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1. Introduction
Deep learning models have established their
dominance in the computer vision field, being
employed for a variety of tasks, including rep-
resentation learning. Despite their widespread
use, their intricate nature and extensive param-
eterization are making deep neural networks es-
sentially black boxes, posing challenges when
interpreting their outputs. Recent deep learn-
ing trends aim at developing more interpretable
models by working on the intermediate latent
representations formed during training.
To this end, enabling a direct link between the
data semantic factors of variation (FoV) and the
latent representation could be beneficial to in-
terpretability. This is the case of disentan-
glement, a property of latent representations
in which a change in one latent dimension cor-
responds to a change in one single FoV, while
being relatively invariant to changes in others
[1]. In a disentangled representation, individual
latent dimensions correspond to distinct and in-
terpretable FoVs, allowing for a clearer control
over the latent space, and accordingly over the
output. As an example (see Figure 1), suppose
to have a simple dataset of white dots: to fully
describe it we just require the dot’s x and y co-

Figure 1: Example of a Latent Traversal on
a disentangled representation. The two di-
mensions (rows) encode respectively the inter-
pretable factors of variation posX and posY.

ordinates, since no other variabilities exist. We
denote them as the factors of variation (FoV)
of the data. Thus we only need two independent
and interpretable latent dimensions.
Yet, achieving substantial disentanglement is a
complex task, especially in unsupervised fash-
ions where careful design choices and training
strategies are required to effectively disentangle
the data FoVs. With the increase of data com-
plexity, models struggle to grasp the factors vari-
ability and to isolate them in dedicated latent di-
mensions. Past attempts at unsupervised learn-
ing of disentangled representations have shown
promising results, but are mostly confined to bi-
ased toy datasets, missing real-world potential.
For these reasons, when focusing on explainabil-
ity of real-world datasets, unsupervised frame-
works results being too weak, claiming the need
of a driven supervision [6].

1



Executive summary Federico Romeo

We propose SVAE, a supervised framework able
to enhance the attribute-level disentanglement
of a Beta Variational Autoencoder (β-VAE) [3]
to develop interpretable models. Its applicabil-
ity extends to real-world datasets, i.e. where the
data generative process isn’t trivially aligned to
the data FoVs as in DSprites [7]. It requires a
supervision made of paired images that share all
but one FoV (see Figure 6); in this way the im-
age pairs differ in a single aspect, or FoV, whose
variance we force to be encoded in a dedicated
dimension through a custom loss function.
After having assessed the soundness of our
method on the benchmark dataset DSprites,
to evaluate its effectiveness also on real-world
datasets our contribution also includes the gen-
eration of the required paired supervision fo-
cusing on facial images. To this end we intro-
duce a novel Semantic Facial Attribute Editing
(SFAE) method able to perform fine-grained ed-
its to modify single facial attributes, to generate
image pairs with a single non-shared FoV (for
example changing only the hair color).
Experiments on both datasets reached convinc-
ing results in term of attributes disentanglement.

2. Background & related works
Our work focuses on learning interpretable rep-
resentations. Seeking latent space disentangle-
ment can be of pivotal importance, where a one-
to-one mapping connects semantic FoVs with la-
tent dimensions. In this section we discuss pre-
vious works related to disentangled representa-
tions learning, categorizing them in:
• unsupervised: methods in which the la-

tent space isn’t constrained in any way;
• supervised: methods in which labeled ob-

servations guide different latent dimensions
to encode specific data patterns.

In literature, many unsupervised methods tried
to seek disentangled representations. Borrow-
ing from the standard Variational Autoencoder
(VAE), the βVAE [3] modified its objective by
giving more weight to the Kullback-Leibler reg-
ularization term, adjusting it by a factor β>1:

L = Eqϕ(z|x)[log pθ(x|z)]︸ ︷︷ ︸
reconstruction loss

−β ·DKL(qϕ(z|x)||p(z))︸ ︷︷ ︸
KL divergence

where qϕ(z|x) and pϕ(x|z) respectively
parametrize the encoder and decoder net-
works, being x the input and z the learnt

latent vector. This led to an enhancement of
the latent space disentanglement by stressing
the independence among latent dimensions,
leveraging the characteristics of the Isotropic
Gaussian prior p(z) ∼ N (0, I) which enforces
zero correlations between dimensions due to
its unit covariance matrix. FactorVAE [5]
furtherly broke down the KL divergence term:

DKL(qϕ(z|x)||p(z)) = I(x; z)︸ ︷︷ ︸
MI

+DKL(q(z)||p(z))︸ ︷︷ ︸
prior KL divergence

where I(x; z) represents the mutual information
between x and z. Thus in βVAE increasing β
was leading to better disentanglement but wors-
ening the reconstruction quality, due to the pe-
nalization on the Mutual Information term.
The achievement of effective disentanglement in
these unsupervised methods has to be attributed
mainly to the exploitation of the inherent biases
of the toy datasets they’ve been trained on. This
is because those toy datasets have an underly-
ing generative model which is precisely aligned
with the underlying data FoVs, thus making the
framework not generalizable. So as claimed in
[6], it is essentially impossible for disentangled
representation learning to capture the desired
properties without exploiting inductive biases or
adding an explicit supervision.
Some works employed supervised group-based
disentanglement methods in which paired ob-
servations with a single shared FoV are shown
at training time, helping the model to discern
and separate FoVs in different latent dimensions
given the pair’s characteristics. Among these
methods for group-disentangled representations
learning, MLVAE [2] employs a product of ap-
proximate target posteriors, whereas GVAE [4]
uses an empirical average of the parameters of
the approximate target posteriors to disentangle
the FoVs into separate latent dimensions.
Our method builds up from the βVAE objec-
tive function, with an additional loss term to
enhance the latent space disentanglement start-
ing from group-based observations. Differently
from the supervised works mentioned above that
employ paired observations that have one sin-
gle shared FoV, we employ pairs with one sin-
gle non-shared FoV as shown in Figure 6 and 8.
Also, those methods works by fixing as FoVs just
the content and the style of the images, while our
framework can accomodate various and more de-
tailed FoVs as described in Section 3.3.
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Figure 2: Architecture of our E2Editor framework to perform Semantic Facial Attribute Editing.

3. Methods
3.1. Problem Formulation
In this thesis, we tackle the problem of gener-
ating an interpretable model by leveraging on
the disentanglement property of its latent space.
The reference model for disentangled represen-
tation learning is the Beta Variational Autoen-
coder [3] described in Section 2, composed of:
• an encoder qϕ(z|x), that maps the

input x to a latent gaussian dis-
tribution with mean and variance
{µ, σ} = {[µ1, σ1], ..., [µn, σn]};

• a decoder pϕ(x|z) that reconstruct the input
in x̃ after sampling the actual latent vector
z ∼ N (µ, σ) = {z1, ..., zn};

being n the dimension of the latent space.
If we denote as F = {f1, ..., fn} the data fac-
tors of variations, z = {z1, ..., zn} is said to be
perfectly disentangled when there exists a one-
to-one mapping between F and the latent vector
z, i.e. where a change in each latent dimension
zi affects only a factor fi. Since with the increase
of data complexity unsupervised methods strug-
gle to build efficient and non-redundant latent
representation, our goal is to provide a supervi-
sion to enhance the model’s disentanglement, by
guiding it in encoding each semantic data FoV
fi in a dedicated dimension zi of z.
In the following, we discuss at first a pro-
posed method E2Editor to generate the pair-
wise required supervision in a selected real-world
dataset, and then our SVAE framework to en-
hance the latent space disentanglement.

3.2. E2Editor
E2Editor is our novel technique for Semantic Fa-
cial Attribute Editing (SFAE), aimed at altering
a single facial attribute while preserving others.

It combines an Attribute Classifier C, with a
StyleGAN generator G, which can be decom-
posed in a Mapping Network M and a Synthe-
sis Network S. Both networks are pretrained on
CelebA. Our intuition is that we can enhance
the presence of an attribute a (e.g. Beard) on a
facial image by iteratively adjusting it by a step
in the gradient direction of its misclassification
error on a. The method’s workflow (Figure 2)
starts by sampling an initial base facial image:

Iinitial = S(w) = S(M(z)) with z = N (0, 1)

storing the base vector w.
The core of the method lies in an iterative edit-
ing loop that halts when the classification score
sa of the target attribute a reaches a threshold
t. At each iteration i, the vector w is adjusted
by a step in the gradient direction ∇w = dw

dsa
weighted by a learning rate lr, thereby enhanc-
ing the presence of a:

wi = wi−1 + lr · ∇w

∥∇w∥

This adjustment of w affects the re-generated
image Iedited = S(w), whose attribute score sa
is re-evaluated by the classifier C. To compute
the gradient direction, the loss to be minimized
is:

L = λ ·Ltg + (1− λ) ·Loth{
Ltg = −ytg log(p)− (1− ytg) log(1− p)

Loth = −yoth log(p)− (1− yoth) log(1− p)

in which both the losses defines a binary cross-
entropy, whose goals are respectively bringing
the edit in the direction of changing the target
attribute a, and keeping the others non-target
attributes unchanged, by maintaining them at
their initial classification score. The parameter
λ plays a crucial role: it manages the trade-
off between the disentanglement precision of the
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Figure 4: Our SVAE framework to enhance the latent space disentanglement with paired observations.
Input images x1 and x2 have one non-shared factor f (Blonde Hair here), whose latent dimensions z1i
and z2i have to be pushed apart, forcing in that dimension the encoding of factor f .

edit and step magnitude, as is shown Figure 3.
Lower λ values give better disentangled edits.

(a) Base image. (b) edit, λ=1 (c) edit, λ=0.1

Figure 3: The λ trade-off explained when edit-
ing on Blonde_Hair : the edit (3b) with λ=1 un-
wantedly modifies also Beard, whereas the edit
(3c) with λ=0.1 keeps the Beard desirably un-
changed.

With this method, we have been able to gener-
ate a "facial-wise disentangled" dataset, DFaces,
made of image couples that vary in a single facial
attribute. The idea is to provide those paired
observation to the SVAE, in order to drive it in
encoding the non-shared facial attributes within
the couples in different latent dimensions.

3.3. Supervised VAE
To achieve latent space disentanglement on non-
toy datasets, i.e. when the data generative pro-
cess isn’t trivially aligned with the data FoVs,
an explicit supervision is required [6]. We pro-
pose SVAE (Figure 4), a framework that em-
ploys a set of paired observations (x1, x2)f that
are the output of an ideal generative process
GP, whose FoVs are kept unaltered except for
a single one f . When dealing with real-world
datasets, the GP is never trivial, thus it has to
be parametrized, and so the FoVs. In Section
3.2 we show how can it be done in the use-case

of facial images. With this pairwise supervision,
we aim to force the model to encode in a dedi-
cated latent dimension the variance of the target
FoV , grasped from the difference in the images’
pair, for each FoV. See Figure 5 as an example
on the toy dataset DSprites: here the couple dif-
fers only in the shape FoV, that is constrained
to be encoded in the third latent dimension.

Figure 5: Visual effect of our pair loss on the
latent space: it pushes away the non-shared tar-
get dimension while it keeps close the others.

So in addition to the standard β-VAE [3] loss
function described in Section 2, we add a pair
loss term that acts as a disentanglement loss:

Lpair = −(z1d − z2d)
2 +

1

N − 1

N∑
k ̸=d

(z1k − z2k)
2

where N is the number of FoVs to be encoded,
d is the index of the non-shared FoV in the pair
(x1, x2)f , and z1,z2 are the sampled latent rep-
resentation after the reparametrization trick:

z1 = µ1 + ϵ · σ1 z2 = µ2 + ϵ · σ2

The heuristic for selecting the latent dimension
d responsible for the encoding of the target FoV
is to choose the one with the highest KL Di-
vergence. With this additional loss, we expect
the model to grasp the difference between each
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given pair and to be able to generalize and iso-
late the variance of the given non-shared factor
to a single latent dimension. Once trained the
model, the desiderata is visualizing that the la-
tent traversals over each target dimension moves
ideally only the correspondent semantic FoV,
like it happens the example of Figure 1.

4. Experiments & Results
4.1. Datasets
The main dataset used in the literature when
dealing with disentanglement is DSprites [7],
which was purposefully built for the evalua-
tion of disentangled representation. It’s a toy
dataset, where each image essentially represents
a simple white shape on a black background.
It has been generated from five explicit FoVs,
namely shape, scale, orientation, posX, posY,
that coincide with the data generative factors,
as they exactly define the image appearance.
The other dataset we focused on is CelebA,
a large-scale face attributes dataset with more
than 200K facial images, each with 40 binary
attribute annotations.
Since our SVAE requires a specific supervision,
we modified the above datasets to generate:
• SDSprites: a pairwise selection of the

DSprites toy dataset, to assess our method
soundness.

• DFaces: paired facial images varying in a
single facial attribute (FoV), generated with
our E2Editor, that contains networks pre-
trained on the real-world dataset CelebA.

4.2. Metrics
To evaluate the disentanglement level of our re-
sults, the three most popular metrics in litera-
ture have been tested, namely the z-diff metric
[3], z-min variance metric [5] and the DCI met-
ric. They respectively monitor the separation of
means, variance, and mutual information.

4.3. Experiments on SDSprites
We first generated SDSprites, composed of
paired images from DSprites in which a single
FoV varies. Samples are shown in Figure 6.

Figure 6: Paired samples from SDSprites, vary-
ing respectively in shape, scale, orientation, posX, posY.

For this experiment we set the latent dimen-
sion to 5, equal to the number of FoVs; it’s a
wide enough bottleneck to allow for a valid re-
construction, given the triviality of the dataset.
As we can see from the latent traversal of Figure
7, the FoVs reach a valid disentanglement being
encoded in separate independent dimensions.

Figure 7: Latent Traversal of SVAE trained on
SDSprites. Given the same sampled image of the
first column, each row displays a traversal on a
different dimension, that semantically encodes
the FoV on the left.

Comparing SVAE (trained for 3k epochs) with
the state-of-the-art methods (each trained for
300k epochs in Google’s Official Disentangle-
ment Library) [6], we show competitive results
given the significantly shorter training duration,
highlighting the efficiency and practicality of
our approach for disentanglement representation
learning. Results are shown in Table 1.

z-diff z-min DCI

βVAE 0.823 0.660 0.186

FactorVAE 0.853 0.750 0.256

MLVAE 0.896 0.701 0.294

GVAE 0.923 0.847 0.479

SVAE 0.652 0.711 0.313

Table 1: Disentanglement metrics comparison.

4.4. Experiments on DFaces
Since our focus wants to be real-world datasets,
we needed a tailored supervision on that do-
main too. With the E2Editor method described
in Section 3.2, we managed to create a novel
dataset, DFaces. This dataset comprises 5883
image pairs for each of the 17 chosen attributes,
namely A, where each pair varies in a single fa-
cial attribute. The facial attributes have been
treated as the data FoVs, as they are the finest
semantic factors that define the image aspect.
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Figure 8: Paired samples from DFaces dataset;
side by side images have one non-shared at-
tribute, among the 17/40 chosen from CelebA.
The more this dataset is precise in its edits, the
more disentangled our VAE can be. To evaluate
the level of "facial disentanglement" within each
couple, we defined a metric that keeps into ac-
count the variations of the non-target attributes
scores when editing on a target one (the lower
the better). Given N generated base images, we
performed N · A edits, one for each attribute a
on every base image; we then took the average
across the MSE over the scores on the non-target
attributes between the base and edited image:

vA =
1

A

A∑
atg

1

N

N∑
i

A∑
a̸=atg

|s̃a − sa|2︸ ︷︷ ︸
MSE editing on atg

where s̃a and sa are respectively the classifier C
score of attribute a of the edited image on atg
and of the base image. We improve the state-of-
the-art result of InterFaceGAN [8] when setting
α = 0.1. Results are shown in Table 2.

Avg Sum of MSE

E2Editor (α=1) 0.120156

InterFaceGAN 0.074868

E2Editor (α=0.1) 0.057652

Table 2: SFAE methods quality comparison.

Figure 9: Latent Traversals of SVAE trained on
DFaces. Given the sampled images of the first
row, each row displays the decoded image when
modified on the same dimension, that encode
respectively Blonde_Hair, Pointy_Nose, Rosy_Cheeks, Bald.

Finally, we have been able to feed these pairs
to our SVAE, to generate an explainable model
disentangled over facial attributes. Here the la-
tent dimension has been set to 128, but only the
forced 17 dimensions carry an interpretable se-
mantic FoV. In the rows of Figure 9 we showcase
the most significant latent traversals.

5. Conclusions
In summary, this work addressed the problem
of generating explainable models by leveraging
on the forced latent space disentanglement. The
proposed solution consists of a novel Variational
framework in which paired observations differ-
ing in a single factor of variation induce the
model into encoding that non-shared attribute
in a dedicated latent dimension. To test our
method’s effectiveness on real-world scenarios,
we developed a novel Semantic Facial Attribute
Method to generate a tailored dataset. The
gathered results show the viability of the sug-
gested strategy and its competitiveness com-
pared to the main solutions in the literature.
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