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Abstract

The successful utilization of advanced techniques for precise dose delivery in external
beam radiotherapy relies on the combination of highly accurate in-room imaging. In
image-guided radiotherapy, daily images are obtained to guide adjustments in patient
position and orientation, specifically addressing issues like weight loss, tumor shrink-
age, and air bubbles that can affect the reliability of the treatment plan. Achieving
stable patient immobilization and precise positioning during setup is necessary for op-
timal results. Various factors contribute to the different designs observed in the litera-
ture, including cost-effectiveness, choice of projector (gantry vs. fixed beams), number
of treatment rooms, and patient throughput optimization. Cone-beam CT (CBCT) is
an imaging technique commonly employed for anatomical evaluation before fraction
delivery. However, CBCT imaging introduces challenges such as scattered radiations,
leading to artifacts like shading, cupping, reduced contrast, and beam-hardening. Ad-
ditionally, pixel values in CBCT images may fluctuate due to these artifacts, requiring
correction methods to calibrate them to CT scanner Hounsfield Unit values for dose cal-
culation. Moreover, the limited field of view (FOV) in CBCT also presents challenges
in particle therapy, affecting the measurement of the complete particle beam path. Start-
ing in 2013, the Centro Nazionale di Adroterapia Oncologica (CNAO) employed a cus-
tom cone-beam CT (CBCT) imaging system in one of its three treatment rooms. This
system involved a robotic manipulator that supported a rotating C-arm with imaging
equipment and a fixed field of view (FOV). In 2019, CNAO commissioned the devel-
opment of a new customized robotic CBCT imaging system with the goal of enhancing
patient throughput. This manuscript presents a feasibility study exploring the poten-
tial extension of CBCT in image-guided radiotherapy, aiming to address the known
challenges associated with this imaging technique. This ambition was addressed by
implementing a new robotic system and developing an innovative framework for im-
age processing based on deep learning. This framework aims to process the CBCT
images by calibrating the Hounsfield Unit (HU) values, removing artifacts caused by
the conical geometry acquisition, and addressing the limitations of the narrow FOV.
The ultimate aim is to explore the possibility of utilizing the existing limited FOV
CBCT systems not only for patient positioning but also for dosimetric evaluation with-
out requiring additional hardware modifications. A comprehensive description of the
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technological innovation of this system is given, including the design, technical com-
missioning, and quality assurance protocols necessary to develop a custom in-room
volumetric imaging system intended for radiation treatments using accelerated parti-
cles. Regarding methodological advancements, we explored the potential of employing
deep learning to overcome the intrinsic limitations of CBCT imaging. In a first ex-
ploratory study, we confirmed that deep convolutional neural networks could generate
precise synthetic CT scans from CBCT images. We also provided guidelines for se-
lecting the most suitable training technique between supervised and unsupervised. Fur-
thermore, we introduced techniques to address the limitations of deep learning-based
CBCT correction by leveraging the transfer learning paradigm in a novel two-step ap-
proach. We demonstrated that preconditioning the network with synthetic data signif-
icantly improved the quality of corrected CBCT when working with limited datasets.
Additionally, employing transfer learning with real data proved effective in enhancing
performance when dealing with clinical data from real practice. Moreover, we tested
the deep learning framework’s applicability to treatment planning updates, specifically
addressing the issue of limited FOV in CBCT and evaluating the consistency of pro-
ton dosimetry compared to the original planning CT. The calibration of CBCT scans
yielded promising results, with less than a 2% difference in proton dosimetry compared
to the planning CT. The potential impact of organ toxicity on organs at risk decreased
from approximately 50% (without calibration) to 2% (with calibration). The gamma
pass rate at 3%/2mm demonstrated a substantial improvement, accurately reproduc-
ing the prescribed dose with a 37% increase before and after calibration (53.78% vs.
90.26%). The results obtained combining the technological and methodological ad-
vancements proposed in this dissertation brings the use of narrow FOV CBCT scans
incrementally closer to clinical translation in proton therapy planning updates.
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CHAPTER1
Introduction

This chapter provides the reader with an introduction to the Image-guided Radiotherapy pipeline at
CNAO and the proposed contribution to the field. An overview of the organization of the present
dissertation is also presented.

1.1 Principle of Image-guided Radiotherapy

External beam radiotherapy is a widely used and effective clinical practice for treating
tumor lesions. It harnesses the power of ionizing radiation to maximize the therapeutic
outcome. The main goal is to sufficiently irradiate the patient’s tumor tissue, ensuring
proper tumor control while minimizing radiation-induced toxicity to nearby organs.
Typically, a linear accelerator delivers therapeutic X-ray doses to the tumor. However,
this method also affects healthy tissues close to the target area due to how photons
release their energy, which exponentially decreases as they penetrate through tissues.
Tumor tissues are more susceptible to radiation damage compared to healthy tissues.
This characteristic is leveraged in clinical practice through a technique called fraction-
ated treatment. The idea is to divide the total dose into multiple fractions, creating a
differential effect between healthy and tumor tissues. During the breaks between frac-
tions, healthy tissues repair a more significant portion of the damage than the tumor.
This approach allows for the optimization of therapeutic outcomes by carefully select-
ing doses and fractionation intervals that do not exceed a certain threshold of damage
to healthy cells while still effectively sterilizing the tumor tissue. In general, the ra-
diation dose that can be utilized is limited by the tolerance of the surrounding tissues
near the tumor site [2]. However, for tumors located in anatomically sensitive regions,
such as e.g. near the brainstem, cranial nerves, or hepatocellular carcinomas requiring
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Chapter 1. Introduction

preservation of liver tissue, the gradual release of radiation dose along the X-ray beam
poses a challenge. Excessive irradiation of these areas could result in severe harm to
the patient. On the other hand, hadrontherapy, an advanced form of radiotherapy, over-
comes challenges associated with dose distribution in conventional X-ray radiotherapy.
This technique utilizes cyclotrons and synchrotrons to accelerate heavy charged par-
ticles, like carbon ions and protons, forming a beam that can be directed towards the
tumor. The dose deposited by different types of radiation at varying depths is repre-
sented by the Bragg curve (Fig. 1.1), which shows a peak at the energy level at which
the particles come to a halt [1]. Unlike photons, particle beams in proton and carbon
ion therapy exploit the Bragg peak to deliver a small energy dose to superficial tissues
while the particles are still moving rapidly. Slowing down, heavy ions release the max-
imum dose at a specific depth determined by their initial energy and the density of the
tissues they pass through. Beyond that point, the particles deliver a minimal dose. An
additional advantage of using ions with high atomic weight is their increased radiobio-
logical effectiveness on tissue [3]. This effectiveness depends on the ions’ charge and
their acceleration speed. Consequently, fast and low atomic weight ions have a similar
energy transfer to X-rays, while slower and higher atomic weight ions have relatively
higher effectiveness in degrading tissues compared to photons [2].

Figure 1.1: The depth dependency with respect to the relative dose for various types of radiation. Due
to the presence of the Bragg peak, the dose distribution could be considered as inverted compared to
the nearly exponential pattern observed in high-energy photon beams. Source [1].

Despite the significant advantages, such as reduced dose dispersion and enhanced
biological effectiveness, proton and carbon ion therapy also have drawbacks. These
include increased costs and complexity of the acceleration tools (cyclotrons or syn-
chrotrons) and beam delivery. Additionally, this therapy requires techniques to reduce
geometric uncertainties by accurately determining the three-dimensional position of
the target tissue during treatment. Therefore, the effectiveness of advanced techniques
designed for precise dose delivery in external beam radiotherapy can be successfully ex-
ploited only when combined with highly accurate in-room imaging. In an Image-guided
Radiotherapy (IGRT) approach to patient treatment, daily images are acquired to guide
rigid six Degrees of Freedom (DOF) setup corrections toward the planned patient po-
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1.2. Robotic CBCT Imaging System and Treatment Pipeline at CNAO

sition and orientation. Weight loss, tumor shrinkage, and air bubbles are well-known
inter-fractional discrepancies to be accounted for in radiation therapy, especially for
tumors located in the pelvic district [4]. The need for in-room imaging becomes even
more crucial in the case of radiation therapy using heavy particle beams due to the in-
verse profile in dose deposition and the higher sensitivity to uncertainties [5–7]. There-
fore, a common clinical practice involves using in-room imaging, with Cone Beam
Computed Tomography (CBCT) being the most widely adopted technique for anatom-
ical evaluation before fraction delivery [8–11]. State-of-the-art facilities are usually
equipped with systems devoted to minimizing errors in patient repositioning [12–14].
In order to ensure precise alignment of the treatment target with the radiation beam,
it is necessary to achieve stable immobilization of the patient and accurate position-
ing during setup. However, it is worth noting that while photon-based radiotherapy
has widely adopted commercially available in-room imaging systems, the availability
of dedicated volumetric image-guided devices for particle therapy has only recently
emerged due to the complexities involved in installing such systems in a bunker room
specifically designed for proton and carbon ion therapy [11, 12]. Factors such as the
cost-effectiveness of particle therapy, the selected projector (gantry vs. fixed beams),
the number of treatment rooms, and optimization of patient throughput (in-room vs. re-
mote imaging) contribute to the variety of designs observed [13,15–17]. Consequently,
there is no universal image guidance solution that can be universally applied across
all particle therapy centers. In the history of ion-beam therapy, patient positioning
has traditionally relied on stereotactic registration using isocentric lasers and optical
tracking systems. Subsequent setup corrections have been performed iteratively using
orthogonal kV X-ray projections, in-room CT, or CBCT scanners [11]. Similarly, there
is no dominant standard for modern heavy ion therapy centers. Various layouts have
been developed, such as the use of in-room CT at the National Institute of Radiolog-
ical Sciences or the customized setups at the Heidelberg Ion Therapy Center for both
gantry and fixed beam lines [18, 19]. On the other hand, MedAustron recently em-
ployed the PAIR couch-mounted CBCT system [20]. In 2019 the Centro Nazionale di
Adroterapia Oncologica (CNAO), a pioneering center specializing in advanced cancer
treatment using precise radiation therapy with charged particles, started a project aimed
at developing new solutions to improve IGRT in their clinical pipelines, commission-
ing the development of a new in-room CBCT system as an upgraded version of the
custom robotic C-arm installed in 2013 [8]. The present dissertation describes all the
experiments and activities carried out as part of this project related to CBCT imaging,
resulting from the joint collaboration between CNAO and Politecnico di Milano.

1.2 Robotic CBCT Imaging System and Treatment Pipeline at CNAO

Since 2013, CNAO has been operating its first CBCT imaging system in one of the
three available treatment rooms. These rooms have a fixed horizontal delivery line and
can perform setup corrections based on bony landmarks. The one in which the first
CBCT system was installed also features a vertical line [21, 22]. As a consequence,
setup verification with 3D imaging was considered a key element in the final design of
the imaging system [8]. Due to the simultaneous presence of the horizontal and vertical
beamlines [23] and the limited space at the Treatment Isocenter (Iso-T), CNAO devel-
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oped a custom solution based on a robotic manipulator mounting a rotating C-arm with
imaging equipment and non-adjustable Field of View (FOV). In order to accommodate
the limited space and integrate with existing equipment, the imaging system was in-
stalled in a non-treatment position within the room, thus defining a remote Imaging
Isocenter (Iso-I). Such a solution allowed for obtaining adequate space for a 3D short
scan (220◦) imaging capabilities, as provided by the rotating C-arm. The entire treat-
ment workflow, in terms of both Patient Positioning System (PPS) and in-room imag-
ing, was designed to minimize the risk of collisions and patient injuries. The radiation
therapy process begins by acquiring a 3D Planning CT (pCT) of the patient, enabling a
precise definition of the tumor and safety margins along with the dose to be delivered.
In the planning phase, clinicians also fit a personal thermoplastic mask to the patient’s
anatomy for immobilization, compression, and setup repeatability purposes [24]. Fol-
lowing the planning phase, the daily treatment routine unfolds as follows. Initially, the
patient is prepared and immobilized on a carbon fiber table in a dedicated preparation
area outside the treatment room (Fig. 1.2). The table is then docked onto the PPS and
aligned to the nominal position at Iso-T based on the treatment plan. The alignment
is initially verified in a two-step approach. First, a visual check is performed using
an orthogonal laser cross superimposed on reference marks on the treatment couch.
Then, the setup is refined using an optical marker-based frameless stereotactic localiza-
tion method, utilizing infrared markers fixed on the thermoplastic compression mask.
Subsequently, the CBCT imaging system is positioned in the acquisition pose, and the
patient is automatically moved into the C-arm at Iso-I for a CBCT scan. Once the recon-
struction of the 3D volume is performed, this is fed to an integrated 3D/3D registration
algorithm and compared to the pCT of the patient in order to generate a correction
vector with six degrees of freedom (DOF). Any rigid rototranslation applied at remote
Iso-I is then propagated to Iso-T, maintaining consistency and effectively correcting the
setup for treatment. In the case the clinicians decide that any of the components of
the correction vector are too big, the treatment is stopped for that day, and the patients
need to perform a Revaluation CT (rCT) for treatment planning updates. On the other
hand, if the vector is under limits, the PPS is repositioned for treatment at Iso-T with
the applied correction, and the imaging system is moved back into the parked state. A
schematic of the treatment pipeline is depicted in Fig. 1.3.

1.3 Scientific Proposal and Work Contribution

In 2019, CNAO commissioned a new customized robotic CBCT imaging system for
one of the lateral rooms with the aim of increasing patient throughput and relieving
the workload for the central room. This upgrade was driven by the need to enhance
in-room volumetric imaging availability. The new imaging system was designed based
on the existing one but with hardware and software enhancements to address clinical
requirements for faster and larger FOV CBCT. The implementation of a faster C-arm,
coupled with software upgrades for reconstruction, resulted in shorter setup corrections,
optimized room utilization, and reduced non-therapeutic radiation doses for patients.
However, safety considerations imposed limitations on the rotation speed due to the
response time of the anti-collision system installed on the robotic device. Moreover,
when acquiring large anatomical districts, the main limitation of the legacy system was
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Figure 1.2: Treatment Room 1 at CNAO with its main components.

the absence of a field of view extension strategy for CBCT. With the legacy system,
it was possible only to acquire CBCT with a symmetrical beam centered along the
source-to-detector axis, a strategy commonly defined as Full Fan (FF), leading to trun-
cation [25] and missing information in the axial plane of the reconstructed image. The
new system aims to enlarge the FOV of the acquired CBCT by means of a strategy
based on a displaced detector called Half Fan (HF) [26, 27]. The limited FOV also
poses challenges in particle therapy as it hinders the measurement of the complete par-
ticle beam path. The legacy system is currently used for patient positioning correction
and daily anatomical evaluation before fraction delivery. In addition, despite allowing
for much faster imaging than CT, the CBCT modality introduces a significant amount
of scattered radiations, resulting in image artifacts such as shading, cupping, reduced
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Figure 1.3: Treatment pipeline at CNAO.
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Chapter 1. Introduction

image contrast, and beam-hardening [28, 29]. In particular, truncation influences scat-
tering estimation and correction [30, 31]. Moreover, the pixel values in CBCT images
may fluctuate because of these artifacts, making them not directly usable for dose cal-
culation unless some correction methods are applied to calibrate CBCT to CT scanner
Hounsfield Unit (HU) values [32–34]. The limited FOV also causes a truncation prob-
lem during reconstruction [35, 36]. Consequently, the non-uniqueness of the solution
for the iterative reconstruction brings additional bright-band effects that add artifacts
to the CBCT [37]. Even in the case of optimal HU calibration and scatter reduction, a
CBCT acquired in a small FOV cannot be used for adaptive dose planning. Especially,
narrow FOV CBCT lacks important anatomical information (e.g., the air/skin interface)
necessary for properly calculating the beam path. All these issues prevent a proper
dose evaluation using the CBCT imaging system installed at CNAO. At the same time,
these limitations hinder the qualitative inspection of the daily anatomy, which leads
to sub-optimal off-line procedures and unnecessary imaging doses delivered to the pa-
tient (i.e., the need for occasional rCT). Thus, the availability of reliable techniques
for the correction of CBCT images would extend their clinical usages, such as tumor
shrinkage and organ shift evaluation, and treatment planning purposes, such as soft tis-
sue segmentation for dose delivery computation. Therefore, the implementation of the
new imaging system also involves the definition of a deep-learning framework based
on generative neural networks. This framework addresses the mentioned issues, such
as calibrating HU, removing conic geometry acquisition artifacts, and resolving nar-
row FOV concerns, showcasing the potential of corrected CBCT for proton treatment
planning updates. Furthermore, the framework aims to investigate the feasibility of
utilizing the existing limited FOV CBCT system for both patient positioning and dosi-
metric evaluation without requiring any additional changes to the hardware. This way,
the implemented methodologies could potentially be integrated also with the legacy
system. A summary of the contributions of this work is summarized in Table 1.1
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Table 1.1: Summary of the main issues/needs addressed in the present dissertation, along with the
proposed solution and approach used (T=Technological, M=Methodological)

Need/Issue Proposed Solution Approach
T M

Increase the patient throughput at CNAO Development of the new CBCT imaging
system in another treatment room

X X

Increase safety Anti-collision strategy and inhibition of si-
multaneous movement of room instrumen-
tation

X

CBCT scans have small FOV Increase FOV with a displaced detector-
based strategy

X

CBCT scans are not calibrated to HU be-
cause of scattering artifacts

Implementation of neural networks for
CBCT correction

X

CBCT scans are used only for patient posi-
tioning

Evaluation of the feasibility of proton
dosimetry once corrected through neural
networks

X

rCT introduces additional non-therapeutic
doses

Corrected CBCT scans may reduce the
number of rCT needed

X

1.4 Dissertation Outline

The rest of the dissertation is organized as follows. In Chapter 2, readers are introduced
to the application of CBCT in image-guided radiotherapy. The initial section provides
a comprehensive overview of the developed CBCT imaging system with a focus on the
technological improvements introduced, while the subsequent section focuses on the
challenges associated with CBCT imaging and the conventional approaches employed
to address them. In Chapter 3, the use of deep neural networks for CBCT correction is
examined, highlighting two primary paradigms employed for training these networks:
supervised and unsupervised. The chapter presents a comparative analysis of the per-
formance of these methods in generating synthetic CT scans from CBCT images and of-
fers recommendations for selecting the most suitable training technique. The content of
this chapter is derived from the publication by Matteo Rossi and Pietro Cerveri. “Com-
parison of supervised and unsupervised approaches for the generation of synthetic CT
from cone-beam CT”. Diagnostics (Basel, Switzerland), 11, 2021. Chapter 4 contin-
ues with an in-depth investigation of the application of deep learning-based approaches
for CBCT correction, introducing a novel method to address the limitations of deep
learning-based CBCT correction based on a two-step algorithm leveraging the transfer
learning paradigm. This chapter draws upon the research paper by Matteo Rossi et al.
“Image-based shading correction for narrow-FOV truncated pelvic CBCT with deep
convolutional neural networks and transfer learning.” Medical physics, 48:7112-7126,
2021. Chapter 5 provides an examination of the deep-learning framework’s impact on
treatment planning updates. The content of this chapter is derived from the research
paper authored by Matteo Rossi et al. “Feasibility of Proton Dosimetry Overriding

7



i
i

“output” — 2023/10/30 — 9:10 — page 8 — #28 i
i

i
i

i
i

Chapter 1. Introduction

Planning CT with Daily CBCT Elaborated through Generative Artificial Intelligence
Tools.” Preprints.org 2023, 2023040596. Finally, Chapter 6 concludes the present dis-
sertation, reporting a summary of the aim, materials, methods, and obtained results.
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CHAPTER2
Developing an innovative CBCT Imaging System

at CNAO

This chapter provides a detailed description of the developed CBCT imaging system, along with the
technical commissioning performed to test it. The second part of this chapter presents the issues related
to CBCT imaging and the traditional methods used to address them.

2.1 Robotic Imaging System in Room 1

2.1.1 System Description

The imaging system consisted of an articulated serial manipulator with seven joints,
mounting a custom-designed C-arm structure that includes a kV X-ray tube, dynamic
collimator, and a displaceable Flat Panel Detector (FPD) with pulsed fluoroscopy capa-
bilities. The Kawasaki BX300L robot was selected for installation, offering a payload
capacity of 300 kg, position repeatability of 0.07 mm, and load accuracy of 0.3 mm.
The development of a custom C-arm was commissioned to a third-party company. The
C-arm was designed with a trussed structure using S235 JR (UNI EN 10027-1) steel
to optimize the rigidity-to-weight ratio (cfr. Fig. 2.1). The geometry layout was opti-
mized for clinical image acquisition with the following parameters: the tube-isocenter
distance was fixed at 1100 mm, whereas the isocenter-to-detector was 500 mm. This
resulted in an overall 1600 mm source-to-detector distance. The C-shape depth was
defined as 1240 mm. A metal housing was incorporated to accommodate the FPD,
equipped with a railing system that allowed for lateral displacements facilitated by a
gearbox connected to a stepper motor controlled by the seventh joint of the robot (cfr.
Fig. 2.2). The momentum and inertia of the C-arm were evaluated through simulations
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Chapter 2. Developing an innovative CBCT Imaging System at CNAO

involving realistic loads of 180 kg before the manufacturing process. The structure was
intended to be connected posteriorly to the robot end effector.

Figure 2.1: Schematic of the designed C-arm where tube, collimator, and FPD are depicted (left);
schematic of the entire system in acquisition (center); robot in acquisition layout after installation
(right).

The C-arm held the X-ray assembly (tube housing and dynamic collimator) at one
extremity and the flat panel detector on the opposite side. In detail, the X-ray tube was
an A292 with B130H housing (Varian Medical Systems, Palo Alto, CA, USA); its to-
tal weight, also considering the mounting trunnion ring, is approximately 30 kg. This
model was chosen over the A277 of the previous system by considering the maximum
anode angle guaranteed by the manufacturer (12◦ vs. 7◦), sufficient for Half Fan (HF)
acquisitions. A dynamic collimator (R221 ACS with R225 housing, Ralco, Biassono
MI, Italy) was fitted on the tube housing to chase the FPD position. The flat panel was
a Varian 4030D, with a sensible surface of 40×30 cm. The entire system was supplied
with an HF series generator (SEDECAL, Algete MD, Spain) providing up to 150 kVp,
800 mA, 80 kW, and a heat exchanger (Varian HE-101) installed inside the treatment
room, close to the robot. The resulting layout after installation is depicted in Fig. 2.1.
In order to ensure consistent acquisition, the FPD and X-ray source are synchronized
using a hardware connection. This synchronization allows for repeatable image ac-
quisition. Through a dedicated Graphical User Interface (GUI), exposure parameters
such as time (ms), tube voltage (kV), and tube current (mA) can be adjusted. The GUI
also provides several presets tailored to specific robot poses and anatomical regions,
enhancing convenience and efficiency in the clinical routine. During dynamic acquisi-
tions, projections are generated with a pixel resolution of 0.388 mm in a matrix size of
1024×768, equivalent to 273×205 mm. Approximately 450 projections are acquired
during the 220◦ rotation of the sixth joint of the robot as the technician presses on the
dedicated pedal for continuous X-ray emission. Each acquisition takes 30 seconds, re-
sulting in a rotation speed of 7.3◦ per second for the C-arm, while the FPD operates at
a framerate of 15 Hz. Consequently, the angular sampling of the projections is 0.49◦. It
is important to remind that after completing a full-fan (FF) acquisition with a detector-
centered position, the C-arm returns to its starting position within approximately 15
seconds. Conversely, when the operator requires a complementary half-fan (HF) ac-
quisition, the robot laterally displaces the FPD by 120 mm in the right direction before
scanning the patient. Following this, the first acquisition is conducted over 220◦ within
around 30 seconds. Subsequently, the FPD is shifted to the opposite position in the left
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direction to acquire the other half. The reconstruction of volumetric images is achieved
through a GPU implementation of the Feldkamp-Davis-Kress (FDK) algorithm based
on the Recontruction Toolkit (RTK) open-source software [38]. The final CBCT image
is then reconstructed before the C-arm returns to the starting position. The image is au-
tomatically masked to the FOV pseudo cylinder size with an axial diameter of 204 and
403 mm for FF and HF modality, respectively. The length of the FOV in the superior-
inferior direction is 271 mm. The resolution for the reconstructed volumes matches the
pCT one (0.98×0.98×1 mm). Following the masking of CBCT reconstructed scans,
they are superimposed onto the pCT and aligned through rigid registration. The regis-
tration algorithm utilized in this process relies on the Insight Toolkit (ITK) and involves
three stages of minimizing normalized mutual information. An Amoeba optimizer is
employed, and isotropic subsampling grids ranging from 3 mm to 1 mm are utilized.
The entire registration procedure is completed in less than one minute.

Figure 2.2: FPD displacing system, involving a motor acting as an additional DOF for the robotic
manipulator.

2.1.2 Safety Aspects

Concerning safety aspects, an additional safety module (Kawasaki Cubic-S) was in-
corporated into the robot controller to ensure motion monitoring and enhance patient
safety. This module adheres to various safety standards, including ISO10218-1, 13849-
1 (PLd/Cat 3), and IEC61508 (SIL2). Its primary function is to monitor and halt the
robot’s motion in the presence of unauthorized movements or unexpected conditions.
Monitoring allowed and prohibited areas effectively minimize the risk of collisions
between the system and other equipment (Fig. 2.3). In the event of an emergency,
the Cubic-S module facilitates fast and controlled stops, reducing the impact on on-
going tasks. Furthermore, it inhibits reciprocal motion between the robot and the
PPS, preventing both systems from moving simultaneously. On the FPD side, an anti-
collision system was installed to improve safety. This location is considered critical due
to its proximity to the patient during treatment. The anti-collision system comprises
AIRSKIN modules (Blue Danube Robotics GmbH, Vienna, Austria). These modules
consist of soft pads that continuously monitor pressure using a dedicated control unit. If
a force exceeding 5 N is detected, an emergency stop is triggered within a response time
of 9 ms. The AIRSKIN pads comply with safety standards EN/ISO 13849-1 (PLe/Cat
3) and EN/IEC 62061 (SIL 3). At top speed during CBCT acquisition, this results in a
0.066◦ delay in response and a maximum of 0.6 mm and 1.3 mm of linear travel before
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stoppage at the panel and tube level, respectively.

Figure 2.3: (Left) Final design for robot installation. (Right) The defined permitted area (green) and
prohibited ones (red). In the unexpected event that the robot collides with a red wall, an emergency
stop is immediately triggered.

2.1.3 Technical Commissioning

Although the single systems (PPS and robotic manipulator) offer a high level of accu-
racy, it was necessary to evaluate the accuracy of error propagation between Iso-I and
Iso-T to guarantee precise setup correction before treatment administration. To fulfill
this requirement, two sets of measurements were carried out in order to confirm the
following:

1. the coherence of imaging and treatment isocenters under nominal conditions;

2. the consistency of geometry calibration across different imaging modalities.

These tests were performed using the positioning phantom P43029 (PTW-Freiburg,
Germany), which comprised a PMMA cylinder phantom containing four inner refer-
ence steel rings and four spherical surface markers compatible with the Optical Track-
ing System (OTS) already installed in the treatment room. This phantom (referred to
as the RING phantom henceforth) was acquired with the CNAO’s CT system (Siemens
Somaton) at the clinical resolution of 0.98×0.98×1 mm. The in-room geometrical
setup was replicated after the CT scan also based on the positions of surface markers.
Each test was carried out following the calibration of the imaging projective parame-
ters of the system, which was based on the Flexmap approach [39, 40]. The calibration
process encompassed nine DOF and comprised a Levenberg-Marquardt optimization
of back-projection errors. For this purpose, a geometric calibration X-ray phantom
(Model 2008; Brandis Medizintechnik Vertriebs GmbH, Weinheim, Germany) with 37
embedded radio-opaque ball bearings (BB) was employed (Fig. 2.4).

The calibration procedure demanded the alignment of the central bead of the cali-
bration phantom to Iso-T in relation to the room’s coordinate reference system. This
alignment was achieved by placing the phantom on the couch, locked by indexing bars
in predetermined positions on the treatment couch. Then, the bed was moved to a pre-
defined pose determined by laser tracking measurements of the phantom’s position and
orientation within the room’s coordinate system. Once the phantom was aligned, the
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Figure 2.4: Geometric calibration X-ray phantom setup at Iso-I. The locking bars that connect the
phantom to the treatment couch, ensuring a repeatable pose, are also visible.

PPS was moved to a second reference pose, also determined by laser tracker measure-
ments. This ensured that the central axis of the couch was aligned with the rotational
axis of the robot end effector and that the central beads of the phantom coincided with
the center of rotation of the C-arm. A dynamic acquisition of the calibration phantom
in CBCT FF modality was performed with the following exposure settings: 85 kVp,
100 mA, 8 ms. This acquisition involved a rotational range of 220◦ for a total of about
450 projections. A manual initialization (drag-and-drop) was performed to align the
nominal BB positions with the actual projected BB, according to the angle of the end
effector. This manual initialization regarded only the first acquired image, while the
initialization of the subsequent projections was performed based on the final calibra-
tion parameters of the previous projection. Then, the algorithm extracted BB centroids
from the acquired image, relying on a local window centered in the projected points.
Finally, iterative optimization of calibration parameters minimized the back-projection
errors (projected vs. extracted BB coordinates). In order to minimize unwanted drifts,
per-projection parameters were subjected to smoothing using a moving average win-
dow of size ten. Regarding the HF mode, the procedure remained unchanged, but the
calibration was performed independently for each of the complementary acquisitions.

Coherence of Geometric Calibration and Image Registration

The first test aimed to assess the quality of geometrical calibration and image registra-
tion algorithms. At first, the RING phantom was prealigned using lasers. The setup
was then corrected by acquiring two orthogonal X-rays. Therefore, a second radiog-
raphy set was acquired to double-check the setup correction. After that, CBCT scans
were obtained to assess the expected residuals at Iso-I (cfr. Fig. 2.5). Finally, the OTS
residuals at Iso-T were computed to validate the propagation of correction vectors cal-
culated at Iso-I towards Iso-T. Note that OTS has a residual uncertainty lower than 0.3
mm [14, 23]. This test was conducted once since the RING phantom metallic inserts
led to reproducible rigid alignments between different exposures.

As summarized in the left panel of Fig. 2.6, sub-millimeter and sub-degree max-
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Figure 2.5: Alignment of RING phantom in the CBCT modality. Sagittal (upper left), axial (upper
right), and coronal (bottom left) views are rendered. The coronal view also shows the phantom in a
chess view with the CT overlayed on the acquired in-room CBCT.

imal discrepancies were measured when evaluating the geometrical setup error at the
imaging and treatment isocenters for the anatomical axes Latero-Lateral (LL), Superior-
Inferior (SI), and Antero-Posterior (AP). In general, the new scanner exhibited consis-
tency with the OTS measures in the treatment position.
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Figure 2.6: Nominal accuracy of the system. Translation errors are reported in mm and rotation errors
in degrees. (Left) Residuals of the phantom aligned to the nominal position as evaluated by the
3D/3D registrations and the OTS. (Right) Registration residuals after recovering the position error
imposed on the PPS.

A second test evaluated the system’s capabilities in performing consistent rigid reg-
istration. The RING phantom was aligned using the isocentric lasers and OTS guidance.
The PPS was driven in Iso-I, and a known composite 6 DOF error was applied to the
nominal position. These errors were in the range of 3 mm for translations and 2◦ for
rotations. CBCT scans in FF and HF modalities were then acquired, and the automatic
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2.1. Robotic Imaging System in Room 1

3D/3D registration towards the CT was applied. Finally, the absolute deviations with
respect to the nominal position were collected. Residuals at Iso-I are depicted in the
right panel of Fig. 2.6. FF underperformed for Yaw rotation and latero-lateral (LL)
translation because the limited FOV cut some of the phantom body in the tested out-of-
nominal condition. The HF modality outperformed the FF one, with residuals always
under 0.4 mm.

Preclinical Phantom Study

The real clinical scenario cannot be well represented simply with the rigid registration
of a geometrical phantom consisting of metallic rings and beads. The evaluation of
overlapped sliced bony features eventually leads to more substantial residuals due to
the complex and dense gradient distributions. Furthermore, the beads denoted a col-
lection of points or fiducials resembling markers that are not present in patients. Con-
sequently, in preparation for clinical utilization, a series of measurements were carried
out on the pelvis region of the ATOM M701 adult male radio-equivalent anatomical
phantom (CIRS, Norfolk, VA, USA). A CT scan was acquired with clinical resolution
(0.98×0.98×1 mm). Five markers were placed for alignment purposes, as illustrated
in Fig. 2.7. These measures aimed to evaluate the performance of the embedded algo-
rithms within a large region after correcting the setup following the clinical pipeline.
Consequently, the phantom underwent alignment using lasers and OTS toward Iso-I po-
sitions. Eight independent error vectors were applied to the PPS. A CBCT acquisition
was then performed, and the absolute errors after 3D/3D registration were evaluated. In
order to adhere to the clinical correction procedure, two acquisitions were performed
per modality: one for the initial correction and another for follow-up verification and
potential adjustments, considering the errors fell within the range of 10 mm for transla-
tion and 3◦ for rotations. Conversely, the pelvis phantom scans from the RING phantom
also allowed for conducting axial FOV measurements. Mimicking the clinical condi-
tions, the phantom study confirmed the accuracy of the registration pipeline while high-
lighting the advantage of volumetric imaging. Observing the maximum errors across
modalities (cfr. Fig. 2.8), it can be assumed that the 3D imaging pipeline produced
errors compatible with the clinical standard. However, there was a slight (0.2◦) un-
derperformance in Yaw rotation for HF modality. Despite the small size of the RING
phantom, the dimensions of the pelvis phantom allowed for the appreciation of the axial
FOV gain in the complementary HF strategy, as shown in Fig. 2.7. The FOV diameter
in the axial plane increased almost twofold, from 204 mm in FF to 403 mm in HF,
obtained with a combined 120 mm lateral displacement of the detector.

2.1.4 Main Contributions of the New CBCT System

The described device was installed and integrated into the IGRT workflow at CNAO.
The results of commissioning activities and measurements have been presented, ex-
plicitly focusing on geometric accuracy and setup correction. The system consists of
an articulated robot mounting a custom-designed C-arm structure. The choice of the
robot and the geometry of the C-arm were driven by the desired functionalities of the
application (patient positioning correction) in compliance with the functional require-
ments of the treatment room. As previously stated, the system was optimized for three-
dimensional CBCT imaging with small and wide FOV. Additionally, the system needed
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204 mm 403 mm

Figure 2.7: Rendering of the pelvis phantom. Four out of five optical markers are easily recognizable,
while the last one is not visible in this view (left). Axial view of a slice of the anatomical phantom
acquired in FF mode (center) and HF one (right).

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Yaw

Pitch

Roll

AP

SI

LL Full Fan
Half Fan

Figure 2.8: Absolute residuals obtained with the 3D/3D registration after the imposition of some known
vector on PPS at Iso-I for each modality. Translation errors are reported in mm and rotation ones in
degree.

sufficient flexibility to work within a treatment room with a fixed beamline, which had
been operational since 2011, equipped with a pantographic robotic couch that signifi-
cantly limits the floor space, thereby imposing limitations on the scanner’s installation.
The constraint on the treatment room’s existing workflow was respected, as instrumen-
tations already in place remained accessible and functional after the installation of the
new system. Moreover, the development also focused on safety measures to prevent
undesired hazardous situations, patient harm, and equipment damage. The imaging
workflow was designed to avoid potential collisions as much as possible, and the si-
multaneous drive of the PPS and the robotic C-arm was inhibited, thus implementing
motion only in controlled conditions. Additional hardware, such as a redundant con-
troller and fast-response anti-collision cushions, was integrated to minimize damages
in case of unpreventable collisions. The X-ray calibration procedure was experimen-
tally verified using a geometric phantom with embedded metal rings, showing errors
within the CT scan’s voxel resolution. The accuracy of the positioning was confirmed
through measurements conducted with a commercial optical tracking system (OTS).
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The results demonstrated a sub-millimeter accuracy in reproducing the treatment plan
position within the treatment room. Overall, the accuracy was found to be within the
expected tolerance range, affirming the reliability of the positioning process. Follow-up
measurements were performed on a radio-equivalent phantom to validate the correction
pipeline’s effectiveness with 3D/3D strategies, achieving residuals at sub-millimeter
and sub-degree levels. A comparison with the existing custom system at CNAO re-
vealed that the new system provided up to double the axial field of view (FOV), along
with faster acquisition and shorter reconstruction times, without compromising accu-
racy (cfr. Table 2.1). This allowed for comprehensive beam path reconstruction. The
limited scan in the complementary Half Fan (HF) mode was achieved by leveraging the
“CBCT retur” motion. Considering the increased C-arm rotation speed, the total scan
time for the FF modality was approximately 63 seconds. In contrast, a standard HF
acquisition with a robot reset at the same speed would take around 75 seconds. This
may seem counterintuitive, but traversing two arcs of 220◦ at the acquisition speed of
7.3◦/sec, along with 40◦ at the reset speed of 14.6◦/sec, was faster than traversing two
360◦ arcs, with the first during acquisition and the second for C-arm reset. Furthermore,
the proposed C-arm rotation speed enabled acquisitions lasting 10 seconds and collect-
ing 150 projections fewer than the legacy system [8]. Consequently, this resulted in a
25% reduction in the total imaging dose for CBCT without introducing any additional
risk. In fact, the newly implemented collision detection solution, with its shorter re-
sponse delay, ensured approximately 50% less residual C-arm travel, making the scan-
ner safer compared to the previous custom system, despite rotating approximately 1.3
times faster.

Table 2.1: Comparison between the CBCT imaging system installed at CNAO.

Legacy system (2013) [8] New system (2023)

Acquisition protocols 2D, 3D FF 2D, 3D FF, 3D HF
3D/3D setup correction <1 mm, <1◦ <1 mm, <1◦

FOV 204 mm 204 mm (FF) – 403 mm (HF)
Exposure time 40 s 30 s (FF) – 30 s × 2 (HF)

Acquisition Time 80 s 63 s (FF) – 75 s (HF)
Anticollision system Bumper (22 ms delay) Air cushions (9 ms delay)

Anode angle 7◦ 12◦

Collimation Static Dynamic

2.2 CBCT Limitations

The current use of the described systems focuses on correcting patient positioning and
evaluating anatomical changes before treatment. However, the CBCT modality, de-
spite its faster imaging capabilities compared to CT, introduces image artifacts due to
scattered radiations, leading to issues such as shading, reduced contrast, and beam-
hardening. Additionally, the limited FOV causes truncation problems during recon-
struction, resulting in bright-band effects and further artifacts in CBCT images. These
limitations prevent accurate dose evaluation and hinder qualitative inspection, empha-
sizing the need for reliable techniques to correct CBCT images and enhance their clin-
ical applications in tumor assessment, organ shift evaluation, and treatment planning.
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2.2.1 Traditional Approaches for CBCT Correction

Aiming to address these issues, the limited FOV and truncation artifacts make these
images not ideal for applying the virtual CT paradigm that aims to recalculate dose
on a warped CT to match daily anatomy [9, 41–44]. One of the typical approaches to
map the CT anatomy to that of the daily CBCT usually requires the preprocessing of
the CT through Deformable Image Registration (DIR) [45–47]. However, DIR may
introduce errors and require extensive validation, especially when the CBCT volume is
flawed and has a narrow FOV [48]. In general, correction and translation methods for
quantitative CBCT can be broadly divided into hardware-based, prior-CT-based, and
model-based approaches. Hardware-based methods remove scatter based on additional
equipment mounted on the acquisition system. In particular, an anti-scatter grid and
partial beam blockers, along with software estimation of scattering, were proposed for
scatter suppression [49–53]. While this kind of approach has shown promising results,
it is not always feasible to be implemented in clinical practice due to the installation
and setup of additional devices on acquisition systems. Moreover, this type of solution
inherently reduces the system quantum efficiency and can degrade image quality [54].
Prior-CT-based methods leverage information obtained from high-resolution planning
CT applied to up-to-date information contained in CBCT. They can be based on pro-
cessing techniques like deformable registration of CT to CBCT [55], or by linearly
scaling the CBCT HU values to CT ones through histogram matching [56, 57]. The
shading artifacts inside CBCT can also be estimated by low-pass filtering the differ-
ence between the high-resolution CT projections and the raw CBCT ones and then sub-
tracted from the CBCT during reconstruction [58]. In general, these methods achieved
a limited solution to CBCT problems since they depend on the accuracy of the spatial
alignment between CBCT and planning CT volume pairs from the same patients. This
alignment is not always possible, particularly in the case of acquisition made on differ-
ent days or in the presence of soft tissues. Model-based methods typically use Monte
Carlo simulations to model the scatter contribution to CBCT projection data. Many re-
searchers attempt to model the scatter distribution via some combination of analytical
methods or Monte Carlo algorithms [59–62]. Model-based methods demonstrated to
reproduce HU to sufficiently robust accuracy for clinical application because they rig-
orously simulate photon transport. However, their primary limitation comes from the
physics models. Moreover, these techniques are limited by their execution time, usually
in the order of minutes to hours, making them incompatible with an online application
(e.g., dose evaluation or pre-treatment adaptation).

2.2.2 Deep Learning-based Approaches for CBCT Correction

Recently, advanced image processing techniques based on neural networks and deep
learning were investigated, again leveraging the prior knowledge given by the pCT.
Such methods, leveraging mainly Convolutional Neural Networks (CNN) and Gen-
erative Adversarial Network (GAN), were investigated to map the physical model of
the x-ray interaction with matter disregarding the underlying complex analytics and
avoiding the use of explicit statistical approaches such as Monte Carlo [63]. These
methods leverage the advance in the field of image-to-image translation, making use of
convolutional neural networks (CNNs) to learn how to map voxels from a source dis-
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tribution (e.g., CBCT) to a target one (e.g., planning CT). Rather than truly correcting
scattering or other physical effects, CNN learns this type of nonlinear mapping itera-
tively. Therefore, this approach does not need the complex physical model formula-
tion required by, e.g., Monte Carlo-based methods. Moreover, although deep learning-
based methods can be computationally expensive to train, once a well-trained model
is developed, the image correction can be applied in seconds, making these methods
compatible with clinical practice. The deep learning-based techniques can be broadly
categorized into two main approaches: raw-data domain scatter correction and image
domain shading correction. Regarding raw-data domain scatter correction, one study
proposed to train a U-Net on CBCT projections corrected with prior information de-
rived from deformed planning CT [46]. Other works focused instead on training a
network by creating Monte Carlo (MC) simulated labels. In a study, the authors trained
a deep residual CNN with CBCT scans and corresponding MC scatter-corrected CBCT
scans [64]. In another proposal, instead, the authors created both the input and the label
by synthetic CBCT generation from existing CT and adding MC-simulated scatter to
the input volumes [31, 65]. This was first evaluated on various objects [65] and then
on different anatomical regions [31] in a reasonable attempt to prove the generality
of this method. Finally, the first study using MC-based CNN CBCT scatter correc-
tion on real data was trained on synthetic CBCT scan inputs with added MC-simulated
scatter against unflawed CBCT scans, with particular attention to the scanner trajec-
tory [66]. Concerning the image domain shading correction, slice-based training is
also an emerging trend for the generation of synthetic CT with various types of CNN,
ranging from U-Net trained with a supervised training approach [45, 47, 64, 67, 68] to
the more complex Cycle-consistent Generative Adversarial Network (cGAN), based on
an unsupervised training approach [69–74]. In particular, a work involved using DIR
between planning CT and CBCT as a preprocessing step followed by a slice-based su-
pervised training between them [45]. Focusing on CBCT-to-CT mapping, Xie et al.
proposed a scatter artifact removal CNN based on a contextual loss function trained on
the pelvis region of 11 subjects to correct the CBCT artifacts in the pelvic area [75].
Another research focused on a cGAN model to calibrate CBCT HU values in the pelvis
region. The model was trained on 49 patients with unpaired data and tested on nine
independent subjects, and the authors claimed the method kept the anatomical structure
of CBCT images unchanged [71]. Exploring the use of deep residual neural networks
in this field, a study demonstrated the capability of such architectures by proposing
an iterative tuning-based training, where images with increasing resolutions are used
at each step [76]. All these contributions, however, did not address the consistency
of the treatment planning performed with the corrected CBCT. Conversely, Zhang et
al. [77] reported the test of pelvis treatment planning in proton therapy performed on
CBCT corrected with CNN. However, they summarized that the dose distribution cal-
culated for traditional photon-based treatment outperformed the one computed for pro-
ton therapy. CBCT corrected with a cGAN was applied to evaluate the quality of the
proton therapy planning in cancer treatment across different datasets with satisfactory
results [47,73]. All the mentioned research works focused on the problem of CBCT-to-
CT HU conversion exploiting CBCT with a wide field of view (FOV). However, some
systems present in clinical practice have a limited FOV, not sufficient to contain the
entire volume of the patient, e.g., in the presence of large regions such as the pelvis or
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with obese patients [11]. Considering the current use of CBCT for patient positioning
purposes, small FOV CBCT systems could be preferred due to their reduced imaging
dose, shorter computation time, and increased resolution over the treatment region of
interest [78].

2.3 Conclusions

This chapter introduced the CBCT imaging system installed at CNAO and the main
limitations of this modality. The main issue related to the CNAO imaging system is the
limited FOV that causes truncation and increased scatter in the acquired CBCT. This
prevents their use for dose computation and compromises the qualitative inspection of
the daily anatomy, leading to less effective offline procedures and unnecessary expo-
sure of the patient to imaging doses. The traditional approaches for correcting CBCT
present some limitations. Hardware-based methods require the installation and setup of
additional devices on acquisition systems. These devices involve additional costs and
do not always guarantee high flexibility and generalization capability. For what con-
cerns prior-CT-based methods, their most significant limitation is the dependence on
planning acquisitions and the accuracy of spatial alignment with CBCT. This condition
is not always easily obtainable, especially when the acquisition period between the two
modalities increases. Monte Carlo-based methods are the most accurate approaches,
but they suffer from two main limitations. Their execution time is usually incompatible
with in-room clinical application, and they have the critical requirements of a complex
physical model formulation. On the other hand, the deep-learning-based methods over-
come some of these limitations. The following chapters will describe the definition of a
deep-learning framework that processes the CBCT to calibrate the HU, remove artifacts
due to the conic geometry acquisition, and handle narrow FOV issues to demonstrate
the potential use of the corrected CBCT in the context of proton treatment planning
updates. This framework aims to explore the possibility of using the in-house limited
FOV CBCT system not only for patient positioning but also for dosimetric evaluation
without any hardware modifications.
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CHAPTER3
Comparison of Supervised and Unsupervised

Approaches for the Generation of Synthetic CT
from CBCT

This chapter discusses the use of deep neural networks for CBCT correction and describes two main
paradigms used for training such networks: supervised and unsupervised. The study compares the
performance of these approaches in generating synthetic CT scans from CBCT images and provides
guidelines for selecting the appropriate training technique. This chapter is based on the paper by
Matteo Rossi and Pietro Cerveri. “Comparison of supervised and unsupervised approaches for the
generation of synthetic CT from cone-beam CT”. Diagnostics (Basel, Switzerland), 11, 2021.

Over the past few years, evidence has been accumulating in support of the view that
machine learning and artificial intelligence methods may sensibly impact diagnostic
and therapeutic areas. In this regard, clinical tools have been recently proposed in on-
cology to speed up lesion analysis, improve tumor staging, support treatment planning,
and, ultimately, contribute to the main clinical decisions [4, 79]. Such tools may in-
corporate deep neural networks for image analysis, within a complete end-to-end clin-
ical pipeline, providing automatic image segmentation, image synthesis, and image-to-
image translation [80–82]. As already mentioned in Chapter 2, deep learning-based
methods joined traditional approaches to improve the quality of medical images. These
approaches utilize advancements in image-to-image translation and employ convolu-
tional neural networks to learn the mapping of voxels from a source distribution (e.g.,
CBCT) to a target one (e.g., pCT), without directly addressing physical effects like scat-
tering, thus eliminating the need for complex physical modeling used in methods like
Monte Carlo-based approaches; furthermore, while deep learning-based methods may
require substantial computational resources for training, the application of well-trained
models for image correction can be executed within seconds, making them compat-
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ible with clinical use. The literature presents two main paradigms to train CNN for
image-to-image translation: supervised and unsupervised training. Supervised training
requires paired images from two dominions (e.g., CBCT and CT) for model training.
The input CBCT is processed by the model generating a Synthetic CT (sCT), which is
then compared to the corresponding ground-truth CT to minimize their pixel-by-pixel
difference iteratively. Thanks to its neural encoding-decoding capabilities, the U-Net
architecture is the most common one for this type of training [31, 45–47]. Similar to
prior CT-based methods, images must be well-registered to achieve good performance
when using supervised training. Since model training is based on a single pixel-wise
loss function, the network could be biased and will tend to learn incorrect mapping in
case of suboptimal registration. It is not always possible to achieve such good accu-
racy, especially in soft tissues, due to the patient’s weight loss, tumor changes, or the
presence of air. On the other hand, unsupervised training enabled the possibility to
use unpaired data for image-to-image translation [83]. The most common architecture
for this kind of training is cycle Generative Adversarial Network (cGAN) [84]. This
architecture is based on two concurrent subnetworks, a generator and a discriminator,
which work in opposition. Given two different datasets, the generator tries to learn the
mapping to convert one dataset to the other. The generator aims to trick the discrim-
inator. On the other hand, the discriminator’s objective is to distinguish between real
and synthetic images. This generator-discriminator cycle-consistent loop is designed to
improve the generator’s ability to produce synthetic images that are virtually indistin-
guishable from real ones. Cycle GAN was first proposed for natural image synthesis.
Still, recently various researchers demonstrated its application for many medical image
syntheses tasks, like the generation of synthetic CT from CBCT [69, 85–87], MR syn-
thesis from CT images [88,89] or PET attenuation correction [90]. The main advantage
of this method consists of the possibility to use unpaired, even unbalanced datasets, as
the one-to-one correspondence between both dominions is no longer necessary. How-
ever, the computational power needed to train this architecture increases dramatically,
since there are four models to be trained based on at least four distinct loss functions. In
this chapter, generative deep neural networks were investigated for translating CBCT
volumes into synthetic CT featuring compatible HU values with a focus on providing
a fair comparison between supervised and unsupervised training paradigms. The same
generative architecture was trained using supervised and unsupervised training tech-
niques, exploiting a pelvic CT/CBCT publicly available dataset [91]. The comparison
between the two obtained solutions was first quantified in terms of synthetic CBCT to
original CT similarity by means of Peak Signal-to-Noise Ratio (PSNR) and Structural
Similarity Index Measure (SSIM). The HU agreement was then evaluated in terms of
Mean Absolute Error (MAE). The deep-learning-based methods proposed here aim to
overcome some of the limitations of traditional approaches for CBCT correction, as
previously explained in Chapter 2. At first, it does not have any additional hardware
requirements, making it of potential utility for every kind of CBCT acquisition system,
e.g., robotic C-arm, gantry-mounted systems, or couch-mounted ones. Moreover, while
training a deep convolutional neural network is a time-demanding task, they are very
fast in generating output images in a production application once trained. The execu-
tion time for these methods is compatible with clinical use. Furthermore, the black-box
nature of neural networks does not rely in general on any complex physical modeling.
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3.1. Materials and Methods

In order to obtain a network with sufficient generalization capability, it is mandatory
to train it with a sufficiently broad and generalized dataset. The first generative model
was based on the U-Net architecture trained according to a traditional supervised pat-
tern. The second generative model was still a U-Net-based model, which was coupled
to a discriminator network and trained without supervision in a cGAN configuration.
Overall, two main impacts qualify this work:

• the feasibility of CNN to generate accurate synthetic CT scans from CBCT im-
ages, which is fast and easy to use compared to traditional techniques applied in
clinics;

• the proposal of guidelines to drive the selection of the better training technique,
which can be shifted to a more general image-to-image translation.

3.1 Materials and Methods

3.1.1 Dataset Description

The publicly available dataset, called Pelvic Reference Dataset (PRD) [91], used in this
work was obtained from the Cancer Imaging Archive. PRD included paired CT and
CBCT volumes of the pelvic region of 58 subjects, spanning 28 males and 30 females.
CBCT images were acquired at least 1 week after the corresponding CT volume ac-
quisition. Moreover, PRD includes 47 and 11 volumes acquired in supine and prone
positions, respectively. Two subjects (both female, one prone, and one supine) were
removed from the dataset. In the first case, a metal hip prosthesis made it impossible
to distinguish the anatomical structures in both CT and CBCT. In the second case, the
CBCT field of view was too small to contain the entire subject’s pelvic region. There-
fore, a massive part of the subject present in the CT was missing in its corresponding
CBCT. These two cases were considered outliers and removed from the dataset, so that
56 cases were available for this study. Both CT and CBCT volumes featured size of
512×512 pixel on the axial plane with a pixel size of 1.00×1.00 mm and a single slice
thickness of 3.00 mm. The number of slices of each CBCT was 88, while in CT scans
that number was variable. Along with volume files, the PRD dataset also provided a
table with the (x, y, z) coordinates to apply to the CBCT isocenter to align with their
corresponding CT. To sum up, 4053 CT/CBCT 2D axial projections pairs were avail-
able. The entire dataset was split into train, validation, and test sets with a ratio of 80,
10, 10%, respectively, corresponding to 3243, 405, and 405 images per set.

3.1.2 Image Preprocessing

Preprocessing steps were performed before feeding data to the neural network. At first,
a binary mask was created to separate the subject from any non-anatomical content
(e.g., treatment couch). This masking procedure avoids any negative impact from these
structures on training procedures. In order to prepare these masks, Otsu thresholding
was applied to each volume. A max connected component analysis was then performed
on each mask to remove any non-anatomical residual finely. A final binary fill holes
filtering and erosion filtering were applied to enhance mask accuracy further. Finally,
the mask was applied to the original volume, obtaining an isolated anatomical region.
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Corresponding masked CT and CBCT were then rigidly registered, using isocenter
coordinates provided with PRD Dataset. This step was necessary only for supervised
training since the unsupervised one did not need paired data. However, good alignment
was also required for evaluation analysis. The HU range of the grayscale values was
first clipped to [−1024, 3200] and then rescaled to [0, 1] with a linear mapping. In order
to reduce the computational cost for CNN, every axial slice was resampled to 256×256
pixel.

3.1.3 Deep Convolutional Neural Network Models

The two generative models were both based on the U-Net architecture trained accord-
ing to two different training patterns. The supervised generative model required only
this network, while the unsupervised one also required the definition of a discrimina-
tive architecture. In order to make the comparison possible, the generator architecture
was precisely the same for both supervised and unsupervised procedures. The gener-
ator was implemented as an adapted version of the popular U-Net architecture. The
basic U-Net is primarily used to solve pixel-by-pixel classification problems in image
segmentation [92]. In the present work, U-Net was adapted to solve an image-to-image
conversion task to generate sCT images from CBCT. The basic building blocks for the
generator were depicted in Fig. 3.1. The first one, called the ConvBlock, was based
on a modified version of the implementation of Isola et al. [83]. It was composed of a
2D convolution with a 3 × 3 kernel, followed by an instance normalization layer and
a swish activation function. Instance normalization was demonstrated to improve the
performance in image generation tasks [93]. ConvBlock was present in the network
both standalone and as a part of another processing block, called the InceptionBlock.
This latter block was adapted from GoogLeNet [94]. It comprised four parallel Con-
vBlocks, each with an increasing kernel size of dimensions 1 × 1, 5 × 5, 7 × 7, and
11× 11. In this way, the input received by the InceptionBlock was processed simulta-
neously by multiple receptive fields. The output of each branch was then concatenated,
and the entire stack of feature maps was returned as output. The main purpose of this
processing block was to perform multi-scale feature extraction from the input image.
These multi-scale extracted features, ranging from small to large receptive fields, can
provide better results for image synthesis.

The overall generator structure, depicted in Fig. 3.2, was composed of a contracting
and an expanding path, both based on the basic processing blocks. The first two up-
per processing blocks of the generator were composed of InceptionBlocks, while the
deeper three were composed of ConvBlocks. In this way, the network was divided into
two parts with two different functions: the inception part extracted global contextual
information while the traditional part has the task to capture finer context and precise
localization. The discriminator (Fig. 3.3) was a CNN that performs image classifica-
tion. Its architecture was based on the PatchGAN architecture [83], considered to be
the gold standard discriminator for cGAN [69, 84, 87]. It consisted of four consecutive
ConvBlocks, with a 4 × 4 kernel size. The convolution for the first three ConvBlock
was set with stride 2, giving as outputs a tensor with half the size and twice the features
map. The last ConvBlock had stride one and maintained the size and the number of
feature maps unchanged. A sigmoid activation function followed the last layer, produc-
ing a 32 × 32 map with every pixel in the [0, 1] range. This output map was used for
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ConvBlock
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Concatenate
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Figure 3.1: Basic building block architectures. The ConvBlock (left) comprises a 2D convolutional step
with kernel variable kernel size, followed by instance normalization and a Swish activation function.
The InceptionBlock (right) is composed of the parallel combination of more ConvBblock with kernel
dimension of 1 × 1, 5 × 5, 7 × 7, and 11 × 11. The output of each ConvBlock is then concatenated
in a single output tensor.

patch-wise classification of the input image as real or fake.
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Figure 3.2: Schematic of the generator network architecture.

3.1.4 Training Methods

The two training routines are schematized in Fig. 3.4. For supervised training, given
the original CBCT image as input to generator CT (GCT ) network, the generated sCT
is compared to the corresponding ground-truth CT. During training, the network adapts
its weight according to MAE loss function, expressed as:

Lsupervised(CT, sCT ) =
1

N

N∑
i=0

|CTi − sCTi| (3.1)

25



i
i

“output” — 2023/10/30 — 9:10 — page 26 — #46 i
i

i
i

i
i

Chapter 3. Comparison of Supervised and Unsupervised Approaches for the
Generation of Synthetic CT from CBCT

Input/Output

ConvBlock stride 2

ConvBlock stride 1

Conv2D 1× 1

Sigmoid

2
5
6
×

2
5
6
×

1

1
2
8
×

1
2
8
×

3
2

6
4
×

6
4
×

6
4

3
2
×

3
2
×

1
2
8

3
2
×

3
2
×

1
2
8

3
2
×

3
2
×

1

3
2
×

3
2
×

1

Figure 3.3: Schematic of the discriminator network architecture.

In regard to the unsupervised learning, the cGAN structure incorporated two gen-
erators and two discriminators, competing against one another, namely generator CT
(GCT ), generator CBCT (GCBCT ), discriminator CT (DCT ), and discriminator CBCT
(DCBCT ). GCT was used to generate sCT from CBCT, while GCBCT was used to gener-
ate Synthetic CBCT (sCBCT) from CT. On the other hand, DCT was used to distinguish
between real CT and sCT, and DCBCT is used to distinguish real CBCT from sCBCT.
In the first step of the training, GCT (GCBCT ) took CBCT (CT) as input and gener-
ated sCT (sCBCT). Then, GCT (GCBCT ) took sCT (sCBCT) as input and generated
a cycleCBCT (cycleCT), which is supposed to be equal to the original CBCT (CT).
Meantime, DCT (DCBCT ) tried to discriminate between real CT (CBCT), labeled as 1,
and sCT (sCBCT), labeled as 0. Generator loss functions included three types of terms:
adversarial loss, cycle consistency loss, and identity loss. Discriminator loss was com-
posed only of an adversarial term. These loss functions were combined to mapping the
distribution of the generated images to the distribution domain of the target images (see
Section 3.1.5).

3.1.5 Loss Functions for Unsupervised Training

In the unsupervised training, the generator loss functions included three types of terms:
adversarial loss, cycle consistency loss, and identity loss. Discriminator loss was com-
posed only of an adversarial term. For GCT the adversarial loss term is the mean
squared error (MSE) between 1 and DCT (GCT (CBCT)):

Ladv−GCT
(CBCT ) =

1

N

N∑
i=0

(1−DCT (GCT (CBCTi)))
2 (3.2)

Symmetrically, the adversarial objective for GCBCT is:

Ladv−GCBCT
(CT ) =

1

N

N∑
i=0

(1−DCBCT (GCBCT (CTi)))
2 (3.3)

The second term is represented by cycle consistency loss. It is used during training
to enforce consistency of the two mappings from CT to sCBCT and CBCT to sCT [84].
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sCT GCBCT CBCT GCT sCT GCBCT cycleCBCT

DCBCT DCT

cycleCT GCT sCBCT GCBCT CT GCT sCT

Lcycle−GCBCTLid−GCBCT

Lcycle−GCT Lid−GCT

Ladv−GCBCT

LDCBCT

Ladv−GCT

LDCT

CBCT GCT sCT CT

Lsupervised

Figure 3.4: Schematic flow chart of supervised (top) and unsupervised (bottom) training routines. Rect-
angle boxes represent images, and rounded corner boxes depict neural network models. Dashed
boxes indicate a loss function. For a detailed explanation of the training routines, refer to the Sec-
tion 3.1.5.

This term is represented by the mean absolute error (MAE) between real CT (CBCT)
and cycleCT (cycleCBCT), respectively:

Lcycle−GCT
(CT ) =

1

N

N∑
i=0

|GCT (GCBCT (CTi))− CTi| (3.4)

Lcycle−GCBCT
(CBCT ) =

1

N

N∑
i=0

|GCBCT (GCT (CBCTi))− CBCTi| (3.5)

The third term, identity mapping loss, was introduced in order to preserve HU values
between real CT and sCT and between real CBCT and sCBCT. Without this term,
generator GCT and GCBCT are free to change the HU values of input images even when
it is not necessary. This loss acts as an identity constraint for the generator. When sCT
is used as input for GCT , it should generate CT too as output. The same applies for
GCBCT with CBCT. Therefore, identity loss is expressed as MAE between GCT (CT)
with respect to CT and between GCBCT (CBCT) against real CBCT:

Lid−GCT
(CT ) =

1

N

N∑
i=0

|GCT (CTi)− CTi| (3.6)

Lid−GCBCT
(CBCT ) =

1

N

N∑
i=0

|GCBCT (CBCTi)− CBCTi| (3.7)

Combining all these terms, for the overall loss of the two generators the following
formula holds:

LG = Ladv + λcycle · Lcycle + λid · Lid (3.8)
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where λcycle = 10 and λcycle = 5 represents the relative importance of the adversarial,
cycle consistency, and identity mapping part of the objective.

The adversarial loss of the discriminator, which constrained the network to classify
real images, labeled as 1, and synthetic images, labeled as 0, cab be written as:

LDCT
(CT,CBCT ) =

1

N

N∑
i=0

(1−DCT (CTi) +DCT (GCT (CBCTi)))
2

2
(3.9)

LDCBCT
(CT,CBCT ) =

1

N

N∑
i=0

(1−DCBCT (CBCTi) +DCBCT (GCBCT (CTi)))
2

2

(3.10)

3.1.6 Performance Metrics

In order to quantitatively evaluate network performances, three widely accepted numer-
ical metrics were used: peak signal-to-noise ratio (PSNR), structural similarity index
measure (SSIM), and mean absolute error (MAE). PSNR is computed as the ratio be-
tween the maximum possible power of a signal and the mean square error of the images
being compared. Its value is measured in decibel and approaches infinity as the mean
squared error between sCT and ground-truth CT approaches zero. Therefore, a higher
PSNR value corresponded to higher image quality and vice-versa [95]. SSIM was first
introduced in 2004 by Wang et al. [96]. It measures similarity between two images
based on three factors: luminance, contrast, and structure. Compared to PSNR, SSIM
provides an indication of similarity closest to that of the human visual system. The
value for this metric ranges between 0 and 1, where 1 indicates the best possible level.
Lastly, MAE is used to evaluate the HU accuracy between two images quantitatively.
Before computing its value, the amplitude of the network output, i.e., [0,1], was scaled
back to the original range, i.e., [−1024, 3200]. The lower the MAE, the higher the HU
accuracy of the two images. Every metrics was evaluated using CT as the ground truth
reference.

3.1.7 Cross-Validation Analysis

In order to validate the performance of the trained models, a four-fold cross-validation
experiment was carried out on both methodologies. The entire dataset was divided into
four subsets, each subgroup consisting of images of 14 patients. For each experiment,
three subsets were used as the training set, while the remaining one was used as the
test set. The cross-validation allowed a comparison of the performance of the models
against the baseline results, i.e., the difference between the CT and the original CBCT
images. The improvement in terms of SSIM, PSNR, and MAE was quantitatively an-
alyzed. The statistical difference between the candidate models was also evaluated
with Kruskal-Wallis non-parametric test for median differences (p < 0.01) and Tukey–
Kramer post-hoc comparison.

3.1.8 Implementation Details

The Keras [97] and TensorFlow [98] Python frameworks were used to develop the net-
work models, loss functions, metrics, and training routines. The training was carried
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out in the Google Colaboratory Cuda-enabled environment, equipped with a four-core
CPU, 25 GB RAM, and NVIDIA® Tesla® P100 GPU support 16 GB RAM. The num-
ber of epochs has been set to 25. When the validation set SSIM score is maximized,
the training routine was configured to save the set of the best network weights. The
training was optimized with ADAM (Adaptive Moment Estimation) optimizer [99],
with the following parameters: learning rate 2 × 10−4, exponential decay rate for the
first moment estimates β1 = 0.5, and exponential decay rate for the second-moment
estimates β2 = 0.999. The batch size was set at 10. In order to generalize network
performance as much as possible and prevent overfitting, data augmentation was per-
formed at run-time during training. At the beginning of each training epoch, just before
giving the image as input to the network, a series of image elaborations were applied.
In particular, the images were randomly rotated by multiple of 90 degrees and horizon-
tally flipped. The same transformations were also applied to the corresponding ground
truth CT in order to maintain coherence between pairs. By applying these transforma-
tions, each CBCT/CT pair featured eight different configurations (four rotations times
two flips). This implied that at each iteration the network was fed with different im-
ages. For example, assuming N images in the training dataset, at each iteration step
N images are generated from the original samples by applying the described random
transformations.

3.2 Results

Supervised training required about 3 minutes per epoch. The only architecture used
for this training pattern was the generator, corresponding to 2,554,977 trainable param-
eters. On the other hand, unsupervised training required about 5 minutes per epoch
due to its increased complexity. This method featured two identical generators and two
identical discriminators. Being the discriminator network characterized by 429,185
trainable parameters, the overall number of weights for the unsupervised model was
5,968,324. For what concern inference time, the two approaches were comparable.
Generating sCT required less than 4 seconds for an entire CBCT volume (~70 slices)
in both cases, computed on the same GPU environment used for training.

3.2.1 Performance Metrics

The cross-validation experiments confirmed that the proposed CNN models improved
the metrics with respect to the baseline (Fig. 3.5), being median and interquartile re-
sults summarized in Table 3.1. In general, supervised training attained better results for
every metric. Considering SSIM, supervised sCT obtained an improvement of 2.5%
with respect to the baseline (p < 0.0001), while unsupervised sCT gained an improve-
ment of 1.1%. PSNR also confirmed this trend, resulting in an enhancement from the
baseline for supervised sCT and unsupervised sCT of 4.19 dB (p < 0.0001) and 2.3 dB
(p < 0.0001), respectively. The relative gains for PSNR were 15.7% and 8.6%. Lastly,
the supervised model reduced the mean absolute error between supervised sCT and CT
by 58.16 HU (62.3%), while the unsupervised model resulted in a reduction of 46.92
HU (50.3%). Even in this case, the supervised model appeared significantly better than
the unsupervised one (p < 0.0001).
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Figure 3.5: Quantitative analysis of SSIM, PSNR, and SSIM values between original CBCT, sCT super-
vised, and sCT unsupervised against the corresponding CT, computed for each fold of the four-fold
cross-validation.

Table 3.1: Performance metrics evaluated on original CBCT, sCT supervised, and sCT unsupervised.
Every value is computed against the original CT, considered as the ground truth. Every value is
expressed as median (interquartile range).

SSIM [A.U.] PSNR [dB] MAE [HU]

CBCT 0.887(0.048) 26.70(3.36) 93.30(59.60)
Supervised sCT 0.912(0.030) 30.89(2.66) 35.14(13.19)

Unsupervised sCT 0.898(0.046) 29.00(3.38) 46.38(24.86)

3.2.2 Qualitative Comparison

Some examples of sCT generated by the supervised and unsupervised approaches are
depicted in Fig. 3.6. The first column represents the ground truth CT image, while
the second one contains the original CBCT input. The third and fourth columns show
the generated sCT images predicted from supervised and unsupervised models, respec-
tively. The last column compares one intensity profile (the central row depicted with a
line) for every imaging modality. The same example slices are also showed as differ-
ence maps in Fig. 3.7. Every column represents the difference between the modality
under evaluation (CBCT, supervised sCT, and unsupervised sCT) and the ground truth
CT. The first row represents the case of a CBCT/CT pair with a similar field of view
(FOV). From the intensity profile and the difference map, it can be noticed that both
models enhanced overall image qualities in terms of HU mapping, with slightly better
visual details for the supervised model. The second row shows an example in which
CT FOV is wider than CBCT one. In this case, it can be observed that the supervised
model tried to compensate for the missing structures at the border with unrealistic val-
ues. Contours of supervised sCT were blurred and unreliable, while unsupervised sCT
coped better with the original CBCT boundaries. In more detail, the unsupervised
model did not attempt to recreate the missing FOV, resulting in more realistic and re-
liable contours with respect to the original CBCT. Concerning the internal anatomical
structures, both models reached good qualitative results, as demonstrated by the corre-
sponding intensity profile and difference map. The last row in Fig. 3.6 and 3.7 shows
a case in which the rectum area had an air-filled cavity with different shapes between
the CT and the CBCT. The supervised model reacted by filling the air cavity with the

30



i
i

“output” — 2023/10/30 — 9:10 — page 31 — #51 i
i

i
i

i
i

3.3. Discussion

surrounding values, while the unsupervised model preserved its contours. This latter
behavior is preferable, as it is assumed that the information content of the CBCT is
more updated than that of the CT. Again, the supervised model attempted to scale the
HU values without considering possible changes in the anatomical structures of inter-
est.

CT CBCT Supervised sCT Unsupervised sCT
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Figure 3.6: Visual comparison between some axial slices depicted in every modality: CT, CBCT, sCT
supervised, and sCT unsupervised. Every row corresponds to a different example taken from a dif-
ferent subject. The rightmost part of the figure compares the intensity profiles of the central line of
the images, highlighted by the central line in the four representations. Images are displayed with
Window = 2000, Level = 0.

3.3 Discussion

3.3.1 Main Findings

This work proposed a deep-learning-based approach for generating synthetic CT im-
ages from CBCT scans, featuring HU values compatible with the traditional CT do-
main, providing a fair comparison between supervised and unsupervised training par-
adigms. As demonstrated by the cross-validation analysis, the supervised model out-
performed the unsupervised ones. The supervised network guaranteed advantages in
terms of computational cost, having 57% fewer weights to train and requiring 40% less
training time for the same number of epochs. Moreover, it gained an increase of 12%
in terms of MAE with respect to the unsupervised one, showing a superior ability in
mapping HU values. On the other hand, the supervised model showed to be not always
reliable, resulting in some unexpected behavior, especially in the contour regions. This
kind of artifact did not appear in images generated through the unsupervised model,
which proved to be more reliable in preserving the anatomical structure and the up-to-
date information contained in the CBCT scan. One example of this is clearly visible
in the bottom row of Fig. 3.6, where the shape of the air cavity present in CBCT is
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Figure 3.7: Difference maps computed between original CBCT, sCT supervised, and sCT unsupervised
using their corresponding CT as reference. Numeric values are in Hounsfield Units. Each row
represents a different example taken from a different subject. The examples depicted in this figure
correspond to the example presented in Fig. 3.6.

preserved only for the unsupervised case, while the others tended to close the air gap.
This kind of artifact could be risky as it can generate some biases in evaluating the cur-
rent evolution of the patient’s internal anatomy, or a wrong treatment plan evaluation
in case of dose recalculation. On the other hand, the unsupervised model did not suf-
fer from this condition due to the cyclic loss functions, consisting of three main terms,
each with a different purpose. The more straightforward loss function defined for the
supervised model, i.e., mean square error, specialized the network to learn mapping
without adequately considering the anatomical structure.

3.3.2 Comparison with the Literature

To our best knowledge, just one comparison between supervised and unsupervised
training of deep networks, addressing back and forth translation between CT and mag-
netic resonance images was proposed in the recent literature [89]. In such a work, the
authors explored different network architectures proposing a modified U-Net (super-
vised training) and the ResNet model for the generator (unsupervised training) pro-
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posed in [84]. Conversely, in this work, the same model was adopted in both the
supervised and unsupervised generative parts, which smoothed out any biases in the
comparison. Approaches competitive with the present work were reported in the re-
cent literature. Using an MC-based methodology, HU correction of about 31% for five
lung cancer patient images was gained [33]. Another proposal, which used histogram
matching on ten prostate cancer patient scans, resulted in a 20% HU correction [57].
A phantom-based study was carried out on the Catphan 600 (The Phantom Laboratory,
Salem, NY) [58] achieved an overall accuracy of 95% in HU recovery. Nonetheless,
results on patient images were not presented. Concerning deep-learning-based meth-
ods, a proposal based on the U-Net trained with a supervised approach on 30 prostate
cancer patients presented an HU accuracy enhancement of about 69% [46]. A compara-
tive study explored the performances of some supervised models trained on 42 prostate
cancer patients. The results obtained by the three tested models were 55, 17, 47% in
terms of HU relative improvement [47]. Exploring the use of cGAN and unsupervised
training, a study disclosed an enhancement of 57% with a dataset containing 120 head
and neck scans [85]. Another unsupervised-based research resulted in a 16% increase
for 33 prostate cancer patients [86]. The results proposed in this work are generally in
line with the prior art, with an HU improvement of 62% and 50% for the supervised
and unsupervised models, respectively.

3.3.3 Technical Challenges and Work Limitations

The use of complex models for remapping HU can be considered oversized when look-
ing at the intensity profiles (cfr. Fig. 3.6), where linear shifts appear predominant.
This would suggest that regression models may be enough to address HU mapping.
However, the inter-variability between the two modalities (e.g., air gaps, morphologi-
cal variations due to postures, lesion progression) may easily introduce non-linearity in
the intensity profile mapping (cfr. Fig. 3.8). In the upper panel of Fig. 3.8, an air gap
can be appreciated in the CBCT and in the corresponding CT. The notch in the intensity
profiles is just produced by such a gap. This kind of deformation is difficult to correct
by simple linear mapping. In the lower panel, relevant beam hardening of the CBCT at
the image boundaries, corresponding to peripheral density appearance, is traceable in
the corresponding intensity profile (orange curve) as an undue convexity at the borders.
Likewise, a linear transform of the profile does not ensure accurate correction. Conse-
quently, convolutional neural networks represent a natural approach to address as they
feature input/output non-linear transforms and good generalization capabilities.

As shown, quantifying the image translation effectiveness by means of SSIM and
PSNR can be inconclusive. For example, both lower SSIM and PSNR values (super-
vised against unsupervised) do not necessarily indicate that the images are qualitatively
worse (cfr. Table 3.1). In particular, SSIM is a perception-based metric considered to
be correlated with the quality perception of the human visual system, and the higher
its value is, the better is the perception of similarity for human eyes [96]. Still, some
studies have shown that SSIM is less effective when used to evaluate blurry and noisy
images [100, 101]. This reduces the relevance of comparisons performed using such
metrics. Conversely, MAE provided an objective quantification of the HU matching.
As far as the selection between the two approaches is concerned, it can be argued that
the supervised approach is preferable in the presence of a large amount of paired data,
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Figure 3.8: Examples of non-linearity of CBCT scans. Air gap introduced a notch in the intensity profile
(top). Beam hardening is visible as a convex shape in the orange curve of both examples (bottom).
Images are displayed with Window = 2000, Level = 0.

ensuring high accuracy in HU mapping. Nonetheless, gaining this advantage requires
that CBCT and CT images be gathered as close as possible to minimize the anatomical
difference. It is also crucial to mask images according to the smallest FOV between
the two modalities in order to have comparable information content in between. In de-
tail, masking ensures similar FOVs preventing the supervised network from attempting
to reconstruct the sCT in the CBCT regions where this information is missing. In or-
der to reduce the dependency on such constraints, the unsupervised method is suitable,
avoiding pairing, requiring fewer preprocessing steps (e.g., masking) and being more
conservative in terms of anatomical features. Removing the constraint on the pairing,
the training effectiveness can benefit from a large amount of data, easier to collect.
Nonetheless, even though obtaining unpaired images is clinically simpler, using ex-
plicitly paired data in training reduces geometric discrepancies at body boundaries. As
verified in [54], unsupervised training may take advantage of paired data, allowing a
better focus on soft-tissue contrast than geometric mismatches. To further validate the
methods presented in this work, a dosimetric analysis would be required. However, the
chosen dataset did not allow this type of study to be explored due to the lack of the origi-
nal CT dose distribution plan. Moreover, the presented methodologies focused only on
a single anatomic district, the pelvic one. We wanted to demonstrate the feasibility
of both methods in a body region particularly subjected to inter- and intra-fractional
changes. The comparison between the two training strategies was made to show their
different approach to addressing image-to-image translation tasks, highlighting their
strengths and limits.

3.4 Conclusions

The proposed methodologies allow for generating accurate synthetic CT images by au-
tomatically processing CBCT scans, featuring processing time faster than traditional
Monte Carlo-based methods. The basic idea behind this approach is to correct CBCT
images exploiting their potential not only in a more accurate patient positioning, but
also for clinical evaluation purposes such as tumor shrinkage and organ shift. For what
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concerns the integration in the clinical workflow of treatment re-planning, this method
can be integrated into a tool to be deployed that elaborates the reconstructed CBCT im-
ages, acting as an image filtering process. The correction of CBCT also makes possible
the direct morphological comparison with the planning CT. The following chapters
will explore some techniques to further increase the ability of this framework to correct
CBCT scans.
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CHAPTER4
Limited FOV CBCT Correction with Deep

Convolutional Neural Networks and Transfer
Learning

This chapter further explores the use of deep learning-based methods for CBCT correction, introducing
a novel technique to address the limitations of these methods based on a two-step algorithm leveraging
the transfer learning paradigm. This chapter is based on the paper by Matteo Rossi et al.
“Image-based shading correction for narrow-FOV truncated pelvic CBCT with deep convolutional
neural networks and transfer learning.” Medical physics, 48:7112-7126, 2021

Following what we described in Chapter 3, the supervised model outperformed the
unsupervised ones in terms of both quantitative image quality metrics and computa-
tional cost. However, the supervised-trained model exhibited occasional unreliability,
leading to unexpected behavior, particularly in contour regions. In contrast, the un-
supervised model consistently avoided such artifacts and demonstrated greater relia-
bility in preserving the anatomical structure and up-to-date information present in the
CBCT scan. The more straightforward loss function defined for the supervised model
compared to the unsupervised one, i.e., mean square error, specialized the network to
learn mapping without adequately considering the anatomical structure. This chapter
presents some techniques to address the limitations of deep learning-based CBCT cor-
rection. In particular, we describe a method for CBCT axial slice processing by using
the U-Net architecture and leveraging the transfer learning paradigm. It has been shown
that pre-training a network with synthetic data could be an effective initialization tech-
nique for many complex models, providing better performance when the network is
then fine-tuned with real data [102, 103]. The clinical dataset used for this work was
retrospectively available at the CNAO facility, described in Section 4.1.2. The avail-
able data was augmented through a transfer learning approach by generating a synthetic
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CBCT dataset from a publicly available pelvic CT repository [91], completely avoid-
ing using DIR. In synthesis, the aim of the present work is to provide a U-Net-based
image domain shading correction for the recovery of CT-compatible HU values from
narrow FOV CBCT scans. The main novelty aspect of the present work can be found
in the neural network supervised training strategy, which was developed according to
the transfer learning paradigm, following an innovative two-step approach described
in Section 4.1.5. This allowed splitting the learning of the anatomical features from
the learning of CBCT/CT shading differences. The performances obtained by the fine-
tuned U-Net were then compared with a network trained only with the retrospective
clinical dataset.

4.1 Materials and Methods

4.1.1 Imaging instrumentation

In this work, we exploit images directly acquired with the legacy CBCT imaging sys-
tem installed at CNAO (cfr. Chapter 2) [8]. As a reminder, CBCT is used at CNAO
for evaluating anatomopathological variations between the planning CT and the daily
anatomy. The device was primarily intended for rigid setup correction and is not fitted
with a moving flat panel or an adjustable collimator. Therefore, it cannot produce a
sufficiently broad FOV for a complete anatomical description of larger districts (i.e.,
pelvis and thorax). Missing information about the periphery of a large anatomical dis-
trict does hinder adaptive approaches based on such images. Clinical practice at CNAO
reduces inter/intra fractional motion with thermoplastic fixation masks [23]. However,
particle therapy is more susceptible to air cavities with respect to photon radiotherapy.
Here a clinical instrument such as the limited FOV CBCT is used to qualitatively eval-
uate air in the bowels (e.g. when dealing with the pelvis). Moreover, the limited FOV
also causes truncation, especially in the case of large anatomical districts such as the
pelvis. Consequently, bright-band effects appear on the border of the FOV along with
the non-uniqueness of the interior problem, as stated by Clackdoyle et al. [37] The issue
of truncation artifact correction is attenuated by image processing techniques, such as
the Ohnesorge filter [25], which excessively lowers the image’s grayscale intensity. As
such, strategies to correct shading due to different components of artifacts are required
to improve the qualitative clinical procedure.

4.1.2 Datasets Description

For the realization of this work, two datasets were used. The first dataset, denominated
Dr, included 18 retrospective pairs of CT/CBCT pelvis acquisitions obtained from six
oncological patients (3 Male/3 Female). Clinical Target Volume (CTV) segmentation
was also recovered for each patient. These data were acquired at the CNAO facility
during daily pelvic district treatments. The CT scans were acquired with a Siemens So-
matom Sensation Open Bore scanner at 100 kV, while the CBCT scans were acquired
with a Varian A-277 X-ray tube and a Varian PaxScan 4030D flat-panel detector at 100
kV and 25 mAs, featuring a FOV of 204 mm [8] and processed by a 30% truncation
correction with Ohnesorge filter [25]. In order to reduce morphological variations be-
tween corresponding CT and CBCT acquisitions, the shortest time interval determined
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the pairing. In 13 cases, the pairs were acquired on the same day, while four were ac-
quired one day apart. In a single case, the acquisitions were made two days apart. The
CT scans are temporally close to the CBCT ones as they are re-evaluation CT scans.
Given that CNAO employs a thermoplastic mask for patient immobilization and motion
reduction [23], residual deformation between the corresponding scan was deemed neg-
ligible. Following preprocessing (highlighted in Section 4.1.3), the dataset contained
3368 CT/CBCT 2D axial slice pairs aligned and rigidly registered between the two
modalities. The second dataset, termed Pelvic-Reference-Data [91], was obtained from
the Cancer Imaging Archive. In this dataset, 58 pelvic CT scans, acquired in prone and
supine positions, were available. Because of large organ deformation due to a support
cushion placed under the pelvic area, some scans were removed from the useful set. For
the remaining 46 patients (27 Male/19 Female), 8289 CT axial projections were avail-
able. The synthetic CBCT images, whose generation was described in Section 4.1.2,
joined to the corresponding CT scans, were denominated Ds. Both datasets were di-
vided into training, validation, and test sets with a 60/20/20% ratio. The number of
images in every subset was 2021/673/674 for Dr and 6632/828/829 for Ds.

Synthetic Data Generation

Synthetic CBCT scans were generated from the corresponding CT scans of dataset Ds

using the OpenREGGUI open-source platform, written in Matlab and based on the RTK
API (the Reconstruction ToolKit [104]). RTK expects intensity values to be in a 0−216

range, with an open field signal (I0) being on the right-bound and entirely blocked
signal (Idark) on the interval’s left-bound. Projections are then Log-Transformed to
attenuation. In order to obtain a correct projection dataset from a CT, the following
formula was applied to its grayscale values:

CTµ =
(CTHU + 1000)

216
(4.1)

The generation of synthetic CBCT was done following the same geometry of CNAO
treatment room: source-to-detector distance equal to 1672 mm, source-to-isocenter dis-
tance equal to 1172 mm, and gantry sweep of 220 degrees. A set of 500 simulated Cone
Beam projections was derived, using the RTK CUDA-based forward projector [104]
with a panel size of 1024x768 pixels (spacing 0.388× 0.388 mm) for each considered
CT. A simulation of scattering and beam hardening was then applied to the projections
using the methods provided in OpenREGGUI [105]. Finally, a CBCT axial scan was
reconstructed from the projection stack, using the same projective geometry defined
before, resulting in a truncation of around 30% of the patient body and attenuated with
the Ohnesorge filter [25]. Imaging parameters were chosen to match the ones of dataset
Dr, with output CBCT volumes of dimensions 220 × 220 × 220 pixels and spacing of
1×1×1 mm. The scatter, beam hardening, and Gaussian noise factors were found em-
pirically and set to 0.001, 1.005, and 0.001, respectively. Conversely to real CBCT, the
generated synthetic CBCT resulted perfectly aligned to the corresponding CT, avoiding
anatomical deformations and air pockets differences (Fig. 4.1).
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Figure 4.1: Axial view of a Dr CBCT (left) and a Ds CBCT (right).

4.1.3 Image Preprocessing

Preprocessing steps were performed before feeding data to the neural network. First,
rigid registration was applied, using the ITK API (the Insight ToolKit [106]), only to
Dr, as Ds was intrinsically already aligned. A masking procedure was then applied to
the CT scans of both Dr and Ds datasets to extract the FOV equal to the corresponding
CBCT. Every CT volume was resampled to have isotropic voxels of 1 × 1 × 1 mm
matching CBCT voxel dimensions. The HU range of the grayscale values was first
clipped to [−1000, 3100] and then rescaled to [0, 1] with a linear mapping. Finally, as
a technical convenience in the U-Net processing, the axial slices were zero-padded to
256× 256 pixels from the original size of 220× 220 pixels.

4.1.4 Deep Convolutional Neural Network Model

The basic U-Net architecture is mainly used for image segmentation [92], solving a
pixel-by-pixel classification problem. In the present work, it was adapted to solve an
image-to-image translation problem to address the task of cupping removal and HU
recovery from the original CBCT. In agreement with the U-Net architecture, the pro-
posed neural network was mainly composed of a contracting and an expanding path
(Fig. 4.2). In the contracting path, each processing layer (block) was constituted by
two 2D convolutions, with kernel dimension 3× 3, no stride, and Rectified Linear Unit
(ReLU) activation function. A Batch Normalization layer followed every convolution.
Between two convolutions of the same block, a Dropout layer randomly “switched off”
the updating for 10% of the weights to prevent overfitting. Each block in the contract-
ing path was connected to the next with a Max Pooling layer, giving as input for the
next block a tensor with twice the feature maps and halving its size. The purpose of
this contracting path was to capture the context of the input image. The expanding
path had the same structure as the contracting path but with a Transpose Convolution
layer instead of Max Pooling, giving an up-sampling effect to the network. Thus, each
block in the expanding path outputs a tensor with half the feature maps and twice its
size. Every block in this path was also connected to its corresponding block in the other
paths with a connection layer. The purpose of the expanding path was to enable precise
localization combined with contextual information from the contracting path. A single

40



i
i

“output” — 2023/10/30 — 9:10 — page 41 — #61 i
i

i
i

i
i

4.1. Materials and Methods

feature map 2D convolution was applied in the last layer, resulting in a single image
with the same dimension as the input. The last layer used a sigmoid activation function
to provide values in the [0, 1] range for every pixel.
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Figure 4.2: Schematic of the symmetric contracting and expanding paths of the U-Net. Every U-Net
processing block is composed of two convolutional, Relu, and batch normalization layers, with a
dropout layer in the middle. Every block in the contracting path is followed by a Max Pooling
layer, while every block in the expanding path is followed by a transpose convolution one. The last
convolution is followed by a sigmoid layer. The red boxes indicate the blocks that can be retrained
during each Transfer Learning experiment.

4.1.5 Training of the Models

Training a U-Net requires an abundant quantity of data. In the interest of reducing
potential overfitting [107], data augmentation was performed at runtime during the net-
work training. A series of random operations were applied to the existing data (the
input CBCT and its corresponding CT ground truth) so that the network was never fed
twice with the same image during training. At first, random cropping of the image
was performed, feeding the network with a 128× 128 sub-patch of the original image.
These sub-patches were also subjected to random rotations of multiples of 90 degrees
and horizontal flips. Moreover, input (CBCT) and label (CT) must represent the same
anatomical condition. Otherwise, the network will be forced to compensate for residual
deformation. The common practice [45] requires the use of a deformable image reg-
istration algorithm to match CT to CBCT daily anatomy as a preprocessing step. This
step was avoided on the basis of Dr characteristics (as described in Section 4.1.2). The
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synthetic Ds CBCT can be perfectly superimposed on the reference CT from which
they were generated, completely avoiding DIR in data preparation 4.1.2.

The models analyzed in this work were trained following two different training pat-
terns (cfr. Fig. 4.3). The first, named the noFT model, was trained in a single step using
only data from Dr. The second, named the FTx model, was trained using both Ds and
Dr datasets, following a two-step approach similar to that of Gherardini et al. [108] At
first, end-to-end training was performed using the synthetic data from Ds on a newly
created model (the Synth model). In the second step, some deeper processing blocks
(one, two, or three) were fine-tuned using Dr, leaving the rest of the model weights
fixed. Each retrained block was considered symmetrically in the contracting and ex-
panding paths (cfr. Fig. 4.2). Depending on the number of retrained processing blocks,
the model takes the name FT1, FT2, FT3. Synthetic data are suitable for augmenting
the dataset overall dimension and learning the anatomical-related features in the image.
Transfer learning embeds these features in the network, giving a good initialization of
the network weights. Therefore, subsequent tuning on real data is supposed to be less
sensitive to residual deformation between input and ground truth labels.

Real CBCT
(Dr)

U-Net

Output
CBCT

Real CT
Dr

noFT
Model

Minimize
MAE

Synthetic
CBCT (Ds)

U-Net

Output
CBCT

Synthetic
CT Ds

Synth
Model

Minimize
MAE

Real CBCT
(Dr)

Synth
Model

Output
CBCT

Real CT
Dr

FTx

Model

Minimize
MAE

Unfreeze weights
of the x

deepest blocks

Figure 4.3: Training pattern for the noFT (left) and FTx (right) models. The noFT model is trained in a
single step using only data from Dr. The FTx model is trained in two steps. In the first one, a model
is trained using only Ds (Synth model), then only x (1, 2 or 3) processing blocks were retrained with
Dr data.

Loss Function and Performance Metrics

Mean absolute error (MAE) has been set as a loss function, and the training was opti-
mized with ADAM (Adaptive Moment Estimation) [99]. ADAM has the advantage of
being designed to compute individual adaptive learning rates for different parameters
starting from estimates of first and second moments of the gradients. ADAM optimizer
was set with the following parameters: learning rate 0.001, exponential decay rate for
the first moment estimates β1 = 0.9, and exponential decay rate for the second-moment
estimates β2 = 0.999, while the learning rate was 0.001. To evaluate the network per-
formance, two widely used metrics were chosen, namely the peak signal-to-noise ratio
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(PSNR) and the structural similarity index measure (SSIM). PSNR value approaches
infinity as the mean squared error between improved CBCT and ground truth CT ap-
proaches zero. Therefore, a higher PSNR value corresponds to higher image quality
and vice-versa [95]. SSIM is considered to be more correlated with the quality percep-
tion of the human visual system. The higher its value is, the better is the perception of
similarity for human eyes [96].

Hyperparameter Tuning Experiments

In order to find the optimal U-Net architecture according to PSNR and SSIM, some
experiments were conducted using exclusively Dr data. These experiments aimed to
find the best combination for the number of processing blocks (four or five) and the
number of feature maps at the first level (16, 32, or 64), systematically varying these
parameters. A deeper network with many feature maps can virtually learn more from
the input data itself, but it also requires computational power accordingly. The correct
trade-off between these parameters has to be found. All considered architectures were
trained using dataset Dr and performance results were computed in terms of median
and Inter-quartile Range (IQR) ranges. The statistical difference between the candidate
models was evaluated with Kruskal-Wallis non-parametric test for median differences
(p<0.01) and posthoc comparison. If two or more models did not present significant
differences, the choice fell on the lighter architecture in terms of computational cost.

Transfer Learning Experiments

Once the best architecture was chosen according to hyperparameter tuning experiments,
some transfer learning experiments were conducted to find the optimal number of pro-
cessing blocks to be retrained (one, two, or three) to increase PSNR and SSIM. For
example, considering the architecture 16-32-64-128-256-128-64-32-16 (four process-
ing blocks and sixteen feature maps in the first block), the fine-tuning of only one block
meant that the retraining allowed the refinement of the weights in the 128-256-128
level. Conversely, the fine-tuning of two blocks meant that the retraining allowed the
refinement of the weights in the 64-128-256-128-64 processing blocks. Even in this
case, the appropriate number of blocks was chosen by evaluating the statistical differ-
ences between experimental results and the computational cost.

Network Implementation

The network model, loss function, metrics, and training routine were built using the
Keras [97] and TensorFlow [98] frameworks in Python. The training was carried out
in a Google Colaboratory Cuda-enabled environment, equipped with a 4-core CPU,
25 GB RAM, and NVIDIA® Tesla® P100 GPU support 16 GB RAM. The training
routine was set to save the best weights values when the validation set SSIM score is
maximized.

4.1.6 Cross-Validation Analysis

In order to make the network output comparable to the original volumes, the amplitude
[0, 1] of the network output was scaled back to HU units [−1000, 3100]. To reinforce
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the interpretation of the results, a Leave-One-Out Cross-Validation (LOO-CV) experi-
ment was performed. The Synth model was fine-tuned with 18 subsets of dataset Dr,
each one excluding a single stack of slices, corresponding to unique CBCT/CT pair
Px. A comparison between baseline performance (Base), noFT, and FTx models was
presented to show the validity of the transfer learning approach. Two analyses were
conducted to assess: i) the improvement for PSNR and SSIM; ii) the reliability of HU
recovery.

Performance Metrics

Given the small size of Dr compared to Ds, the NoFT model risks overfitting training
data. In order to validate the coherency of the performance in terms of PSNR and
SSIM with respect to the parameters defined in the previous experiments, LOO-CV
was used to compare the noFT and FT2 model with the baseline (Base) performances.
The term Base was used to name the performance computed on the dataset Dr as is after
rigid alignment and resampling, without any neural network elaboration. The expected
result is that the FTx-type models are more consistent than noFT ones. To verify this
assumption, the PSNR and SSIM metrics were computed again on each fold.

HU Analysis and Shading Evaluation

As far as HU recovery is concerned, the difference in terms of HU between the CBCT
network output versus the corresponding CT images was computed. In order to in-
crease the consistency of the comparison, mismatching air pockets were automatically
removed according to predefined HU thresholds [4] (Fig. 4.4). Additionally, an analysis
based on Region of Interest (ROI) was proposed to evaluate the network improvement
for different tissues. 8× 8× 8 cubes were segmented in spongy bones, fat, muscle, and
bladder (Fig. 4.5). According to the represented tissue, the HU values contained in each
cube were averaged and compared between CT and CBCT. In addition, the Contrast-
to-Noise Ratio (CNR) was calculated to evaluate the improvement in terms of contrast
enhancement. In particular, the CNR was measured for each imaging modality by com-
paring the clinical target volume with the bladder, muscle, and fat ROIs, respectively.
Then, the same ROIs were compared with the air region within each scan. Particular
attention was given to the relation between truncation severity due to variable patients
pelvic size and HU non-conformity.

4.2 Results

4.2.1 Neural Network Assessment

Hyperparameter Tuning Experiments

In order to find the best network architecture in terms of PSNR and SSIM, some hy-
perparameter tuning experiments were conducted (cfr. Table 4.1). In terms of PSNR,
all the four-block architectures provided results significantly better than the five-block
ones (p<0.0001). Considering four as the number of processing blocks, no statistical
difference among 16 and 32 feature maps was found (p=0.46), as well as between 16
and 64 feature maps (p=0.74). Therefore, sixteen was chosen as it significantly reduces
the number of trainable parameters, being the best trade-off between performance and
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Figure 4.4: Example of air pockets, visible as a red blob. Since these regions mismatch between the two
images, corresponding voxels are not considered for HU difference computation.

network complexity. The SSIM analysis further confirmed this choice. The selected
U-Net configuration was 16-32-64-128-256-128-64-32-16, corresponding to 919 177
trainable parameters.

Table 4.1: PSNR and SSIM performances (median and interquartile range) of the hyperparameter tuning
experiments, depending on the number of processing blocks and the number of convolutional filters
in the first block. Each value is computed by evaluating the dataset Dr test set. The final choice for
these parameters for both noFT and FTx models is highlighted.

Blocks # First block filter # PSNR (dB) SSIM (A.U.)

4 16 31.943 (3.261) 0.926 (0.030)
4 32 32.156 (2.913) 0.918 (0.025)
4 64 32.314 (2.661) 0.925 (0.028)
5 16 31.704 (2.674) 0.928 (0.029)
5 32 31.608 (2.503) 0.918 (0.023)
5 64 30.367 (2.274) 0.926 (0.027)

Transfer Learning Experiments

Considering the transfer learning experiments results (cfr. Table 4.2), retraining the two
deepest blocks proved to be the best value for increasing network performance. This
was confirmed by the statistical analysis of the FT1, FT2, and FT3, considering PSNR,
SSIM, and MAE. For PSNR, FT2 architecture provided results significantly better than
the other two FT1 (p<0.0001) and FT3 (p<0.0001) architectures. Considering SSIM, no
statistical difference among FT1 and FT3 (p=0.78) was found, while the FT2 results are
significantly different from FT1 (p=0.007) and FT3 (p=0.0007). In addition, the three
distributions were compared with the distribution obtained from the Synth model. In
general, each FTx model had significantly better performance compared to the Synth
model, both in terms of PSNR (p<0.0001), SSIM (p<0.0001), and MAE (p<0.0001).
As such, Synth was not considered for further evaluation.
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Figure 4.5: Example of cubic ROIs (8×8×8 mm) extracted from a patient. Selected regions are bladder
(blue), spongy bones (green), muscle (red) and fat (yellow).

Table 4.2: PSNR, SSIM, and MAE performances (median and interquartile range) of the transfer learn-
ing experiments, depending on the number of processing blocks to be retrained. Each value is com-
puted by evaluating the dataset Dr test set. The final choice for the FTx model (FT2) is highlighted.

FT blocks # PSNR (dB) SSIM (A.U.) MAE (HU)

0 (Synth) 26.707 (1.440) 0.907 (0.018) 128.184 (28.011)
1 29.007 (2.151) 0.918 (0.024) 84.989 (23.187)
2 30.799 (2.167) 0.921 (0.023) 63.067 (15.179)
3 29.904 (2.268) 0.917 (0.025) 73.187 (19.726)

4.2.2 Cross-Validation Analysis

Performance Metrics

The LOO-CV experiments confirmed that the proposed neural network processing im-
proved the quantification metrics with respect to baseline (Fig. 4.6). On most of the
patients, the FT2 model performed better than the Base and noFT in terms of PSNR
and SSIM. In particular, the median PSNR for Base, noFT, and FT2 were on average,
over 18-fold, 26.77, 31.83 and 32.32 dB, respectively. Considering PSNR, FT2 model
results to be significantly better than Base (p<0.0001) and noFT (p<0.0001). The me-
dian SSIM for Base, noFT and FT2 were on average 0.902, 0.915 and 0.916. Even in
this case, FT2 model results to be significantly better than Base (p<0.0001) and noFT
(p=0.0005). Furthermore, by aggregating the training histories of the 18 LOO-CV ex-
periments for both models and comparing the MAE for the training and validation sets,
the FT2 model proved to be faster in terms of convergence speed (cfr. Fig. 4.7). This
is due to the FT2 network weights initialization provided by the pre-training with syn-
thetic data.

HU Analysis and Shading Evaluation

The ROI evaluation produced, on average, HU improvements of 177.59 for bladder,
192.2 for bone, 215.87 for muscle and 123.43 for fat using the noFT method. By
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Figure 4.6: Quantitative analysis of PSNR and SSIM values between every CBCT (Base, noFT, FT2),
computed for each fold of the Leave-One-Out Cross-Validation.
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Figure 4.7: Mean absolute error history for noFT (left) and FT2 (right) models during training. Bold
lines represent the mean values computed between each trained network in LOO-CV experiments,
while the shaded region represents their standard deviation.
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contrast, the FT2 method yielded an average HU improvement of 191.95 for bladder,
257.04 for bone, 206.88 for muscle and 169.73 for fat. For the whole images (Fig. 4.8),
the FT2 method obtained a median improvement of 111.96, while the noFT yielded
100.52. For each ROI, the comparison between noFT and FT2 HU difference distribu-
tion reported a significative difference (p<0.0001). All values were computed across
the 18-fold and are summarized in Table 4.3.
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Figure 4.8: Quantitative analysis of the absolute HU difference between every CBCT (Base, noFT,
FT2) and the corresponding ground truth CT, computed for each fold of the Leave-One-Out Cross-
Validation. Both models reduce the difference in the HU ranges, with better performance for the FT2

model.

Table 4.3: Absolute HU difference between every CBCT (Base, noFT, FT2) and the corresponding
ground truth CT, for each ROI (mean and standard deviation) and overall volumes (median and
interquartile range). Values are obtained averaging between each fold of the Leave-One-Out Cross-
Validation.

Model Bladder Bone Muscle Fat All

Base 213.06±47.19 340.79±66.06 249.36±20.53 199.27±39.46 161.37(162.54)
noFT 35.47±25.27 148.59±74.25 33.49±28.78 75.84±28.02 60.85(80.70)
FT2 23.11±20.87 83.75±55.41 42.48±28.83 29.54±19.40 49.41(66.70)

The cupping artifact, due to scattering, clearly perceived as a darker central region
in CBCTBase, was reduced in both CBCTnoFT and CBCTFT2 (Fig. 4.9). The analysis of
one intensity profile (the central row depicted with a line in Fig. 4.9) confirmed that the
network processing flattened the slight concavity present in CBCTBase. The intensity
profile of CBCTnoFT appeared closer to the CT one than the corresponding profile
obtained from CBCTFT2 . At the same time, CBCTnoFT profiles appear smoother than
the CT one and its axial view is blurred. This evidence supports the quantitative results
for HU in ROIs and overall image, with FT2 performing better than noFT. It follows
that the FT2 and the noFT method both shift the range of values of CBCT closer to
that of CT. The FT2 model favored anatomical consistency, correcting cupping, and
rescaling the intensity values. Conversely, the noFT model aggressively fits the CBCT
to the reference CT, introducing blurring.
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Figure 4.9: Comparison between a single CBCT Base and corresponding CT axial slice with the CBCT
elaborated by noFT and FT2 models. The rightmost part of the figure compares the intensity profiles
of the central line of the images, highlighted by the central line in the four representations. Images
are displayed with Window=400, Level=20.

The results of the tissue contrast analyses are summarized in Table 4.4. In all cases,
the FT2 model obtained results closest to the CT ones, considered the ground truth.
These results confirmed the superior ability of this model in improving soft tissue vis-
ibility with respect to CBCTBase or CBCTnoFT . In particular, the comparison between
CTV and soft tissues reported an improvement of about 24% for the noFT model and
67% for the FT2 one, with respect to the CBCTBase CNR values of CBCTBase. Con-
cerning the comparison between soft tissues and air, the average gain was about 4%
and 35% for noFT and FT2, respectively.

Table 4.4: CNR values for every imaging modalities (CT, CBCTBase, CBCTnoFT , CBCTFT2
). Values

are computed between clinical target volume against every soft tissue ROI (bladder, muscle, fat).
Every ROI is also evaluated against air values present in the scan. Each value is represented as
median (IQR).

ROI CT CBCTBase CBCTnoFT CBCTFT2Foreground Background

CTV Bladder 0.86 (1.00) -5.24 (2.28) -1.73 (2.35) -1.19 (3.31)
Muscle -1.75 (1.76) -5.12 (2.01) -5.68 (6.27) -1.66 (2.31)

Fat 4.68 (1.13) 1.11 (2.31) 2.19 (3.19) 2.49 (2.08)
Bladder Air 42.06 (15.23) 7.79 (2.93) 8.66 (3.25) 19.47 (14.05)
Muscle 43.59 (15.76) 7.69 (2.51) 8.86 (2.63) 19.28 (13.49)

Fat 37.57 (13.29) 6.82 (3.29) 8.23 (3.02) 18.69 (12.80)
CTV 42.48 (18.26) 7.08 (2.90) 8.70 (2.96) 19.42 (13.45)

Results regarding the relationship between MAE and pelvis width for considered
cases are reported in Fig. 4.10.
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Figure 4.10: Pelvis width versus MAE for every type of CBCT (Base, noFT, FT2). MAE is calculated
with respect to the CT ground truth.

4.3 Discussion

4.3.1 Main Findings

In this work, we propose a U-Net-based approach to address limitations intrinsic to the
limited FOV CBCT at CNAO, and to provide CBCT HU recovery, subsequently. In par-
ticular, the framework proposed focused on shading correction and soft tissue contrast
enhancement. Firstly, the network improved the image intensity distribution, quantified
by PSNR and SSIM, in the range of about 5 dB (noFT), 6 dB (FT2), and 2% (both), re-
spectively. These highlight global contrast and signal-to-noise ratio improvement. The
relative improvement of CNR for the CTV versus various soft tissues was on average
24% (noFT) and 67% (FT2). Coherently, the average CNR improvement for soft tissue
with respect to the air in the CBCT scans was 4% (noFT) and 35% (FT2). Secondly, the
network was able to provide HU grayscale values comparable to the ground truth CT,
reducing the non-linear cupping artifact and scaling the intensity values. In addition,
MAE results for noFT and especially for FT2 models improved both in median (62.29%
and 69.38% respectively) and narrower IQR (50.35% and 58.96%, respectively) terms.
The latter indicates a compensation and generalization capability of the two approaches
with respect to different pelvis widths and, therefore, truncation, as shown by Fig. 4.10.
Finally, both networks performed the required task. Performances were similar, but
the HU comparison for ROI and the overall image showed a performance edge of the
FT2 model. Consequently, preconditioning the network with synthetic data proved to
be an effective method for the problems addressed in this work. The two-step training
allowed to split the learning of the anatomical features from the learning of CBCT/CT
shading differences.
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4.3.2 Comparison with the Literature

Existing literature using U-Net architecture aims at correcting CBCT with sufficient
FOV [45–47, 64, 65] and generally does not encompass truncation artifacts, except for
one work exploiting Monte Carlo simulations on synthetic data [31]. Our work eval-
uates a similar CNN architecture tailored to CNAO needs. The aforementioned works
validate their approach by means of dosimetric accuracy. The proposed methods are
tested on the overall geometrical improvement in the image Hounsfield Unit. In order
to further evaluate possible clinical applications, a dosimetric study will be eventually
paired with the HU analysis hereby presented. However, achieving dose calculation
on narrow-FOV CBCT scans is currently out of the scope of this work. Comparing
the HU difference between CT and CBCT with existing methods leveraging CT infor-
mation, while most of these works do not address truncated data, we can assess the
proposed network performance. For instance, using an MC-based methodology, Thing
et al. reported HU correction of about 31% for five lung cancer patient images [33].
Another method based on histogram matching on ten prostate cancer patient images
provided HU correction of about 20% [57]. Phantom studies have reached up to a 95%
overall accuracy in the HU recovery on the Catphan 600 [58] alone, but no data was
provided for patients. In comparison, our FT2 and noFT models respectively obtained
around 69.38% and 62.29% average improvement on the whole image in the pelvic
region. Addressing the HU correction on different tissues, the improvement for FT2

(noFT) can be described as 75% (56%) in the spongy bone (femoral head), 89% (83%)
in bladder, 85% (62%) for fat and 83% (86%) for muscle. In particular, Kida et al. [45]
investigated a U-Net approach similar to noFT with wide untruncated FOV, where au-
thors reported improvements of 95% and 94% on the last two tissues. In another work,
the authors obtained an improvement of about 90% in terms of HU accuracy. This
value was computed with respect to corresponding MC-corrected CBCT scans used as
the ground truth reference [64]. All data in this study had wide FOV, avoiding trun-
cation. Concerning the contrast-to-noise improvement, one work proposed a solution
based on a deep convolutional autoencoder that gained an improvement of about 42% in
terms of CNR, computed evaluating muscle and fat regions from retrospective CBCT
scans [66]. Overall, on real data, the results obtained in the present work align with
existing methods not accounting for truncation.

4.3.3 Advantages of Transfer Learning

The exclusive use of dataset Dr has some limitations. Firstly, this dataset has a relatively
small size for a deep learning-based approach, with the risk of overfitting on this set
of patients without generalization capability. Secondly, although the acquisition of
CT/CBCT pairs is close in time, the pelvic district involves differences that are not
always negligible between the two scans, like air bubbles in the bowel. These problems
lead to a sub-optimal selection of CT/CBCT pairs and can have a non-negligible impact
on the model performance even when residual deformation itself is as negligible as
in our dataset. In order to overcome these issues, we performed a two-step training
on FT2 following the transfer learning approach, which increments the overall dataset
dimensionality while also integrating exact anatomical information:

1. using synthetically-generated CBCT as input, generated from a publicly available
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CT dataset, the network was trained based on perfect anatomical correspondences
with ground truth CT. This step provided a suitable initialization of the image-
to-image translation process and allowed mainly to learn the image filters and
geometric features which identify the anatomical district of interest;

2. using the real CBCT images provided by CNAO, which were only rigidly regis-
tered to the corresponding CT scans, the network was partially retrained according
to the transfer learning paradigm. In this phase, the training focused on the weights
of the inner layers, potentially devoted to learning more complex characteristics
related to the intrinsic quality of the image acquired with the specific technology
available at the CNAO.

The action of the models (noFT and FT2) can be qualitatively noted by observing
the effects they have on the output images (cfr. Fig. 4.9). The noFT model aggressively
fits the CBCT to the reference CT. In particular, it applies a transformation similar to
an averaging filter. Instead, the FT2 model outputs sharper images. The comparison of
HU differences on individual ROIs shows coherent results. FT2 model, with respect to
the noFT model, achieves a greater improvement of 6% on the bladder, 19% on bone,
23% on fat, and in general 7% on the whole image, while underperforming only by 3%
on muscle. Synthesizing, transfer learning proved to be effective for our application.
However, it is important to identify the appropriate number of layers to retrain. If this
number is too high (or too low), the network performance will be negatively affected.
Tuning this value, we assess the correct balance between generic features like shapes,
better learned from synthetic data, and artifacts better learned by real-world clinical
data. In this study, we found that the optimal number of layers for retraining is two. Due
to the slice-based training, artifacts are suppressed globally and without disentangling
them.

4.3.4 Technical Challenges and Limitations

Though the results reported above were promising on clinical data, they are still prelim-
inary. The scope of this work is, by all means, a feasibility study. We provided a shad-
ing correction method for a limited FOV CBCT scan dataset containing few patients.
In order to extend the aim of this work, the dataset must be enlarged, and a dosimetric
analysis has to be associated. Another limited aspect of this work is the network ability
to generalize. The used datasets were tied to the pelvis, therefore, we cannot assess the
impact on other large districts (e.g., lungs). In particular, variation in the patient width
is correlated to resulting HU inaccuracies in the input data. However, this impact is
attenuated by the proposed network. Admittedly, CBCT scans fed to the FT2 network
were corrected for shades but not for ring artifacts. These panel-calibration-induced
ripples were already present in the original CBCT volumes, somehow hidden by the
more prominent cupping artifact. The noFT model partially compensated for it through
its low pass filtering action. Since those artifacts were caused by sub-optimal flat-panel
calibration, this shouldn’t penalize the FT2 model with respect to the noFT approach.
In particular, specializing the FT2 model to correct this hardware issue may hinder the
generalization of the method. Or rather, we suggest that this condition would be easily
solved by properly calibrating the panel rather than retrospectively correcting for the
subsequent artifacts. The main unaddressed limitation resides in the missing informa-
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tion due to the narrow FOV of these CBCT scans. The proposed methodology does
not try to provide this information alone, but further studies must address this issue.
Finally, while results were promising on CNAO dataset Dr, they are based on the as-
sumption that the residual deformation between input and label is negligible. Despite
results suggesting that the transfer learning approach would be more robust to residual
deformation, this aspect needs further investigation.

4.3.5 Potential Clinical Impact

Improving the images acquired through this framework had two consecutive advan-
tages. Firstly, a CBCT without shadows and with improved visibility reduced the risk
of setup errors by clinicians. Secondly, better contrast between CTV and other soft
tissues was indicative of more direct visual discrimination. The CNR improvement of
those tissues versus air, paired with enhanced HU adherence to CT, supported the use
of CBCT scans for air cavities identification in the pelvis. Consequently, the offline
clinical procedure will be more efficient and less prone to overestimation and under-
estimation of air presence in the bowels. Outside CNAO clinical practice, the use of
a public dataset for FT2 improved the repeatability of the present study. Moreover,
the minimum required numerosity for the clinical dataset used for training is arguably
lower than similar deep learning approaches found in the literature. Another element
that may appeal to the potential clinical application is the lack of additional equip-
ment requirements, as this would not change the already established clinical routine
or require additional costs. Moreover, the proposed method has negligible execution
runtime compared to image reconstruction, avoiding a bottleneck for clinical practice.

4.4 Conclusions

Correcting cupping and shading in pelvis CBCT using a U-Net proved flexible enough
to adapt to a dataset flawed by truncation artifacts. Furthermore, the efforts to minimize
prior knowledge in the network training were accomplished through the implementa-
tion of transfer learning. It was demonstrated that the recovery of CT-compatible data
from limited FOV CBCT scans with shading artifacts is feasible and can be accom-
plished as a rapid post-processing measure.
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CHAPTER5
A Feasibility Study on Proton Dosimetry

Computation Using Corrected CBCT

This chapter presents an analysis of the deep-learning framework in terms of treatment planning
updates. The work presented here is based on the paper by Matteo Rossi et al. “Feasibility of Proton
Dosimetry Overriding Planning CT with Daily CBCT Elaborated through Generative Artificial
Intelligence Tools.” Preprints.org 2023, 2023040596.

Up to this point, all the analyzes conducted have been evaluated in terms of im-
age similarity metrics (e.g., PSNR, SSIM, MAE). In this chapter, we propose a deep
learning-based framework that elaborates the CBCT to calibrate the HU, remove arti-
facts due to the conic geometry acquisition, and handle narrow FOV issues to demon-
strate the potential use of the corrected CBCT in the context of proton treatment plan-
ning updates. The present work aims to explore the possibility of using limited FOV
CBCTs not only for patient positioning but also for dosimetric evaluation without hard-
ware modifications. The deep-learning framework took its root from the CBCT-to-CT
mapping model based on cGAN proposed in Chapter 3 [109] that was here extended to
address the case of narrow FOV. Tests were carried out on a public dataset of planning
CT scans of 40 oncological patients affected by pancreatic cancer. In a first attempt,
synthetic raw CBCT volumes were properly generated from CT scans throughout the
Monte Carlo simulation. This enabled us to dump anatomical variations usually present
in real CBCT with respect to the corresponding planning CT. Moreover, in order to
demonstrate the feasibility of the methodology also with real data, we replicated each
experiment with the clinical CBCT included within the dataset. As the dataset provided
annotation data about the segmented lesion and organs at risk, particle beam dosimetry
was computed in the original planning CT and the corrected CBCT volume, verify-
ing the coherency between the two dose distributions. The main contributions of this
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chapter may therefore be summarized as:

• capability of the cGAN to correct CBCT (scatter reduction and HU remapping)
when applied to small FOV;

• consistency of the proton dosimetry computed on corrected CBCT with respect to
the original planning CT.

5.1 Materials and Methods

5.1.1 Dataset description

A publicly available dataset obtained from the Cancer Imaging Archive, called Pan-
creatic CT-CBCT-SEG [110], was exploited in this work. The dataset contained CT
acquisition from 40 patients who received ablative radiation therapy for locally ad-
vanced pancreatic cancer at Memorial Sloan Kettering Cancer Center. Each CT was
acquired during a deep inspiration breath-hold verified with an external respiratory
monitor. The dataset also included manual segmentations of a region of interest (ROI),
defined by expanding the dose planning target volume by 1 cm. Along with the ROI,
each scan provided contours of some Organ at Risk (OAR), namely: i) the stomach
with the first two segments of the duodenum, ii) the remainder of the small bowel,
and iii) both lungs. The authors reported that the segmentations were performed inde-
pendently by six radiation oncologists and reviewed by two trained medical physicists.
The dataset also provided two CBCT scans for each subject. In the first phase, these
CBCTs were not considered because they were obtained at different times with respect
to the corresponding CT scan, which could lead to potential changes in patient anatomy
between acquisitions. Simulated CBCT scans were considered instead by generating
them directly from the corresponding planning CT (implementation is detailed below
in Section 5.1.1). This way, perfect alignment and anatomical correspondence between
the two volumes were both ensured, avoiding the need for additional registration steps
(rigid or deformable). To summarize, using simulated CBCT scans allowed the study
to focus solely on the algorithm’s ability to reduce artifacts and cupping effects without
considering intra-patient longitudinal variability. Each experiment was then also repli-
cated with the real small FOV (250 mm diameter) CBCT provided with the dataset by
adding an intermediate rigid registration step in the pipeline, in order to demonstrate
the feasibility of the methodology also with data from the real world.

CBCT Simulation

Synthetic CBCTs were generated from the original available CTs following the ap-
proach documented in [111] and replicating the setup and the geometry of CNAO’s
CBCT acquisition system [8]. Specifically, Monte Carlo (MC) simulations were con-
ducted to generate primary (PMC) and scatter (SMC) X-ray images for each CT scan.
All simulations were performed using the GATE open-source software v9.2 (based on
Geant4 v11) [112] with fixed forced detection, a variance reduction technique aimed
at minimizing computation time. The energy-dependent detector efficiency was based
on the design specifications provided by the manufacturer for the Paxscan 4030D (Var-
ian Medical System, Palo Alto, CA). The X-ray fluence spectrum was computed using
the open-source software SpekPy [113], employing 3.2 mm Al filtration at 100 kVp.
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The A-277 X-ray tube (Varian Medical System, Palo Alto, CA), chosen for this work,
features a 7◦ rhenium-tungsten molybdenum target. Images were produced according
to a CBCT scan of 220◦ and with projection matching the size of the Paxscan 4030D
detector (isometric pixel spacing 0.388 mm, detector size 768 × 1024 pixels). The
source-to-detector and source-to-isocenter distances were set to 1600 mm and 1100
mm, respectively. A further acceleration of scatter calculation was achieved by down-
sampling resolution 8-fold and simulating SMC at 5◦ steps with a statistical uncertainty
< 5%. SMC images were then upsampled and interpolated at the required points to
match the corresponding PMC images. Lastly, the final projections SMC + PMC were
normalized by the simulated flat field image. CBCT scans were then reconstructed us-
ing open-source software RTK [104] at a 1×1×1 mm resolution, with a 220×220×220
size in pixel and masked to the axial field-of-view of diameter equal to 204 mm. Some
examples of planning CT and simulated CBCT axial slices are visible in Fig. 5.1, along
with the intensity profile of the central pixel row. The cupping effect is evident as a
shaded portion in the middle of the CBCT and confirmed by the concavity in the inten-
sity profile.

pCT CBCT Intensity Profiles [HU]

Figure 5.1: Examples of two CT axial slices with their corresponding simulated CBCT. The intensity
profiles of the central row (marked as a line in both images) are plotted in the right panel. Each
image is displayed with Window = 1300, Level = 0.

5.1.2 CBCT-to-CT Correction

Neural Network Architecture and Main Processing Layers

The network implemented for CBCT correction was based on the cycle Generative
Adversarial Network (cGAN) [84]. This architecture is based on four concurrent sub-
networks, two generators and two discriminators, which work in opposition. While
the generators try to learn the mapping to convert CBCT to CT (or CT to CBCT),
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the discriminator’s objective is to distinguish between authentic and network-generated
images. This generator-discriminator cycle-consistent loop is designed to improve the
generators’ ability to produce synthetic images that reproduce with high fidelity the
characteristic of the destination modality (e.g., generate a calibrated synthetic CT start-
ing from a scattered CBCT). The network’s fundamental processing unit was referred
to as ConvBlocks (Fig. 5.2), which were built using a 2D convolution with a 3 × 3
kernel, followed by an instance normalization layer and a swish activation function.
Instance normalization was demonstrated to improve the performance in image gen-
eration tasks [93]. The use of swish activation was shown to combine the advantages
of rectilinear and sigmoid activations. It has a smooth, differentiable form due to the
sigmoid component, which can help with training stability and gradient flow [114].
The other basic processing unit for cGAN structure was the InceptionBlock, consisting
of four parallel ConvBlocks, each with an increasing kernel size of dimensions 1 × 1,
3×3, 7×7, and 11×11, which processed the same input simultaneously with multiple
receptive fields. The output of each branch of InceptionBlock was then combined, and
the complete set of feature maps was produced as output. The primary objective of this
processing block was to execute multi-scale feature extraction from the initial image.
The extracted multi-scale features, varying from small to large receptive fields, can pro-
duce improved outcomes for image synthesis. The general design of the generator was
then carried out as a modified version of the commonly used U-Net architecture. The
U-Net model is usually utilized for solving pixel-by-pixel classification challenges in
image segmentation [92]. Still, it can also be used to solve image-to-image conversion
problems with minor changes. The overall generator structure, depicted in Fig. 5.2,
was composed of a contracting and an expanding path. The upper two processing lay-
ers of the generator were based on InceptionBlocks, while the deeper two exploited
ConvBlocks. Consequently, the network can be broadly top-bottom divided into two
segments, each serving distinct functions: i) the inception part (upper layers) extracted
global contextual information, whereas ii) the traditional 2D convolution part (bottom
layers) was responsible for capturing more intricate context and precise localization.
On the other hand, the CNN utilized as the discriminator was responsible for image
classification and relied on the PatchGAN architecture [83]. Its architecture was based
on four sequential ConvBlocks, each with a kernel size of 4 × 4. In the initial three
ConvBlocks, the convolution was set with stride 2, leading to an output tensor with half
the size and twice the features map. In contrast, the last ConvBlock had stride one and
maintained the size and the number of feature maps unchanged. A sigmoid activation
function was applied to the last layer, generating a 32 × 32 map used to classify the
input image as real or fake.

Model Training

As formerly stated, the cGAN overall training routine employed two generators and
two discriminators, competing against one another to solve the CBCT-to-CT conver-
sion problem. The subnetworks were referred to as generator CT (GCT ), generator
CBCT (GCBCT ), discriminator CT (DCT ), and discriminator CBCT (DCBCT ). GCT

and GCBCT were used to produce generated CT from CBCT, and generated CBCT
from CT, respectively, while DCT and DCBCT were used to distinguish the original
CT and CBCT from their generated counterparts. The training routine was subdivided
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Figure 5.2: Schematic of the Generator model architecture.

into two main steps occurring simultaneously. In the first step, called the generative
phase, GCT (GCBCT ) took a 2D axial slice of a CBCT (CT) as input and produced a
generated CT (generated CBCT) as output. Then, GCT (GCBCT ) took the generated
CT (generated CBCT) as input and produced a cyclic CBCT (cyclic CT), which was
supposed to be equal to the original CBCT (CT). At the same time, during the second
step, called the classification phase, DCT (DCBCT ) tried to distinguish between real CT
(CBCT) and generated CT (generated CBCT). The entire cGAN was implemented in
Python, using Keras [97] and TensorFlow [98] frameworks. All the technical details
about the network implementation can be found in a previous work of our group [109].
The whole dataset, consisting of the generated CBCT-pCT (paired), was divided into
training, validation, and test sets in proportions of 70%, 15%, and 15%, containing
5698, 1221, and 1221 2D axial slices, respectively.

Performance Metrics for Model Evaluation

The network performances were quantitatively evaluated using the original CT as the
ground truth reference. In particular, the metrics evaluated were: i) peak signal-to-noise
ratio (PSNR), ii) structural similarity index measure (SSIM), and iii) mean absolute er-
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ror (MAE) [115]. The PSNR quantifies the quality of images by comparing the mean
square error of the images being compared to the maximum possible signal power [95].
It is measured in decibels, and its value increases towards infinity as the difference be-
tween the calibrated CBCT and ground-truth CT decreases. Therefore, a larger PSNR
value indicates better image quality, while a lower value indicates the opposite. SSIM
evaluates the resemblance between two images by analyzing their luminance, contrast,
and structure [96]. Compared to PSNR, SSIM is considered a more human-like mea-
sure of similarity. The SSIM score ranges from 0 to 1, with a value of 1 indicating the
highest level of similarity between the images. MAE was used to quantitatively assess
the accuracy of Hounsfield Units (HU) between the generated CBCT and the original
CT. The lower value corresponds to the higher level of HU accuracy between the two
images. The significance (p < 0.05) of the statistical difference between CBCT slices
prior to and following calibration was verified using Kruskall-Wallis non-parametric
test.

Synthetic CT Generation Pipeline

Despite the better quality of calibrated CBCT in terms of HU density values, these vol-
umes cannot yet be used for adaptive dose planning due to their limited FOV. In fact,
these CBCT acquisitions lack important anatomical information (e.g., the air/skin in-
terface) necessary for the correct calculation of the beam path. In order to overcome
this intrinsic limit, the original planning CT was used to provide the missing informa-
tion. Therefore, synthetic CT (sCT) is defined in this work as an updated version of
the original planning CT overridden with the calibrated voxels from daily CBCT ac-
quired during the treatment. Starting from a scattered CBCT, the following procedure
was followed in an axial slice-by-slice approach. At first, each pixel in the slice was
clipped between values [−1000; 3000] and then normalized in the [0; 1] range. This
step is fundamental because the neural network needs value in this range to operate
properly. Then, the generator GCT processed the normalized CBCT, producing a cor-
rected version of the same axial slice. It is important to remember that GCT is the only
cGAN subnetwork used after completing the training. After neural network processing,
the previous pixel clipping guarantees that the normalization can be reversed back to
Hounsfield Unit. A rigid registration step between the corrected CBCT and the pCT
followed, in order to increase the anatomical correspondence. This step was applied
just for real CBCT, since the generated ones already matched the corresponding pCT
anatomy. The last step involved overriding the planning CT pixels with the region ac-
quired with the cone beam modality. Every pixel outside the CBCT FOV belonged
to the original CT. The entire pipeline is summarized in Fig. 5.3. In order to evalu-
ate the effective improvement obtained by the corrected CBCT in terms of treatment
planning, two versions of sCT were generated for each subject. The first, called sCT
corrected (sCTc) was obtained following the mentioned procedure, while the second,
called sCT uncorrected (sCTu), was obtained simply by overriding the original CBCT
volume without any kind of processing.
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Figure 5.3: Schematic of sCT generation pipeline. *Rigid registration step is applied only to real CBCT
scans since generated ones are intrinsically perfectly aligned.

5.1.3 Dosimetric Analysis

Proton-based Treatment Planning

The treatment plan for each subject was computed with the matRad package [116], an
open-source radiation treatment planning toolkit written in Matlab. In particular, the
planning was developed using protons as the radiation mode and optimized using the
constant relative biological effectiveness times dose method, which accounts for the
varying biological effectiveness of different radiation types and energies. A total of
30 fractions were scheduled for the treatment, with two beams used at gantry angles
of 0 degrees (anterior direction) and 270 degrees (right lateral direction). Several con-
straints were chosen in the planning definition to ensure the safety and efficacy of the
treatment. For the bowel and stomach regions, squared overdosing and maximum dose
volume histogram constraints were used to limit the radiation dose received by these
sensitive areas. The lung regions were also subject to squared overdosing constraints
to limit the dose delivered to that areas. Finally, the ROI was subject to squared de-
viation constraints, which aim to keep the dose distribution as close as possible to the
prescribed dose (30 fractions of 2 Gy equivalent) [117]. The reference dose planning
was first computed directly on the pCT and used as the ground truth in further compar-
ison. Then, this reference plan was updated, giving either corrected or uncorrected sCT
as the new volume.

Dose Evaluation

To evaluate the suitability of corrected CBCT scans, various metrics were used, in-
cluding Dose Difference Pass Rate (DPR), dose-volume histogram (DVH) metrics, and
Gamma Pass Rate (GPR). The treatment dose computed for the original planning CT
was considered as the prescribed ground truth dose [115]. DPR measures the percent-
age of pixels that meet a certain dose difference threshold, DVH compares cumulative
dose to different structures in relation to volume, while GPR assesses the similarity of
two dose distributions based on dose difference and distance-to-agreement criteria. The
significance (p < 0.05) of the statistical difference in GPR distributions between sCTu
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and sCTc was verified using Kruskall-Wallis non-parametric test. Mean doses, D5, and
D95, measured on ROI, bowel, and stomach were considered to assess the treatment
quality and the toxicity control on the organ at risk.

5.2 Results

5.2.1 Qualitative evaluation of the image translation

At a qualitative inspection, it can be seen that the darker region clearly visible in the
original CBCT due to the cupping artifacts was no longer noticeable after cGAN cor-
rection (Fig. 5.4). Likewise, the corrected overwritten sCT scans were more similar to
pCTs with respect to their uncorrected counterpart. (Fig. 5.5). Intensity profiles also
confirmed this, showing that the concave shape observable in the unprocessed lines
disappeared in the processed ones, now matching the HU values range of the reference
pCT. This also confirmed that the non-linearity present in the CBCT tissue density was
corrected.

Original Corrected

Figure 5.4: Example a CBCT axial slice before (left) and after (right) cGAN correction. As it can be
noticed, the cGAN was effective in the correction of the CBCT. Each image is displayed with Window
= 1300, Level = 0.

5.2.2 cGAN Model Evaluation

The results from evaluating the model’s performance metrics (Fig. 5.6) showed promis-
ing improvements in the quality of the CBCT slices. The original images had a median
PSNR of 24.60 dB (IQR 1.40 dB), while the processed images had a median PSNR of
33.41 dB (IQR 3.36 dB), resulting in a relative gain of approximately 37%. In terms
of the SSIM score, the original images had a median of 0.90 (IQR 0.03), and the pro-
cessed CBCTs showed a median of 0.95 (IQR 0.02), which corresponded to a relative
enhancement of around 5%. Furthermore, the median MAE for the original images was
148.96 HU (IQR 31.24 HU), whereas the median MAE for the processed images was
43.47 HU (IQR 14.82 HU). These results demonstrate the effectiveness of the cGAN
approach in improving CBCT image quality. For all three metrics, a statistical differ-
ence was found (p < 0.01).
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pCT sCTu sCTc Intensity Profiles [HU]

Figure 5.5: Examples of two CT axial slices with their corresponding sCT generated overriding the
uncorrected simulated CBCT (sCTu) and the corrected ones (sCTc). The intensity profiles of the
central row (marked as a line in both images) are plotted in the right panel. Each image is displayed
with Window = 1300, Level = 0.

5.2.3 Treatment Planning Evaluation – Simulated Data

The qualitative comparison between the treatment plans computed for each modality
confirmed an ameliorated similarity between sCTc and pCT with respect to their un-
corrected counterpart. An example of this can be seen in Fig. 5.7 upper row. It is
visible how the beam path computed on sCTu exceeded the ROI releasing a more sig-
nificant amount of dose in the following tissues. Moreover, it could also be seen that
high dose values (red pixels) break over ROI boundaries, indicating that a portion of
surrounding healthy areas received overexposure to radiation. This was also confirmed
by the dose difference computed with respect to the pCT reference plan (cfr. Fig. 5.7
bottom row). Conversely, the sCTc treatment plan corrected that pattern, showing a
more similar beam path and a reduced difference with respect to the pCT plan. Like-
wise, the dose-volume histogram computed for the same test subject confirmed and
enforced such a consideration (Fig. 5.8). Observing the ROI lines, the sCTc (orange
dotted line) followed the profile of pCT (orange solid line) more closely than the sCTu
(orange dashed line). The treatment plan calculated on sCTc and pCT showed a steep
slope, indicating that 2 Gy was the dose delivered to almost all the ROI, while sCTu
showed a smoother slope, a sign of overdosing in a portion of this area. Concerning the
organs at risk (green and light blue lines), this consideration was even more evident,
with an overdosing in the order of about two times with respect to the reference plan.
This result would be incompatible with clinical practice. The GPR results for the entire
dataset were computed for different gamma criteria and summarized in Table 5.1 as
median (IQR). The median gamma pass rates for the 1%/1 mm, 2%/2 mm, 3%/2 mm,
and 3%/3 mm criteria were consistently higher for the sCTc the sCTu, with the most
significant improvement observed for the 3%/3 mm criterion (92.82% vs. 57.57%).

The GPR results for the entire dataset were computed for different gamma criteria
and summarized in Table 5.1 as median (interquartile range, IQR). The median gamma
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Figure 5.6: Performance metrics for cGAN model evaluation, computed on the axial slices of the test set
before and after model processing.

pass rates for the 1%/1 mm, 2%/2 mm, 3%/2 mm, and 3%/3 mm criteria were consis-
tently higher for the sCTc the sCTu, with the most significant improvement observed
for the 3%/3 mm criterion (92.82% vs. 57.57%).

Table 5.1: Gamma pass rate results for different criteria computed using only the simulated CBCT
dataset as input to the framework. Statistical difference in gamma score distributions, between un-
corrected and corrected sCT, was found (p < 0.001).

Gamma Criterion sCTu sCTc

1%/1 mm 44.68 (6.91) 74.37 (4.63)
2%/2 mm 51.72 (8.15) 87.30 (6.32)
3%/2 mm 53.78 (8.53) 90.26 (5.70)
3%/3 mm 57.57 (7.49) 92.82 (5.94)

DPR at 1% was also found to be significantly higher for the processed sCT than
the unprocessed ones (93.97% vs. 79.76%), indicating a 14.21% improvement in dose
accuracy with the use of sCTc. In regard to mean dose distribution across the overall
dataset, the advantage of sCTc was evident with respect to the overdosing of the sCTu
in the ROI (Table 5.2). The relative percentage error decreased from 6% for sCTu
up to 2% for sCTc. A greater advantage was achieved in terms of unwanted doses
distributed at the bowel as 97% against 2%, with respect to the nominal toxicity in the
pCT. Likewise, the relative toxicity in the stomach decreased from 49% up the 2%. For
D5, the correction was effective in reducing the overexposure found in the unprocessed
sCT. For D95, the correction underestimated the dose of about 5%. As far as OAR
is concerned, the correction was again effective in ensuring a low dose, very similar to
that one obtained in the planning CT, at both bowel and stomach. Interestingly, the IQR
range of 0.12 Gy (D95) for the stomach potentially delivered when using the sCTu was
completely zeroed by the correction.
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pCT sCTu sCTc

Figure 5.7: Example of dose planning for an axial slice of a subject for the original pCT, sCTu, and
sCTc (upper row). The difference between both sCT treatment plans with respect to the original pCT
plan is shown in the bottom row. Synthetic CT scans in this figure were produced using a simulated
CBCT as the input.

5.2.4 Treatment Planning Evaluation – Real Data

Each result presented in previous sections referred to simulated CBCT. The following
results refer to sCT generated using real CBCT as the input data in order to show the
quality of the treatment planning with real-world data. As explained in Section 5.1.2, a
rigid registration step was added to the pipeline just before the pCT override (Fig. 5.9).
Once again, the comparison of the treatment plans generated for each method con-
firmed an improved similarity between sCTc and pCT with respect to their uncorrected
equivalent. Fig. 5.10 depicts an example case in which it is possible to observe again
how the beam path exceeded the ROI with a consequent overdosing in the adjacent
healthy tissues when computed on sCTu. However, the sCTc treatment plan effectively
reduced the overdosing and corrected this pattern, leading to a beam path that closely
resembled the pCT plan and reducing the differences (cfr. Fig. 5.10 bottom row). The
corresponding dose-volume histogram for the test subject (Fig. 5.11) further supported
this observation. Looking at the ROI lines, the sCTc (orange dotted line) followed the
profile of pCT (orange solid line) more closely than the sCTu (orange dashed line).
Even if the corrected plan slightly overdosed about 60% of the volume, the effect is
reduced compared to the uncorrected plan, which presented a smoother slope for the
entirety of the ROI, giving 1.25 Gy to the 100% of the volume instead of the 2 Gy
of the prescribed dose and overdosing the rest. This observation became even more
apparent when considering the organs at risk (represented by the green and light blue
lines). Specifically, the corrected treatment plan for the bowel closely replicated the
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Figure 5.8: Example of DVH computed for ROI and two organs at risk (bowel and stomach). Solid line:
pCT, dashed line: sCTu, dotted line: sCTc. Synthetic CT scans in this figure were produced using a
simulated CBCT as the input.

prescribed one, demonstrating a good level of accuracy.
For a quantitative comparison, the GPR results computed on the entire dataset are

summarized in Table 5.3 as median (IQR). Again, even in the presence of real CBCT
overridden to the pCT, the median gamma pass rates for all the computed criteria were
consistently higher for the sCTc, with the most significant improvement observed for
the 3%/2 mm criterion (23% difference).

Regarding the average dose distribution, the superiority of sCTc over sCTu in terms
of overdosing within the ROI was evident, as indicated in Table 5.4. The relative per-
centage error decreased from 3% for sCTu to 1% for sCTc. Furthermore, a significant
advantage was also achieved in terms of undesired doses in the bowel, with error per-
centages of 31% (sCTu) and 13% (sCTc) in comparison to the nominal toxicity in the
pCT. Similarly, the relative toxicity in the stomach decreased from 12% to 3%.

5.3 Discussion

This work proposed a novel image-processing framework for generating synthetic CT
scans, which combines the original planning CT with routine CBCT scans, usable to
update the dosimetry plan in proton therapy. The core of the framework was repre-
sented by a deep learning model, namely a cycle-consistency GAN, to correct the scat-
ter artifacts in the CBCT images and calibrate intensity values, in the proper HU range.
Especially, the framework was shown to properly address CBCT equipment scanning
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Table 5.2: Mean doses, D5, and D95, measured on ROI, bowel, and stomach, computed using only the
simulated CBCT dataset as input to the framework. Values are expressed as median(IQR) Gy.

Mean dose D5 D95

pCT 1.98 (0.01) 2.04 (0.01) 1.86 (0.07)
ROI sCTu 2.10 (0.09) 2.61 (0.28) 1.64 (0.10)

sCTc 1.93 (0.08) 2.09 (0.05) 1.54 (0.28)

pCT 0.47 (0.44) 2.01 (0.04) 0.00 (0.00)
Bowel sCTu 0.93 (0.52) 2.06 (0.31) 0.00 (0.00)

sCTc 0.48 (0.40) 2.00 (0.13) 0.00 (0.00)

pCT 0.65 (0.27) 2.01 (0.03) 0.00 (0.00)
Stomach sCTu 0.97 (0.35) 2.14 (0.24) 0.00 (0.12)

sCTc 0.64 (0.29) 2.02 (0.11) 0.00 (0.00)

Figure 5.9: Overlay of corrected CBCT (pink) on pCT (green) before (left) and after (right) rigid reg-
istration. It can be seen that the registration was effective in the alignment of the bony structures.
Each image is displayed with Window = 1300, Level = 0.

narrow FOV [115]. To the aim, the public dataset of patient-paired CT-CBCT scans,
named Pancreatic-CT-CBCT-SEG [110], was exploited because of clinically consistent
segmentation of ROI and OAR across all the considered patients. From the CT scans,
physically consistent simulated CBCT were generated by means of the Monte Carlo
algorithm, also accounting for narrow FOV. Especially, Monte Carlo parameter tuning
was set according to the CBCT equipment and the acquisition setup at the CNAO. The
cGAN-based correction mapped synthetic uncorrected CT into synthetic corrected CT.
We remark that, as long as the dataset used to train the network is representative of
the data expected to be used in clinical practice, the methodology remains robust. In
terms of robustness, the applied methodology did not require retraining the model when
moving from simulated to real data. Generally speaking, as soon as the predicted data
are no longer satisfactory, the model can be retrained with data taken from the actual
clinical setup.
The available segmentations granted replicating the particle beam planning, computed
on the original CT, to the corrected sCT for straightforward comparison. The obtained
results confirmed, both qualitatively and quantitatively, the capability of the cGAN-
based to correct CBCT into CT-compatible images. As shown, the intensity profiles
were rectified adequately thanks to the reduction of cupping and truncation artifacts
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pCT sCTu sCTc

Figure 5.10: Example of dose planning for an axial slice of a subject for the original pCT, sCTu, and
sCTc (upper row). The difference between both sCT treatment plans with respect to the original pCT
plan is shown in the bottom row. Synthetic CT scans in this figure were produced using a real CBCT
as the input.

(cfr. Fig. 5.5). A significant increase in PSNR, SSIM, and MAE metrics testified to the
effectiveness of the methodology (cfr. Fig. 5.6). Dosimetry computed on uncorrected
sCT featured overdosing, especially at OAR (cfr. Tables 5.1 and 5.2). An inaccurate
assessment of tissue densities was made due to the lack of HU calibration. The differ-
ence in grayscale values between CBCT and CT caused a discontinuity in the volume
(cfr. Fig. 5.5), leading to errors in particle beam path computation. Conversely, the
dosimetric plan computed on the corrected sCT confirmed the consistency of the plan
computed on the corresponding CT scan (cfr. Table 5.1). The American Association
of Physicists in Medicine (AAPM) Task Group 218 defined acceptance criteria for tol-
erance and action limits as exceeding 95% and falling below 90%, respectively, for
a 3%/2 mm GPR standard [118]. While not completely in agreement with the upper
threshold, the 90.26% found in this work (cfr. Table 5.1) is to be deemed reasonable.
Nonetheless, such value, overcoming the lower 90% action limit threshold, makes the
methodology promising for clinical application. In order to avoid confounding factors
induced by organ deformation, this work did use simulated CBCT by means of the
Monte Carlo approach, so that differences between the images were exclusively due to
artifacts rather than anatomy. This allowed us to use the same lesion and OAR segmen-
tation used to compute the reference treatment plan. However, results obtained using
real-world CBCT as input to the framework confirmed the feasibility of the approach
(cfr. Table 5.3). Real data resulted in generally lower performances when compared
to the simulated ones. This was mainly due to the anatomical changes when in the
presence of volume acquired on different days during the treatment. It is important to
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Figure 5.11: Example of DVH computed for ROI and two organs at risk (bowel and stomach). Solid
line: pCT, dashed line: sCTu, dotted line: sCTc. Synthetic CT scans in this figure were produced
using a real CBCT as the input.

remind that the pelvic site, the subject of this study, contains soft tissue that implies
relative movement between organs and the generation of air bubbles [4,68]. Moreover,
during the treatment, the patient often loses weight, and the tumor changes shape due
to the treatment itself. This makes this framework not always applicable, but a possi-
bly useful aid when changes in internal anatomy are not so evident. For every other
case, the traditional acquisition of a revaluation CT remains a better solution. Compar-
ison with works in the literature using deep learning to correct CBCT and test proton
dosimetry showcased the consistency of the methodology in terms of GPR 2%/2 mm
results, even though slightly smaller values with respect to that reported in some pa-
pers (Table 5.5). Significantly, our results on simulated and real data differed less than
expected. Nonetheless, we note that our study applied the correction to small FOV
(204 mm diameter for simulated data and 250 mm for real data) while the mentioned
works dealt with mainly wider FOV (about 480 mm diameter on average). All the
works in this comparison involved large anatomical sites (e.g., pelvis, thorax, and ab-
domen) and the patient cohort had a similar size. Remarkably, the comparison high-
lighted the superiority of the generative adversarial networks [73, 86] with respect to
traditional U-Net [46, 47].

Concerning the limited FOV, it is fundamental to recall that the volume of interest
is entirely contained in the CBCT and that the tissues coming from the planning CT
are only needed to calculate the beam path when the air/tissue interface is not already
embedded in the CBCT [35, 36]. In addition, this makes it mandatory to update the
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Table 5.3: Gamma pass rate results for different criteria computed using real CBCT dataset as input
to the framework. Statistical difference in gamma score distributions, between uncorrected and cor-
rected sCT, was found (p < 0.001).

Gamma Criterion sCTu sCTc

1%/1 mm 49.73 (14.84) 71.97 (7.01)
2%/2 mm 61.41 (14.17) 84.37 (5.89)
3%/2 mm 65.36 (14.17) 87.20 (5.79)
3%/3 mm 70.11 (13.66) 89.87 (5.26)

Table 5.4: Mean doses, D5, and D95, measured on ROI, bowel, and stomach, computed using only the
real CBCT dataset as input to the framework. Values are expressed as median(IQR) Gy.

Mean dose D5 D95

pCT 1.98 (0.01) 2.04 (0.01) 1.86 (0.07)
ROI sCTu 2.03 (0.08) 2.37 (0.21) 1.73 (0.13)

sCTc 1.96 (0.06) 2.11 (0.07) 1.69 (0.18)

pCT 0.47 (0.44) 2.01 (0.04) 0.00 (0.00)
Bowel sCTu 0.62 (0.43) 2.05 (0.22) 0.00 (0.00)

sCTc 0.41 (0.29) 2.00 (0.12) 0.00 (0.00)

pCT 0.65 (0.27) 2.01 (0.03) 0.00 (0.00)
Stomach sCTu 0.73 (0.31) 2.12 (0.15) 0.00 (0.00)

sCTc 0.63 (0.26) 2.02 (0.06) 0.00 (0.00)

segmentation mask. In this work, the FOV was particularly reduced to demonstrate
the feasibility of the methodology. In general, the proposed framework can be adopted
in all cases in which the district of interest is too large to fit into a single acquisition.
Furthermore, the proposed method extends the use of CBCT systems currently used
for patient positioning without additional hardware. Considering that daily CBCTs
are acquired for patient positioning purposes, the present framework can be used in
parallel with the current clinical routine. Moreover, the computation time required to
produce an updated treatment plan based on the sCT starting from a CBCT is in the
order of a few minutes on an average computer, making it compatible with clinical
routines. However, in this work, we did not use the treatment plan computed using the
CBCT scan acquired at dose delivery time as the ground truth, but the one computed
on the original pCT. While we acknowledge that this can be regarded as a shortcoming
towards generalization, the feasibility of the overall methodology was showcased. In
future work, the method will be evaluated in a real offline therapy context at the CNAO
facility [8]. Correction of CBCTs obtained day-by-day during treatment will be used
to assess the evolution of the dose plan without the need to acquire additional CTs
and administer further toxicity to the patient [34, 73]. Finally, no additional hardware
will be needed to add to the patient positioning setup in order to increase the FOV for
dosimetric evaluation.
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Table 5.5: Comparison of dosimetry results with literature outcomes in terms of GPR 2%/2 mm in the
domain of proton therapy.

Work Model Anatomic Site axial
FOV
[mm]

Patient
cohort

GPR
2%/2 mm

Hansen et al. [46] U-Net Pelvis 410 30 53%
Landry et al. [47] U-Net Pelvis 410 42 85%
Thummerer et al. [119] U-Net Thorax 500 33 90.7%
Kurz et al. [86] cGAN Pelvis 550 33 96%
Uh et al. [73] cGAN Abdomen/Pelvis 530 50 98.5%
This work - simulated cGAN Pelvis 204 40 87.3%
This work - real cGAN Pelvis 250 40 84.4%

5.4 Conclusions

The present study proposed a generative artificial intelligence tool to correct CBCT
scans, acquired with narrow FOV systems, enabling the reduction of scatter and the
remap pixel intensity in HU. The methodology made feasible treatment planning up-
dates, which brings the use of CBCT images incrementally closer to clinical translation
in proton therapy.
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CHAPTER6
Work Synthesis

This chapter concludes the present dissertation. A summary of the aim, materials, methods, and results
is reported.

The present manuscript described a feasibility study for the potential extension of
use for CBCT imaging in the field of image-guided radiotherapy, addressing the well-
known issues of this imaging modality. This ambition was addressed by implementing
a new robotic system and developing innovative methods for image processing based
on deep learning. The integration of highly accurate in-room imaging is crucial for
the successful use of advanced techniques in precise dose delivery for external beam
radiotherapy, considering factors such as weight loss, tumor shrinkage, and air bub-
bles that can introduce inter-fractional discrepancies during treatment [4]. In radia-
tion therapy using particle beams, the importance of in-room imaging becomes even
more critical due to the inverse dose deposition profile and increased sensitivity to un-
certainties. CBCT presents a valuable imaging technique for patient positioning and
monitoring, offering quicker imaging and reducing patient exposure to non-therapeutic
radiation. However, it can introduce scattering artifacts such as shading, cupping, and
beam-hardening [28,29], and the presence of a limited FOV CBCT imaging system can
lead to reconstruction problems [35, 36] and additional bright-band effects that intro-
duce artifacts to the acquired scans [37].

6.1 Main Findings

This dissertation presented the CBCT imaging system developed and installed at CNAO
and provided a description of a deep-learning framework that processes the CBCT to
calibrate the HU, remove artifacts due to the conic geometry acquisition, and handle
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narrow FOV issues to demonstrate the potential use of the corrected CBCT in the con-
text of proton treatment planning updates. The framework aims to explore the possibil-
ity of using the in-house limited FOV CBCT systems not only for patient positioning
but also for dosimetric evaluation without any hardware modifications. From a techno-
logical point of view, Chapter 2 detailed the design, commissioning, and quality assur-
ance protocols undertaken to create a custom in-room volumetric imaging system for
radiation treatments utilizing accelerated particles at CNAO. These tests served as es-
sential prerequisites for the successful implementation of customized solutions for on-
line image guidance in particle therapy. Furthermore, this chapter provided an overview
of the system components and the increased FOV achieved for CBCT. It also presented
the outcomes of measurement campaigns and commissioning tasks conducted to eval-
uate the geometric precision of the calibrated system. Additionally, the chapter ex-
amined the reliable setup correction in both nominal and clinical conditions for all
available imaging modalities, validating their accuracy. Concerning methodological
innovations, the subsequent chapters explored the possibility of using deep learning to
address the intrinsic limitations of CBCT imaging. Given the difficulties in comparing
methods from the literature, due mainly to the strong dependence on the dataset used,
we started the development of this deep learning-based solution with one research ques-
tion in mind: “which training paradigm is more suitable for this kind of task between
supervised and unsupervised learning?”. Chapter 3 tried to give an answer providing
a fair comparison between the two methodologies using the same dataset, confirming
the capability of CNN to generate accurate synthetic CT scans from CBCT images and
also proposing some guidelines to drive the selection of the better training technique,
which can also be shifted to a more general image-to-image translation. According
to the obtained results, the supervised model outperformed the unsupervised ones in
terms of both quantitative image quality metrics and computational cost. However, the
supervised-trained model exhibited occasional unreliability, leading to unexpected be-
havior, particularly in contour regions. In contrast, the unsupervised model consistently
avoided such artifacts and demonstrated greater reliability in preserving the anatomical
structure and up-to-date information present in the CBCT scan. The more straightfor-
ward loss function defined for the supervised model compared to the unsupervised one,
i.e., mean square error, specialized the network to learn mapping without adequately
considering the anatomical structure. For the unsupervised training, we opted for an
image-to-image approach leveraging on a cGAN because of its internal architecture
and the combination of its loss functions (a detailed description of them can be found
in Chapter 3.1.5). The key idea behind cGAN is the introduction of cycle consistency
loss, which enforces that the translation of an image from one domain to another and
then back to the original domain should ideally result in the same image. This cycle
consistency constraint helps the model learn meaningful mappings between domains
even without paired data. The problem presented in this thesis can be described as a
“style transfer” class of problem instead of a pure pixel-to-pixel remapping. Even if
the cGAN may have reduced numerical performances in terms of, e.g., pure PSNR,
SSIM, or MAE when compared to other networks, its cyclic structure demonstrated to
be more reliable in understanding what a CBCT “is”, and what it makes different from
a CT (i.e., artifacts, shading, etc.). Moreover, considering the difficulty in generating
high-quality paired datasets for this particular scenario due to the relative difference
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between CBCT and CT even when acquired on the same day, we considered cGAN
more suitable for CBCT-to-CT translation than, e.g., pix2pix network that relies only
on paired datasets. Then, Chapter 4 presented some techniques to further address the
limitations of deep learning-based CBCT correction, leveraging on the transfer learning
paradigm with an innovative two-step approach. We demonstrated that precondition-
ing the network with synthetic data is an effective method for improving the quality
of corrected CBCT in the presence of a limited dataset. Then, transfer learning with
real data proved to be effective for performance enhancement when dealing with data
coming from real clinical practice. In particular, with this two-step approach, the model
learns the balancing between generic features like shapes, better learned from synthetic
data, and artifacts, better learned by real-world clinical data. Finally, the deep-learning
framework was also tested in terms of treatment planning updates. In Chapter 5, we ex-
tended the analysis of CNN-based CBCT correction to the specific problem of limited
FOV, evaluating the consistency of the proton dosimetry computed with respect to the
original pCT. This analysis exploited a cGAN model trained through an unsupervised
approach. Monte Carlo simulation was employed to generate CBCT scans, allowing
for a focused evaluation of the algorithm’s effectiveness in reducing artifacts and cup-
ping effects without considering intra-patient longitudinal variability to ensure a fair
comparison between planning CT and calibrated CBCT dosimetry. Then, experiments
were conducted fine-tuning the model with real CBCT data to demonstrate its viability
with clinical real-world data. The calibration of simulated CBCT resulted in a proton
dosimetry difference of less than 2% compared to the pCT. The potential toxicity im-
pact on organs at risk decreased from approximately 50% (without calibration) to 2%
(with calibration). The gamma pass rate at 3%/2mm showed a significant improve-
ment of around 37% in accurately reproducing the prescribed dose before and after
calibration (53.78% vs. 90.26%). Real-world data confirmed these findings, albeit with
slightly lower performance according to the same criteria (65.36% vs. 87.20%). These
results potentially confirm that the proposed deep learning-based framework brings the
use of narrow FOV CBCT scans incrementally closer to clinical translation in proton
therapy planning updates.

6.2 Potential Clinical Impact

Improving the CBCT acquired through the developed imaging system had some main
advantages regarding clinical impact. Firstly, a CBCT without shadows and with im-
proved visibility reduces the risk of setup errors by clinicians, providing an improve-
ment even for the primary purpose of CBCT image, i.e., the patient positioning and
setup verification. Secondly, better contrast between tumors and other soft tissues is
indicative of more direct visual discrimination. The contrast-to-noise improvement of
those tissues versus air, paired with enhanced HU adherence to CT, supports the use
of CBCT scans for, e.g., air cavity identification. Consequently, the offline clinical
procedure results in more efficient and less prone to overestimating and underestimat-
ing anatomopathological changes. An additional appealing aspect regards the poten-
tial reduction in the non-therapeutic doses given to the patient related to the need for
revaluation CT (rCT). With corrected CBCT, the number of unnecessary rCT could be
reduced, optimizing the additional dose provided. In general, the proposed framework
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can be adopted in all cases in which the district of interest is too large to fit into a sin-
gle acquisition. Furthermore, the proposed method extends the use of CBCT systems
currently used for patient positioning without additional hardware. We remark that, as
long as the dataset used to train the network is representative of the data expected to be
used in clinical practice, the methodology remains robust. In terms of robustness, the
applied methodology did not require retraining the model when moving from simulated
to real data. Generally speaking, as soon as the predicted data are no longer satisfactory,
the model can be retrained with data taken from the actual clinical setup.

6.3 Conclusions

At the time of writing, the system is in the final certification stage and will soon enter
clinical practice in room 1 at CNAO for patient positioning correction (Fig. 6.1). Re-
garding the deep learning framework and the possibility of introducing the use of CBCT
for dose evaluation in clinical practice, CNAO is currently evaluating a pre-clinical ex-
perimental study with patients. Personally, I consider the production of this system a
fundamental achievement of my academic career.

Figure 6.1: The development of the CBCT imaging system in testing room (left). The final CBCT imaging
system after installation (right)
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