of satellites increases an unprecedented level of autonomy is required
to perform Guidance, Navigation and Control (GNC) tasks for formation
maintenance and reconfiguration. Nevertheless, the size of the platforms tend
to decrease when conceiving distributed systems due to different constraints,
e.g. single launch of the formation. Such limitation implies the reduction of the
on-board computational power. Hence, autonomous GNC algorithms need to be
light and flexible to meet the challenges of distributed formation flying missions.
Model-predictive control is a powerful control strategy that combines optimality
and closed-loop control for trajectory generation and control actuation. Model
predictive control has already been studied for distributed reconfiguration [41]
[42], nevertheless such planning algorithms are dependent on the accuracy of
the dynamical model. Moreover, they usually rely on linearized dynamics in
order to carry out the optimization successfully.

30

2.3. AI-aided GNC

2.3 AI-aided GNC

2.3.1 Machine Learning & Deep Learning

The research field on Machine Learning (ML) and Deep Learning (DL) is
complex and extremely vast. In order to acquire a proper knowledge on the
topic, the author suggests to refer to [43]. Hereby, only the most relevant
concepts are reported in order to contextualize the work developed in the
Thesis. The first important distinction is to be made between the terms
Machine Learning and Deep Learning. The highlight of the two approaches
are reported in colored box and in Fig. 2.8.

Machine Learning learns to map input to output given a certain world
representation (features) hand-crafted for each task.

Deep learning is a particular kind of machine learning that aims at
representing the world as a nested hierarchy of concepts, which are
self-detected by the DL architecture itself.

The paradigm of ML and DL is to develop algorithms that are data-driven.
The information to carry out the task are gathered and derived either from
structured or unstructured data. In general, one would have a given experience
E , which can be easily thought as a set of data D = (x1, x2, . . . , xn). It is
possible to divide the algorithms into three different approaches:

• Supervised learning: given the known outputs T = (t1, t2, . . . , tn), we
learn to yield the correct output when new datasets are fed.

• Unsupervised Learning: the algorithms exploits regularities in the data
to generate an alternative representation used for reasoning, predicting
or clustering.

• Reinforcement Learning: producing actions A = (a1, a2, . . . , an) that
affect the environment and receiving rewards R = (r1, r2, . . . , rn). Re-
inforcement learning is all about learning what to do (i.e. mapping
situations to actions) so as to maximize a numerical reward.

Even though the boundaries between the approaches are seldom blurred lines,
the focus of this Thesis is to develop algorithms that take advantage and
inspiration from supervised and reinforcement learning. For this reason, few
additional details are provided for such approaches.

Supervised Learning Supervised learning consists in learning to associate
some output to a given input, coherently with the set of examples of inputs x

31

Chapter 2. Background & State of the Art

Figure 2.8: Differences between Machine Learning and Deep Learning [43].

32

2.3. AI-aided GNC

Figure 2.9: Differences between model-based and model-free reinforcement
learning. In space we have deterministic representation of dynamical model:
it is smart to exploit them. Nevertheless, some scenarios are unknown (e.g.

Small bodies) or partially known (perturbations)

and targets t. Quite often, the targets t are provided by a human supervisor.
Nevertheless, supervised learning refers also to approaches in which target states
are automatically retrieved by the machine learning model, as widely used in
this Thesis. The typical applications of supervised learning are classification
and regression. In few words, classification is the task of assigning a label to a
set of input data among a finite class of labels. The output is a probability
distribution of the likelihood of a certain input of belonging to a certain class.
On the other hand, regression aims at modeling the relationship between a
certain number of features and a continuous target variable. The regression
task is largely employed in supervised learning for this Thesis.

Reinforcement Learning Reinforcement learning is learning what to do,
how to map situations to actions, so as to maximize a numerical reward signal.
The learner is not told which actions to take, but instead must discover which
actions yield the most reward by trying them. The learner is not told which
actions to take, but instead must discover which actions yield the most reward
by trying them. One of the challenges that arise in reinforcement learning,
and not in other kinds of learning, is the trade-off between exploration and
exploitation. The agent typically needs to explore the environment in order to
learn a proper optimal policy, which determines the required action in a given
perceived state. At the same time, the agent needs to exploit such information
to actually carry out the task. In a space domain, and especially online
applications, the balance must be shifted towards exploitation, for practical
reasons. Another distinction that ought to be done is between model-free and
model-based RL techniques, as shown in Fig. 2.9. Model-based methods rely
on planning as their primary component, while model-free methods primarily
rely on learning. Although there are real differences between these two kinds

33

Chapter 2. Background & State of the Art

of methods, there are also great similarities. We call environmental model
whatever information the agent can use to make predictions on what will be
the reaction of the environment to a certain action. For the reasons above, the
model-based approach seems to be beneficial in the context of this Thesis, as
it merges the advantage of analytical base models, learning and planning. It is
important to report some of the key concepts of reinforcement learning:

• Policy: defines the learning agent way of behaving at a given time.
Mapping from perceived states of the environment to actions to be taken
when in those states.

• Reward: at each time step, the environment sends to the reinforcement
learning agent a single number called the reward.

• Value Function: the total amount of reward an agent can expect to
accumulate over the future, starting from that state.

2.3.2 Artificial Neural Networks

Artificial Neural Networks represent the nonlinear extension to the linear
machine learning (or deep learning) models presented in Section 2.3.1. A
thorough description of artificial neural networks is far beyond the scope of
this work. Hereby, the set of concepts necessary to understand the work is
reported. In particular, the universal approximation theory is described, which
makes the foundation to all the algorithms developed in this Thesis. The most
significant categorization of deep neural networks is between feedforward and
recurrent networks. Deep feedforward networks, also often called simply multi-
layer perceptrons (MLPs), are the most common deep learning models. The
feedforward network is designed to approximate a given function f . According
to the required task to execute, the input is mapped to an output value. For
instance, for a classifier, the network N maps an input x to a category y. A
feedforward network defines a mapping y = N (x,w) and learns the value of
the parameters w (weights) that result in the best function approximation.
These models are called feedforward because information flows from the input
layer, through the intermediate ones, up to the output y. Feedback connections
are not present in which outputs of the model are fed back as input to the
networks itself. When feedforward neural networks are extended to include
feedback connections, they are called recurrent neural networks.

The essence of Deep Learning, and Machine Learning extensively, is learning
world structures from data. All the algorithms falling into the aforementioned
term are data-driven. This means that, despite the possibility of exploiting
analytical representation of the environment, the algorithms need to be fed
with structures of data to perform the training. The learning process can be
defined as the algorithm by which the free parameters of a neural network

34

2.3. AI-aided GNC

are adapted through a process of stimulation by the environment in which it
works. The type of learning is the set of instructions on how the parameters
are changed, as explained in Section 2.3.1. Typically, the following sequence is
followed:

1. the environment stimulates the neural network

2. the neural network makes changes of the free parameters

3. the neural network responds in a new way according to the new structure

As one would easily expect, there are several learning algorithms that can
consequently be split into different types. To make a relevant categorization
for this Thesis, it is possible to divide the supervised learning philosophy
into batch and incremental learning [44]. The batch learning is suitable for
spatial distribution of data in a stationary environment, meaning that there is
no significant time correlation of data and the environment reproduces itself
identically in time. Thus, for such applications, it is possible to gather the data
into a whole batch that is presented to the learner simultaneously. Once the
training has been successfully completed, the neural networks should be able to
capture the underlying statistical behavior of the stationary environment. Such
kind of statistical memory is used to make predictions exploiting the batch
dataset that was presented. On the other hand, in several applications the
environment is non-stationary, meaning that information signals coming from
the environment may vary with time in its statistics. A batch learning would be
inadequate as there are no means to track and adapt to the varying environment
stimulus. Hence, it is favorable to employ what is called incremental learning
(or online or continuous) in which the neural network constantly adapt its free
parameters to the incoming information in a real-time fashion.

2.3.2.1 Universal Approximation Theorem
The universal approximation theorem takes the following classical form [44].
Let ϕ : R→ R be a non-constant, bounded, and continuous function (called
the activation function). Let Im denote the m-dimensional unit hypercube
[0, 1]m. The space of real-valued continuous functions on Im is denoted by
C(Im). Then, given any ε > 0 and any function f ∈ C(Im), there exist an
integer N , real constants vi, bi ∈ R and real vectors wi ∈ Rm for i = 1, . . . , N ,
such that we may define:

F (x) =
N∑
i=1

viϕ
(
wTi x+ bi

)
F (x) =

N∑
i=1

viϕ
(
wTi x+ bi

)
(2.26)

as an approximate realization of the function f; that is,

|F (x)− f(x)| < ε (2.27)

for all x ∈ Im.

35

Chapter 2. Background & State of the Art

2.3.2.2 Back-propagation Algorithm
The basis for most of the supervised learning algorithms is represented by
back-propagation. In general, finding the weights of an artificial neural network
means determining the optimal set of variables that minimizes a given loss
function. Given N structured data, comprising input x and target t, one can
define the loss function at the output of neuron j for the pth datum presented:

εj(p) = tj(p)− yj(p) (2.28)

where yj(p) is the output value of the jth output neuron. It is possible to
extend such definition to derive a mean indication of the loss function for the
complete output layer. We can define a total energy error of the network for
the pth presented input-target pair:

E = 1
2
∑
j∈Cj

ε2j (p) (2.29)

where Cj is the set of output neurons of the network. As stated, the total
energy error of the network represents the loss function to be minimized during
training. Indeed, such function is dependent on all the free parameters of the
network, synaptic weights and biases. In order to minimize the energy error
function we need to find those weights that vanish the derivative of the function
itself and minimizes the argument:

(w,b)T = argmin E(w,b) (2.30)

Closed-form solutions are practically never available, thus it is common practice
to use iterative algorithms that make use of the derivative of the error function
to converge to the optimal value. The back-propagation algorithm is basically
a smart way to compute those derivatives, which can then be employed using
traditional minimization algorithms such as gradient descent, Newton and
quasi-Newton methods, Levenberg-Marquardt, conjugate gradient. Here we
consider a simple method that can be applied specifically to sequential learning
but easily extended to batch learning. With reference to Fig. 2.10 the induced
local field of neuron j, which is the input of the activation function φj(·) at
neuron j can be expressed as:

vj(p) =
∑
i∈Ci

wjiyi(p) + bj (2.31)

where Ci is the set of neurons that share a connection with layer j, bj is the
bias term of neuron j. The output of a neuron is the result of the application
of the activation function to the local field vj :

yj(p) = φj(vj(p)) (2.32)

36

2.3. AI-aided GNC

Figure 2.10: Elementary Artificial Neuron architecture.

In gradient based approaches, the correction to the synaptic weights wij is
performed according to the direction identified by the partial derivatives (i.e.
gradient), which can be calculated according to the chain rule as:

∂E(p)
∂wij(p)

= ∂E(p)
∂εj(p)

∂εj(p)
∂yj(p)

∂yj(p)
∂vj(p)

∂vj(p)
∂wij(p)

(2.33)

Hence, the update to the synaptic weights ∆wij is calculated as a gradient
descent step in the weight space using the derivative of Eq. 2.33:

∆wij = −η ∂E(p)
∂wij(p)

(2.34)

where η is the tunable learning-rate parameter. The back-propagation algorithm
entails two passages through the network: the forward pass and the backward
pass. The former evaluates the output of the network as well as the function
signal of each neuron. The weights are unaltered during the forward pass. The
backward pass starts from the output layer by passing the loss function back to
the input layer, calculating the local gradient for each neuron.

Incremental Learning Algorithms Incremental learning stands for the
process of updating the weights each time a pair of input-target (x, t)p is
presented. The two mentioned passes are executed at each step. This is the
mode utilized for online application where the training process can potentially
never stop as the data keep on being presented to the network.

Batch Learning Algorithms Batch learning algorithms execute the weights
update only after all the input-target data are presented to the network. One
complete presentation of the training dataset is typically called epoch. Hence,

37

Chapter 2. Background & State of the Art

after each epoch it is possible to define an average energy error function, which
replaces Eq. 2.29 in the back-propagation algorithm:

Ẽ = 1
2N

N∑
p=1

∑
j∈Cj

ε2j (p) (2.35)

The forward and backward pass is performed after each epoch.

38

CHAPTER3
Neural-Dynamics Learning & Navigation

E nel mare cambió quella mia vita
E il mare trascurato mi travolse
Seppi che il mio futuro era sul mare
Con un dubbio peró che non si sciolse
Senza futuro era il mio navigare.

— Francesco Guccini

The neural reconstruction of dynamical models, including disturbances and
unmodeled terms, is the focus of the first step towards the enhancement of the
Guidance, Navigation & Control using Artificial Intelligence techniques. The
idea is to develop flexible algorithms that are capable of learning the dynamics
while flying in uncertain environments. Such dynamical models are used as
basis to synthesize the guidance and control algorithms, together with the
delicate task of navigating the spacecraft. The better the spacecraft knows the
environment, the more performant the GNC system is.

The following Chapter is organized as follows: Section 3.1 presents the three
developed approaches to employ Artificial Neural Networks for dynamics

Chapter 3. Neural-Dynamics Learning & Navigation

Dynamics Reconstruction

Figure 3.1: System dynamics identification: different approaches to
reconstruct system dynamical behavior.

learning; Section 3.2, 3.3 and 3.4 thoroughly describe the methods. The
comparisons between the different architectures, including advantages and
disadvantages, are highlighted in the discussion.

3.1 Artificial Neural Network Models for Dynamics Reconstruction

The capability of using ANN to approximate the underlying dynamics of a
spacecraft is used to enhance the on-board model accuracy and flexibility to
provide the spacecraft with a higher degree of autonomy. There are different
approaches that could be adopted to tackle the system identification and
dynamics reconstruction task, as show in Fig. 3.1. In the following section
the three analyzed methods are described but, first, it is important to remark
the universal approximation theorem (cfr. Chapter 2), which represents the
foundation of all the methods. The three methods employs the Artificial Neural
Network model at different integration levels. In this Thesis, the nomenclature
for the methods (see Fig. 3.1) is the following:

• Fully-Neural Dynamics Learning (Section 3.2)

• Dynamics Acceleration Reconstruction (Section 3.3)

• Parametric Dynamics Reconstruction (Section 3.4)

Fully-Neural Dynamics Learning The dynamical model of a system
delivers the derivative of the system state, given the actual system state and
external input. Such input-output structure can be fully approximated by an
artificial neural network model. The dynamics is entirely encapsulated in the
weights and biases of the network N . The neural network is stimulated by the
actual state and the external output. In turns, the time derivative of the state,
or simply the system state at the next discretization step, is yielded as output,
as shown in Fig. 3.2:

ẋ = N (x,u)→ xk+1 = Ñ (xk,uk) (3.1)

The method rely on the universal approximation theorem since it is based on the

40

3.1. Artificial Neural Network Models for Dynamics Reconstruction

Input Layer ∈ ℝ� Hidden Layer ∈ ℝ¹² Hidden Layer ∈ ℝ¹� Output Layer ∈ ℝ�

System State

Control Input

Prediction

Figure 3.2: Dynamical reconstruction as a neural network model.

assumption that there exists an ANN that approximates the dynamical function
with a predefined approximation error. The training set is simply composed
of input-output pairs, where the input is a stacked vector of system state and
control vector. The dynamics reconstruction based solely on artificial neural
networks largely benefits by the employment of recurrent neural networks,
rather than simpler feedforward networks.

Dynamics Acceleration Reconstruction The second method uses the ca-
pability of the Artificial Neural Networks to approximate an unknown function.
In particular, it is wise to exploit every analytical knowledge we may have of the
environment. Nevertheless, most of the time the analytical models encompass
linearization and do not model perturbations, either because they are analyti-
cally complex or simply unknown. For this reason, a Radial Basis Function
Neural Network aided Adaptive Extended Kalman Filter (RBFNN-AEKF) for
state and disturbance estimation is developed. RBFNN are selected for their
simple structure and suitability for fast online training [45]. The neural network
estimates the unmodeled terms which are fed to the EKF as an additional
term to the state and covariance prediction step. Finally, a recursive form of
the adaptive EKF is employed to limit the overall computational cost. The
main innovation is represented by the combination of mismodeling estimation
by the RBFNN together with the adaptive formulation of the EKF, providing
a robust, accurate and computationally efficient navigation filter that can be

41

Chapter 3. Neural-Dynamics Learning & Navigation

initialized and run on-board. In brief, the method can be summarized into
three key-points:

• The AI-filter uses the RBFNN to learn and output an estimate of the
disturbance/mismodeled terms that is actually used in the EKF to deliver
a better predicted estimate;

• The robustness of the filter is guaranteed through the adaptation step.
The combination of a RBFNN and a filter can lead to a very wrong
state estimation if the RBFNN estimates diverge or converge to a wrong
value, hence the adaptivity guarantees the robustness of the navigation
algorithm;

• The RBFNN learning is fully performed online. This means that no prior
knowledge or learning has to be performed beforehand. This dramatically
increases the flexibility of the algorithm;

The method has shown promising results for relative navigation in perturbed
orbits with a very simple dynamical model. To strengthen such point, a
comparison with other filter architectures with various degrees of dynamics
uncertainty. is reported

Parametric Dynamics Reconstruction The third method is developed
under the framework of parameter reconstruction. Basically, the Artificial
Neural Network is employed to refine the uncertain parameters of a given
dynamical model. This method is particularly suitable when the uncertain
environment influences primal system constants (e. g. inertia parameters, spher-
ical harmonics, drag coefficients). In this Thesis, the method is developed
using a Recurrent Neural Network (cfr. 3.4) to estimate the spherical harmonic
expansion coefficients of irregular bodies that populate the Solar System. Such
method is very fast and computationally light with respect to traditional algo-
rithms for parameters estimation. Moreover, given the physical knowledge of
the parameters to be reconstructed, the method has a very promising scientific
outcome. For instance, the gravity expansion of Asteroids and Planets can be
approximated online while flying, delivering a rough shape reconstruction of
the Body.

3.2 Fully-Neural Dynamics Learning

The Fully-Neural Dynamics Learning employs an Artificial Neural Network
for encapsulating the whole dynamics reconstruction. Let us assume having a
system that evolves according to the following equation:

ẋ = F(x,u) (3.2)

42

3.2. Fully-Neural Dynamics Learning

Furthermore, it is assumed that the observation is equal to the state for the sake
of simplicity. The algorithm can easily be extended to different measurement
models by introducing the measurement function h(x) or its linear matrix
version H:

y = x (3.3)

The system dynamics can be learnt using an Artificial Recurrent Neural
Network (RNN) trained by standard back-propagation algorithm [46]. One
effective strategy is to leverage the physics of the problem in order to obtain a
representation, which needs solely some parameters to be fit. Another approach
is to couple the neural network with a estimation algorithm to reconstruct only
the perturbation terms, taking as basis the linearized natural dynamics [40].
For this work, a Recurrent Neural Network has been chosen as architecture for
the Neural Network. Its simple architecture and and brief evaluation time make
it a suitable architecture for on-board applications. Recurrent Networks have
the capability of handling time-series data efficiently. The connections between
neurons form a directed graph, which allows an internal state memory. This
enables the network to exhibit temporal dynamic behaviors. When dealing with
dynamics identification, it is crucial to exploit the temporal evolution of the
states, hence RNN shows superior performances with respect to MLP [47]. In
detail, two recurrent networks are proposed to tackle the system identification
problem. Namely:

• Layer-Recurrent Neural Network (LRNN)

• Nonlinear Autoregressive Network with Exogenous Inputs (NARX)

The details of the difference between the two implementation are left to the
reader [44]. The highlight that is worth to be remarked is that the NARX
model uses control action as inputs and state as output, given a certain n-delay
of the training data. The NARX network is particularly suited for the task,
being able to make prediction when used in closed-loop architecture. Although
less performant than RNN, the system dynamics can also be learnt using a Feed-
Forward Neural Network trained by standard back-propagation algorithm [46].
For this work, a Multi-Layer-Perceptron has been tested and compared with
the Recurrent architecture. Its simple architecture and and brief evaluation
time make it a suitable architecture for on-board applications. In particular a
2-layer network is employed, namely one hidden layers as sketched in Fig. 3.3.
An hyperbolic tangent is used as the activation function for the hidden layer,
whereas a Rectifier Linear Unit (ReLU) is used as neural activation function
for the output layer. The dynamics of the spacecraft distributed system can
be learnt as a discrete model. The downside of such strategy, especially in
terms of implementation is that the ANN is associated with a fundamental
time step of discretization. In an operative scenario, this could be the sampling
frequency of navigation system. Nevertheless, it could be the case in which the

43

Chapter 3. Neural-Dynamics Learning & Navigation

Figure 3.3: Two-layer MLP for dynamics identification.

navigation measurements frequency is much higher than the required planning
one. This generates a discrepancy between the model to be learned and the
model employed in trajectory generation. However, as stated above, a too fine
sampling in a restricted region destroys the generalization capability of the
network. The dynamical model can be represented as:

xk+1 = F̃Ts(xk,uk) (3.4)

where the transition matrix is associated to the sampling time Ts, as stated.
The model is learned using a ANN ÑTs trained by back-propagation. In this
work, the well established Levenberg-Marquardt [46] algorithm is employed for
minimizing:

min
w

∑
i

||ÑTs(x,u,w)− yk+1||2 (3.5)

where Ñ is the ANN at the current learning step, hence the dependency on
the weights w. The vector y is the observation vector.

3.2.1 Prediction Performance & Comparison: RNN vs MLP

Fig. 3.4 shows the different propagation of the feed-forward (MLP) and the
presented recurrent neural networks (LRNN and NARX), initialized equally and
trained in the same scenario [47]. The prediction position and velocity accuracy,
compared with the analytical nonlinear J2-perturbed model, demonstrates
the superior performance in dynamics reconstruction. The implemented
LRNN is a two-layer network with 10− 6 neurons, respectively in the hidden
and output layer. The recurrent hidden layer has a 1-time delay feedback
loop. The RNN architecture is shown in Fig. 3.7. The NARX network is a
2-step delay with the same number of neurons and layers of the LRNN. The

44

3.2. Fully-Neural Dynamics Learning

Figure 3.4: Comparison between NARX, LRNN and MLP dynamical
propagation for Ns = 100 planning steps.

Figure 3.5: Comparison between initialized (offline) and refined (online)
network prediction for Ns = 100 planning steps.

45

Chapter 3. Neural-Dynamics Learning & Navigation

Figure 3.6: Nonlinear Autoregressive Exogenous Model.

process of learning can be initiated off-line based on one of the well-known
dynamical model, such as Clohessy-Wiltshire or Yamanaka-Ankersen state
transition matrix. The initialized RNN is constantly updated on-board while
performing operations. Fig. 3.5 shows the improvement for the same open-loop
prediction of Ns = 100 planning steps between the initialized network (offline)
and the network generated after performing one reconfiguration simulation. It
is important to remark that the prediction reported in Fig. 3.5 is open-loop,
namely a forward propagation, which is not representative of the closed-loop
utilization of the network in the guidance and control algorithm. As the
agents keep performing relative orbital maneuvers, i.e. formation keeping or
reconfiguration, the knowledge of the actual dynamics is refined online, which
can be used for a incremental performance planning. One issue with online
learning is overfitting. In addition, a high sampling frequency of the state and
action is not beneficial for the RNN training. Suppose the first batch of data
for learning are very much localized in a given portion of R9 space, several
hyper-surfaces approximate the given transition between xk and xk+1. The
learning data are enclosed in a restricted region, hence several curves yield
a low loss function in the back-propagation algorithm but the model but are
definitely not suitable for generalization [47]. The limitation of the dataset to
a bounded and restricted region is not beneficial for dynamics identification.
Especially in a preliminary learning process this would drive the neural network
to a wrong convergence.

46

3.3. Dynamics Acceleration Reconstruction

Figure 3.7: Layer Recurrent Neural Network architecture.

3.3 Dynamics Acceleration Reconstruction

3.3.1 Algorithm Architecture

The neural network estimates the disturbances acting on the system, which
are then adjunct in the prediction step of the filter. The filter architecture is
sketched in Fig. 3.8. The innovation term is used to carry out the adaptivity
task. Whereas, the residual term, taking into account the estimation state
at step k, is fed into the online learning algorithm of the network’s weights.
Each block of the RBFNN-AEKF is detailed in the following subsections. The

Figure 3.8: Proposed architecture for the RBFNN-AEKF.

system dynamics, taking into account the process noise, is assumed to be
described as:

ẋ = f(x,u) + w (3.6)

47

Chapter 3. Neural-Dynamics Learning & Navigation

Alongside, the measurements are assumed to be perturbed by white noise as:

zmeas = Ix + v (3.7)

Note that in the derivation presented in the following sections, we assume that
the observation model is zmeas = Ix + v as in [27]. Normally, an observation
function, often nonlinear, is introduced as explained in Section 3.3.3. Such
assumption implies that the observation matrix H = I or, more in general,
h(x) = x. In other words, the state is assumed to be completely observable for
sake of derivation but the approach is applicable to partially observable state
and to nonlinear measurement models.

3.3.2 Radial Basis Functions Neural Network

The Radial-Basis Function Neural Network and its associated online learning
algorithm is hereby explained. The remarkable feature of such algorithm
consists on the online learning method, which guarantees strong flexibility and
adaptivity of the system.

3.3.2.1 Neural Network Structure

The Radial Basis Function Neural Network (RBFNN) is a popular network
topology, which has the capability of universal approximation [45] [48]. Due
to its simple structure and much quicker learning process, it stands out com-
pared to the classic Multi-Layer Perceptron (MLP), especially for function
approximation applications [45]. The RBF neural network is a three-layer
feedforward network, as seen in Figure 3.9. The RBFNN owns a single hidden-
layer because it does not need multiple layers to obtain nonlinear behavior
classification, as in Multi-Layer Perceptron. The neurons of RBF are nonlinear
Gaussian function hence a shallow network can be used with the same results
of Multi-Layer Perceptron. Hence, referring to Fig. 3.8, the lightest network
has been chosen, consisting of one input layer, one hidden and one output
layer. The input layer processes the state vector x̂k−1 = [x1 x2 ... xn]T , where
k − 1 is the time instant. The hidden layer performs a nonlinear mapping of
the input, whereas, the output layer is a linear combination of the nonlinear
hidden neurons transformed into the resultant output space. The output space
is the disturbance vector d̂=[d1 d2 ... dn]T . A RBFNN is used to estimate the
unmodeled disturbances, as well as the nonlinearities present in the system
dynamics. The generic layout of the network is sketched in Figure 3.9. The
network has a 3-layers structure, comprising an input, output and hidden
layer. For the sake of derivation we call x ∈ Rn the input vector. It is hereby
remarked that the vector x is employed to derive the network structure: in the
following sections the distinction between state vector and estimated state will
be described and treated accordingly. Similarly to the input vector, Φ ∈ Rm is

48

3.3. Dynamics Acceleration Reconstruction

Figure 3.9: Architecture of the RBF neural network. The network processes
the estimated states yield an estimate of the disturbance term. The input,
hidden, and output layers have n, m, and j neurons, respectively. Φi(x)

denotes the radial Gaussian function at the hidden node i.

the hidden layer vector and i the associated index, d ∈ Rj is the output vector
and l the associated index. In this derivation we assume that n ≡ j. Essentially,
the hidden layer evaluates a set of m radial basis functions Φ : Rn → R, where
n is the number of states, which are chosen as centered-Gaussian expression:

Φi(x) = e−η(||x−ci||)2 (3.8)

for i = 1 : m, where m is the number of neurons and ci is the randomly selected
center for neuron i. The number of neurons m is a user-defined parameter:
its value is application-dependent and it shall be selected by trading-off the
reconstruction accuracy and the computational time. The same consideration
holds for the parameter η, which impacts the shape of the Gaussian functions. A
high value for η sharpens the Gaussian bell-shape, whereas a low value spreads
it on the real space. On one hand, a narrow Gaussian function increases the
responsiveness of the RBF network, on the other hand, in case of limited
overlapping of the neuronal functions due to too narrow Gaussian bells, the
output of the network vanishes. Hence, ideally, the parameter η is selected
based on the order of magnitude of the exponential argument in Eq. 3.8.
The output of the neural network hidden layer, namely the radial functions
evaluation, is normalized:

Φnorm(x) = Φ(x)∑m
i=1 Φi(x) (3.9)

The classic RBF network presents an inherent localized characteristic; whereas,
the normalized RBF network exhibits good generalization properties, which
decreases the curse of dimensionality that occurs with classic RBFNN [45]. In
the following derivation, the output vector of the hidden layer is simply called

49

Chapter 3. Neural-Dynamics Learning & Navigation

Φ(x) without the subscript norm for the sake of simplicity. For a generic input
x ∈ Rn, the components of the output vector d ∈ Rj of the network is:

dl(x) =
m∑
i=1

wilΦi(x) (3.10)

In a compact form, the output of the network can be expressed as:

d(x) = WTΦ(x) (3.11)

where W = [wil] for i = 1, ...,m and l = 1, ..., j is the trained weight matrix
and Φ(x) = [Φ1(x) Φ2(x) · · · Φm(x)]T is the vector containing the output of
the radial basis functions, evaluated at the current system state.

3.3.2.2 Online Learning Algorithm
The dynamical model can be described by a set of nonlinear differential
equations:

ẋ = f(x) + dext (3.12)

where the term dext is representative of the unknown disturbance accelera-
tion that is added to the known dynamics function f(x). In particular the
disturbance term gathers the contribution of all the environmental perturba-
tions, and unmodeled terms. These uncertainties need to be estimated online.
Hence, an online learning algorithm, which drives the update of the weights,
is required. The weights update law is derived to guarantee the stability of
the estimation algorithm and neural dynamics, hereby defined as the evolution
of the weight matrix in time. In the following mathematical derivation we
make use of the universal approximation theorem for neural networks that
guarantees the existence of a set of ideal weights W that approximates a
function with a bounded arbitrary approximation error [45]. Such weights are
unknown, hence the algorithm is designed to obtain an estimate Ŵ of the ideal
weights by performing online learning. The neural network learning algorithm
relies on the estimation error dynamics, targeting convergence and stability of
the estimated weights matrix Ŵ evolution towards the ideal weights and the
error e, calculated in the EKF. The symbol (̂·) is used to refer to estimated
quantities.

To derive the error dynamics, let us assume the actual system dynamics
is described by Eq. 3.12, where dext is the unknown external disturbance
term. The actual system dynamics can be rewritten as the following equation,
assuming to include all the nonlinear terms into d(x) : Rn → Rj , j ≡ n, which
is the vector-valued function equivalent to the RBFNN output vector:

ẋ = A · x + d(x) (3.13)

50

3.3. Dynamics Acceleration Reconstruction

where the term d(x) captures all the nonlinearities together with the unknown
disturbances external to the system, namely d(x) = f(x)−Ax + dext. The
matrix A is a stable, potentially time-varying, matrix representing the linear
term, if any, of the original dynamics expression in Eq. 3.12.

The expression of the continuous single-step Kalman filter can be written as:

˙̂x = A · x̂ + d̂(x̂) + KkH(x− x̂) (3.14)

where d̂ is estimated using the radial-basis function neural network, Kk is
the time-varying gain matrix of the Kalman filter (subscript k stands for
the referred time step) and H is the observation matrix. In this work, the
observation matrix of the measurement model is assumed to be the identity
matrix, nevertheless the derivation is not significantly altered if one would
consider a different expression for the measurement model. The measurements
are assumed to be affected by white noise as in Eq. 3.7. Consider that the
continuous form is employed for the sake of derivation, indeed the learning rule
is then discretized for the actual implementation. The error dynamics can be
derived as:

e = x− x̂ (3.15)

ė = ẋ− ˙̂x = d(x)− d̂(x̂) + (A−KkH)e (3.16)

Invoking the universal approximation theorem for neural networks [45], we can
assume there exists an ideal approximation of the disturbance term d(x):

d(x) = WTΦ(x) + ε (3.17)

where W is the neural weights matrix, Φ(x) is the vector-valued function
resulting from the evaluation of the Gaussian functions contained in each neuron
of the RBFNN, ε is a bounded arbitrary approximation error. Consequently,
the error in estimation can be written as:

d(x)− d̂(x̂) = WTΦ(x) + ε− ŴTΦ(x̂) (3.18)

by adding and subtracting the term W ·Φ(x̂) and performing few mathematical
manipulations, Equation 3.18 can be expressed as:

d̃ = W̃TΦ(x̂) + ε′ (3.19)

where d̃ = d− d̂, W̃ = W−Ŵ and the bounded term ε′ = ε+W ·[Φ(x)−Φ(x̂)].
The aim of the learning rule is to drive the dynamics error to zero, as well as
forcing the weights to converge to the ideal ones. Namely:

e→ 0, W̃→ [0]

Similarly to [27], introducing the following scalar Lyapunov function for the
feedback system, including the network weights and the estimation error, the

51

Chapter 3. Neural-Dynamics Learning & Navigation

weights update rule ˙̂W is derived to guarantee the stability and convergence
of the estimation algorithm:

V = 1
2 tr(ξW̃

TW̃) + η

2eTe (3.20)

where tr(·) is the trace operator, ξ, η > 0 are user-defined coefficients.

Recalling Eq. 3.16 and 3.19, the derivative of the Lyapunov function can be
written as:

V̇ = tr(ξW̃T ˙̃W) + ηeT ė

= tr(ξW̃T ˙̃W) + ηeT (W̃TΦ(x̂) + ε′ + (A−KkH)e)

= tr(ξW̃T ˙̃W) + ηeTW̃TΦ(x̂) + ηeT ε′ + ηeT (A−KkH)e

= tr(ξW̃T ˙̃W + ηW̃TΦ(x̂)eT) + ηeT ε′ + ηeT (A−KkH)e

= tr(W̃T (ξ ˙̃W + ηΦ(x̂)eT)) + ηeT ε′ + ηeT (A−KkH)e < 0 (3.21)

Recalling that ˙̃W = − ˙̂W, the expression for the weights update rule that
guarantees stability and convergence of the estimation algorithm and feedback
system in Fig. 3.8 is:

˙̂W = η

ξ
Φ(x̂)eT (3.22)

Indeed, by inserting Eq. 3.36 into Eq. 3.21, the expression for the derivative
of the Lyapunov function reduces to the stability of the error estimation of the
Extended Kalman Filter. The error term in Eq. 3.36 is defined as Eq. 3.15.
Such term represent the residual between estimated and actual output of the
observed system: in practical terms, the expression is the innovation of the
estimation filter, which takes this form based on the assumption of Eq. 3.7.
The ε′ term is a bounded term that derives from the universal approximation
theorem of artificial neural networks [45] that states that the term ε can be
arbitrarily small. In practice, it represents an upper boundary for the derivative
of the Lyapunov function, as in [27]. In the case of linear systems, the term
(A−KkH) grants asymptotic stability of the Kalman Filter if A is reachable
and H is observable. In the case of nonlinear systems, this is not always
true. However, it has been proved [49] that the estimation error of an EKF is
exponentially bounded if:

• A is non-singular for every t ≥ 0;

• there exist real constants p1, p2 > 0 such that p1 · I ≤ Pk ≤ p2 · I, where
Pk is the estimated state covariance matrix;

• the initial estimation error satisfies ||x̂0 − x0|| ≤ ε and the process and
measurements covariance matrices are bounded

52

3.3. Dynamics Acceleration Reconstruction

where x̂0 and x0 are the estimated and true state vector at the initial step.
Given the EKF asymptotic stability with exponential decaying error under the
aforementioned conditions, i.e. the derivative of the Lyapunov function of the
estimation error is negative, Eq. 3.21 is verified and hence the stability of the
estimator is guaranteed.

The weights update rule can be discretized using a first-order Euler method,
assuming the measurements interval is small enough:

Ŵk+1 = ψŴk + h
˙̂Wk = ψŴk + h

η

ξ
Φ(x̂k)eTk (3.23)

where k is the time step index, ψ is a user-defined relaxation factor, h = tk+1−tk
is the time interval between two consecutive measurements.

3.3.3 Adaptive Extended Kalman Filter
The EKF is one of the most common techniques for nonlinear state estimation.
In fact, it represents the extension of the linear Kalman Filter when dealing
with nonlinear dynamical systems [50]. The EKF is the standard approach
for relative navigation filters [51, 52, 53, 54]. However, sometimes, accurate
dynamical models are not available on-board. This is mostly due to computa-
tional limitations (e.g. for Cubesats) or unavailability of precise formulations
(e.g. non-Keplerian dynamics). In these cases, a simpler model has to be used
and the unmodeled effects have to be estimated. In this section the proposed
approach combining the introduced RBFNN and a Kalman Filter is presented.
The novelties lie in the formulation of a stand-alone estimator block containing
a disturbance estimator and a filter. It is important to underline as the RBFNN
and the filter are tightly coupled and they do not constitute two separate pieces.
This is also a consequence of the implementation of an adaptive form of the
process covariance matrix update.

Let’s consider the system and measurement models:

xk =f(xk−1,uk−1,wk−1) = Axk−1 + d(xk−1,uk−1) + wk−1, (3.24)

zk = h(xk,vk) (3.25)

with x being the state vector, u the control input, w and v process and mea-
surement noises, described by zero-mean white noise uncorrelated distributions
with covariance matrices Q and R respectively. Please notice that the system
dynamics is described by a linear part plus a non-linear disturbance function d,
by assumption (see 3.13). In this case, the formulation of the RBFNN-AEKF
is given by:

x̂−k =Ax̂−k−1 + d(x̂−k−1,uk−1) (3.26)

P−k = F̃k−1P+
k−1F̃T

k−1 + Qk−1 (3.27)

53

Chapter 3. Neural-Dynamics Learning & Navigation

Kk = P−k HT(HP−k HT + Rk)−1 (3.28)

P+
k = (I−KkH)P−k (I−KkH)T + KkRkKT

k (3.29)

x̂+
k = x̂−k + Kk(zk−Hx̂−k) (3.30)

with

F̃ = A + ∂d

∂x

∣∣∣∣∣
x̂−
k

; H = ∂h

∂x

∣∣∣∣∣
x̂−
k

= I (3.31)

and
Qk = αQk−1 + (1− α)(Kkδkδ

T
k KT

k) (3.32)

being Pk the estimation error covariance and Kk the Kalman gain, α is a
forgetting factor and δk = zk−Hx̂−k is the filter innovation. The Jacobian in
Eq. 3.42 of the vector-valued function reconstructed by the RBFNN is derived
from Eq. 3.35:

∂d

∂x = ∂WTΦ(x)
∂x = WT ∂Φ(x)

∂x ∈ Rn×n (3.33)

In this formulation, the state is assumed to completely observable. This
assumption can be relaxed but a different formulation has to be developed for
the neural network (see [27]). The adaptation of Q is performed according
to Eq. 3.43 as in [55] to limit the computational effort. The adaptation step
is a fundamental aspect in the implementation of this estimation technique.
In fact, the nonlinear term estimated by the RBFNN d(x) directly affects
the state estimation and, moreover, it influences the accuracy of the adopted
dynamical model at each time step. The evolution in time of the model
accuracy is very difficult to be established a-priori being dependent on the
effectiveness of the disturbance term estimation, performed by the RBFNN
time-varying. Although this aspect is often neglected [23], an online tuning
of the process covariance matrix Q is fundamental to ensure filter accuracy
and robustness. In fact, the adaptive formulation guarantees that, even when
the neural network produces a completely wrong estimates of the disturbances,
yielding a significantly biased dynamical model, the filter, at least, follows the
available measurements. In fact, if the network yields a disturbance term that
is significantly off, the dynamical model is no longer reliable. This implies
a large value of the filter innovation δ, which delivers a high-valued process
covariance matrix according to Eq. 3.43. As result, the filter does not diverge
but simply follows the measurements (Eq. 3.27).

The formulation reported so far considers a Cartesian dynamical model. If
the Relative Orbital Elements δχ representation is used, the equations are
recasted according to the following specifications. An artificial neural network is
employed to approximate the dynamical terms encompassing all the unmodeled
nonlinearities and disturbances. The method could potentially be exploited in
several different environments. The disturbances and nonlinear terms may be

54

3.3. Dynamics Acceleration Reconstruction

caused by different sources, such as gravity harmonics, solar radiation pressure,
drag, etc. The ROE dynamics for unperturbed motion is equal to the Keplerian
matrix in Eq. 2.8. If the difference in the semimajor axis is null, the Keplerian
dynamics in ROE space vanishes. This makes the perturbations relevant even
if the magnitude is very low. For instance, the J2 perturbation term in the
ROE dynamics is ∼ 10−10s−1.

The universal approximation theorem of artificial neural networks guarantees
the existence of a set of ideal weights W that approximates a function with a
bounded arbitrary approximation error [45]. As mentioned, such network ar-
chitecture possesses a quick learning process, which makes it suitable for online
dynamics identification and reconstruction. The highlights of the mathematical
expression of the RBFNN are reported here for clarity. For a generic state
input δχ ∈ Rn, the components of the output vector γ ∈ Rj of the network is:

γl(δχ) =
m∑
i=1

wilΦi(δχ) (3.34)

In a compact form, the output of the network can be expressed as:

γ(δχ) = WTΦ(δχ) (3.35)

where W = [wil] for i = 1, ...,m and l = 1, ..., j is the trained weight matrix
and Φ(x) = [Φ1(x) Φ2(x) · · · Φm(x)]T is the vector containing the output of
the radial basis functions, evaluated at the current system state.

The online learning algorithm is derived using Lyapunov stability theorem, as
before. The RBFNN weights matrix is updated as follows:

˙̂W = η

ξ
Φ(δ̂χ)eT (3.36)

where e = δχ − δ̂χ. The latter term is the estimated state output of the
navigation filter.

The prediction is based on the augmented dynamics taking into account the
contribution of the RBFNN. The measurements are the Cartesian state in
the LVLH frame of the reference satellite. In this case the formulation of the
RBFNN-AEKF is given by:

δ̂χ
−
k = Akδ̂χ

−
k−1 + γ(δ̂χ−k−1,uk−1) (3.37)

P−k = F̃k−1P+
k−1F̃T

k−1 + Qk−1 (3.38)
Kk = P−k HT(HP−k HT + Rk)−1 (3.39)
P+

k = (I−KkH)P−k (I−KkH)T + KkRkKT
k (3.40)

δ̂χ
+
k = δ̂χ

−
k + Kk(zk −Hδ̂χ

−
k) (3.41)

55

Chapter 3. Neural-Dynamics Learning & Navigation

with

F̃ = Ak + ∂d

∂δχ

∣∣∣∣∣
δ̂χ

−
k

; H = JX
δχ (3.42)

and
Qk = αQk−1 + (1− α)(Kkδkδ

T
k KT

k) (3.43)

being A the dynamics matrix, γ the output of the network representing the
approximation of all the unmodeled terms (relative drag and nonlinearities),
Pk the estimation error covariance, Q the process covariance matrix, H the
measurement matrix, R the measurements covariance matrix, Kk the Kalman
gain, α is a forgetting factor, zk the measurements and δk = zk−Hδ̂χ

−
k is

the filter innovation. The Jacobian in Eq. 3.42 of the vector-valued function
reconstructed by the RBFNN is derived from Eq. 3.35:

∂γ

∂δχ
= ∂WTΦ(δχ)

∂δχ
= WT ∂Φ(δχ)

∂δχ
∈ Rn×n (3.44)

In this formulation, the state is assumed to be completely observable. In the
simulations, the Gaussian noise is used to corrupt the measurements to be
representative of actual sensors output. The noise affects only the EKF update.
The overall algorithm implementation is reported in Algorithm 1:

Algorithm 1 Radial-Basis Function Neural Network Adaptive EKF
1: Random initialization of the RBFNN
2: RBFNN estimation step of d using the estimated state at the previous step d(x) = WTΦ(x)
3: RBFNN weight update ˙̂W = η

ξ
Φ(x̂)eT

4: EKF Prediction step, considering the computed d term x̂−
k =Ax̂−

k−1 + d(x̂−
k−1,uk−1)

5: EKF Update step x̂+
k = x̂−

k + Kk(zk−Hx̂−
k)

6: EKF Q adaptation step Qk = αQk−1 + (1− α)(Kkδkδ
T
k KT

k)
7: Estimated state x̂+

k

3.3.4 Application to Spacecraft Relative Navigation

In this section, we introduce one of the possible applications of the proposed
RBFNN-AEKF. The relative navigation between two spacecrafts orbiting the
Earth is considered for a dual motivation: it is a well-known scenario, hence
sophisticated model can be employed to simulate the reality to evaluate the
filter performances; also, there are many available dynamical models with
increasing levels of accuracy that can be used for comparison. It is worth
remarking that this is not the only application nor the most appealing one,
since more uncommon scenarios are expected to emphasize the benefit of the
proposed filter, such as interplanetary mission or non-keplerian orbits. Hereby,
the different dynamical models for filter propagation are presented as well as
the filter alternatives used for comparison.

56

3.3. Dynamics Acceleration Reconstruction

In this subsection, we present the filters used for the comparison. Besides the
RBFNN-AEKF, the new filter proposed in this work, other filters are tested
under the same simulation scenario:

• a state observer based on the formulation in [27];

• a standard, non-adaptive EKF aided with a RBFNN;

• an EKF exploiting a more accurate, nonlinear dynamical model.

3.3.4.1 Observer

The dynamics of the relative motion between the spacecrafts is reconstructed
using a modified full-state observer [27]. In the same fashion as Section 3.3.2,
the state observer can be constructed as follows [56]:

˙̂x = Acw · x̂ + d̂(x̂) + Kh(z−Hx̂) (3.45)

where Acw is the linear time invariant matrix of the Clohessy-Wiltshire dynam-
ics presented in Section 2.1.1.1, d̂ is estimated using the radial-basis function
neural network in Section 3.3.2, Kh is the user-defined observer gain matrix
and H = I is the identity observation matrix, as already stated in Section
3.3.1.

3.3.4.2 RBFNN-EKF

This filter is a standard EKF aided with RBFNN as presented in Section 3.3.1.
The only difference with respect to the proposed RBFNN-AEKF is that the
value of the process covariance Q is fixed in time. It is worth underlying
that this can be a very weak point because it is hard to a-priori establish
the accuracy of the RBFNN-based disturbance estimation, especially for very
uncertain dynamics. In fact, the matrix Q provides an indication of the
accuracy of the dynamical model. Using a neural network to update the
dynamical model and to increase its accuracy, it is therefore necessary to adapt
the value of Q at each iteration step. The RBFNN-EKF formulation is based
on Equations 3.26-3.30.

3.3.4.3 EKF - Nonlinear Propagation

The last tested filter is an EKF with a different dynamical model. There
is not any coupling with the neural network but the used dynamical model
is nonlinear and accounting for J2 perturbations. In particular, a standard
EKF is employed where the evolution of the state vector is described by the
nonlinear model introduced in Section 2.1.1.2.

57

Chapter 3. Neural-Dynamics Learning & Navigation

Table 3.1: Chaser-Target Orbital Parameters

Chaser Target
a [km] 8143.1 8143.1
e [-] 1.4·10−1 1.4·10−1

i [◦] 98.2 98.2
ω [◦] 85.9 85.9
Ω [◦] 79.2 79.2
θ [◦] 0 1·10−4

Asp [m2] 1.2 0.2

3.3.5 Reconstruction and Navigation Performance
In this section, the numerical simulation environment to evaluate the filter
performance is described. First, the selected scenario is presented. Subse-
quently, the capability of disturbance reconstruction of the RBFNN-AEKF is
tested. Then, the estimation algorithms are compared using a realistic orbital
environment. At this point, the definition of measurement noise levels and
filters tuning are introduced. Finally, the same simulation is performed using
non-nominal filter tuning conditions to test the robustness of the navigation
filters.

3.3.5.1 Orbital Scenario
The reference relative orbital motion is generated considering two spacecraft
with the same initial orbital parameters except for the true anomaly. Table 3.1
reports the chaser and target initial orbital parameters along with the cross
sectional area, important for disturbances evaluation. with Asp being the cross
sectional area. These orbital parameters result in the following relative initial
conditions, expressed in the target LVLH reference frame:

ρ0 = [−0.0017 − 12.2042 4.7 · 10−4] m (3.46)

ρ̇0 = [−0.0017 3.9 · 10−6 − 5.6 · 10−10] m/s (3.47)

Please note that the reference orbits are eccentric and that the cross sectional
areas are different, resulting in a different perturbation effect and potential
dynamical mismodeling. In fact, the different cross sectional areas lead to a
different differential drag and solar radiation pressure perturbations. It is worth
underlying that at the selected altitude, the effect of the drag is not relevant
but still present. A similar reasoning can be done for the solar radiation
pressure. The most relevant effect is given by the eccentricity of the orbits: the
design models neglecting such contribution (e.g. Clohessy-Wiltshire) deliver
a modelling errors of tens of meters after one relative orbits. The presented

58

3.3. Dynamics Acceleration Reconstruction

scenario has been selected as representative of a leader-follower formation,
separated along the orbit by a difference in the true anomaly. The truth
model, as discussed before, is propagated through the high fidelity propagator
considering all the perturbation effects. The dynamical models used by the
filters depend on the selected architecture and are detailed in Chapter 2.

3.3.5.2 Disturbance Reconstruction

The RBFNN disturbance approximation capability is assessed through the
simulation of the scenario presented in Section 3.3.5.1. In order to have a
quantitative disturbance term, which can be compared to the ANN estimation,
the actual relative motion is propagated using the J2-perturbed relative motion
in Section 2.1.1.2. Instead, the filter exploits a simple Clohessy-Wiltshire
linearized model described in 2.1.1.1. The normalized ANN consists of 60
hidden neurons with Gaussian-basis radial functions; the function centers are
generated randomly. The number of neurons has been selected by trading-off
the reconstruction accuracy and the computational time. In such framework,
the disturbances that need to be estimated are caused by the following elements:

• J2 zonal gravity perturbation

• e 6= 0, elliptical orbits;

together with the nonlinearities neglected in the derivation in Section 2.1.1.1.
Using the J2-perturbed nonlinear model in Section 2.1.1.2, the disturbance
term is explicit in the form of d = [dx dy dz]T acceleration term. For the
coherence of vectors dimensionality the estimation is actually performed for
the vector d6x1 = Gd, where G = [03x3; I3x3]. The reference orbit is a LEO,
which is incidentally assumed to be the orbit of the target spacecraft. Table
3.1 reports the orbital parameters of the two spacecrafts.

It is assumed to have relative position and velocity measurements at 1Hz, with
a noise level described by a Gaussian distribution with standard deviation
σpos = 10−2m and σvel = 10−4m/s. These values are representative of a relative
RF metrology system (see [17]). The estimation of the disturbance acceleration
term converges after a transient time of nearly 350 s: this represents the main
learning process of the randomly initialized network. The network is said to
be converged when the estimation error is less than 10% of the nominal value.
Figure 3.10 shows the learning curve of the network during the early phase of
the orbital motion. The RBFNN is randomly initialized: indeed, the estimation
is significantly off by almost ∼ 6 orders of magnitudes during the initial phase.
The disturbance acceleration components, after the main learning process, are
shown in Figure 3.11. Despite the measurement noise, the estimation yields a
Root Mean Squared Error (RMSE) reported in Table 3.2.

59

Chapter 3. Neural-Dynamics Learning & Navigation

20 40 60 80 100 120 140

Time [s]

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

D
is

tu
rb

a
n
c
e
 t
e
rm

 [
m

/s
2
]

RBFNN approximation

J2 - nonlinear

20 40 60 80 100 120 140

Time [s]

-0.1

0

0.1

0.2

0.3

0.4

0.5

D
is

tu
rb

a
n
c
e
 t
e
rm

 [
m

/s
2
]

RBFNN approximation

J2 - nonlinear

Figure 3.10: Estimation of the disturbance acceleration term for LEO
reference orbit. The perturbations are in the order of 10−5 m

s2 . The plots
show the initial phase of the neural network learning, regarded as the main

learning process. From left to right: dx, dy and dz.

The RBFNN is used to reconstruct the dynamical terms, which are not directly
included in the on-board dynamics representation. As mentioned, the method is
quite general and can be applied to different unknown environments regardless
of the sources of the dynamical disturbances. In this work, the ground-truth
dynamics is a fully nonlinear Cartesian model including J2 perturbation,
whereas the dynamical model used by the GNC algorithms is based on ROE.
For this reason, it is difficult to show a comparison between the true disturbances
and the reconstructed ones. A dedicated simulation is here reported to show
the reconstruction capabilities of the RBFNN.

In the reported simulation, the ground-truth natural dynamics follows Eq. 2.8,
whereas the on-board dynamics is simply the Keplerian term Ak of Eq. 2.8
coupled with the RBFNN reconstructed term. Fig. 3.12 shows the network
approximation of the disturbance term due to J2 in ROE dynamics. The root
mean squared error of the approximation is ∼ 10−13s−1 once the network has
converged to a steady-state.

60

3.3. Dynamics Acceleration Reconstruction

0.5 1 1.5 2 2.5

Orbits

-3

-2

-1

0

1

2

3

4

D
is

tu
rb

a
n
c
e
 t
e
rm

 [
m

/s
2
]

10
-6

RBFNN approximation

Real

0.5 1 1.5 2 2.5

Orbits

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

D
is

tu
rb

a
n
c
e
 t
e
rm

 [
m

/s
2
]

10
-6

RBFNN approximation

Real

0.5 1 1.5 2 2.5

Orbits

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

D
is

tu
rb

a
n
c
e
 t
e
rm

 [
m

/s
2
]

10
-5

RBFNN approximation

Real

Figure 3.11: Estimation of the disturbance acceleration term for LEO
reference orbit after the main learning process. The plots show the

estimation of the disturbance term by the neural network after the network
has converged. From left to right: dx, dy and dz.

3.3.5.3 Relative Navigation - Nominal Case

An accurate orbital simulator is used to test the filters in a realistic environment,
as described in Section 2.1.1. The normalized neural network consists of 60
hidden neurons with Gaussian-basis radial functions; the function centers are
generated randomly. This reference orbits are also used to generate relative
measurements by adding a fictitious noise, representative of realistic sensors
uncertainty. In particular, the noise level associated to relative position and
velocity measurement respectively, is described by a Gaussian distribution
with standard deviation σpos = 10−2m and σvel = 10−4m/s, similarly to the
previous case. It is important to remark that the orbits are eccentric and the
cross sectional areas of the two spacecrafts are significantly different, yielding
a strong differential perturbation effect due to the solar radiation pressure and
drag. The estimation errors, used for performance assessment, are introduced.
The relative position error is defined as:

eρ =
√

(xi − x̂i)2 + (yi − ŷi)2 + (zi − ẑi)2 (3.48)

61

Chapter 3. Neural-Dynamics Learning & Navigation

Table 3.2: Root-mean-squared error of the disturbance estimation term for
the LEO reference orbit

Value
σx [m

s2] 7.2 · 10−7

σy [m
s2] 7.6 · 10−7

σz [m
s2] 5.9 · 10−7

Figure 3.12: RBFNN network approximation of the disturbance terms due to
J2 in ROE dynamics. The disturbance term is a vector γ ∈ R6.

62

3.3. Dynamics Acceleration Reconstruction

Figure 3.13: Relative Position Error Figure 3.14: Relative Velocity Error

where x̂, ŷ, ẑ are the position components estimates. Similarly, the relative
velocity error is:

eρ̇ =
√

(ẋi − ˆ̇xi)2 + (ẏi − ˆ̇yi)2 + (żi − ˆ̇zi)2 (3.49)

with ˆ̇x, ˆ̇y, ˆ̇z are the velocity components estimates.

The measurement covariance matrix R for all the filters is tuned according to
the imposed measurement noise level. The same process covariance matrix Q
is used for the RBFNN-AEKF and RBFNN-EKF and, for the nonlinear EKF,
it is properly selected to guarantee the best steady state error performance.
Similarly, the observer gain Kh is tuned to guarantee the minimum steady
state error. A statistical analysis of the filters has been performed over 100
runs for the described scenario. The filters run with a frequency of 1Hz and the
simulation duration is set to three chaser orbits to appreciate the disturbances
effect. Figures 3.13 and 3.14 show the relative position and velocity error
averaged over 100 runs. For a more quantitative analysis of the results, the
Root Mean Square Error (RMSE) starting from time step 300 (at steady-
state) are computed and reported in Table 3.3 to evaluate the steady state
performance of the filters.

Figure 3.13 and 3.14 show the beneficial effect of the filters compared to
the measurements error. The RBFNN-AEKF and the EKF-nonlinear show
a similar behaviour for the relative position error (Figure 3.13) and, as in
Table 3.3, they outperform the other alternatives. On the other hand, for
what concerns the velocity estimation, the Observer, with this tuning, has
better performance than the other filters. Despite these small differences, the
compared filters show similar performance, and the order of magnitude of the
RMSE, reported in Table 3.3, is the same.

63

Chapter 3. Neural-Dynamics Learning & Navigation

Table 3.3: Filters RMSE Results

RMSE - Position [m] RMSE - Velocity [m/s]

Observer 0.0079 2.39·10−5

RBFNN - AEKF 0.0063 4.49·10−5

RBFNN - EKF 0.0074 4.03·10−5

EKF - nonlinear 0.0064 3.92·10−5

Table 3.4: Filters RMSE Results - Non-Nominal

RMSE - Position [m] RMSE - Velocity [m/s]

Observer 0.0149 5.98·10−5

RBFNN - AEKF 0.0064 4.79·10−5

RBFNN - EKF 0.0090 9.34·10−5

EKF - nonlinear 0.0110 9.55·10−5

3.3.5.4 Relative Navigation - Non-nominal Case

A proper tuning of the filter, however, is difficult to achieve when the process
dynamics is not well known and time-varying. Moreover, it is very hard to
a-priori determine the accuracy in the estimation that the RBFNN can achieve
for that particular case. For this reason, we tested all the filters with off-
nominal conditions. In particular, for each simulation, the value of Q and Kh
were randomly selected according to a uniform distribution centered in the
nominal value and spanning two order of magnitudes. This can be a very high
uncertainty value for some applications, but we wanted to show how the tuning
strongly affects the filter performance. Table 3.4 shows the relative position
and velocity RMSE computed over 100 runs.

It is possible to appreciate how the estimation error of the RBFNN-AEKF is
very similar to the nominal case. This is an evidence of high robustness of the
proposed solution. On the contrary, all the other filters are badly affected from
the inappropriate selection of Q or Kh respectively.

3.4 Parametric Dynamics Reconstruction

3.4.1 The Parametric Identification Problem

As a global approximation technique of the true gravitational field, the SHE
has been largely studied and applied for mission analysis purposes in the past
years [57],[58],[59]. Being an analytical model, it results to be computationally
efficient and light to be evaluated, which makes it suitable for various applica-

64

3.4. Parametric Dynamics Reconstruction

tions. In a SHE, the gravity field of the body is assumed to be represented
through a potential of the form:

U = GM

r
+ GM

r

N∑
n=2

(
R0
r

)n [
CnP0

n(cos θ) + . . .

+
n∑

m=1
(Cnm cos(mλ) + Snm sin(mλ))Pmn (cos θ)

] (3.50)

Here θ is the colatitude, λ the longitude, r the radial distance to the center
of mass of the body, R0 a reference radius and Pmn (x) Associated Legendre
Polynomials (ALP). For the aforementioned peculiar properties of the model,
the SHE is assumed to be reconstructed in this work. Hence, the objective
becomes to estimate the coefficients Cn,Cnm and Snm of the expansion. In
particular, the model to be reconstructed, in the case of the S2BP, is the
following:

r̈ + Ω× (Ω× r) + 2Ω× r = ∇U (r) (3.51)

Writing the SHE in a matrix form, then the model can be written as:

r̈ + Ω× (Ω× r) + 2Ω× r = −GM
r3 r + A(r) ·C (3.52)

Where here, the vector C contains all the coefficients of the expansion to be
estimated. Now, recalling:

y = r̈ + 2Ω× ṙ + Ω× (Ω× r) + GM

r3 r (3.53)

The model can be written in the so called Linear-in-parameters (LIP) form:

y = A(r) ·C (3.54)

According to Alonso et al. [60] and Atencia et al. [61], being the model
linear in the parameters, the identification problem can be reformulated as an
optimization problem. In particular, defining the prediction error e = y−A·C∗
the resulting combinatorial optimization problem is [62]:

min
C

 sup
t

(
1
2eT · e

) (3.55)

With a similar procedure, the formulation can be extended to the MCR3BP.

3.4.2 Hopfield Neural Networks
Several different algorithms are available to solve combinatorial optimization
problems. Being a fast, accurate and computationally light technique the

65

Chapter 3. Neural-Dynamics Learning & Navigation

Figure 3.15: The Hopfield Neural Network structure.

Hopfield Neural Network (HNN) is considered in this work, fostering the on-
board use of the method. The formulation of the network is due to Hopfield [63].
In this work, Abe [64] modified formulation is used, being the most suited for
combinatorial optimization problems. It is a recurrent network whose neuron
dynamics can be reduced to:

ds
dτ

= 1
β

D
(

Ws + b
)

(3.56)

where s(τ) is neuron state, β an hyper-parameter of the network D = diag(1−
s2
i), W = −ATA is called weight matrix and b = Ws0 + ATy is called bias

vector. Both the weight matrix and the bias vector are associated to the SHE
model and can be recovered matching the Lyapunov function of the network
with the cost function of the optimization problem [65],[61]. Here s0 = s(0).

3.4.3 Discrete-time Hopfield Neural Network

Usual discrete versions of HNN include Backward Euler methods. However,
according to [66] a much better discrete version of the network results to be:

(si)k+1 =
(si)k + tanh

(
h
β (neti)k

)
1 + (si)k tanh

(
h
β (neti)k

) (3.57)

where h is the time-step, (si)k is the state of the i-th neuron at the k-th step
and

(neti)k =
∑
j

(wij)k(sj)k − (bi)k (3.58)

66

3.4. Parametric Dynamics Reconstruction

Note that this version is bounded but is not continuous whenever the denom-
inator is zero. In principle, this condition cannot be achieved since |si| < 1,
but, due to numerical round-off errors it has to be taken into account in a
computer implementation of the discrete method. In this study, the choice is
to set (si)k+1 = (si)k whenever the singularity is encountered. This discrete
version of the network, however, still suffers the time step choice.

3.4.4 Gravity Field Identification of Small Solar System Objects

The gravitational field reconstruction of some objects through the use of a
HNN is deeply analysed in this section with the aim to highlight dependencies
with respect to both the orbital conditions as well as the network tuning
parameters. In general, for a generic irregular object of mass M , the i-th
coefficient C∗i is coincident with the i-th neuron state si. Its behaviour can
be written as a function of the orbital state x, and so of (r,v), as well as the
network hyperparameter β, which is associated to the activation function of
the neural network. In particular, in this case si(tk) = ψ(s(tk−1), β) where here
ψ(·) is the activation function. The HNN activation function is the hyperbolic
tangent with a β value that regulate its steepness. In particular, small values
of β are associated with a steeper function and so to an activation that is
more sensitive to the inputs. On the other hand, values of β → 1 make the
activation less sensitive. Then, in general:

C∗i (t) = f(M,x, β, s(tk−1), tk) (3.59)

Note that the dependence on the state x can be written also in terms of
the current osculating elements associated to the trajectory (a, e, i,Ω, ω, ν).
Moreover, since x(tk) depends on x(t0), and tk is considered as an independent
variable, the convergence of the i-th coefficient is assumed to depend on the
initial conditions on the orbit, the mass, the number of coefficients that are
reconstructed, NC (instead of directly their neuron states) and the hyper-
parameter β, so that:

C∗i (t) = f(M,a0, e0, i0,Ω0, ω0, β,NC , tk) (3.60)

A normalization of the equation of motion is now introduced, to try to decouple
the strict dependence of the neural network to the body and the orbit, as
highlighted in [13]. To do so, we introduce a reference two-body acceleration:

aref = µ

R2
ref

(3.61)

67

Chapter 3. Neural-Dynamics Learning & Navigation

In this manner, defining with q̃ the normalized version of a quantity q, the
equations of motion in Eq.2.17, becomes:

x̃′′ − 2ỹ′ = x̃−
(
Rref
r

)2
x̃
r̃ + R2

ref
µ

∂Up
∂x

ỹ′′ + 2x̃′ = ỹ −
(
Rref
r

)2 ỹ
r̃ + R2

ref
µ

∂Up
∂y

z̃′′ = −
(
Rref
r

)2
z̃
r̃ + R2

ref
µ

∂Up
∂x

(3.62)

This version of the equation of motion is particularly useful to be used in the
neural network since the weight and bias matrix results to be normalized. This
process is here presented for the S2BP but can be extended to the SCR3BP.
Finally, the choice of Rref is important: to decouple the problem at the most
with respect to both the body and the orbit, the choice is r(t), in such a way
that always hold: ∣∣∣∣∣r2(t)

µ
∇Un,m(r)

∣∣∣∣∣ ≤ 1

So that the dependencies of Eq.3.60 can be translated in:

C∗i (tk) = fi(β, a0, e0, i0) +O(Nc) +O2(Ω0, ω0) (3.63)

In order to understand potential critical issues, the normalized neural network
is extensively tested on some sample cases. An integral measure of the error of
the i-th reconstructed coefficient, C∗i (t), with respect to its the real value, Ci,
is then introduced:

iMSEi =
∑
k

1
2(C∗i (tk)− Ci)2 (3.64)

Note that this parameter of merit is an integral measure that weights both the
accuracy and the velocity of the network.

Test cases An oblate spheroid with flatness f = 0.5 is considered in that
case. R0 = 1 km and ρ = 2200 kg/m3 are assumed. This simple test is used to
highlight eventual hidden dependencies. The orbital path is discretized with
∆t = 60 seconds.

The results for the iMSE associated to the estimation of the parameter C20
are presented in Fig.3.16 where are presented a series of cut of the function in
Eq.3.60. The areas in white are excluded, having iMSE ≥1.

1. From Fig. 3.16a it is evident that the dependence on the inclination of
the orbit is not a dominant parameter, in this simple example.

2. Fig.3.16b shows instead that there is a stronger dependence on the
distance to the body r(t).

68

3.4. Parametric Dynamics Reconstruction

(a) Cut of the surface along a0 = 3Rmax. (b) Cut of the surface along β = 15.

(c) Cut of the surface along i = 45 ◦. (d) Cut on i = 45 ◦.

Figure 3.16: Results for the test case.

(a) (b)

Figure 3.17: Cut on i = 45 ◦, R0 = 1 km and r/R0 = 3 as a function of α, β
and γ.

3. A cross-dependence between β and r(t) is instead highlighted in Fig. 3.16c
where it is evident that β have a decreasing monotonic behaviour with

69

Chapter 3. Neural-Dynamics Learning & Navigation

respect to r(t). Note that on the top right of the surface the iMSE
is larger than 1. This means that the network convergence velocity
gets smaller, since in all cases presented in this analysis the network do
converge in the given time window.

4. Fig. 3.16d highlight a slight dependence on the time discretization h = ∆t,
coupled to the choice of β.

5. The normalization introduced cancel the dependence on the body mass,
meaning that the same body re-scaled have the same optimal β, β∗.
This however can be misleading since bodies with the same mass but
different shape can have different β∗. It means that considering a triaxial
ellipsoidal body, for a fixed ellipsoid’s axis tuple (α, β, γ), the network β∗
choice do not depend on R0 (and so on the body mass) but do depend
on the tuple, as it can be seen in Fig. 3.17.

The results in Fig. 3.17 do formalize the previous discussion. Fig. 3.17a in
fact represent the dependence of the network β∗ to the ellipsoid parameter α:
in order to consider bodies with the same mass, the ellipsoid tuple is build
as (α, 1, 1 − α). A slight dependence on the α of the β∗ is evident. This
dependence is more evident if two of the body parameters (namely α, γ) are
varied. In Fig. 3.17b it can be seen that the more the body is regular the more
the β∗ value converge to a single value, while the more the irregular the body
is the more the standard deviation on the mean optimal β is larger. Then, the
convergence of the coefficient C∗i (t) results to be function of:

C∗i (t) = f(d(t)) +O(irregularity, NC) (3.65)

Then since a given β∗ do depend on the degree of irregularity of the body and
the time-step as well as on the distance ratio d(t) = r(t)/R0, the convergence
finally results a function of:

C∗i (t) = f(d(t), β∗) +O(irregularity, NC) (3.66)

3.4.5 Applications to real dynamical environments

In this section the dynamical environments represented through the P2BP
and the MCR3BP are used to generate trajectories, in order to address the
performances of the neural network to reconstruct the gravitational field of real
objects in a real gravitational environment. In order to have a reliable measure
of the network convergence velocity and accuracy, some assumptions are made:

1. The environment does not include SRP nor Sun third-body perturbation.

2. The orbital states are assumed to be reconstructed through an EKF. The
state measurements are assumed to be perturbed with zero-mean white

70

3.4. Parametric Dynamics Reconstruction

(a) Inertial body-centred frame
orbit.

(b) nHNN results.

Figure 3.18: Asteroid Castalia results: a0 = 2Rmax, i0 = 135◦ circular orbit.

Gaussian noise. In particular, position and velocity are perturbed using
σr = 102 m and σv = 10−2m

s .

3. The filter model is assumed to be the classical Two-Body Problem model.

4. Orbits with a retrograde acceleration component (90◦ < i < 270◦) are
preferred, for their inherent stability properties.

3.4.5.1 Case Studies: Castalia, Kleopatra and Phobos
In Figs. 3.18, 3.19, 3.20 are presented and discussed some examples. In those
cases, the state vector is normalized using the maximum body radius R0 and
the orbital time using the initial Keplerian orbital period P0, in such a way the
figures represent non dimensional quantities. Note that in all cases the network
exhibit really good convergence performances in a relatively small time.

In Fig. 3.18, a time step of 60 seconds is considered. Note that the 2nd degree
coefficient converge practically in an exact way, in terms of mean. Higher order
coefficients, instead, have less oscillations in time (this is mainly due to the
choice of β).

In Fig. 3.19, a time step of 60 seconds is considered. Note that also in that
case a good convergence is achieved for the set of estimated coefficients. Note
that the convergence is "smoother" with respect to Castalia case, since in that
case a β ≈ 1.5β∗ is considered.

In Fig. 3.20, again a time step of 60 seconds is considered. Being a fast rotating
body, note that the trajectory is perturbed a lot (a) by centrifugal forces. As
a consequence, the convergence of the network is not smooth at all, and can
present estimation offsets, even for the major harmonics.

71

Chapter 3. Neural-Dynamics Learning & Navigation

(a) Inertial body-centred frame
orbit.

(b) nHNN results.

Figure 3.19: Asteroid Kleopatra results: a0 = 2Rmax, i0 = 135◦ circular orbit.

(a) Inertial body-centred frame
orbit.

(b) nHNN results.

Figure 3.20: Phobos case results: a0 = 3Rmax, i0 = 135◦ circular orbit.

3.4.5.2 Binary System Didymos
The case of Didymos binary system is analyzed in order to assess the scalability
of the network to a different dynamical environment. According to [67], the
dynamical environment can be represented through a polyhedron model for the
main body and a ellipsoid model for the moon. The network is implemented
here in the un-normalized form associated to the SCR3BP. In this case, ΩS as
well as the mass of the two bodies is assumed to be known so that Eq. 2.25:

y = r̈ + ΩS × (ΩS × r) + 2ΩS × r + µ1
r3

1
r1 + µ2

r3
2
r2 (3.67)

A = [Amain(r1),Amoon(r2)] (3.68)

72

3.4. Parametric Dynamics Reconstruction

Figure 3.21: Didymos system, Southern Halo.

Giving a LIP form y = A · Cag where Cag = [Cmain; Cmoon]. Some orbital
families are analysed in order to assess the capability of the network to work
in such a perturbed environment. In this work the results for the case of a L1
Halo orbit are presented in Fig. 3.21. Note that the coefficients of Didymoon
are reconstructed quite well in mean, however, being the orbit too far from
Didymain, the network is not able to estimate any coefficient.

Last, in Fig. 3.21, a time step of 30 seconds is adopted and β = 10−7. Note
that being close to the moon, the convergence of the associated coefficients
is fast, in mean. The fact that the orbit is now out of plane helps for the
convergence of the moon harmonics only.

3.4.6 Comparison with EKF-based Parameter Identification

The parameter identification problem has been studied in different technical
disciplines [68]. One common technique to estimate internal parameters of
nonlinear systems is to use an augmentation of the traditional Extended Kalman
Filter, under certain observability conditions [68]. The comparison presented
hereby focuses on evaluating two approaches both relying on Extended Kaman
Filter techniques, in particular:

• the EKF is coupled with the presented HNN. The filter is dedicated to
reconstruct the full state of the system, whereas the HNN approximates
the unknown spherical harmonics coefficients

• the EKF is used both for estimating the state and the unknown coefficients.
Thus, the augmented state of the filter comprises the set of coefficients
to be identified.

73

Chapter 3. Neural-Dynamics Learning & Navigation

3.4.6.1 Filter formulation
In order to compare the performance of the HNN approach for estimating
spherical harmonics coefficients, an EKF-based estimation algorithm has been
developed. The augmented state vector of the EKF is augmented as follows:

x =


r
v

Cnm

 (3.69)

where r and v are the position and velocity vectors respectively; {Cnm} is
a stacked vector containing the SHE coefficient, whose length depends on
the application scenario being p the number of coefficient. The dynamics of
the augmented state space resembles the one presented for the HNN-based
algorithm, namely:

ẋ =


v

∇U (r, Cnm) + 2Ω× ṙ + Ω× (Ω× r)
0nm

 (3.70)

where it is important to note that the gradient of the potential is dependent
on the estimated SHE coefficients. This guarantees system observability for
estimating the aforementioned internal parameters. The state transition matrix
is approximated using the first order Taylor expansion [1], so that the Jacobian
of the dynamics can be constructed as follows:

J =


03×3 I3×3 03×p

∇2U MΩ A(r)
0p×3 0p×3 0p×p

 (3.71)

whereMΩ = ∂∇U
∂v = 2[Ω×]. For the sake of simplicity, in this work, the EKF

measurement equation is assumed to be linear, with the measurement matrix
reading:

y = [I6×6 0nm] (3.72)

Real application scenarios of an asteroid mission may require more sophisti-
cated measurement function and behavioral model relying on low-observability
measurements, as described in [1].

3.4.6.2 Numerical results and comparison
The dynamical environment described in Section 2 is used for numerical
simulations. The measurements are generated through propagation of the
aforementioned dynamical models. Furthermore, the state measurements are
assumed to be perturbed with zero-mean white Gaussian noise. In particular,

74

3.4. Parametric Dynamics Reconstruction

(a) Castalia

(b) Case Kleopatra (c) Phobos

Figure 3.22: SHE coefficients estimation using EKF.

position and velocity are perturbed using σr = 102 m and σv = 10−2m
s . For

the sake of comparison, three test cases have been assessed, namely asteroids
Castalia, Kleopatra and the Moon Phobos.

The estimation results are shown in Fig. 3.22. For the parametric identification
of gravitational field coefficients, however, being the number of parameters
always >1 and usually � 1, the use of a method out of the EKF can be
beneficial from a computational point of view. In fact the computational cost
of a filter step do increase at least linearly with the number of states of the
augmented vector x. In Fig. 3.23, in fact, a comparison between the two
methods is presented considering the case of asteroid Castalia (4 parameters):

• In green, the computational time for a single step of the HNN is reported.
The mean µhnn ∼ 15 µs while the standard deviation σhnn ∼ 12 µs.

• In grey, the computational time for a single step of a EKF used for the
only state estimation is reported. In this case, the mean µhnn ∼ 600 µs

75

Chapter 3. Neural-Dynamics Learning & Navigation

Figure 3.23: Computational time comparison. Note that the HNN step-time
is negligible with respect to the EKF for state estimation.

while the standard deviation σhnn ∼ 386 µs. The gravitational model
used in the EKF in this case is the pure Two-Body Problem.

• In red, the computational time for a single step of a EKF used for both the
state and the parameters estimation. In this case, the mean µhnn ∼ 6.25
ms while the standard deviation σhnn ∼ 2.15 ms.

The previous results are computed on a machine with a quad-core, i7-7700,
3 GHz CPU and highlight that the computational time associated to a
EKF+HNN in the state & parameters estimation is one order of magnitude
smaller than the one associated to an augmented EKF, being beneficial also
from a volatile memory point of view.

From the parameters estimation point of view, instead, both the methods are
capable to reconstruct the selected Stokes coefficients, as reported in Tab. 3.5.
In particular, for asteroid Castalia, the HNN estimation results are presented
in Fig. 3.18 while the one associated to the EKF in Fig. 3.22a: in this case
the HNN exhibit better convergence properties with respect to the filter that
converges slower. It is the opposite for the case of asteroid Kleopatra, Fig. 3.19,
Fig. 3.22b. Finally, in the case of Phobos, that is critical for the highly
perturbed environment associated to the large centrifugal forces, both methods
have troubles in the estimation, giving an offset on the final estimate.

76

3.4. Parametric Dynamics Reconstruction

Table 3.5: HNN/EKF results compared for asteroid Castalia. The mean and
the standard deviation are computed on the last 5 periods while the

integral measure, int with the whole set of orbits. int is computed as the
sum of absolute errors over the number of sample points e.g. int =∑

k |ek|/N , with ek = Ck − Ĉk(tk).

C20
True value HNN EKF

mean std int mean std int
-0,0890 -0,08723 0,000646 0,0063 -0,0703 0,0035 0,0317

C22
True value HNN EKF

mean std int mean std int
0,0362 0,0355 0,002782 0,0022 0,0317 0,0012 0,0054

C30
True value HNN EKF

mean std int mean std int
-0,0124 -0,01266 0,000735 0,0010 -0,0054 0,0013 0,0086

C40
True value HNN EKF

mean std int mean std int
0,0152 0,01684 0,000546 0,0011 0,0115 0,0012 0,0061

77

CHAPTER4
Neural-Aided Guidance & Control

Per chi viaggia in direzione
ostinata e contraria
col suo marchio speciale
di speciale disperazione.

— Fabrizio De André

The methods explained in Chapter 3 served as basis for the synthesis of
Guidance, Navigation & Control (GNC) algorithms. In particular, most of the
sophisticated planning and control algorithms make use of the system dynamics
to tune the response towards the increase of efficiency, short time response or
minimization of given quantities (e. g. time, fuel consumption). In particular, in
this work, two algorithms are presented. The Neural-Artificial Potential Field
is a light and powerful algorithm that encompass a dynamics reconstruction
routine to generate the guidance and control law. The collision avoidance
constraint is treated efficiently and effectively, as well as the generation of
guidance trajectories. Despite delivering promising results in terms of real-
time execution and simple reconfiguration, it has two main drawbacks: it
shows delicate robustness and it does not entail optimization and predicted

Chapter 4. Neural-Aided Guidance & Control

planning, which is critical for space exploration. To solve such shortcomings,
at the cost of increasing complexity, an innovative algorithm based on neural
dynamics reconstruction and planning has been developed. It is, hereby, called
Model-Based Reinforcement Learning but it could be best described by the
name Neural-Predictive Control. The optimization of future control action and
guidance trajectory is generated based on the reconstructed dynamics.

The Chapter is organized as follows: Section 4.1 describes the Neural-Artificial
Potential Field method; Section 4.2 thoroughly discusses the performance of
the Neural-Artificial Potential Field method together with its numerical vali-
dation; finally, Section 4.3 describes the Model-Based Reinforcement Learning
algorithms and Section 4.4 discusses the performance and reports the numerical
results.

4.1 Neural-Artificial Potential Field Guidance

The first developed algorithm consists in an autonomous formation recon-
figuration GNC algorithm based on Artificial Potential Field. It includes a
distributed active collision avoidance based on repulsive potential contribu-
tion derived from Cartesian state measurements, suitable for microsatellite
applications. A tracking feedback controller, based on Lyapunov theorem,
guarantees the artificial potential dynamics to be followed. Additionally, the
proposed algorithm exploits the online Radial-Basis Function Neural Network
(RBFNN) (cfr. Chapter 3) to reconstruct the disturbances or unmodeled terms
in the dynamics to enhance the whole Guidance Navigation & Control (GNC)
algorithm. The main features of the algorithm are:

• a fully online algorithm based on Radial-Basis-Function Neural Network
(RBFNN) for dynamics reconstruction that can benefit the whole GNC
architecture. The refinement of the on-board dynamics improves the
navigation performance and guarantees better control accuracy to reach
the target state;

• a GNC algorithm that exploits the RBFNN refinement of the on-board
dynamics while flying. This work presents a methodology that could po-
tentially be exploited in several different environments. The disturbances
and nonlinear terms may be caused by different sources. In this work, a
fully nonlinear Cartesian J2-perturbed with relative drag is used for the
ground-truth, whereas the on-board dynamics used in the GNC is based
on ROE dynamics.

• a full GNC algorithm for spacecrafts formation reconfiguration, suitable
for micro platforms implementation;

• an extension of the Artificial Potential Field to dynamically control mul-
tiple agents (≥ 2) assuring the collision avoidance constraint is respected;

80

4.1. Neural-Artificial Potential Field Guidance

• a collision avoidance procedure that takes as input Cartesian relative
measurements and process them in the Relative Orbital Element space.

The distributed guidance algorithm processes locally all the state estimations of
the satellite formation members. Each satellite knows the relative position with
respect to the rest of the formation. The guidance strategy relies on artificial
potential functions designed in the relative orbital elements space in R6 [38].
The idea is to build a point-wise global potential based on the contribution
of attractive and repulsive potential sources, namely the target relative orbits
and any other satellite located in close neighboring areas. The attractive
potential is directly expressed in terms of relative orbital elements, being a
convenient way to express relative orbits geometry. Indeed, a set of relative
orbital elements uniquely define one particular formation configuration. On
the other hand, the natural way to express the vicinity between two satellites
is using the Cartesian distance, expressed in the LVLH reference frame in this
particular application. To obtain a uniform expression of the global potential,
the Jacobian of the transformation is derived, based on the results presented
in Section 2.1.2.1. The output of the guidance, for each satellite, is what we
call guidance state and indicate as δχg. The guidance algorithm forces the
following dynamics for each satellite i:

˙δχg = −∇Φglb (4.1)

where Φglb is the global potential:

∇Φglb = ∇Φa +∇Φr (4.2)

where Φa is the attractive potential, whereas Φr is the repulsive one.

4.1.1 Attractive Potential: Configuration Target
The reconfiguration objective is to drive the satellites to a predefined relative
configuration, expressed in terms of relative orbital elements. The set of ROE
to be achieved is called reference state and indicated as δχr. The attractive
contribution to the global potential is determined as:

Φa(δχ) = 1
2ξa ‖δχg − δχr‖

2 (4.3)

where the parameter ξa is a user-defined variable, which can be used to tune
the guidance according to the scenario. The gradient in the guidance ROE
space is defined as:

∇δχg(·) =

 ∂

∂δa
,
∂

∂δλ
,
∂

∂δex
,
∂

∂δey
,
∂

∂δix
,
∂

∂δiy


g

(4.4)

Consequently, the dynamic contribution to Eq. 4.2 given by the attractive
potential is:

∇δχg = ξa(δχg − δχr) (4.5)

81

Chapter 4. Neural-Aided Guidance & Control

4.1.2 Repulsive Potential: Active Collision Avoidance

The repulsive potential is useful to calculate the trajectory in presence of other
satellites, avoiding collision between agents. As previously stated, to achieve an
efficient active collision avoidance maneuver, the potential is best representative
in terms of the Cartesian state X in the Hill frame, where the metric distance
is defined. Given two satellites, i and j respectively, the repulsive potential to
be computed for Eq. 4.2 for satellite i is defined as:

Φrij =

1
2ξre

−
d2
ij
η = 1

2ξre
−‖Xi−Xj‖2

η if dij < dlim,

0 if dij > dlim

(4.6)

where dlim is the threshold distance beyond which the collision maneuver is
not required. The state of the relative position of the spacecrafts is known,
thus it is possible to calculate the distance vector as the difference between
Xi−Xj. The gradient of the potential is calculated using the chain-rule, which
involves the coordinate transformation from Cartesian state X to ROE δχ:

∇δχgΦrij = ∇XΦrij · JXδχ (4.7)

where JX
δχ is the Jacobian of the coordinate transformation, derived in section

2.1.2.1. The gradient in the Cartesian space is defined as:

∇X(·) =

 ∂

∂x
,
∂

∂y
,
∂

∂z

 (4.8)

Hence, the gradient of the repulsive potential between agents i and j, below
the threshold, can be expressed as:

∇δχgΦrij = −ξr
η
e
−
d2
ij
η · (Xi −Xj) · JXδχ (4.9)

The repulsive potential takes into account all the mutual distances between the
formation agents; coherently, the repulsive contribution to the global potential
for satellite i is the summation of the mutual repulsive potential between
satellite i and all the other satellites:

Φr =
n∑
j 6=i

Φrij (4.10)

where n is the number of spacecrafts in the formation.

82

4.1. Neural-Artificial Potential Field Guidance

4.1.3 Natural Dynamics: Action Smoothing
The described derivation of the global artificial potential does not take into
account the natural dynamics of the system, even though the artificial potential
is derived in the ROE space. By including the natural dynamics of Eq. 2.8
into Eq. 4.1, the guidance law is smoothed with respect to the global potential.
Hence, the terms expressing the natural dynamics can be integrated to smooth
the effect of the guidance law resulting in:

˙δχg = −∇Φglb + (Ak + AJ2) · δχ (4.11)

Thus, the guidance dynamics evolves according to Eq. 4.11. Such dynamics
is used to generate the desired ROE state, which is subsequently used to
determine the control action to steer the actual trajectory of the spacecraft.
The natural dynamics becomes dominant when the spacecraft is very close to
the target configuration. This eliminates the oscillatory chattering caused by
the artificial potential when very close to the target state.

4.1.4 Neural Control
The output of the guidance algorithm is a set of ROE, which may differ from
the target reference ones. To guarantee that the forced guidance dynamics in
Eq. 4.11 is followed, a feedback control law is employed. The control law is
derived using the Lyapunov stability theorem. In the distributed architecture,
each spacecraft processes the guidance law, including state of the other agents.
The reference signal to track is calculated by the guidance algorithm and follows
the dynamics in Eq. 4.11. The current error between the desired guidance
state and true state for each satellite is:

eδχ = δχg − δχ (4.12)

its temporal evolution can be described as:

ėδχ = ˙δχg− ˙δχ = −
(
∇Φa+∇Φr+A(ν)δχ

)
−
(
A(ν)δχ+γ(δχ)+Bu

)
(4.13)

If we introduce the following positive semi-definite Lyapunov function:

V = 1
2eTδχeδχ → V̇ = eTδχėδχ (4.14)

V̇ =
(
δχg − δχ

)T
·
[
−
(
∇Φa +∇Φr + γ(δχ) +Bu

)]
(4.15)

The control term can be solved to make the derivative of the Lyapunov function
negative. The above strategy yields the following control law:

u = B−1
[(
δχg − δχ

)
−
(
∇Φa +∇Φr

)
− γ(δχ)

]
(4.16)

83

Chapter 4. Neural-Aided Guidance & Control

Figure 4.1: GNC architecture overview.

In this way the derivative of the Lyapunov function is negative semidefinite,
vanishing only when δχ = δχr, which is within the validity of the Lyapunov
theorem. This approach is similar to the one adopted by [38], with the
exception of including the gradient of artificial potential and the RBFNN
output in the control law. By including the gradient of the potential, which
forces the dynamics, the control law calculates the action taking into account
the derivative of the δχg determined by the guidance algorithm. The GNC
architecture is reported schematically in Fig. 4.1.

Algorithm 2 Neural Distributed GNC for satellite i
1: Initialize RBFNN network NRBF
2: while δχ 6= δχr do
3: Observe state δχi through relative measurements
4: Feed δχ to N (Eq. 3.35)
5: Estimate system state through AEKF (Eq. 3.41)
6: Generate guidance path using APF approach (Eq. 4.1)
7: Execute RBFNN-aided Lyapunov control (Eq. 4.16)
8: end while

4.2 Neural-Artificial Potential Field Performance

Three reconfiguration scenarios are treated in the following section involving
a formation of four satellites orbiting the Earth. The scenarios are selected
to be representative of different reconfiguration maneuvers that may occur
during a formation flying mission. The simulations are provided to testify
the efficiency of the proposed Neural-Artificial Potential Field reconfiguration
algorithm. The system model parameters are chosen and described in a previous
work by [11]. The RBFNN neurons are Gaussian functions, whose centers
are initialized randomly. The number of neurons is 60. Such number is the
results of a trade-off between RBFNN accuracy and complexity. Tab. 4.17
reports the orbital parameter of the reference orbits. The reference orbits
are also used to generate relative measurements by adding a fictitious noise,
representative of realistic sensors uncertainty (e.g. ranging, optical or Doppler).
In particular, the noise level associated is described by a Gaussian distribution

84

4.2. Neural-Artificial Potential Field Performance

Table 4.1: Reference orbits for numerical simulations

a [km] e [-] i [o] ω [o] Ω [o]

R1 7975 0.1 10 0 0
R2 10254 0.3 10 0 0

with standard deviation σpos = 10−1m and σvel = 10−3m/s for position and
velocity respectively. The Gaussian noise is used to corrupt the measurements
to be representative of actual sensors output. The noise affects only the
EKF update. The neural network here is used to complement the dynamics
with an additional acceleration term, which contains all the nonlinearities or
unmodeled terms that are missing in the dynamical expression used in the
EKF propagation. Spacecraft S/C 1 evolution is not reported for analysis as
it is assumed to be controlled and to follow the reference absolute orbit. In
other words, it is assumed that the absolute navigation and control guarantees
the nominal reference orbit to be tracked by the S/C 1. This is not a major
limitation since the algorithm deals with relative motion with respect to the
S/C 1. S/C 1 could also be thought as the virtual center of the defined
LVLH frame. The natural dynamics is described by a nonlinear J2-perturbed
model [40] expanded with relative drag acceleration (considering identical
satellites ballistic coefficient B = 1.2). The neural-aided algorithm is beneficial
when the dynamics is highly uncertain. Nevertheless, using a ground-truth
dynamics comprising J2-perturbation, relative drag and nonlinearities is a
simple preliminary scenario to demonstrate the effectiveness of the method.
Given that the ground-truth model is Cartesian and the on-board dynamics is
based on ROE, it is difficult to compare the disturbance terms. For Cartesian
models, the validation was performed in a previous work by the author [40].
Nevertheless, a dedicated simulation has been performed to show and report
the reconstruction capabilities of the neural network in the next section.

4.2.1 Planar to Along-track

The Planar to Along-track (ALO) reconfiguration changes the relative position
of the spacecraft such that they no longer belong to a symmetric configuration
around the reference orbit but they are placed with a certain along-track offset.
Fig. 4.2 shows the controlled neural reconfiguration. The initial and final state,
expressed in relative orbital elements, are reported in Tab. 4.2. The reconfig-
uration is successful and the neural enhanced GNC architecture converges to
stable estimation of the unmodeled terms (relative drag and nonlinearities),
given that no unstable behavior is experienced, see Section 3.3.5.2. Fig. 4.3
shows the control effort and the navigation results in terms of estimation accu-
racy. The repulsive potential aided by the RBFNN network guarantees that

85

Chapter 4. Neural-Aided Guidance & Control

Table 4.2: Relative orbital elements of each spacecraft in the ALO
reconfiguration

aδχa[m] S/C 1 S/C 2 S/C 3 S/C 4

aδa 0→ 0 0→ 0 0→ 0 0→ 0
aδλ 0→ 0 0→ 300 0→ 400 0→ 500
aδex 0→ 0 2000→ 0 4000→ 0 6000→ 0
aδey 0→ 0 300→ 0 600→ 0 900→ 0
aδix 0→ 0 500→ 0 500→ 0 500→ 0
aδiy 0→ 0 0→ 0 0→ 0 0→ 0
a dimensional using the semimajor axis of the reference orbit

Figure 4.2: Planar to Along-track (ALO) neural reconfiguration.

86

4.2. Neural-Artificial Potential Field Performance

Figure 4.3: Control effort and estimation accuracy for the ALO neural
reconfiguration.

Figure 4.4: Relative distances between the formation spacecraft for the ALO
scenario. The dotted line represents the minimum safe distance set for the

simulations.

the minimum distance between the agents is respected, as shown in Fig. 4.4.
The relative maneuver initiates after one orbital period. The along-track re-
configuration is the most demanding in terms of collision avoidance, as the
orbital state are very similar in the final configuration, roughly 100 m apart.

4.2.2 Planar Synthetic Aperture Variation
Formation flying missions are foreseen to be employed in configuration that al-
low synthetic aperture of the distributed system. A Planar Synthetic Aperture
Variation (SAV) is a reconfiguration maneuver in which the equivalent instru-
ment diameter is varied. Fig. 4.5 shows the controlled neural reconfiguration.
The initial and final state, expressed in relative orbital elements, are reported
in Tab. 4.3.

87

Chapter 4. Neural-Aided Guidance & Control

Table 4.3: Relative orbital elements of each spacecraft in the SAV
reconfiguration

aδχa[m] S/C 1 S/C 2 S/C 3 S/C 4

aδa 0→ 0 0→ 0 0→ 0 0→ 0
aδλ 0→ 0 0→ 0 0→ 0 0→ 0
aδex 0→ 0 100→ 1000 300→ 3000 600→ 6000
aδey 0→ 0 100→ 1000 300→ 3000 600→ 6000
aδix 0→ 0 0→ 0 0→ 0 0→ 0
aδiy 0→ 0 0→ 0 0→ 0 0→ 0
a dimensional using the semimajor axis of the reference orbit

Figure 4.5: Planar Synthetic Aperture Variation (SAV) neural
reconfiguration.

88

4.2. Neural-Artificial Potential Field Performance

Figure 4.6: Control effort and estimation accuracy for the SAV neural
reconfiguration.

Figure 4.7: Relative distances between the formation spacecraft for the SAV
scenario. The dotted line represents the minimum safe distance set for the

simulations.

The reconfiguration is successful and the neural enhanced GNC architecture
converges to stable estimation of the unmodeled terms, given that no unstable
behavior is experienced, see Section 3.3.5.2. Fig. 4.6 shows the control effort
and the navigation results in terms of estimation accuracy. The repulsive
potential aided by the RBFNN network guarantees that the minimum distance
between the agents is respected, as shown in Fig. 4.7. The relative maneuver
initiates after one orbital period.

4.2.3 Relative Plane Change

The Relative Plane Change (RPC) reconfiguration is essentially an inversion
of the relative inclination vector. The component δix, see Eq. 2.5, is actu-
ally the algebraic difference of the spacecraft orbital inclination. Hence, the

89

Chapter 4. Neural-Aided Guidance & Control

Table 4.4: Relative orbital elements of each spacecraft in the RPC
reconfiguration

aδχa[m] S/C 1 S/C 2 S/C 3 S/C 4

aδa 0→ 0 0→ 0 0→ 0 0→ 0
aδλ 0→ 0 0→ 0 0→ 0 0→ 0
aδex 0→ 0 200→ 200 400→ 400 600→ 600
aδey 0→ 0 300→ 300 600→ 600 900→ 900
aδix 0→ 0 500→ −500 300→ −500 500→ −500
aδiy 0→ 0 0→ 0 0→ 0 0→ 0
a dimensional using the semimajor axis of the reference orbit

Figure 4.8: Relative Plane Change (RPC) neural reconfiguration.

reconfiguration shown in this section is equivalent to an inclination change
maneuver. Such reconfiguration has been chosen because of its complexity on
control, involving along-radial-cross track control. Fig. 4.8 shows the controlled
neural reconfiguration. The initial and final state, expressed in relative orbital
elements, are reported in Tab. 4.4.

The reconfiguration is successful and the neural enhanced GNC architecture
converges to stable estimation of the unmodeled terms, given that no unstable
behavior is experienced, see Section 3.3.5.2. Fig. 4.9 shows the control effort
and the navigation results in terms of estimation accuracy. The repulsive
potential aided by the RBFNN network guarantees that the minimum distance
between the agents is respected, as shown in Fig. 4.10. The relative maneuver
initiates after one orbital period.

90

4.2. Neural-Artificial Potential Field Performance

Figure 4.9: Control effort and estimation accuracy for the RPC neural
reconfiguration.

Figure 4.10: Relative distances between the formation spacecraft for the RPC
scenario. The dotted line represents the minimum safe distance set for the

simulations.

4.2.4 Formation Position Swap

The reconfiguration is specifically designed to include a collision avoidance
maneuvers for the sake of demonstration. Basically, the agents 2, 3, 4 are
asked to swap relative orbits with respect to Spacecraft 1, once again fixed
along the reference orbit. The threshold dlim in Eq. 4.6 is set to 50 m and an
exit condition for the simulation due to collisions is set to 10 m. In particular,
the maneuver is:

δχref,2 = δχ0,3, δχref,3 = δχ0,4, δχref,4 = δχ0,2, (4.17)

Fig. 4.11 shows the controlled neural reconfiguration. The initial and final
state, expressed in relative orbital elements, are reported in Tab. 4.5.

91

Chapter 4. Neural-Aided Guidance & Control

Table 4.5: Relative orbital elements of each spacecraft in the PS
reconfiguration

aδχa[m] S/C 1 S/C 2 S/C 3 S/C 4

aδa 0→ 0 0→ 0 0→ 0 0→ 0
aδλ 0→ 0 0→ 0 0→ 0 0→ 0
aδex 0→ 0 200→ 400 400→ 600 600→ 200
aδey 0→ 0 300→ 600 600→ 900 900→ 300
aδix 0→ 0 500→ 300 300→ 100 100→ 500
aδiy 0→ 0 0→ 0 0→ 0 0→ 0
a dimensional using the semimajor axis of the reference orbit

Figure 4.11: Position Swap (PS) neural reconfiguration.

92

4.2. Neural-Artificial Potential Field Performance

Figure 4.12: Control effort and estimation accuracy for the PS neural
reconfiguration.

Figure 4.13: Relative distances between the formation spacecraft for the PS
scenario. The dotted line represents the minimum safe distance set for the

simulations.

The reconfiguration is successful and the neural enhanced GNC architecture
converges to stable estimation of the unmodeled terms, given that no unstable
behavior is experienced, see Section 3.3.5.2. Fig. 4.12 shows the control effort
and the navigation results in terms of estimation accuracy. The repulsive
potential aided by the RBFNN network guarantees that the minimum distance
between the agents is respected, as shown in Fig. 4.13. The relative maneuver
initiates after one orbital period.

93

Chapter 4. Neural-Aided Guidance & Control

4.2.5 Comparison

The Neural-aided algorithm for reconfiguration has been compared with the
standard APF algorithm presented in [38] and extended in [11]. Tab. 4.6, 4.7
and 4.8 present the results for the relevant reconfigurations in low-eccentricity
reference orbits. In particular, Tab. 4.6 reports the ∆V effort of the Neural-
Lyapunov control and the standard Lyapunov control presented in Section 4.1.4.
The control effort is generally higher in the case of neural control. This
may be due to the fact that during the initial phase of the reconfiguration,
the main learning process of the network occurs [40]. In this phase the
controller is affected by the non-converged term γ(δχ). Nevertheless, as
reported in Tab. 4.8 and 4.9, the achieved accuracy of the final configuration
using the neural controller is superior, which is linked to the higher required
∆v. The dynamics reconstruction based on RBFNN benefits the navigation
also. The position estimation mean error is always lower when RBFNN-
AEKF is used. The dynamical model refinement allows the filter to generate
a more precise a-priori estimation, which is then corrected with the same
measurements in both methods. The difference in estimation error increases
as the nonlinearities become more relevant in the dynamics. Indeed, for
high-eccentricity reference orbits, the enhancement in state estimation using
RBFNN-AEKF is remarked. Tab. 4.10, 4.11, 4.12 and 4.13 present the results
for the analyzed reconfigurations in high-eccentricity reference orbits. The
NNAPF algorithm outperforms the standard APF, in terms of accuracy and
navigation estimate. The ALO reconfiguration is challenging due to the involved
relative distances and the limited maximum thrust available. However, also in
this case, the NNAPF strategy delivers better final configuration in terms of
accuracy. The high-eccentricity scenario is more demanding since nonlinearities
are prominent. The accuracy is poorer because both the controller struggle
to handle such disturbance. Nevertheless, the RBFNN achieves a better
accuracy (although not satisfactory for ALO) with respect to the traditional
APF algorithm. In addition, it is important to remark that the RBFNN can
be tuned (number of parameters, weights, learning function) to improve the
performance, whereas the APF is less flexible.

4.2.5.1 Highly Perturbed Environment

The comparison presented in Section 4.2.5 showed how the NNAPF algorithm
guarantees a more accurate navigation and control, at the cost of slightly
higher ∆v. The results show that also the legacy algorithm was able to bring
the relative maneuvers to completion. This may be due to the fact the the
disturbance terms included in the ground-truth relative dynamics are still
handled by the APF control. In order to showcase the quality of the NNAPF
algorithm, a set of numerical simulations have been performed adding fictitious
perturbations to the ground-truth dynamics to challenge both algorithms. In

94

4.2. Neural-Artificial Potential Field Performance

Table 4.6: Comparison of control effort between standard APF
reconfiguration algorithm and the proposed NNAPF. Low-eccentricity

scenario.

Low-e NNAPF Control APF Control
Scenario ∆V1[ms] ∆V2[ms] ∆V3[ms] ∆V1[ms] ∆V2[ms] ∆V3[ms]

ALO 3.30 6.09 9.04 3.10 5.89 8.83
SAV 1.67 5.02 10.25 1.67 5.04 10.30

RPC 1.13 1.14 1.17 1.10 1.11 1.13
PS 0.57 0.65 1.03 0.54 0.61 0.93

Table 4.7: Comparison of navigation accuracy between standard APF
reconfiguration algorithm and the proposed NNAPF. Low-eccentricity

scenario.

Low-e NNAPF Navigation APF Navigation
Scenario σ1 [m] σ2 [m] σ3 [m] σ1 [m] σ2 [m] σ3 [m]

ALO 0.02 0.03 0.03 0.03 0.04 0.04
SAV 0.04 0.05 0.06 0.05 0.06 0.07
RPC 0.03 0.03 0.03 0.03 0.04 0.04

PS 0.03 0.03 0.03 0.04 0.04 0.05

Table 4.8: Comparison of target configuration accuracy between standard
APF reconfiguration algorithm and the proposed NNAPF. Low-eccentricity

scenario.

Low-e Neural Accuracy[%] Accuracy[%]
Scenario |∆δχ|

|δχref |1
|∆δχ|
|δχref |2

|∆δχ|
|δχref |3

|∆δχ|
|δχref |1

|∆δχ|
|δχref |2

|∆δχ|
|δχref |3

ALO 1.80 1.80 1.81 1.93 1.89 1.86
SAV 5.11 5.08 4.76 5.11 5.02 4.76
RPC 5.09 4.85 4.77 5.12 4.86 4.78

PS 3.90 3.50 5.30 4.20 3.80 5.30

95

Chapter 4. Neural-Aided Guidance & Control

Table 4.9: Norm of the Relative Orbital Elements error (dimensionless) with
respect to the target ROE state. Low-eccentricity scenario.

Low-e Neural Accuracy Accuracy
Scenario |∆δχ|1 |∆δχ|2 |∆δχ|3 |∆δχ|1 |∆δχ|2 |∆δχ|3

ALO 6.8 · 10−5 9.0 · 10−5 1.1 · 10−4 7.1 · 10−5 9.5 · 10−5 1.2 · 10−4

SAV 9.1 · 10−4 2.7 · 10−3 5.2 · 10−3 9.1 · 10−4 2.7 · 10−3 5.2 · 10−3

RPC 3.9 · 10−4 5.3 · 10−4 7.1 · 10−4 3.9 · 10−4 5.4 · 10−4 7.1 · 10−4

PS 3.8 · 10−4 4.8 · 10−4 4.1 · 10−4 4.1 · 10−4 5.2 · 10−4 4.1 · 10−4

Table 4.10: Comparison of control effort between standard APF
reconfiguration algorithm and the proposed NNAPF. High-eccentricity

scenario.

High-e NNAPF Control APF Control
Scenario ∆V1[ms] ∆V2[ms] ∆V3[ms] ∆V1[ms] ∆V2[ms] ∆V3[ms]

ALO 9.78 23.77 54.50 13.58 28.48 54.43
RPC 0.72 0.76 0.84 0.93 0.96 1.03

PS 10.50 15.80 7.75 10.23 15.51 9.39

Table 4.11: Comparison of navigation accuracy between standard APF
reconfiguration algorithm and the proposed NNAPF. High-eccentricity

scenario.

High-e NNAPF Navigation APF Navigation
Scenario σ1 [m] σ2 [m] σ3 [m] σ1 [m] σ2 [m] σ3 [m]

ALO 0.05 0.06 0.07 0.06 0.08 0.08
RPC 0.04 0.04 0.04 0.05 0.05 0.05

PS 0.05 0.05 0.05 0.07 0.07 0.07

Table 4.12: Comparison of target configuration accuracy between standard
APF reconfiguration algorithm and the proposed NNAPF.

High-eccentricity scenario.

High-e Neural Accuracy Accuracy [%]
Scenario |∆δχ|

|δχref |1
|∆δχ|
|δχref |2

|∆δχ|
|δχref |3

|∆δχ|
|δχref |1

|∆δχ|
|δχref |2

|∆δχ|
|δχref |3

ALO 45.18 75.56 140.50 186.06 180.56 197.07
RPC 3.20 4.60 5.50 5.45 3.00 2.50

PS 26.30 47.80 25.28 26.80 47.56 38.88

96

4.2. Neural-Artificial Potential Field Performance

Table 4.13: Norm of the Relative Orbital Elements error (dimensionless) with
respect to the target ROE state. High-eccentricity scenario.

High-e Neural Accuracy Accuracy
Scenario |∆δχ|1 |∆δχ|2 |∆δχ|3 |∆δχ|1 |∆δχ|2 |∆δχ|3

ALO 1.7 · 10−3 3.8 · 10−3 8.8 · 10−3 6.8 · 10−3 9.1 · 10−3 1.2 · 10−2

RPC 2.5 · 10−4 5.1 · 10−4 8.2 · 10−4 4.2 · 10−4 3.3 · 10−4 3.7 · 10−4

PS 2.6 · 10−3 6.5 · 10−3 1.9 · 10−3 2.6 · 10−3 6.5 · 10−3 3.0 · 10−3

Figure 4.14: Mean accuracy of NNAPF and APF in highly perturbed
environment. The perturbation coefficient is the multiplicative term of J2

perturbation to generate the fictitious disturbance.

particular, the perturbation coefficient kpert is introduced. The perturbation
coefficient kpert is a multiplicative term used to increase the J2 perturbation
to generate the fictitious disturbance:

F = kpert · FJ2 (4.18)

Figure 4.14 reports the mean accuracy of the final formation configuration
for different values of kpert. The results are averaged over the scenarios and
over the satellites. The results show that a consistent increase in performance
is achieved by the NNAPF when perturbations become more dominant. As
already noted in Section 4.2.5, the better NNAPF accuracy is achieved at the
cost of slightly higher ∆v. The increase in ∆v is within the range [0.5− 1.0]ms
in all the simulations.

97

Chapter 4. Neural-Aided Guidance & Control

4.3 Model-based Reinforcement Learning for Trajectory Planning

The Neural Artificial Potential Field algorithm provided promising results,
significantly enhanced by the integration of a Artificial Neural Network. Nev-
ertheless, two main drawbacks were identified during its validation:

• the NNAPF may lead to instability due to the active-reactive nature of
the algorithm. Nevertheless, user-defined parameters needs to be tuned,
tailored to the scenarios, in order to deliver acceptable maneuvers and
control actions.

• the NNAPF does not exploit in a predictive manner the knowledge of
the dynamics. It is a real-time algorithm with no planning capabilities.
This may lead to excessive ∆v, being intrinsically sub-optimal.

For these reasons, the focus has been shifted towards the development of a
new innovative technique, aimed at resolving the mentioned drawbacks while
keeping the strong adaptivity and flexibility of the previous algorithm. Re-
inforcement learning is a machine learning technique employed to determine
how an agent takes actions in the surrounding environment in order to max-
imize a given reward. One major reason preventing reinforcement learning
from being employed in space applications has been its implementation as a
model-free algorithm. Model-free approaches rely on the possibility of explor-
ing the surrounding space to learn optimal policies. On the other hand, the
deterministic orbital environment favors the integration of dynamical models
in the path-planning algorithms. Nevertheless they could be unknown (e.g.
small bodies) or significantly reshaped to be used on-board, neglecting non-
linearities or perturbation effects. For these reasons, the proposed Model-Based
Reinforcement Learning (MBRL) is developed for controlling a formation con-
figuration and generating trajectories for distributed reconfigurations. This
approach enables autonomous quasi-optimal reconfiguration in unknown or
unmodeled environments as well as fuel-efficient control strategies for formation
maintenance, leveraging the incremental knowledge of the environment. In
general, the online neural-reconstruction yields an outstanding flexibility to the
spacecraft, which updates its representation of the environment to enhance its
guidance according to the variable dynamical environment it may encounter.
This feature avoids the failure of classical Model Predictive Control-like algo-
rithm relying on a fixed analytical model, but at the same time it allows the
algorithm to generate guidance and control strategy leveraging the learned
natural dynamics. Moreover, in a distributed architecture no information is
globally available on the planning of each agent with respect to the forma-
tion, therefore each spacecraft need to predict future maneuvers of potentially
colliding agents. Usually, the collision avoidance constraint is enforced by
assuming the formation to evolve naturally or along predefined trajectories,
which are known by the system [69][70]. Such assumption is quite restricting

98

4.3. Model-based Reinforcement Learning for Trajectory Planning

when dealing with systems that implement a distributed GNC architecture.
The consequence is that the maneuvers may be executed by one spacecraft at
a time, preventing the formation to evolve simultaneously. The latter feature
may be beneficial when coordinated reconfigurations are required, e.g. to keep
a constant synthetic aperture of the formation. Two novel approaches are here
presented to solve the shortcoming and enable the formation to maneuver safely
and simultaneously, namely Inverse Reinforcement Learning and Long Short-
Term Memory network trajectory forecasting. Inverse Reinforcement Learning
(IRL) is employed for trajectory prediction of neighboring satellites. Such
method was originally developed for imitation learning [71], and then extended
to learn demonstrated behaviors and the cost function underlying them [72].
Concerning space applications, Linares [73] proposed an approach based on
IRL to determine the behaviour of space objects. The second proposed method
is based on LSTM recurrent neural networks, which is trained sequentially to
predict the temporal behavior of the observed states. The justification for this
work and the goal of the method is to develop an algorithm that addresses the
following features:

• To develop a neural-based reconstruction algorithm for system dynamics
identification, which allow an autonomous spacecraft to refine the on-
board dynamical model as it flies, coping with unmodeled perturbations
and nonlinearities

• To develop a planning algorithm that can adapt to the perturbed environ-
ments using the neural reconstructed dynamics. This prevents the failure
of traditional algorithms in presence of unmodeled terms in the dynamical
model enhancing the autonomy and flexibility of the spacecraft, which
can operate autonomously also in partially known environment

• To develop a relative trajectories prediction algorithm to ensure collision-
free simultaneous reconfigurations. This is required when coordinated
maneuvers are needed, where the hypothesis of the formation evolution
according to natural dynamics does not hold anymore.

4.3.1 Neural Planning and Control

Model Predictive Control (MPC) is an optimization-based guidance and control
strategy, which merges the advantage of optimization and closed-loop control
[41]. Model Predictive Control is essentially a receding horizon optimization
approach to plan control actions following optimal control theory. The opti-
mization covers Ns time steps, which results in Ns control inputs. Only the
first computed control is executed and, at the next time step, the planner
solves the optimization problem again based on the current state. Typically,
the objective function to minimize includes the quadratic difference between
the target state and the spacecraft state, xk at each time step, and a quadratic

99

Chapter 4. Neural-Aided Guidance & Control

term representing the control effort:

J (xk,uk) =
[
(xk+N − x∗k)TŜ(xk+N − x∗k) +

N−1∑
i=1

(xk+i − x∗k)TS(xk+i − x∗k)

+
N−1∑
i=0

uT
k+iRuk+i

]
(4.19)

where S,R are positive semi-definite matrices, Ŝ is the solution of the Discrete
Algebraic Riccati Equation (DARE), Ns is the number of prediction steps. At
each time step, the optimization problem can be expressed as:

min
u
J (xk,uk)

subject to xk+i+1 = F̃Ts(xk+i,uk+i), i=1,..,N
umin < ui < umax, i=1,..,N

(4.20)

The objective function is minimized respecting the dynamics constraint and
the maximum thrust limit. Note that the dynamics is supposed to be known
and not learnt in a general MPC problem. This concept will be extended
in the next section where the planning phase is coupled with the learning
phase. The Model-Based Reinforcement Learning (or Neural-Model Predictive
Control) exploits the flexibility of neural dynamics reconstruction presented
in Section 3.2 to enhance the robustness, effectiveness and flexibility of the
traditional MPC. The dynamics in Eq. 4.20 is replaced by the neural expression
Ns. Such strategy creates a highly-coupled learning and planning algorithm
that resembles the approach of reinforcement learning but does not prevent
the exploitation of the environment model. The complete algorithm reads:

Algorithm 3 Model-Based Reinforcement Learning
1: Initialize system description through dynamical model xk+1 = Ñ (xk,uk)
2: Acquire target position x∗

3: Acquire formation geometry: xi − xk ∀i = 1, ..,m
4: while xk 6= x∗ do
5: Observe system state at time k: xk
6: Optimize J (xk,uk) through Ñ for Ns time steps
7: Execute uk
8: end while

When multiple spacecraft perform the formation reconfiguration maneuvers
simultaneously, a collision avoidance strategy is mandatory. Simultaneous
reconfiguration is critical for autonomous operations, nevertheless, if a dis-
tributed GNC architecture is implemented, it is impossible for each agent to
have a complete knowledge of the relative target orbits of the others. Hence, it
is mandatory to develop effective algorithms that relies only on information
available to one agent.

100

4.3. Model-based Reinforcement Learning for Trajectory Planning

4.3.2 Collision Avoidance Constraint
An important feature of distributed reconfiguration is to ensure safe trajectory
generation to avoid collision between agents. In a distributed configuration,
a generalized optimization describing the guidance path of each spacecraft is
not available. Hence, at this stage, the reconfiguration is assumed to take
place sequentially for the formation. This results in one spacecraft changing its
relative orbit while the rest persist in their natural motion. The collision-free
constraint is enforced by guaranteeing a minimum distance between the agents.
The keep-out-zone is an ellipsoid centered on the obstacle and expressed by its
quadratic form with the positive semi-definite matrix P. If the keep-out-zone
is a sphere, the quadratic form is simply a symmetric matrix P = rI3×3 where
r is the spherical safe region radius [42]. The mathematical formulation in the
MPC framework is reported in Eq. 4.21.

∀i = 1, ...,N | 1− x̃To,k+iPx̃o,k+i < 0
x̃o,k+i = [C(xk+i − xo,k+i)]

(4.21)

where the subscript o stands for obstacle, which in general is another agent of the
formation. The constraint in Eq. 5.20 is quadratic and non-convex. The former
characteristic prevents the problem to be recast into quadratic programming,
which would significantly reduce the computational time. The latter turns
the formulation into a non-convex optimization. Convex programming is
faster and guarantees the identification of global minima. For this reason the
following section presents the derivation to transform the collision avoidance
constraint into a convex constraint. The derivation is similar to the approach
adopted by Morgan [42]. The idea is to approximate the concave set of feasible
positions into a convex set, which contains the original set. In other words, the
spherical keep-out-zone is approximated by a plane tangent to the sphere and
perpendicular to the line of sight of the two agents. The plane perpendicular
to the vector x̃o,k = [x̃, ỹ, z̃] (defined in Eq. 4.21) and tangent to the sphere
can be written as:

x̃(x− r

||x̃o,k||
x̃) + ỹ(y − r

||x̃o,k||
ỹ) + z̃(z − r

||x̃o,k||
z̃) = 0 (4.22)

The feasible position belongs to the semi-space bounded by the identified plane.
By reworking Eq. 4.22 and introducing the inequality indication, the compact
form of the constraint at time step k is:

x̃To,kx̃o,k ≥ r||x̃o,k|| (4.23)

The natural dynamics is described by the ANN. Each mutual distance is
calculated on board based on the reconstructed dynamics. A representation
of the convex approximation of the original collision avoidance constraint is
sketched in Fig. 4.15.

101

Chapter 4. Neural-Aided Guidance & Control

Figure 4.15: Convexification of the collision avoidance constraint. The sketch
shows two instant in time.

4.4 Model-based Reinforcement Learning Performance

The presented algorithm is tested in two application scenarios. The first
(FFLAS - Formation Flying L-band Aperture Synthesis) is to study a formation
consisting of 3 hexagonal arrays, of about 7 m in diameter, flying with their
centers at the vertices of an equilateral triangle of about 13m side. Such
formation would be equivalent to an aperture of 21 m diameter achieving
9 km nadir resolution with an effective sensitivity better than SMOS [74].
The second scenario is based on CHRISTMAS/MUSICA, a feasibility study
performed by an Italian consortium led by Universitá di Milano Bicocca in
collaboration with Politecnico di Milano, Istituto Nazionale di Astrofisica and
OHB-I, and financed by ASI. The objective of the mission is the Cryosphere
Monitoring, operating with an innovative payload in the optical and thermal
domain. The mission conceives a constellation of four satellites, flying in
across-track formation by couple.

The selected scenarios are tight formations, requiring constant relative position
and velocity control to satisfy the strict requirements on relative states. In
particular, FFLAS requires rigid formation in triangular shape. The fixed
relative position of the satellites is not stable in the natural dynamics. All the
scenarios have been tested using the coupled MBRL-IRL and MBRL-LSTM
with maximum thrust level equal to 1 N . Since no colliding trajectories are
foreseen, the last section explores the effectiveness of the collision avoidance
method for estimating neighboring satellites trajectories.

102

4.4. Model-based Reinforcement Learning Performance

FK MBRL MPC
SC1 SC2 SC3 SC1 SC2 SC3

∆vT [ms] 0.04 0.0003 0.0003 0.05 0.0003 0.0003
ερ [m] 0.020 0.004 0.004 0.015 0.004 0.004

Table 4.14: ∆v for one orbit and accuracy for MBRL and MPC for FK.

4.4.1 In-Plane Maneuvers

The three satellites fly in rigid formation, i. e. a formation in which the relative
distances and orientation among the satellites remain fixed. The orbit of the
aperture center, from now on reference orbit, is the nominal orbit of SMOS,
i. e. a 6 am - 6 pm Sun-synchronous orbit of 775 km altitude [74]. The aperture
plane is perpendicular to the orbital plane. The perpendicular to the aperture
plane is pointed in the nadir-zenith direction. Yaw rotations of the aperture
plane are possible as long as the relative formation between the arrays is
kept. The position of the arrays within the aperture plane is chosen to obtain
an as large as possible coverage in the spatial frequency domain (the space
defined by the relative vectors between the centers of all pairs of antenna
elements, normalized to the wavelength), without leaving gaps and having
a polygonal envelope as convex as possible. The formation flying algorithm
requires a collision-free safe maneuver to bring the satellites far apart in case
an unforeseen event occurs. Following the above-mentioned guidelines, three
sub-scenarios have been simulated:

1. Formation Keeping (FK): Formation maintenance to keep the relative
position fixed.

2. Formation Reconfiguration (FR): Reconfiguration in which a yaw rotation
of the formation is achieved.

3. Safe Reconfiguration (SR): Reconfiguration of the formation achieving
safe separation among the satellites.

The formation maintenance is performed using the presented algorithm. The
formation flies with the three satellites at the vertices of an equilateral triangle
of 13 m side. The distances between the satellites are limited and the reference
orbit is circular. Despite this strong points for using a simple linearized
dynamics, the neural algorithm demonstrates comparable results in terms of
fuel consumption and accuracy with respect to a standard MPC. Tab. 4.14
shows the similar performance of the algorithms. Fig. 4.16 shows the fixed
geometry of the formation. In order to test the capability of reconstructing
nonlinearities and unmodeled terms of the dynamics, Fig. 4.17. shows an
example of the same formation keeping in an eccentric orbit e = 0.8. The main

103

Chapter 4. Neural-Aided Guidance & Control

Figure 4.16: Formation geometry. Figure 4.17: Accuracy in position
control for the formation keeping

in eccentric orbit.

FR MBRL MPC
SC1 SC2 SC3 SC1 SC2 SC3

∆vT [ms] 1.2 1.0 1.0 1.3 1.1 1.1
TOF [s] 600 600 600 660 660 660

Table 4.15: ∆v and time of flight for MBRL and MPC for FR.

perturbation force occurs at the perigee. Indeed, as shown by the results, the
neural reconstruction limits the loss in position control accuracy, demonstrating
robustness towards the peculiar dynamics in eccentric orbits. The aperture
plane is perpendicular to the orbital plane. The perpendicular to the aperture
plane is pointed in the nadir-zenith direction. As stated, yaw rotations of
the aperture plane are possible as long as the relative formation between the
arrays is kept. The numerical results for a yaw rotation of 30◦, shown in
Fig. 4.18, are reported in Tab. 4.15. For close reconfiguration, the linearized
dynamics used by the MPC delivers similar results with respect to the proposed
MBRL as reported in Tab. 4.15. It is interesting to test the algorithm in a
hypothetical scenario where the relative distances are two order of magnitude
larger. The difference in accuracy and required ∆v between the compared
algorithms becomes more significant, as shown in Fig. 4.19. This is due to the
fact that nonlinearities become more and more relevant as the formation grows
in size. The MBRL utilizes the neural reconstructed dynamics that captures
these unmodeled terms, delivering an more effective reconfiguration. The
required ∆v is ∼ 5% lower when using MBRL. In case that relative positioning
evolution showed any risk of collision, the system shall be designed to bring
the satellites safely apart into a safe-mode flight formation. One strategy is to
bring the satellites in along-track formation with a separation of 500 m, being

104

4.4. Model-based Reinforcement Learning Performance

Figure 4.18: Formation
reconfiguration following 30◦ yaw
rotation of the synthetic aperture.

Figure 4.19: Large reconfiguration
following 30◦ yaw rotation of the
synthetic aperture. Dynamics
reconstruction aids the MBRL

algorithm as the formation grows
in size.

this configuration stable in the natural dynamics. The uncertainty in predicting
the along-track separation is higher than radial and cross-track component.
Hence, another approach is proposed. In particular, the formation is enlarged,
keeping the same geometry. Tab. 4.16 reports the results in terms of ∆v and
time of flight. Since the safe formation increases the relative distances, there is
a benefit in employing neural reconstructed dynamics, for the reason discussed
above. Fig. 4.20 shows the two reconfiguration in case of collision risk. As
expected, the reconfiguration to safe-mode that enlarges the formation is more
fuel-demanding with respect to the along-track formation. With reference to

SR1 MBRL MPC
SC1 SC2 SC3 SC1 SC2 SC3

∆vT [ms] 0.4 10.2 10.2 0.5 11.1 11.1
TOF [s] 723 723 723 1085 1085 1085

SR2

SC1 SC2 SC3 SC1 SC2 SC3

∆vT [ms] 15.5 11.1 11.1 16.7 12.0 12.0
TOF [s] 1809 1809 1809 2110 2110 2110

Table 4.16: ∆v and time of flight for MBRL and MPC for SR.

105

Chapter 4. Neural-Aided Guidance & Control

Figure 4.20: Safe-mode flight formation. Two strategies.

the results, the Time Of Flight (TOF) is constantly lower for MBRL algorithm,
while requiring less fuel to accomplish the maneuver.

4.4.2 Out-of-Plane Maneuvers

A constellation of four satellites, flying in formation by couple, is the proposed
strategy to achieve mission objectives. The proposed architecture allows for
further enlargement, being the satellite couple, flying in cross track formation,
the atomic unit of the constellation, which can replicated at convenience,
according to the desired temporal resolution. The cross-track formation can
be achieved by fixing the relative position or exploiting natural relative orbits,
which owns a cross-track harmonic motion. In this last type of configuration,
it is important to set an elliptical motion, i. e. with radial and along-track
components, to avoid collision between the leader and the follower spacecraft.
The relative orbital elements, in particular δe and δi completely defines the
central bounded relative orbit [11][75]. The simulated reconfiguration is an
hypothetical transfer between two cross-track relative orbits with parallel and
perpendicular relative inclination/eccentricity vector, namely from δe ⊥ δi
to δe ‖ δi with aδi = aδe = 2 km. In such reconfiguration, quite far from
the target, the MPC fails in trajectory control and the controller diverges,
whereas MBRL completes the reconfiguration in s and ∆v ∼ 30 m

s , as shown
in Fig. 4.21. The reconfiguration is demanding due to the relative distance
between the spacecraft. This may be diminished in operation by tuning the
gain matrices of the planning algorithm.

4.4.3 Collision-Free Maneuvers

The algorithm has been tested on two different scenarios, representative of
absolute orbits with different eccentricity (LEO and HEO). The orbital pa-
rameters are summarized in Table 4.17. The dynamics is reconstructed using

106

4.4. Model-based Reinforcement Learning Performance

Figure 4.21: Cross-track reconfiguration from δe ⊥ δi to δe ‖ δi with
aδi = aδe = 2 km.

a two-layer MLP, with a 9-10-6 neurons architecture, as sketched in Fig. 3.3.
An hyperbolic tangent is used as the activation function for the hidden layer,
whereas a Rectifier Linear Unit (ReLU) is used as neural activation function
for the output layer. The neural network is initially trained to approximate the
CW model. A single input-output batch of 1000 data are used for initialization.
The planner executes the optimization using Ns = 20 prediction steps and a
sampling time of Ts = 120 s. The thrust constraint is enforced by imposing
umax = [1 1 1] N for each axis. To demonstrate the activation of the collision
avoidance constraint, it assumed that a reconfiguration is needed to drive one
satellite in tight formation around the target satellite, which lies in the center
of the LVLH reference frame. The safety region has radius rKOZ = 100 m. The
constraint is then convexified to enable faster convergence of the solver. The
optimization without collision avoidance constraint are solved as Quadratic
Programming (QP) problem with convex-interior-point algorithm. When the
collision avoidance constraint is activated, for instance when the relative dis-
tance is below a certain threshold or simply constantly solved, the convex
programming is solved using sequential-quadratic-programming algorithm. The
results report also the comparison with a standard MPC control scheme, based
on CW-dynamics. The propagation is performed with a J2-perturbed nonlinear
relative dynamics model, based on the formulation in [3].

The reconfiguration simulates a relative plane change of the formation with
distances in the order of magnitude of 103 m. The collision avoidance constraint
is enforced using a 100 m radius safety sphere.

Low Eccentricity The Clohessy-Wiltshire model is derived for small relative
distances and nearly circular reference orbit. For this reason the standard
MPC and the proposed MBRL algorithm does not differ significantly in terms
of fuel-consumption and reconfiguration time. This result was expected, being

107

Chapter 4. Neural-Aided Guidance & Control

Table 4.17: Reference orbits for numerical simulations

a [km] e [-] i [o] ω [o] Ω [o]

LEO 7179 0 50 86 80
HEO 35890 0.8 50 86 80

e = 0 MBRL MPC
∆v [m/s] 1.91 1.95
Tman [min] 31.5 43.6

Table 4.18: ∆v and maneuvering time for MBRL and MPC for
low-eccentricity reference orbit.

the modeled dynamics (cfr. Section 2.1.1.1) close to the operational scenario.
The summary of simulation result is reported in Table 4.18. Figure 4.22
shows the reconfiguration trajectory designed by the planner algorithm in the
reference LVLH frame. The comparison demonstrates that the MBRL performs
similarly to the MPC implemented using CW model. In particular, the path
generated by the algorithm is almost equal, demonstrating the equivalence of
the method for the the modeled dynamics. A slight improvement is observed in
the reconfiguration duration. Figure 4.23 shows the enforcement of the collision
avoidance constraint. The scenario was chosen to be challenging in which
the two spacecrafts are forced to orbit very close with respect to each other,
relatively to the target spacecraft. The safety distance is always guaranteed
throughout the orbital evolution. Figure 4.24 presents the learning process
in terms of mean squared error of state prediction during the reconfiguration.
At the maneuver time, the spacecraft initiates its planning and explores new
regions of space, which were barely known beforehand (known to the extent
of the model dynamics initialization). For this reason the network degrades
rapidly right after the reconfiguration is started. As the satellite follows the
planned trajectory the ANN is continuously trained as shown in Fig. 4.24.

High Eccentricity The most interesting testing cases are those in an environ-
ment that is significantly different from the modeled dynamics in Section 2.1.1.1.
In particular, an highly eccentric orbit is chosen as described in Table 4.17.
The initial conditions are the same as in the previous test case. The results
in Table 4.19 show a ∆v saving of nearly 13 %. This is thought to be linked
with the progressive learning of the neural network used for the dynamics
reconstruction. The reconfiguration time is in the same order of magnitude.
Figure 4.25 presents the learning process in terms of mean squared error of state
prediction during the reconfiguration. At the maneuver time, the spacecraft

108

4.4. Model-based Reinforcement Learning Performance

Figure 4.22: Reconfiguration examples in low-eccentricity orbit.

Figure 4.23: Collision avoidance constraint in low-eccentricity reconfiguration.

initiates its planning and explores new regions of space, which were barely
known beforehand (known to the extent of the model dynamics initialization).
For this reason the network degrades rapidly right after the reconfiguration is
started. As the satellite follows the planned trajectory the ANN is continuously
trained as shown in Fig. 4.25. Such characteristic is the true power of the
method. All the numerical simulations are run right after initialization, hence
the ANN is almost new to the perturbed dynamic environment when starting
the reconfiguration. During a mission lifetime, especially if the configuration is
changed quite often, the spacecraft will exploit better and better the natural
dynamics for planning, leading to more efficient maneuvers as the mission time
increases. The ANN learning presents spikes when the spacecraft approaches
the perigee. This might be due to the fact the orbital velocity and the relative
dynamics is significantly influenced by the current true anomaly on the refer-
ence orbit.
An interesting case is hereby presented. The initial condition is one order of

109

Chapter 4. Neural-Aided Guidance & Control

Figure 4.24: Mean Squared Error of ANN state prediction during on-board
learning.

e = 0.8 MBRL MPC
∆v [m/s] 7.06 7.91
Tman [min] 30.1 36.1

Table 4.19: ∆v and maneuvering time for MBRL and MPC for
high-eccentricity reference orbit.

magnitude larger than the previous case, namely δχ = [0 0 2000 3000 2000
0]. The final state is targeted to an along-track separation with the target of
1000 km. Such initial configuration is fairly large, hence nonlinearities may
become important in the dynamics. Indeed, as reported in Table 4.20 and
Fig. 4.26, the MPC based on CW model fails in the reconfiguration, whereas
the MBRL successfully accomplishes the maneuver. The standard MPC relies
on a linearized dynamical model valid for nearly circular reference orbits. In
addition, the reconfiguration algorithm has a strict thrust constraint that limits
the capability of the spacecraft. The MPC fails in solving the receding-horizon
optimization because the dynamical model is not adequate to model the dynam-
ics for large distances in highly elliptical orbits. Fig. 4.26 shows the generated
trajectory diverging from the formation configuration geometry, i.e. going to
unfeasible relative distances.

110

4.4. Model-based Reinforcement Learning Performance

Figure 4.25: Mean Squared Error of ANN state prediction during on-board
learning.

e = 0.8 MBRL MPC
∆v [m/s] 2.65 -
Tman [s] 90.0 -

Table 4.20: ∆v and maneuvering time for MBRL and MPC for
high-eccentricity reference orbit for large-sized reconfiguration.

Figure 4.26: Collision avoidance constraint in low-eccentricity reconfiguration.

111

CHAPTER5
Environment and External Uncertainty

Prediction

Non piú ottico ma spacciatore di lenti
per improvvisare occhi contenti,
perché le pupille abituate a copiare
inventino i mondi sui quali guardare.

— Fabrizio De André

The distributed architecture examined in this work does not rely on any
data exchange between the agents. Only relative state is retrieved by each
spacecraft with respect to the neighboring agents or bodies. This poses a severe
criticality in terms of planning and control to avoid collision and undesired
behavior. For instance, if two agents are maneuvering at the same time, the
planned trajectories may intersect if none of the two knows the future evolution
of the other. The Neural-Artificial Potential Field solved such shortcoming by
recomputing the instantaneous guidance based on current measurements. As
stated, this is due to the fact that no planning and optimization is executed in
such algorithm. In the Model-Based Reinforcement Learning framework, the

Chapter 5. Environment and External Agent Uncertainty Prediction

optimization takes place within a receding horizon and collision constraints
need to be taken into account beforehand. To solve this shortcomings, two
methods have been developed capable of forecasting future states of the neigh-
boring agents, regardless of being controlled trajectories or natural evolution,
only relying on relative measurements. In particular, Inverse Reinforcement
Learning is a powerful approach that tries to guess the objective function of the
reconfiguring spacecraft to generate potential future trajectories. It works very
well for long-time predictions based on a restricted number of observations. In
addition, the method is coupled with a Long-Short Term Memory network,
which shows superior performance in capturing short-horizon motion.

The following Chapter is organized as follows: Section 5.1 presents the mathe-
matical foundation of the methods, in particular Section 5.1.1 discusses the
Inverse Reinforcement Learning method, whereas Section 5.1.2 presents the
Long-Short Term Memory employed for trajectory prediction. Finally, Sec-
tion 5.2 reports the numerical validation results.

5.1 Forced Dynamics Prediction for Collision Avoidance

One critical task for distributed operation is to safely maneuver avoiding
collision between agents. In a distributed architecture no information is globally
available on the planning of each agent with respect to the formation, therefore
each spacecraft need to predict future maneuvers of potentially colliding agents.
Usually, the collision avoidance constraint is enforced by assuming the formation
to evolve naturally or along predefined trajectories [69] [70], which are known by
the system. Such assumption is quite restricting when dealing with distributed
systems that follow a distributed GNC architecture. It would be helpful if,
based on few relative observation between agents, the reference reconfiguration
trajectory could be predicted. In this way, collision avoidance constraints can
be taken into account by the each spacecraft’s MBRL algorithm in the shape
of a keep-out-ellipsoid. The path constraint for satellite p is added as:

1− (xp,k+i − xo
j,k+i)TP (xp,k+i − xo

j,k+i) < 0, i=1,..,N, j=1,..,m, j6= p (5.1)

where m is the number of agents. The xoj,k+i vector is the prediction trajectory
derived by the collision avoidance algorithm. The non-convex constraint in
Eq. 5.1 is convexified by unfolding the ellipsoid into a tangent plane, as done in
Section 4.3. Convex optimization guarantees the convergence of the algorithm
to a global minimum.

114

5.1. Forced Dynamics Prediction for Collision Avoidance

5.1.1 Inverse Reinforcement Learning

In general, an optimal control problem for trajectory planning can be described
as:

min
u,x
J (xt,ut) =

T−1∑
t

ct(xt,ut) + ψ(xT)

subject to xt+1 = F(xt,ut), t=1,..,T
umin < ut < umax, t=1,..,T-1

(5.2)

where ct is the running intermediate cost and ψ the terminal state penalty.
Similarly to what The cost function can be recast into a feature-based expression
where the cost is a linear combination of f nonlinear features. In principle,
each state-control pair can represent a feature. In this paper the optimizer is
described as an optimization over a linear combination of features φ, which
represent cumulative cost along feasible trajectories and terminal state penalty.
The feasible trajectories are those respecting optimization constraint and
dynamics: the set of state-control pairs represents a policy π, borrowing a
term from the Reinforcement Learning world. Using such approach, the cost
function can be rewritten [71]:

w = [w1, w2, ..., wf , wT]T , µ(π) =



∑T−1
t φ1(xt,ut)∑T−1
t φ2(xt,ut)

...∑T−1
t φf (xt,ut)
φT (xT)


cost: J = wT · µ(π)

(5.3)

The above formulation is necessary to introduce and discuss the Feature
Matching Approach for Inverse Reinforcement Learning.

5.1.1.1 Feature-Matching Approach

The concept of Inverse Reinforcement Learning is to estimate a cost function
that delivers an optimal trajectory compatible with an expert demonstrated
trajectory, called γ̃ = {(xt,ut)}Tt for simplicity, as shown in Fig. 5.1. It is
important to note that the expert cost function, parametric in the set of
features, is not known, but we assume the demonstration to be optimal for the
estimated one. Each trajectory is generated by a policy π, which characterizes
the state-control pairs at each instant in time, ideally. In detail, given a set
of No observations of the demonstrated trajectory Dγ̃ = {(xi,ui)}Noi=1 we need
to find a cost function J , under which the demonstrated trajectory looks
optimal. Feature Matching Approach (FMA), first proposed by Abbeel [71] for
imitation learning, solves for the weights in Eq. 5.3 by attempting to match the

115

Chapter 5. Environment and External Agent Uncertainty Prediction

Figure 5.1: Scheme of neighboring agents identification and collision
avoidance using Inverse Reinforcement Learning.

cumulative feature cost demonstrated by the expert under the optimal policy
π̃ and the policy π∗ based on the estimated cost function. The FMA can be
expressed in compact form:

J (γ̃|π̃) < J (γ|π)→ wT · µ(π̃) < wT · µ(π), ∀γ, π (5.4)

where it is stated that the demonstrated trajectory is optimal with respect
to the estimated cost function. We would like the algorithm to look for the
cost function optimized by the expert by trying to generate an estimation
matching demonstrated feature. The demonstrated trajectory owns significant
information about the structure of the cost function, hence the algorithm
significantly benefits if the discrepancy between estimated optimal trajectory
and expert one is integrated in the optimization. In other words, we would like
to encode the effectiveness of a generated policy by comparing the resultant
trajectory with the demonstrated one [76]. Loss augmentation represents a
cost gap structured margin:

Lγ̃(π) =
No∑
i=1
||x̃i − xi||2 (5.5)

by inserting Eq. 5.5 in Eq. 5.4 we obtain:

J (γ̃|π̃) < J (γ|π)→ wT · µ(π̃) < wT · µ(π)− Lγ̃(π), ∀γ, π (5.6)

The Feature Matching Approach (FMA) for Inverse Reinforcement Learning
can ultimately be written as:

min
w
||w||2

subject to wT · µ(π̃) < wT · µ(π)− Lγ̃(π)
(5.7)

116

5.1. Forced Dynamics Prediction for Collision Avoidance

Eq. 5.7 represent a convex optimization. Nevertheless, the set of policies
the algorithm sweeps is theoretically not finite. This makes the optimization
intractable, in particular for computational constraints of several interesting
applications in spacecraft GNC. We may suppose that there exists a policy
π∗ that minimizes the right-hand-side of the constraints in Eq. 5.7. Then,
the constraints in Eq. 5.7 can be written as wTµ(π̃) < min

π
{wTµ(π)− Lγ̃(π)}

without any loss of generality. Similarly to what is proposed by Ratliff [77] we
can place the constraint into the cost function. This yields an unconstrained
optimization, which can be solved using gradient-based algorithms:

min
w

η

2 ||w||
2 +

(
wTµ(π̃)−min

π
{wTµ(π)− Lγ̃(π)}

)
(5.8)

where η is a user-defined coefficient. The FMA-IRL is actually a nested
optimization problem. The outer loop is unconstrained, whereas the inner
loop, which is a path-planning optimization, may be constrained, both linearly
and non-linearly. The cumulative feature cost for the formation spacecraft
trajectories can be expressed as:

µ(π) =


XT
k SsXk

UT
kRrUk

(FXk)T Ŝ(FXk)

 (5.9)

where Xk, Uk, Ss and Rr are the stacked vectors and matrices to shorten the
summation in Eq. 5.3. Note that no target state guess is inserted, making the
formulation insensitive to such parameter. From Eq. 5.9, the weights vector is
w = [ws, wr, wŝ]T .

5.1.1.2 Inner Loop: Fast Quadratic Programming

The nested optimization resulting from the FMA for trajectory prediction
relies on an inner loop, evaluating the trajectory generated by the estimated
cost function. In this work, the inner policy evaluation is performed using a
fast Model Predictive Control recast into Quadratic Programming formulation.
Such strategy allows a rapid convergence of the inner loop, limiting the com-
putational burden of the whole algorithm. In particular, the MPC resembles
the architecture presented in section 4.3 with the additional term entailing
the gap structured margin Lγ̃(π). The proposed implementation uses the
linearized natural dynamics for state prediction. In general, this approach can
be extended to a neural reconstructed dynamics. The Quadratic Programming
(QP) formulation is:

min
Uk

1
2UT

kQUk +HUk

subject to VUk <W
(5.10)

117

Chapter 5. Environment and External Agent Uncertainty Prediction

where Uk = [uk, ...,uk+N−1] is a stacked vector containing the decision variables
for the optimization problem, namely the control action for each discretization
time step. The matrices of the QP formulation can be written as:

Q = 2wrRr + 2wŝΩTSŝΩ− 2ΩPpΩ (5.11)
H = 2x̂Tk ΨSŝΩ + 2XγPpΩ (5.12)

where Xγ is the stacked vector of the demonstrated trajectory, Pp is a stacked
identity matrix. The matrices Ω and Ψ represent the stacked state transition
matrix and control matrix for the linearized relative dynamics. The relative
dynamics can be neural-reconstructed or an analytical linearized model. Indeed,
one can write:

Xk = Ψxk + ΩUk (5.13)

where

Ψ = [Φ(tk+1, tk),Φ(tk+2, tk), ...,Φ(tk+N , tk)]T ∈ R6N×6

Ω =


Φ(tk+1, tk)B 0 . . . 0
Φ(tk+2, tk)B Φ(tk+2, tk+1)B . . . 0

...
Φ(tk+N , tk)B Φ(tk+N , tk+1)B . . . Φ(tk+N , tk+N−1)B


(5.14)

in which the fundamentals matrices are:

Rr =


R 0 . . . 0
0 R . . . 0
... . . .
0 0 . . . R

 ∈ R3N×3N SŜ =


S 0 . . . 0
0 S . . . 0
... . . .
0 0 . . . Ŝ

 ∈ R6N×6N

W =
[
Umax

Umin

]
∈ R6N×1 V =

[
I3N×3N

−I3N×3N

]
∈ R6N×3N

(5.15)

5.1.1.3 Outer Loop: Unconstrained Optimization

The outer loop is a convex unconstrained minimization problem that can
be solved by quasi-newton methods with gradient descent. In the proposed
implementation, the gradient reads:

∇w = ηw + (µ(π̃)− µ(π)) (5.16)

that completes the FMA-IRL algorithm.

118

5.1. Forced Dynamics Prediction for Collision Avoidance

5.1.2 Neural-Sequential Trajectory Forecasting

The trajectory prediction for collision avoidance based on IRL is a promising
algorithm, which delivers good results during the numerical validation test
campaign. Although being simple and effective, IRL presents two drawbacks
for working out the delicate task:

• the cost features have carefully been designed by analyzing the dynamics
of the spacecrafts. In particular, it is assumed that all the spacecrafts
executes the formation reconfiguration using an MBRL algorithm with
the same cost function. The major contribution of the IRL algorithm is
to estimate the unknown target position (or orbit) of each agent. Such
necessary design process limits the flexibility of the method.

• the unknown cost function assumes to be quadratic in the control effort,
hence it is required at least an estimate of the observed control thrust
impulse. This is not trivial when dealing with typical relative navigation
measurements. A possible way to solve this issue is approximating the
control term by a discrete velocity differential between two subsequent
observations in time, provided that they are close in time.

We may want to increase the flexibility of the proposed method by using a
nonlinear model approximation, such as ANN, to represent the more complex
cost function. Nevertheless, it is very hard to implement it in a particular
scenario where the expert trajectory consists only of a few observation. Hence,
probabilistic approaches, such as Maximum Entropy, seems inadequate for the
spacecraft simultaneous reconfiguration task.

As stated above, Recurrent Networks have the capability of handling time-series
data efficiently. The connections between neurons form a directed graph, which
allows an internal state memory. This enables the network to exhibit temporal
dynamic behaviors. From this premises, the use of RNN can be extended
also for trajectory identification of neighboring satellites. Differently from the
dynamics reconstruction used in MBRL, the network for neighboring satellites,
does not need the control input, since it tries to estimate the future trajectory
by only observing the relative state.

5.1.2.1 Long Short-Term Memory Network

The type of recurrent neural network used for neighboring satellites trajectory
prediction is a Long Short-Term Memory network. It is a type of recurrent
neural network widely used for making prediction based on times series data
LSTM are a powerful extension to the standard RNN architecture because they
solve the issue of vanishing gradients, which seldom occurs in network training.
For a general overview of the LSTM network it is suggested to refer to [78].
The architecture of the network used in this paper is reported in Fig. 5.2.

119

Chapter 5. Environment and External Agent Uncertainty Prediction

Figure 5.2: LSTM network for neighbouring satellites thrusted-trajectory
identification and prediction. The core of the LSTM are the cell (C), the

input gate (i), the output gate (o) and the forget gate (f) [78].

5.1.2.2 Online Supervised Training

The LSTM can be trained to make predictions based on time sequence data.
Given the demonstrated trajectory γ̃ = {(xt,ut)}Tt , where we neglect the
control ut, the proposed sequential supervised learning is performed by feeding
the network with the gathered input states and compared with the same states
shifted of one time step.

xin,LSTM = {γ̃}(t,t+(Ns−1)·Ts) (5.17)
yout,LSTM = {γ̃}(t+TS ,t+Ns·Ts) (5.18)

In order to obtain a more robust fit and to prevent the training from diverging,
it is required to standardize the training data to have zero mean and unit
variance. Hence, the training data are transformed as follows:

x̃in,LSTM = xin,LSTM − µx,in
σx,in

(5.19)

where µ is the coordinate-wise mean, i.e. for each observed coordinate of the
relative position, and σ is the relevant standard deviation.

5.2 Numerical Test: Results & Discussion

The following section presents a numerical validation of Inverse Reinforcement
Learning and Long-Short Term Memory for trajectory prediction in distributed
system. The simulation is simply a validation of the algorithm for the trajectory
prediction. The scenario is based on two spacecraft, which are assumed to
be reconfiguring the formation. Each spacecraft observes the relative state
of the other one for a set of No observations. Based on such observations,
the IRL algorithm yields a predicted trajectory based on the reconstructed

120

5.2. Numerical Test: Results & Discussion

cost-function. The predicted trajectory is compared to the natural motion the
spacecraft would have if no maneuvers were employed, which is often used for
planning [30] [41]. The assumed natural motion is described by the well-known
Clohessy-Wiltshire model, suitable for close-range motion in low eccentricity
orbit. The model is reported in Section 2. Tab. 5.1 reports the numerical
settings for the simulation.

Table 5.1: Numerical settings for simulation scenario

Parameter Value
Reference Orbit
a [km] 7975
e [km] 0.1
i [deg] 10
Reconfiguration
x0 [m] [200 800 0]T
xT [m] [0 0 0]T
IRL
No 4/6
Np 4
MPC
N 10
umax [N] 1
Ts [s] 60

The algorithm has been tested with a low eccentricity reference orbit, namely
e = 0.1. The dynamics in Eq. 2.2 is valid for close-range formation flying in
nearly-circular orbits. The aim of the presented numerical validation is to
exploit the IRL algorithm to reconstruct the planned trajectory, regardless of the
dynamics of the system. The proposed reconfiguration is from a stable periodic
orbit to the stable origin reference point. The second agent is supposed to
observe the state of the reconfiguring spacecraft and processing the measurement
to predict the forced trajectory. Fig. 5.3 shows the reconfiguration trajectory
based on the MPC algorithm [79]. In addition, the predicted trajectories are
depicted: the red dots represent the IRL predicted positions at the next Np
sample times (the algorithm sample time is Ts = 60 s); the blue dots represent
the hypothetical trajectory if the natural dynamics was employed for prediction.
Fig. 5.3 demonstrates the tremendous offset that the natural motion predicts,
which jeopardizes its use for a safe reconfiguration planning or at least for a
simultaneous reconfiguration. Fig. 5.4 shows the norm of the error in position
prediction for subsequent time instant. At a given time, after No observations,
the trajectories is predicted in the future for Np time steps. The accuracy of
the trajectory prediction degrades in time, but the algorithm is supposed to be

121

Chapter 5. Environment and External Agent Uncertainty Prediction

Figure 5.3: Comparison between the IRL predicted trajectory and the
hypothetical trajectory the spacecraft would have if it was in natural

motion.

working with the same MPC frequency, with Ts as sample time. This means
that the trajectory prediction is refined at each time step. For this reason,
the most relevant error is that of the first prediction step. The position error
for the IRL reconstructed trajectory is lower than ∼ 10 m, which is within
the typical keep-out ellipsoid used for safe reconfiguration [79]. On the other
hand, the prediction based on natural dynamics rapidly diverges to >∼ 102 m,
making it unsuitable to be used in safe trajectory planning.

5.2.1 Collision Avoidance Algorithms Comparison
Two algorithms have been presented to cope with the lack of knowledge on
the neighbouring satellites trajectories while performing reconfiguration. If the
formation is reconfiguring using impulsive maneuvers the zero-impulse natural
dynamics is no longer valid, indeed the keep-out-zone limit may often be
intersect, violating the constraint due to wrong trajectory prediction. Fig. 5.5
shows a challenging reconfiguration where the spacecraft swap the along track
positions separated by 200 m. As shown, the relative distance between the
satellites falls below the Keep-Out-Zone limit of 100 m when the prediction
of neighbouring agents is carried out using natural dynamics. On the other
hand, coupling the MBRL planner with a impulsive trajectory identification
algorithm, such as IRL, allows a safe reconfiguration.

In the distributed architecture it is assumed that each satellite can gather infor-
mation on the relative state by autonomous navigation but cannot communicate
its guidance to the neighboring satellite. A numerical simulation is reported

122

5.2. Numerical Test: Results & Discussion

Figure 5.4: Prediction error for subsequent time steps Ts.

Figure 5.5: Close intersecting reconfiguration. The relative distances between
the agents are shown. MBRL-ND coupled with natural dynamics prediction

for collision avoidance violates the constraints during close approach.

123

Chapter 5. Environment and External Agent Uncertainty Prediction

here, in which colliding trajectories where deliberately chosen. The simulation
consist of a sampling of No observation of a neighboring satellite’s trajectory.
These observation are processed by the IRL algorithm to approximate a cost
function, whose optimization delivers a predicted trajectory shown in Fig. 5.6.
Simultaneously, the observations are used to train the LSTM network. The
number of prediction is set to Np = 5, whereas No = 10. According to Tab.5.2,

Figure 5.6: Neighboring satellite’s trajectory. Predicted trajectories based on
IRL, LSTM and natural dynamics are shown in colored dots.

Prediction Step IRL LSTM ND
1st [m] 4.7 5.0 1.6
5th [m] 0.52 9.9 81.8

Table 5.2: Prediction error for IRL, LSTM and natural dynamics model (ND).

the two algorithms are beneficial with respect to natural dynamics prediction
for controlled reconfiguration, as expected. The LSTM shows superior per-
formance in predicting the very first state after the last observation, but the
error grows as the number of time step to be predicted increases. An opposite
behavior is shown by IRL, which delivers a finer prediction in the last time step.
A combination of the two may be beneficial for the inclusion of such trajectory
prediction into the MBRL scheme. A more comprehensive analysis has been
conducted to map the behavior of the algorithm for different combination of
Np and No in the same scenario described before. Fig. 5.7 shows the difference
in the presented algorithms. On one hand, short-horizon predictions based on
few observations are better resembled using LSTM. On the other hand, the
IRL accuracy is higher when a larger observation set is used. The common

124

5.2. Numerical Test: Results & Discussion

Figure 5.7: Map of RMS error of the neighboring agent trajectory prediction
based on CW-model, IRL algorithm and LSTM, left to right, as a function

of the number of observations and predictions.

high-RMSE region is due to the particular simulated case, where at the 6th
observations, a large control action steers the trajectory. These results are
presented for a particular relative trajectory, but the insights reported on the
behavior of the two methods can be extended to the range of relative motion
pertaining the Formation Flying domain.

5.2.2 Sensitivity on Controller Weights

The planned reconfiguration trajectory depends on the weights that are set
in the cost function of the MBRL controller. In particular, the controller can
be steered towards a time-efficient or energy-efficient trajectory generation
by changing the relative weights of the terms in the cost function. If the
objective is to minimize the energy of the control effort, intuitively, the planned
trajectory exploits at the most the natural motion of the orbiting spacecraft.
On the other hand, if a time-efficient strategy is pursued, the controller
forces a thrust trajectory to minimize the maneuver execution time, at the
cost of larger ∆v. As a result, the IRL algorithm is critical when using the
latter strategy. Fig. 5.8 shows the cumulative error after 10 steps prediction
using IRL and natural dynamics. It demonstrates that for energy-efficient
reconfiguration the prediction based on natural dynamics is comparable to the
one derived by IRL. Fig. 5.9 shows an example in which the 10 steps prediction
is particularly off when dealing with MBRL controllers tuned to achieve fast
reconfiguration. Based on only No = 4 observations, the predicted trajectory
is well reconstructed using the IRL algorithm. The predicted positions are fed
into the MBRL controller to generate safe trajectories. The MBRL treats the
obstacle collision avoidance constraint as in Eq. 5.20.

∀i = 1, ...,N | 1− x̃To,k+iPx̃o,k+i < 0
x̃o,k+i = [C(xk+i − xo,k+i)]

(5.20)

125

Chapter 5. Environment and External Agent Uncertainty Prediction

Figure 5.8: Cumulative error for increasing ∆v reconfiguration. As the
MBRL controller is steered towards time-optimal reconfiguration, the IRL

algorithm is necessary for prediction.

Figure 5.9: An example of a trajectory generated by the MBRL controller
tuned towards fast control.

126

5.2. Numerical Test: Results & Discussion

where the subscript o stands for obstacle, which in general is another agent of
the formation. The constraint in Eq. 5.20 is quadratic and non-convex, thus it
requires to be convexified as in Section 4.3.

127

CHAPTER6
Processor-In-the-Loop Implementation

La noia data da uno non pratico
Che non ha il polso di un matematico
Che coi motori non ci sa fare
E che non sa neanche guidare
Un tipo perso dietro le nuvole e la poesia.

— Francesco Guccini

The engineering work is definitely not finalized if the algorithms are not
tested in relevant hardware. Relevant hardware means some kind of piece of
actual technology that could in principle be implemented in satellite missions,
according to the size, the mass and the computational power. The whole
Thesis focused on the development of algorithms suitable for microsatellite
mission, which are protagonist in the futuristic mission concepts involving
formation flying and daring proximity operations. Thus, this Chapter presents
the activities performed in the context of Processor-In-the-Loop validation of
the algorithms presented in Chapter 3, 4 and 5. In particular, this Chapter is
organized as follows: Section 6.1 briefly highlights the main procedure to set-up

Chapter 6. Processor-In-the-Loop Implementation

Figure 6.1: Hardware equipment for PIL validation.

the PIL simulation (note that it is not reported a step-by-step procedure);
Section 6.2 reports the results of the PIL test campaign.

6.1 Processor-In-the-Loop Simulation Setup

The GNC validation requires the deployment of the algorithms into relevant
hardware [80], which is able to emulate the computational power available
on-board. The focus is to validate and verify the feasibility of the developed
algorithms implementation into relevant processors and compare their per-
formance with CPU execution, as sketched in Fig. 6.2. The PIL simulations
features the execution of the GNC algorithms in both Desktop computers and
stand-alone boards. As shown in Fig. 6.2, the control action is calculated and
fed to an orbital dynamics simulator to integrate the motion equations. The
communication is performed using USB-serial link. Such process increases
the Technology Readiness Level (TRL) level of the algorithms, raising it to
3/4. During experimental activities, it has been critical to develop a fast and
manageable deployment routine to standardize the process. This required
significant work during the set-up, as reported in 6.1.3. Once the set-up and
porting procedure was fully functional, the rapid prototyping and verification
stage could be performed. The boards are shown in Fig. 6.1. The boards have
been selected according to performance standard that are available both for
nanosatellite missions as well as larger spacecraft.

6.1.1 Microcontroller Unit
The Hardware equipment used in this Thesis is a microcontroller unit MCU
TI LAUNCHXL-F28379D Dual-core architecture. It features:

130

6.1. Processor-In-the-Loop Simulation Setup

Figure 6.2: Schematics of Processor-In-the-Loop verification and validation
process.

• Two TMS320C28x 32-bit CPUs

• 200 MHz processor

• IEEE 754 single-precision Floating-Point Unit (FPU)

The CPU frequency can be regarded as representative of the lowest performing
on-board computers, which can be easily integrated in nanosatellites. Thus, the
preliminary PIL verification and validation of the algorithms was performed
using such resource. It is important to remark that only single-precision is
supported by the MCU.

The microcontroller has been selected considering as the main driver both
the availability of number of output peripherals and compuational power
with respect to similar devices of the same class present on the market. The
hardware is developed by Texas Instruments (TI), in particular the model is
the F28379D LaunchPad Development Kit from C2000 Real-Time Control
MCUs family; electronic specifications and wiring can be found directly in the
technical datasheets. The board can be accessed and programmed directly
from a personal computer by using the serial connection of a USB cable and
the dedicated interfacing software Code Composer Studio, but another great
advantage of using this TI board is that a complete support package in present
also in the Matlab & Simulink suite, asset that makes possible to program it
using a Simulink model with the dedicated Embedded Coder, which generates
the necessary code directly from the model. This approach is indeed used in
the present work as explained in 6.1.3.

131

Chapter 6. Processor-In-the-Loop Implementation

The TI LaunchPad can also be programmed directly from Simulink, in fact
this approach has been used in the present thesis work. The rationale is to
generate the C, C++ code from a Simulink model and to deploy it to the target
hardware. The first prerequisite is to work both with the TI CCS IDE and
controlSUITE. The following Matlab libraries are then needed and utilized:

1. MATLAB Coder : compiler that allows generating C and C++ code from
MATLAB code.

2. Simulink Coder : compiler that allows generating C and C++ code from
Simulink code.

3. Embedded Coder : adds support for custom targets to the Simulink Coder.

4. Embedded Coder Support Package for Texas Instruments C2000 Proces-
sors: adds support for the specific family of microcontrollers, including
the F28379D Launch-Pad.

6.1.2 Single-Board Computer Unit

The Microcontroller Unit (MCU) works with single-precision floating-point
unit. This is a limitation for certain applications where complex and accurate
calculations require the double precision. To solve such shortcoming the
Hardware suite is equipped also with an open-source single board computer,
namely the BeagleBone Black. The BeagleBone Black boots Debian operative
system. It is important to remark that at the current time the Support Package
of Matlab/Simulink® supports only Debian 7.9, which is actually a deprecated
version of Debian. Nevertheless, BeagleBone Black can boot from MicroSD,
where Debian 7.9 was flashed to perform PIL tests, as will be discussed in
Section 6.1.3. The board features:

• AM335x 1GHz ARM® Cortex-A8

• 512MB DDR3 RAM

• 4GB 8-bit eMMC on-board flash storage

• 3D graphics accelerator

• NEON floating-point accelerator

• 2x PRU 32-bit microcontrollers

Beside the already mentioned Support Packages for autocoding, the necessary
Matlab add-ons are necessary to run PIL simulations with BeagleBone Black
Hardware:

1. Embedded Coder Support Package for BeagleBone Black Hardware: en-
ables to create and run Simulink models on BeagleBone Black hardware.

132

6.1. Processor-In-the-Loop Simulation Setup

Figure 6.3: Embedded Coder workflow.

The support package includes a library of Simulink blocks for config-
uring and accessing BeagleBone Black peripherals and communication
interfaces.

2. ARM Cortex-A Support from Embedded Coder : support for ARM Cortex-
A processors by generating processor-optimized code using Ne10 project
libraries (Ne10) with the GNU Compiler Collection (GCC) compiler.

6.1.3 Porting Procedure

The porting procedure is executed using the Matlab/Simulink Support Package
for both the boards. In particular the Embedded Coder allows the user to
autocompile the Simulink code into the target hardware, without requiring deep
coding knowledge. This helps the Space community in the rapid prototyping
activities. The workflow of the Embedded Coder is schematized in Fig. 6.3.
Running a model in external mode or PIL validation allows to rapidly deploy
the code into the hardware and to perform parameter tuning while running.
To prepare the deployment of the code, the following settings must be changed:

• Simulation Mode: External or Normal (PIL block generated)

• Model Configuration Parameters → Hardware Implementation → Hard-
ware board

• Target Hardware Resources → Build Options → Device Name

• Target Hardware Resources → Clocking → Tick Use Internal Oscillator

133

Chapter 6. Processor-In-the-Loop Implementation

Figure 6.4: Processor-In-the-Loop (PIL) validation framework in
MATLAB/Simulink.

• Target Hardware Resources → SCIA → Pin Ass. (Tx) = GPIO42, Pin
Ass. (Rx) = GPIO43 required only for the Microcontroller Unit.

• Target Hardware Resources → External Mode → Set the correct COM
port

• For PIL simulations: Code generation → Verification → Advanced pa-
rameters → Create block: PIL

The same procedure can be executed to set up the BeagleBone Black target
interface. Note that the Support Package from Simulink requires to boot from
Debian 7.9 and not later versions. The BeagleBone Black runs Debian Linux
distribution, hence it is slightly more cumbersome to set-up all the necessary
libraries. First of all, it is important to establish SSH communication with
the board. Also, it is critical to connect the board to Internet and run the
package update routine (apt-get update). Given that Debian 7.9 is obsolete, it
is recommended to force installation of the packages required by the Support
Package. After setting up the BeagleBone Black, the Matlab/Simulink target
hardware configuration can be run following the aforementioned procedure.
The result is a Simulink project where PIL autocoded module is compared
against the CPU-executed block, as shown in Fig. 6.4.

134

6.2. Processor-In-the-Loop Validation

6.2 Processor-In-the-Loop Validation

The experimental tests with the Processor-In-the-Loop focused on evaluating
the feasibility of running the developed algorithms into representative hardware.
In particular, the metrics used to evaluate the simulations are defined as:

• Execution times of each sub-routine that build up the algorithms (te[s])

• Duty cycle and resource utilization with respect to task execution time.
It is calculated as the execution times divided by the task allocated time
(DCe[%])

• Numerical discrepancy with respect to CPU output (ε)

The required threshold to be satisfied depend on the mission application and
design. Nevertheless, the three metrics are evaluated comprehensively. For
instance, the execution times are related with the duty cycle: a threshold
of 10% for task duty cycle can be regarded as acceptable. Regarding the
numerical discrepancy, it is important to bear in mind that the control action
is calculated and fed to actuators in real mission. The sensitivity of such
actuators establish the acceptable discrepancy threshold. For this reason, a
threshold of 1 ·106 m

s2 is set, assuming a conservative value for control sensitivity
of current actuators. All the algorithms presented in the Thesis have been part
of the PIL validation campaign. Nevertheless, Recurrent Neural Network still
lack support for hardware implementation. This problem is quite extended for
representative flight hardware. Indeed, for instance, Intel Openvino framework,
used for optimizing code deployment for Intel board (e.g. Myriad 2), does not
offer a full support for Recurrent Neural Networks.

Neural-Network Artificial Potential Field validation The presented
simulations based on the NNAPF algorithm, comprising the whole RBFNN-
GNC architecture, were simulated using a Desktop computer using Intel®
CoreTM i5-3470 CPU @3.20 GHz. The computational time for a single step
execution of the NNAPF is < 50 ms.
The NNAPF has been developed for an on-board applications, hence it is critical
to evaluate its computational burden on relevant processor and hardware. The
building blocks of such algorithm encompass the online learning, the artificial
potential field guidance, the adaptive EKF for navigation and the Lyapunov
controller. The average execution times of the autonomous GNC routines are
limited and fully compatible with on-board implementation, as reported in
Tab. 6.5. The NNAPF runs at 10 Hz: almost continuous control. For such
sample time, the resource utilization is roughly ∼ 2%. Fig. 6.5 shows the
discrepancy in the calculated control by the MCU and the Desktop simulator.
The values are in the order of ∼ 10−12 m

s2 , which can be assumed to be numerical
error, thus validating the PIL test.

135

Chapter 6. Processor-In-the-Loop Implementation

Figure 6.5: Discrepancy in calculation between PIL and MIL simulations for
NNAPF run in MCUs F28379D.

Table 6.2: Average and maximum execution time of GNC routines using a
single core TMS320C28x 32-Bit CPUs @200 MHz of TI C2000-Delfino

MCUs F28379D

Routine Average Max
[ms] [ms]

rbfnn(.) 0.89 0.90
aekf(.) 0.81 0.82
apf(.) 0.32 0.32
ctrl(.) 0.28 0.33

136

6.2. Processor-In-the-Loop Validation

Table 6.3: Average and maximum execution time of MBRL routines using a
BeagleBone Black single-board computer.

Routine Average Max
[ms] [ms]

ann(.) 0.89 0.90
mbrl.quadprog(.) 191.10 272.20
mbrl.fmincon(.) 290.10 337.10

Model-Based Reinforcement Learning validation The Model-Based
Reinforcement Learning algorithm relies on optimization techniques, in the same
fashion as Model Predictive Control. Analogously, the Inverse reinforcement
Learning features nested optimization to generate the collision avoidance
constraint. On-board optimization is a delicate task to be executed on-board
and certainly requires more computational power with respect to NNAPF. To
be able to deploy the code to the target hardware with acceptable outcome,
double-precision floating-point unit was required. The MCU does not support
double-precision, hence it was necessary to complement the hardware suite with
the single-board computer BeagleBone Black. The MBRL entails the artificial
neural network learning and the optimization routine for planning and control.
In particular, two solvers were used from Matlab suite, namely quadprog and
fmincon. The reason is that, if no collision avoidance is implemented, the
problem can be recast into quadratic programming formulation that guarantees
rapid convergence and existence of the solution. For quadprog the active-set has
been chosen as solver algorithm in MATLAB. The collision avoidance constraint
is nonlinear, even if convexified as shown in Chapter 4. The constraint is
nonlinear, hence the problem transforms into a quadratic optimization with
nonlinear constraints. The problem is solved using fmincon in MATLAB library
implementing sequential quadratic programming. The sqp has been selected
for the medium-scale problem in the receding horizon optimization as well as
for its efficiency and robustness. A comparison between the execution of the
two methods is reported in Fig. 6.8. As expected, the nonlinear optimization
requires more computational time to execute. The maximum number of
iterations was set to 1000 in order not to enter infinite loops in the target
hardware. The resource utilization grows up to ∼ 0.5%. The comparison of the
execution times normalized frequency is shown in Fig. 6.9. An important remark
is that both the distributions are relatively narrow, meaning that the confidence
on the mean is high (see Fig. 6.8) and the outliers still deliver acceptable
results. However, one can clearly see from Fig. 6.9 how the collision avoidance
constraint may increase the computational time when it is constraining severely
the solution (e.g. very close agents). Indeed, the distribution for fmincon-sqp
is more spread out.

137

Chapter 6. Processor-In-the-Loop Implementation

Figure 6.6: Control output delivered by the embedded execution.

Figure 6.7: Discrepancy in calculation between PIL and MIL simulations for
MBRL run in BeagleBone Black single-board computer.

fmincon quadprog

200

220

240

260

280

300

320

340

Figure 6.8: Statistics of execution times for the optimization solver used in
the embedded application.

138

6.2. Processor-In-the-Loop Validation

Figure 6.9: Normalized probability for the execution times profiled in the PIL
simulation.From left to right, quadprog and fmincon are shown

The MBRL and IRL have been developed for an on-board applications, hence
it is critical to evaluate its computational burden on relevant processor and
hardware. Fig. 6.6 shows the control action calculated by the Single Board
Computer (SBC) and delivered to the orbital simulator running in the Desktop
computer. The average execution times of the autonomous GNC routines are
limited and fully compatible with on-board implementation, as reported in
Tab. 6.3. The MBRL runs at 1

60 Hz, which means that the control is output
every minute. For such sample time, the resource utilization is roughly ∼ 0.25%.
Beside evaluating the computational times, it is critical to check whether the
performed calculation are compatible with the results from the MIL simulations.
Fig. 6.7 shows the discrepancy in the calculated control by the SBC and the
Desktop simulator. The values are in the order of ∼ 10−13 m

s2 , which can be
assumed to be an acceptable numerical error, thus validating the PIL test.

Considering execution times, task duty cycle and numerical discrepancy,
the algorithms have been successfully validated in PIL tests.

The hardware presented in this chapter is representative of the hardware inte-
grated in the friction-less 5DoF facility installed at Politecnico di Milano [81]
[82]. Naturally, the algorithm development follows the same workflow adopted
here: the numerical algorithms are coded in Matlab/Simulink®, tested in Desk-
top computers and finally automatically ported into the target hardware using
the dedicated coder. This enables fast prototyping and hardware validation of
the selected algorithms.

139

CHAPTER7

Conclusions

Passano gli anni, i mesi,
e se li conti anche i minuti,
é triste trovarsi adulti
senza essere cresciuti.

— Fabrizio De André

The research process does not have inherently a conclusion. However, what
we can try to explore is part of the question: how far have we gone? This
Chapter draws the tentative conclusions of the work with respect to the research
objectives presented in Chapter 1. Section 7.1 reports the major developments
and results of the research work and discusses them to draw insights on the
research problem. Finally, Section 7.2 tries to pave the way for future steps by
delivering some recommendations on the work to be done. Because there is
always work to be done.

Chapter 7. Conclusions

7.1 Major Results & Findings

The research work followed the logical scheme presented in Chapter 1. The
general and overwhelming problem of increasing the autonomy of distributed
systems while performing proximity operations using Artificial Intelligence
(AI) has been split into several subproblems. First, the critical block on which
the whole Guidance, Navigation & Control (GNC) system is built has been
analyzed: the on-board dynamical model. The representation of the dynamics
that is available on-board is used for all the algorithms regarding Guidance,
Navigation & Control (GNC) system: for instance, the navigation EKF a-priori
estimate rely on the dynamical model. Three methods have been developed in
order to construct an autonomous algorithm capable of refining and learning
the dynamical models of the environment in which they are flying. Thanks
to the outstanding flexibility and adaptivity of the Artificial Neural Network
(ANN), the dynamics reconstruction is accurately performed on-board.

The three methods all rely on ANN, with a different level of integration. The
first method, named neural-dynamics encapsulates the whole dynamics into
a ANN. Basically, the network is stimulated by the external environment, it
makes a prediction of future state and trains by supervised learning using the
actual measured state at the next time instant. Feed-Forward Networks are
able to approximate the input-output relation after a brief initialization on
linear models, nevertheless Recurrent Neural Networks have shown superior
performances. This is due to the fact that RNN inherently possess a temporal
behavior by recursively using information from past data. However, it has been
found out that the embedded implementation of Recurrent Neural Network is
still somewhat cumbersome and not yet supported by most of the representative
hardware. Hence, they are penalized in terms of implementation feasibility,
but this is certainly a matter of time.

The second method, here referred as dynamics acceleration reconstruction aims
at enhancing a given analytical models (such as Clohessy-Wiltshire Model
(CW) for relative dynamics, by approximating all the unmodeled terms or
disturbances (e. g. drag, nonlinearities, gravity harmonics, etc.). For this, an
original approach for state estimation and uncertainties estimation has been
developed. The proposed algorithm relies on a Radial-Basis Function Neural
Network (RBFNN) coupled with an Extended Kalman Filter (EKF). The
proposed neural-network performs an online estimation of the disturbances
acting on the spacecraft, which are included in the prediction step of the filter.
The online learning algorithm exploits the state estimation worked out by the
filter itself to update the neural network weights. Moreover, an innovation-
based recursive filter architecture is employed. Simulation results show the
capability of the proposed solution to reconstruct the dynamics of a spacecraft
in elliptic orbits with the J2 perturbation in an Earth orbit environment. More,

142

7.1. Major Results & Findings

a fictitious perturbed case has been tested to showcase the quality of network
reconstruction. Furthermore, the AI-augmented filter performance is compared
to more classical approaches and tested on realistic scenarios, through statistical
simulations. It has been shown how the robustness over very poor tuning of the
state covariance matrix is consolidated in the algorithm. Satisfactory results
have been obtained for the proposed solution in all the presented cases and
the sensitivity analysis demonstrated the algorithm robustness in non-ideal
situations.

The third method, here named parametric dynamics reconstruction, uses a
RNN to estimate the parameters of a given dynamical expression. The most
promising application has been reported in the Thesis, in which the coefficient
of the spherical harmonics expansion of several asteroids have been estimated
while flying. Even though the employed Hopfield Neural Network (HNN) has
a recurrent structure, it is easily manageable analytically, hence the implemen-
tation does not pose major risks. Also, the comparison between EKF and a
HNN for the parameter estimation of the gravitational field of small bodies was
analyzed. The criticalities of the HNN for this task have been highlighted and
consist in the tuning of the activation function though a parameter β. This
parameter β results to be dependent on the distance to the body mainly and
to have a slight dependence on the degree of irregularity of the flown body. In
particular, for high irregular cases, a conservative choice of β should be made.
These results have been then validated in the real gravitational environment of
some selected bodies, namely Castalia, Kleopatra and Phobos. The case of a
binary system (Didymos) is presented too: the re-formulation of the network’
associated dynamics appears to be simple as well as all the consideration valid
for a single body can be used for the tuning of the network. From the other
hand, the same tests are performed with an augmented-EKF. The performance
of the EKF, as expected, are good too doing this task but to scale the method
to a new dynamical environment an ad-hoc tuning must be performed, over
the model re-formulation. Moreover, from the computational point of view,
the augmented-EKF result to be heavier than the couple EKF+HNN. Given
the results, one could conclude that the use of a HNN online gravity field
estimation is a good alternative to an EKF as well as can be use to validate
the results of the filter itself.

The online dynamics reconstruction was necessary to enhance the traditional
algorithms that work out the navigation, planning and control aspects. The
first developed algorithm was based on Artificial Potential Field (APF) on
Relative Orbital Elements (ROE) space. The algorithm is very powerful for
on-board application, due to the capability of handling collision constraints
efficiently. Moreover, it is very light computationally. The base algorithm was
developed using a ROE dynamics, which was augmented with AI-reconstructed
dynamics. The algorithm takes as input the Cartesian measurements of relative

143

Chapter 7. Conclusions

states between satellites. The developed navigation filter and controller is
coupled with a neural reconstructed term that encompass all the disturbances or
nonlinearities not modeled in the on-board dynamical model. Such refinement
of on-board dynamics enhance the whole GNC performance. Radial-Basis-
Function Neural Networks have been employed for the inherent nonlinear
neurons structure, which yields a faster learning process. The dynamics
reconstruction works online with no mandatory previous training campaign.
As presented in Chapter 6, the Neural Network Artificial Potential Field
(NNAPF) algorithm has been tested numerically and in Processor-In-the-Loop
(PIL) simulations using a single core TMS320C28x 32-Bit CPUs @200 MHz
of TI C2000-Delfino MCUs F28379D unit. The numerical and PIL tests
demonstrated:

• the neural reconstructed dynamics enables more accurate trajectory
reconstruction and final target configuration with respect to Artificial
Potential Field algorithm.

• the algorithm can be executed using limited computational power, thus
making it suitable for on-board applications.

Despite all the promising features of the neural-aided Artificial Potential
Field algorithm, two major drawbacks have been identified: on one hand, the
APF may lead to instability depending on the tuning and type of required
maneuvers; on the other hand, it does not optimize the maneuver control,
potentially leading to high ∆v cost, without a-priori estimate of the control
effort. For this reason, an innovative strategy for the guidance and control of
distributed formation has been developed. In particular, the method solves
the shortcomings that arise from the partially known dynamical environment
as well as the lack of knowledge of future trajectories of neighboring satellites
during coordinated maneuvers. The trajectory and control is generated using
a Model-Based Reinforcement Learning (MBRL) approach. A Model-Based
Reinforcement Learning approach has been adopted for on-board planning and
control of reconfiguration trajectories. The learning process is based on the
loss function between prediction and measurements. The neural-reconstructed
dynamics is used for the optimization at each sampling instant, taking into
account a convex collision avoidance constraint. The first control action is
executed until the new planning step, in the same fashion as Model-Predictive
Control. This algorithm demonstrated promising results in the validation
tests, in particular in those scenarios where simple dynamical models, such
as Clohessy-Wiltshire, are not accurate enough for synthesizing the guidance
and control. Reconfiguration trajectories generated by the MBRL algorithm
require lower ∆v for the same formation geometry variation. In addition,
MBRL succeeded in generating trajectories when the standard MPC algorithm
failed. The algorithm was tested in Earth-bounded orbital environment but

144

7.2. Recommendations

can be applied to scenarios where it is necessary to acquire knowledge of the
dynamics, which is unknown or partially unknown until spacecraft arrival.

The distributed system architecture does not imply information sharing among
the agents, thus it was necessary to implement an algorithm to prevent colli-
sion during proximity maneuvers. Two algorithms are explored to guarantee
collision-free operations. Inverse Reinforcement Learning (IRL) reconstructs
the cost function of each agent and predicts trajectories of concurring agents
during the reconfiguration. The second method exploits a Long-Short Term
Memory (LSTM) recurrent network to capture the dynamics and predict the
trajectory. In this way, both natural and thrusted dynamics is managed when
enforcing the collision-avoidance constraint. The results show that the pro-
posed algorithms perform correctly and solve reconfiguration scenario that are
challenging, or even fatal, for traditional algorithms. In particular, long-term
horizon predictions are better captured by IRL, whereas short-term predictions
are effectively represented by LSTM output.

Employing Artificial Neural Networks for spacecraft operations can
help in bridging the gap between space exploration and distributed
autonomous flight. Being computationally light, online Artificial Neural
Network aided algorithms can be deployed in micro-satellites, where the
computational power is limited.

Also, all the presented algorithms adapt to the environment capturing the un-
modeled terms delivering successful control where traditional and not adaptive
algorithms may fail. This approach is presented for distributed systems but it
is applicable in all the missions where the lack of prior knowledge (or partial)
of the environment may jeopardize the on-board autonomy. The optimization-
based algorithms have been tested and validated Processor-In-the-Loop (PIL)
using a single-board computer BeagleBone Black. In particular, the execution
times and resource utilization has been positively assessed to evaluate the
feasibility of the embedded implementation.

At the end of the story, this is where we are. We can call it the end but the
next start seems more appropriate.

7.2 Recommendations

It is certainly not sufficient one Ph.D. Thesis to cover all the aspects of
autonomy in space for distributed system. This research work aims at building
the foundation of a strategic approach for enhancing existent GNC algorithms
with AI. The philosophy is to integrate rather than replace AI-techniques into
well established GNC routine in order to solve their known shortcomings. Few
recommendations for the next steps are here reported:

145

Chapter 7. Conclusions

• the algorithms require the next validation step consisting in Hardware-In-
the-Loop (HIL) tests. This is already planned to be performed in a friction-
less facility at Politecnico di Milano, which is thoroughly described in [81,
82, 83]. The HIL tests allow to integrate real proximity measurements,
such as RF ranging, to be processed by the AI-augmented GNC and to
verify the correct execution of the algorithms.

• the Recurrent Neural Network (RNN) still partially lack support for
implementation. Given their superior performance in dynamics learning,
it is crucial to investigate methods and procedures to embed such models
into relevant applications.

• last but not least, it would be interesting to advance in the autonomy level
and implement AI-based methods for high-level tasks, such as formation
allocation and scheduling.

The reported points are only few implications directly linked to the present
Thesis. The list of applications that can benefit from introducing AI into
traditional algorithms can potentially be never-ending and it is out of the scope
of this work to present it comprehensively.

In the end, the aim of researching is to stimulate research, no matter what, no
matter why.

146

Bibliography

Bibliography

[1] S. Silvestrini, A. Capannolo, M. Piccinin, M. Lavagna, and J. Gil-
Fernandez, “Centralized Autonomous Relative Navigation of Multiple
Spacecraft Around Small Bodies”, in AIAA Scitech 2020 Forum, 2020,
pp. 1–20. doi: 10.2514/6.2020-1204.

[2] H. Curtis, Orbital Mechanics for Engineering Students. Elsevier, 2005.
[3] D. Wang, B. Wu, and E. K. Poh, Satellite Formation Flying. 2017, vol. 87,

Intelligent Systems, Control and Automation: Science and Engineering.
[4] S. D’Amico, “Autonomous formation flying in low earth orbit”, Ph.D.

Dissertation, 2010.
[5] T. Guffanti, S. D’Amico, and M. Lavagna, “Long-term analytical propa-

gation of satellite relative motion in perturbed orbits”, Advances in the
Astronautical Sciences, vol. 160, pp. 2387–2417, 2017.

[6] A. W. Koenig, T. Guffanti, and S. D’Amico, “New State Transition
Matrices for Spacecraft Relative Motion in Perturbed Orbits”, Journal
of Guidance, Control, and Dynamics, vol. 40, no. 7, pp. 1749–1768, 2017.

[7] H. Schaub, S. R. Vadali, J. L. Junkins, and K. T. Alfriend, “Spacecraft
formation flying control using mean orbit elements”, Journal of the
Astronautical Sciences, vol. 48, no. 1, pp. 69–87, 2000.

[8] C. M. Lane and P. Axelrad, “Formation Design in Eccentric Orbits Using
Linearized Equations of Relative Motion”, Journal of Guidance, Control,
and Dynamics, vol. 29, no. 1, pp. 146–160, 2006.

[9] A. Colagrossi, J. Prinetto, S. Silvestrini, and M. Lavagna, “Sky visibility
analysis for astrophysical data return maximization in HERMES constel-
lation”, Journal of Astronomical Telescopes, Instruments, and Systems,
vol. 6, no. 4, pp. 1–25, 2020. doi: 10.1117/1.JATIS.6.4.048001.

147

https://doi.org/10.2514/6.2020-1204
https://doi.org/10.1117/1.JATIS.6.4.048001

Bibliography

[10] A. Colagrossi, J. Prinetto, S. Silvestrini, M. Orfano, et al., “Semi-
Analytical Approach to Fasten Complex and Flexible Pointing Strategies
Definition for Nanosatellite Clusters: The HERMES Mission Case from
Design to Flight”, in 70th International Astronautical Congress, 21-25
October 2019, Washington D.C., USA, 2019.

[11] S. Silvestrini, V. Pesce, and M. Lavagna, “Distributed Autonomous
Guidance , Navigation and Control loop for Formation Flying Spacecraft
Reconfiguration”, in 5th CEAS Conference on Guidance, Navigation and
Control, 2019, pp. 1–19.

[12] G. Gaias, J.-S. Ardaens, and O. Montenbruck, “Model of j2 perturbed
satellite relative motion with time-varying differential drag”, Celestial
Mechanics and Dynamical Astronomy, vol. 123, no. 4, pp. 411–433, 2015.

[13] A. Pasquale, “Small bodies gravity field on-board learning and naviga-
tion”, M.S. thesis, Politecnico di Milano, Milan, 2019.

[14] R. A. Werner, “Spherical harmonic coefficients for the potential of a
constant-density polyhedron”, Computers & Geosciences, vol. 23, no. 10,
pp. 1071 –1077, 1997. doi: https://doi.org/10.1016/S0098-3004(97)
00110-6.

[15] J. L. Crassidis and J. L. Junkins, Optimal estimation of dynamic systems.
2004, pp. 1–591. doi: 10.1201/b11154.

[16] V. Pesce, “Autonomous Navigation for Close Proximity Operations
around Uncooperative Space Objects”, PhD Thesis, Politecnico di Milano,
2018.

[17] G. Di Mauro, M. Lawn, and R. Bevilacqua, “Survey on Guidance Navi-
gation and Control Requirements for Spacecraft Formation-Flying Mis-
sions”, Journal of Guidance, Control, and Dynamics, no. December 2017,
pp. 1–22, 2017.

[18] P Gurfil, M Idan, and N. J. Kasdin, “Adaptive neural control of deep-
space formation flying”, Journal of Guidance Control and Dynamics,
vol. 26, no. 3, pp. 491–501, 2003.

[19] J. Bae and Y. Kim, “Adaptive controller design for spacecraft formation
flying using sliding mode controller and neural networks”, Journal of the
Franklin Institute, vol. 349, no. 2, pp. 578–603, 2012.

[20] N. Zhou, R. Chen, Y. Xia, J. Huang, and G. Wen, “Neural network based
reconfiguration control for spacecraft formation in obstacle environments”,
International Journal of Robust and Nonlinear Control, vol. 28, no. 6,
pp. 2442–2456, 2018.

[21] D. Simon, “Training radial basis neural networks with the extended
kalman filter”, Neurocomputing, vol. 48, no. 1-4, pp. 455–475, 2002.

[22] S. C. Stubberud, R. N. Lobbia, and M. Owen, “An adaptive extended
kalman filter using artificial neural networks”, in Decision and Control,
1995., Proceedings of the 34th IEEE Conference on, IEEE, vol. 2, 1995,
pp. 1852–1856.

148

https://doi.org/https://doi.org/10.1016/S0098-3004(97)00110-6
https://doi.org/https://doi.org/10.1016/S0098-3004(97)00110-6
https://doi.org/10.1201/b11154

Bibliography

[23] X. Gao, X. Zhong, D. You, and S. Katayama, “Kalman filtering compen-
sated by radial basis function neural network for seam tracking of laser
welding”, IEEE Transactions on Control Systems Technology, vol. 21,
no. 5, pp. 1916–1923, 2013.

[24] A Stubberud, H Wabgaonkar, and S Stubberud, “A neural-network-
based system identification technique”, in Decision and Control, 1991.,
Proceedings of the 30th IEEE Conference on, IEEE, 1991, pp. 869–870.

[25] J. Dah-Jing and J.-J. Chen, “Neural network aided adaptive kalman
filter for gps/ins navigation system design”, in Proc. 9th IFAC Workshop,
2011, pp. 1–7.

[26] D.-J. Jwo and H.-C. Huang, “Neural network aided adaptive extended
kalman filtering approach for DGPS positioning”, Journal of Navigation,
vol. 57, no. 3, pp. 449–463, 2004.

[27] N. Harl, K. Rajagopal, and S. N. Balakrishnan, “Neural Network Based
Modified State Observer for Orbit Uncertainty Estimation”, Journal of
Guidance, Control, and Dynamics, vol. 36, no. 4, pp. 1194–1209, 2013.

[28] R. Furfaro, R. Linares, V. Reddy, J. Simo, and L. Le Corre, “Modelling
irregular small bodies gravity field via extreme learning machines”, in
27th AAS/AIAA Spaceflight Mechanics Meeting, 2017.

[29] S. Willis, D. Izzo, and D. Hennes, “Reinforcement learning for spacecraft
maneuvering near small bodies”, in AAS/AIAA Space Flight Mechanics
Meeting, 2016, pp. 14–18.

[30] S. Sarno, J. Guo, M. D’Errico, and E. Gill, “A Guidance Approach to
Satellite Formation Reconfiguration Based On Convex Optimization and
Genetic Algorithms”, Advances in Space Research, 2020. doi: 10.1016/
j.asr.2020.01.033.

[31] G. Di Mauro, D. Spiller, R. Bevilacqua, and F. Curti, “Optimal Continu-
ous Maneuvers for Satellite Formation Reconfiguration in J2-perturbed
Orbits”, 2018 Space Flight Mechanics Meeting, vol. 0216, no. January,
pp. 1–20, 2018.

[32] W. Ren and R. Beard, “Decentralized Scheme for Spacecraft Formation
Flying via the Virtual Structure Approach”, Journal of Guidance, Control,
and Dynamics, vol. 27, no. 1, pp. 73–82, 2004.

[33] J. Chu, Dynamics, Distributed Control And Autonomous Cluster Opera-
tions Of Fractionated Spacecraft. 2015.

[34] M. Chernick and S. D’Amico, “New Closed-Form Solutions for Optimal
Impulsive Control of Spacecraft Relative Motion”, Journal of Guidance,
Control, and Dynamics, vol. 41, no. 2, pp. 301–319, 2016.

[35] S. R. Vadali and K. T. Alfriend, “Formation Establishment, Maintenance
and Control”, in Distributed Space Missions for Earth System Monitoring,
2013, pp. 1–675.

149

https://doi.org/10.1016/j.asr.2020.01.033
https://doi.org/10.1016/j.asr.2020.01.033

Bibliography

[36] D. Izzo and L. Pettazzi, “Autonomous and Distributed Motion Planning
for Satellite Swarm”, European Space Agency, (Special Publication) ESA
SP, vol. 30, no. 603, pp. 727–736, 2005.

[37] Q. Li, B. Zhang, J. Yuan, and H. Wang, “Potential function based robust
safety control for spacecraft rendezvous and proximity operations under
path constraint”, Advances in Space Research, vol. 62, no. 9, pp. 2586–
2598, 2018. doi: 10.1016/j.asr.2018.08.003.

[38] L. M. Steindorf, S. D’Amico, J. Scharnagl, F. Kempf, and K. Schilling,
“Constrained low-thrust satellite formation-flying using relative orbit
elements”, Advances in the Astronautical Sciences, vol. 160, pp. 3563–
3583, 2017.

[39] H. Schaub and K. T. Alfriend, “Hybrid Cartesian and Orbit Element
Feedback Law for Formation Flying Spacecraft”, Journal of Guidance,
Control, and Dynamics, vol. 25, no. 2, pp. 387–393, 2002.

[40] V. Pesce, S. Silvestrini, and M. Lavagna, “Radial basis function neural
network aided adaptive extended Kalman filter for spacecraft relative
navigation”, Aerospace Science and Technology, vol. 1, p. 105 527, 2020.
doi: 10.1016/j.ast.2019.105527.

[41] T. Wahl and K. Howell, “Autonomous guidance algorithms for formation
reconfiguration maneuvers”, in AAS/AIAA Astrodynamics Specialist
Conference, Columbia River Gorge, Washington, August 21 - 24, 2017.

[42] D. Morgan, S. J. Chung, and F. Y. Hadaegh, “Model predictive control
of swarms of spacecraft using sequential convex programming”, Journal
of Guidance, Control, and Dynamics, vol. 37, no. 6, pp. 1725–1740, 2014.
doi: 10.2514/1.G000218.

[43] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, 5. 2012,
vol. 91, pp. 1689–1699. doi: 10.1017/CBO9781107415324.004. arXiv:
arXiv:1011.1669v3.

[44] R. Lippmann, Neural Networks, A Comprehensive Foundation, 04. 2005,
vol. 05, pp. 363–364. doi: 10.1142/s0129065794000372.

[45] Y. Wu, H. Wang, B. Zhang, and K.-L. Du, “Using Radial Basis Function
Networks for Function Approximation and Classification”, ISRN Applied
Mathematics, vol. 2012, no. March, pp. 1–34, 2012.

[46] D. W. Marquardt, “An algorithm for least-squares estimation of non-
linear parameters”, Journal of the Society for Industrial and Applied
Mathematics, vol. 11, no. 2, pp. 431–441, 1963. doi: 10.1137/0111030.

[47] S. Silvestrini and M Lavagna, “Model-based reinforcement learning for
distributed path planning”, in 15th Symposium on Advanced Space Tech-
nologies in Robotics and Automation, ESA, ESTEC, Noordwijk, 2019.

[48] J. Park and I. W. Sandberg, “Universal Approximation Using Radial-
Basis-Function Networks”, Neural Computation, vol. 3, no. 2, pp. 246–
257, 1991.

150

https://doi.org/10.1016/j.asr.2018.08.003
https://doi.org/10.1016/j.ast.2019.105527
https://doi.org/10.2514/1.G000218
https://doi.org/10.1017/CBO9781107415324.004
https://arxiv.org/abs/arXiv:1011.1669v3
https://doi.org/10.1142/s0129065794000372
https://doi.org/10.1137/0111030

Bibliography

[49] K. Reif and R. Unbehauen, “The extended kalman filter as an exponential
observer for nonlinear systems”, IEEE Transactions on Signal processing,
vol. 47, no. 8, pp. 2324–2328, 1999.

[50] D. Simon, Optimal state estimation: Kalman, H infinity, and nonlinear
approaches. John Wiley & Sons, 2006.

[51] V. Pesce, M. Lavagna, and R. Bevilacqua, “Stereovision-based pose
and inertia estimation of unknown and uncooperative space objects”,
Advances in Space Research, vol. 59, no. 1, pp. 236–251, 2017.

[52] V. Pesce, R. Opromolla, S. Sarno, M. Lavagna, and M. Grassi, “Au-
tonomous relative navigation around uncooperative spacecraft based on
a single camera”, Aerospace Science and Technology, 2018.

[53] V. Pesce, M. F. Haydar, M. Lavagna, and M. Lovera, “Comparison of
filtering techniques for relative attitude estimation of uncooperative space
objects”, Aerospace Science and Technology, vol. 84, pp. 318–328, 2019.

[54] C. L. Pasqualetto, R. Fonod, and E. Gill, “Review of the robustness and
applicability of monocular pose estimation systems for relative navigation
with an uncooperative spacecraft”, Progress in Aerospace Sciences, 2019.

[55] S. Akhlaghi, N. Zhou, and Z. Huang, “Adaptive adjustment of noise
covariance in kalman filter for dynamic state estimation”, arXiv preprint
arXiv:1702.00884, 2017.

[56] R. Burns, Advanced control engineering. Elsevier, 2001.
[57] W. MacMillan, The Theory of Potential. Dover Publications, 1958.
[58] D. Scheeres, Orbital motion in strongly perturbed environments: applica-

tion to asteroid comet and planeraty satellite orbiters. Springer, 2012.
[59] Y. Takahashi, “Gravity field characterization around small bodies”, Ph.D.

Dissertation, University of Colorado Boulder, 2013.
[60] H. Alonso, T. MendonÃ§a, and P. Rocha, “Hopfield neural networks for

on-line parameter estimation”, Neural networks : the official journal of
the International Neural Network Society, vol. 22, pp. 450–62, Apr. 2009.

[61] M. Atencia, G. Joya, and F. Sandoval, “Parametric identification of
robotic systems with stable time-varying hopfield networks”, Neural
Computing and Applications, vol. 13, pp. 270–280, Dec. 2004.

[62] A. Pasquale, S. Silvestrini, A. Capannolo, and M. Lavagna, “Non-uniform
gravity field model on board learning during small bodies proximity
operations”, in 70th International Astronautical Congress, 2019.

[63] J. J. Hopfield, “Neurons with graded response have collective compu-
tational properties like those of two-state neurons”, Proceedings of the
National Academy of Sciences, vol. 81, no. 10, pp. 3088–3092, 1984.

[64] Abe, “Theories on the hopfield neural networks”, in International 1989
Joint Conference on Neural Networks, 1989, 557–564 vol.1.

[65] M. Atencia, G. Joya, and F. Sandoval, “Hopfield neural networks for para-
metric identification of dynamical systems”, Neural Processing Letters,
vol. 21, pp. 143–152, Apr. 2005.

151

Bibliography

[66] Y. Hernández-Solano, M. Atencia, G. Joya, and F. Sandoval, “A dis-
crete gradient method to enhance the numerical behaviour of hopfield
networks”, Neurocomput., vol. 164, no. C, pp. 45–55, Sep. 2015.

[67] L. Dell’Elce, N. Baresi, S. Naidu, L. Benner, and D. Scheeres, “Numerical
investigation of the dynamical environment of 65803 didymos”, Advances
in Space Research, 2017.

[68] R. Munguía, S. Urzua, and A. Grau, “EKF-based parameter identification
of multi-rotor unmanned aerial vehiclesmodels”, Sensors, vol. 19, no. 19,
pp. 1–17, 2019.

[69] J. Chu, “Dynamics, distributed control and autonomous cluster opera-
tions of fractionated spacecraft”, 9789461865113, Ph.D. Dissertation, TU
Delft, 2015.

[70] G. Di Mauro, D. Spiller, R. Bevilacqua, and F. Curti, “Optimal Continu-
ous Maneuvers for Satellite Formation Reconfiguration in J2-perturbed
Orbits”, 2018 Space Flight Mechanics Meeting, vol. 0216, no. January,
pp. 1–20, 2018. doi: 10.2514/6.2018-0216.

[71] P. Abbeel and A. Y. Ng, “Apprenticeship Learning via Inverse Reinforce-
ment Learning”, in Proceedings of the 21 st International Conference on
Machine Learning, Banff, Canada, 2004.

[72] C. Finn, S. Levine, and P. Abbeel, “Guided cost learning: Deep inverse
optimal control via policy optimization”, in Proceedings of the 33rd Inter-
national Conference on International Conference on Machine Learning -
Volume 48, New York, NY, USA: JMLR.org, 2016, pp. 4–58.

[73] R. Linares and R. Furfaro, “Space Objects Maneuvering Detection and
Prediction via Inverse Reinforcement Learning”, in Advanced Maui Opti-
cal and Space Surveillance (AMOS) Technologies Conference, Jan. 2017,
46, p. 46.

[74] A. Zurita, I. Corbella, M. Martin-Neira, M. A. Plaza, F. Torres, and
F. J. Benito, “Towards a smos operational mission: Smosops-hexagonal”,
IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, vol. 6(3), pp. 1769–1780, 2013. doi: doi:10.1109/
JSTARS.2013.2265600..

[75] S. D’Amico and O. Montenbruck, “Proximity Operations of Formation-
Flying Spacecraft Using an Eccentricity/Inclination Vector Separation”,
Journal of Guidance, Control, and Dynamics, vol. 29, no. 3, pp. 554–563,
2006. doi: 10.2514/1.15114.

[76] B. Taskar, C. Guestrin, and D. Koller, “Max-margin markov networks”,
in Advances in Neural Information Processing Systems 16, S. Thrun,
L. K. Saul, and B. Schölkopf, Eds., MIT Press, 2004, pp. 25–32.

[77] N. D. Ratliff, J. A. Bagnell, and M. A. Zinkevich, “Maximum margin
planning”, in 23rd International Conference on Machine Learning, 2006,
pp. 729–736. doi: 10.1145/1143844.1143936.

152

https://doi.org/10.2514/6.2018-0216
https://doi.org/doi: 10.1109/JSTARS.2013.2265600.
https://doi.org/doi: 10.1109/JSTARS.2013.2265600.
https://doi.org/10.2514/1.15114
https://doi.org/10.1145/1143844.1143936

Bibliography

[78] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory”, Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997. doi: 10.1162/neco.
1997.9.8.1735.

[79] S Silvestrini and M. Lavagna, “Model-Based Reinforcement Learning for
Distributed Path-Planning”, in ASTRA, 2019, pp. 0–7.

[80] A Pellacani, M Graziano, and M Suatoni, “Design , Development ,
Validation and Verification of GNC technologies”, in EUCASS2019, 2019.
doi: 10.13009/EUCASS2019-38.

[81] P. Visconti, S. Silvestrini, and M. Lavagna, “Dance: a Frictionless 5 DOF
Facility For GNC Proximity Maneuvering Experimental Testing And
Validation”, in 69th International Astronautical Congress, 2018, pp. 1–5.

[82] D. Ottolina, S. Silvestrini, and M. Lavagna, “DANCE: Design and Char-
acterization of a 5 DOF Facility for Relative GNC”, in ASTRA, 2019.

[83] S. Silvestrini, D. Ottolina, and M. De Gasperin Riccardo Lavagna,
“DANCE: Integration and Avionics Testing of 5 DOF Experimental
Facility for Relative GNC”, in 71st International Astronautical Congress,
2020, pp. 1–5.

153

https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.13009/EUCASS2019-38

Colophon

This thesis was typeset with LATEX and BibTEX, using a typographical look-
and-feel created by Stefano Silvestrini. The style was inspired by A. Colagrossi,
D.A. Dei Tos PhD_Dis and by J. Stevens, L. Fossati phdthesis styles.

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Context & Motivation
	The Research Problem
	Objectives
	Research Questions

	Dissertation Overview
	Bibliographic Disclaimer

	Background & State of the Art
	Uncertain Relative Dynamics
	Distributed Systems Relative Dynamics
	Clohessy-Wilthsire Equations
	Nonlinear Dynamical Model of J2-Perturbed Relative Motion

	Relative Orbital Elements Parametrization
	Coordinates Transformation

	Bounded Relative Orbits
	Small Bodies Relative Dynamics

	Guidance, Navigation & Control Subsystem
	Relative Navigation
	Relative Guidance & Control

	AI-aided GNC
	Machine Learning & Deep Learning
	Artificial Neural Networks
	Universal Approximation Theorem
	Back-propagation Algorithm

	Neural-Dynamics Learning & Navigation
	Artificial Neural Network Models for Dynamics Reconstruction
	Fully-Neural Dynamics Learning
	Prediction Performance & Comparison: RNN vs MLP

	Dynamics Acceleration Reconstruction
	Algorithm Architecture
	Radial Basis Functions Neural Network
	Neural Network Structure
	Online Learning Algorithm

	Adaptive Extended Kalman Filter
	Application to Spacecraft Relative Navigation
	Observer
	RBFNN-EKF
	EKF - Nonlinear Propagation

	Reconstruction and Navigation Performance
	Orbital Scenario
	Disturbance Reconstruction
	Relative Navigation - Nominal Case
	Relative Navigation - Non-nominal Case

	Parametric Dynamics Reconstruction
	The Parametric Identification Problem
	Hopfield Neural Networks
	Discrete-time Hopfield Neural Network
	Gravity Field Identification of Small Solar System Objects
	Applications to real dynamical environments
	Case Studies: Castalia, Kleopatra and Phobos
	Binary System Didymos

	Comparison with EKF-based Parameter Identification
	Filter formulation
	Numerical results and comparison

	Neural-Aided Guidance & Control
	Neural-Artificial Potential Field Guidance
	Attractive Potential: Configuration Target
	Repulsive Potential: Active Collision Avoidance
	Natural Dynamics: Action Smoothing
	Neural Control

	Neural-Artificial Potential Field Performance
	Planar to Along-track
	Planar Synthetic Aperture Variation
	Relative Plane Change
	Formation Position Swap
	Comparison
	Highly Perturbed Environment

	Model-based Reinforcement Learning for Trajectory Planning
	Neural Planning and Control
	Collision Avoidance Constraint

	Model-based Reinforcement Learning Performance
	In-Plane Maneuvers
	Out-of-Plane Maneuvers
	Collision-Free Maneuvers

	Environment and External Agent Uncertainty Prediction
	Forced Dynamics Prediction for Collision Avoidance
	Inverse Reinforcement Learning
	Feature-Matching Approach
	Inner Loop: Fast Quadratic Programming
	Outer Loop: Unconstrained Optimization

	Neural-Sequential Trajectory Forecasting
	Long Short-Term Memory Network
	Online Supervised Training

	Numerical Test: Results & Discussion
	Collision Avoidance Algorithms Comparison
	Sensitivity on Controller Weights

	Processor-In-the-Loop Implementation
	Processor-In-the-Loop Simulation Setup
	Microcontroller Unit
	Single-Board Computer Unit
	Porting Procedure

	Processor-In-the-Loop Validation

	Conclusions
	Major Results & Findings
	Recommendations

	Bibliography

