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A B S T R A C T

The human brain is able to perform amazing things, and even though
researchers have tried to replicate its capabilities with Artificial Neu-
ral Networks, we are still very far away. One of the main differences
between our artificial models and a real biological brain, is the fact
that the brain is able to process vast amounts of information with
amazing energy efficiency, this is very unlike our models which are
very power hungry and sometimes require to be trained countless
hours on high end machines. The problem with current models is
that they require vast amounts of energy not only for training, but
also for prediction. This is particularly critical in applications where
we have limited power supplies such as drone navigation or IOT ap-
plications or where fast real-time computations are critical success
factors.

In order to reduce the efficiency gap between artificial models and
biological ones, researchers have tried to mimic the biophysical mech-
anisms of the brain in a better way than previous models, having as
a goal a model which is more powerful and energy efficient than pre-
vious ones. This led to the third generation of ANNs: Spiking Neural
Networks (SNNs). The search for efficiency in our artificial models
did not limited itself just to the processing unit, it also extended to
other areas such as image sensors, where new image sensors models
like Event-Based camera sensors are inspired more on the biophysical
mechanisms of the eye and the visual cortex, and are more efficient
than ever before.

Despite being highly efficient, these new models work differently
from traditional ones due to the addition of the temporal aspect and
their asynchonicity, hence the algorithms that have been developed
for previous models cannot be directly applied. We are therefore in
need of new algorithms that are made ad-hoc for these models.

Although lot of progress has been made in several areas, there is
still a lot to research to conduct. In particular, Reinforcement Learn-
ing and bio-inspired mechanisms have been largely unexplored and
unexploited, hence this thesis aimed to understand whether these
kind of algorithms can be applied to these new models and if so in
what way. This thesis presents an analysis of how the different bio-
inspired technologies (reinforcement learning, event based cameras
and spiking neural networks) are related and can be used together.
In particular we develop a new approach for object recognition and
perform some novel experiments on robot control.
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1
I N T R O D U C T I O N

Researchers and engineers have found inspiration in nature count-
less times throughout history. This recurrent practice, which belongs
to a field which is known as biomimetics, has provided the world with
many innovations: from better aircrafts and trains, to robots and the-
oretical models which closely imitate nature to accomplish a certain
task. What makes this field so attractive is the fact that all the char-
acteristics of an animal or plant that we observe in nature, are not
completely random, but are the result of centuries and centuries of
optimisation through natural selection and evolution, thus, by imitat-
ing or getting inspired by what we see in nature, we can potentially
increase efficiency or efficacy at performing a certain task.

However, not all bio-inspired inventions perfectly reflect their source
of inspiration, such an example are Artificial Neural Networks (ANNs).
The first generations of ANNs, are vaguely inspired in the brain, and
despite being relatively powerful, they are extremely resource inten-
sive. This significantly differs from the human brain. ANNs require a
lot of computational power and considerable amounts of annotated
data to be trained to perform a task. For instance, the well known
ResNet architecture was trained for 3 weeks on a 8-GPU server [1],
which is equivalent to a power consumption of about 1 GWh. The
human brain on the other hand, is extremely efficient as it requires
roughly 20W to function [2] and is capable of performing not one,
but myriads of tasks, even more than one at the same time.

It is clear that we are still far from achieving the computational
power and efficiency of the human brain, for this reason, researchers
in the Computational Neuroscience field have been studying how
the brain carries out cognitive functions and have tried to describe
the principles that govern the development, structure, physiology
and cognitive abilities of the brain with both simple and intricate
mathematical models. The goal of computational neuroscientists is
not merely descriptive, a model also needs to be reproducible so
we can possibly take advantage of it. This field of study has given
a lot of contributions to the world, but most importantly it has in-
spired what we call the "third generation of ANNs": Spiking Neural
Networks (SNNs) [3].

Spiking Neural Networks (SNNs) are a type of ANN which has more
fidelity to the biological model of a neuron as information is con-
veyed to other neurons by means of electrical pulses called spikes [4].
In this kind of neural network, the information can be processed

1



introduction 2

asynchronously, it is more robust to noise, and it has even shown
to be more computationally powerful than previous generations of
ANNs [5].

Despite being far away from being able to model the entire hu-
man brain, today there are multiple research-purposed neuromorphic
chips, i. e. , hardware that implements bio-inspired neuronal models
like Spiking Neural Networks. Examples of these chips are: Intel’s
Loihi, IBM’s TrueNorth, or SpiNN5 from the University of Manch-
ester. These kind of chips are relatively small and are able to simulate
roughly a hundred thousand neurons.

Neuromorphic processors have made SNNs very appealing as the
processing of a single spike on these chips may only consume a few pJ
of energy [6]. This fact potentially presents the possibility of building
neural networks which are energy efficient and as it has been shown,
potentially more computationally powerful.

Although SNNs present a lot of appealing characteristics, SNNs are
not very popular yet and their use is confined to research labs, mak-
ing their potential largely underexploited. This is mainly due to the
fact that traditional algorithms for neural networks cannot be used as
the underlying working principle of the neurons is substantially dif-
ferent and standard algorithms such as back-propagation [7] cannot
be applied.

In the last few years there has been a surge in SNN algorithms, both
supervised (example-based), and unsupervised (data-driven), which
has increased their popularity, while approaches based on the rein-
forcement learning paradigm have not been explored thoroughly on
these new kind of neural networks which makes it quite unusual as
it is the area of machine learning that most closely represents how
humans learn.

Differently form other paradigms, Reinforcement Learning (RL) is
focused on how agents should take actions in an environment in or-
der to maximise a reward. This paradigm results particularly useful
when the dynamics of the environment are unknown or are difficult
to be modelled, and it has been successfully used to tackle complex
problems. The scope of this thesis is to explore whether if is possible
to use RL-inspired approaches in SNN, in particular when event-based
vision sensors are associated.

Event-based cameras, are biologically inspired vision sensors that
do not collect frames at a fixed frame rate, instead, these kind of sen-
sors output changes on pixel-level brightness. By doing so, these kind
of cameras offer some considerable advantages over standard cam-
eras, namely a very high dynamic range, avoidance of motion blur,
and a latency in the microsecond range. These sensors emit events
asynchronously which makes SNNs perfectly suited for their process-
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ing [8], [9]. Event-based cameras coupled with SNN are a perfect fit
for autonomous robots or vehicles that need energy efficient and fast
real-time calculations.

At the time this document is being written, it makes no sense
to compare traditional deep learning approaches to bio-inspired ap-
proaches. Traditional Deep Neural Networks (DNN) outperform bio-
inspired ones in terms of accuracy and other performance-related
scores. This is due to many things: lack of large datasets collected
with bio-inspired sensors, unavailability of neuromorphic hardware
at mass scale, novelty of the neuromorphic field, and many other
reasons. It is worth mentioning that spiking neural networks are rel-
atively new compared to previous generations, traditional technolo-
gies have an advantage of 20-30 years of research.

These approaches and experiments will not be implemented on
neuromorphic hardware since it is still unavailable at mass scale, in-
stead, as many of current state of the art approaches, neurons will
be simulated at software level. The objective of the research is thus
to conceptually create new models and approaches which even if
they do not possess all the qualities and improvements over standard
approaches due to the nature of the software simulations, these ap-
proaches lay out the foundations of future approaches and implemen-
tations. Only when neuromorphic hardware becomes more widely
available and less expensive is when we will be able to fully take ad-
vantage of the power efficiency and asynchronicity which they offer.

Since spiking neural networks, event-based cameras, and reinforce-
ment learning are all inspired by biology itself, they may have an
enormous untapped potential, especially if they can be used together.

To address this matter, the following questions were raised and
paved the way of this work:

• Is there a relationship between Spiking Neural Networks (SNNs)-
Reinforcement Learning (RL)-event-based sensors?

• Can we use RL on SNNs? What are the current approaches?

• Can we use the previous approaches on data captured by Event
Based Cameras or do we need a new approach?

• Where can we use such a triad of approaches?

• Can we develop new methods using the triad of bio-inspired
approaches?
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1.1 thesis outline

The thesis is organised in two main parts: background and contribu-
tions. The thesis was structured this way so that readers familiar with
such technologies can skip Part I and head to Part II where the main
contributions of this work are explained.

i Part I contains an introduction of each of the bio-inspired tech-
nologies.

1 Chapter 2 introduces Spiking Neural Networks, highlight-
ing the difference with respect previous generations of neu-
ral networks, introducing common models, learning rules,
as well as problems that have risen due to their novelty.

2 Chapter 3 introduces event-based vision sensors, their work-
ing principle, advantages, as well as common processing
techniques.

3 Chapter 4 introduces reinforcement learning and goes into
details of some approaches because many of the concepts
will be useful and referenced in later chapters.

ii Part II contains the contributions of this master thesis

1 Chapter 5 links RL, SNN and event cameras, describe the
links between each couple of technologies and how they
all intersect, as well as the areas of interest where they can
be applied together.

2 Chapter 6 introduces feature extraction and object recog-
nition, an area of application where the three approaches
can be used together, and propose, to the extent of our
knowledge, what is the very first approach using all three
technologies.

3 Chapter 7 introduces robot control, another area of appli-
cation which can benefit from the three bio-inspired ap-
proaches, explains how such an approach is structured,
and shows the results of some novel computer simulations
aiming to determine how the performance of traditional RL

approaches compares to approaches using SNNs.

v The appendices contain extra approaches, content and informa-
tion relevant to the work.

1 Appendix A describes aertb, a PyPI Python library with a
CLI interface created during the thesis work which aims to
facilitate development with event-based vision data.

2 Appendix B introduces tar, a simple noise filter algorithm,
proposed for filtering noise on an actual robot implemen-
tation of the approach in Chapter 7, which lacks noise due
to the nature of the computer simulations.
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3 Appendix C contains additional information on non-bio-
inspired approaches for event-based vision to better com-
pare them with bio-inspired approaches.

4 Appendix D describes the event-based datasets used to test
the object recognition approach described in Chapter 6.

Finally, at the end of this thesis there are two papers attached that
were submitted to international conferences for their review. In par-
ticular the paper summarising the work in Chapter 6 has been sub-
mitted at the Conference on Computer Vision and Pattern Recogni-
tion (CVPR) 2021 under the category Neuromorphic sensors, while
the paper summarising the work in Chapter 7 has been submitted to
International Conference on Robotics and Automation (ICRA) 2021.



Part I

B A C K G R O U N D

In this first part we describe the motivation of the work
and lay the foundations so that the contributions in Part II
can be fully understood. In particular in Chapter 2 we
introduce Spiking Neural Networks and some of the ex-
isting learning methods, in Chapter 3 we introduce event-
based camera sensors as well as some existing algorithms,
while in Chapter 4 we introduce Reinforcement Learning
very in depth as some concepts will be used in later chap-
ters.



2
S P I K I N G N E U R A L N E T W O R K S

2.1 artificial neural networks

An Artificial Neural Network (ANN) is a computing system inspired
by the structure and function of the human brain that over the last
century has been used for multiple purposes, ranging from regression
analysis and classification, to system identification and control.

ANNs are composed of artificial neurons which receive an input,
translate the information received to a modification of its internal
state with the help of an activation function, and produce an output.

Nowadays there are many typologies and architectures of neural
networks, however, according to Maass [5] and Ghosh-Dastidar and
Adeli [3], we can categorise ANNs in generations according to the
information processing mechanism of the artificial neurons: the ac-
tivation function. If we use this criterion, we can distinguish three
generations of neural networks.

The first generation of neurons was proposed by McCulloch and
Pitts [10] in 1943. These neurons, also referred to as perceptrons, are
able to operate in a multi-layered network only with digital (binary)
inputs and outputs. As weighted synapses convey signals to the neu-
ron, the neuron changes its internal state u by performing a weighted
summation of each input value xi:

u =

n∑
i=0

wixi . (1)

The output is then processed with a Heaviside activation function f
which outputs whether this internal value crosses a given threshold
ϑ, emitting 1 if the threshold is crossed or 0 in case it is not crossed:

f(u) =

1, u > ϑ

0, u < ϑ
. (2)

This model of neuron gave rise to well-known models such as Boltz-
mann machines [11] and Hopfield nets [12]. A schematic of the infor-
mation flow in this generation of neuron can be found in Figure 1.

It is easy to draw parallels between this model of neuron and its
biological counterpart represented in Figure 2.

• the dendrites act as the input vector and allow the cell to re-
ceive signals from a large number of neurons.

7
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Figure 1: First generation ANN: Perceptron neuron.
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Figure 2: Biological model of a neuron.

• the soma, i. e. , the cell body of a neuron, acts as the summation
function represented in Figure 1. As positive (exciting) and neg-
ative (inhibiting) signals arrive to the soma from the dendrites,
the charged ions (+/−) are effectively added as a result of a
mixture to the solution inside the soma, just like the summa-
tion does with the inputs.

• the axon, i. e. , the nerve fiber that conducts action potentials
away from the cell body, is what allows us to connect multiple
neurons together.

The second generation of neurons developed from the 1950s to
1990s. As shown in Figure 3, this model of neuron replaces the Heavi-
side activation function for a non-linear function capable of handling
real-valued inputs and outputs such as the sigmoid function σ(u) or
the hyperbolic tangent function tanh(u).

σ(u) =
1

1+ e−u
, (3) tanh(u) =

eu − e−u

eu + e−u
. (4)

This kind of neurons is typically used in feedforward and recurrent
neural networks. This model has also gained a lot of popularity over
time because it supports gradient descent learning algorithms such
as back-propragation [7].
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Figure 4: Third generation ANN: Spiking neuron.

Researchers tried to come up with more biologically precise models
of a neuron that considered the temporal aspect of firing within the
synapses. This aspect, which was not considered in previous models,
led to the third generation of Artificial Neural Networks also referred
to as Spiking Neural Networks (SNNs).

Spiking Neural Networks are a special type of artificial neural net-
works where neurons communicate by generating and propagating
electrical pulses called action potentials or spikes. These spikes usually
have a duration of a few milliseconds and an amplitude of around 100

millivolts [4]. A sequence of spikes in time is usually called spike train
and is mathematically represented as the sum of the Dirac impulses
at firing times t(f):

S(t) =
∑
f

δ(t− t(f)) . (5)

In this model, shown in Figure 4, when a neuron fires, the neurons
at the other end (post synaptic neurons) are affected and their in-
ternal variable state (membrane potential) changes, making the neuron
who received the pulse more or less likely to fire for some duration
of time. This transient impact on the other neurons which is also
called postsynaptic potential, can thus have two effects: inhibit the fir-
ing – Inhibitory Postsynaptic Potential (IPSP) – or excite the neuron –
Excitatory Postsynaptic Potential (EPSP).

Neurons connect and communicate with one another through spe-
cialised junctions called synapses. Normally these synapses are weighted
by synaptic weights and may have a synaptic delay. A schematic with
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Figure 5: Synapse between neurons.

common terminology in this kind of networks can be found in Fig-
ure 5.

The human brain is composed of a 100 billion neurons and more
than 150 trillion synapses [13]. Each of these synapses are strength-
ened or weakened, and the modifications to these synapses lay the
foundations of learning and memory. As we will see in Section 2.4.1.1,
this mechanism, also known as synaptic plasticity, can be simulated
on Spiking Neural Network (SNN) and can be used to learn to per-
form certain tasks.

What makes SNNs so interesting, is the fact that it is not only a con-
ceptual/theorical model, in fact, it can be implemented on what we
call neuromorphic hardware. This particular kind of hardware, which
can be built with CMOS technology, typically uses low power (under
the threshold voltage), and is capable of reducing energy dissipation
by several orders of magnitude compared to standard digital archi-
tectures [14], therefore opening the doors to potentially powerful and
low-powered applications.

It has been demonstrated that these models are computationally
more powerful than first and second generation counterparts [5], hence
this model can be in theory applied to all problems solved by previ-
ous models, but also opening the doors to fast and efficient solutions
to problems such as signal-processing and event detection.

2.2 spiking neuron models

Spiking Neural Network do not describe a single model but rather an
ensemble of models which operate with spikes and have the charac-
teristics mentioned in the previous section. Inside this ensemble we
have very simple models such as the Integrate and Fire (IF) and the
Leaky Integrate and Fire (LIF), and very complicated models like the
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Figure 6: Representation of the neuron membrane.

Hodgkin-Huxley model or the Izhikhevic model. Each one of these
models has some characteristics which make it better suited for some
tasks rather than others. If we had to summarise the differences be-
tween the models we could say that the main differences lie on the
biological accurateness and the simplicity of simulation.

In this section, we will briefly introduce the most common SNN

models so algorithms that can be found in future sections and rely
on such models, can be properly understood.

2.2.1 Hodgkin-Huxley Model

As it was mentioned before, spiking neural networks are based on a
model of neuron that resembles more to the biological neuron and
considers their spiking nature. Work on this matter dates back to
the 1950s when Hodgkin and Huxley [15] presented a model which
describes, through a set of nonlinear differential equations, how ac-
tion potentials (spikes) in neurons are initiated and propagated. This
model was so detailed and revolutionary that the authors were awarded
a Nobel prize in 1963.

This model considers that the neuron, as any other cell, is sur-
rounded by a cell membrane that separates the inside of the cell (in-
tracellular) and the outside of the cell (extracellular). Embedded in the
cell membrane are ion channels, that can open or close a pore through
which ions can flow inside and outside the cell, and ion pumps, that
use energy to push sodium ions (Na+) outside the cell and pull potas-
sium ions (K+) inside the cell (Figure 6). The concentration difference
of ions gives a voltage difference (also called reversal potential) which
is described by the Nernst equation:

∆u = −
kT

q
ln
n(uin)

n(uout)
, (6)
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Figure 7: Electrical model of the Hodgkin-Huxley neuron model.

where k is the Boltzmann constant, T is the temperature in kelvins,
q is the electrical charge, and n(uin) and n(uout) are respectively the
relative concentration of a certain ion inside and outside the neuron.

This relation holds for every ion type, hence the total equilibrium
potential is an equilibrium between the reversal potential of sodium,
potassium and other ion types.

Even though this model is very realistic can be easily modelled as
an electrical circuit consisting of capacitors and resistors that model
different ion channels: sodium, potassium, and other ion types (Fig-
ure 7), it is too complex to simulate and it would be intractable to
compute temporal interactions in large networks of neurons. Today it
is used more for an accurate description of the processing performed
by neurons rather than a useful model used for practical applications.

2.2.2 Leaky-Integrate and Fire Model

Today most models of spiking neurons tradeoff the accurateness of
biophysical mechanisms that contribute to the formation of a spike
for a more computationally tractable model. One of the main expo-
nents of such models is the Leaky Integrate and Fire (LIF) model
where the dynamics of the membrane potential in a neuron are de-
scribed by a simpler, single first order Ordinary Differential Equa-
tion (ODE):

C
du
dt

= −
1

R
u(t) +

(
io(t) +

∑
wjij(t)

)
, (7)

where C is the membrane capacitance, R is the input resistance, wj
represents the weight of the j-th synapse, ij(t) the input current from
the j-th synaptic input and io(t) the external current. Roughly speak-
ing, in this model of neuron, the neuron suffers an increase in its in-
ternal state by a weighted product of the input currents. The neuron
suffers however of leakage, hence the name, meaning that the internal
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Figure 8: Electrical model of the leaky integrate and fire neuron model.

state value decays exponentially with a time constant given by model
parameters.

As shown in Figure 8, this model can be seen as a parallel RC circuit
that models the voltage leakage on the neuron with a time constant of
τleak = RC. By applying Kirchhoff’s current law, we can write io(t) =
iR(t)+ iC(t), applying Ohm’s law to iR(t) we obtain iR(t) =

u(t)
R and

expressing iC(t) with the dynamic expression iC(t) = C
du(t)
dt we can

easily obtain the ODE in Equation 7.

In this model, a neuron fires a spike at time t(f) whenever the
state variable u(t) — that corresponds to the membrane potential —
crosses a certain threshold ϑ as expressed by Equation 8. It is impor-
tant to notice that we also need the condition u ′(t(f)) > 0 as we want
to send a spike only when the threshold is reached from below and
not when the membrane potential crosses the threshold from above
as a result of leakage.

o(t(f)) =

fire iff u(t(f)) = ϑ and u ′(t(f)) > 0

do not fire otherwise
(8)

Immediately after sending an output spike, the neuron enters a
period of reset or “refactoriness" which sets the membrane potential
to a predefined reset value or 0. It is important to note that this model
totally ignores the shape of the action potential as the firing of a
spike is defined only by the time the threshold is reached as seen in
Figure 9.

The Integrate and Fire (IF) model is a further simplification of the
LIF model which ignores the leakage of the membrane potential. This
can be modelled as the RC circuit in Figure 8 in which the resistance
R→∞.

2.2.3 Izhikevich’s Neuron Model

As we saw in the previous subsections, the Hodgkin–Huxley neuron
model is very accurate but computationally prohibitive, whilst LIF is
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Figure 9: Dynamics of a LIF Neuron with a given spike train.

simple and computationally tractable. However the LIF model is too
simple and incapable of reproducing many behaviours that can occur
in biological neurons.

To solve this problem we can use a model developed by Izhike-
vich [16] which is characterised by two differential equations that
represents a good trade-off between computational tractability and
biological accurateness.

The first differential equation (Equation 9) focuses on the mem-
brane potential while the second one (Equation 10) represents a mem-
brane recovery variable which accounts for the activation of currents
of K+ ions and inactivation of currents of Na+ ions, and thus pro-
vides a negative feedback to the membrane potential.

du/dt = 0.04u(t)2 + 5u(t) + 140−w(t) + io(t) , (9)
dw/dt = a(bu(t) −w(t)) , (10)

with after spike resetting: if u > θ then u← c and w← w+ d .

This model can reproduce the 20 main naturally occurring firing
schemes while the LIF model can reproduce only 3 of them. Among
the covered patterns include sub-threshold oscillation, tonic spiking,
and phasing spiking, just to name a few.

2.2.4 Spike Response Model

The Spike Response Model (SRM) is a neuron model developed by
Gerstner and Kistler [17] that generalises the Leaky Integrate and
Fire model. It still generates a spike when the action potential passes
from below, but unlike the LIF model, the threshold θ is not constant,
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instead, it is based on the instant the last spike was fired. Since typi-
cally the threshold in this model increases after receiving a spike and
then decays to a resting value after some time, this can be used to
model refactoriness. The action potential is given by the equation

uj(t) = η(t− t̂j) +
∑
i

∑
f

wijεij(t− t̂j, t− tfi) , (11)

where wij is the weight of the synapse connecting the presynaptic
neuron i to the post-synaptic neuron j, t̂j is the firing time of the
last spike of the post-synaptic neuron j, tfi the arrival time of the f-th
spike at presynaptic neuron i , η is a function modelling the potential
reset after firing a spike, and ε is the membrane potential’s response
to presynaptic spikes.

2.3 information coding

In the last section we covered several spiking neuron models which
process an incoming spike train. However we have not talked about
how the information is conveyed through spikes. This depends on
the selected coding scheme, that is, the way information is encoded
in a spike train. There are mainly two coding schemes: rate coding,
which depends only on the average number of spikes per time unit,
and temporal coding which depends on the precise timing of single
spikes. There are also some other coding schemes such as population
coding and sparse coding, however they are not commonly used. There
has been a strong debate between researchers regarding which infor-
mation coding must be used.

2.3.1 Rate coding

Rate coding, sometimes called frequency coding is a coding scheme that
assumes that most, if not all information about the stimulus, is con-
tained in the firing rate of the neuron. A popular coding mechanism
is the spike-count rate. This approach, also referred to as temporal av-
erage, is obtained by counting the number of spikes during a certain
time interval and by dividing this number with the duration T of the
time interval to obtain the firing intensity λ of the neuron:

λ =
nspikes

∆T
. (12)

This kind of rate coding accepts a Poisson model as an appropriate
description:

Pr{ k spikes in interval T } =
λk

k!
e−λ . (13)
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2.3.2 Temporal coding

In temporal coding it is assumed that the information about the stimu-
lus is contained in the specific precise spike timing of the neuron.

The ongoing debate between the coding schemes has had argu-
ments supporting both schemes, however, it has been observed that
neurons in the visual cortex precisely respond to a stimulus on a
millisecond timescale, hence supporting the temporal coding scheme
[18], in additional strong arguments against rate coding have been
given by Thorpe et al. [19] in the context of visual information pro-
cessing.

Sometimes, the information that needs to be processed by a SNN is
not always in a spike format, e. g. , images, so in order to achieve such
representation we have to use one of the several methods that allow
the conversion of a of real number to a spike with a precise firing
time (also called timestamp).

Given a real-valued input r with maximum possible value rmax
and minimum possible value rmin , it is possible to associate the in-
put to a specific firing time ts with the following approaches:

• Intensity to Latency (I2L): this approach uses the magnitude of
the input value (also called intensity) to generate a spike at a
particular timestamp. In such method the spike time is inversely
proportional in a linear way to the intensity of the input value,
i. e. , giving earlier timestamps to higher values and later times-
tamps to lower values. Such timestamps are usually distributed
within a fixed time window tw with the following formula:

ts(r) = tw ∗
r− rmin

rmax − rmin
. (14)

• Logarithmic I2L: this approach works in a very similar way to
I2L, but instead of proportionally distributing the timestamps in
a certain time window, this approach uses a mapping function
that is logarithmic instead of linear:

ts(r) = tw ∗
ln(rmax) − ln(r)

ln(rmax) − ln(rmin)
. (15)

• Rank: this approach does not consider the actual magnitude of
the value, but rather considers its position with respect to the
other values which are being processed together. The highest
value is given a timestamp of 1 representing the first spike time,
the second highest value is given a timestamp of 2, and so on.
There is no need to fix a spiking time window, the order is given
by the sorting of the responses and the last timestamp equals
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the number of responses. If a time window is fixed, one can in-
troduce a delta between spikes which is equal to 1/nspikes. Note
that it is quite different from I2L since the delta between values
is not necessarily represented with a proportional difference in
spike times.

There has also been some discussion regarding which conversion is
better than the others with recent work presenting strong arguments
supporting log I2L [20]. However, it is not uncommon to see rank or
standard linear I2L as spike conversion processes.

2.4 learning methods for snn

Just like the first and second generation of neural networks, Spiking
Neural Networks have learning rules for performing supervised and
unsupervised learning.

The term synaptic plasticity refers to the process in the brain that
adjusts, forms, or removes synapses between neurons. To be more
precise, this process alters the synaptic weights and therefore alters
the strength of the synaptic connections. The adjustments can result
in two types of changes, potentiation if the weights are strengthened
or depression if the weight values are decreased, and the effects can be
long term or short term.

2.4.1 Unsupervised learning

Most of the ideas in unsupervised learning take as an inspiration the
famous quote also called Hebbian learning rule :

When an axon of cell A is near enough to excite a cell B and
repeatedly or persistently takes part in firing it, some growth
process or metabolic change takes place in one or both cells such
that A’s efficiency, as one of the cells firing B, is increased.

— Donald O. Hebb [21]

The general idea is that if any two neurons happen to be active at the
same time, they will tend to become ’associated’ and the activity in
one neuron facilitates activity in the other. This theory is sometimes
generalised as: “Cells that fire together wire together".
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Figure 10: A common STDP window. In green Long Term Potentiation (LTP),
in red Long Term Depression (LTD). The height of the windows is
determined by parameters A while the width is regulated by the
decay parameter τ

2.4.1.1 stdp

Spike-Timing Dependent Plasticity (STDP) is a temporal Hebbian rule
which performs adjustments to the synaptic weights taking into ac-
count the precise time spikes are fired. This kind of synaptic plasticity
shows a maximal effect when the presynaptic neuron fires occur-
ring nearly at the same time of the postsynaptic neuron firing. If the
two spikes, pre and post are distant in time, the weight remains un-
changed.

Formally, STDP is a function of the presynaptic and postsynaptic
spike trains that depends on a functionW that ensures the previously
cited Hebbian rules are applied:

∆wji(t) =
∑
tpre

∑
tpost

W(tpostj − tprei ) . (16)

A very common function W is the one shown in Figure 10, which
potentiates connections where the presynaptic spike happens shorty
before the postsynaptic spikes (tpostj − tprei ) ' 0+, while decreases
connections if the presynaptic spike happens after the postsynaptic
spike (tpostj − tprei ) ' 0− and the potentiation and depression win-
dows have an exponential behaviour, both decreasing their effect in
presence of a bigger time delta between pre/post synaptic spikes ∆t.
However, this is not the only STDP window possible, there are some
other windows that have a linear decrease towards ±∞, and some
others who relax the Hebbian rule and strengthen weights when
(tpostj − tprei ) ' 0, regardless of the sign. Additional windows can
be found in Figure 11. The STDP window in Figure 11b is commonly
used for inhibitory connections rather than for excitatory connections.
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Figure 11: Some other STDP windows.

Another important aspect when modifying the synaptic ways is
not only the function in which the ∆w is updated, but also how the
update is performed. Updates can be either done with an additive
update rule:

w← w+∆w , (18)

or a multiplicative update rule:

w← w(1+∆w) . (19)

STDP with an additive update rule has been shown to generate
competition between the synapses [22] and results in a group whose
synapses are strongly reinforced and another group whose synapses
are are almost completely depressed. However there are also works
which support multiplicative STDP claiming it shows pathway speci-
ficity [23].

The process with this learning rule is intrinsically not supervised,
and it can be successfully used to detect and learn patterns in data
in an unsupervised manner [24], even when such patterns are em-
bedded in noise. This means that this learning rule would reduce the
need of the highly costly activity of labelling data.

2.4.2 Supervised learning

One of the disadvantages of SNN is that the spike generation func-
tion is not differentiable and therefore it is not directly compatible
with the standard error backpropagation algorithms. Some papers
have proposed new backpropagation mechanisms for learning synap-
tic weights and axonal delays. One of those is slayer [25] which is
based on a temporal credit assignment policy for backpropagating
error to preceding layers. Other approaches like ReSuMe [26], have
instead tried alternative ways to achieve supervised learning, in this
particular approach, authors extend the Widrow-Hoff rule 1 to SNNs.

1 The Widrow-Hoff rule, also known as the delta rule, is a learning rule that attempts
to minimise the error in the output of a neural network through gradient descent.
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2.5 information decoding

Once the input spikes have been processed with neurons implement-
ing a particular learning rule, we normally want to make sense of the
output spikes. In most scenarios, we have multiple neurons which are
competing against each other, and the goal is to determine who is the
“winner of the competition". To do so there are two main approaches:

• Highest Firing Rate (HFR): as its name states, the winner of the
competition is the neuron which has the highest firing rate, and
thus has more output spikes than any other neuron.

• First to Fire (F2F): this approach assigns as the winner the first
neuron to emit an output spike. Usually this approach is used
in networks where neurons are trained to fire first in particular
situations and often use a temporal WTA mechanism.

2.5.1 Lateral Inhibition

Lateral Inhibition is a mechanism used for to refine selectivity. When
a neuron has fired, the neuron prevents that the neighbouring neu-
rons spread their action potential, thereby achieving inhibition. This
mechanism not only refines selectivity but also leads to competition
among neurons.

A related principle is Winner-Take-All (WTA). In this principle, neu-
rons compete against each other to be chosen as a winner, and as a
result, the responses of the weaker neurons are suppressed, typically
causing them to become inactive. There are also temporal WTA strate-
gies in which the first spike is used to determine the winner (F2F)
and causes the suppression of other responses. Because of the inher-
ent competitive effect of lateral inhibition, it can be used to realise a
Winner-Take-All mechanism [27].

2.5.2 Homeostasis

When using layers of multiple neurons, we normally try to achieve
equal firing rates between the neurons in order to prevent that some
neurons dominate the response pattern, and neurons differentiate be-
tween them. This can be done with an adaptive spiking threshold
which is sometimes called homeostasis. Instead of having a fixed spik-
ing threshold, we have a fixed resting threshold and then an additive
dynamic threshold that increases at every spike fired by the neuron
and decays exponentially back to zero with time. The more a neuron
fires, the more input it requires to fire again in the near future.

Homeostasis has been used in combination with lateral inhibition,
and an additive STDP update rule to perform digit recognition [28].
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2.6 neuromorphic processors

To conclude this chapter we take a brief moment to describe neuro-
morphic hardware for SNNs: neuromorphic processors.

Neuromorphic hardware is a term that encompasses any electrical
device — be it analog, digital, or hybrid — which mimics the natural
biological structures of the human brain and nervous system.

Modern computing systems are ill-suited for an efficient implemen-
tation of SNNs, this is due to their underlying von Neumann architec-
ture which is bottlenecked by the need to constantly exchange data
between logic and memory units which are physically separated. A
neuromorphic processor is a type of neuromorphic hardware which
addresses the limitations of the von Neumann architecture and con-
cretises SNN models in an efficient way, making them useful for prac-
tical applications.

Usually neuromorphic processors are categorized according to their
neuronal model implementation. We may have software neurons like
the SpiNN5 processor from the University of Manchester [29], digital
neurons like IBM’s TrueNorth [30] or Intel’s Loihi [31] processor, or
analog neurons like the Braindrop processor from Stanford Univer-
sity [32].

Neuromorphic processors have made SNNs very appealing as the
processing of a single spike on these chips may only consume a few
pJ or even some fJ (10−15J) of energy [6]. This fact potentially presents
the possibility of building neural networks which are energy efficient,
and as it has been shown [5], potentially more computationally pow-
erful, and amazingly fast.

Despite the advances in the domain, we are still far away from
a achieving something nearly similar to a biological brain. The Uni-
versity of Manchester has built a massively parallel supercomputer
based on SNNs. This machine called SpiNNaker (Spiking Neural Net-
work architecture) [29] , occupies about 11 standard 19-inch racks,
requires approximately 100kW and is capable of modelling interac-
tions of roughly a billion neurons which represents only one percent
of the human brain.
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E V E N T- B A S E D V I S I O N

3.1 event-based cameras

Event-based cameras are a new type of vision sensors whose working
principle is biologically inspired. Differently from conventional vision
sensors that collect image frames at a fixed rate, these type of sensors
asynchronously output changes on pixel-level brightness in the form
of events.

To be more precise, this type of sensors emit a tuple called event
Event(x,y, ts,p) if at time ts the pixel in coordinate (x,y) suffers a
change in log-brightness intensity which is greater than a threshold
C called contrast sensitivity, if the change is positive we emit an event
with positive polarity (usually represented as ON or with +1), other-
wise if the change is negative we emit an event with negative polarity
(usually represented as OFF or with -1 or 0).

Formally, the emission of an event e is determined by Equations
20, 21 and it can be easily visualised in Figure 12 :

e+i iff logI(x, ti) − logI(x, ti −∆t) > C , (20)

e−i iff logI(x, ti) − logI(x, ti −∆t) 6 C . (21)

One of the main exponents of these kind of sensor is the Dynamic Vi-
sion Sensor (DVS) developed by ETH Zurich [33] which tries to imitate
three main cell types that are in our eyes (illustrated in Figure 13):

• a cone cell, by means of a fast logarithmic photoreceptor that
converts current intensity I from photodiodes into a logarithmic
voltage.

• a bipolar cell by means of a differential circuit which amplifies
and generates a negative or positive event.

• a ganglion cell by means of a comparator made of two transis-
tors which act as a comparator for ON-OFF events.

The DVS is not the only event-based sensor out there, there have
also been other sensors such as the Asynchronous Time-based Image
Sensor (ATIS) which operates under the same concept but in a sightly
different way.

Due to the fact that both the mechanism and inner structure reflect
the human retina, event-based cameras are sometimes also called “sil-
icon retinas".

22
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Figure 12: Working principle of an event-based camera. Events are triggered
when the intensity increases or decreases beyond the contrast sen-
sitivity C.

Cone cell Rod cell

Ganglion cell

Bipolar cell

Figure 13: Inner structure of the human retina. Rod cells and Cone cells are
the two type of photoreceptors that can be found in the human
retina. Rods have a low spatial acuity while cone cells have a high
spatial acuity and respond differently to light of different wave-
lengths, thus making the latter cell type the one responsible for
color vision. Nonetheless, event-based camera sensors do not dis-
tinguish wavelengths therefore they do not possess color vision
capabilities.

These kind of cameras offer some considerable advantages over
standard cameras, namely a very high dynamic range, avoidance of
motion blur, and a latency in the microsecond range. Moreover, in
non highly dynamic scenes, the visual information gathered is usu-
ally very sparse which requires lower transmission bandwidth, stor-
age capacity, processing time, and power consumption compared to
conventional imaging sensors. It also has the advantage there is no
relevant information lost between frames as relevant information is
emitted asynchronously through the form of events.
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Figure 14: To the left a standard camera image, to the right a grayscale view
of an event based image of the same scene with positive events
represented as white pixels and negative events represented as
black pixels. Another common choice is blue for negative events
and red for positive events. Images taken from the Caltech101/N-
Caltech101 dataset [34].

Standard Camera Event Camera

Power Consumption (mean) 1 W 10 mW

Dynamic range 60 dB 140 dB

Max fps 120-960 fps ∼1000000 fps

Data Transfer Rate 32MB/s ∼1MB/s

Table 1: Advantages of Event-cameras over traditional camera sensors.

Event-based cameras do not aim to substitute conventional image
sensors, it is the properties they offer make them really appealing for
a wide range of applications in autonomous vehicles and robotics. In
particular, these kind of cameras have found applications on domains
like image stabilisation, depth reconstruction, and motion segmenta-
tion. In later chapters we will explore two of these domains: object
recognition and robot control.

As it was mentioned before, an event camera by no means intends
to substitute traditional image sensors, indeed event-cameras are un-
able to "see" static scenes and are unable to perceive color as shown
in Figure 14, for these reasons, researchers developed the Dynamic
and Active-pixel Vision Sensor (DAVIS) sensor [35]. This sensor com-
bines the best of two worlds: event-based sensors and conventional
sensors, and adds an additional component: an Inertial Movement
Unit (IMU), which is a combination of accelerometers, gyroscopes and
magnetometers. These kind of sensors can thus trigger events and in-
tegrate light intensity on pixels at the same time).
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Figure 15: Working mechanism of the DAVIS Sensor.

Figure 16: The AER communication protocol.

3.2 address event representation

In nature, data transfer from the eye to the brain is done by nearly one
million axons of ganglion cells. If we tried to do something similar on
event-based vision sensors, we would need to give each pixel its own
cable (which unfortunately is unfeasible in current chips). Address
Event Representation (AER) is an asynchronous handshaking commu-
nication protocol for transferring spikes between bio-inspired chips
(such as an event camera and a processing unit like a spiking neural
network hardware), that finds a workaround to this problem. This
protocol emulates the massive connectivity between cells by time-
multiplexing many connections on the same data bus, thus reducing
the number of cables needed from N to ∼ log2N (Figure 15).

This representation uses streams of events to communicate between
chips. These events as described before, are defined as tuples where x
and y indicate the pixel reference or location of the event, t indicates
the timestamp at which the event took place, and p which indicates
the polarity (positive if light intensity has increased, or negative if
it has decreased). Each spike is represented by its location (explic-
itly encoded as an address) and the time the spike occurs (implicitly
encoded).

Almost all event-based camera sensors communicate with this pro-
tocol, for this reason they are sometimes referred as AER sensors
[36, 37, 20].
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Figure 17: Hard Event Segmentation.
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Figure 18: Soft Event Segmentation .

3.3 event segmentation

The events received from event-based cameras are not always pro-
cessed as events, sometimes the events are accumulated during a
short period of time in order to be able to display an image, or when
the event count has reached a certain threshold. This technique shown
in Figure 17 goes by the name of Hard Event Segmentation (HES).

A main open-source software used in this domain is the open-
source jAER software developed by Delbruck [38]. This software col-
lects events for a certain time slice to create a 2D image of the events.
If the time slice is similar to the monitor refresh rate, one can visualise
the reconstructed images practically in real time.

Another approach to process events received from AER sensors is
Soft Event Segmentation (SES) which groups events in a dynamic way.
A common approach, shown in Figure 18 is to use a LIF neuron 1 that
increases its potential by a fixed quantity at the arrival of an event and
decays with time and when it reaches a threshold it tells the buffer to
stop accumulating events, return the current batch and start anew.

One component that realises such approach is called a Motion Sym-
bol Detector (MSD) [39]. The events are accumulated into segments by
a component called Segment Recorder (SR).

1 Note that the presence of a neuron does not necessarily implies a SES approach, if
we use an IF neuron (no decay) with a fixed threshold, this is equivalent to HES with
a fixed event count.



3.4 event representations 27

Figure 19: General event-based representation framework. Image taken
from [40].

3.4 event representations

Once the events have been segmented, events are usually transformed
into a useful representation. The most common representations are:

1 event frame, a 2D histogram where events in the segment are
accumulated considering or ignoring polarity.

2 time or leaky surface, a 2D map where the motion history is taken
into account by representing recent motion with brighter inten-
sity values.

3 voxel grid, where events are represented as a 3D histogram in a
certain time interval (polarity is ignored).

4 event spike tensor, a 4D representation which contains a 3D his-
togram in a certain time interval for each of the polarities.

All this representations are now covered by a general framework
developed by Gehrig et al. [40] which converts data into several repre-
sentations by employing convolutions, quantisation, and projections.
This framework that can be observed in Figure 19.
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R E I N F O R C E M E N T L E A R N I N G

4.1 introduction

Reinforcement Learning (RL) is one of the three machine learning
paradigms which has gained a lot of traction in the last decade. Differ-
ently form other paradigms, this area of machine learning is focused
on how agents should take actions in an environment in order to
maximise a reward. This paradigm results particularly useful when
the dynamics of the environment are unknown or are difficult to be
modelled, and it has been successfully used to tackle complex prob-
lems such as playing the chinese game of Go 1.

In a basic RL problem we have an agent or learner that interacts
with an environment. At every time step, the agent selects an action
among all the possible actions and the environment responds to that
action by presenting to the agent a new situation or state, and a value
called reward that represents the adequateness of the action taken
with respect to its goal.

Formally speaking, at each time step t an agent finds itself in a state
St ∈ S, where S indicates the set of all possible states the agent might
be in, and executes an action At ∈ A(St), where A(St) is the set of all
available actions in state St. As a consequence of the executed action,
the agent receives from the environment a reward rt+1 and the agent
finds itself in a new state St+1. This is usually visualised with the
diagram in Figure 20.

definition 1 (policy): The function that picks the right action
at each state is called a policy and is represented by π. The policy is
what fully defines the behaviour of an agent. Policies can depend on
the history of visited states or can depend only on the current state,
they can be stationary (time-independent) or non-stationary.

Policies are said to be deterministic if the action taken at each state
is completely predictable as it is always the same for the same given
state:

π(s) = a . (22)

1 The chinese game of Go represents a great computational challenge as it has been
shown that the number of possible states in the game is approximately 2 · 10170.
Such number is vastly greater than the number of atoms in the universe, estimated
to be about 1080. In 2015 a computer program based on RL and named AlphaGo was
able to beat for the first time a human professional Go player.

28
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Agent

Environment

action At

reward rt

reward rt+1

state St+1

state St

Figure 20: The standard RL paradigm.

Stochastic policies on the other hand, take an action based the prob-
ability of selecting that action:

π(s|a) = Pr{At = a |St = s} . (23)

definition 2 (markov process): A stochastic process Xt is said
to be a Markov Process if it satisfies the Markovian property. Such prop-
erty involves memorylessness, that is, that the future is independent
of the past and it only depends on the present. In other words, the
current state captures all the information from history and once the
current state is known, history becomes irrelevant:

Pr{Xt+1 = j |Xt = i,Xt−1 = k, . . . X0 = k0}

=

Pr{Xt+1 = j |Xt = i} .

(24)

definition 3 (markov reward process): A Markov Reward
process is a Markov Process that complements the description of a
sequence of possible events by adding a reward at each state.

definition 4 (markov decision process): A Markov Deci-
sion Process (MDP) is a Markov Reward Process with decisions. For-
mally it is defined as a tuple M = 〈S,A,P,R,γ〉, where:

• S is a set of states

• A is a set of actions

• P is a state transition probability matrix that states, indepen-
dently of the reward, how probable it is that we end up in a
state s ′ when taking an action a on a state s.

P(s ′ | s,a) = Pr{St+1 = s ′ |St = s,At = a}

=
∑
r∈R

P(s ′, r | s,a) . (25)
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• R is a reward function that states which is the expected reward
when taking an action a on state s. Note that this considers
the fact the state transition is not deterministic and therefore
we might end up in different states and have different rewards
even when taking the same action on the same state. Thus it
returns an expected value.

R(s,a) = E[rt+1 |St = s,At = a]

=
∑
r∈R

∑
s ′∈S

P(s ′, r | s,a) . (26)

• γ is a discount factor γ ∈ [0, 1] that regulates the impact of
immediate and future rewards.

The advantage of RL is that, by only specifying what we want to
achieve and by being able to express a measure of success, we should
be able to reach our goal.

hypothesis 1 (reward hypothesis): A goal can be expressed
as the maximisation of the expected cumulative sum of rewards over
a given time horizon.

We define the notion of return as the sum of all rewards the agent
will receive in a given time horizon from the current state, where
the time horizon can be infinite, finite, or indefinite if it stops until
a criteria is met. The problem with this definition is the fact that the
reward might be infinite if the time horizon is infinite. To avoid such
problems we introduce the concept of an infinite horizon discounted
return.

definition 5 (return): The return Gt is defined as the cumula-
tive (discounted) reward from time-step t:

Gt = rt+1 + γ rt+2 + γ
2 rt+3 + . . . =

∞∑
k=0

γk rt+k+1 . (27)

The value of the parameter γ, also called the discount factor, deter-
mines how much importance we give to immediate rewards rather
than future rewards and model in a way the uncertainty of the future.
A value of γ close to 0 is said to be myopic as it privileges immediate
rewards whereas a value of γ close to 1 is said to be far-sighted as
it values a lot future rewards. It is however possible to define undis-
counted return (γ = 1) if all sequences terminate.

definition 6 (state-value function): Given a policy and an
MDP M, we can define what we call the state-value function Vπ(s), that
is, the expected return starting from state s if we select actions with
policy π:

Vπ(s) = Eπ[Gt |St = s] . (28)
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definition 7 (action-value function): Given a policy and
an MDP M, we can define what we call the action-value function Qπ(s),
that is, the expected return starting from state s, taking action a and
then selecting actions with policy π:

Qπ(s) = Eπ[Gt |St = s,At = a] . (29)

Given these definitions we can reformulate the hypothesis 1 as the
maximisation of the value function. We therefore say an MDP is solved
when we know the optimal value function. To introduce the notion
of optimality we first introduce the notion of ordering.

definition 8 (policy partial ordering): We say that a policy
π is better than π ′ if the value function a state is greater than or equal
to that of π ′ at the same state and the same happens for all states in
the MDP.

π > π ′, iff Vπ(s) > Vπ
′
(s) ∀s ∈ S . (30)

definition 9 (optimal policy): We say that a policy is optimal
and we represent it as π∗ if it is better than or equal to all other
possible policies:

π∗ > π, ∀π . (31)

there is also a theorem that states that for any MDP:

• There is at least one deterministic optimal policy π∗.

• All optimal policies achieve the optimal state-value function

V∗(s) = max
π
Vπ(s) . (32)

• All optimal policies achieve the optimal action-value function

Q∗(s) = max
π
Qπ(s,a) . (33)

As it will be explained in the next sections, an agent generally takes
advantage of the existence of an optimal policy and therefore an opti-
mal value function to improve its current policy and eventually learn
an optimal policy. Another important thing that is taken advantage
of, is the recursiveness of value functions. The equations that explic-
itly show their recursiveness are known as Bellman Equations and are
fundamental to find the optimal value function.
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4.2 bellman equations

definition 10 (bellman expectation equation): The Bell-
man Expectation Equation is a fundamental RL relation that explicitly
states the recursivity in the state-value equation. Indeed, the state–value
function can be decomposed into an immediate reward plus a dis-
counted value of the successor state:

Vπ(s) = Eπ[rt+1 + γV
π(s ′) |St = s]

=
∑
a∈A

π(a|s)

(
R(s,a) + γ

∑
s ′∈S

P(s ′|s,a)Vπ(s ′)

)
.

(34)

If we consider everything in a matrix notation, we can express the
Bellman Expectation Equation in a much more compact and simple
way:

Vπ = Rπ + γPπ Vπ , (35)

where Vπ and Rπ are matrices with shape |S| × 1, and Pπ is a ma-
trix with shape |S|× |S|.By writing the equation this way, it becomes
evident that the equation has a direct solution:

Vπ = (I− γPπ)−1 Rπ , (36)

which can be rewritten with the action-value function as follows:

Qπ(s,a) = Eπ[rt+1 + γQ
π(s ′,a ′) |St = s,At = a]

= R(s,a) + γ
∑
s ′∈S

P(s ′|s,a)Vπ(s ′) . (37)

definition 11 (bellman optimality equation): The Bell-
man Optimality Equation is another fundamental RL relation :

V∗(s) = max
a
Q∗(s,a)

= max
a

(
R(s,a) + γ

∑
s ′∈S

P(s ′|s,a)V∗(s ′)

)
.

(38)

Q∗(s,a) = R(s,a) + γ
∑
s ′∈S

P(s ′|s,a)V∗(s ′)

= R(s,a) + γ
∑
s ′∈S

P(s ′|s,a)max
a ′

Q∗(s ′,a ′) .
(39)

As we can see, differently from Equation 34, Equation 38 is non–linear
and has no closed form solution. As we will see, in order to compute
it there are many iterative solution methods such as Dynamic pro-
gramming and RL methods like Q-learning or SARSA.



4.2 bellman equations 33

s1

s2

s3

s4

0.15/10

0.85/4

0.4/7

0.6/9

0.3/� 2
0.7/6

0.25/10

0.75/� 1
0.5/5

0.5/3

0.65/8

0.35/� 3

S1 S2 S3 S4

S1
 0 0.15 0.85 0

S2 0.3 0.7 0 0

S3 0 0.5 0.5 0

S4 0 0 0.35 0.65

a
b

a

b

a

b

a
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Figure 21: Example of an MDP with 4 states and two actions, transitions are
stochastic with probability/ reward.

To exemplify the mechanism, let’s consider the MDP in Figure 21

and let’s assume the policy we follow is to select always action a. For
this example we can define the matrices:

Pπ =




0 0.15 0.85 0

0.3 0.70 0 0

0 0.50 0.50 0

0 0 0.35 0.65




Rπ =




0.15 · 10+ 0.85 · 4
0.3 ·−2+ 0.7 · 6
0.5 · 5+ 0.5 · 3

0.35 ·−3+ 0.65 · 8



=




4.9

3.6

4

4.15




.

As a consequence we can write the direct solution to the Bellman
expectation equation with γ = 0.6 as:

Vπ =







1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



− γ




0 0.15 0.85 0

0.3 0.70 0 0

0 0.50 0.50 0

0 0 0.35 0.65







−1 


4.9

3.6

4

4.15



'




10.76

9.54

9.80

10.18




.

Considering the action-value function for state s1 using Equation 37,
we obtain:

Qπ(s1,a) = 0.15[10+ γV(s2)] + 0.85[4+ γV(s3)] = 10.756 ,

Qπ(s1,b) = 0.4[7+ γV(s3)] + 0.6[9+ γV(s4)] = 14.21 .
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As we can see from the previous example, the value for action b has a
higher value than action a. It would then seem logical to change our
policy to choose action b in state s1 instead of choosing action a. This
intuitive concept is formalised below.

theorem 1 (policy improvement): Let π and π ′ be any pair
of deterministic policies — where the action chosen at each state is
always the same — such that

Qπ(s,π ′(s)) > Vπ(s) , (40)

then the policy π ′ must be as good as or better than π, i. e. ,

Vπ
′
(s) > Vπ(s) . (41)

Enumerating all deterministic policies, evaluating each one of them
(computing its Vπ) and returning the best one is a really naïve ap-
proach that is really inefficient as the number of policies is exponen-
tial |A||S|. A better approach would be to compute the state–value
function Vπ of a given random policy and improve it greedily by
selecting at each state the best action according to the action-value
function:

π ′(s) = arg max
a∈A(s)

(
R(s,a) + γ

∑
s ′∈S

P(s ′|s,a)Vπ(s ′)

)
. (42)

After we do a greedy improvement, we then recompute the state-
value function until we cannot do any further improvement. Indeed,
when we cannot improve the policy, we have maxa∈AQπ(s,a), which
is is exactly the bellman optimality equation (Equation 38), meaning
that we obtain Vπ = V∗, and thus the policy π is an optimal policy.

4.3 generalized policy iteration

We can thus establish a general method for computing the optimal
policy by repeatedly applying two phases:

• Policy Evaluation: Estimating Vπ given a policy π.

• Policy Improvement: Generating a better policy π ′ > π.

this iterative process called generalized policy iteration is visually repre-
sented in Figure 22.

We saw before in Equation 36 that it is possible to obtain a direct
solution for Vπ, however, the direct solution is not always feasible
as it requires to invert a matrix and such computation might be too
complex when the number of states is too high (complexity O(|S|3)).

To solve this problem we can use other methods for the policy eval-
uation phase, one of such methods is the Iterative Policy Evaluation
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V ⇤ ⇡⇤
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Policy Evaluation

Policy Improvement

Figure 22: The mechanism of the Generalized Policy Iteration.

which iteratively applies the Bellman expectation equation as an up-
date rule.

Algorithm 1: Iterative policy evaluation
Result: V ' Vπ, the state-value function of policy π
initialise by setting Vk(s)← 0,∀s ∈ S

repeat
∆← 0

foreach state s ∈ S do
Vk+1(s)←∑

a∈A π(a|s)
(
R(s,a) + γ

∑
s ′∈S P(s

′|s,a)Vk(s ′)
)

∆← max(∆, |Vk+1(s) − Vk(s)|)
Vk(s)← Vk+1(s)

end
until ∆ > θ

By applying iterative policy evaluation and greedy policy improve-
ment we can obtain the optimal policy, however it is also possible
to obtain the optimal policy without the need of two phases. The
algorithm that allows to compute the optimal policy is called value
iteration and applies repeatedly the Bellman Optimality equation:

Algorithm 2: Value iteration
Result: π∗, the optimal policy
initialise by setting Vk(s)← 0,∀s ∈ S

repeat
∆← 0

foreach state s ∈ S do
Vk+1(s)←∑

a∈A π(a|s)
(
R(s,a) + γ

∑
s ′∈S P(s

′|s,a)Vk(s ′)
)

∆← max(∆, |Vk+1(s) − Vk(s)|)
Vk(s)← Vk+1(s)

end
until ∆ > θ
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Differently from Policy Iteration (PI) where we start with a policy
and then iteratively improve the policy, the intermediate value func-
tions in Value Iteration (VI) might not correspond to any policy.

There is no method between PI and VI that is clearly better than the
other one, while PI is computationally more expensive than VI at each
iteration, it typically requires fewer iterations to converge.

4.4 reinforcement learning methods

Until now we have assumed that we have the model of an MDP, mean-
ing that we assumed we had knowledge of MDP transitions/rewards.
however, in most cases we do not have any knowledge and we have
to learn directly from episodes of experience. In order to do so we
need model-free methods.

A first method that is model free is the Monte-Carlo (MC) method.
This method is quite simple and can be used for policy evaluation
(the computation of Vπ). It is based on the simple idea of using the
empirical mean return instead of the expected return for the state-
value function, however, this can be applied only to episodic MDPs
meaning that is only applicable to problems that terminate, moreover
the algorithm works only with complete episodes of experience.

We can distinguish two variants of the algorithm:

• every visit, which averaged returns for every time a state s is
visited and leads to a biased but consistent estimator.

Algorithm 3: Every–Visit Monte–Carlo Policy Evaluation
Result: V ' Vπ, the state-value function of policy π
initialise by setting Returns(s)← empty list,∀s ∈ S

repeat
generate an episode with policy π
foreach state s ∈ episode do

foreach occurence of state s in the episode do
R← return following the occurrence of state s
append R to Returns(s)

end
V(s)← average(Returns(s))

end
until desired

With this variant it is also possible to update V(s) incrementally
with the following update rule:

V(st)← V(st) +α(Gt − V(st)) , (43)



4.4 reinforcement learning methods 37

where α = 1
N(st)

to track the number of times the state was
visited, or a value α > 1

N(st)
to try to forget old episodes, which

is particularly useful in non–stationary problems.

• first visit, which averages returns only for the first time a state s
is visited and leads to an unbiased estimator.

Algorithm 4: First–Visit Monte–Carlo Policy Evaluation
Result: V ' Vπ, the state-value function of policy π
initialise by setting Returns(s)← empty list,∀s ∈ S

repeat
generate an episode with policy π
foreach state s in the episode do

R← return following the first occurrence of state s
append R to Returns(s)
V(s)← average(Returns(s))

end
until desired

To exemplify mechanism, let us suppose we have an MDP with
states S = {s1, s2, s3, s4} (where s4 is a terminal state), actions A =

{a,b, c} and the following episodes where each triplet is (state, action,
reward):

(s1, c, 4)→ (s3,b, 3)→ (s2,a, 1)→ (s4) ,

(s3,a, 5)→ (s2,b, 1)→ (s4) ,

(s1, c, 1)→ (s2,a, 2)→ (s1,b, 3)→ (s4) .

we can compute the state-value function as follows:

Every-Visit MC

V(s1) =
8+ 6+ 3

3
, V(s2) =

1+ 1+ 5

3
, V(s3) =

4+ 6

2
. (44)

First-Visit MC

V(s1) =
8+ 6

2
, V(s2) =

1+ 1+ 5

3
, V(s3) =

4+ 6

2
. (45)

Now that we have an algorithm that does a model-free policy eval-
uation, it seems natural to try and replicate the Generalized Pol-
icy Iteration by looking a way to do the model-free policy improve-
ment. It turns out that we can actually perform model-free reedy pol-
icy improvement, while greedy policy improvement over V(s) (Equa-
tion 42) requires the model of the MDP, greedy policy improvement
over Q(s,a) is model–free:

π ′(s) = arg max
a∈A(s)

Qπ(s,a) . (46)
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However there is one major problem with this approach, we cannot
use deterministic policies as we also need to explore the different
actions available. This is a common problem which goes by the name
of exploration and exploitation trade-off. If we keep choosing an action
greedily without exploring, we would choose what we know to be
best according to our current knowledge but we will never choose
what may be the actual best action.

To solve this problem we need to use ε-greedy policy improvement to
ensure continuous exploration.

definition 12 (ε-greedy policy improvement): This policy
improvement acts greedily with probability 1− ε and chooses an ac-
tion at random with probability ε:

π(s,a) =


1− ε if at = arg maxa∈A(s)Q

π(s,a)
ε

|A|− 1
otherwise

. (47)

theorem 2: For any ε–greedy policy π, the ε–greedy policy π ′ with
respect to Qπ, is an improvement over π, meaning Vπ

′
> Vπ.

definition 13 (greedy in the limit with infinite explo-
ration): A learning policy is called Greedy in the Limit with Infi-
nite Exploration (GLIE) if it satisfies the following two properties:

• All state–action pairs are explored infinitely many times

limt→∞Nk(s,a) = ∞ . (48)

• The policy converges on a greedy policy

limt→∞πk(a|s) = 1(a = arg max
a ′∈A(s)

Qπ(s,a ′)) . (49)

definition 14 (glie monte-carlo control): A policy itera-
tion with policy evaluation of the action-value function Q(s,a) with
the following Monte-Carlo every-visit update rule:

Q(st,at)← Q(st,at) +
1

N(st,at)
(Gt −Q(st,at)) , (50)

and an ε-greedy policy improvement with

ε← 1/k , (51)

where k is the episode number, satisfies the GLIE conditions and is
called GLIE Monte-Carlo Control.

theorem 3: GLIE Monte–Carlo Control converges to the optimal
action–value function:

Q(s,a)→ Q∗(s,a) . (52)



4.4 reinforcement learning methods 39

One problem that arises from GLIE Monte-Carlo Control is that
even if it is model-free, it cannot be applied to non-episodic tasks
(i.e. tasks that do not terminate) like the example in Figure 21, as it
can only learn from complete episodes of experience. To solve this
problem we can resort to Temporal Difference Learning, a different way
of learning that can learn from incomplete episodes.

definition 15 (temporal difference): Temporal Difference
(TD) is a model-free method for policy evaluation that learns directly
from episodes of experience even when episodes are incomplete. The
learning updates a guess towards a guess instead of using the full
unbiased return Gt like MC methods.

The update rule employs a biased estimate of Vπ(st) called TD
target:

TD target = rt+1 + γV(st+1) . (53)

This biased estimate has a much lower variance w.r.t. MC as it only
depends on one random action, transition, reward instead of many
as in the return Gt.

The update rule is thus:

V(st)← V(st) +α(rt+1 + γV(st+1) − V(st)) . (54)

definition 16 (n-step temporal difference): As we just saw,
the main difference between TD and MC is the fact that TD takes a look
one step into the future and then uses an estimate accounting all fu-
ture instants, while MC could practically take a look at infinite steps
into the future (obviously it is limited by the length of the episode).

n = 1 (TD) G
(1)
t = rt+1 + γV(st+1)

n = 2 G
(2)
t = rt+1 + γ rt+2 + γ

2 V(st+2)

...
...

n = ∞ (MC) G
(∞)
t = rt+1 + γ rt+2 + γ

2 rt+3 + . . . γ
T−1 rT

(55)

The use of n-step Temporal Difference is in a way an approach that
tries to find the balance in the “bias-variance" trade-off, by selecting
an approach which achieves a good performance on both aspects.
Instead of using the unbiased MC approach or the low variance TD, it
uses something in-between by using an n-step return defined as:

G
(n)
t = rt+1 + γ rt+2 + . . .+ γ

n−1 rt+n + γn V(st+n) . (56)

The update rule is thus:

V(st)← V(st) +α(G
(n)
t − V(st)) . (57)
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Figure 23: A graph of the Gλt weighting taken from Sutton and Barto [41].

Well now that we know there is a model-free method to perform
policy evaluation that can use incomplete episodes, we obviously
wonder whether it is possible to do a sort of Generalised Policy It-
eration like we did with Monte-Carlo. The answer is yes, and such
approach is called SARSA.

definition 17: SARSA is a control method that uses TD as policy
evaluation method for the action-value function Q(s,a) and uses ε-
greedy policy improvement. The names derives from the fact that all
that is needed to perform updates is a state st, an action at, a reward
rt+1 and the future state st+1 and future action at+1:

Q(st,at)← Q(st,at) +α(rt+1+γQ(st+1,at+1) −Q(st,at)) (58)

theorem 4: SARSA converges to the optimal action–value func-
tion Q(s,a)→ Q∗(s,a) under the following conditions:

• GLIE sequence of policies πt(s,a).

• αt satisfies the Robbins-Monro conditions:

∞∑
t=0

αt = ∞ and
∞∑
t=0

α2t <∞ . (59)

Researchers came with the idea of averaging n–step returns over
different n in order to combine information from different time-steps.
They came up with what we call λ-return which uses the weighting
in Figure 23, expressed by the following equation:

Gλt = (1− λ)

∞∑
n=1

λn−1G
(n)
t . (60)

If we use the λ-return instead of the n-step return for policy evalua-
tion we have the following update rule:

V(st)← V(st) +α(G
λ
t − V(st)) . (61)

This policy evaluation method, which takes the name of Forward–view
TD(λ), has the problem that it looks infinitely into the future, can only
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be used in episodic tasks and works only with complete episodes, just
like MC. To solve this problem, researchers introduced Backward–view
TD(λ) which works with incomplete episode sequences and is based
on eligibility traces.

The Backward–view TD(λ) does an update which is in proportion of
the TD-error δt (i.e. TD-target - V(st)) and an eligibility trace et(s)
which combines recency and frequency heuristics to properly assign
credit to the state visited given the actual rewards. An example for
the eligibility trace et(s) is the accumulating trace

et(s) = γλet−1(s) + 1(s = st) , (62)

however, it has the problem that frequently visited states can have
eligibilities greater than 1 and that can be a problem for convergence.
To solve this problem we normally use a replacing trace that instead of
adding 1 when a state is visited, it simply sets the eligibility to 1:

et(s) =

γλ et−1(s) if s 6= st
1 if s = st

. (63)

Just like the standard TD method, TD(λ) can be used as the pol-
icy evaluation phase of the model-free action-value function Q(s,a),
which coupled with an ε-greedy policy improvement, makes up a
control method that converges to the optimal policy. Such method is
called SARSA(λ) and works like follows:

Algorithm 5: SARSA(λ)

Result: Q∗, the optimal action-value function
initialise by setting Q(s,a) arbitrarily and e(s,a)← 0, ∀s,a
repeat

Take action a, observe r, s ′

Choose a ′ from s ′ using ε-greedy policy
δ← r+ γQ(s ′,a ′) −Q(s,a)
e(s,a)← e(s,a) + 1
foreach state-action pair s,a do

Q(s,a)← Q(s,a) +αδe(s,a)
e(s,a)← γλe(s,a)

end
until s is terminal
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4.5 off-policy learning

Until now we have considered on-policy learning methods, meaning
that we learn from a policy only by trying it. Off-policy learning is a
group of methods which learn about other policies without necessar-
ily trying them explicitly, just like humans learn from observation of
other agents. This means that we can learn about multiple policies
while following only one, and we can even learn about the optimal
policy while following exploratory policy.

definition 18: Importance sampling is an off-policy technique to
estimate the expectation E[f(x)] of a different distribution w.r.t. the
distribution used to draw samples. Assuming we have two distribu-
tions P(x) and Q(x):

Ex∼P[f(x)] = Ex∼Q

[
Q(x)

P(x)
f(x)

]
. (64)

Importance sampling can be applied to Monte Carlo Methods as
well as sarsa methods.

4.5.1 Monte Carlo Importance Sampling

In MC methods we apply importance sampling corrections along the
whole episode according to the similarity between π̄, the policy which
generated the sample rewards, and π, the policy to evaluate:

G
µ
t =

π(at|st)

π̄(at|st)

π(at+1|st+1)

π̄(at+1|st+1)
. . .
π(aT |sT )

π̄(aT |sT )
Gt . (65)

On the update rule, we use this corrected return:

Q(st,at)← Q(st,at) +α(G
µ
t −Q(st,at)) . (66)

Obviously this importance sampling can dramatically increase vari-
ance.

4.5.2 SARSA Importance Sampling

On the sarsa method we use a similar thing, but we weight the TD

target r+ γQ(s ′,a ′) according to similarity between policies.

Q(st,at)← Q(st,at)+α(rt+1+γ
π(at|st)

π̄(at|st)
Q(st+1,at+1)−Q(st,at)) .

(67)

Since this update rule has a single correction, errors do not com-
pound themselves like in the MC case, achieving a much lower vari-
ance.
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Figure 24: Value function approximation, w represents some parameters of
the function which are used for the computation of the output.
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Figure 25: Some example of the functions that can be used for value function
approximation.

4.5.3 Q-learning

Q-learning is an off-policy method capable of learning the optimal
policy π∗ by using the behaviour policy π̄. To do so the algorithm has
the following update rule:

Q(s,a)← Q(s,a) +α(r+ γ max
a ′∈A

Q(s ′,a ′) −Q(s,a)) . (68)

This algorithm converges to the optimal policy if we use an ε-
greedy strategy.

4.6 value function approximation

So far we have implicitly assumed that the MDP is not really big and
admits a tabular representation, that is, that we can keep all the state-
action value function in a vector or in a matrix. Unfortunately, many
problems have enormous or even continuous state or action spaces
which makes the current approaches useless as we cannot keep track
of so many values. Moreover as the state spaces may be enormous
we may end up quite frequently in a lot of cases we have never seen
before, so it is important to find a way to generalise and take good
decisions even in unseen situations.

Value Function Approximation (VFA) is a technique that aims to
solve the previously listed problems by using a parametrised function
to represent the state or the action-value function of the MDP. Let
us suppose for a moment that we have an oracle which is able to
tell us the true value for Vπ(s), our goal then becomes to find the
parameter vector w for our function approximator that minimises the
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loss between the true value Vπ(s) and its approximation V̂π(s; w). To
do so, we can use the mean-squared error as loss function:

J(w) = Eπ[(V
π(s) − V̂π(s; w))2] , (69)

and try to perform gradient descent to find a local optimum:

∆w = −
1

2
α∇wJ(w) . (70)

In reality we obviously do not have an oracle which tells us the true
value, so we obviously have to resort to model-free methods. More-
over, the MC and TD estimates for Vπ(s)/Qπ(s,a) update steps that
we saw in Section 4.4, must now include the fitting of a function ap-
proximator that does the value function approximation.

4.6.1 Linear Value Function Approximation

Linear Value Function Approximation is a way of doing VFA, this
particular class of VFA represents a value function for a particular
policy π using a weighted linear combination of features:

V̂π(s; w) = x(s)T w , (71)

where x(s) is a feature vector used to represent state s. We can try to
perform gradient descent to find a local optimum:

∆w = −
1

2
α︸ ︷︷ ︸

step-size

2 (Vπ(s) − x(s)T w)︸ ︷︷ ︸
prediction error

x(s)︸︷︷︸
feature value

, (72)

note that this still assumes the presence of an oracle as we have the
true value Vπ(s) in the prediction error.

4.6.2 Monte-Carlo Value Function Approximation

Monte-Carlo Value Function Approximation is essentially doing su-
pervised learning on a state of (state,return) pairs 〈s1,G1〉, 〈s2,G2〉,
〈s3,G3〉. It thus substitutes the true value Vπ(s) for the full expected
return Gt, similar to what we did in the standard MC policy evalua-
tion approach (Equation 43).

∆w = α(Gt − V̂
π(s; w))∇wV̂

π(s; w) . (73)

theorem 5: MC with VFA converges to the weights which have the
minimum mean squared error possible.

Actually if we have a set of episodes from a policy π we can analyt-
ically solve for the best linear approximation that minimises the error
on the dataset as if it were a simple regression problem

w = (XTX)−1XTG . (74)

where X is a matrix of the features of each of the states x(si) and G is
a vector of all returns.
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4.6.3 Temporal-Difference Value Function Approximation

Just like in tabular representation methods, we cannot use MC to do
online learning as we need complete episodes. To solve this we recur
to Temporal-Difference Value Function Approximation which essen-
tially does supervised learning on a state of (state, TD return) pairs
〈s1, r1 + γV̂π(s2; w)〉, 〈s2, r2 + γV̂π(s3; w)〉, . . . It thus substitutes the
true value Vπ(s) for the TD return rt+γV̂π(st+1; w), similar to what
we did in the standard TD policy evaluation approach :

∆w = α
(
r+ γV̂π(s ′; w) − V̂π(s; w)

)
∇wV̂

π(s; w) . (75)

theorem 6: TD with VFA converges to weights which are within a
constant factor of the minimum mean squared error possible.

4.6.4 Control using Value Function Approximation

We would also like to find the optimal policy in cases in which the
state-actions are too big to use tabular representation. As we saw, we
can to policy evaluation with Value Function Approximation. Can
we do some sort of Generalised Policy Iteration also in this case? Well
the answer is yes, but we need to do the same things we did on the
model-free control approaches, we need to operate on Q instead of V
and perform ε-greedy policy improvement.

Monte-Carlo methods

∆w = α
(
Gt − Q̂

π(s,a; w)
)
∇wQ̂

π(s,a; w) . (76)

SARSA methods

∆w = α
(
r+ γQ̂π(s ′,a ′; w) − Q̂π(s,a; w)

)
∇wQ̂

π(s,a; w) . (77)

Q-learning methods

∆w = α

(
r+ γmax

a ′
Q̂π(s ′,a ′; w) − Q̂π(s,a; w)

)
∇wQ̂

π(s,a; w) . (78)

4.6.5 Deep Q-Networks

Linear VFA works pretty well if it is given a right set of feature repre-
sentation for the states x(si), however it is often hard to design that
set by hand. Deep neural networks have been very popular and use-
ful because they do not require an explicit specification of features.
We can thus think of Deep Neural Networks as a value function ap-
proximator which is a composition of multiple functions (linear and
non-linear transformations) and that can consequently represent a re-
ally complex space of functions. Neural networks that compute the
action-value function Q are called Deep Q-Networks (DQNs).
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4.6.5.1 Deep Q-Learning

Q-learning is a model-free technique that is off-policy that is very use-
ful in tabular representation methods, however, it has the problem
that if we use VFA instead, it can fail to converge due to the correlation
between the samples and the non-stationary targets (target changes
at each step). Deep Q-Learning is a method that tries to apply the
same idea of Q-learning but addresses the problems that lead to the
possible divergence of the method. To do so it uses:

• Experience Replay: a mechanism that removes correlations in
samples by using a random sample (s,a, r, s ′) from a replay
buffer storing prior experience, instead of using the most recent
sample. This also allows to use each sample more than once and
to update the Q-function more than once at different steps.

• Fixed Q-targets: to improve stability and avoid weights that
go to infinity, we fix the target weights used in the target part
of the update for multiple updates. Therefore when computing
the update we will have two kind of weights: a set of weights
w− used in the target that changes occasionally, and a set of
weights w which are the ones being updated.

Algorithm 6: Deep Q-learning with Experience Replay
Result: Q∗, the optimal action-value function
initialise replay buffer D to initial capacity N
initialise Q̂π(s,a; w) function with random weights
foreach episode i do

using ε-greedy select an action and observe transitions
add the transition (s,a, r, s ′) to D

sample a (minibatch) random transition from D

compute updates: ∆w =

α
(
r+ γmaxa ′ Q̂π(s ′,a ′; w−) − Q̂π(s,a; w)

)
∇wQ̂

π(s,a; w)

if i mod k == 0 then w− ← w
end

4.6.6 Double DQN

The Q-Learning algorithm has a maximisation bias as it takes the
maximum over an estimated Q value function. In Double Q-Learning
we can maintain two separate value functions in which we use the
value of one as the target for the other to reduce this bias and get a
significantly increase in performance.
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Algorithm 7: Double Q-learning

initialise Q1(s,a) and Q2(s,a), ∀s ∈ S,a ∈ A

foreach episode do
select action at using ε-greedy with
π(s) = arg maxaQ1(st,a) +Q2(st,a)

Observe reward rt and next state st+1
choose randomly between {update(Q1),update(Q2)}
if update(Q1) then

Q1(st,at)←
Q1(st,at)+α(r+γ maxa ′∈AQ2(st+1,a ′)−Q1(st,at))

else
Q2(st,at)←
Q2(st,at)+α(r+γ maxa ′∈AQ1(st+1,a ′)−Q2(st,at))

end
end

If we combine this idea with the previous Deep Q-learning Net-
work (DQN) we end up with a method that we call Double DQN.

∆w = α

(
r+ γQ̂

(
arg max

a ′
Q̂π(s ′,a ′; w); w−

)
− Q̂π(s,a; w)

)
(79)

4.6.7 Prioritized Replay

The order in which we replay updates is really important and can
potentially lead to an exponential improvement in convergence. What
the Prioritized Replay method tries to do is to proritise the experience
tuple (s,a, r, s ′) proportionally to the DQN error defined as follows:

pi =

∣∣∣∣r+ γmax
a ′

Q̂π(si+1,a ′; w−) − Q̂π(si,ai; w)

∣∣∣∣ . (80)

Stochastic Prioritization

P(i) =
pαi∑
k p
α
k

. (81)

4.6.8 Dueling DQN

Instead of using a neural network to compute directly the action value
function Qπ(s,a), this approach computes Vπ(s), and the advantage
function defined as:

Aπ(s,a) = Qπ(s,a) − Vπ(s) . (82)

The advantage function corresponds to the regret, or reward lost for
not taking the best action. Using this function can stabilise VFA.

Q̂π(s,a; w) = V̂π(s; w) +

(
Â(s,a; w) −

1

|A|

∑
a ′
Â(s,a ′; w)

)
. (83)
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Â(s, a0;w)

V̂ (s;w)

Q̂(s, a;w)

CNN

Figure 26: Dueling DQN Architecture.

The dueling DQN architecture can be observed in Figure 26.

4.7 policy gradient

So far we have considered action-value methods — i.e. methods select
which actions to take based on their estimates on action-values pairs
(e.g. ε-greedy policy improvement) — however, there are methods
that can learn and improve a policy without consulting a state- or
action-value function and can optimise the policy directly. Such meth-
ods are called policy gradient methods and what they do instead, is to
learn a parametrised policy:

πθ(a | s) = Pr(a | s; θ) . (84)

These methods are named this way because they usually try to max-
imise some performance measure J(θ) and thus their updates approx-
imate a gradient ascent. Note that this does not mean that in these
methods the value function is not needed, it may still be used to learn
the policy parameter θ, however, the fundamental difference is that
it is not required for action selection. Generally speaking, these ap-
proaches have better convergence properties and are really effective
in very big (or even continuous) action spaces.

Up until now we have considered only deterministic policies (i.e.
we always take the same action in the same state) mainly because we
are guaranteed that for any MDP there is at least one deterministic
optimal policy, however, with policy-based RL methods we can learn
stochastic policies, which is really useful in adversarial non-stationary
settings or partially observable environments.
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Our goal is then to find the best parameters θ that help us achieve
the best policy. While in value-function methods we could compare
polices through their value functions, here we can use:

• the start value of the policy for episodic environments:

J1(θ) = V
πθ(s1) . (85)

• the average value of the policy for continuing environments:

Javg(V)(θ) =
∑
s

dπθ(s)Vπθ(s) , (86)

Javg(Q)(θ) =
∑
s

dπθ(s)
∑
a

πθ(a | s)Q
πθ(s,a) , (87)

where dπθ(s) is the stationary distribution of the Markov Chain
for πθ.

• the average reward per time-step:

Javg(R)(θ) =
∑
s

dπθ(s)
∑
a

πθ(a |, s)R(s,a) . (88)

Policy gradient algorithms look for a local maximum in V(θ) = Vπθ

by ascending the gradient of the policy

∆θ = α∇θJ(θ) , (89)

where ∇θJ(θ) takes the name of policy gradient.

The estimation of the gradient can be done with two methods:

1 Finite Difference Approximation which can be applied to the gra-
dient even when the policy is not differentiable. It consists in
estimating the k-th partial derivative of the objective function
by slightly perturbing in the k-th dimension:

∂J(θ)

∂θk
≈ J(θ+ εuk) − J(θ)

ε
. (90)

2 Policy Gradient Theorem when we have a differentiable policy.

theorem 7 (policy gradient theorem): An unbiased but noisy
estimate of the policy gradient is:

∇θJ(θ) '
∑
s

dπθ(s)
∑
a

Qπθ(s,a)∇θπθ(a | s)

=
∑
s

dπθ(s)
∑
a

πθ(a | s)Q
πθ(s,a)

∇θπθ(a | s)
πθ(a | s)

= Eπ [Q
πθ(s,a)∇θ lnπθ(a | s)] .

(91)
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4.7.1 reinforce

The reinforce algorithm is a policy-gradient algorithm that estimates
Qπθ(s,a) with the unbiased MC return Gt. As a consequence, it can
only be applied to episodic tasks.

Algorithm 8: reinforce, Monte-Carlo Policy-Gradient
Method
Result: πθ ≈ π∗
Initialise policy parameter θ arbitrarily
foreach episode do

foreach timestep t = 1 to T − 1 do
θ← θ+α∇θ logπθ(a | s)Gt

end
end

4.7.2 Actor-Critic

Actor critics are algorithms that learn both a policy and value func-
tions. They are called this way because there are two main compo-
nents: the actor which is the component that learns a parametrised
policy πθ(a | s), and the critic which is the component that learns
about the policy that is currently being followed by the actor in or-
der to ’criticise’ the choices it performs. The critic learns a value func-
tion with a TD algorithm and such value function allows the critic to
compute TD errors which can be used to criticise the actor:

TD error δ =
(
r+ γ− Q̂πθ(s,a; w)

)
, (92)

critique

δ > 0, action was good, better than estimate

δ < 0, action was bad, worse than estimate
. (93)

These critiques performed by the critic help the actor to continually
update and improve its policy.

Algorithm 9: Actor-Critic Algorithm
Result: πθ ≈ π∗
Initialise policy parameter θ arbitrarily
Initialise value function parameters w arbitrarily
foreach episode do

foreach timestep t = 1 to T − 1 do
update policy parameters:
θ← θ+αθQ̂

πθ(s,a; w)∇θ logπθ(a | s)
compute TD error δt
update value function parameters:
w← w +αw δt∇wQ̂

πθ(s,a; w)

end
end
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(a) Actor Critic Architecture.
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s4

<latexit sha1_base64="7rwIFFFzlfNCLrJBfyAIPwqe3kY=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe4kooVFwMYyovmA5Ah7m71kyd7esTsnhCM/wcZCEVt/kZ3/xk1yhSY+GHi8N8PMvCCRwqDrfjuFtfWNza3idmlnd2//oHx41DJxqhlvsljGuhNQw6VQvIkCJe8kmtMokLwdjG9nfvuJayNi9YiThPsRHSoRCkbRSg+mX+uXK27VnYOsEi8nFcjR6Je/eoOYpRFXyCQ1puu5CfoZ1SiY5NNSLzU8oWxMh7xrqaIRN342P3VKzqwyIGGsbSkkc/X3REYjYyZRYDsjiiOz7M3E/7xuiuG1nwmVpMgVWywKU0kwJrO/yUBozlBOLKFMC3srYSOqKUObTsmG4C2/vEpaF1WvVr28r1XqN3kcRTiBUzgHD66gDnfQgCYwGMIzvMKbI50X5935WLQWnHzmGP7A+fwBCWiNoA==</latexit>

s5

<latexit sha1_base64="Ieop4W8AGvOR8PmCFhg+zOFIwHA=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe7EoIVFwMYyovmA5Ah7m7lkyd7esbsnhCM/wcZCEVt/kZ3/xk1yhSY+GHi8N8PMvCARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8e3Mbz+h0jyWj2aSoB/RoeQhZ9RY6UH3a/1yxa26c5BV4uWkAjka/fJXbxCzNEJpmKBadz03MX5GleFM4LTUSzUmlI3pELuWShqh9rP5qVNyZpUBCWNlSxoyV39PZDTSehIFtjOiZqSXvZn4n9dNTXjtZ1wmqUHJFovCVBATk9nfZMAVMiMmllCmuL2VsBFVlBmbTsmG4C2/vEpaF1Xvslq7v6zUb/I4inACp3AOHlxBHe6gAU1gMIRneIU3RzgvzrvzsWgtOPnMMfyB8/kDCuyNoQ==</latexit>

Q(s, a1)

<latexit sha1_base64="BW1oZ0i4/r5M3EHVEzIiDpxCsMM=">AAAB73icbVBNSwMxEJ2tX7V+VT16CRahgpRdqejBQ8GLxxbsB7RLyabZNjSbrElWKEv/hBcPinj173jz35i2e9DWBwOP92aYmRfEnGnjut9Obm19Y3Mrv13Y2d3bPygeHrW0TBShTSK5VJ0Aa8qZoE3DDKedWFEcBZy2g/HdzG8/UaWZFA9mElM/wkPBQkawsVKnUdYXuO+d94slt+LOgVaJl5ESZKj3i1+9gSRJRIUhHGvd9dzY+ClWhhFOp4VeommMyRgPaddSgSOq/XR+7xSdWWWAQqlsCYPm6u+JFEdaT6LAdkbYjPSyNxP/87qJCW/8lIk4MVSQxaIw4chINHseDZiixPCJJZgoZm9FZIQVJsZGVLAheMsvr5LWZcWrVq4a1VLtNosjDydwCmXw4BpqcA91aAIBDs/wCm/Oo/PivDsfi9ack80cwx84nz+PtY7+</latexit>

Q(s, a2)

<latexit sha1_base64="AogtGdw/LZhp+NHx+a2urcoAvTQ=">AAAB73icbVBNSwMxEJ34WetX1aOXYBEqSNktFT14KHjx2IL9gHYp2TTbhmaza5IVytI/4cWDIl79O978N6btHrT1wcDjvRlm5vmx4No4zjdaW9/Y3NrO7eR39/YPDgtHxy0dJYqyJo1EpDo+0UxwyZqGG8E6sWIk9AVr++O7md9+YkrzSD6YScy8kAwlDzglxkqdRklfkn7lol8oOmVnDrxK3IwUIUO9X/jqDSKahEwaKojWXdeJjZcSZTgVbJrvJZrFhI7JkHUtlSRk2kvn907xuVUGOIiULWnwXP09kZJQ60no286QmJFe9mbif143McGNl3IZJ4ZJulgUJAKbCM+exwOuGDViYgmhittbMR0RRaixEeVtCO7yy6ukVSm71fJVo1qs3WZx5OAUzqAELlxDDe6hDk2gIOAZXuENPaIX9I4+Fq1rKJs5gT9Anz+ROo7/</latexit>

Q(s, a3)

<latexit sha1_base64="LgaTjl0NgJNoX7wAhfuOAlmbSAI=">AAAB73icbVBNSwMxEJ31s9avqkcvwSJUkLKrFT14KHjx2IL9gHYp2TTbhibZNckKZemf8OJBEa/+HW/+G9N2D9r6YODx3gwz84KYM21c99tZWV1b39jMbeW3d3b39gsHh00dJYrQBol4pNoB1pQzSRuGGU7bsaJYBJy2gtHd1G89UaVZJB/MOKa+wAPJQkawsVK7XtLnuHd51isU3bI7A1omXkaKkKHWK3x1+xFJBJWGcKx1x3Nj46dYGUY4neS7iaYxJiM8oB1LJRZU++ns3gk6tUofhZGyJQ2aqb8nUiy0HovAdgpshnrRm4r/eZ3EhDd+ymScGCrJfFGYcGQiNH0e9ZmixPCxJZgoZm9FZIgVJsZGlLcheIsvL5PmRdmrlK/qlWL1NosjB8dwAiXw4BqqcA81aAABDs/wCm/Oo/PivDsf89YVJ5s5gj9wPn8Akr+PAA==</latexit>

Critic

<latexit sha1_base64="bLadh5oVwrjD55WBBVqUFciP9Mk=">AAAB7XicbVDLSgMxFL1TX7W+qi7dBIvgqswUiy5cFLpxWcE+oB1KJs20sZlkSDJCGfoPblwo4tb/ceffmE5noa0HAodz7k1yThBzpo3rfjuFjc2t7Z3ibmlv/+DwqHx80tEyUYS2ieRS9QKsKWeCtg0znPZiRXEUcNoNps2F332iSjMpHswspn6Ex4KFjGBjpU5TMcPIsFxxq24GtE68nFQgR2tY/hqMJEkiKgzhWOu+58bGT7Gyl3E6Lw0STWNMpnhM+5YKHFHtp9lv5+jCKiMUSmWPMChTf2+kONJ6FgV2MsJmole9hfif109MeOOnTMSJoYIsHwoTjoxEi+hoxBQlhs8swSQLjsgEK0yMLahkS/BWI6+TTq3qXVXr97VK4zavowhncA6X4ME1NOAOWtAGAo/wDK/w5kjnxXl3PpajBSffOYU/cD5/AIVijxQ=</latexit>

s1

<latexit sha1_base64="pDMShs8LmeQQSgkIcgaRSo2k8Ag=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe4kooVFwMYyovmA5Ah7m7lkyd7esbsnhCM/wcZCEVt/kZ3/xk1yhSY+GHi8N8PMvCARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8e3Mbz+h0jyWj2aSoB/RoeQhZ9RY6UH3vX654lbdOcgq8XJSgRyNfvmrN4hZGqE0TFCtu56bGD+jynAmcFrqpRoTysZ0iF1LJY1Q+9n81Ck5s8qAhLGyJQ2Zq78nMhppPYkC2xlRM9LL3kz8z+umJrz2My6T1KBki0VhKoiJyexvMuAKmRETSyhT3N5K2IgqyoxNp2RD8JZfXiWti6pXq17e1yr1mzyOIpzAKZyDB1dQhztoQBMYDOEZXuHNEc6L8+58LFoLTj5zDH/gfP4ABNyNnQ==</latexit>

s2

<latexit sha1_base64="XgHUVT7dwgGJbB2RrzjTXmtalOc=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5CRAuLgI1lRBMDyRH2NnPJkr29Y3dPCEd+go2FIrb+Ijv/jZvkCk18MPB4b4aZeUEiuDau++0U1tY3NreK26Wd3b39g/LhUVvHqWLYYrGIVSegGgWX2DLcCOwkCmkUCHwMxjcz//EJleaxfDCTBP2IDiUPOaPGSve6X+uXK27VnYOsEi8nFcjR7Je/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/NT52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIrP+MySQ1KtlgUpoKYmMz+JgOukBkxsYQyxe2thI2ooszYdEo2BG/55VXSrlW9evXirl5pXOdxFOEETuEcPLiEBtxCE1rAYAjP8ApvjnBenHfnY9FacPKZY/gD5/MHBmCNng==</latexit>

s3

<latexit sha1_base64="BjRgsu7zqA5cFTLu60R7X6LFu8U=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe40ooVFwMYyovmA5Ah7m71kyd7esTsnhCM/wcZCEVt/kZ3/xk1yhUYfDDzem2FmXpBIYdB1v5zCyura+kZxs7S1vbO7V94/aJk41Yw3WSxj3Qmo4VIo3kSBkncSzWkUSN4Oxjczv/3ItRGxesBJwv2IDpUIBaNopXvTP++XK27VnYP8JV5OKpCj0S9/9gYxSyOukElqTNdzE/QzqlEwyaelXmp4QtmYDnnXUkUjbvxsfuqUnFhlQMJY21JI5urPiYxGxkyiwHZGFEdm2ZuJ/3ndFMMrPxMqSZErtlgUppJgTGZ/k4HQnKGcWEKZFvZWwkZUU4Y2nZINwVt++S9pnVW9WvXirlapX+dxFOEIjuEUPLiEOtxCA5rAYAhP8AKvjnSenTfnfdFacPKZQ/gF5+MbB+SNnw==</latexit>

s4

<latexit sha1_base64="7rwIFFFzlfNCLrJBfyAIPwqe3kY=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe4kooVFwMYyovmA5Ah7m71kyd7esTsnhCM/wcZCEVt/kZ3/xk1yhSY+GHi8N8PMvCCRwqDrfjuFtfWNza3idmlnd2//oHx41DJxqhlvsljGuhNQw6VQvIkCJe8kmtMokLwdjG9nfvuJayNi9YiThPsRHSoRCkbRSg+mX+uXK27VnYOsEi8nFcjR6Je/eoOYpRFXyCQ1puu5CfoZ1SiY5NNSLzU8oWxMh7xrqaIRN342P3VKzqwyIGGsbSkkc/X3REYjYyZRYDsjiiOz7M3E/7xuiuG1nwmVpMgVWywKU0kwJrO/yUBozlBOLKFMC3srYSOqKUObTsmG4C2/vEpaF1WvVr28r1XqN3kcRTiBUzgHD66gDnfQgCYwGMIzvMKbI50X5935WLQWnHzmGP7A+fwBCWiNoA==</latexit>

s5

<latexit sha1_base64="Ieop4W8AGvOR8PmCFhg+zOFIwHA=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe7EoIVFwMYyovmA5Ah7m7lkyd7esbsnhCM/wcZCEVt/kZ3/xk1yhSY+GHi8N8PMvCARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8e3Mbz+h0jyWj2aSoB/RoeQhZ9RY6UH3a/1yxa26c5BV4uWkAjka/fJXbxCzNEJpmKBadz03MX5GleFM4LTUSzUmlI3pELuWShqh9rP5qVNyZpUBCWNlSxoyV39PZDTSehIFtjOiZqSXvZn4n9dNTXjtZ1wmqUHJFovCVBATk9nfZMAVMiMmllCmuL2VsBFVlBmbTsmG4C2/vEpaF1Xvslq7v6zUb/I4inACp3AOHlxBHe6gAU1gMIRneIU3RzgvzrvzsWgtOPnMMfyB8/kDCuyNoQ==</latexit>

a1

<latexit sha1_base64="Ej5GFcxi49iV/NFZDR0m8wSOaTg=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe4kooVFwMYyovmA5Ah7m7lkyd7esbsnhCM/wcZCEVt/kZ3/xk1yhSY+GHi8N8PMvCARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8e3Mbz+h0jyWj2aSoB/RoeQhZ9RY6YH2vX654lbdOcgq8XJSgRyNfvmrN4hZGqE0TFCtu56bGD+jynAmcFrqpRoTysZ0iF1LJY1Q+9n81Ck5s8qAhLGyJQ2Zq78nMhppPYkC2xlRM9LL3kz8z+umJrz2My6T1KBki0VhKoiJyexvMuAKmRETSyhT3N5K2IgqyoxNp2RD8JZfXiWti6pXq17e1yr1mzyOIpzAKZyDB1dQhztoQBMYDOEZXuHNEc6L8+58LFoLTj5zDH/gfP4A6WGNiw==</latexit>

a2

<latexit sha1_base64="PkbrtunI6oRrKRIwwqgcUYuWCXg=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5CRAuLgI1lRBMDyRH2NnPJkr29Y3dPCEd+go2FIrb+Ijv/jZvkCk18MPB4b4aZeUEiuDau++0U1tY3NreK26Wd3b39g/LhUVvHqWLYYrGIVSegGgWX2DLcCOwkCmkUCHwMxjcz//EJleaxfDCTBP2IDiUPOaPGSve0X+uXK27VnYOsEi8nFcjR7Je/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/NT52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasIrP+MySQ1KtlgUpoKYmMz+JgOukBkxsYQyxe2thI2ooszYdEo2BG/55VXSrlW9evXirl5pXOdxFOEETuEcPLiEBtxCE1rAYAjP8ApvjnBenHfnY9FacPKZY/gD5/MH6uWNjA==</latexit>

a3

<latexit sha1_base64="DDIO1gF3GBAsUVSZRSXdotEQ4Vc=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe40ooVFwMYyovmA5Ahzm71kyd7esbsnhCM/wcZCEVt/kZ3/xk1yhUYfDDzem2FmXpAIro3rfjmFldW19Y3iZmlre2d3r7x/0NJxqihr0ljEqhOgZoJL1jTcCNZJFMMoEKwdjG9mfvuRKc1j+WAmCfMjHEoecorGSvfYP++XK27VnYP8JV5OKpCj0S9/9gYxTSMmDRWodddzE+NnqAyngk1LvVSzBOkYh6xrqcSIaT+bnzolJ1YZkDBWtqQhc/XnRIaR1pMosJ0RmpFe9mbif143NeGVn3GZpIZJulgUpoKYmMz+JgOuGDViYglSxe2thI5QITU2nZINwVt++S9pnVW9WvXirlapX+dxFOEIjuEUPLiEOtxCA5pAYQhP8AKvjnCenTfnfdFacPKZQ/gF5+Mb7GmNjQ==</latexit>

Q(s, a)

<latexit sha1_base64="04QNDauUdATVHTnKjNgc0BC5Qzk=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahgpRdqejBQ8GLxxbsB7RLyabZNjabLElWKEv/gxcPinj1/3jz35i2e9DWBwOP92aYmRfEnGnjut9Obm19Y3Mrv13Y2d3bPygeHrW0TBShTSK5VJ0Aa8qZoE3DDKedWFEcBZy2g/HdzG8/UaWZFA9mElM/wkPBQkawsVKrUdYX+LxfLLkVdw60SryMlCBDvV/86g0kSSIqDOFY667nxsZPsTKMcDot9BJNY0zGeEi7lgocUe2n82un6MwqAxRKZUsYNFd/T6Q40noSBbYzwmakl72Z+J/XTUx446dMxImhgiwWhQlHRqLZ62jAFCWGTyzBRDF7KyIjrDAxNqCCDcFbfnmVtC4rXrVy1aiWardZHHk4gVMogwfXUIN7qEMTCDzCM7zCmyOdF+fd+Vi05pxs5hj+wPn8AWenjlo=</latexit>

DDPG

<latexit sha1_base64="ihr2d8tK2DT08G8ccvpWYVN7j/8=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbBU9ktih48FCzosYL9gHYp2TTbhibZJckKZelf8OJBEa/+IW/+G7PtHrT1wcDjvRlm5gUxZ9q47rdTWFvf2Nwqbpd2dvf2D8qHR20dJYrQFol4pLoB1pQzSVuGGU67saJYBJx2gslt5neeqNIsko9mGlNf4JFkISPYZFKj0bwblCtu1Z0DrRIvJxXI0RyUv/rDiCSCSkM41rrnubHxU6wMI5zOSv1E0xiTCR7RnqUSC6r9dH7rDJ1ZZYjCSNmSBs3V3xMpFlpPRWA7BTZjvexl4n9eLzHhtZ8yGSeGSrJYFCYcmQhlj6MhU5QYPrUEE8XsrYiMscLE2HhKNgRv+eVV0q5VvYvq5UOtUr/J4yjCCZzCOXhwBXW4hya0gMAYnuEV3hzhvDjvzseiteDkM8fwB87nD1PzjcE=</latexit>

(b) DDPG Architecture.

Figure 27: General Actor-Critic vs DDPG architecture.

4.7.3 Deep Deterministic Policy Gradient

Deep Deterministic Policy Gradient (DDPG) is an off-policy algorithm
used in environments with continuous action spaces that combines
some ideas from DQNs (like Experience Replay) and ideas from Actor-
Critic architectures.

When we deal with continuous action spaces, we cannot apply DQN.
In such cases we need one output neuron for each action and thus we
would need an infinite number of action neurons. DDPG solves this
by taking as input not only the state but also the action in a Critic
network that computes the value function. This network is paired to
another network, an Actor network that selects an action given the state
of the environment. Instead of taking the gradient over the weights,
we take the gradient over the actions in the Q-function: ∇aQ̂(s,a; w).
This represents the simple intuition that if we end change the action
and we end up with a higher Q value, we should change the action
on the actor. The actor should then optimise its policy parameters.
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Algorithm 10: DDPG
Result: πθ ≈ π∗
Randomly initialise critic network Q and actor µ with weights
θQ and θµ

Initialise target network Q ′ and µ ′ with θQ
′ ← θQ and

θµ
′ ← θµ

foreach episode do
Initialise random noise process N for exploration
foreach timestep t = 1 to T − 1 do

select action at = µ{st|θµ}+Nt
execute action at and observe st+1 and reward rt
store transition (st,at, rt, st+1) in the replay buffer
sample a mini-batch of K transitions from the replay
buffer

set yi = ri + γQ′
(
si+1,µ′

(
si+1 | θ

µ′
)
| θQ

′
)

Update critic by minimizing the loss:
L = 1

N

∑
i

(
yi −Q

(
si,ai | θQ

))2
Update the actor policy using the sampled policy
gradient:
∇θµJ ≈ 1

N

∑
i∇aQ

(
s,a | θQ

)∣∣
s=si,a=µ(si)

∇θµµ (s | θµ)
∣∣∣
si

Update the target networks:
θQ

′ ← τθQ + (1− τ)θQ
′

θµ
′ ← τθµ + (1− τ)θµ

′

Update policy parameters:
θ← θ+αθQ̂

πθ(s,a; w)∇θ logπθ(a | s)
Compute TD error δt
Update value function parameters:
w← w +αw δt∇wQ̂

πθ(s,a; w)

end
end

4.7.4 Trust Region Proximal Optimization

Trust Region Policy Optimization (TRPO) is an on-policy algorithm
that can be used for environments with either discrete or continu-
ous action spaces. While normal policy gradient algorithms produce
a new policy close in parameter space, this does not guarantee in
any way a potential increase in performance, actually the new policy
might be substantially worse. TRPO is an algorithm that monotoni-
cally increases performance of a policy by choosing the policy with
the best increase in performance that is not so different to the old
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policy. The performance of a policy πθ w.r.t the old policy πθold can
be measured with the surrogate advantage:

Et

[
πθ(at | st)

πθold(at | st)
Aπθ(st,at)

]
, (94)

where A is the advantage function.

While the constraint between consecutive policies is expressed in
terms of KL-Divergence, a measure of difference between probability
distributions, which determines a "trust region" around the current
policy.

Therefore, instead of using a standard gradient update, TRPO uses
a natural gradient update which maximises the performance but sub-
ject to a KL-divergence constraint between consecutive policies that
guarantees that they will not be "too different":

max
θ

Et

[
πθ(at | st)

πθold(at | st)
Aπθ(st,at)

]
, (95a)

subject to Et [KL(πθold ,πθ)] 6 δ . (95b)

In practice this algorithm is more stable than DDPG and performs
well in practice, but it is less sample-efficient.

4.7.5 Proximal Policy Optimization

Given that TRPO is relatively complicated due to the KL constraint,
we can think of using a soft constraint instead of a hard one:

max
θ

Et

[
πθ(at | st)

πθold(at | st)
Aπθ(st,at)

]
−βEt[KL(πθold ,πθ)] , (96)

or we can use a clipped surrogate objective while retaining similar
performance:

E[min(r(θ)Âθold(s,a), clip(r(θ), 1− ε, 1+ ε)Âθold(s,a))] . (97)

this variants of TRPO are called Proximal Policy Optimization (PPO)
algorithms.

These algorithms generally are simpler to implement and have a
better performance than TRPO.

4.7.6 Soft Actor Critic

The Soft Actor Critic (SAC) algorithm is an off-policy Actor-Critic al-
gorithm with a stochastic actor that takes into account the entropy
measure of the policy into the reward in order to encourage explo-
ration. Normally this influence is regulated by a parameter α, also
known as temperature parameter.
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This methods uses two value function networks, one computing the
state-value function V and other computing the action-value function
Q.

The update on the state-value function is given by:

∇ψJV(ψ) = ∇ψVψ(st)
(
Vψ(st)−Q(st,at; w)+ logπθ(at|st)

)
, (98)

while the update on the action value function is given by:

∇wJQ(w) = ∇wQ(st,at; w)
(
Q(st,at; w)− rt+1+γVψ̄(st+1)

)
, (99)

while the policy is updated in a way that minimises the KL-divergence.

4.8 imitation learning

One of the problems with the seen RL methods is their efficiency.
Many times an MDP will require a large number of samples to learn
a good policy, and sometimes this number is so big that is generally
infeasible. So learning policies guided by rewards is a good way of
supervision, however it has high sample complexity and is not par-
ticularly useful when it is very expensive or not tolerable to fail, or
when data is not cheap and is not easy to parallelize. One of the ben-
efits of such methods is that if we give the agent a lot of rewards we
an shape behaviour pretty quickly, however, the problem is that man-
ually designing the rewards is not very easy and the specified reward
may not be very robust.

An idea that popped out was to use the structure and additional
knowledge to help constrain and speed reinforcement learning. This
can be done through an expert who provides a set o demonstration
trajectories (sequences of state-actions) for the desired behaviour, this
way the rewards are implicitly specified through demonstrations. Note
that this approach is of course only useful if specifying the desired
policy or the reward is not easily achievable.

definition 19 (imitation learning problem): In an imita-
tion problem we have the following elements:

• A state space S.

• An action space A.

• A transition model P(s ′ | s,a).

• A set of demonstrations from a teacher policy π∗: (s0,a0, s1, . . .).

From this problem there have been a lot of approaches. Behavioural
Cloning tries to learn directly the teacher’s policy using supervised
learning, Inverse RL tries to recover the reward function R(s,a) that
was not specified. Apprenticeship learning via Inverse RL tries to use the
recovered reward function R to generate a good policy.
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4.8.1 Behavioural Cloning

As we briefly mentioned before, Behavioural Cloning uses an approach
that treats the problem as a standard supervised learning problem.
To do so, what we do first is to fix a policy class that will try to
learn the mapping s→ a (e.g. neural network, decision tree, etc.) and
then we just try to estimate the policy from the training data (i.e. our
expert’s state-action pairs derived from its demonstration trajectories).
However, one of the challenging aspects of this approach is the fact
that errors can compound a lot, mainly because the distribution of
states that we get depends on the actions taken, therefore a badly
selected action can take us into a state that we have never seen before
and we do not know how to act on that situation as we are imitating
and not generalising.

E[Total errors] 6 ε(T + (T − 1) + (T − 2) . . .+ 1) ∝ T2 . (100)

To try to solve this problem, some researchers have proposed a human-
in-the loop approach, where if possible, we should keep growing our
dataset by including the actions that our expert would take along the
paths taken by the computed policy by behaviour cloning.

Algorithm 11: DAGGER: Dataset Aggregation
Result: Best policy π̂i on validation
Initialise D← 0

Initialise π̂i to any policy
for i=1 to N do

Let πi = βi π∗ + (1−βi) π̂i
Sample T -step trajectories using πi
Get dataset Di = (s,π∗(s)) of visited states by πi and
actions given by the expert π∗

Aggregate datasets D← D∪Di
Train classifier π̂i+1

end

4.8.2 Inverse RL

The goal of inverse RL is to infer the reward function R(s,a) given
the demonstration trajectories. In this approach we have to make as-
sumptions about the agent behaviour otherwise we cannot learn any-
thing, in particular we need to assume that the policy followed by
the teacher is optimal. However there is a problem, there are many
reward functions that are consistent with the data.
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4.8.2.1 Linear Feature Reward Inverse RL

In this approach we consider reward is linear over features and our
goal is to find a weight vector w given a set of demonstrations.

R(s) = wTx(s) . (101)

definition 20: We represent as µ(π)(s) the discounted weighted
frequency of state features under policy π defined as :

µ(π) = E

[ ∞∑
t=0

γt x(st) |π

]
, (102)

and is something we can get purely relying on the demonstrations.

Recalling the original definition of the state-value function Vπ and
putting this together with Equation 101 and Equation 102 we obtain:

Vπ = wTµ(π) . (103)

If we recall the partial ordering of policies we know that V∗ > Vπ for
every policy π 6= π∗. Assuming that our demonstrations are from the
optimal policy, we want to find a weight vector w∗T such that:

w∗Tµ(π∗) > w∗Tµ(π), ∀π 6= π∗ . (104)

Algorithm 12: Apprenticeship Learning
Result: A policy that is as good as the expert policy π∗

Initialise policy π0 to any policy
Initialise i← 0

repeat
i← i+ 1

Find a reward function that the teacher maximally
outperforms all previous controllers:

arg max
w

max
γ

s.t. w∗Tµ(π∗) > w∗Tµ(π) + γ

∀π ∈ {π0,π1, . . . ,πi−1}, ||w||2 6 1
(105)

Find optimal control policy πi for the current w
until γ 6 ε/2
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4.9 recap

During this section we explored very in depth many concepts of Re-
inforcement Learning. The objective of this introduction was to famil-
iarise the reader, in a contextualised manner, with concepts like policy,
the general RL formulation, TD error, the eligibility traces in sarsa(λ),
actor critic architectures and the reinforce method, as several ap-
proaches for RL in SNN are inspired on such concepts. We also in-
troduced Q-learning to later introduce Deep Q-Learning, and Policy
Gradient algorithms to later introduce DDPG. These two approaches,
DQN and DDPG, will be used in Chapter 7. We also decided to briefly
talk about Imitation Learning which hasn’t been explored with SNN

and constitutes a good area for future work and approaches.



Part II

C O N T R I B U T I O N S

In this part we introduce the contributions obtained through
the research done in this thesis. In particular, in Chapter 5,
we clearly establish some links between RL, SNN and event-
based cameras and briefly explore the domains of appli-
cations of this trio of bio-inspired approaches. In Chap-
ter 6 we present feature extraction and object recognition,
a field that could benefit from these approaches and pro-
pose a new approach that uses RL, SNN and event based
cameras, while on Chapter 7, we present robot control and
some contributions which also makes use of the trio of ap-
proaches.



5
B I O - I N S P I R E D T R I N I T Y

In Chapter 2 we talked about spiking neural networks, while in Chap-
ter 3 we talked about event-based cameras also called AER sensors,
and in Chapter 4 we talked about Reinforcement Learning (RL). To
answer the driving research question of this thesis, i. e. , is it possible
to use at the same time the aforementioned trinity of bio-inspired ap-
proaches and technologies, and if so, where can they be applied, we
have to analyse each one of the technologies from a biological per-
spective since it is the level at which everything was inspired and the
commonalities or links between them are more likely to lie.

In the following sections we analyse the links between technologies
and explicit the relationships between them, which is the first theoret-
ical contribution of this thesis. In particular, in Section 5.1 we cover
the link between event cameras to spiking neural networks , in Sec-
tion 5.2 we link spiking neural networks to reinforcement learning,
while in Section 5.3 we link event-based cameras to reinforcement
learning. Finally, in Section 5.4 we take a look to all the three tech-
nologies/approaches together and briefly analyse how and in which
fields they have been jointly used.

Bio-inspired technologies

D

B

Event-based cameras

SNN RL

CA

Figure 28: Triad of approaches and their intersections.
A) Section 5.1, B) Section 5.2, C) Section 5.3, D) Section 5.4.
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As we will see, this trinity of approaches are perfectly matched
to be used together, moreover, thanks to their energy efficiency pro-
vided by their bio-inspired nature, event-based cameras and SNNs are
perfectly suited for applications like robot control where there is lim-
ited power supply, while RL ensures a simple and effective way of
learning.

5.1 linking event-based cameras to snns

Linking event-based cameras to SNNs is actually simple. Indeed all it
takes is to consider event-based cameras as something that provides
an input to spiking neural networks. From the biological point of
view, event-cameras work just like the human eyes, they provide a
visual input to the processing unit. In the biological case such pro-
cessing unit is the brain, while in our case, the processing units are
spiking neural networks.

Just like the brain is able to process also other signals coming from
other senses (smell, touch, taste and hearing), spiking neural net-
works can be used to process additional information such as the one
provided by the Inertial Movement Unit (IMU) in the DAVIS sensor.

Although the relationship between the two is very simple, the link
we can draw between event-cameras and spiking neural networks
is more significant than the one that can be drawn with a generic
type of sensor and a generic type of processing unit. In the case of
event-based cameras and spiking neural networks, both technologies
operate in an asynchronous manner and mimic in a better way their
biological counterparts. A mapping between biological structures and
neuromorphic hardware is shown in Figure 29.

Event-based cameras and SNNs not only have the general link ex-
plored until now, in fact, they also have some very well-defined and
bio-inspired links for particular applications. These special links were
conceived to increase the biological realism in which both technolo-
gies operate with the final goal of architecting a complete neuromor-
phic system which replicates both the form and function of the brain.

Over the next subsections, we will take a look at two of the most
common specialised links between event-based cameras and SNNs. In
particular in Section 5.1.1 we explore the link for object recognition
while on Section 5.1.2 we explore the link for motion estimation.

5.1.1 The object recognition link: hmax

One of those well-constructed links between SNN and vision sensors
like event-based cameras is the hmax model for object recognition.
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(a) A SpiNN-5 Development Board. (b) A representation of the human
brain.

(c) A Prophesee event-based cam-
era.

Iris

Lens

Pupil

Cornea

Blind Spot

Retina

(d) A representation of the human eye.

Figure 29: Left: neuromorphic hardware. Right: biological counterparts of
neuromorphic hardware.

Initially proposed by Riesenhuber and Poggio [42] and later ex-
tended by Serre et al. [43], the hmax model is a neurophysiologically
plausible model of visual recognition which mimics the structure of
the visual cortex. In its simplest form, this hierarchical feed-forward
model consists of four layers of computation where so-called simple
S units alternate with complex C units. These 4 layers imitate two
of the structures of the cerebral cortex processing visual information:
the Primary Visual Cortex (V1) corresponding to the first two layers
of the model (S1 and C1), and the extra-striate Visual Area (V4) corre-
sponding to the other two layers (S2 and C2).

The tasks accomplished by the layers are the following:

• The S1 layer consists of a battery of Gabor filters which have
been shown to provide a good model of cortical simple cell re-
ceptive fields [44]. These filters are selected to respond to differ-
ent orientations and scales.

• The C1 layers pool over position and scale of their S1 unit in-
puts through a maximum (max) operation, thereby increasing
tolerance to shift and size.
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Figure 30: hmax model. Image taken from Riesenhuber and Poggio [42].

• The S2 layer combines responses from different orientations us-
ing weights that are obtained through some learning stage.

• The C2 layer is used to pool all responses from all S2 units for
classification purposes, by taking a global maximum on the S2

responses.

There are more biologically complete models which include the
infero-temporal cortex and the prefrontal cortex such as the extended
model proposed by Serre et al. [43], however implementations usually
use the four aforementioned layers.

5.1.2 The motion estimation link: Reichardt detectors

Event-based vision sensors have some a special link to SNN for the mo-
tion estimation task. There are several approaches linking the two for
this task: token methods, frequency methods and correlation meth-
ods, however, the most biologically plausible link is based on Re-
ichardt detectors [45], which are hypothetical bio-inspired neural cir-
cuits for how the brain is able to track motion from a visual input.

As it can be observed in Figure 31, in such scenario, neurons have
synaptic delays instead of synaptic weights and the delays are used to
create coincidence detection of a particular motion. This connection
allows the exploitation of the sparse high temporal resolution data
provided by such sensors and the asynchronicity of the SNN model.
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(b) Example of a movement of a bar from top to bottom at a certain speed. The move-
ment causes the pixel to fire an event. By appropriately choosing the delays dij,
we can make the signal from all pixels reach the neuron at the same time, e. g. , if
the bar moves at 1 pixel/ms the delays would be dij = 3− j milliseconds.

Figure 31: Synapse delays can be used for coincidence detection. An appro-
priate choice of the delays allows a neuron to be able to recognise
motion at a given speed and direction.

One of the approaches based on this link that is worth mention-
ing, is the Spiking Architecture for Visual Motion Estimation (savme)
[46]. This bio-inspired architecture consists on two layers made up of
IF neurons with linear leakage where synapses are given a time de-
lay to create a temporal pattern. It combines 64 neurons measuring
movement at 8 speeds and in 8 different directions.

One of the disadvantages of the savme approach is that the de-
lays are hard-coded in the architecture. To address this problem, such
an architecture can be combined with a novel synaptic delay learn-
ing rules like Spike-Timing Dependent Delay Plasticity (STDDP) devel-
oped by Wang et al. [47]. This delay learning rule, which is heavily in-
spired by STDP, modifies synaptic delays instead of synaptic weights
with the update window shown in Figure 32.
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τ

(a) The STDDP delay update
function depending on the
post-pre firing time delta τ.
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(b) STDDP tries to adjust the delays so
that the delayed input spikes be-
come synchronous.

Figure 32: Spike-Timing Dependent Delay Plasticity (STDDP)
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5.2 linking snn to rl

In this section, we now focus on linking reinforcement learning ap-
proaches to spiking neural networks. As it has been mentioned repeat-
edly during the previous chapters, both approaches are bio-inspired.
For this reason, researchers have tried to link them by looking more
in depth at how humans learn from the biological point of view.
Most approaches linking both are based on modulation of neurotrans-
mitters, which are the chemical messengers that transmit a message
across a synapse.

In Section 5.2.1 we introduce three-factor rules, a model that gener-
alises many RL approaches based on neuromodulation. In Section 5.2.2,
we look more into detail modulation of a neurotransmitter called
dopamine, and an approach which uses neuromodulation of dopamine
together with the STDP learning rule. Finally, in Section 5.2.3 and Sec-
tion 5.2.4, we briefly take a look at other ways RL is linked to SNNs.

5.2.1 Three-factor Rules

One of the most important learning rules for SNNs is Spike-Timing
Dependent Plasticity (STDP), a two-factor Hebbian rule. Despite its
success, this learning rule is not able to take into account the pres-
ence or absence of a reward signal which is one of the core aspects
of RL theory and a key element to learning. In fact, animals learn by
trial and error and by reinforcing a desired behaviour with a posi-
tive reward signal. It is thought that rewarding situations are repre-
sented by changes in the concentration of neuromodulators such as
Dopamine (DA).

definition 21 (three-factor rules): Three-factor rules are a
generalisation of Hebbian rules which consider the presence or ab-
sence of a modulatory signal [48]. These rules are called in some
occasions neoHebbian rules. They have the following structure:

∆wij = α(wij) ·M · f(pre,post) , (106)

where pre denotes the spike train of a presynaptic neuron, post
the state of a postsynaptic neuron, M denotes a modulator and α a
learning rate factor.

There are multiple ways of shaping the modulatory factor, we can
use a reward signal R, a surprise/novelty factor S, the TD-error δTD,
and so on. Generally, we distinguish three main theories of three-
factor rules. The first one derives a three-factor learning rule by opti-
mising through gradient descent and can be linked to policy gradient
methods (Section 4.7). The second one uses a reward-modulated ver-
sion of STDP (R-STDP), while the third one translates the framework
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Figure 33: Release of neurotransmitters.

of Temporal Difference (TD) (Equation 53) and Actor Critic models
(Section 4.7.2) to SNNs.

5.2.2 Reward-modulated STDP

Biological synapses release a type of chemical messengers called neu-
rotransmitters upon the arrival of an action potential from the presy-
naptic neuron. As shown in Figure 33, these neurotransmitters are
diffused across the small space between the two neurons which is
called synaptic cleft and then bind to receptors on the dendrites of the
post-synaptic neurons. As a result of this binding, the postsynaptic
neuron is influenced in its behaviour and its spike-generating activ-
ity is either excited or inhibited.

It has been shown also that the release of a particular neurotrans-
mitter called Dopamine (DA), is causally linked to the expected future
reward [49]. Indeed, unexpected rewards activates midbrain dopamine
neurons, and the magnitude of the dopamine release depends on un-
expectedness of the reward.

The "credit assignment problem" is a central problem in the rein-
forcement learning literature. This problem consists in knowing how
and which of the cues and actions received prior to the reward should
be credited for it, even in situations where the reward may be de-
layed. Izhikevich [50] showed how modulating the Long Term Poten-
tiation (LTP) and Long Term Depression (LTD) components of STDP

with the neuromodulator DA is a reasonable solution to this problem.



5.2 linking snn to rl 66

The modulation of STDP with the neuromodulator DA proposed by
Izhikevich [50] in 2007, transforms the standard unsupervised learn-
ing paradigm of STDP, into a reward-based learning paradigm, it is for
this reason that is sometimes given the name of Reward-modulated
Spike-Timing Dependent Plasticity (R-STDP). This modulation is made
possible by keeping 2 variables to describe each synapse: the synaptic
weight/strength s , and c , an enzyme important for plasticity that acts
as an "synaptic eligibility trace", in addition to a global variable d

that is used to describe the extracellular dopamine.

eligibility
trace

∂

∂t
c(t) = −

c(t)

τc
+ STDP(τ) δ(t− tpre/post) ,

(107)

extracellular
dopamine

∂

∂t
d(t) = −

d(t)

τd
+DA(t) , (108)

synaptic
strength

∂

∂t
s(t) = c(t)d(t) . (109)

As we can see from the equations above, the eligibility trace is a
concept borrowed from the SARSA(λ) approach in classical RL the-
ory (explored in Section 4.4). This trace decays with a time constant
τc and suffers modifications according to the STDP 1 rule shown in
Figure 10 and when the Dirac delta δ(t) is enabled at pre and post
firing times tpre/post, dopamine decays with a time constant τd and
increases with a term DA that acts upon the arrival of the reward,
and the synaptic strength is modified only when dopamine is present
(d > 0), and when it is eligible for the reward (c > 0).

This approach has been employed by several researchers: Farries
and Fairhall [51] employed this mechanism to train neurons to gen-
erate a particular pattern of spikes, while in 2009 Vasilaki et al. [52]
explored its use on continuous space.

There are multiple implementations of R-STDP in different domains,
however not all of them assign the neuromodulatory reward signal or
use the dopamine modulation the same way. According to Meschede
et al. [53], we can classify the approaches into:

1 Classical event-based reward learning. This kind of learning is the
one that resembles the most to the classical RL framework as it
uses rewards associated to specific events.

2 Control error minimisation. The dopamine-modulated learning is
used to minimise an objective function, synapses are modified
according to their eligibility trace and the impact on the objec-
tive function.

1 We recall that STDP(τ) indicates a function which returns a value depending on the
post-pre firing delta also called inter-spike interval τ = tpost − tpre.
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illustrate this point, consider 2 neurons, each firing 1 spike per
second, which is comparable to the spontaneous firing rate of
neocortical pyramidal neurons (all layers: less than 1 Hz and
often less than 0.1 Hz, layer 5: 4.1 Hz; Swadlow 1990, 1994). A
nearly coincident firing will trigger STDP and change the
synaptic tag. However, the probability that subsequent random
spikes with the same firing frequency will fall within 50 ms of
each other to trigger more STDP and alter the synaptic tag is
quite small—on average once per 20 s (we elaborate this point
in Reinforcing a Synapse). This ‘‘insensitivity’’ of the synaptic
tags to the random ongoing activity during the waiting period is
the key feature that distinguish our approach from previous
studies (see e.g., Houk, Adams, Barto 1995; Seung 2003), which
requires that the network be quiet during the waiting period or
that the patterns are preserved as a sustained response (Drew
and Abbott 2006). In this paper, we show how DA-modulated
STDP can selectively reinforce precise spike-timing patterns
that consistently precede the reward and ignore the other
firings that do not cause the reward. At the end of the article, we
discuss why this mechanism works only when precise firing
patterns are embedded into the sea of noise and why it fails in
the mean firing rate models.
We also present a spiking network implementation of

the most important aspect of the temporal difference (TD)

reinforcement learning rule (Sutton 1988)—the shift of reward-
triggered release of DA from unconditional stimuli (US) to
reward-predicting conditional stimuli (CS) (Ljungberg et al.
1992; Montague et al. 1996; Schultz et al. 1997; Schultz 1998,
2002, 2006b; Pan et al. 2005). Our simulations demonstrate how
DA modulation of STDP could play an important role in the
reward circuitry and solve the distal reward problem.

Materials and Methods

Because details of the kinetics of the intracellular processes triggered by
STDP and DA are unknown, we suggest the simplest phenomenological
model that captures the essence of DA modulation of STDP. Following
Izhikevich et al. (2004), we describe the state of each synapse using 2
phenomenological variables (Fig. 1a): synaptic strength/weight, s, and
activation of an enzyme important for plasticity, c, for example,
autophosphorylation of CaMK-II (Lisman 1989), oxidation of PKC or
PKA, or some other relatively slow process acting as a synaptic tag

_c = – c=sc +STDPðsÞdðt – tpre=postÞ; ð1Þ

_s = cd : ð2Þ

Here and below, d describes the extracellular concentration of DA
and d(t) is the Dirac delta function that step-increases the variable c.
Firings of pre- and postsynaptic neurons, occurring at times tpre/post,
respectively, change c by the amount STDP(s) depicted in Figure 1b,
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Figure 1. Instrumental conditioning of a synapse. (a) The dynamics of each synapse is described by 2 phenomenological variables governed by equations (1) and (2): synapse
strength s and eligibility trace c, which are gated by the extracellular DA d. Firings of the pre- and postsynaptic neurons induce changes to the variable c according to the STDP rule
(shown in b). These changes result in modification of the synaptic strength, s, only when extracellular DA is present (d[ 0) during the critical window of a few seconds while the
eligibility trace c decays to zero. (c) The magnification of the region in (d) marked by *. To reinforce coincident firings of 2 coupled neurons, we deliver a reward (step-increase of
variable d) with a random delay (between 1 and 3 s) each time a postsynaptic firing occurs within 10 ms after a presynaptic firing (marked by a rectangle in c). This rare event
increases c greater than any random firings of the same neurons during the delayed period. (d) Consistent rewarding of each such event results in the gradual increase of synaptic
strength, s, which increases the probability of coincident firings and brings even more reward. The time course of a typical unreinforced synapse (not shown here) looks like
a random walk near 0. The inset shows the distribution of all synaptic weights in the network. The reinforced synapse is potentiated to the maximal allowable value 4 mV (42 out of
50 experiments) whereas the other synapses are not.
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Figure 34: Dopamine Modulated STDP, taken from Izhikevich [50].

3 Indirect control error minimisation. Changes in the synapses are
generated by a separate critic SNN.

4 Metric Minimisation. A global metric (which is easier to construct
than a controller), is minimised.

5 Reinforcing Associations. As in classical conditioning, a dopamine-
modulated synaptic plasticity rule was used to reinforce associ-
ations between conditioned and unconditioned stimuli.

5.2.3 Stochastic synapses

Operant conditioning is a process through which a behaviour is mod-
ified by means of a reward or a punishment. In such process, animals
voluntarily increase the future probability of actions that were per-
formed prior to a reward. One interpretation for this phenomenon is
because animals are hedonistic, i. e. , reward seekers.

It also happens that chemical synaptic transmission is an unreliable
process. As it has been shown by Stevens [54] in 1993, a presynaptic
terminal may release a neurotransmitter, or may fail to release it.

Other theories linking RL and SNN such as the one proposed by Se-
ung [55] in 2003, combine these two aspects: neuromodulation and
unrealiability of synapses. In this model, synapses are unreliable and
hedonistic (reward seekers), and learn by computing a stochastic ap-
proximation to the gradient of the reward with respect to the synaptic
strengths.
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Formally, in this model a synapse can be either available or refrac-
tory. When a presynaptic spike stimulates the release of neurotrans-
mitters, it does so with a probability p:

p =
1

1+ e−q−z
, (110)

∂

∂t
z(t) = −

z(t)

τz
+∆zδ(tpre) , (111)

where q is a release parameter, and z models the calcium dynam-
ics at the presynaptic terminal. The parameter z decays with a time
constant τz, and jumps by a constant ∆z when the Dirac delta δ(t)
activates at the arrival time of a presynaptic spike tpre. In order to
learn from reinforcement this type of synapse, this type of synapse
must keep another variable with similar dynamics. Such variable c
must acts as an eligibility trace and maintain a record of the synapse’s
recent releases and failures. The jump ∆c is not constant but instead
it is designed so that the eligibility trace has exactly zero mean:

eligibility
trace

∂

∂t
c(t) = −

c(t)

τc
+∆c δ(tpre) , (112)

eligibility
jump

∆c =

1− p, release

−p, failure
. (113)

If there is actually a release of neurotransmitters, the synapse enters
a refractory state and recovers with time constant 1/τr.

Plasticity is driven by the product of a learning rate η > 0, a reward
signal h(t) and the eligibility trace c(t) :

plasticity
d

dt
q(t) = ηh(t) c(t) . (114)

This approach is derived from the reinforce RL algorithm intro-
duced in Section 4.7.1. Indeed the name is an acronym for the for-
mula:

REward
Increment

=
Non-negative
Factor

× Offset
Reinforcement

× Characteristic
Eligibility

(115)
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Figure 35: Basal Ganglia.

Note that the synapses obey to the following rules:

1 The release probability is increased if rewards follows release
and is decreased if reward follows failure.

2 The release probability is decreased if punishment follows re-
lease and is increased if punishment follows failure.

It is thus the difference between the release-reward correlation and
failure-reward correlation which indicates whether the release proba-
bility should be increased or decreased.

5.2.4 Basal Ganglia

Finally, the last way to link RL to SNN that will be explored is Basal
Ganglia (BG). Basal Ganglia refers to a group of structures that consti-
tute one of the brain’s fundamental processing units. The word basal
refers to the fact that the basal ganglia is found near the base, or bot-
tom, of the brain. This group of structures is thought to be involved
in a variety of cognitive, emotional, and movement-related functions,
however, it is best-known for its role in movement.

In the Basal Ganglia, there is a region called Substantia Nigra pars
compacta (SNc) that plays an important role in reward and movement.
It contains dopaminergic neurons that release Dopamine neurotrans-
mitters that can modulate the synaptic plasticity. This dopaminergic
neurons thus allow a reward modulated synaptic modification.

Lately there have been some studies that link BG with the Actor-
Critic architecture in RL. As shown by Schultz et al. [56], the activity
of dopaminergic neurons seems to encode the difference between the
expected reward and the actual reward in a way that resembles a lot
the TD-error in RL (Equation 92). The authors point out that dopamine
responses provide enough information to implement a simple policy.
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For instance, we could take actions that are correlated with an in-
crease in dopamine and avoid those with a correlated decrease in
dopamine activity.

Vasilaki et al. [52] suggest the following synaptic update rule:

d

dt
wij(t) = α(wij) (R(t) − b) δ(t− t

f) eij(t) , (116)

where δ is the Dirac delta activated at the spike firing time tf, and
eij(t) is an eligibility trace that stores the correlation between pre-
and post-synaptic activity. If we carefully analyse Equation 116, we
can see that it has the same structure as the reinforce formulation
(Equation 115) and that the term (R(t) − b) resembles TD error.

5.3 linking event-based cameras to rl

As it was shown by Arakawa and Shiba [57], event-based cameras and
reinforcement learning can be used together by means of a deep RL

approach. In such approaches, an image-like feature can be created
out of the stream of events to work as a state representation of the
environment. In the experiments they carried out, they were able to
demonstrate that a deep RL approach (in their case: double DQN) and
an event-based camera, can in fact be used together. Moreover, it is
possible to take advantage of the increased temporal resolution of the
sensor to enable a much faster control loop which is not limited to the
typical 30-60Hz rate at which conventional RGB-cameras operate, in
addition to their power efficiency advantages.

5.4 linking the trinity

It is natural to think that a link between the three technologies is sim-
ply obtained by using data coming from an event-based camera on a
spiking neural network which learns with a reinforcement learning
mechanism, however there is a deeper link between the three tech-
nologies and is based on the biological way we learn to take actions.
As it was explained in Chapter 4, reinforcement learning is not just
about a notion of reward, but also about learning how to perform
some actions in order to maximise a reward. If we look at RL from the
big picture, we can establish some links that go beyond the learning
mechanism but concentrate more at high level on the RL paradigm.

The human brain contains a structure called the Prefrontal Cor-
tex (PFC), which is considered to be the brain region responsible
for the orchestration of thoughts and actions in accordance with in-
ternal goals [58]. This region, resembles pretty much to a policy in
the RL paradigm, since it is responsible of taking actions given a
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Figure 36: Biological vs neuromorphic control loop. It is easy to see from the
image above that a bio-inspired control loop can be achieved by
mapping of real brain structures to bio-inspired components or
concepts seen in previous sections or chapters.

state. The difference in this case, is that the aforementioned brain re-
gion works with a state representation which is given by some other
brain structures after processing the information coming from the
five senses, and the reward which is encoded through the release of
neurotransmitters like Dopamine (DA) by the Substantia Nigra pars
compacta (SNc) in the Basal Ganglia (BG).

Another difference between the PFC and a policy in a usual RL prob-
lem, is that the action stays “high level" until it is concretised by the
Premotor cortex and the Primary Motion Cortex (M1). It is these brain
structures which translate the “high level" actions into movements of
the appropriate muscles.

Given the description of multiple brain structures in this chapter,
we propose in Figure 36 a mapping of concepts which highlights the
similarities between brain structures and models, and points how a
possible bio-inspired control loop could be assembled with current
models. A general overview of how actions are taken by humans is
illustrated in Figure 37 by highlighting the relevant brain structures
involved in such process.
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Figure 37: When a human has to take an action, the visual information flows
to several brain structures, each of which perform a very particu-
lar action just to the point where an action is taken by the muscles
of the body relevant to that action. The information flows from
the retina to the Lateral Geniculate Nucleus (LGN) which is the
main central connection for the optic nerve to the occipital lobe,
particularly the Primary Visual Cortex (V1). The information then
flows to other structures of the visual cortex: the Secondary Vi-
sual Cortex (V2), the Visual Area (V4) and the Inferior Temporal
Cortex (IT) until the information finally arrives to the Prefrontal
Cortex (PFC). Influenced by the learning suffered with neuromod-
ulation of dopamine, the decision-making mechanism of the PFC

selects an action to take and contretises it by means of the premo-
tor cortex and Primary Motion Cortex (M1). Researchers estimate
that this control loop is might be pretty slow and takes about
250ms to complete [59].

It is evident that the trio of technologies can be applied in situa-
tions where robot control is involved, in addition, as bizarre as it may
sound, this trio of technologies can be used also for feature extraction
and object recognition. This is done with inspiration of the underlay-
ing working principle of the IT, which is involved in processing visual
stimuli and identification and recall of objects and where "actions" are
not concretised but simply represent a decision.
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In Chapter 6, we analyse feature extraction and object recognition
and propose, to the extent of our knowledge, the first approach com-
bining these three technologies, while in Chapter 7, we take a look
at applications in robot control and benchmark a novel RL approach
for an UAV relying on SNN having as input data event-based cameras,
with more traditional approaches. In these chapters we will combine
the technologies not with a one-to-one mapping of concepts as shown
in Figure 36 but with approaches better suited for each application.



6
F E AT U R E E X T R A C T I O N A N D O B J E C T
R E C O G N I T I O N

The novel technologies introduced in Part I have potentially many di-
verse applications. One of the research fields out of the many that can
really benefit from Event-based Cameras, Spiking Neural Networks,
and Reinforcement Learning, is Feature Extraction and Object Recog-
nition. The chapter is structured as follows. In Section 6.1, we intro-
duce some of the already existing approaches and the current state of
the art in Feature Extraction and Object Recognition for event-based
data. Then in Section 6.2, we build a new approach which takes ideas
from previous approaches, but appropriately combines them with a
RL-inspired learning rule to form a novel approach for object recogni-
tion combining the three bio-inspired technologies. Appendix E con-
tains a paper submitted for review at CVPR 1 summarising the novel
approach introduced in this chapter.

6.1 context and state of the art

Feature extraction is a field of application that builds derived values
from the input data, these derived values are called features and in-
tend to be a set of informative and non-redundant values, aiming to
facilitate subsequent learning and generalisation steps. A common
task is the extraction of visual features in images for object recogni-
tion in the visual scene. In such scenario, a set of features is extracted
in a way that their activations/presence facilitates recognition of the
particular object represented on the image in subsequent classifica-
tion and detection algorithms.

There are many feature extraction and object recognition techniques
for standard images, however, as it has been explained, event-based
cameras introduce a new paradigm and previous approaches cannot
be used. In the following sections, we take a look at some of the
approaches for event-based data that have been developed since the
spread of the technology in the scientific community in late 2000’s/early
2010’s, most of them relying on the hmax model (cfr. Section 5.1.1).

Approaches in this field can be thought to perform the same func-
tion of the Inferior Temporal Cortex (IT), which is a key region of
the ventral visual pathway in the human brain implicated in visual
processing and visual object recognition.

1 The Conference on Computer Vision and Pattern Recognition (CVPR) is an annual
conference on computer vision and pattern recognition, which is regarded as one of
the most important conferences in its field.
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Figure 38: edhmax Architecture.

6.1.1 edhmax

One of the first approaches for object classification using AER data
was introduced in 2014 by Zhao et al. [39]. This approach achieves
object classification by extracting cortex-like features with a simple
two-layered hmax-inspired model [42] followed by a Tempotron clas-
sifer [60]. Instead of processing data with a fixed number of events,
this approach is event-driven, which means that there is no clock and
events are processed continuously. Due to the aforementioned charac-
teristics we have decided to introduce edhmax (Event-Driven hmax)
as an unofficial acronym for this work, which makes further refer-
ences to this work a lot easier.

The two feature extraction layers in the model do not correspond
to the a complete model of the visual cortex (V1-V2-V4-IT) as the ex-
tended hmax model, but instead, this approach uses the simplified
architecture in the following way:

• an S1 convolutional layer that performs pattern matching on
4 scales and 4 orientations. Pattern matching is applied with
Gabor filters and are equipped with a constant linear leaking
forgetting mechanism that allows continuous processing.

• a C1 layer that encodes competition among neurons in a recep-
tive field by applying a max operation.

A peak-detection Motion Symbol Detector (MSD) is introduced to per-
form a snapshot of the C1 features, these features are encoded using
an I2L encoding, where the higher the response, the shorter the time
to first spike (cfr. Section 2.3.2).

As a classifier, this approach uses the Tempotron classifier that im-
plements a fire/not-fire learning in which updates to the weights are
done according to whether the class neuron should have fired or not,
i. e. if the neuron fires correctly (incorrectly), the weights of the affer-
ent synapses are increased (decreased). In order to reduce complexity,
this approach uses a Look-Up-Table (LUT) to store the weights and
use or update the few of them that are relevant, only when they are
needed. An overview of the approach can be seen in Figure 38.
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6.1.2 hfirst

HFirst is a spiking hierarchical model for object recognition devel-
oped by Orchard et al. [36]. It was given such a name because instead
of relying on a non-linear pooling operation such as the max opera-
tion in standard frame-based CNNs, the approach relies on the first
spike received during computation. Whilst the max operation outputs
a number representing the strength of the strongest input, the first
spike not only takes this into account (since strongly activated neu-
rons tend to fire first), but also preserves the time encoding of signal
strength. This simple temporal winner-take-all (WTA) mechanism is
used to derive temporal features for object recognition that are both
robust and have low computational cost.

HFirst is also heavily inspired from the popular hmax hierarchical
neural model [42], and consists of four layers: Simple 1 (S1), Complex
1 (C1), Simple 2 (S2), and Complex 2 (C2). The S1 layer performs ori-
entation extraction with Gabor filters at 12 orientations (every 15 de-
grees) and is followed by the C1 layer which performs the first-spike
pooling operation. The S2 layer combines responses from different ori-
entations whilst C2 layer pools across all S2 spatial locations. Usually,
the C2 layer is not used when there are multiple objects of interest
in the scene, as the layer would discard information regarding the
location of the object. An overview of the approach is in Figure 39.

The model also implements lateral inhibition to block responses
from other neurons in the same pooling area.

The training consists in using hardly-segmented events (with jAER2

[38]) and counting the number of spikes of each C1 neuron for the in-
put sample. The count is translated to synaptic weights for the S2

layer recognising a particular class.

2 jAER Github project: https://github.com/SensorsINI/jaer/

https://github.com/SensorsINI/jaer/
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6.1.3 boe

Bag Of Events (BOE) is a feature extraction method for data retrieved
with event-based cameras developed by Peng et al. [37]. Instead of
lines, corners, or other visual features, this method uses the joint
probability distribution of the consecutive events to represent the in-
put. Moreover, the method uses a soft event segmentation instead of
a hard event segmentation, meaning that it will not group the events
using a fixed time slice or fixed number of events, instead it uses a
more flexible approach through a LIF neuron. One of the advantages
of this algorithm is the fact that it is an online learning algorithm,
thus it does not require the entirety of the training data set to be
provided in advance.

The learning process has two fundamental components, one of
those is a Motion Symbol Detector (MSD), which is the LIF neuron
used to regulate the learning process. At each input event, the Post
Synaptic Potential (PSP) of the neuron increases, and once the neuron
fires (i. e. , when the PSP has exceeded a threshold), the learning pro-
cess is triggered. To be more precise, after the neuron fires, all the
events received since the last spike are grouped in the second funda-
mental component: the Segment Recorder (SR). This component keeps
count of the number of times each pixel emitted an event in a vector
called segment (thus it is a 1×m vector where m is the total num-
ber of pixels in the sensor). Segments can be seen as a bag of events
(hence the name) and can be represented as the joint probability dis-
tribution of the events e1 . . . ek in a segment sj:

sj = P(e1, e2, . . . , ek) ∀ei ∈ sj . (117)

By assuming the occurrences of the events in segments are statis-
tically independent, authors propose an event frequency representa-
tion f1j, f2j, ..., fmj as a measure for popularity, where fij is the fre-
quency of event ei within segment sj. This representation alone is
insufficient for classification purposes, for this reason they propose
a method that has the advantages of the popularity and speciality
measures:

qij = wi fij where wi = − log
n

ni
, (118)

where wi is the self-information measuring speciality, fij is the fre-
quency representation introduced before which measures popularity,
ni is the number of segments where an event ei appears, and n is the
total number of segments. Note that this method is evidently inspired
from the tf-idf weighting scheme in information retrieval [61]. If an
event ei appears in all segments, its self-information is zero.

This feature extraction method can be paired with a classifier to per-
form object recognition. Authors used a linear Support Vector Classi-
fier.
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6.1.4 hots

hots is a hierarchical time-oriented approach developed by Lagorce
et al. [62] that extracts spatio-temporal features called time-surfaces
from the asynchronously acquired dynamics of a visual scene. These
time surfaces are created with the process shown in Figure 40.
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Figure 40: The process of creating a time-surface in an R neighbourhood.
Process shown only for one polarity, however a time surface
is composed of two halves corresponding to both polarities of
events.
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Out of each incoming event, we construct a different time-surface.
We can think of learning a set of elementary time-surfaces from the
scene which can roughly represent the observed time-surfaces; such
learned time-surfaces go under the name of prototypes. For the cre-
ation of these prototypes we can use a clustering algorithm such as
the one proposed by the same authors, which classifies an event with
the closest time-surface prototypes at that moment.

Algorithm 13: Online Clustering of Time-Surfaces

Initialize pn ← 1, use first N events as initial values for Ck
foreach incoming event evi do

Compute time-surface Si
Find closet cluster center Ck (euclidean distance)
α← 0.01/(1+ pk/20000)
β← Ck · Si/(‖Ck‖ · ‖Si‖)
Ck ← Ck +α(S−βCk)
pk ← pk + 1

end

Once the prototypes have been learnt, the stream of input events
can be transformed into a stream of prototype activations feati =

[xi,yi, ti,ki] where ki is the index of the prototype.

The paper also shows that time-surfaces can be arranged to form
a hierarchical structure, where each layer computes a set of time sur-
faces, with the only difference being that hidden-intermediate layers
take as input the temporal activity of the previous layers and have
different constants for space-time integration of features defined by
the following formulas:

Rl+1 = KR · Rl ,

τl+1 = Kτ · τl ,

Nl+1 = KN ·Nl ,

(119)

where Rl defines the size of the time-surface neighbourhood, τl de-
fines the time constant for the exponential kernel,Nl defines the num-
ber of prototypes learnt per layer and KR,Kτ,KN are parameters for
the hierarchy.

We can build a histogram H that counts how many times a feature
has been activated between instants tstart and tend when an object
arrives, this will constitute their signature. This hierarchical approach
that learns features is unsupervised and paired to a classifier gives
very good results on the standard poker-dvs [63] and dvs-barrel

[36] datasets, however it is quite slow as the last layer — which is
the input to the classifier — integrates information over the longest
period of time in the hierarchy (' 1s).
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6.1.5 MuST

The Multiscale Spatio-Temporal feature representation (MuST), just
like BOE, also uses the concept of Motion Symbol Detector (MSD) in-
troduced by Zhao et al. [39] which uses a LIF neuron to achieve a soft
event segmentation, using peak detection in a certain time window.
Despite this similarity, the proposed approach streams the events seg-
ment by segment towards a couple of layers of the bio-inspired hmax

model architecture developed by Riesenhuber and Poggio [42], which
mimics the simple and complex cells in primary visual cortex, an S1
layer (4 different Gabor filters on 4 scales) and then a C1 layer (max
pooling).

The C1 features are then forwarded to a set of encoding neurons
that code features into the form of spikes with log I2L (cfr. Section 2.3.2)
and merge the multiple scale responses. This approach then detects
features in an unsupervised manner with STDP. After training, each
neuron is assigned to a class based on its sensitivity to patterns of dif-
ferent classes. The final prediction for this algorithm is determined by
averaging the firing rates of trained neurons per class and choosing
the class with the highest average firing rate.

6.1.6 Towards a new method

In Section 6.1, we briefly saw some methods for feature extraction
and object recognition on event-based data and we briefly introduced
some approaches. The question we seek to answer is whether RL can
be applied or not for such a task. To do so, we briefly analyse some
SNN-only approaches which do not use event-based camera data, but
may be useful to create a new approach.

One of the first approaches to make use of SNNs for feature extrac-
tion and object recognition with SNNs was developed by Masquelier
and Thorpe [64] in 2007. This approach took inspiration from the
widely imitated hmax model [42] and applied visual feature extrac-
tion to natural (frame-based) images. In order to learn the feature
extraction, the approach used the unsupervised learning algorithm
STDP to learn the synaptic weights between the C1 layer and the
S2 layer. Combined with a temporal coding scheme where the most
strongly activated neurons fire first, this approach leads to a situation
where neurons in higher layers become selective to frequently occur-
ring feature combinations and thus work as feature extractors after
training.

This approach clearly inspired MuST (Section 6.1.5), a modified
version that adapted the method for event-based camera sensors and
took a multiscale approach for feature extraction.
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The surge of RL approaches inspired Mozafari et al. [65] to build
a feedforward convolutional SNN which was able to perform object
recognition on natural images with an RL-inspired rule. This learn-
ing rule, called Reward-modulated Spike-Timing Dependent Plastic-
ity (R-STDP) is shown in Equations 120, 121. In simple words what this
learning rule does is to invert the polarity of the STDP learning rule
when a punishment is received.

if reward ∆wij =

A−
r ·wij · (1−wij) if tf(j) > ti

A+
r ·wij · (1−wij) if tf(j) < ti

(120)

if punishment ∆wij =

A−
p ·wij · (1−wij) if tf(j) 6 ti

A+
p ·wij · (1−wij) if tf(j) > ti

(121)

Unfortunately, the name assigned to this learning rule clashes with
the dopamine-modulated learning rule, leading to a great confusion
in the literature of which learning rule we refer to with R-STDP. To mo-
mentarily solve the clashing problem, in the context of object recog-
nition we will refer to this learning rule when talking about R-STDP,
while in the robot control domain which will be explored in the next
chapter, R-STDP will refer to the dopamine-modulated learning rule
(crf. Section 5.2.2).

This is not a very common application for RL, but while STDP per-
forms well in the detection of statistically frequent features, it fails at
detecting rare features, which might be important for decision mak-
ing. Instead of extracting features and then performing categorization
with an external classifier, this approach uses class-specific neurons
that are reinforced to fire as early as possible if their target stimulus
is presented.

Some interesting aspects emerging from experiments on this net-
work is the fact that R-STDP increases computational efficiency with
respect to STDP and it enables the network to find spatial and tempo-
ral features that are very informative for the decision making process.
Moreover, with this learning rule, it is possible to readjust the be-
haviour of neurons should the target change, even after learning to
recognise a very different behaviour (i. e. , it is possible to unlearn and
learn the new rewarding behaviours online).
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The approach uses a four-layered network based on the model de-
veloped by Masquelier and Thorpe [64] with two simple and two
complex layers. In fact, both models are very similar, but such sim-
ilarities have a reason: Timothée Masquelier, a researcher at CNRS
Toulouse, is a co-author of both papers.

• Layer 1 (S1): is a simple layer that converts the input image into
spike latencies by detecting oriented edges with 4 Gabor filters
and applying an I2L encoding scheme (i. e. the more salient an
edge, the earlier its corresponding spike is propagated).

• Layer 2 (C1): is a complex layer that performs local pooling on S1
introducing some position invariance and reducing the number
of required neurons. It also implements two kinds of lateral
inhibition: within a same orientation and between orientations.

• Layer 3 (S2): is a simple layer with IF neurons that detects com-
plex features. Neurons in this layer apply the R-STDP learning
rule on the input spikes and apply a WTA algorithm in which
the neuron that fires first is seen as the winner and is the only
one to suffer changes on its synaptic weights.

• Layer 4 (C2): is a complex layer that performs the decision-making.
Each neuron is assigned to a category and performs global pool-
ing on S2 based on the first neuron firing. The reinforcement
(punishment) is performed if the decision is correct (incorrect).

One of the main drawbacks of this approach is that it is still for stan-
dard grayscale images. It is thus interesting is to explore if it is pos-
sible to adapt the R-STDP approach to work for event-based data, in
a similar way as MuST (Section 6.1.5) did it with the STDP approach
and extend it for multi-class classification. At the moment is of great
relevance and innovativeness as the MuST approach was published
very recently (March 2020), close to the time when this work started.
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Figure 41: Overview of the ReMuS approach.

6.2 our new approach : remus

The Reward-modulated MultiScale (ReMuS) approach, is our novel
proposed feature extraction and object recognition approach that takes
ideas from previous methods and combines them together. As it can
be observed from the Figure 41, the approach consists of several
phases and different components. The overall structure is inspired
in the frequently used hmax model structure and used similarly as
in the HFirst approach (Section 6.1.2). The event segmentation idea is
taken from BOE (Section 6.1.3), the multiscale approach is taken from
MuST (Section 6.1.5) while the RL-inspired learning algorithm was
heavily inspired on the algorithm developed by Mozafari et al. [65]
(Equation 120) but is modified to prevent a dead-neuron problem.

Before delving deeper in the inner mechanisms of the approach, we
briefly list the different phases of the method:

1 The first step of the approach consists in grouping the events
using a SES approach; once grouped, we generate a grayscale
frame by integrating the events (Section 6.2.1).

2 The grayscale images are convolved with 16 different gaussian
filters, each of which detects a particular orientation at a certain
scale. Max-pooling is then performed on the feature responses
on a 2x2 region (Section 6.2.2).

3 The feature responses are encoded into spikes and scale-fusion
is performed by combining information of spikes of different
scales (Section 6.2.3).

4 The spikes are used as input for a SNN which has neurons cov-
ering a certain receptive field and implement a special kind of
synapses whose weights are trained in an RL-inspired manner.
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Event queue
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Figure 42: A threshold-based Motion Symbol Detector (MSD) used to imple-
ment a SES approach.

The first spike coming out the SNN for each pseudo-frame is a
partial prediction for the sample. The final prediction for the
sample is the most predicted class out of all the predictions for
the pseudo-frames in the sample (Section 6.2.4).

Now that we have a global overview of the approach, it is time to
look more into details each of the phases.

6.2.1 Pseudo-frame creation

The first part of the processing pipeline consists in grouping the
events in some way in order to be able to recreate a pseudo-frame
from event. In this approach, a SES approach is employed to dynam-
ically segment events into groups, in particular, a threshold-based
Motion Symbol Detector (MSD) [39] is used.

The MSD illustrated in Figure 42 is composed of two components,
an event queue and a LIF neuron. When an event is produced, the
event will be routed to two sub components, an event queue which
will accumulate events and the second component, the LIF neuron
that will tell the queue when it is time to wrap up all the accumulated
events in a batch and start all over again. At the arrival of an event,
the neuron modifies its internal state by incrementing its potential
by a certain quantity. This neuron is however susceptible to leakage,
that means the potential suffers an exponential decay with time. This
process is repeated for all incoming events. Whenever the threshold
is reached, all the events accumulated in the queue are grouped to-
gether in a batch and sent to next step in the pipeline, the queue is
cleared, and the neuron potential reset.
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Figure 43: Reconstructed pseudo-frames with a MSD (τ = 0.02, θ = 150) of a
Poker-dvs sample.

Once the events are grouped, we create a pseudo-frame by inte-
grating the events. This pseudo-frame ignores the polarity and the
temporal information of the events, the information left are the pixel
coordinates of the event. Examples of this pseudo-images are shown
in Figure 43.

6.2.2 Pseudo-frame processing

The pseudo-frames are processed with 16 different Gabor filters lo-
cated in layer S1 to compute strength of spatial features. The 16 fil-
ters correspond to filters responding to 4 different orientations and 4

different scales.

The Gabor filters were obtained with the following formulas:

g(x,y; λ, θ,σ,γ) = exp
(
−
x ′2 + γ2y ′2

2σ2

)
cos
(
2π
x ′

λ

)
, (122)

x ′ = x cos θ+ y sin θ , (123)

y ′ = −x sin θ+ y cos θ , (124)

where λ represents the wavelength of the sinusoidal factor, θ repre-
sents the orientation to which the filter is sensitive to, σ represents
the standard deviation of the Gaussian envelope and finally γ is the
spatial aspect ratio which specifies how elliptical is the support of the
Gabor function.

The parameters aspect ratio γ, effective width σ and wavelength
γ assume commonly used values in the community which are the
result of tuning efforts in previous work [43, 66]. The parameters are
listed in Table 2.

filter size 3 5 7 9

effective width σ 1.2 2.0 2.8 3.6

wavelength λ 1.5 2.5 3.5 4.6

aspect ratio γ 0.3

orientations θ 0°, 45°, 90°, 135°

Table 2: Parameters used on Gabor filters.
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Figure 44: Gabor filters of scale 7 and orientations {0, 45, 90, 135} degrees re-
spectively.

S1 Layer

C1 Layer

Figure 45: The C1 layer is responsible of pooling the S1 feature responses.

After convolving the pseudo-frame image with the 16 filters of
which an example can be seen in Figure 44 with a same padding
(meaning that the output image has the same size of the input im-
age), the C1 layer performs max pooling over non-overlapping 2x2

regions of the feature responses as shown in Figure 45.

The pooling is done on each of the 16 resulting gaborised images
showing the response for a particular scale and orientation. This pro-
cess reduces both variance and dimensionality of the convolved im-
age, being this last one effectively reduced half the original height
and width.

6.2.3 Spike encoding and multiscale fusion

In order to transform the pooled feature responses into spikes, we
need an encoding mechanism. In this case, we have several possible
encoding mechanisms (cfr. Section 2.3.2). In this case, we choose log-
arithmic I2L, which is able to spread high and low response values
better than linear I2L. In fact, it has been shown that this encoding
mechanism has a higher information entropy Hlog than linear I2L

(meaning it is more informative) [20]. A general overview of the en-
coding approach can be observed in Figure 46, while a plot of I2L and
logarithmic I2L functions can be observed in Figure 47
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Feature
responses

Spikes

Feature encoding (x, y, ori, ts(r))

Figure 46: Feature encoding. The spike timestamp ts depends on the feature
response value r. (cfr. Section 2.3.2)

r

ts(r)

Figure 47: In red I2L (Equation 14), in orange logarithmic I2L (Equation 15).
The values where both curves intersect corresponds to a value in
the x axis which corresponds to minimum response rmin and on
the y axis corresponds to the time window tw. They also intersect
on (rmax, 0).

Similarly to MuST (Section 6.1.5), once the responses have been
converted to spikes, we do not keep track of the scale at which the
response originated, thereby performing a multi-scale fusion.

6.2.4 SNN

Once the feature responses have been encoded into spikes, the spikes
are processed with an SNN. This SNN has IF S2 neurons, which cover a
certain receptive field. The ensemble of neurons covering all the input
area is called a grid. All neurons in the grid share the same weights
in order to be able to detect that pattern in the whole input region. In
order to achieve a distinction between the different classes, we need
multiple grids of neurons, k per class with k > 1.

The S2 neurons in a grid increase their potential whenever there is
a spike in their receptive field. The increase in the potential is given
by the synaptic weight of the grid in that relative position.
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C1 responses S2 Grid

Figure 48: The S2 grid contains neurons which cover the entire C1 response
region. In the particular case shown in the figure above, the grid
weights are represented as a 3x3x4 matrix which covers a 3x3

region of 4 different orientations.

The first neuron in any grid that reaches the threshold and spikes
is considered the winning neuron in a WTA setting. Since each grid
is associated to a class, the prediction is the class where the spiking
neuron belongs or silence in case of no spike. Formally:

ŷ = label(Gridm)⇔ ∃j∀l, tf(j) 6 tf(l)∧ j ∈ Gridm
∨ (125)

ŷ = ∅ ⇔ @j, tf(j) ,

where m is the index of a grid ∈ {0,K− 1}, j and l indicate S2 neuron
indices and tf(·) indicates the firing time of a neuron.

It is important to remark the fact that the only difference in each
grid of neurons is the ensemble of weights which regulates the sensi-
tivity to the C1 responses.

It is possible to get inspired from the RL-inspired learning rule de-
veloped for static images by Mozafari et al. [65]. However, in this
approach, wrong predictions can lead to a heavy decrease in the
weights which can ultimately result in grids with not spikes at all.
Since Mozafari’s rule accepts silence as a valid prediction, and does
not update weights whenever there is a silence, this learning rule is
subject to a "dead neuron" problem. We believe this is the reason why
the original paper only tackled two-class classification problems. In
a multi-class classification scenario, the method ultimately reached a
point in which it was silent for most classes.

To address this problems, we propose a variation of the existing
learning rule (Equation 120), which does not only update the grid of
the neuron that spiked, but it also may increase all the weights of the
grids associated to the correct class.
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In case of a reward (correct prediction), the grid weights update is
given by the following equation:

∆wij =

A−
r ·wij · (1−wij) if tf(j) > ti

A+
r ·wij · (1−wij) if tf(j) < ti

, (126)

while in case of punishment (wrong prediction), the weight updates
are instead the following:

∆wij =

A−
p ·wij · (1−wij) if tf(j) 6 ti

A+
p ·wij · (1−wij) if tf(j) > ti

. (127)

In addition, if there is a wrong prediction or silence,

wij + ε, ∀wij ∈ Grids(label) . (128)

With these update rules, if a reward is received (Equation 126), only
the grid containing the neuron that spiked undergoes a weight modi-
fication. This update rule increases the weights by a factor of A+

r > 0

if at a certain position in the neuron’s receptive field, there was a C1
response spike before the S2 neuron spiked (successful situation: true
positive). Given that the prediction was correct (since a reward is re-
ceived), this increase in the weights aims to reinforce the association
of certain features’ position and orientation to the class. In parallel,
this same update rule updates weights by a factor of A−

r < 0, if at
a certain position, there was not a C1 response spike before the S2

neuron spiked (silence: true negative). This decrease in the weights is
triggered so that S2 becomes sensitive only to relevant positions and
orientations, and ignores the rest of the spikes given that they might
not be class-relevant.

When instead a punishment is received (Equation 127), the weights
are updated by a factor of A−

p < 0 if at a certain position, there was
a C1 response spike before the winner neuron spiked (false positive).
This decrease prevents grids from being sensitive to irrelevant stimuli,
not useful to distinguish the different classes as it has just lead to a
wrong prediction. If at a certain position, C1 has emitted some spikes
after the winner neuron spiked (false negative), then the weights are
increased A+

p > 0 so that the neuron becomes sensitive to the a dif-
ferent pattern, which might be correct for the associated class. In ad-
dition, in case of punishment or silence (Equation 128), all weights in
grids associated to the correct class are increased by a small amount
ε so that class grids are more sensitive to this stimulus for the next
predictions.

For the two datasets tested, the receptive field was selected to be the
smallest region which can contain the entire object, more information
on the reasons behind this can be found in the experiments section.
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6.2.5 An RL approach?

It is questionable whether this approach actually belongs reinforce-
ment learning. One of the main arguments against this question is
the fact that the reward is constructed based on the training samples
and is thus just a way of supervision. However, this approach is not
only able to learn with training samples. If we do not have class labels,
we can force the reward to be always positive, this would enable only
the reward part of the method which behaves just like STDP, which is
an unsupervised learning rule. Moreover, just like in the RL paradigm
the agent is able to learn from its environment, the learning rule is ca-
pable of adapting itself to the given labels, even if they change during
the training procedure.

If we consider a definition of RL that establishes that an agent learns
by interacting with an environment and selects its actions essentially
on trial and error using feedback from its own actions and experi-
ences to maximise a notion of reward, the approach perfectly meets
the definition. In fact, the class-specific patterns are created in a trial
and error way by reinforcing weights which lead to a correct predic-
tion. By acting this way we are actually maximising the reward (since
we are reinforcing correct predictions and a positive reward is given
only in case of a correct prediction).

6.2.6 Experiments and results

In order to test the efficacy of the proposed method, we decided to
test it with the n-mnist [34] (cfr. Section D.1) and poker-dvs [63] (cfr.
Section D.2) datasets. The first dataset shows digits moving in a 34x34

pixel array obtained through saccades while the latter features pips
of cards moving on the screen.

The number of grids is chosen according to how diverse the classes
are, e. g. , if we want to classify digits from 0-9 in two classes: even
and odd, we would need at least 5 grids per class. In this particu-
lar case, since each number corresponds to a different class, we can
select 1 grid per class. Additionally we can increase the number of
grids per class to give the model opportunity to recognise variations
of the same class. In our experiments we set 2 grids per class. The
parameters of the MSD were obtained through tuning, and were the
ones which obtained the most stable pseudo-frame out of the events.

The neuron threshold parameter θ was also obtained through tun-
ing and mostly showed positive correlation on the size of the re-
ceptive field, the bigger the receptive field, the bigger the threshold
should be in order to avoid activations with only parts of patterns.
It should not be too high either, so as to allow activation of patterns
that are not necessarily composed of many spikes.
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Similarly, the R-STDP parameters were also obtained through tun-
ing. Their influence in convergence is still not fully understood since
the method has no mathematical proof of convergence or guarantees.
Roughly speaking, a+r should be positive and should appropriately
reward the spikes which help to a correct classification, in this case it
the magnitude was selected higher than a−p , the weight decrease on
punishment. If we had selected them equal in magnitude such as in
the original R-STDP formulation by Mozafari et al. [65], in multi-class
classification scenario, the knowledge obtained on a good prediction
might be forgotten due to false positives during training.

The dropout rate was selected to yield good result during training.
The decay is necessary in order to avoid the deactivation of learnt
patterns during prediction. While in the first epochs there are still
not many learned patterns, in successive epochs each grid per class
might have a slight variation of a number, if we kept the dropout quite
high, the pattern which best fits the data might be deactivated for the
sample and possibly the other slight variation might be activated and
updated, therefore "polluting" the existing pattern, or even causing
the prediction to be inaccurate.

In particular the parameters used are given in Table 3.

Parameter Description Value

grids_per_class Number of grids associated per
class

2

θMSD MSD threshold 150

τMSD MSD exponential decay time con-
stant

0.02 ms

rf S2 receptive field 11

θn neuron threshold 30

a+r R-STDP, weight reinforcement on
reward

0.075

a−r R-STDP, weight decrease on re-
ward

-0.025

a+p R-STDP, weight reinforcement on
punishment

0.005

a−p R-STDP, weight decrease on pun-
ishment

-0.04

ε R-STDP, weight increase for class-
associated grids

0.004

dropout Grid dropout rate 0.25

dropout_decay Grid dropout epoch decay 0.7

Table 3: Parameters used for the N-MNIST dataset
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rf size = 11 rf size = 9 rf size = 7

Figure 49: Class-specific pattern comparison with different receptive field
sizes on the poker-dvs dataset. The learning rule was able to find
the class-specific patterns shown above for receptive fields 11x11,
9x9, and 7x7 while it was unable to find them with a 5x5 receptive
field.

club diamond heart spade

Figure 50: Learnt grid prototypes on the poker-dvs dataset.

For the two datasets tested, the receptive field was selected to be
the smallest region which can contain the entire object. By selecting
a too small receptive field, the algorithm is likely to fail identifying
a pattern that is able to properly separate the classes. For instance, a
5x5 receptive field might identify a semicircle which looks like an hor-
izontally flipped C. Since this pattern occurs in numbers: zero, two,
three and five, it will not be helpful for differentiating these classes.
Even though it is possible to identify class-specific patterns which are
not the size of the object as shown in Figure 49, the experiments re-
vealed that a bigger receptive field size is more robust and achieves
better accuracy scores, moreover it has some extra advantages that
will be explored in Section 6.2.7.

The experiments revealed very interesting results, the method was
able to learn the proper weights that represent a whole class. In Fig-
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Figure 51: Example of two different prototypes of two digits learnt during
the training mechanism. The approach is able to learn prototypes
that represent the class, but also is able to learn different represen-
tations of the same class as it can be observed from the illustrated
representations. Top: the 2 on the left includes a loop while the
second is more straight and Z-shaped. Bottom: the 5 on the left
is more S-shaped and the 5 on the right is more rounded on the
middle-lower part.

ure 50, it is possible to observe the weights learnt during training. In
order to make the weights more interpretable, a line in the direction
of the associated Gabor filter is plotted with an opacity proportional
to the weight value. Colour has no particular meaning.

By increasing the number of grids associated to each class, we can
end up with different prototypes for a single class (Figure 51). To do
so, it is necessary to use dropout in the training process, otherwise
only one grid per class will be activated and react before the others.

Approach poker-dvs n-mnist Useful for

Zhao et al. [39] 93.00% 86.60% Classification

boe [37] 93.00% 70.43% Classification

hfirst [36] 94.00% 71.15% Classification

hots [62] 97.50% 80.8% Classification

must [20] 99.00% 89.7% Classification

remus (our work) 99.09% 84.4% ± 1.5% ∗ Classification
& Detection

Table 4: Classification performance of different approaches.

∗ due to the complexity of the neuron simulations the algorithm was only run on
a subset of the original dataset. Variations are due to the different train-test split.
Algorithm took 6 hrs to run 8 training epochs on 300 samples.
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Figure 52: Illustration of the learnt weights with one grid per class of the N-
MNIST dataset. As it can be easily observed, the weights perfectly
represent a generic shape of each number.
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(a) Detection of letter K. (b) Detection of letter X.

Figure 53: Object detection with ReMuS. The approach is not only capable of
correctly classifying very similar objects such as letters K and X,
but it is also capable of perfectly finding the location in the scene.

6.2.7 Going beyond classification: object detection

Object detection is a problem which is more complex than classifica-
tion 3. The idea behind object detection is to identify an object in a
scene (in the sense of finding its location within the scene), and get
its class. Even though this may seem a different kind of problem than
the one tackled, the proposed approach can be thought as a sliding-
window object detection approach with a fixed square size (which
equals to the size of the receptive field of the neurons). This is due
to the fact that S2 neurons are capable of identifying a class pattern
along all the input region thanks to their weight sharing mechanism.
By keeping track of the first neuron inside the grid to spike, and
appropriately choosing a receptive field which is big enough to con-
tain a class object, it is possible to transform this object recognition
approach into an object detection approach. Moreover, with an im-
plementation architecture that exploits parallelism it is possible to
reduce the computational cost.

In order to prove the added capabilities of this new method, we
perform some experiments in the dvs-barrel dataset [36] (cfr. Sec-
tion D.3).

By selecting an S2 neural receptive field of 15 which roughly covers
the size of the letters and digits in the dataset of 30x30 pixels (since
the 15x15 neurons map to 2x2 max-pooled regions), it is possible to
accurately draw a bounding box around the object in the scene while
performing classification at the same time (Figure 53).

3 Object detection is a well studied problem in frame-based data and standard deep
neural networks. One of the approaches worth mentioning is You Only Look Once
(YOLO) [68] which tackles the problem from a regression perspective where the
neural network predicts bounding boxes and class probabilities directly from full
images in one evaluation.



6.2 our new approach : remus 97

Figure 54: Multi-object detection on the original dvs barrel recording.

Note that the algorithm, as it has been explained to this point, is
only capable of identifying one object in the scene and not multi-
ple objects, to remove this limitation it would be enough to allow
multiple temporal winners during the prediction phase and prevent
neurons to fire in regions where an object has already been identified.

The importance of setting a good parameter θ, which is the neuron
threshold, becomes more important in this context as we are more
prone to have false predictions. Figure 54 shows the detection of mul-
tiple objects in the scene.

Notwithstanding the powerful capabilities of this approach, it has
the disadvantage of using the receptive field of a fixed size, making
it difficult to draw accurate bounding boxes in digits or letters which
are smaller than the receptive field. For bigger digits we can use spa-
tial pyramids and work with subsampled pseudo-images.

With tested parameters of θ = 35 and rf = 15 with all the other
parameters unchanged w.r.t. previous experiments, the algorithm is
capable of producing, considering the event segmentation of samples,
about 100 predictions out of a 0.12s sample, which potentially could
be about 845 predictions per second.4

4 Note that this number just indicates the number of potential predictions given the
Soft Event Segmentation (SES) method, under the assumption that the whole pro-
cessing pipeline manages to act real time. Under computer simulations, prediction
for a 0.12s sample requires about 26s on a MacbookPro 2016 dual-core, 8GB RAM.
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6.2.8 Going faster: event-driven prediction

Until now, we have used a SES approach to segment events and get
pseudo-frames due to the complexity of software simulations, how-
ever, it is possible to take inspiration from the event-driven architec-
ture from [39] (edhmax, cfr. Section 6.1.1) to make the approach event-
driven. To do so it would be enough to introduce a linear forgetting
mechanism on Gabor filters and use a continuous event representa-
tion like leaky surfaces, such as the time surface representation [62]
(hots, cfr. Section 6.1.4) in which the events are processed one-by-
one and the current pseudo-image decays exponentially with a time
constant τ.

6.2.9 Discussion

Event-driven approaches are relatively easy to implement with the
current implementation, but have not been explored due to compu-
tational reasons. The ReMuS algorithm was written in Python (which
does not enable very fast execution), and it uses software simulated
neurons. Due to the custom-made learning rule and in order to prop-
erly debug the approach, software neurons were not written in simu-
lators such as nest or brian, but instead were written in Python with
some efficient libraries like numba, however there were not any sort of
tricks like C-callbacks that could make it faster.

An implementation in neuromorphic hardware would solve the
problems that arise with the simulations and open the door to this
sort of approaches, which ideally would operate on the microsecond
range. By implementing such an approach on neuromorphic hard-
ware with silicon neurons, there is no need to loop over events, and
over the exisiting neuron grids one by one like on software simulated
neurons, instead, neuromorphic hardware works almost instant due
to the fact that it operates with circuits and electrical currents instead
of software simulations.

We would like to remark that this approach as well as previous
work, cannot compete at the moment with traditional methods, we
invite the curious reader to take a look at Appendix C to see non-
bioinspired methods. The objective of the research is thus to concep-
tually create new models and approaches which lay out the founda-
tions of future approaches and implementations. Only when neuro-
morphic hardware for SNNs becomes more widely available and less
expensive, is when we will be able to fully take advantage of the
power efficiency and asynchronicity which they offer.

To better understand the approach it is suggested to watch the following explanatory
video: https://youtu.be/AidIxJUFX_I

https://youtu.be/AidIxJUFX_I


7
R O B O T C O N T R O L

Now that we have explored the applications in feature extraction
and object recognition, it is time to concentrate on probably what
is the application which is best suited for the trinity of bio-inspired
approaches: robot control.

In Section 7.1, we will briefly cover the evolution of robot control
approaches using bio-inspired technologies. In Section 7.2, we intro-
duce some scenarios created to show the difference in performance
of standard RL robot control approaches and bio-inspired RL robot
control approaches when using data from event-based sensors, and
introduce the agents used from a high-level point of view. Finally in
Section 7.3 we implement the scenarios and the agents in a 3D world
simulator and compare their performances.

7.1 context and state of the art

Applications of SNN for robot control date back to the early 2000’s
where several researchers tried to use them for autonomous naviga-
tion. Floreano and Mattiussi used evolutionary methods for vision-
based SNN controllers that performed navigation tasks in different
contexts: a small two-wheeled robot navigating in a rectangular arena
with textured walls [69], and blimps and micro-flyers navigating in an
indoor scenario [70]. Di Paolo [71] performed a first attempt to control
a robot coupling STDP with an evolutionary strategy, and Florian [72]
showed that networks using STDP evolved faster (in terms of genera-
tions) than networks with static synapses. Hagras et al. [73] used an
adaptive crossover and mutation genetic algorithm on a robot with
nine ultrasound sensors and four bump sensors, to converge faster
to a solution that exhibited the desired edge-following behaviour. In
2009, Wang et al. [74] built a robot that is capable of following a wall
by using an SNN controller and 16 evenly distributed ultrasonic sen-
sors, even when obstacles are present.

Despite all these successful experiments made on robot control, at
this point, none of the researchers had used event-based camera vi-
sion sensors. As shown in previous sections, event-based cameras,
also called AER vision sensors, offer considerable advantages over
standard frame-based cameras, namely a high dynamic range, avoid-
ance of motion blur, efficiency by avoiding redundancy, and a very
low latency (microsecond range). These characteristics and the fact
that they can be processed by SNNs makes them a perfect fit for ap-

99
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Figure 55: The general simulation framework for robot control.

plication needing efficient and fast real-time computations such as
autonomous robots and vehicles, regardless of their field.

In 2013, Perez-Peña et al. [75] used DVS data to reproduce intended
movements performed by humans with a neuroinspired algorithm
(SVITE: Spike-based VITE). Some years later, in 2016, Moeys et al.
[76] used a CNN with data from a DVS to control a "predator" and
follow another which acted as a "prey", while in 2017, Blum et al. [77]
implemented a spike-based robotic controller on neuromorphic hard-
ware that is able to perform reactive obstacle avoidance and target
acquisition in an unknown environment using as sensory input just
a DVS and an IMU.

Lately, there has been a lot of interest in RL and it seems natural
to try to apply such mechanisms also for robot control. Vasilaki et al.
[52] used a SNN to control a robot in the Morris water navigation
task, a very famous task used to study spatial learning and memory
which consists in finding an invisible or visible platform that allows
the agent to escape the water. Evans [78] used R-STDP on a robot with
range and touch sensors that had to learn the correct behaviour to
collect food items (avoid poison, empty containers, etc.), while some
other researchers like Rosenfeld et al. [79] attempted neuromorphic
control using policy gradient-based algorithms for SNNs.

It was not until Kaiser et al. [80] developed a framework to evaluate
neural self-driving vehicle applications that approaches combining
SNN, RL and AER sensors really began to emerge. This framework,
shown in Figure 55, consists in using the Robot Operating System
(ROS) as a communication middleware between a world simulator like
Gazebo or V-REP which represent both the environment and the agent,
and an SNN that controls the agent. In such framework, the simulation
data is passed to the SNN who then takes the actions needed (such as
steering commands), and sends them to the simulated vehicle.
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The vehicle in the framework is a Braitenberg-like vehicle with
two wheels and a simulated DVS camera. The event-based camera
is obtained by subtracting consecutive frames of a video stream and
keeping pixels which have a difference (positive or negative) with an
absolute value greater than a given threshold. This loses the asyn-
chronicity of the sensor but allows a close simulation of this novel
visual sensor. The vehicle has two motor neurons, whose activity is
used to control the steering angle of wheels of the vehicle with muscle
modelling.

These motor neurons also set the speed. The speed is inversely
proportional to the steering angle and keeps history of the last com-
mands in order to make smooth transitions.

This framework inspired Bing et al. [81] to improve the original
paper baseline. Instead of picking a set with handpicked-weights, the
authors translated policies learned with standard Deep Q-Learning to
an SNN and explored SNN learning rules such as R-STDP (Section 5.2.2).
With the same inspiration, Bing et al. also explored R-STDP on a snake-
like robot used to perform target tracking tasks. Such experiments
inspired in turn Tieck et al. [82] to use R-STDP on a robotic arm that
needs to reach a target and to perform manipulation tasks.

The simulation framework has shown how it is possible to structure
simulations with these technologies. It is therefore highly relevant to
create some new scenarios and test whether novel approaches using
R-STDP are in effect better than standard RL approaches as there has
been very few research on this topic.

7.2 uav robot control

In order to demonstrate the usefulness of R-STDP in robot control,
and its superiority with respect to traditional reinforcement learning
algorithms, we developed for this thesis two scenarios that need to
be accomplished by an Unmanned Air Vehicle (UAV), in particular by
a Quadricopter, having as a constraint the use of data gathered from
an event-based camera as an only input for the algorithms.

From a high-level overview, the simulations are based on the self-
driving vehicle simulation framework (cfr. Figure 55), which behaves
similarly to the standard RL framework as seen in Figure 56.
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(a) The standard RL framework.
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(b) The high level simulation framework for an SNN agent.

Figure 56: RL Frameworks for standard and SNN agents.

The tasks to be accomplished by the UAV are the following:

1 A ball-following task. The objective of this task is to train a UAV

controller to keep a moving ball always in the camera’s field of
view. The idea of this task is to replicate the working mechanism
of "follow-me" drones that are able to keep track of target-object
(generally the user, in outdoor sports settings) despite erratic
and high-speed movements. In this case, we chose the target
object to be a ball, which during the simulations follows a pre-
defined path that is unknown to the UAV.

2 A line-following task. The objective of this task is to follow a
line painted on the floor. The drone moves forward at a con-
stant speed and the controller must learn when to move left or
right and rotate left or rotate right in order to follow the line as
precise as possible (centered and at a 90 degrees orientation).

These tasks are not particularly hard to solve, in fact, both tasks
can be solved easily with human knowledge of the task and by the
assignment of static weights to the SNNs. The idea of these scenarios
is thus to demonstrate the learning capabilities of the approaches to
be tested, to see whether they are able to outperform the human so-
lution, to understand how long they need to be trained, and how the
approaches are ranked among themselves.
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Figure 57: SNN agent network overview.

7.2.1 The standard RL agents

The standard reinforcement learning agents will be Deep RL agents
that take a vector as input, and output an integer (in case of discrete-
action compatible approaches like DQN ), or a floating point vector (in
case of continuous-action compatible approaches like DDPG ).

In order to create the input vector, we will not create a full image
out of the events as it would make the input dimension too big and
possibly too complex to learn a policy, also the use of CNN is super-
fluous as the state is not complex enough to require their use and it
would only make the training longer and will make the prediction
phase slower. Instead, the input DVS grid will be partitioned in some
regions, each region will measure whether there is an event during
that step and use as an input a vector of 1s and 0s containing whether
the regions have experienced an event or not during the simulation
step.

7.2.2 The snn agent

The SNN that will be used for the simulations will transform the
events received into a particular event representation. The input DVS

grid will be partitioned in some regions, and each region will count
the number of events that have occurred in that simulation step. Each
of the regions will be associated to a neuron, that will encode the
event count using a rate coding mechanism 1 and generate a certain
spike train. These neurons will be connected in an all-to-all manner to
a set of output neurons as shown in Figure 57. The synapses connect-
ing the neurons associated to the DVS regions and the output neurons
have synaptic weights which are trained with the R-STDP/dopamine-
modulated learning rule (Section 5.2.2).

1 Since we already lack the temporal aspect of events due to the nature of simulation,
the best model that encodes the intensity of events in a certain region is the Poisson
model which maps to rate coding.
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Figure 58: The general design framework for robot control developed by
Meschede et al. [53].

The general design framework used for the SNN agent was the one
suggested by Meschede et al. [53] and shown in Figure 58. This frame-
work consists on a four-step process that starts by determining the
network model and determining the appropriate neuron model for
each layer (in this case feedforward and IF neurons). The second step
consists in choosing an appropriate learning algorithm and a proper
initialisation for the neurons in the layers (R-STDP and fixed initiali-
sation with a weight value at the middle of the allowed value range
[min, max]). The third step is performing the learning on the network
by properly showing the target to the network, propagating an error
or reward signal and reset the environment in episodic tasks. While
the last step consists in validation of the network in a pre-defined
scenario and exploration and optimisation in unknown scenarios.

Of course we also need to find a way of representing information
of the environment (be it physical or simulated) in the activity of
a neuron (neural encoding), and a mechanism that interprets neuron
activity and translates that activity into electrical signals that drive
actuators (neural decoding). This was briefly covered in Section 2.3. In
our case, we use a rate coding mechanism and a muscle modelling
decoding which will be explained into details in Section 7.3.5.

7.3 experiments

Before delving deeper in the scenarios and the intricacies of the algo-
rithms, we briefly introduce the different software and libraries used
for the simulation, explain what they are, how they work, and how
they can all be linked together so that their interaction results in sim-
ulations that are as lifelike as possible.

The technologies used for the simulation were not arbitrarily cho-
sen, instead, they were based on the simulation framework developed



7.3 experiments 105

Ubuntu 18.04 LTS

How?

ROS melodic

Python 3.7

NEST 2.20.0
CoppeliaSim 4.0.0 

(V-REP)Robot simulation 
environment with 

physics engine  
(Bullet 2.78)

Acts as Pub/Sub broker 
for message passing

Figure 59: Software stack overview.

by Kaiser et al. [80] and on previous work. To be precise, the software
used for the simulation is described in Figure 59.

Each piece of software is responsible for some very specific task
in the simulation. All the algorithms were developed in Python 3.7
and can be run from a GUI, a Jupyter notebook, or a simple script.
CoppeliaSim is a robot simulator and is explained in more details in
Section 7.3.1. The Robot Operating System (ROS) manages communi-
cation between the simulator and the algorithms and is explained in
Section 7.3.3, while NEST is an SNN simulator and is explained in Sec-
tion 7.3.4. In this same section, we explain the implementation of the
SNN explained from a high-level view in Figure 57.

In Section 7.3.5, we describe how the output spikes are encoded to
an action. In Section 7.3.6, we explicitly mention the simplifications
used in the simulation scenarios. In Section 7.3.7, we introduce a layer
of abstraction used to communicate with the world simulator. Finally
in Section 7.3.8, we show the results for the different agents imple-
mented.

7.3.1 The simulator: CoppeliaSim

CoppeliaSim, previously known as Virtual Robot Experimentation
Platform (V-REP), is a powerful cross-platform robot simulator soft-
ware developed by Coppelia Robotics. It is a complete 3D robot simu-
lation software, with an integrated development environment that al-
lows to model, edit, program and simulate almost every aspect of any
robot or robotic system (e.g. sensors, dynamics, properties, etc.). It is
an alternative to Gazebo, the robotic simulator by the Open Source
Robotics Foundation (OSRF).

Each simulation in CoppeliaSim has a certain temporal resolution,
accurateness and Physics Engine among Bullet, ODE, Newton, and
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(a) CoppeliaSim was born as a fork of the V-REP project
which offered more features and some improvements that
make it run faster with respect to V-REP. The transition
occurred on the release of v4.0.0 and all the previous code
is 100% compatible.

(b) Default parameters for simulation and the ones used on
this work.

(c) A simple scene with a quadricopter. Objects
like floor, cameras and lights are added by
default when a new scene is created.

Figure 60: CoppeliaSim

Vortex, which determine the general parameters of the simulation.
The parameters used for the simulations are the default ones which
are shown in Figure 60b.

7.3.1.1 Scenes

Inside the simulator, we can create a scene file (.ttt file extension)
which includes the main elements that allow us to appreciate a sim-
ulation: the floor, the objects which are part of the simulation, a light
that illuminates the scene, some cameras that allow us to view the
scene, some pages with views that make it easier to visualise relevant
information, graphs, and so on. An example is shown in Figure 60c.
We create a scene for each of the two tasks.

7.3.1.2 Behaviour

The objects inside a scene can have a child-script which specifies
their behaviour. This script represents a small collection of functions
and routines written in a a not so popular, but powerful, efficient,
lightweight, embeddable, multi-paradigm programming language called
Lua.
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Figure 61: Note that the actuation phase comes before the sensing phase
as performing actions in a reverse order might end up with an
incoherent display of an object. For example an object could have
measured 10m to the wall but then moved 1m towards the wall,
at the end of the loop we will have 10m sensed but will see only
9m of distance to the wall.

Through this script we define 4 fundamental callback functions
which are useful to describe the behaviour of each of the objects in the
simulation: the drone, the DVS camera, the ball, etc. These 4 callback
functions are:

• sysCall_init(), this callback function will be executed just one
time when the child script is called for the first time. The call
to the child script is not necessarily at the beginning of a simu-
lation, this is due to the fact that scripts can be called or added
in the middle of a simulation. In case of complex models like a
drone, this part of the simulation is responsible of getting han-
dles to sensors or actuators and specifying constants. Handles
are integer numbers that work as an internal reference pointer
for an object:

sensorDVS128=sim.getObjectHandle("DVS128")

once we get the handle by getting it with the object name, we
can call methods on the handle as it was the object itself.

• sysCall_actuation(), this callback function will be executed in
each simulation step, during the actuation phase of a simulation
step. It is responsible of handling the dynamics and kinematics
of the object.

• sysCall_sensing(), this callback function will will be executed
as well in each simulation step, but in this case during the actu-
ation phase of a simulation step. The code is thus in charge of
handling all the functionality regarding sensors like proximity
sensors, and collision detection.

• sysCall_cleanup(), this callback function is executed just one
time before a simulation ends. The code is usually in charge of
restoring object’s initial state, configuration and parameters.

Note that there is a very specific order in which callbacks are exe-
cuted, this order is shown in Figure 61.
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7.3.1.3 The Scenarios

Ball-following scenario

In the Ball-following scenario shown in Figure 62 and Figure 63, a
blue ball/sphere follows a Bezier curve defined by 8 control points
which are positioned in a four-branch star shape. The goal of this
scenario is to move the position of the drone so that the ball is al-
ways located at the center of the DVS sensor in a similar way to how
a "follow-me" drone operates.

Figure 62: Overview of the ball-following task.

Figure 63: The ball moves at a speed of 0.075 m/s along a path that is invis-
ible to the drone. The altitude of the drone is fixed at 2.4m from
the ground. The episode finished whenever the ball is not in the
field of view or when a lap to the path has been completed.
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Line-following scenario

In the line-following scenario shown in Figure 64 and Figure 65,
the drone must follow an hexagon-shaped line and move itself in a
way that the line is always kept at the center and in the best orienta-
tion possible (i.e. 90 degrees when there is a straight line). The drone
moves at a constant speed and chooses whether to go left or go right
and/or rotate at each timestep.

Figure 64: Overview of the line-following task.

Figure 65: The drone moves forward at a speed of 0.075 m/s. The altitude of
the drone is fixed at 2.4m from the ground. The reason why the
line is shaped like an hexagon is due to the fact that the curves cre-
ated by such shape have an angle greater than 90 degrees which
allows the estimation of orientation of the line in the scene. This
is needed to assign a reward. In scenarios with different shapes,
the drone must be close enough to the line so as to only see one
line and not two like in a very arched curve. The episode finishes
when the line is not in the drone’s field of view or a lap has been
completed.
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(a) The simulated model of a DVS camera has by default a "128x128" resolu-
tion, a perspective lens angle of 65 degrees and a near/far clipping plane
of (0.05, 2) meters.

(b) Left: a standard vision sensor simulation on CoppeliaSim. Right: the DVS sensor
simulation of the same scene with positive events represented as white pixels and
negative events represented as black pixels.

Figure 66: Simulated DVS camera model

7.3.1.4 The Event-based camera

Since July 8th, 2013, CoppeliaSim has a Dynamic Vision Sensor (DVS)
model as a courtesy of IniLabs, which is a spin-off company of the
Institute of Neuroinformatics at the University of Zurich and ETH
Zurich (Tobi Delbruck et al.). The DVS camera is located under:

models/components/sensors/DVS128.ttm

Some simulations performed with this sensor can be seen in Fig-
ure 66b.

7.3.1.5 The Drone

The drone used for the simulations is provided by courtesy of Eric
Rohmer and is located under:

models/robots/mobile/quadricopter.ttm

Figure 67: The model of the drone has 4 propellers in an H frame.
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Figure 68: The UAV model used for the simulations.

Move forward

Move Right Move Left Go up Go down

Move backwards Rotate Left Rotate Right

Figure 69: Movements of a quadricopter. Red arrows indicate a higher pro-
peller speed.

7.3.2 The UAV

The Unmanned Air Vehicle (UAV) in the simulations consists in the
quadricopter drone described in Section 7.3.1.5 which has attached a
DVS camera sensor described in Section 7.3.1.4. The camera is placed
on the front of the quadricopter, on the supporting bar, with an incli-
nation of 30 degrees as shown in Figure 68.

In order to induce directed motion in a drone, one must control
very carefully the speeds of each one of the propellers. This is shown
in Figure 69. But in order to simplify the scenarios, we do not con-
trol manually each of the propellers, but instead the movement com-
mands are given at a high level (move right, move forward, rotate
right, or move 1.4 units to the right/left, etc.). It is the internal PID
controller provided with the model that ensures a smooth transition
and control of each of the forces of the propeller. Note that this sim-
plification has multiple purposes. First and foremost, it avoids a lot
of training since there is no need to learn the speeds for correctly
hovering the drone and the associations needed to create a certain
movement, and secondly it avoids abrupt movements as there is a
smooth transition towards the target. Thanks to this simplifications
the learning task can focus on which actions to take, instead of need-
ing to learn how to perform the actions.

As a further simplification for all scenarios, the z (vertical) coordi-
nate of the drone is fixed, leaving as only degrees of freedom move-
ments relative to the drone’s x and y axis, and the rotation α (normal
to the z axis).
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Figure 70: This is the graph created by the command rqt_graph in a ball-
following simulation. It is the easiest way to visualise the publish-
subscribe relationships between ROS nodes (ellipses).

7.3.3 ROS

The Robot Operating System (ROS) is an open-source, meta-operating
system for robots which provides several services including: low-
level device control, message-passing between processes, code writ-
ing, code building, and package management, etc.

Among its many goals, ROS intends to help roboticists to design
complex software by providing an abstraction of small and indepen-
dent software programs called nodes. These nodes communicate with
one another and do so with what is called ROS master or roscore.
Once this master node is active, it is possible to run other nodes (pro-
grams that use ROS).

The primary mechanism that ROS nodes uses to communicate is to
send messages which are organised into topics. These topics act with a
standard publish/subscribe mechanism and have a specific message
type.

As it can be observed in Figure 70, in order to receive and send
messages for the simulations, we need a couple of ROS nodes: one
in the CoppeliaSim simulator which is created by the plugin called
ROSInterface and another which is created in Python, and which in
the example above takes the name of dvs_controller.

As stated before, each message has a type which contains the for-
mat of each one of the fields. It is possible to create custom mes-
sages, however, it is possible to use some of the already existing mes-
sage packages provided by ROS like: geometry_msgs, sensor_msgs, or
std_msgs.

Example of a ROS message type:

geometry_msgs/Vector3

f l o a t 6 4 x
f l o a t 6 4 y
f l o a t 6 4 z
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Figure 71: NEST simulator logo. The NEST simulator is maintained by the
NEST Initiative who has advanced computational neuroscience
since 2001 by pushing the limits of large-scale simulations of bio-
logically realistic neuronal networks.

7.3.4 NEST network

The NEural Simulation Tool (NEST) [83] is a simulator for spiking
neural network models which tries to follow the same logic of an
electrophysiological experiment, however instead of performing the
simulation in the physical world, the simulation takes place inside
the computer.

This simulator makes it possible to run SNN simulations through
high-level Python scripts. However, Python code allows for dynamic
typing and is not compiled, introducing a significant overhead when
running simulations and interpreting the code at runtime, for this
reason, in order to obtain the best possible performance for the simu-
lations, the simulator generates code from the user-written functions
into an intermediate simulation language which is then run with an
interpreter written in C++. This is done under the hood and it is com-
pletely transparent to the end user. Moreover, recent developments
have significantly improved memory management and therefore re-
duced memory requirements. As a consequence of this highly effi-
cient implementation, NEST has been able to simulate more than 1.73

billion neurons connected by 10.4 trillion synapses on a Japanese su-
percomputer [84] and allows thousands of neurons on a standard
desktop computer.

import nest

# Integrate and Fire Neurons

neuron1 = nest.Create("iaf_psc_alpha")

neuron2 = nest.Create("iaf_psc_alpha")

voltmeter = nest.Create("voltmeter")

# Initial state properties

nest.SetStatus(neuron1, {"I_e": 1000.0})

# Synapses

nest.Connect(neuron1, neuron2,

syn_spec={’weight’: 20, ’delay’: 1.0})

nest.Connect(voltmeter , neuron2)

# Simulate Network

nest.Simulate(100.0)

Code Snippet 1: A simple NEST simulation with two IF neurons.
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Figure 72: NEST implementation overview of the SNN network used for both
scenarios. From a high level overview, the network simply con-
sists in an input layer which is based on 64 partitioned regions of
the DVS pixel array performing event count which are connected
in an all-to-all manner with stdp_dopa_synapse synapses to a set
of output neurons.

NEST is not the only SNN simulator, indeed there are other simu-
lators such as Nengo, Brian, and NEURON, however, what makes
NEST very useful is the fact that it provides a large set of tested neu-
rons and synapses. In particular, for the two scenarios, we will use
the stdp_dopa_synapse2 which implements the R-STDP algorithm pro-
posed by Izhikevich [50] which was described in Section 5.2.2.

The network used for both scenarios is shown in Figure 72. We
use a pair of neurons in the output layer for each of the degrees of
freedom which will be used to power the action model explained in
Section 7.3.5, and the input layer is a set of Poisson neurons, this is
because the event count is transformed into a rate for the neurons
and set at each simulation step.

The way that NEST handles output from Poisson neurons 3 is that
it generates a different spike train for each of the receiving (post-
synaptic) neurons, we want to avoid this as each output neurons
would see a different input spike and may behave differently in case

2 stdp_dopa: nest-simulator.readthedocs.io/en/nest-2.20.1/models/stdp.html
3 Note that by using Poisson neurons implies we use rate coding instead of temporal

coding. Even though temporal coding has been shown to be more informative than
rate coding [85], in this case, the information encoded to spikes lacks by the temporal
aspect. We use rate coding since the event count is used to generate a spike train
and we do not care so much about the actual instant at which spikes are sent but
the number of spikes per unit of time (rate) which is proportional to the event count
value.

https://nest-simulator.readthedocs.io/en/nest-2.20.1/models/stdp.html#_CPPv4N4nest24STDPDopaCommonPropertiesE
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Figure 73: The action model for the SNN agent.

of leakage. In order to avoid this, we use what is called Parrot Neu-
rons, which merely repeat the same spike train to all post-synaptic IF

neurons. Finally, we use a spike detector to measure the number of
output spikes from the output layer.

7.3.5 The action model

In case of a continuous action set, the action model contains a pair of
neurons in the output layer for each of the 3 degrees of freedom. The
bio-inspired UAV agent uses the spikes of an SNN to take actions. The
action is performed with a muscle modelling decoding based on the
amount of spikes emitted for each of the neurons. This approach is
given by the following formula:

nspikes(positive) −nspikes(negative)

nmax_spikes
, (129)

where positive and negative indicate the positive and negative direc-
tion for each of the degrees of freedom (e.g. for the x axis, right is
positive and left is negative), while the max number of spikes de-
pends on the simulation time and the refractory time of the neurons.
As we can observe from Figure 73a, it is not the actual number of
spikes that matter, but the delta between the spikes of the neurons
relevant to a degree of freedom.



7.3 experiments 116

In a discrete action environment, we use actions with some kind of
number association (one-hot encoded in the approach). For example
in the ball-following scenario, we use the following actions:

1 ← - go left

2 → - go right

3 ↑ - go forward

4 ↓ - go backwards

9 ∅ - do nothing

5 ↗ - go northeast

6 ↖ - go northwest

7 ↘ - go southeast

8 ↙ - go southwest

Note that the diagonal actions are needed as even though the same
result can be achieved by a combination of lateral and vertical move-
ments, such movement is impossible to achieve in a single step, which
is possible in the continuous scenario.

In a very similar way, we define the actions for the line-following

scenario, just that in this case, since the drone constantly moves for-
ward, we would only have lateral and rotation movements and their
combinations as available actions.

7.3.6 The simplifications

In order to make the simulations tractable, we performed two main
simplifications:

1. In the ball-target scenario, the background was set as non-renderable
so it does not generate any events. This simplification is needed
to reduce the computational power required, the background
generates many noisy events and makes the simulation stutter.
This simplification can be solved in a real-life implementation
by filtering noise events. In Appendix B, we propose a new kind
of noise filter that addresses this limitation and is even helpful
for some object recognition approaches.

2. We deliberately restrict the drone from rotating in the ball-
following scenario, even if in real life a drone is able to rotate,
by letting the drone rotate, we make the control problem an
ill-posed problem since there are many solutions. This multiple
solutions add complexity to the training phase which may ele-
vate training hours to an unfeasible quantity. The only degrees
or freedom for this scenario are thus movements along its x and
y axis.
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7.3.7 The environment

In order to provide a layer of abstraction on the robotic simulator,
all the logic involving the simulator: scenes, object interaction, dy-
namics, reward and so on was encapsulated in a Python file called
environment.py. The idea of this layer of abstraction is to provide an
environment which behaves almost identically to an OpenAI Gym En-
vironment [86] on which standard RL-algorithms are normally used
and tested.

env = CoppeliaSimEnvironment()

for episode in range(n_episodes):

state = env.reset()

done = False

episode_reward = 0

while not done:

action = agent.choose_action(state)

new_state , reward, done, info = env.step(action)

episode_reward += reward

# some learning mechanism on the agent ...

Code Snippet 2: This generic “while" loop abstracts all the working mecha-
nisms of the simulator. The only part left to implement is
an agent which chooses the action to take at the next step
of the simulation.

Internally, the environment.py file has a hook to the CoppeliaSim
simulator achieved through a remoteAPI set of files and configura-
tion. The hook allows the Python script to start and stop the simula-
tion as well as to dynamically load the scene.

/

remote_api

simConst.py

sim.py

remoteApi.so

Figure 74: In order to execute actions like loading a scene, starting and stop-
ping the simulation, these 3 files are needed. The simConst.py

file contains constants among which there are constants defin-
ing command return codes. The sim.py file is a Python wrapper
which calls C-functions contained in the remoteApi.so library file
provided with the installation package. Note that due to the com-
piled nature of C, this last file is OS-dependent, for MacOS it has
a .dylib extension, while for Windows it has a .dll extension.
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As we just mentioned, all the complexity of the simulator is ab-
stracted in an environment.py file. However, it is now time to explore
how this file handles multiple things among which is the model of
the state, the communication with the simulator for receiving and
sending data through ROS, the computation of the reward, and so on.

Each environment.py file is responsible of performing the follow-
ing tasks:

1 Creating the needed ROS publishers and subscribers.
In order to receive data from the simulation and to send the
actions that the drone needs to perform in the next simulation
step, the environment script is responsible of subscribing to at
least 2 topics (one to get the DVS data and another determining
when to stop the simulation), and of publishing to one topic the
action to take.

2 Specifying the callback functions.
Each of the ROS subscriptions needs to specify a callback func-
tion which implements the logic to be executed when a message
of that topic is received.

self.dvs_sub = rospy.Subscriber(’dvsData’,

Int32MultiArray ,

self.dvs_callback)

self.reset_sub = rospy.Subscriber(’reset’,

Bool,

self.reset_callback)

self.action_pub = rospy.Publisher(’action’,

Float32MultiArray ,

queue_size=1)

Code Snippet 3: In both scenarios, each environment has at least 2 sub-
scribers and one publisher. The first subscriber listens to
the topic where the DVS events are sent while the second
subscriber signals whether the scenario has ended (reached
a terminal state). The publisher on the other hand is respon-
sible for sending the action. Note that the type of message
depends on whether the environment is using a discrete ac-
tion set (that would just use an Int) or a continuous action
set (e.g. a Float for each propeller or direction).

3 Computing the reward.
Once an action has been executed, the file should compute the
reward by using the state and some additional information. This
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Figure 75: Left: an image of a ball in a scene without any object detection
algorithm. Right: the bounding box found with the OpenCV func-
tion in CoppeliaSim.

additional information can be obtained by using a new sub-
scriber which provides this additional information.

A) Ball-following task.
In the case of the ball-following task, the wrapper uses an
additional subscriber which receives data from a standard
image sensor. This standard image sensor performs object
detection on the current image using the OpenCV library
[87] and draws a bounding box around the target as shown
in Figure 75. The scope of this additional image sensor is to
understand the exact location of the object in the scene and
how far the object is from the camera sensor. Note that this
wrapper is used only for computing a reward. Once the
training phase is over, the drone does not need at all such
sensor to choose the action to take at a given state.

Since the aim of this scenario is to keep a ball at the center
of the DVS image sensor, for the reward computation we
consider as an ideal situation an instant where the center
of the ball’s bounding box obtained from the additional
subscriber is at coordinates 63x63px which is the center of
the DVS Sensor, and the height of the bounding box is 13px
tall. This last condition is to avoid being too close or too far
from the target, since otherwise it is possible to keep the
ball at the center regardless of the what is the distance to
the ball.

The reward is computed differently for traditional RL - al-
gorithms and for SNN algorithms. The reason of this differ-
ence is due to the fact that the SNN algorithm requires the
assignment of a reward for each of the neurons involved
in the network deciding the action taken. The reward is
defined linearly dependent on the robot’s distance to the
ball center. Neurons associated to different directions of
the same axis receive the same reward but opposite in sign.
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Figure 76: DVS sensor partitioned into 16x16px regions. The state is thus
represented by a vector of 64 integers, where each integer repre-
sents the event count inside a region in the grid, independent of
the polarity.

B) Line-following task.
Since the objective of the line-following task is that the
drone follows a line, the reward computation considers as
ideal a situation in which the angle of the line in 90 de-
grees vertical and the line is located at the center of the im-
age sensor (pixel 63). In order to compute the position and
the angle of the line, the wrapper uses an additional sub-
scriber which receives data from a standard image sensor
which performs canny edge detection and Hough Lines
Transform on the current image using the OpenCV library.

4 Taking a step.
Once the agent has given an action, the wrapper should publish
the action to the simulator, wait for the new data collected after
executing the simulation. Use the callback functions to adjust
the current state and return a new state, a reward, a termination
boolean (the episode is terminated when the line or the target
ball is not within the field of view of the DVS sensor, or when a
lap is completed), and some additional information for metrics.
Inside this function, there is a very important command:

rate.sleep()

which basically allows the step loop to run at nearly (best effort)
the exact rate (in Hz) that has been specified while initialising
the rate object (e.g. rate = rospy.Rate(50)).

5 Computing the new state.
The event camera outputs events. In order to transform the data
received from the simulation to something that resemble more
a standard state that can be used by algorithms, we decided to
partition the 128x128 pixel grid into an 8x8 grid where each cell
counts all the events happening in its 16x16 region of interest
as shown in Figure 76.
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7.3.8 Experiment results

As it was explained in the last section, thanks to the environment
abstraction, all we need to do is to implement an agent which encap-
sulates the logic for taking actions in the environment. The agents
implemented for the ball-following and the line-following task were
the following:

• A DQN agent (explained in Section 4.6.5).

• An SNN agent using synapses with static weights set with hu-
man knowledge of the problem.

• An SNN agent using R-STDP synapses for learning.

• A DDPG agent (explained in Section 4.7.3).

ball-target scenario

In order to demonstrate the difference in performance between the
several available methods, we compute the average euclidean error/dis-
tance to the target. Since we want the ball centered, what we would
like is thus to have the center of the ball positioned close to the middle
of the DVS pixel grid.

To understand also a bit more the performance of the algorithms,
we plot the density heatmap of the ball-positions, with a darker colour
to indicate that such positions have been visited a lot of times during
simulations, and with lighter colour to indicate very few simulation
steps in which the ball was located in such positions. The absence of
colour (paper colour/white), indicates that such positions were not
visited at all.

On the sides of the density plot we can find the marginal distribu-
tions. These distributions describe the projected position of the ball
from the point of view of only one axis.

In Figure 77, we compare the aforementioned density heatmap of
the ball-positions for the algorithms that converged to a solution. Un-
fortunately the DDPG did not converge to a solution after more than
24 hr of training.

In Figure 78 and Figure 79, we show how the error and conver-
gence varies with the training episodes for SNN-R-STDP and respec-
tively, DQN. The approach using an SNN with static weights is not
shown since it is not trained and converges from the very beginning,
while DDPG is not shown since it did not converge.

Notice that the chosen metric of euclidean distance is more infor-
mative than the average position of the ball. As it can be observed
from the density of the simulation with fixed weights, the average po-
sition obtained by the approach would be still very close to the center,
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but this is only due to the fact that positive and negative errors will
compensate each other. By using the euclidean distance to the target
(xt,yt), with the formula

Error =
1

T

T∑
i=1

√
(xi − xt)2 + (yi − yt)2 , (130)

such errors do not compensate each other because the error is always
positive.

As it can be observed from the density plots (Figure 77), even
though DQN has the peak of its distribution on the desired position,
it does does not always succeed on keeping the ball at the center, the
visited positions cover almost all the pixel grid and the wide distri-
bution indicates a lower precision. This density plot represents the re-
sult achieved after 14 hrs of training. Maybe with more time it could
have reach a slightly better solution but no drastic improvement is
expected.

If we observe the density plot with the fixed weights, we see a kind
of loop around the center, which achieves a kind of wobbly and wide
plateau on the marginal distribution. On the other hand, the SNN

approach with R-STDP achieves a nearly gaussian distribution which
is peaked at exactly the desired position and does not visit other
nearby states as much as in the case with static weight or DQN.

In all the simulations, we can see that on all the density plots, the
upper left side contains some visited states, this is due to the initializa-
tion. In fact the ball is not positioned at the center when the episode
begins, which causes these inevitable not centered positions.

Approach Avg Pos. Avg. Error Steps to convergence

Static (61.61, 63.66) 10.017 0 (fixed)

SNN +
Static Init

(60.74, 63.69) 8.55 0 (fixed)

SNN (61.2, 62.62) 6.77 60000

DQN (62.88, 65.17) 21.48 696000

Table 5: Performance on target-following scenarios. Note that since static
weights do not need training and already encode a human solution
for the problem, the drone converges from the very beginning. In
this table we include an extra case in which the SNN uses the static
weights as initialisation, while this performs better than just using
static weights, the initialisation heavily conditions the solution and
underperforms w.r.t. a solution found with equal weights initialisa-
tion.

Video of the SNN agent in a ball-target scenario: https://youtu.be/64-rlS3Ne1Y

https://youtu.be/64-rlS3Ne1Y
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(a) DQN. Corresponding to an average euclidean
error to the target of 21.48.

(b) SNN + fixed weights. Corresponding to an av-
erage euclidean error to the target of 10.017

(c) SNN + R-STDP. Corresponding to an average
euclidean error to the target of 6.77.

Figure 77: In figures (a)-(c), it is possible to appreciate the density function
of the ball positions during an episode. It is worth noticing that
SNN + R-STDP outperforms the other methods.
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(a) After about 30 episodes (' 60000 simu-
lation steps), the algorithm converged to
a solution which finished the episode at
every time.

(b) Graph of the average euclidean distance
to the center on an episode.

Figure 78: Results for the SNN-R-STDP agent.

(a) After about 650 episodes (' 696000 sim-
ulation steps), the algorithm successfully
concluded an episode.

(b) Graph of the average euclidean distance
to the center on an episode.

Figure 79: Results for the DQN agent.

Episodes with steps
above the red bar are
considered
completed. The
number of steps in a
completed
simulation are not
fixed, they might
slightly vary from
run to run. This is
due to the simulated
nature of the
experiments.
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(a) Density plot for a DQN approach.

(b) Density plot for an SNN-R-STDP ap-
proach.

Figure 80: Results for the line-following scenario.

Line-following scenario

In the line following scenario, we aim to have a line centered and with
an angle of 90 degrees vertical. To show the difference in performance
between the agents, also in this case we generate density plots. In this
scenario, we plot the mean position of the center of the line on one
axis and the orientation on the other one, the objective would be to
have the density concentrated on the middle point of the density plot
which is (63, 90). The results are shown in Figure 80 and Table 6.

Also in this scenario DDPG failed to converge while SNN-R-STDP

achieved the best result. Choosing static weights revealed itself more
challenging than expected. While most of the times rotation is enough
to complete such a famous scenario, in this case the drone’s rotation
works fundamentally different from a two-wheeled vehicle which
usually is set to accomplish this task. Its rotation has a different pivot
point, it usually uses two sensors and is much closer to the line to fol-
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low. Unfortunately despite several attempts no set of weights chosen
was good enough to make the drone perform a lap around the line.

Approach Avg Pos. Episodes to convergence

SNN (63.04, 88.47) 10

DQN (54.28, 84.87) 648

Table 6: Results for the line-following scenario.

From the experiments we can conclude that a SNN outperforms
classical Deep-RL agents for the two tasks and even outperforms a
solution encoding previous knowledge. Even though this was proven
in software simulations and in simplified scenarios, this is clearly a
good sign for the years to come and for upcoming robot control ap-
proaches, this means that it is possible in theory to be more power
efficient by using bio-inspired methods without making any compro-
mise on the performance.

Video of the SNN agent in a Line-following scenario: https://youtu.be/

Oote4EmCDmM

https://youtu.be/Oote4EmCDmM
https://youtu.be/Oote4EmCDmM
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C O N C L U S I O N S A N D F U T U R E W O R K

8.1 conclusions

This thesis addressed the problem of whether reinforcement learning,
spiking neural networks, and event-based cameras could be used to-
gether and in what way. As a result of the research done, this thesis
provides three main contributions:

1 Filled a gap in the literature by giving a clear perspective on
how the all three elements are linked and can be used together
(Chapter 5).

2 Developed ReMuS, an innovative event-based object recognition
approach based on SNN and a RL-inspired learning rule whose
performance is comparable to state of the art approaches, and
in some aspects outperforms current approaches (Chapter 6).
To the extent of our knowledge, this is the first approach that
combines the trio of bio-inspired approaches to perform object
recognition. This novel approach opens the door to countless
kind of variations and many potential future developments (Sec-
tion 8.2).

3 An application of the three bio-inspired technologies in a novel
control scenario of an UAV (Chapter 7), which showed through
some simulations, that RL techniques relying on SNN perform
better than traditional RL techniques, not only due to their effi-
ciency advantages, but also from a performance point of view.

This thesis also provides three side contributions:

1 aertb, a PyPI Python library simplifying the processing of event-
based data and providing some functions for common tasks
(Appendix A).

2 TAR, a simple and efficient noise filter for event-based data which
can be used as a preprocessing step for multiple approaches and
different fields of application (Appendix B).

3 R-STDDP, a learning rule which translates R-STDP to a synaptic
delay paradigm while keeping its properties, potentially open-
ing doors to future approaches combining synaptic delay and
synaptic weight learning rules (Section 8.2.1).
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8.2 future work

8.2.1 rstddp

The Reward-modulated Spike-Timing Dependent Delay Plasticity (R-STDDP)
learning rule is a novel learning rule for spiking neural networks de-
veloped during the thesis work based on R-STDP which instead of
modifying synaptic weights, modifies synaptic delays in a RL-inspired
manner.

Most SNN approaches modify the synaptic weights connecting pairs
of neurons, however it is also possible to modify the synaptic delays
of the neurons. A synaptic delay acts, just as its name indicates, by
delaying any incoming spike by a time which is equal to its value.

The objective of R-STDDP is to make a correct class-specific neurons
spike before other neurons. This is done by reducing the delay (i.e. set-
ting it to zero) for important spikes contributing to the correct class
decision, while increasing the delay to those who do not do so. As-
suming we start with a positive, non-zero delay, we can summarise
the learning rule as:

∆dij =



reward

Ar− · dij if tf(j) > ti

Ar+ · dij if tf(j) < ti

punishment

Ap− · dij if tf(j) 6 ti

Ap+ · dij if tf(j) > ti

. (131)

To verify the efficacy of the learning rule, the spiking grid demon-
strator contained in the original paper [65] was replicated. This learn-
ing rule potentially opens doors to future approaches combining synap-
tic delay and synaptic weight learning rules.

8.2.2 object recognition

One big disadvantage of the proposed approach for object recogni-
tion is the fact that, even though the approach works in practice and
gives good results, there are still no mathematical proofs of conver-
gence or any sort of guarantees for the learning rule. It would be very
interesting to formally prove its convergence as well as to understand
deeply how parameters have an impact in the results and the training
phase and how their values can affect convergence.

Another disadvantage is that the approach uses events to generate
a static frame. This practice is not ideal in the event-based paradigm
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Figure 81: Sobel Filters computing the image gradient of a circle as if they
were oriented every 45 degrees.

because it quantises event timestamps, discards temporal informa-
tion, and the resulting images are highly sensitive to the number of
events used. It would be interesting to explore event-driven variations
of the algorithm which address these problems. An idea could be to
use representations such as time surfaces instead of pseudo-images.

It would also be interesting to see whether additional image fil-
ters could be helpful for classification. For instance, directed Sobel
filters likes the ones shown in Figure 81, could be really useful for
the motion-like frames generated from a batch of events since they
compute the gradient of the image.

It could be also interesting to see whether the receptive field could
be decreased by using a multi-layered SNN that would be able to pro-
cess the activation of S2 neurons and update the weights of the inner
layers based on the final prediction with the same RL-reinforced rule.

As mentioned in the respective section, the proposed approach for
object recognition learns some grid weights which then represent a
whole class. Moreover, since the S2 neuron spiking in a grid has a
well defined receptive field, the method could be seen as something
beyond an object recognition approach. Since it not only recognises
the class, but it also locates the position of the class in the frame,
it closely resembles a fixed-size sliding window object detection ap-
proach where the size of the receptive field determines the size of
the sliding window. As future work, it would be interesting to try
whether non-squared filters can be used or whether there is a way to
generate a better bounding box rather than just using the size of the
receptive field.
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At the time this master thesis is being written, there are several man-
ufacturers and research groups operating with event-based cameras:
IniLabs (Tobi Delbruck), the IMSE Neuromorphic group (Bernabé
Linares Barranco and Teresa Serrano Gotarredona), the Robotics and
Perception Group at Zurich (Davide Scaramuzza et al.), Intel Labs
(Garrick Orchard et al), and the French company Prophesee (Amos
Sironi, Vincent Lepetit et al.), and some other groups around the
world.

Unfortunately the field is not mature enough and as a consequence
there are no common standards regarding data encoding formats,
almost everyone has their own proprietary format and a different
file extension. The variety of encoding formats heavily impacts re-
searchers as publicly available datasets suffer from this different file
formats and encodings, and a great amount of time needs to been
lost to properly load the data into the programming language where
a new algorithm is being developed.

To solve this problems, during the thesis work, a Python library
was created to easily load these several file extensions and provide
some useful utilities such as file format conversion to HDF5, creation
of a gif based on the events, iterating an HDF5 file with specified
groups, number of samples, etc. This library is available on the PyPI
repository and installable with the command pip3 install aertb

where aertb stands for AER-ToolBox.

Its usage is quite simple and intuitive:

from aertb.core import PolarityEventFile

f = PolarityEventFile(’/folder/filename.dat’)

events = f.load_events()

Code Snippet 4: Load operation with the aertb library. The events are re-
turned as a recarray (record array) which is a highly ef-
ficient data structure provided by numpy which acts as a
ndarray (n-dimensional array) that allows easy field access
using attributes.

The library also offers a Command Line Interface (CLI) and a shell
(Figure 82) for converting datasets to HDF5 and making gifs out of a
sample without the need to create a python script and execute it. The
shell is installed with the installation of the library and by just typing
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Figure 82: aertb: custom shell successfully executing a command which
transforms a whole dataset made of several ’bin’ files in a sin-
gle file with an HDF5 format.

the command aertb from a normal terminal window, the shell utility
will open. This shell is very convenient as it gives help and offers
autocompletion for all the supported commands.

The Hierarchical Data Format version 5 (HDF5) is an open source
file format that is able to manage large, complex and heterogeneous
data. One of the main characteristics of this file is that it is fast, cross-
platform, and allows easy sharing of data, a whole dataset containing
many samples can be sent as a single file. This format has high level
APIs with C, C++, Fortran 90, Java and Python.

from aertb.core import HDF5File

# open the file and select the groups of interest

nmnist_train = HDF5File(’folder/NMNIST_Train.hdf5’,

groups=[’0’, ’1’])

# Randomly select 20 samples on each of the groups

train_iter = nmnist_train.iterator(n_samples_group=20)

for sample in tqdm(train_iter):

# we can access sample.name

# we can access sample.label (group)

# we can access sample.events

Code Snippet 5: Once a dataset has been converted to HDF5 we can easily
access groups and events with the simple commands above.
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The approach proposed, that we like to call Temporal Active Re-
gions (TAR) Filter is a very simple method for filtering noise events,
it is based on a very simple assumption: valid events in the imme-
diate future will happen near recent events. This assumption is also
based on the very high temporal resolution of an event-camera, while
very fast moving objects might appear to hop from frame to frame
in conventional image sensors, in event-based cameras we can track
movement very precisely, and movement of an object will be certainly
captured by the sensor.

b.1 the algorithm

The precise working mechanism of this filtering approach is also sim-
ple. All we need is a mask with the same size as the camera sensor.
At the arrival of an event, we signal activity in an R-neighbourhood
of the event by increasing the value of the mask by one. The event
is then filtered if the value in the mask associated to the pixel has a
value under a threshold θ, otherwise the event is not filtered. Note
that regardless of whether the event is filtered or not, the activity is
signalled in the mask, this is to possibly learn new objects entering
the scene, while at the very first events, the valid events might be con-
sidered noise, in a very near future we understand from the activity
that we are not dealing with noise but a new object moving in the
scene. Finally, to forget past events and focus more on recent events,
we introduce an exponential decay. At the arrival of each event we
decay the mask values with a time constant τ.

Algorithm 14: Temporal Activity Region (TAR)

initialise mask M(x,y) ∀x,y ∈ pixel grid, last_ts = 0

foreach event do
Exponentially decay mask values
M(x,y) =M(x,y) ∗ e−(event.ts−last_ts)/τ

Increase activity in R-Neighborhood
M(x,y)[x− R, x+ R][y− R,y+ R] + = 1

if M(x,y) > θ then
keep

end
last_ts = event.ts

end
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Figure 83: A simple example of the TAR algorithm on a 7x7 pixel grid, with
τ = 0.5 and R = 1. The question mark on the event’s polarity
highlights the fact that the algorithm process the events in the
same way, irrespective of the event’s polarity.

Figure 84: A digit from the N-MNIST dataset, the digit on the left contains
non-filtered events while the image on the right contains only
events filtered by the TAR method

To better understand the noise filtering algorithm, a simple exam-
ple evidencing the working principle can be found in Figure 83, while
in Figure 84 the effect of the noise filtering algorithm can be easily ap-
preciated. An important thing to remark is that this algorithm does
not distinguish the polarity of the events.

b.2 results

To verify the effectiveness of the approach we decided to test the im-
pact of having TAR as a preprocessing step. In particular we decided to
use BOE [37] (Section 6.1.3) as an algorithm on two datasets, n-mnist

[34] and Poker-dvs [63].

Some tests showed that with an appropriate choice of parameters
(R, τ, θ) we could increase the accuracy score of the algorithm, being
the sole difference the TAR preprocessing step.
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Figure 85: Confusion matrices. To the left: BOE+No filtering (0.83), to the
right: BOE+filtered with TAR(τ=0.08s, θ=2.4, R=1) (0.8525)

N-MNIST

With an appropriate choice of parameters we filtered 3,3% of events
leading to an increase of 2,25% in accuracy score and 1,1% in the
confidence of the prediction as shown in Figure 85.

The experiments were performed with only 1000 samples of the
N-MNIST dataset used as training and 400 as testing set, this deci-
sion was due to computational reasons, but also to prove the impact
when there is few data. When a lot of data is present it is easier for
algorithms to generalise even in presence of noise.

PokerDVS

Poker-dvs is a very small dataset developed by Serrano-Gotarredona
and Linares-Barranco [63] including samples of the 4 pips of standard
poker card set: diamond, club, hearts and spade. With this dataset we
filtered 1% of events with TAR(τ=0.08s, θ=2, R=2) and achieved a 5,5%
accuracy increase and 2% increase the confidence of the prediction.
This higher increase in accuracy is also due to the very small size of
the dataset.

BOE+No filtering achieved an accuracy score of 0.944 while BOE +
TAR(τ=0.08s, θ=2, R=2) achieved an accuracy score of 1.0

b.3 considerations

The method is really sensitive to the parameters, if we set the thresh-
old θ too high we might end up filtering some events that may be
valid. Decreasing the decay time constant decreases the "memory" of
past events and therefore may also filter out valid events. Filtering out
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Figure 86: Confusion Matrix of the n-mnist object classification TAR
method. Accuracy is 0.9494%.

a high number of events with inappropriate parameters can be coun-
terproductive and lead to worse results as events that are not really
noise are filtered. To counteract also a “cold-start" we can allow the
first k events regardless of the mask value. Usually a small number is
enough ' 10 events.

b.4 a new method

It is possible to use this filtering method as a replacement of the mem-
ory requirements in the hats approach [88]. Indeed in this approach
the purpose of memory cells is to reduce the influence of noise. This
variant achieves a comparable performance while having no memory
requirements. To prove this idea we performed some tests on the n-
mnist dataset. Results are in shown in Figure 86.



C
N O N - B I O I N S P I R E D P R O C E S S I N G A P P R O A C H E S

As it has been mentioned in previous chapters, many of the approaches
in the event-based vision domain involve bio-inspired processing mod-
els like SNNs, since their asynchronicity makes them perfectly suited
for event processing [8, 9]. In this thesis we only explored these bio-
inspired processing approaches and compared the proposed algo-
rithms with respect to other bio-inspired approaches and alternative
approaches making use of statistical features or hierarchy of time sur-
faces, ignoring other approaches resorting to more traditional tech-
niques like standard deep learning, random forests and so on. This
is due to two main reasons: 1) in order to research further the un-
derexploited bio-inspired domain (SNNs have been shown to be more
computationally powerful than previous generations [5] but their full
potential in practical applications is yet to be unlocked ) and 2) due to
the fact that neuromorphic hardware implementations of bio-inspired
processing approaches promise to be able to operate faster and in a
more energy efficient way than approaches resorting to traditional
deep learning models.

Nonetheless, it is worth mentioning that at the current time this
thesis was written, traditional deep learning methods far outperform
bio-inspired approaches for many tasks including event-based vision-
related tasks. This shortcoming can be attributed to the various rea-
sons: the difficulty faced when training SNNs due to the non- differ-
entiability at spike times which makes a transfer of the classical back-
propagation mechanism impossible, the short amount of research
done due to the novelty of such approaches, the short amount of
"spiking datasets", among other reasons.

In this section we would like to briefly describe some of the exist-
ing approaches based on non-bioinspired processing like deep learn-
ing models, that have been adapted for event-based vision-related
tasks and mention how bio-inspired approaches are getting inspira-
tion from these kind of models to be able to better tackle these prob-
lems in the near future.

c.1 processing events

In deep learning, a common model type used to tackle visual-related
tasks such as image classification and object detection is a Convolutional
Neural Network (CNN). This model type achieves high performance
metrics in a broad range of problems, but do so at a high compu-

137



C.1 processing events 138

Algorithm 15: Leaky surface frame integration

Initialise frame:
∀x,y ∈ pixel grid, u(x,y) = 0

Initialise time tracker:
last_ts = t0

foreach event ei = 〈xi,yi,pi, ti〉 do
Represent event:
u(xi,yi)+ = ∆inc

Compute delta timestamp:
∆ts = ti− last_ts

Update time tracker:
last_ts = ti

Decay values :
∀x,y , u(x,y) = f (u(x,y),∆ts)

end

(a) Generic leaky surface frame integration algorithm. The ∆inc is usually set to 1.
The ensemble of pixel state values u(x,y) at a given time t create a frame-like
representation of the recent history of events, the relationship is established with a
decay function f.

f = max{0,u(x,y) − λ ·∆ts}

(b) Leaky Surface with linear decay [89]
[90]

f = u(x,y) · exp(−∆ts/τ)

(c) Leaky Surface with exponential de-
cay, also called temporal context [62].

Figure 87: Common frame-integration methods of events used with deep
learning approaches.

tational and energy cost. Due to the aforementioned problems in
SNNs, some researchers have adapted this kind of networks for their
use with event-based data by using frame-integration procedures to
the events coming out of the event-camera. These approaches create
a pseudo-frame which ignores temporal resolution [38], or create a
pseudo-frame which includes temporal information encoded as some
kind of decay. An example of the latter methods can be shown in Fig-
ure 87.

However, recent works have tried to ditch the handcrafted input
representations like the aforementioned leaky surfaces, for a fully dif-
ferentiable, end-to-end representation learning process that is learned
end-to-end together with the downstream task, thus maximising per-
formance. One of such approaches developed by Gehrig et al. [40],
replaces a custom kernel function used to create the representation,
with a Multi Layer Perceptron (MLP) with two hidden layers each with
30 units that learn input representations in a data-driven fashion and
then uses an efficient look-up table at test time to speed up inference.
A similar method, Matrix-lstm [91], proposes a mechanism using
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features and
F(n) matrices

Leaky
Surface

Figure 2. fcYOLE: a fully-convolutional detection network based on YOLE. The last layer is used to map the feature vectors into a set of
20 values which define the parameters of the predicted bounding boxes.

(a) (b)

Figure 3. The structure of the e-conv (a) and e-max-pooling layers (b). The internal states and the update matrices are recomputed locally
only where events are received (green cells) whereas the remaining regions (depicted in yellow) are obtained reusing the previous state.

However, if an input feature M has the minimum update
rate FM(n−1)

among features in its receptive field R and
it also corresponds to the maximum value in R, the cor-
responding output feature will decrease slower than all the
others in R and its value will remain the maximum. In this
case, its index I t

(n)R
does not need to be recomputed until

a new event arrives in R. We check if the maximum has to
be recomputed for each receptive field affected by incoming
events and also in all positions where the previous condition
does not hold.

3.4. Event FCN for Object Detection (fcYOLE)

To fully exploit the event-based layers presented so far,
the YOLE model described in Section 2 needs to be con-
verted into a fully convolutional object detection network
replacing all its layers with their event-based versions (see
Figure 3). Moreover, fully-connected layers are replaced
with 1 × 1 e-conv layers which map features extracted by
the previous layers into a precise set of values defining
the bounding boxes parameters predicted by the network.
Training was first performed on a network composed of
standard layers; the learned weights were then used with
e-conv and e-max-pool layers during inference.

This architecture divides the 128×128 field of view into
a grid of 4× 4 regions that predicts 2 bounding boxes each
and classify the detected objects into C different classes.
The last 1 × 1 e-conv layer is used to decrease the dimen-
sionality of the feature vectors and to map them into the
right set of parameters, regardless of their position in the

field of view.
Moreover, this architecture can be used to process sur-

faces of different sizes without the need to re-train or re-
design it. The subnetworks processing 32 × 32 regions, in
fact, being defined by the same set of parameters, can be
stacked together to process even larger surfaces.

4. Experiments
4.1. Datasets

Only few event-based object recognition datasets are
publicly available in the literature. The most popular
ones are: N-MNIST [34], MNIST-DVS [44], CIFAR10-
DVS [22], N-Caltech101 [34] and POKER-DVS [44].
These datasets are obtained from the original MNIST [21],
CIFAR-10 [17] and Caltech101 [10] datasets by record-
ing the original images with an event camera while mov-
ing the camera itself or the images of the datasets. We
performed experiments on N-Caltech101 and on modified
versions of N-MNIST and MNIST-DVS for object detec-
tion, i.e., Shifted N-MNIST and Shifted MNIST-DVS, and on
an extended version of POKER-DVS, namely OD-Poker-
DVS. Moreover we also perform experiments on a synthetic
dataset, named Blackboard MNIST, showing digits written
on a blackboard. A detailed description of these datasets is
provided in the supplementary materials.
Shifted N-MNIST The N-MNIST [34] dataset is a con-
version of the popular MNIST [21] image dataset for com-
puter vision. We enhanced this collection by building a
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Figure 88: The fully-convolutional yole architecture. Image taken from [89].

a Long Short-Term Memory (lstm) network as a convolutional filter
over the 2D stream of events in order to accumulate pixel information
through time and build 2D event representations specifically tailored
for the task at hand.

c.2 approaches for object detection

Lately there has been a lot of research in traditional object detection
algorithms, with almost every year having an algorithm presented
at conferences or workshops that improves previous results in terms
of speed of computation or performance metrics. Some of the most
famous approaches are: Region Convolutional Neural Network (r-
cnn) which despite its great accuracy is too slow to be used realtime
due its copious forward passes required for a region proposal, You
Only Look Once (yolo) [68] which takes a regression approach to
object detection and is thus capable of processing real-time videos
with minimal delay while retaining respectable accuracy thanks to its
single forward propagation prediction mechanism, Single Shot Multi-
box Detector (ssd), and most recently Recurrent-yolo (rolo) a single
object tracking method that combines object detection and (lstm) re-
current neural networks.

In 2019, Cannici et al. [89] proposed You Only Look Events (yole),
an architecture relying on a standard CNN with the yolo loss and
a linear leak frame integration technique, and a fully-convolutional
architecture based on the yole architecture (fc-yole) that smartly
modifies the forward pass of fully convolutional architectures so that
convolution and pooling operation are reformulated to avoid waste
of power in computations by maintaining a state and recomputing
only the features corresponding to regions affected by new incoming
events while leaking allows past information to be forgotten. These
changes are embedded in new event-based layer components: e-conv
and e-max-pool. A general overview of the fc-yole architecture is shown
in Figure 88.

c.3 approaches for robot control

Since the introduction of an autonomous land vehicle in a neural
network (alvinn) [92] in 1989, there has been a great interest in de-
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Figure 2: Block diagram of the proposed approach. The output of the event camera is collected into frames over a specified
time interval T , using a separate channel depending on the event polarity (positive and negative). The resulting synchronous
event frames are processed by a ResNet-inspired network, which produces a prediction of the steering angle of the vehicle.

gles produced by our network can take any value, not just
discrete ones, in the range [−180◦,180◦]. Moreover, in con-
trast to previous event-based vision learning works which
use small datasets, we show results on the largest and most
challenging (due to scene variability) event-based dataset to
date.

3. Methodology

Our approach aims at predicting steering wheel com-
mands from a forward-looking DVS sensor [1] mounted on
a car. As shown in Fig. 2, we propose a learning approach
that takes as input the visual information acquired by an
event camera and outputs the vehicle’s steering angle. The
events are converted into event frames by pixel-wise accu-
mulation over a constant time interval. Then, a deep neural
network maps the event frames to steering angles by solving
a regression task. In the following, we detail the different
steps of the learning process.

3.1. Event-to-Frame Conversion

All recent and successful deep learning algorithms are
designed for traditional video input data (i.e., frame-based
and synchronous) to benefit from conventional processors.
In order to take advantage of such techniques, asynchronous
events need to be converted into synchronous frames. To
do that, we accumulate the events1 ek = (xk,yk, tk, pk) over
a given time interval T in a pixel-wise manner, obtaining
2D histograms of events. Since event cameras naturally
respond to moving edges, these histograms of events are
maps encoding the relative motion between the event cam-
era and the scene. Additionally, due to the sensing principle
of event cameras, they are free from redundancy.

Inspired by [18], we use separate histograms for positive

1An event ek consists of the spatiotemporal coordinates (xk,yk, tk) of a
relative brightness change of predefined magnitude together with its polar-
ity pk ∈ {−1,+1} (i.e., the sign of the brightness change).

and negative events. The histogram for positive events is

h+(x,y) .
= ∑

tk∈T, pk=+1
δ (x− xk,y− yk), (1)

where δ is the Kronecker delta, and the histogram h− for
the negative events is defined similarly, using pk = −1. The
histograms h+ and h− are stacked to produce a two-channel
event image. Events of different polarity are stored in dif-
ferent channels, as opposed to a single channel with the bal-
ance of polarities (h+ − h−), to avoid information loss due
to cancellation in case events of opposite polarity occur in
the same pixel during the integration interval T .

3.2. Learning Approach

3.2.1. Preprocessing. A correct normalization of input
and output data is essential for reliably training any neural
network. Since roads are almost always straight, the steer-
ing angle’s distribution of a driving car is mainly picked in
[−5◦,5 ◦]. This unbalanced distribution results in a biased
regression. In addition, vehicles frequently stand still be-
cause they are exposed, for example, to traffic lights and
pedestrians. In those situations where there is no motion,
only noisy events will be produced. To handle those prob-
lems, we pre-processed the output variable (i.e. steering an-
gles) to allow successful learning. To cope with the first is-
sue, only 30 % of the data corresponding to a steering angle
lower than 5◦ is deployed at training time. For the latter we
filtered out data corresponding to a vehicle’s speed smaller
than 20km h−1. To remove outliers, the filtered steering an-
gles are then trimmed at three times their standard devia-
tion and normalized to the range [−1,1]. At testing time,
all data corresponding to a steering angle lower than 5◦ is
considered, as well as scenarios under 20km h−1. The re-
gressed steering angles are denormalized to output values
in the range [−180◦,180◦]. Finally, we scaled the network
input (i.e., event images) to the range [0,1].

3.2.2. Network Architecture. To unlock the power of
convolutional architectures for our study case, we first have
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Figure 89: The steering-angle prediction architecture using a ResNet-
inspired network. Image taken from [93].

veloping robust policies for autonomous driving and robot control.
The event-based vision paradigm has fueled such interest thanks to
its natural response to motion in the scene, high dynamic range, and
low temporal resolution which brings a lot of potential advantages in
the field. Examples of such approaches is the one proposed in 2016

by Moeys et al. [76], which used a CNN to steer the predator robot in
the direction of the prey robot all while running on data from a DAVIS

sensor, and the 2018 approach by Maqueda et al. [93] that presented
a deep neural network approach which mapped event frames to a
steering angle prediction for a vehicle by solving a regression task.
An overview of the approach can be observed in Figure 89.

c.4 what lies ahead?

Besides the approaches in image classification and robot control, there
have been multiple event-based vision applications relying on deep
learning methods: image reconstruction [94], optical flow estimation
[95], depth estimation [96] and many other applications, even a rock-
paper-scissors playing agent [97], however, most of them require pow-
erful GPUs to make tractable the lengthy and computationally expen-
sive training procedures.

To overcome problem of scalable learning rules in SNNs, recent
works focusing on converting pre-trained deep networks to SNNs
[98] have achieved promising results even on complex tasks, while
other works are still trying to find a way to efficiently implement spik-
ing deep convolutional networks. Some of the successful approaches
introduced include: direct training of SNNs using a backpropagation
mechanism for deep SNNs that follows the same principles as in con-
ventional deep networks, but works directly on spike signals and
membrane potentials [99], a mapping of pre-trained ANNs parame-
ters to SNNs, where the transfer function of ANNs is modified during
training so that the network parameters can be mapped better to the
SNN [100, 101], a novel method for adapting conventional Contrastive
Divergence (CD) training algorithms for Deep Belief Networks (DBNs)
with spiking neurons [102], just to cite a few.
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Although these methods based on traditional ANNs have proved to
produce state-of-the-art results, SNNs-only biologically inspired pro-
cessing methods have developed their own identity and are increas-
ingly abandoning a strong traditional ANN inspiration while at the
same time increasing their performance. Recent work includes a fully
deep SNN architecture combining STDP for the lowest layers and R-STDP

for the highest layers [103], and a novel way of training deep SNNs by
propagating a reward back through multiple layers of a dopamine-
modulated SNN [104].

Some recent European projects, like the APROVIS3D project1 in-
volving 7 European universities, aim to develop new paradigms for
biologically inspired vision, from sensing to processing, in order to
help machines such as UAVs, autonomous vehicles, or robots gain
high-level understanding from visual scenes without the use of tra-
ditional deep learning techniques, using instead neuromorphic im-
plementations of SNNs.

1 https://www.chistera.eu/projects/aprovis3d

https://www.chistera.eu/projects/aprovis3d
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D ATA S E T S

d.1 n-mnist

The Neuromorphic-MNIST (n-mnist) is a spiking version of famous
frame-based dataset MNIST which contains handwritten digits from
0 to 9. This dataset was obtained by Orchard et al. [34] though sac-
cades in 3 directions, with a duration of 100ms each. Such process was
made possible by mounting an event-based ATIS sensor on a motor-
ized pan-tilt unit and having the sensor move while it views MNIST
examples on an LCD monitor as shown in Figure 90.

The dataset contains the same 60000 train and 10000 test samples
contained in the original dataset. An example is shown in Figure 91.

Figure 90: Data capture method for the n-mnist dataset. The digit presen-
tation lasts about 0.3 seconds and generates about ' [2500, 6000]
events.

Figure 91: An example of a digit in the n-mnist dataset. Given the fact that
the dataset contains only events, the frame was reconstructed us-
ing a hard event segmentation, every 0.025s.

142



D.2 poker-dvs 143

(a) Club. (b) Diamond.

(c) Heart. (d) Spade.

Figure 92: A sample for each of the 4 classes in the Poker-dvs. Each of the
pseudo frames was reconstructed using a HES with a fixed time-
slice of 0.02s.

d.2 poker-dvs

The Poker-dvs [63], is a dataset developed by Teresa Serrano- Go-
tarredona and Bernabé Linares-Barranco at the Instituto de Micro-
electrónica de Sevilla. It was never intended to be used as a dataset
useful for benchmarking, but was conceived just to illustrate a very
high speed object recognition problem with event-driven convolu-
tional neural networks.

The dataset was obtained by showing specially made poker card
decks for 2–4 seconds in front of an improved DVS camera with faster
event read-out scheme and better contrast sensitivity. Out of the sin-
gle card presentations lasting about 20–30 ms, researchers tracked
and isolated in an offline manner the poker pips of the cards (the
markings that indicate the card’s suit, i. e. , spade, heart, diamond
and club) to constitute the 131-samples of the dataset. An example
for each group is shown in Figure 92.

The reason why the dataset contains poker cards is to honour Tobi
Delbrück, one of the greatest researches in the field of event-based
cameras and father of the DVS. He is a big fan of poker and usually
organises a “Poker Night” at each year’s Telluride Neuromorphic En-
gineering Workshop.
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Figure 93: Data capture method for the dvs-barrel dataset

(a) A moving character (b) A stabilized character

Figure 94: Samples of the dvs-barrel dataset.

d.3 dvs-barrel

The dvs-barrel is a dataset developed by Orchard et al. [36] for test-
ing the hfirst object recognition architecture (Section 6.1.2). Its name
derives from the fact that the characters contained in the dataset were
obtained through a DVS sensor who saw characters moving on a mo-
torised rotating barrel as shown in Figure 93.

The dataset is divided in two main groups which are shown in
Figure 94:

• Moving
It contains 76 recordings, where each character is tracked, and
events not belonging to the character have been removed. Char-
acters move in diagonal across the 128× 128 pixel grid.

• Stabilized
It contains the same 76 recordings, with the only difference that
spikes are now relative to the center of the character, so the char-
acter appears to stay in a 32× 32 pixel grid rather than moving
across the screen.



B I B L I O G R A P H Y

[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[2] Jonathan W Mink, Robert J Blumenschine, and David B Adams.
Ratio of central nervous system to body metabolism in verte-
brates: its constancy and functional basis. American Journal of
Physiology-Regulatory, Integrative and Comparative Physiology, 241

(3):R203–R212, 1981.

[3] Samanwoy Ghosh-Dastidar and Hojjat Adeli. Third generation
neural networks: Spiking neural networks. In Advances in Com-
putational Intelligence, pages 167–178. Springer, 2009.

[4] Filip Ponulak and Andrzej Kasinski. Introduction to spiking
neural networks: Information processing, learning and applica-
tions. Acta neurobiologiae experimentalis, 71(4):409–433, 2011.

[5] Wolfgang Maass. Networks of spiking neurons: the third gen-
eration of neural network models. Neural networks, 10(9):1659–
1671, 1997.

[6] Ilias Sourikopoulos, Sara Hedayat, Christophe Loyez, François
Danneville, Virginie Hoel, Eric Mercier, and Alain Cappy. A
4-fj/spike artificial neuron in 65 nm cmos technology. Frontiers
in neuroscience, 11:123, 2017.

[7] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams.
Learning representations by back-propagating errors. nature,
323(6088):533–536, 1986.

[8] Lea Steffen, Daniel Reichard, Jakob Weinland, Jacques Kaiser,
Arne Roennau, and Rüdiger Dillmann. Neuromorphic stereo
vision: A survey of bio-inspired sensors and algorithms. Fron-
tiers in neurorobotics, 13:28, 2019.

[9] Veıs Oudjail and Jean Martinet. Bio-inspired event-based mo-
tion analysis with spiking neural networks. 2019.

[10] Warren S McCulloch and Walter Pitts. A logical calculus of the
ideas immanent in nervous activity. The bulletin of mathematical
biophysics, 5(4):115–133, 1943.

145



bibliography 146

[11] David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski.
A learning algorithm for boltzmann machines. Cognitive science,
9(1):147–169, 1985.

[12] John J Hopfield. Neural networks and physical systems with
emergent collective computational abilities. Proceedings of the
national academy of sciences, 79(8):2554–2558, 1982.

[13] Kristina D Micheva, Brad Busse, Nicholas C Weiler, Nancy
O’Rourke, and Stephen J Smith. Single-synapse analysis of a
diverse synapse population: proteomic imaging methods and
markers. Neuron, 68(4):639–653, 2010.

[14] Paul A Merolla, John V Arthur, Rodrigo Alvarez-Icaza, An-
drew S Cassidy, Jun Sawada, Filipp Akopyan, Bryan L Jackson,
Nabil Imam, Chen Guo, Yutaka Nakamura, et al. A million
spiking-neuron integrated circuit with a scalable communica-
tion network and interface. Science, 345(6197):668–673, 2014.

[15] Alan L Hodgkin and Andrew F Huxley. A quantitative de-
scription of membrane current and its application to conduc-
tion and excitation in nerve. The Journal of physiology, 117(4):
500–544, 1952.

[16] Eugene M Izhikevich. Simple model of spiking neurons. IEEE
Transactions on neural networks, 14(6):1569–1572, 2003.

[17] Wulfram Gerstner and Werner M Kistler. Spiking neuron mod-
els: Single neurons, populations, plasticity. Cambridge university
press, 2002.

[18] Daniel A Butts, Chong Weng, Jianzhong Jin, Chun-I Yeh,
Nicholas A Lesica, Jose-Manuel Alonso, and Garrett B Stanley.
Temporal precision in the neural code and the timescales of nat-
ural vision. Nature, 449(7158):92–95, 2007.

[19] Simon Thorpe, Denis Fize, and Catherine Marlot. Speed of pro-
cessing in the human visual system. nature, 381(6582):520–522,
1996.

[20] Qianhui Liu, Gang Pan, Haibo Ruan, Dong Xing, Qi Xu, and
Huajin Tang. Unsupervised aer object recognition based on
multiscale spatio-temporal features and spiking neurons. IEEE
Transactions on Neural Networks and Learning Systems, 2020.

[21] Donald Olding Hebb. The organization of behavior: A neuropsycho-
logical theory. Psychology Press, 2005.

[22] Sen Song, Kenneth D Miller, and Larry F Abbott. Competi-
tive hebbian learning through spike-timing-dependent synaptic
plasticity. Nature neuroscience, 3(9):919–926, 2000.



bibliography 147

[23] Yuichiro Yada, Tatsuya Haga, Osamu Fukayama, Takayuki
Hoshino, and Kunihiko Mabuchi. Multiplicative-stdp learn-
ing rule shows pathway specificity. Transactions of Japanese Soci-
ety for Medical and Biological Engineering, 51(Supplement):R–169,
2013.

[24] Olivier Bichler, Manan Suri, Damien Querlioz, Dominique Vuil-
laume, Barbara DeSalvo, and Christian Gamrat. Visual pattern
extraction using energy-efficient “2-pcm synapse” neuromor-
phic architecture. IEEE Transactions on Electron Devices, 59(8):
2206–2214, 2012.

[25] Sumit Bam Shrestha and Garrick Orchard. Slayer: Spike layer
error reassignment in time. In Advances in Neural Information
Processing Systems, pages 1412–1421, 2018.

[26] Filip Ponulak and Andrzej Kasinski. Resume learning method
for spiking neural networks dedicated to neuroprostheses con-
trol. In Proceedings of EPFL LATSIS Symposium 2006, Dynami-
cal Principles for Neuroscience and Intelligent Biomimetic Devices,
pages 119–120. Citeseer, 2006.

[27] Brandon Jennings. Synchronization Analysis of Winner-Take-All
Neuronal Networks. PhD thesis, University of Pittsburgh, 2019.

[28] Peter U Diehl and Matthew Cook. Unsupervised learning of
digit recognition using spike-timing-dependent plasticity. Fron-
tiers in computational neuroscience, 9:99, 2015.

[29] Steve B Furber, David R Lester, Luis A Plana, Jim D Garside, Eu-
stace Painkras, Steve Temple, and Andrew D Brown. Overview
of the spinnaker system architecture. IEEE Transactions on Com-
puters, 62(12):2454–2467, 2012.

[30] Filipp Akopyan, Jun Sawada, Andrew Cassidy, Rodrigo
Alvarez-Icaza, John Arthur, Paul Merolla, Nabil Imam, Yutaka
Nakamura, Pallab Datta, Gi-Joon Nam, et al. Truenorth: De-
sign and tool flow of a 65 mw 1 million neuron programmable
neurosynaptic chip. IEEE transactions on computer-aided design of
integrated circuits and systems, 34(10):1537–1557, 2015.

[31] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham
Chinya, Yongqiang Cao, Sri Harsha Choday, Georgios Dimou,
Prasad Joshi, Nabil Imam, Shweta Jain, et al. Loihi: A neuromor-
phic manycore processor with on-chip learning. IEEE Micro, 38

(1):82–99, 2018.

[32] Alexander Neckar, Sam Fok, Ben V Benjamin, Terrence C
Stewart, Nick N Oza, Aaron R Voelker, Chris Eliasmith, Rajit
Manohar, and Kwabena Boahen. Braindrop: A mixed-signal



bibliography 148

neuromorphic architecture with a dynamical systems-based
programming model. Proceedings of the IEEE, 107(1):144–164,
2018.

[33] Patrick Lichtsteiner, Christoph Posch, and Tobi Delbruck. A 128

× 128 120 db 15 µ s latency asynchronous temporal contrast
vision sensor. IEEE journal of solid-state circuits, 43(2):566–576,
2008.

[34] Garrick Orchard, Ajinkya Jayawant, Gregory K Cohen, and Ni-
tish Thakor. Converting static image datasets to spiking neuro-
morphic datasets using saccades. Frontiers in neuroscience, 9:437,
2015.

[35] Christian Brandli, Raphael Berner, Minhao Yang, Shih-Chii Liu,
and Tobi Delbruck. A 240× 180 130 db 3 µs latency global
shutter spatiotemporal vision sensor. IEEE Journal of Solid-State
Circuits, 49(10):2333–2341, 2014.

[36] Garrick Orchard, Cedric Meyer, Ralph Etienne-Cummings,
Christoph Posch, Nitish Thakor, and Ryad Benosman. Hfirst:
a temporal approach to object recognition. IEEE transactions on
pattern analysis and machine intelligence, 37(10):2028–2040, 2015.

[37] Xi Peng, Bo Zhao, Rui Yan, Huajin Tang, and Zhang Yi. Bag of
events: An efficient probability-based feature extraction method
for aer image sensors. IEEE transactions on neural networks and
learning systems, 28(4):791–803, 2016.

[38] Tobi Delbruck. Frame-free dynamic digital vision. In Proceed-
ings of Intl. Symp. on Secure-Life Electronics, Advanced Electronics
for Quality Life and Society, pages 21–26. Citeseer, 2008.

[39] Bo Zhao, Ruoxi Ding, Shoushun Chen, Bernabe Linares-
Barranco, and Huajin Tang. Feedforward categorization on aer
motion events using cortex-like features in a spiking neural net-
work. IEEE transactions on neural networks and learning systems,
26(9):1963–1978, 2014.

[40] Daniel Gehrig, Antonio Loquercio, Konstantinos G Derpanis,
and Davide Scaramuzza. End-to-end learning of representa-
tions for asynchronous event-based data. In Proceedings of the
IEEE International Conference on Computer Vision, pages 5633–
5643, 2019.

[41] Richard S Sutton and Andrew G Barto. Reinforcement learning:
An introduction. MIT press, 2018.

[42] Maximilian Riesenhuber and Tomaso Poggio. Hierarchical
models of object recognition in cortex. Nature neuroscience, 2

(11):1019–1025, 1999.



bibliography 149

[43] Thomas Serre, Lior Wolf, Stanley Bileschi, Maximilian Riesen-
huber, and Tomaso Poggio. Robust object recognition with
cortex-like mechanisms. IEEE transactions on pattern analysis and
machine intelligence, 29(3):411–426, 2007.

[44] Judson P Jones and Larry A Palmer. An evaluation of the two-
dimensional gabor filter model of simple receptive fields in cat
striate cortex. Journal of neurophysiology, 58(6):1233–1258, 1987.

[45] Jan PH Van Santen and George Sperling. Elaborated reichardt
detectors. JOSA A, 2(2):300–321, 1985.

[46] Garrick Orchard, Ryad Benosman, Ralph Etienne-Cummings,
and Nitish V Thakor. A spiking neural network architecture for
visual motion estimation. In 2013 IEEE Biomedical Circuits and
Systems Conference (BioCAS), pages 298–301. IEEE, 2013.

[47] Runchun Mark Wang, Tara Julia Hamilton, Jonathan Tapson,
and André van Schaik. A mixed-signal implementation of a
polychronous spiking neural network with delay adaptation.
Frontiers in neuroscience, 8:51, 2014.

[48] Nicolas Frémaux and Wulfram Gerstner. Neuromodulated
spike-timing-dependent plasticity, and theory of three-factor
learning rules. Frontiers in neural circuits, 9:85, 2016.

[49] Elizabeth E Steinberg, Ronald Keiflin, Josiah R Boivin, Ilana B
Witten, Karl Deisseroth, and Patricia H Janak. A causal link be-
tween prediction errors, dopamine neurons and learning. Na-
ture neuroscience, 16(7):966, 2013.

[50] Eugene M Izhikevich. Solving the distal reward problem
through linkage of STDP and dopamine signaling. Cerebral cor-
tex, 17(10):2443–2452, 2007.

[51] Michael A Farries and Adrienne L Fairhall. Reinforcement
learning with modulated spike timing–dependent synaptic
plasticity. Journal of neurophysiology, 98(6):3648–3665, 2007.

[52] Eleni Vasilaki, Nicolas Frémaux, Robert Urbanczik, Walter
Senn, and Wulfram Gerstner. Spike-based reinforcement learn-
ing in continuous state and action space: when policy gradient
methods fail. PLoS computational biology, 5(12), 2009.

[53] Claus Meschede, Zhenshan Bing, Florian Röhrbein, Kai Huang,
and Alois C Knoll. A survey of robotics control based on
learning-inspired spiking neural networks. Frontiers in neuro-
robotics, 12:35, 2018.

[54] Charles F Stevens. Quantal release of neurotransmitter and
long-term potentiation. Cell, 72:55–63, 1993.



bibliography 150

[55] H Sebastian Seung. Learning in spiking neural networks by
reinforcement of stochastic synaptic transmission. Neuron, 40

(6):1063–1073, 2003.

[56] Wolfram Schultz, Peter Dayan, and P Read Montague. A neu-
ral substrate of prediction and reward. Science, 275(5306):1593–
1599, 1997.

[57] Riku Arakawa and Shintaro Shiba. Exploration of reinforce-
ment learning for event camera using car-like robots, 2020.

[58] Earl K Miller, David J Freedman, and Jonathan D Wallis. The
prefrontal cortex: categories, concepts and cognition. Philosoph-
ical Transactions of the Royal Society of London. Series B: Biological
Sciences, 357(1424):1123–1136, 2002.

[59] Gerry Leisman. Brain networks, plasticity, and functional con-
nectivities inform current directions in functional neurology
and rehabilitation. Funct Neurol Rehab Ergon, 1(2):315–56, 2011.

[60] Robert Gütig and Haim Sompolinsky. The tempotron: a neuron
that learns spike timing–based decisions. Nature neuroscience, 9

(3):420–428, 2006.

[61] Gerard Salton, Edward A Fox, and Harry Wu. Extended
boolean information retrieval. Communications of the ACM, 26

(11):1022–1036, 1983.

[62] Xavier Lagorce, Garrick Orchard, Francesco Galluppi,
Bertram E Shi, and Ryad B Benosman. Hots: a hierarchy
of event-based time-surfaces for pattern recognition. IEEE
transactions on pattern analysis and machine intelligence, 39(7):
1346–1359, 2016.

[63] Teresa Serrano-Gotarredona and Bernabé Linares-Barranco.
Poker-dvs and mnist-dvs. their history, how they were made,
and other details. Frontiers in neuroscience, 9:481, 2015.

[64] Timothee Masquelier and Simon J Thorpe. Unsupervised learn-
ing of visual features through spike timing dependent plasticity.
PLoS computational biology, 3(2), 2007.

[65] Milad Mozafari, Saeed Reza Kheradpisheh, Timothée Masque-
lier, Abbas Nowzari-Dalini, and Mohammad Ganjtabesh. First-
spike-based visual categorization using reward-modulated
stdp. IEEE transactions on neural networks and learning systems,
29(12):6178–6190, 2018.

[66] Thomas Serre. Learning a dictionary of shape-components in
visual cortex: comparison with neurons, humans and machines.
2006.



bibliography 151

[67] Shoushun Chen, Polina Akselrod, Bo Zhao, Jose Antonio Perez
Carrasco, Bernabe Linares-Barranco, and Eugenio Culurciello.
Efficient feedforward categorization of objects and human pos-
tures with address-event image sensors. IEEE transactions on
pattern analysis and machine intelligence, 34(2):302–314, 2011.

[68] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object detec-
tion. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 779–788, 2016.

[69] Dario Floreano and Claudio Mattiussi. Evolution of spiking
neural controllers for autonomous vision-based robots. In
International Symposium on Evolutionary Robotics, pages 38–61.
Springer, 2001.

[70] Dario Floreano, Jean-Christophe Zufferey, and Claudio Mat-
tiussi. Evolving spiking neurons from wheels to wings. Dy-
namic Systems Approach for Embodiment and Sociality, 6(CONF):
65–70, 2003.

[71] Ezequiel Di Paolo. Spike-timing dependent plasticity for
evolved robots. Adaptive Behavior, 10(3-4):243–263, 2002.

[72] Razvan V Florian. Biologically inspired neural networks for
the control of embodied agents. Center for Cognitive and Neural
Studies (Cluj-Napoca, Romania), Technical Report Coneural-03-03,
2003.

[73] Hani Hagras, Anthony Pounds-Cornish, Martin Colley, Vic-
tor Callaghan, and Graham Clarke. Evolving spiking neural
network controllers for autonomous robots. In IEEE Interna-
tional Conference on Robotics and Automation, 2004. Proceedings.
ICRA’04. 2004, volume 5, pages 4620–4626. IEEE, 2004.

[74] Xiuqing Wang, Zeng-Guang Hou, Min Tan, Yongji Wang, and
Liwei Hu. The wall-following controller for the mobile robot
using spiking neurons. In 2009 International Conference on Arti-
ficial Intelligence and Computational Intelligence, volume 1, pages
194–199. IEEE, 2009.

[75] Fernando Perez-Peña, Arturo Morgado-Estevez, Alejan-
dro Linares-Barranco, Angel Jimenez-Fernandez, Francisco
Gomez-Rodriguez, Gabriel Jimenez-Moreno, and Juan Lopez-
Coronado. Neuro-inspired spike-based motion: from dynamic
vision sensor to robot motor open-loop control through
spike-vite. Sensors, 13(11):15805–15832, 2013.

[76] Diederik Paul Moeys, Federico Corradi, Emmett Kerr, Philip
Vance, Gautham Das, Daniel Neil, Dermot Kerr, and Tobi Del-



bibliography 152

brück. Steering a predator robot using a mixed frame/event-
driven convolutional neural network. In 2016 Second Interna-
tional Conference on Event-based Control, Communication, and Sig-
nal Processing (EBCCSP), pages 1–8. IEEE, 2016.

[77] Hermann Blum, Alexander Dietmüller, Moritz Milde, Jörg Con-
radt, Giacomo Indiveri, and Yulia Sandamirskaya. A neuromor-
phic controller for a robotic vehicle equipped with a dynamic
vision sensor. Robotics Science and Systems, RSS 2017, 2017.

[78] Richard Evans. Reinforcement learning in a neurally con-
trolled robot using dopamine modulated stdp. arXiv preprint
arXiv:1502.06096, 2015.

[79] Bleema Rosenfeld, Osvaldo Simeone, and Bipin Rajendran.
Learning first-to-spike policies for neuromorphic control using
policy gradients. In 2019 IEEE 20th International Workshop on
Signal Processing Advances in Wireless Communications (SPAWC),
pages 1–5. IEEE, 2019.

[80] Jacques Kaiser, J Camilo Vasquez Tieck, Christian Hubschnei-
der, Peter Wolf, Michael Weber, Michael Hoff, Alexander
Friedrich, Konrad Wojtasik, Arne Roennau, Ralf Kohlhaas, et al.
Towards a framework for end-to-end control of a simulated
vehicle with spiking neural networks. In 2016 IEEE Interna-
tional Conference on Simulation, Modeling, and Programming for
Autonomous Robots (SIMPAR), pages 127–134. IEEE, 2016.

[81] Zhenshan Bing, Claus Meschede, Kai Huang, Guang Chen, Flo-
rian Rohrbein, Mahmoud Akl, and Alois Knoll. End to end
learning of spiking neural network based on r-stdp for a lane
keeping vehicle. In 2018 IEEE International Conference on Robotics
and Automation (ICRA), pages 1–8. IEEE, 2018.

[82] J Camilo Vasquez Tieck, Pascal Becker, Jacques Kaiser, Igor
Peric, Mahmoud Akl, Daniel Reichard, Arne Roennau, and
Rüdiger Dillmann. Learning target reaching motions with a
robotic arm using brain-inspired dopamine modulated stdp.

[83] Susanne Kunkel, Rajalekshmi Deepu, Hans Ekkehard Plesser,
Bruno Golosio, Mikkel Elle Lepperød, Jochen Martin Eppler,
Sepehr Mahmoudian, Jan Hahne, Dimitri Plotnikov, Claudia
Bachmann, et al. Nest 2.12. 0. Technical report, Julich Super-
computing Center, 2017.

[84] Mitsuo Yokokawa, Fumiyoshi Shoji, Atsuya Uno, Motoyoshi
Kurokawa, and Tadashi Watanabe. The k computer: Japanese
next-generation supercomputer development project. In
IEEE/ACM international symposium on low power electronics and
design, pages 371–372. IEEE, 2011.



bibliography 153

[85] Jacques Gautrais and Simon Thorpe. Rate coding versus tem-
poral order coding: a theoretical approach. Biosystems, 48(1-3):
57–65, 1998.

[86] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas
Schneider, John Schulman, Jie Tang, and Wojciech Zaremba.
Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[87] Gary Bradski and Adrian Kaehler. Learning OpenCV: Computer
vision with the OpenCV library. " O’Reilly Media, Inc.", 2008.

[88] Amos Sironi, Manuele Brambilla, Nicolas Bourdis, Xavier
Lagorce, and Ryad Benosman. Hats: Histograms of averaged
time surfaces for robust event-based object classification. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1731–1740, 2018.

[89] Marco Cannici, Marco Ciccone, Andrea Romanoni, and Matteo
Matteucci. Asynchronous convolutional networks for object de-
tection in neuromorphic cameras. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops,
pages 0–0, 2019.

[90] Gregory Kevin Cohen. Event-based feature detection, recognition
and classification. PhD thesis, Paris 6, 2016.

[91] Marco Cannici, Marco Ciccone, Andrea Romanoni, and Matteo
Matteucci. Matrix-lstm: a differentiable recurrent surface for
asynchronous event-based data. arXiv preprint arXiv:2001.03455,
2020.

[92] Dean A Pomerleau. Alvinn: An autonomous land vehicle in
a neural network. In Advances in neural information processing
systems, pages 305–313, 1989.

[93] Ana I Maqueda, Antonio Loquercio, Guillermo Gallego, Nar-
ciso García, and Davide Scaramuzza. Event-based vision meets
deep learning on steering prediction for self-driving cars. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 5419–5427, 2018.

[94] Henri Rebecq, René Ranftl, Vladlen Koltun, and Davide Scara-
muzza. High speed and high dynamic range video with an
event camera. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2019.

[95] Alex Zihao Zhu, Liangzhe Yuan, Kenneth Chaney, and Kostas
Daniilidis. Ev-flownet: Self-supervised optical flow estimation
for event-based cameras. arXiv preprint arXiv:1802.06898, 2018.



bibliography 154

[96] Henri Rebecq, Guillermo Gallego, Elias Mueggler, and Davide
Scaramuzza. Emvs: Event-based multi-view stereo—3d recon-
struction with an event camera in real-time. International Journal
of Computer Vision, 126(12):1394–1414, 2018.

[97] Iulia-Alexandra Lungu, Federico Corradi, and Tobi Delbrück.
Live demonstration: Convolutional neural network driven by
dynamic vision sensor playing roshambo. In 2017 IEEE Inter-
national Symposium on Circuits and Systems (ISCAS), pages 1–1.
IEEE, 2017.

[98] Evangelos Stromatias, Miguel Soto, Teresa Serrano-
Gotarredona, and Bernabé Linares-Barranco. An event-driven
classifier for spiking neural networks fed with synthetic or
dynamic vision sensor data. Frontiers in neuroscience, 11:350,
2017.

[99] Jun Haeng Lee, Tobi Delbruck, and Michael Pfeiffer. Training
deep spiking neural networks using backpropagation. Frontiers
in neuroscience, 10:508, 2016.

[100] Peter U Diehl, Daniel Neil, Jonathan Binas, Matthew Cook,
Shih-Chii Liu, and Michael Pfeiffer. Fast-classifying, high-
accuracy spiking deep networks through weight and threshold
balancing. In 2015 International Joint Conference on Neural Net-
works (IJCNN), pages 1–8. ieee, 2015.

[101] Eric Hunsberger and Chris Eliasmith. Spiking deep networks
with lif neurons. arXiv preprint arXiv:1510.08829, 2015.

[102] Peter O’Connor, Daniel Neil, Shih-Chii Liu, Tobi Delbruck, and
Michael Pfeiffer. Real-time classification and sensor fusion with
a spiking deep belief network. Frontiers in neuroscience, 7:178,
2013.

[103] Milad Mozafari, Mohammad Ganjtabesh, Abbas Nowzari-
Dalini, Simon J Thorpe, and Timothée Masquelier. Combin-
ing stdp and reward-modulated stdp in deep convolutional
spiking neural networks for digit recognition. arXiv preprint
arXiv:1804.00227, 1, 2018.

[104] Zhenshan Bing, Zhuangyi Jiang, Long Cheng, Caixia Cai, Kai
Huang, and Alois Knoll. End to end learning of a multi-layered
snn based on r-stdp for a target tracking snake-like robot. In
2019 International Conference on Robotics and Automation (ICRA),
pages 9645–9651. IEEE, 2019.



Bio-inspired Pattern Recognition and Detection from Event Cameras
with Reward-Modulated Prototypes

Hidden for review
Hidden for review
Hidden for review
Hidden for review

Hidden for review
Hidden for review
Hidden for review
Hidden for review

Abstract

We propose a novel pattern recognition and detection
approach combining three bio-inspired concepts: Event-
Based Cameras (EBC) for sensing, and Spiking Neural Net-
works (SNN) and Reinforcement Learning (RL) for data
processing, with an application to pattern recognition and
detection. Event sensors provide a sparse representation of
visual information. Based on this information, the approach
takes the form of an HMAX-like model, where the core
of the learning is based on the Reward-modulated Synap-
tic Time Dependent Plasticity (R-STDP), that extends the
Hebbian formulation of biological synaptic learning given
by STDP. Our formulation of the learning rule extends R-
STDP, which is a fundamental step towards allowing multi-
class classification.

We show that such an approach is able to success-
fully learn multiple class-specific prototypes given a labeled
event-based training dataset. Such prototypes can success-
fully recognize and detect patterns from event data. To the
best of our knowledge, this is the first proposal connecting
the triple EBC-SNN-RL, and this work opens the way for
further bio-inspired pattern analysis.

1. Introduction

Multiple disciplines have drawn inspiration from what
can be observed in nature, result of centuries of optimiza-
tion through natural selection. Neuromorphic engineering is
a multi-disciplinary branch of engineering whose aim is to
design systems and models whose architecture and design
principles are based on those of biological nervous systems.

Event-Based Cameras (EBC) are neuromorphic devices
that imitate the behaviour of the human retina. Instead of
capturing images at a fixed frame-rate like conventional im-
age sensors, each pixel inside the sensor operates indepen-
dently and asynchronously, reporting relative changes in the
light intensity under the form of events. Each event com-

prises the pixel coordinates (x, y) where the light intensity
change occurred, a timestamp ts indicating the time when
this change occurred, and a polarity p indicating whether
the change in the light intensity was positive or negative.
An event is thus formed by a tuple: (x, y, ts, p).

This kind of sensor benefits from a number of advan-
tages, including a temporal resolution in the range of the
microsecond, a very high dynamic range, no dazzling ef-
fect, and drastically reduced motion blur. Moreover, in
non highly dynamic scenes, the visual information gathered
is usually very sparse, which requires lower transmission
bandwidth, storage capacity, processing time, and power
consumption compared to conventional imaging sensors.
Because of these outstanding features, EBC draw an in-
creasing interest in the Computer Vision and Pattern Recog-
nition communities, with applications including e.g. optical
flow [23,35], motion estimation [14,29], deblurring [12,24]
segmentation [19, 29], and feature detection [17]. Event-
based sensors introduce a new paradigm which is not com-
patible with standard pattern recognition detection algo-
rithms. Therefore, novel methods are required to process
such unconventional data in order to unlock their potential.

In particular, Spiking Neural Networks (SNN), the third
generation of neural networks, look particularly adapted to
biologically-inspired event cameras since they also operate
asynchronously. In SNN, information is encoded with rate
or time and conveyed to other neurons by means of electri-
cal pulses (spikes). This type of neural network has been
shown to be computationally more powerful than previous
generations of neural networks [16].

During training, SNNs generally do not rely on back-
propagation and stochastic gradient descent, synapses are
rather equipped with a Spike-Timing-Dependent Plasticity
(STDP), which is a learning rule that implements a Heb-
bian learning [10], inspired from the organic hierarchical
ventral path of the visual cortex. This rule updates synaptic
weights according to causal links observed between presy-
naptic and postsynaptic spikes: a weight is increased (po-
tentiated) when a postsynaptic spike occurs shortly after
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a presynaptic spike, and decreased otherwise. While this
learning rule is generally implemented in unsupervised set-
tings, it also can us used in supervised settings, where a
postsynaptic spike is artificially triggered from selected out-
put neurons by a supervisor in order to force synaptic po-
tentiation. In this paper, however, we focus on yet another
variation in a Reinforcement Learning [33] setting, inspired
from the Reward-modulated STDP of Mozafari et al. [20].

This paper introduces an original approach for pattern
recognition and detection that takes advantage of event
cameras, spiking networks, and reward modulated STDP.
Our contributions include the proposal of a first approach
combining RL rule on SNN and EBC, in the form of a novel
bio inspired pattern recognition and detection model in-
spired from HMAX, and a new formulation of the Reward-
modulated Synaptic Time Dependent Plasticity (R-STDP)
rule that enables multi-class classification. One important
feature of this model is that because it can learn multiple
prototypes per class, it handles will intra-class variations,
which leaves flexibility in the definition of classes. To the
best of our knowledge, this proposal is the first model that
elegantly connects these three biologically-inspired con-
cepts for pattern recognition, and it is the first bio-inspired
approach of this kind for detection.

The remainder of the paper is organised as follows: Sec-
tion 2 reviews work related to EBC, SNN, and RL, Sec-
tion 3 introduces our proposed model to combine the three
concepts in a unified model, Section 4 describes, comments,
and discusses the experimental settings and results, and fi-
nally Section 5 summarizes our contributions and discusses
future work.

2. Previous work

2.1. Event-based pattern classification

One of the first approaches for object classification us-
ing event data was introduced in 2011 by Chen et al. [3].
This approach is based on HMAX, a neurophysiologically
plausible model of visual recognition initially proposed by
Riesenhuber and Poggio [27] and later extended by Serre et
al. [31], that has been a starting point for several work. The
approach of Chen extracts size- and position-invariant line
features with an HMAX model on 6 scales and 4 orienta-
tions, then with a modified line-segment Hausdorff-distance
classifier, it computes the distance between the line seg-
ments of the test image and each one of the predefined li-
brary images to output a prediction.

In 2014, Zhao et al. [34] proposed an approach which
extracts bio-inspired cortex-like features with a simple two-
layered HMAX-inspired model and discriminates different
patterns with the tempotron classifier of Gütig [9]. An im-
portant point to highlight here is that instead of process-
ing data with a fixed number of events, this approach is

event-driven, which means that there is no central clock,
and therefore events are processed continuously, through an
event-driven convolution with constant linear leakage.

A year later, in 2015, Orchard et al. [22] developed an
approach based again on the HMAX model with Gabor fil-
ters at 12 different orientations called HFirst. Instead of
relying on a non-linear pooling operation such as the max
operation, this approach relies on the first spike received
during computation. The number of spikes of each neuron
in the HMAX C1 layer is counted for the input pseudo-image
sample, and this count is translated into synaptic weights for
the S2 layer to recognise a particular class.

After these two HMAX-inspired approaches, two other
approaches have been developed in 2016: one is the Bag
of Events (BOE) developed by Peng et al. [25], and the
other is the Hierarchy Of Time-Surfaces (HOTS) proposed
by Lagorce et al. [13].

In BOE, instead of lines, corners, or other visual features,
the method is based on probability theory and is inspired on
TF-IDF weighting scheme in information retrieval [28]. It
combines the event frequency within a batch of events as
a measure of popularity (TF) and the self-information as a
measure of specialty (IDF) in a single metric that is then
used for classification using an SVM. One of the advan-
tages of this approach is that it implements an online learn-
ing algorithm, therefore it does not require the entirety of
the training dataset to be provided in advance.

In HOTS, spatio-temporal features called time surfaces
are extracted from the asynchronously-acquired dynamics
of a visual scene, and then used to build a hierarchy of time
surface prototypes at different time scales, whose activa-
tions are given as input for an object classifier.

More recently, in 2018, Sironi et al. [32] introduced
HATS, another approach that introduces locally shared
memory units retaining information of past events to cre-
ate a descriptor made of an histogram of averaged time sur-
faces, which is then coupled with a simple linear SVM clas-
sifier for event-object classification.

In 2019, Cannici et al. [2] proposed You Only Look
Events (YOLE), an architecture relying on a standard CNN
using the YOLO loss [26] and a linear leak frame integra-
tion technique. This approach smartly modifies the forward
pass of fully convolutional architectures so that convolution
and pooling operations are reformulated to avoid waste of
power in computations by maintaining a current state, and
recomputing only the features corresponding to regions af-
fected by new incoming events, while leaking allows past
information to be forgotten. These changes are embedded
in new event-based layer components: e-conv and e-max-
pool.
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2.2. SNN and RL for object classification

Introduced by Izhikevich in 2007 [11], the Dopamine-
modulated STDP (DA-STDP) is inspired from the fact that
neuromodulators such as dopamine are known to modify
synaptic behaviour. The objective was to solve the dis-
tal problem, where the reward is not immediately received.
Another rule, the Reward-modulated Synaptic Time De-
pendent Plasticity (R-STDP) proposed by Mozafari et al.
[20] (which must not be confused with the DA-STDP rule
proposed by Izhikevich, since DA-STDP is sometimes re-
ferred to as R-STDP, but they are different rules), was origi-
nally proposed to find patterns in static images with an RL-
inspired rule that assigns weights a reward or punishment
depending on whether the prediction is correct or not.

Finally, one of the latest approaches is the Multi-scale
Spatio-Temporal (MuST) approach in 2020 by Liu et al.
[15], that introduces a multi-scale approach to Gabor fil-
ters processing and learns patterns with the unsupervised
learning rule STDP similarly to Masquelier et al. [18]. It
should be noted that this approach, together with HFirst by
Orchard et al. [22], and the approach developed by Zhao et
al. [34], are some of the few approaches that combine event
data with SNN. Going beyond Orchard and Zhao, this paper
introduces an HMAX-inspired approach that innovatively
integrates in the framework a novel multi-class RL-inspired
learning rule: Reward-modulated Synaptic Time Dependent
Plasticity (R-STDP), making our approach the first origi-
nal model that successfully combines the three concepts of
EBC, SNN, and RL.

3. Proposed approach
The model consists of an HMAX-like architecture de-

signed for processing event data, and learn prototypes with
R-STDP rule as illustrated Figure 1. A first part, prior to
defining the model layers, consists in grouping the events
with data-driven time slices in order to successively recre-
ate a frame representation out of the events.

3.1. Event stream segmentation: preprocessing

Instead of using a fixed event count or a fixed time-slice
as generally done with jAER tool by Delbrück [6], we use
a soft event segmentation approach to dynamically segment
events into groups. In particular, we use a threshold-based
Motion Symbol Detector (MSD) [34].

As shown Figure 2, the MSD consists of a Leaky Inte-
grate and Fire (LIF) neuron whose potential increases with
the arrival of events, and decays exponentially in case of
no input. The LIF neuron fires whenever a certain thresh-
old is reached. The output spikes of this LIF neuron act as
markers that separate batches of events. Once the events are
partitioned by the MSD, events are grouped into time slices.
This data-driven slice ignores the polarity and the temporal

information of the events within the segment leaving as only
information left the pixel coordinates of the events.

lllll lll ll lll llll ll l

Event queue

LIF neuron

Even-based camera

Figure 2: Motion Symbol Detector: when the threshold
is reached, all the events accumulated in the queue are
grouped in a batch and transferred to S1. The queue is then
cleared and the neuron potential reset, so that the detector is
ready to accumulate again.

3.2. Time slice filters – S1 and C1

The data-driven representation obtained in the previous
step, is processed with 16 different Gabor filters – made of
4 scales (3, 5, 7, 9) and 4 orientations (0°, 45°, 90°, 135°) –
located in the S1 layer that computes the strength of spatial
features (see Figure 1).

After convolving the time slices with the filters with
a same padding, the C1 layer downsamples the feature
responses with a max-pooling operation over non-
overlapping 2× 2 regions of S1. This pooling is performed
for each scale and orientation.

3.3. Encoding and scale fusion – from C1 to S2

The proposed approach includes an encoding strategy
that transforms the pooled feature responses into spikes, in-
spired from Liu et al. [15]. We use a logarithmic Intensity-
to-Latency (I2L) strategy, that maps spike times to values
inversely proportional to the intensity of the response. The
logarithmic version of I2L has proved a higher informa-
tion entropy than the linear in Liu’s work, which means that
this version is more informative. Logarithmic I2L assigns a
spike timestamp ts within a certain time window tw based
on the feature response value r with the following equation:

ts(r) = tw
ln(rmax)− ln(r)

ln(rmax)− ln(rmin)
(1)

where rmax and rmin are respectively the maximum and
minimum feature response value of C1. Once the responses
are converted into spikes for each filter separately, multi-
scale responses are merged – scales of origin of responses
are discarded. Only the orientation and location are kept in
S2.
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Figure 1: Overview of the proposed approach. The overall structure is inspired from the well-known HMAX model structure
and used similarly as in HFirst [22]. The event segmentation idea is adapted from Zhao [34], while the multi-scale approach
and encoding are suggested by MuST [15]. The RL-inspired learning algorithm (R-STDP) used to modify synaptic weights
extends the proposal of Mozafari et al. [20]

.

3.4. Prototype-learning SNN (S2)

After spike encoding, spikes are processed with the S2
layer (see Figure 1), which consists of a convolutional
spiking layer of Integrate-and-Fire (IF) neurons. All neu-
rons in the convolutional spiking layer (grid) share the
same weights. They have orientation-specific and location-
specific weights, and they cover a 3×3 receptive field (input
spiking area) in each orientation filter of C1, as illustrated
Figure 3. Synaptic weights are updated with an extended
version of the Reward-modulated Synaptic Time Dependent
Plasticity (R-STDP) proposed by Mozafari et al. [20]. In
Mozafari’s work, wrong predictions can lead to a heavy de-
crease in the weights, which can ultimately result in silent
layers (no output spikes at all). Since Mozafari’s rule ac-
cepts silence as a valid prediction, and does not update
weights in case of silence, this learning rule is subject to
the dead neuron problem. We believe that this is the reason
why the original paper only tackled two-class classification
problems: in our multi-class classification scenario test, the
network ultimately reached a point in which it was silent for
most classes, which is obviously a problem. To address this
problem, we introduce a variation of the existing learning
rule [20, eq. (6,7)], which does not only update the grid of
the neuron that spiked, but it also may increase weights in
all the grids associated to the correct class.

In case of a reward (correct prediction), the grid weights

C1 responses S2 Grid

Figure 3: The S2 grid contains neurons that cover the entire
C1 spiking regions. In the particular case shown in the illus-
tration, the grid weights are represented as a 3x3x4 matrix
which covers a 3× 3 region of 4 different orientations.

update is given by the following equation:

∆wij =

{
A−

r · wij · (1− wij) if tf (j) ≥ ti
A+

r · wij · (1− wij) if tf (j) < ti
(2)

while in case of punishment (wrong prediction), the weight
updates are instead the following:

∆wij =

{
A−

p · wij · (1− wij) if tf (j) ≤ ti
A+

p · wij · (1− wij) if tf (j) > ti
(3)

in addition, if there is a wrong prediction or silence,

wij + ε, ∀wij ∈ Grids(label) (4)
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where j is the winning neuron with spike time tf (j), ti is
the eventual time of arrival of a spike at the neuron’s recep-
tive field region i, and wij is the synaptic weight between
the input region and the neuron, andGrids(label) indicates
the ensemble of Grids pre-allocated to the given label.

With these update rules, if a reward is received (Eq. 2),
only the grid containing the neuron that spiked undergoes a
weight modification. This update rule increases the weights
by a factor of A+

r > 0 if at a certain position in the neu-
ron’s receptive field, there was a C1 response spike before
the S2 neuron spiked (successful situation: true positive).
Given that the prediction was correct (since a reward is re-
ceived), this increase in the weights aims to reinforce the
association of certain features’ position and orientation to
the class. In parallel, this same update rule updates weights
by a factor of A−

r < 0, if at a certain position, there was not
a C1 response spike before the S2 neuron spiked (silence:
true negative). This decrease in the weights is triggered so
that S2 becomes sensitive only to relevant positions and ori-
entations, and ignores the rest of the spikes given that they
might not be class-relevant.

When instead a punishment is received (Eq. 3), the
weights are updated by a factor of A−

p < 0 if at a certain
position, there was a C1 response spike before the winner
neuron spiked (false positive). This decrease prevents grids
from being sensitive to irrelevant stimuli, not useful to dis-
tinguish the different classes as it has just lead to a wrong
prediction. If at a certain position, C1 has emitted some
spikes after the winner neuron spiked (false negative), then
the weights are increased A+

p > 0 so that the neuron be-
comes sensitive to the a different pattern, which might be
correct for the associated class. In addition, in case of pun-
ishment or silence (Eq. 4), all weights in grids associated to
the correct class are increased by a small amount ε so that
class grids are more sensitive to this stimulus for the next
predictions.

This formulation enables the method to address multi-
class classification problems. In order to achieve a distinc-
tion between the different classes, multiple grids of neurons
(K grids per class with K ≥ 1) are needed. When K > 1,
the model is able to learn different prototypes per class as
shown in Figure 4.

3.5. Prediction

The first neuron in any grid that reaches the threshold and
emits a spike is considered the winning neuron in a Winner-
Take-All (WTA) strategy. Since each grid is associated to
a class and we have multiple grids, each one belonging to
a certain class, the prediction in the proposed approach is
naturally the class associated to the grid containing the win-

Figure 4: Example of two different prototypes of two digits
learnt during the training mechanism. The approach is able
to learn prototypes that represent the class, but also is able
to learn different representations of the same class as it can
be observed from the illustrated representations. Top: the 2
on the left includes a loop while the second is more straight
and Z-shaped. Bottom: the 5 on the left is more S-shaped
and the 5 on the right is more rounded on the middle-lower
part.

ning spiking neuron or silence in case of no spike:

ŷ = label(Gridm)⇔ ∃j∀l, tf (j) ≤ tf (l) ∧ j ∈ Gridm
∨ (5)

ŷ = ∅ ⇔ @j, tf (j)

wherem is the index of a grid ∈ {0,K−1}, j and l indicate
S2 neuron indices and tf (·) indicates the firing time of a
neuron.

4. Experimental Results
In order to test the efficacy of the proposed method, we

have tested it with the N-MNIST [21], POKER-DVS [30], and
POSTURE-DVS dataset [3]. The first dataset contains digits
moving in a 34× 34 pixel array obtained through saccades,
the next features pips of cards moving on the screen while
the latter features human postures on a 128×128 pixel array.

4.1. Parameter selection

The number of grids is chosen according to how diverse
the classes are (i.e. the intra-class dissimilarity). For in-
stance, if we want to classify digits from 0-9 in two classes:
even and odd, we would need at least 5 grids per class since
elements within a class do not share visual similarities. In
the standard 10-class case, since each number corresponds
to a different class, we initially selected 1 grid per class
and later increased the number of grids per class to give
the model opportunity to recognise variations of the same
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rf size = 11 rf size = 9 rf size = 7

Figure 5: Prototype comparison with different receptive
field sizes on the POKER-DVS dataset. The learning rule
was able to find the class-specific patterns shown above for
receptive fields 11×11, 9×9, and 7×7 while it was unable
to find one with a 5× 5 receptive field.

class. Therefore in our experiments, we tried k = 2 grids
per class for the datasets.

The receptive field was selected for all datasets to be the
smallest region which can contain the entire target pattern.
By selecting a too small receptive field, the algorithm is
likely to fail at identifying a pattern that is able to properly
separate the classes. For instance, a 5 × 5 receptive field
for N-MNIST might identify a semicircle that looks like an
horizontally flipped C. Since this pattern occurs in numbers:
zero, two, three and five, it will not be helpful for differen-
tiating these classes.

In Figure 5, it is possible to observe experiments on the
size of the receptive field.

4.2. Class-specific prototypes

The experiments revealed interesting results, since the
method was able to learn the proper weights that represent a
whole class. Figure 6 shows the weights learnt during train-
ing for the various datasets. In order to make the weights
more interpretable, a line in the orientation of the associ-
ated Gabor filter is plotted with an opacity proportional to
the weight value.

4.3. Going beyond classification: pattern detection

Pattern detection is a harder problem than classification
since the goal is both classification and location identifica-
tion (by means of a bounding box) of a single, or multiple
patterns in a visual scene. By selecting S1 to be the same
size as the event sensor, an S2 receptive field big enough to
contain the entire pattern to classify, and by keeping track
of the first neuron inside the grid to spike, the proposed
approach can be thought as a parallelised sliding-window
object detection approach with a fixed square size (which
equals to the size of the receptive field of the neurons).

Figure 7: Multi-class detection on the original DVS-
BARREL recording.

This is due to the fact that S2 neurons are capable of
identifying a class pattern along all the input region thanks
to their weight sharing strategy. Note that the proposed al-
gorithm, as it has been explained to this point, is only ca-
pable of identifying one pattern in the scene and not multi-
ple patterns. This limitation is easily overcome by allowing
multiple temporal winners during the prediction phase and
inhibit neurons to fire in regions where an object has already
been identified.

The importance of setting a good neuron firing threshold,
becomes important in this context as the algorithm is more
prone to false alarms with partial activations of the pattern.
Figure 7 shows detection and classification results on the
DVS-BARREL dataset [22].

4.4. Performance

A comparison of the performance of the proposed ap-
proach and other bio-inspired and simple methods can be
found in Table 1. The table indicates that the proposed
approach works particularly well compared to some other
bio-inspired approaches, and performs particularly well in
datasets where the elements belonging to a class are easily
generalised by a handful of prototypes like the POKER-DVS
dataset, while it does not achieve expected performance on
the N-MNIST due to the difficulty of generalising the hand-
written digits with a small number of prototypes, this could
be improved by considering more prototypes per class.

4.5. A Reinforcement Learning approach or not?

It can be questioned whether this approach actually be-
longs or not to Reinforcement Learning. The fact that the
reward is constructed based on the training samples is a ma-
jor argument against this categorization and may lead to be-
lieve is just a way of supervision. However, this approach is
not only able to learn with training samples – in case there
are no class labels, a positive reward can be assigned, mak-
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(a) POKER-DVS (b) N-MNIST

(c) POSTURE-DVS: bending (d) POSTURE-DVS: hand1

Figure 6: Learnt prototypes with the proposed approach.

Table 1: Classification performance of different approaches (best performances in bold).

Approach POKER-DVS N-MNIST Useful for
Zhao et al. [34] 93.00% 86.60% Classification
BOE [25] 93.00% 70.43% Classification
HFIRST [22] 94.00% 71.15% Classification
HOTS [13] 97.50% 80.8% Classification
MUST [15] 99.00% 89.7% Classification
This work 99.09 % 84.4% Classification & Detection

ing the method behave just like the standard unsupervised
STDP learning rule. Class labels can then be assigned to
the each one of the learnt patterns. Once class labels are as-
signed, the model starts to learn more appropriate patterns
which help better differentiate the classes.

Because the method is reward-based and learning-based
through trial-and-error actions (where the prediction is the
action taken), the best definition for the approach is that of
RL: an agent learns by trial and error using feedback from
its own actions and experiences to maximise a notion of re-
ward. In fact, the prototypes are created in a trial-and-error
way by reinforcing weights, which leads to correct predic-
tions.

5. Conclusion and future work

This paper introduces a novel approach for pattern recog-
nition that combines event-based data, spiking neural net-
works, and reinforcement learning with a new formulation
of the Reward-modulated Synaptic Time Dependent Plas-
ticity. To the best of our knowledge, this proposal is the first
one that connects the three biologically-inspired concepts of
EBC-SNN-RL for a pattern recognition task. Moreover, it
is the first approach of this kind that performs pattern detec-
tion.

Event-based camera are not yet widely available. How-
ever, by using libraries such as Gehrig’s [8] to convert stan-
dard video to events streams, our approach can be applied
to standard video datasets, although without fully taking ad-
vantage of event sensors.
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The frame integration technique used in the approach ig-
nores the temporal resolution within a batch of events, this
was chosen to avoid more complexity in the software simu-
lations, however it is evident this is not ideal, especially in
the event-based paradigm, for this reason, it should be worth
experimenting with leaky surfaces that better consider the
temporal resolution of events by introducing a leakage func-
tion f depending on the internal state u of each of the pix-
els and the ∆ts between the timestamps. Examples of leaky
surfaces are the linear decaying surface Eq. 6 [2, 4] or the
exponentially decaying surface Eq. 7 [13].

f = max{0, u(x, y)− λ ·∆ts} (6)

f = u(x, y) · exp(−∆ts/τ) (7)

Although it is out of the scope of this paper, it is worth
highlighting that eventually, such an approach is intended to
be deployed of specific hardware such as IBM’s TrueNorth
[1], Intel’s Loihi [5], SpiNNaker [7], or specific neuromor-
phic hardware.
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Biologically-inspired robot control

Rafael Mosca1 and Jean Martinet1

Abstract— We introduce a novel biologically-inspired ap-
proach for robot control. The approach is based on Spiking
Neural Networks (SNN), a model of asynchronous artificial
neural networks that is closer to biology than formal networks
traditionally used in machine learning. The sensing is done with
event-based visual sensors (silicon retinas), that mimic biological
retinas by outputting asynchronous events for each pixel based
on individual luminance changes. We illustrate this approach on
aerial robot navigation scenarios. The contribution is three-fold:
(1) our SNN are trained with a Reinforcement-Learning-based
version of the standard Spike-Timing Dependant Plasticity
(STDP) widely used to optimise weights in spiking networks,
that is the dopamine-modulated STDP, (2) the sensing is done
with event-based cameras, and (3) to the best of our knowledge,
this is the first approach combining the promising triple: Event-
Based Cameras, Spiking Neural Networks, and Reinforcement
Learning. Experimental simulation results of drone navigation
for object/line following scenarios demonstrate superior results
of the proposed approach compared to other Reinforcement
Learning approaches.

I. INTRODUCTION

Event-Based Cameras (EBC), also called silicon retinas
or dynamic vision sensors, are biologically inspired vision
sensors that do not collect frames at a fixed frame rate,
instead, these kind of sensors output changes on pixel-
level brightness. By doing so, these kind of cameras offer
some considerable advantages over standard frame-based
cameras, namely a very high dynamic range, absence of
motion blur, no redundancy in visual information, low power
consumption, and a latency in the microsecond range.

SNN are a type of artificial neural networks that is
closer to the biological model of neurons as information
is conveyed to other neurons by means of electrical pulses
called spikes. In this type of neural network, the information
is processed asynchronously, and it has been shown to be
more computationally powerful than previous generations of
neural networks [11].

EBC emit events asynchronously, which makes SNN well
suited for their processing [15]. We believe that EBC coupled
with SNN make a sound and promising combination for
autonomous robots or vehicles that need energy efficient
and fast real-time calculations. However, because EBC and
SNN are fundamentally different from standard frame-based
cameras and formal neuron models widely used in deep
learning, previously developed algorithms cannot be directly
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1Both authors are with the Université Côte d’Azur, CNRS,
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applied. Hence, there is a need for new algorithms developed
ad-hoc for these models.

In this paper, we introduce an original biologically-
inspired approach for robot control, based on Event-Based
Cameras and Spiking Neural Networks trained with Re-
inforcement Learning, which has been largely unexplored
and unexploited in this context. Therefore this work is
intrinsically interdisciplinary since it brings together and
connects contributions in robot control, machine learning,
computational neurosciences, and computer vision.

The remainder of this paper is organised as follows.
Section II reviews work related to the use of EBC, SNN,
and RL for robot control. Sections III and IV describe our
proposed approach and the experimental settings and results.
Section V provides conclusions and future directions.

II. RELATED WORK

Applications of SNN for robot control started in the early
2000’s, with a number of attempts for autonomous naviga-
tion applications. Floreano and Mattiussi used evolutionary
methods for vision-based SNN controllers that performed
navigation tasks in different contexts: a small two-wheeled
robot navigating in a rectangular arena with textured walls
[5], and blimps and micro-flyers navigating in an indoor
scenario [6]. Di Paolo [3] performed a first attempt in 2002 to
control a robot coupling STDP with an evolutionary strategy,
and Florian [7] showed in 2003 that networks using STDP
evolved faster (in terms of generations) than networks with
static synapses. Hagras et al. [8] used in 2004 an adaptive
crossover and mutation genetic algorithm on a robot with
nine ultrasound sensors and four bump sensors, to converge
faster to a solution that exhibited the desired edge-following
behaviour. In 2009, Wang et al. [21] built a robot that is
capable of following a wall by using an SNN controller and
16 evenly distributed ultrasonic sensors, even when obstacles
are present.

As a step beyond these successful experiments on SNN-
based robot control, the use of event-based vision sensors
offer considerable advantages over standard frame-based
cameras. In 2013, Perez-Peña et al. [13] used EBC data to
reproduce intended movements performed by humans with a
neuroinspired algorithm (SVITE: Spike-based VITE). Some
years later, in 2016, Moeys et al. [12] used a CNN with data
from an EBC to control a ”predator” and follow another
which acted as a ”prey”, while in 2017, Blum et al. [2] im-
plemented a spike-based robotic controller on neuromorphic
hardware that is able to perform reactive obstacle avoidance
and target acquisition in an unknown environment using as
sensory input just an EBC and an Inertial Measurement Unit.



Lately, there has been an increased interest in RL with
SNN [19], and it seems natural to apply this paradigm to
SNN for robot control. Biological synapses release a type
of chemical messengers called neurotransmitters upon the
arrival of an action potential from the presynaptic neuron.
These neurotransmitters are diffused across the small space
between the two neurons which is called synaptic cleft and
then bind to receptors on the dendrites of the post-synaptic
neurons. As a result of this binding, the postsynaptic neuron
is influenced in its behaviour and its spike-generating activity
is either excited or inhibited. It has been shown also that the
release of a particular neurotransmitter called dopamine, is
causally linked to the expected future reward [16]. Indeed,
unexpected rewards activates midbrain dopamine neurons,
and the magnitude of the dopamine release depends on un-
expectedness of the reward. The ”credit assignment problem”
is a central problem in the reinforcement learning literature.
This problem consists in knowing how and which of the cues
and actions received prior to the reward should be credited
for it, even in situations where the reward may be delayed.
[9] showed how modulating the LTP and LTD components
of STDP with the neuromodulator is a reasonable solution
to this problem. The modulation of STDP with the neuro-
modulator proposed by [9] in 2007, transforms the standard
unsupervised learning paradigm of STDP, into a reward-
based learning paradigm, hence the name R-STDP.

Vasilaki et al. [18] used in 2009 an RL-based SNN to
control a robot in the Morris water navigation task, the
famous task used to study spatial learning and memory,
which consists in finding an invisible or visible platform that
allows the agent to escape the water. Evans [4] used in 2015
R-STDP on a robot with range and touch sensors that had
to learn the correct behaviour to collect food items (avoid
poison, empty containers, etc.), while other researchers like
Rosenfeld et al. [14] attempted in 2019 neuromorphic control
using policy gradient-based algorithms for SNN.

Finally, Kaiser et al. [10] developed in 2016 a framework
to evaluate neural self-driving vehicle applications, which is a
milestone for emergence of approaches combining EBC and
SNN. This framework, shown in Fig. 1, consists in using
a ROS as a communication middleware between a world
simulator like Gazebo or V-REP, which represents both the
environment and the agent, and a ROS that controls the
agent. In such framework, the simulation data is passed to
the SNN who then takes the actions needed (such as steering
commands), and sends them to the simulated vehicle.

Spiking Neural
Network

World
Simulation

Driving Command
Decoder

    I I    I  I     
I     I I     I 

DVS Visual
Encoding

Fig. 1: The general simulation framework for robot control.

This framework inspired Bing et al. [1] in 2018 to improve
the original paper baseline. Instead of picking a set with
handpicked-weights, the authors translated policies learned
with standard Deep Q-Learning to an SNN and explored
SNN learning rules such as R-STDP. With the same inspi-
ration, Bing et al. also explored R-STDP on a snake-like
robot used to perform target tracking tasks. Such experiments
inspired in turn Tieck et al. [17] in 2019 to use R-STDP on
a robotic arm that needs to reach a target and to perform
manipulation tasks. We also use this simulation framework
to demonstrate our proposed approach with vision-based
object/line following tasks.

III. PROPOSED APPROACH

We describe in this section our biologically-inspired ap-
proach for robot control, based on EBC and SNN trained
with R-STDP. In order to demonstrate the usefulness of R-
STDP in robot control, and its superiority with respect to
traditional RL algorithms, we investigate two scenarios for
an aerial robot (quadrotor) equipped with an EBC, with the
constraint of using no other visual source than the EBC for
the algorithms.

A. Overview

From a high-level overview, the simulations are based on
the self-driving vehicle simulation framework (see Fig. 1).
Our simulation framework is pictured Fig. 2-(b), adapted
from a standard RL framework shown Fig. 2-(a). We in-
vestigated a ball-following scenario, and a line-following
scenario.
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(a) The standard RL framework.
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(b) The high level simulation framework for an
SNN agent.

Fig. 2: RL Frameworks for standard and SNN agents.

In the ball-following scenario (see 3), the objective is to
train the robot controller to keep a moving ball always in the
camera’s field of view, similarly to a follow-me drone that
tracks a target-object (generally a person in outdoor sports
settings) despite erratic and high-speed movements. In our
experiments, we chose the target object to be a ball, which
during the simulations follows a pre-defined path (a Bezier
curve defined by 8 control points which are positioned in a
four-branch star shape) that is unknown to the robot.

In the line-following scenario (see 4), the objective is to
train the robot controller to follow a line painted on the



Fig. 3: Ball-following scenario: the ball moves at a speed of
0.075 m/s along a path that is invisible to the drone. The
altitude of the drone is fixed at 2.4m from the ground. The
episode finished whenever the ball is not in the field of view
or when a lap to the path has been completed.

floor. The robot moves forward at a constant speed and the
controller must learn how and when to rotate left or right
in order to precisely follow the line, and to keep it centered
with a 90◦ orientation.

Fig. 4: Line-following scenario: the drone moves forward at
a speed of 0.075 m/s. The altitude of the drone is fixed at
2.4m from the ground. The reason why the line is shaped
like an hexagon is due to the fact that the curves created
by such shape have an angle greater than 90 degrees which
allows the estimation of orientation of the line in the scene.
This is needed to assign a reward. In scenarios with different
shapes, the drone must be close enough to the line so as to
only see one line and not two like in a very arched curve.
The episode finishes when the line is not in the drone’s field
of view or a lap has been completed.

B. The standard RL agents

For comparison purposes, we used Deep RL agents as
standard reinforcement learning agents, that take a vector
as input, and output an integer (in case of discrete-action
compatible approaches), or a floating point vector (in case
of continuous-action compatible approaches).

In order to create the input vector, we did not create
an image out of the events as it would make the input
dimension too large and possibly too complex to learn a
policy. Instead, the EBC pixel grid is tessellated, so that each
region measures a binary pixel activity during a simulation
step (time pooling), resulting in a binary grid.

C. The SNN agent

Our SNN agent needs to transform received events into
a particular event representation. Here again, the EBC pixel
grid is tessellated, however each region measures the number
of spikes during a simulation step. Each regions is associated
to a spiking neuron, that encodes the incoming event count
using a rate coding (see below) mechanism and generate an
output spike train that depends on the input. These spiking

neurons are fully connected (all-to-all) to the output layer.
The synapses connecting both layers of spiking neurons have
synaptic weights that are trained with the R-STDP/dopamine-
modulated learning rule.

Fig. 5: SNN agent network overview.

D. Encoding and decoding

Our proposed approach includes (1) a way of representing
information of the environment (be it physical or simulated)
in the activity of a neuron (neural encoding), and (2) a
mechanism that interprets neuron activity and translates that
activity into electrical signals that drive actuators (neural
decoding). Rate coding (or frequency coding) is the most
widely used coding scheme that assumes that most, if not
all information about the stimulus, is contained in the firing
rate of the neuron. A popular coding mechanism is the
spike-count rate. This approach, also referred to as temporal
average, is obtained by counting the number of spikes during
a certain time interval and by dividing this number with the
duration T of the time interval:

λ =
nspikes

∆T
(1)

One advantage of rate coding is that it can be described
with a Poisson model:

Pr{ k spikes in interval T}= λ k

k!
e−λ (2)

Regarding decoding, we use a muscle modelling decoding.
In case of a continuous action set, the action model contains
a pair of neurons in the output layer for each degree of
freedom. The robot is controlled by the SNN agent based
on the output spikes. The action to be taken is based on the
amount of spikes emitted from each neuron:

nspikes(positive)−nspikes(negative)
nmax spikes

(3)

where positive and negative indicate the positive and negative
options for each degree of freedom, and the max number
of spikes depends on the simulation time and the length of
refractory periods of neurons.

E. Dopmine-modulated STDP

The modulation of STDP with dopamine proposed by
[9] is made possible by using 2 variables to describe each
synapse: the synaptic weight/strength s , and c , an enzyme
important for plasticity that acts as an ”synaptic eligibility
trace”, in addition to a global variable d that is used to
describe the extracellular dopamine.



 

!
nspikes
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Fig. 6: SNN control action model, based on spike count
difference.

∂
∂ t

c(t) =−c(t)
τc

+ST DP(τ)δ (t− tpre/post (4)

∂
∂ t

d(t) =−d(t)
τd

+DA(t) (5)

∂
∂ t

s(t) = c(t)d(t) (6)

Eq. 4 represents the eligibility trace, a concept borrowed
from the SARSA(λ ) approach in classical RL theory. This
trace decays with a time constant τc and suffers modifications
according to the STDP rule and when the Dirac delta δ (t)
is enabled at pre and post firing times tpre/post . STDP(τ)
indicates a function which returns a value depending on the
post-pre firing delta also called inter-spike interval τ = tpost−
tpre. Eq. 5 controls the extracellular dopamine, that decays
with a time constant τd and increases with a term DA that acts
upon the arrival of the reward. Finally, the synaptic strength
in Eq. 6 is modified only when dopamine is present (d > 0),
and when it is eligible for the reward (c > 0).

illustrate this point, consider 2 neurons, each firing 1 spike per
second, which is comparable to the spontaneous firing rate of
neocortical pyramidal neurons (all layers: less than 1 Hz and
often less than 0.1 Hz, layer 5: 4.1 Hz; Swadlow 1990, 1994). A
nearly coincident firing will trigger STDP and change the
synaptic tag. However, the probability that subsequent random
spikes with the same firing frequency will fall within 50 ms of
each other to trigger more STDP and alter the synaptic tag is
quite small—on average once per 20 s (we elaborate this point
in Reinforcing a Synapse). This ‘‘insensitivity’’ of the synaptic
tags to the random ongoing activity during the waiting period is
the key feature that distinguish our approach from previous
studies (see e.g., Houk, Adams, Barto 1995; Seung 2003), which
requires that the network be quiet during the waiting period or
that the patterns are preserved as a sustained response (Drew
and Abbott 2006). In this paper, we show how DA-modulated
STDP can selectively reinforce precise spike-timing patterns
that consistently precede the reward and ignore the other
firings that do not cause the reward. At the end of the article, we
discuss why this mechanism works only when precise firing
patterns are embedded into the sea of noise and why it fails in
the mean firing rate models.
We also present a spiking network implementation of

the most important aspect of the temporal difference (TD)

reinforcement learning rule (Sutton 1988)—the shift of reward-
triggered release of DA from unconditional stimuli (US) to
reward-predicting conditional stimuli (CS) (Ljungberg et al.
1992; Montague et al. 1996; Schultz et al. 1997; Schultz 1998,
2002, 2006b; Pan et al. 2005). Our simulations demonstrate how
DA modulation of STDP could play an important role in the
reward circuitry and solve the distal reward problem.

Materials and Methods

Because details of the kinetics of the intracellular processes triggered by
STDP and DA are unknown, we suggest the simplest phenomenological
model that captures the essence of DA modulation of STDP. Following
Izhikevich et al. (2004), we describe the state of each synapse using 2
phenomenological variables (Fig. 1a): synaptic strength/weight, s, and
activation of an enzyme important for plasticity, c, for example,
autophosphorylation of CaMK-II (Lisman 1989), oxidation of PKC or
PKA, or some other relatively slow process acting as a synaptic tag

_c = – c=sc +STDPðsÞdðt – tpre=postÞ; ð1Þ

_s = cd : ð2Þ

Here and below, d describes the extracellular concentration of DA
and d(t) is the Dirac delta function that step-increases the variable c.
Firings of pre- and postsynaptic neurons, occurring at times tpre/post,
respectively, change c by the amount STDP(s) depicted in Figure 1b,
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Figure 1. Instrumental conditioning of a synapse. (a) The dynamics of each synapse is described by 2 phenomenological variables governed by equations (1) and (2): synapse
strength s and eligibility trace c, which are gated by the extracellular DA d. Firings of the pre- and postsynaptic neurons induce changes to the variable c according to the STDP rule
(shown in b). These changes result in modification of the synaptic strength, s, only when extracellular DA is present (d[ 0) during the critical window of a few seconds while the
eligibility trace c decays to zero. (c) The magnification of the region in (d) marked by *. To reinforce coincident firings of 2 coupled neurons, we deliver a reward (step-increase of
variable d) with a random delay (between 1 and 3 s) each time a postsynaptic firing occurs within 10 ms after a presynaptic firing (marked by a rectangle in c). This rare event
increases c greater than any random firings of the same neurons during the delayed period. (d) Consistent rewarding of each such event results in the gradual increase of synaptic
strength, s, which increases the probability of coincident firings and brings even more reward. The time course of a typical unreinforced synapse (not shown here) looks like
a random walk near 0. The inset shows the distribution of all synaptic weights in the network. The reinforced synapse is potentiated to the maximal allowable value 4 mV (42 out of
50 experiments) whereas the other synapses are not.
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Fig. 7: Dopamine-modulated STDP [9].

IV. EXPERIMENTAL RESULTS

As explained in previous sections, with the environment
abstraction, all that is needed is an implementation of the
agent that encapsulates the logic for taking actions in the
environment. The agents implemented for the ball-following
and the line-following task are the following:
• a Deep Q-Network (DQN),
• an SNN agent using R-STDP synapses for learning
• a Deep Deterministic Policy Gradient agent (DDPG).

The implementations have been realised using CoppeliaSim
4.0.0, NEST 2.20.0 for SNN simulation, ROS Melodic, with
Python 2.7, all under Ubuntu 18.04 LTS.

A. BALL-FOLLOWING scenario

In order to demonstrate the difference in performance
between the several available methods, we compute the
average euclidean error/distance to the target. Since we want
the ball centered, it should be positioned close to the middle
of the pixel grid. To better illustrate the performance of
the algorithms, we plot the density heatmap of the ball
positions, with a darker colour to indicate positions that have
been visited more often during simulations, and inversely.
The absence of colour (paper colour/white), indicates that
such positions were not visited at all. On the sides of the
density plot, the marginal distributions are displayed. These
distributions describe the projected position of the ball from
the point of view of a single axis.

In Fig. 8, we compare the density heatmaps for the algo-
rithms that converged to a solution. DDPG is not displayed
as this algorithm did not converge to a solution after over
24h of training. In Figs. 9 and 10, we show how the error
and convergence varies with the training episodes for SNN-
R-STDP and respectively, DQN. The approach using an SNN
with static weights is not shown since it is not trained and
converges from the very beginning; DDPG is not shown
either since it did not converge.

Episodes with steps above the red bar are considered
completed. The number of steps in a completed simulation
are not fixed, they might slightly vary from run to run. This
is due to the simulated nature of the experiments.

Notice that the chosen metric of euclidean distance is more
informative than the average position of the ball. As it can
be observed from the density of the simulation with fixed
weights, the average position obtained by the approach would
be still very close to the center, but this is only due to the fact
that positive and negative errors will compensate each other.
By using the euclidean distance with the formula below, such
errors do not compensate each other because the error is
always positive.

Error =
1
T

T

∑
√
(xi− xt)2 +(yi− yt)2 (7)

As it can be observed from the density plots, even though
DQN has the peak of its distribution on the desired position,
it does does not always succeed on keeping the ball at
the center, the visited positions cover almost all the pixel
grid and the wide distribution indicates a lower precision.
This density plot represents the result achieved after 14h of
training.

If we observe the density plot with the fixed weights, we
see a kind of loop around the center, which results in a
wobbly and wide plateau on the marginal distribution. On
the other hand, the SNN approach with R-STDP achieves a
nearly gaussian distribution which is peaked at exactly the
desired position and does not visit other nearby states as
much as in the case with static weight or DQN.



(a) DQN. Corresponding to an
average euclidean error to the tar-
get of 21.48.

(b) SNN + fixed weights. Corre-
sponding to an average euclidean
error to the target of 10.02

(c) SNN + R-STDP. Correspond-
ing to an average euclidean error
to the target of 6.77.

Fig. 8: In figures (a)-(c), it is possible to appreciate the
density function of the ball positions during an episode. It is
worth noticing that SNN + R-STDP outperforms the other
methods.

In all the simulations, we can see that on all the density
plots, the upper left side contains some visited states, due to
the initialisation: the ball is not positioned at the center when
the episode begins, causing these out-of-center positions.

B. LINE-FOLLOWING scenario

In the line-following scenario, we aim to keep the line
centered and with an angle of 90◦ (vertical). In this scenario,
we plot the mean position of the center of the line on one
axis and the orientation on the other one, the objective would
be to have the density concentrated on the middle point of
the density plot which is (63,90). The results are shown in
Fig. 11 and Table II.
Also in this scenario, DDPG failed to converge while SNN-

R-STDP achieved the best result.

(a) After about 30 episodes (' 60000
simulation steps), the algorithm con-
verged to a solution which finished the
episode at every time.

(b) Graph of the average euclidean dis-
tance to the center on an episode.

Fig. 9: Results for the SNN-R-STDP agent.

(a) After about 650 episodes (' 696000
simulation steps), the algorithm success-
fully concluded an episode.

(b) Graph of the average euclidean dis-
tance to the center on an episode.

Fig. 10: Results for the DQN agent.

V. CONCLUSIONS

In this paper, we have described a novel biologically-
inspired approach for robot control, with an application
to aerial robot navigation. The approach uses Event-Based
Cameras for sensing, and Spiking Neural Networks trained
with Reinforcement Learning for processing the visual in-
formation and controlling the robot. To the best of our
knowledge, this is the first approach combining the promising
triple EBC, SNN, and RL. We believe that this bio-inspired
triple is important and promising, and yet only little attention
has be given to such a combination in the communities,



Approach Avg Pos. Avg. Error Steps to conv.
Static (61.61, 63.66) 10.02 0
SNN+static init (60.74, 63.69) 8.55 0
SNN (61.20, 62.62) 6.77 60000
DQN (62.88, 65.17) 21.48 696000

TABLE I: Results for the ball-following scenarios. Note that
since static weights do not need training and already encode a
human solution for the problem, the drone converges from the very
beginning. In this table we include an extra case in which the SNN
uses the static weights as initialisation, while this performs better
than just using static weights, the initialisation heavily conditions
the solution and underperforms w.r.t. a solution found with equal
weights initialisation.

(a) Density plot for a DQN ap-
proach.

(b) Density plot for an SNN-R-
STDP approach.

Fig. 11: Density plots for the line-following scenarios.

possibly because of its interdisciplinary nature.
In our simulations, we experienced convergence issues,

and long simulation times. It should be emphasised that in the
long term, SNN models are to be implemented and executed
on dedicated neuromorphic hardware (e.g. IBM TrueNorth,
Intel Loihi), and therefore enabling full advantages of SNN.

As future work, we are interested in adapting the Spike
Timing Dependent Delay Plasticity (STDDP) learning rule
of Wang et al. [20] to our RL framework, so as to take
advantage of an R-STdDP learning rule, which instead of
modifying synaptic weights, modifies synaptic delays in a
RL-inspired manner.
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