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Abstract

In the last few years, automatic detection of anomalies in images has become

very popular in the industrial quality control, where the goal is to check the

presence of unexpected defects in final products. In this thesis, we address

the problem of the automatic pixelwise identification and segmentation of

anomalies in textured images. In this scenario, abnormal areas can be visu-

ally identified because they highly deviate in terms of intensity, structure and

contrast from the rest of the image, which follows a specific periodic pattern.

We propose two different approaches to tackle the aforementioned prob-

lem. Both are based on Semi-Supervised Machine Learning techniques

trained only with normal patches, i.e., portions of images which do not

contain anomalies. The idea is to learn the pattern of normal textures and

deem as abnormal the patches that are not alike. The first method uses the

Structural Texture Similarity (STSIM), an algorithm based on the Steerable

filters, to extract the features which belong to the normal set. Then, we learn

a density model that characterizes these features, and finally we classify each

test patch calculating the probability of belonging to the same distribution.

The second solution exploits a Deep Learning model called autoencoder to

learn how to extract normal features. In this case, the model learns how

to compress the input data in a small set of features, called latent repre-

sentation. The autoencoder is then trained to reconstruct the compressed

features to be as similar as possible to the input data. In this scenario,

we propose to use the Complex Wavelet Structural Similarity (CW-SSIM)

as loss function. CW-SSIM is a similarity metrics based on the Steerable

filters, which in our case it is deployed to assess the similarity between the

input and the reconstructed patch during the training. The rationale is that

the model is trained to reconstruct only normal textures and should fail to

do so for anomalous regions. We finally reconstruct each test image using

the trained autoencoder, and we label as anomalies the portions of recon-

structed image which present high visual dissimilarity from the original one.
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We propose again to use CW-SSIM as anomaly metrics to automatically

identify the differences between these two images.

This thesis provides the theoretical and practical basics behind the two

Anomaly Detection solutions proposed, which introduce the concept of Steer-

able filters in this environment, exploring two completely different approaches.

In the last, we compare the performance achieved by our solutions with the

State of the Art techniques on a challenging real-world images dataset of

nanofibrous materials, acquired by an electronic microscope. In particular,

the method based on CW-SSIM achieves significant performance gains in

pixelwise defect identification.



Sommario

Negli ultimi anni, il riconoscimento automatico di anomalie all’interno di im-

magini digitali è divenuto un elemento critico in molte attività industriali,

al fine di controllare la qualità dei prodotti finiti. In questa tesi, affronter-

emo il problema dell’identificazione e segmetnazione puntuale di anomalie

all’interno di immagini di tipo texture. In questo ambiente, le aree anomale

sono distinguibili in quanto differenti in termini di intensità, struttura e

contrasto dal resto dell’immagine, il quale segue uno schema specifico e pe-

riodico.

Al fine di affrontare questo problema, nel seguente elaborato proponiamo

due approcci sostanzialmente differenti. Entrambi sono basati su tecniche di

Semi-Supervised Machine Learning, le quali vengono addestrate unicamente

con porzioni di immagini che non contengono anomalie. L’idea generale su

cui si basano queste tecniche è far imparare alla macchina lo schema period-

ico delle porzioni di immagini normali e successivamente, evidenziare le aree

che maggiormente deviano da esso. Il primo metodo proposto usa Struc-

tural Texture Similarity (STSIM), algoritmo basato sugli Steerable filters,

per estrarre dalle porzioni di immagini normali le caratteristiche che le con-

traddistinguono. Successivamente viene appreso il loro modello di densità e

infine ogni porzione di test viene classificata in base alla probabilità di ap-

partenere alla medesima distribuzione. Il secondo metodo è basato sull’uso

di autoencoder, un modello di Deep Learning che impara come estrarre le

caratteristiche delle porzioni normali. In questo caso, il modello impara

a comprimere i dati in input in un ridotto set di caratteristiche, chiam-

ato in gergo tecnico rappresentazione latente. L’autoencoder viene quindi

allenato a ricostruire le caratteristiche compresse, generando un output il

più somigliante possibile all’input. In questo scenario, proponiamo l’utilizzo

di Complex Wavelet Structural Similarity (CW-SSIM) come loss function.

CW-SSIM è una metrica che quantifica la similarità fra due immagini basata

sull’uso degli Steerable filters, che nel nostro caso viene usata per stimare
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la somiglianza tra l’immagine in input e quella ricostruita durante la fase

di addestramento del modello. Visto che durante questa fase il modello

apprende le caratteristiche unicamente delle immagini normali, è possibile

presuppore che esso sia incapace di ricostruire le anomalie. Infine, ogni im-

magine di test viene ricostruita utilizzando l’autoencoder precedentemente

allenato e vengono etichettate come anomalie le porzioni dell’immagine ri-

costruita che presentato una grossa dissimilarità rispetto alla loro versione

originale. Proponiamo ancora l’uso di CW-SSIM come metrica per identifi-

care automaticamente le differenze tra queste due immagini.

Nel seguente elaborato, vengono presentati i concetti teorici e pratici su

cui sono basate le due tecniche di riconoscimento delle anomalie proposte,

le quali introducono il concetto di Steerable filters seguendo due differenti

approcci. Nella sezione finale della tesi, mettiamo a confronto le performance

delle nostre soluzioni con quelle già presenti in letteratura utilizzando un

dataset di immagini sulle nanofibre, acquisite con un microscopio elettronico.

In particolare, il metodo basato su CW-SSIM raggiunge un significativo

incremento di prestazioni nell’identificazione puntuale dei difetti.
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Chapter 1

Introduction

Computer Vision is the field of Information Technology (IT) which addresses

image-related problems such as classification and Anomaly Detection. The

mainstream approach for solving visual understanding problems consists in

two parts: the first is called Feature Extraction, able to extract interesting

information from the input data, while the second leverages this informa-

tion to solve the given problem. In the Computer Vision field, when we are

dealing with images, usually it is not possible to directly apply Anomaly

Detection algorithms on raw inputs. This would require a large number

of parameters and several computing resources to process, due to the high

dimension and complexity of images. For these reasons, it is necessary to

implement a first step that is able to collect meaningful information and

reduce data dimension. In recent years, Machine Learning (ML) has rev-

olutionized the way in which the second part is tackled. ML algorithms

learn the parameters of a mathematical model from several training data,

to provide for each input the correct outcome, e.g. the class label in the

classification. Deep Learning (DL), a specific branch of ML, extends the

above concepts, training a model that is also able to extract the most in-

teresting features for the assigned problem, combining the two Computer

Vision tasks in an end-to-end learning procedure. All the Machine Learning

techniques (including DL ones) need a large amount of data to be properly

initialized; in principle, the more they are the better the model is able to

solve the given problem.

In particular, this thesis is focused on Computer Vision Anomaly Detec-

tion, based on Machine Learning techniques. We are interested in the design

and assessment of ML models capable of learning the distribution of regular

inputs and identifying as anomalous the areas of evaluation images which are
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less explicable in a probabilistic sense [27]. The Anomaly Detection problem,

also called Novelty Detection, refers to the identification of inputs that do

not have the expected characteristics. Actually, Anomaly Detection can be

seen as a two-class classification problem, in which the goal is to label each

input with the correct class, namely Normal and Anomalous. The straight-

forward approach to tackle the problem is Supervised Anomaly Detection.

In this framework, the models are trained from a dataset of annotated im-

ages and their correct labels, learning a traditional two-class classification

model. The structure of a Supervised anomaly detection procedure can be

found in Figure 1.1. These solutions are particularly effective when all the

possible kinds of anomalies are entirely contained in the training set and a

large amount of annotated data is provided, which is not always possible.

Figure 1.1: Supervised Anomaly Detection.

In real world scenarios, such as industrial applications, having a com-

plete dataset of all the kinds of anomalies is very rare. For example, we can

think about a foundry in which every day many castings are produced and

the controller has to perform quality inspection, maybe using some cam-

eras or X-ray scans which are able to retrieve information also inside the

semifinished product. Anomaly Detection instruments are really helpful in

this context, since they reduce the human work increasing the productivity.

To implement a Supervised method, we need the foundry to provide us all

the types of defects that it could encounter during the production, which is

of course very difficult. Normal data are usually easier to collect, since they

represent the largest part of the daily production, while anomalies should

be very rare. In these contexts, Semi-Supervised Anomaly Detection ap-

proaches require only part of the given input images to be labeled. The

models belonging to this framework are trained using only data labeled as

normal, which means that they learn how normal inputs are shaped. The

structure of a Semi-Supervised anomaly detection procedure can be found

in Figure 1.2. All these approaches are based on the idea that outliers,
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i.e. anomalies, can be identified, because their distribution differs from the

one of the ordinary data. For the aforementioned reasons, Semi-Supervised

Anomaly Detection is the straightforward framework in these contexts.

Figure 1.2: Semi-Supervised Anomaly Detection.

The segmentation of anomalies in textured images is very important in

real world applications in order to automatize human works, e.g. in quality

control for inline industrial production, or support it as in medical scenarios

when a diagnosis based on images evaluations, such as a CAT (Computer-

ized Axial Tomography), has to be made. It is a very challenging Computer

Vision problem since images lie in a very wide and complex space and thus

the recognition of small structural changes, which could or could not repre-

sent anomalies, is not an easy task. The goal of the thesis is to propose two

Semi-Supervised ML approaches applied to Anomaly Detection, which use

two different image similarity metrics named Structural Texture Similarity

(STSIM) [41] and Complex Wavelet Structural Similarity (CW-SSIM) [29],

based on the Steerable filters decomposition [10]. We will refer to them as

the Anomaly Detection method based on STSIM and Anomaly Detection

method based on CW-SSIM applied to Autoencoders. We choose to build

our methods around these two metrics because Steerable filters are able to

capture important features from textured images. In the first solution, we

adapt STSIM to extract the features that belong to the normal set in order

to fit them to a density model. Once the parameters which characterize

the training patches are learned, we classify each test patch calculating the

probability of belonging to the anomalous-free distribution. In the second

procedure, instead, we propose to use CW-SSIM as loss function of an au-

toecoder. This model learns to compress the normal patches into a vector of

features and to expand this latent representation to be as similar as possible

to the input data. The CW-SSIM is deployed in the training procedure to

assess the similarity between the input and the reconstructed patch. Since

the autoencoder is trained to reconstruct only normal textures, the test im-
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ages will not be perfectly reconstructed in the anomalous areas, presenting

distorted patterns. In order to localize these areas, we propose to apply

again CW-SSIM between the original test image and the reconstructed one,

which will present higher dissimilarity in the abnormal locations. In our

experiments, we will demonstrate the practical effectiveness of our choices

using a dataset of nanofibrous materials (which can be approximated to

a textured one, apart from anomalies). In particular, the second solution

outperforms the methods present in literature in all the evaluation metrics

proposed.

1.1 Problem Formulation

Let I be an image, i.e. a matrix, of size w × h × c of values I(i, j) ∈ N,

where h defines the height, w the width and c represents the number of color

channels. The latter in our case is set to one, since we are dealing only with

gray scale images. Each element, or pixel, of the image I(i, j) at position

(i, j) is a single value that can range from 0 to 2r − 1, where r is the color

depth (usually referred to as bit depth). For each image I, we define the

binary mask of anomalies ΩI as a matrix of size w × h such that:

ΩI(i, j) =

{
1, if I(i, j) is an anomalous element of image I,

0, otherwise.
(1.1)

Given an image I, the Anomaly Detection problem requests to automati-

cally find the binary mask Ω̂I that best approximates the reference mask of

anomalies ΩI , also referred to as the ground truth.

1.2 Structure of the thesis

We organize the thesis in the following chapters:

• Chapter 2 introduces the basic concepts about the followed approaches

and present the State of the Art techniques that address our problem.

• Chapter 3 is chosen to explain in detail important methodologies that

will be useful in the presentation of our proposed methods. In partic-

ular, here the Steerable filters are presented.

• Chapter 4 is where our contributions are explained. Here we describe

all the steps that are part of our proposed solutions.
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• Chapter 5 lists all the implementation details behind our proposed

techniques such as the parameters’ choice.

• Chapter 6 presents the experiment results and discusses the differences

between our solutions and the ones present in the State of the Art.

• Chapter 7 shows the conclusions and future work.
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Chapter 2

State of the Art

In this section, we introduce the principles of our two proposed solutions: the

Anomaly Detection method based on STSIM, which follows a Hand-Crafted

Feature-based approach and the one based on CW-SSIM, which follows a

Data-Driven approach. In Sections 2.1 and 2.2, we also report some exam-

ples of real applications in the Anomaly Detection environment in which the

two approaches are followed respectively. The main difference between the

two is how they intend the feature extraction procedure. We recall that fea-

ture extraction is a process of dimensionality reduction by which raw images

are compressed to a more manageable set of features. Feature extraction ef-

fectively reduces the amount of data that has to be processed, decreases

data redundancy, while still accurately and completely describes the origi-

nal dataset. In some cases, the entire image is reduced in sub-portions called

patches before applying feature extraction. This is usually done when it is

necessary to capture local image characteristics or when dealing with too

large images.

2.1 Hand-Crafted Feature-based approach

The Hand-Crafted Feature-based approach is based upon the application of

manually designed models that are able to extract specific types of features

which are thought fundamental to solve the assigned problem. This type of

feature extraction is usually referred to as Hand-Crafted feature extraction,

since these characteristics are manually engineered by the data scientists.

These features are then used to evaluate whether the input data belong to

the normal or anomalous class, using an Anomaly Detection model.
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2.1.1 Automated surface inspection using Gabor filters

Among Hand-Crafted Feature-based methods, we can cite the use of Gabor

filters, as a Hand-Crafted feature extraction algorithm in automated surface

inspection [35]. Tsai et al. demonstrate that it is possible to extract the

energy response from a textured image applying several convolutions with

a specific set of Gabor filters. In this context, a pixel with zero response

E(i, j) = 0 can be logically considered belonging to a homogeneous surface,

while a pixel with a large response is probably in a non-homogeneous area.

Therefore, all pixels associated with the homogeneous texture will be sifted

out, and only those pixels corresponding to a local non-homogeneity will be

considered. The proposed evaluation model is based on a statistical eval-

uation: as first step the authors compute the mean µN and the standard

deviation σN of the energy responses coming from the application of Ga-

bor filters to anomaly free images. Then, they calculate the binary mask

of anomalies evaluating each pixel highlighted in the anomalous image by

comparing its energy with the previously extracted features:

Ω̂I =

{
1, if E(i, j) > µN + C · σN ,
0, otherwise,

(2.1)

where Ω̂I is the mask of anomalies and C is a manually tuned parameter

which controls the sensibility of the evaluation.

2.1.2 Steerable pyramid for directional structures detection

Another Hand-Crafted Feature-based technique is the application of Steer-

able filters [10] for the diagnosis of breast cancer [8]. Steerable filters are

directional derivative operations, which can vary in scale and orientation,

in a way to provide multi-scale and multi-orientation analysis. The process

is divided in two steps: in the first step, Steerable filters decomposition is

used as an oriented contrast enhancement over the image, allowing to high-

light the possible presence of anomalies. A threshold is then applied over

the enhanced images to remove non interesting pixels (certainly non-cancer

zones). Then, in the second step, the Steerable filters decomposition is used

again but applied only over portions of the image above the threshold. This

step allows to detect the presence of directional patterns, which are most

probably tumor masses, by subtraction of the filtered patch with the origi-

nal one. Each pixel position is considered anomalous if the local difference

between the two images is above a second manually tuned threshold.
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2.2 Data-Driven approach

Data-Driven approach is based upon the idea that the machine is trained to

decide which features are important in a specific problem. These approaches

require to define a model composed by a set of parameters, that will be

tuned during training. In this phase, the model deployed will incrementally

learn, through examples, how to extract the features that best describe

input data. These features, as in the previous Section 2.1, are then used to

evaluate whether the input data belong to the normal or anomalous class.

In some cases, this approach allows that the feature extraction model and

the Anomaly Detection one are trained together in an end-to-end fashion.

2.2.1 Sparse Dictionary Learning

Sparse coding is a learning method which aims at finding a sparse repre-

sentation of the input data (also known as sparse coding) in the form of a

linear combination of basic elements. These elements are called atoms and

they compose a dictionary. One of the key principles of dictionary learning

is that the dictionary has to be inferred from the input data.

Defect Detection by Learning a Dictionary of Normal Data

In the study by Boracchi et al. [7], the Anomaly Detection problem is tackled

by learning a model providing sparse representations of patches extracted

from normal images. This model can be expressed in terms of a dictionary

D ∈ IRp,n providing sparse approximation of all normal patches sc ∈ IRp

sc ≈ Dxc =
n∑
i=1

dixc,i, (2.2)

where xc ∈ IRn is the coefficient vector assumed to be sparse and di identify

each dictionary atom. The dictionary learning problem actually corresponds

to learning both the dictionary D and the sparse representation xc ∈ IRn,m

for a given training set S ∈ IRp,m containing m normal patches. Dictionary

learning is then formulated as the following optimization problem:

[D̂, X̂] = arg min
D,X

1

2
‖DX − S‖22 + λ ‖X‖1 , (2.3)

where the second term is the regularization term. The minimization algo-

rithm used is the Alternating Direction Method of Multipliers (ADMM) [6].
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Figure 2.1: a) Examples of training patches. b) Elements of the dictionary learned by

the ADMM algorithm [6]. This image is from [7].

After the training step, each patch Sc in a test image is independently

analyzed to determine whether it admits a sparse representation with respect

to D. For this purpose, the authors compute for each test patch sc the

corresponding sparse coding xc by minimizing:

xc = arg min
x

1

2
‖Dx− sc‖22 + λ ‖x‖1 , (2.4)

to generate the features vector f(c):

f(c) =

[∥∥∥D̂xc − sc∥∥∥2
2
, ‖xc‖1

]
. (2.5)

Using the features extracted from normal patches, the authors model

the distribution φ, of the features extracted from normal patches, by Kernel

Density Estimation (KDE) [23], adopting a kernel based on linear diffusion.

Then a patch sc is considered anomalous when f(c) falls in a low-density

region of φ.

Boracchi et al. in [4] also propose a similar sparse approach in which

they consider anomalous a patch when its features vector f(c) is above a

certain threshold γ: √
(f(c)− µ)TΣ−1(f(c)− µ) > γ, (2.6)

where µ and Σ are the expectation and the covariance matrix of distribution

φ, estimated from normal patches. Once all the patches coming from the

test image are evaluated, they are merged to create a full resolution map in

which anomalies are highlighted with respect to the rest of the image.
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2.2.2 Convolutional Neural Network

Another popular Data-Driven approach consists in training a Deep Neural

Network for feature extraction. First, we introduce the concept of Feed-

Forward Neural Network (FFNN) [13] that will be useful in the discussion of

Convolutional Neural Network (CNN) [33]. Traditional FFNNs comprise an

input layer, one or more hidden layers, an output layer and a set of weights

called the network’s parameters. Each layer is composed by a number of

nodes called neurons. The inputs are initially multiplied by their respective

weights, summed and passed through an activation function, which deter-

mines the output of the neuron. If that output exceeds a given threshold,

it activates the node, passing data to the next layer in the network. This

process is iterated for each hidden layer.

Figure 2.2: Feed Forward Neural Network.

The training is performed using a dedicated set of data called training

set, which will not be used to evaluate the method. The goal of this pro-

cedure is to find the set of weights which minimizes the distance to the

target value, i.e. the expected output for each input in the network. The

metrics used to calculate the distance between the output of the FFNN and

the target value is called loss function. The optimization algorithm has the
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objective to minimize the loss function reaching its point of convergence, or

local minimum. This is achieved by adjusting the weights of the network.

The process in which the algorithm adjusts its weights is through gradient

descent, allowing the model to determine the direction to take in order to

reduce the loss in the weights space. [13].

In recent years, Convolutional Neural Networks have obtained great re-

sults in the Computer Vision field, thanks to the large development of Deep

Learning techniques. Applications using this approach often require less ex-

pert analysis and fine-tuning and exploit the tremendous amount of video

data available in today’s systems. Another advantage of the CNN frame-

work is that it can be re-trained using a custom dataset for almost any use

case, contraries to algorithms based on Hand-Crafted features which tend

to be more domain-specific [22]. CNNs are Feed Forward Neural Networks

specifically designed to extract interesting features in the images domain.

There are different types of layers, namely Convolutional Layer, Pooling

Layer and Fully-Connected Layer.

Convolutional Layer: The Convolutional Layer’s parameters consist

of a set of learnable filters. Every filter is small spatially (along width and

height), but extends through the full depth of the input channels.

Figure 2.3: Convolutional layer. This image is from [33].

The convolution consists in sliding the filter across width and height of

the input volume, and computing a dot product between the entries of the

filter and the input at any position. As we slide the filter over the width and

height of the input volume, we will produce a 2-dimensional activation map

that gives the responses of that filter at every spatial position. Intuitively,

the network will learn filters that activate when they see some types of
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visual features, such as edges, particular blobs or patterns. We can apply

several filters in each Convolutional layer, and each will produce a separate 2-

dimensional activation map. These activation maps are finally stacked along

the depth (channel) dimension and produce the output volume. The three

hyperparameters which control the size of the output volume are the depth,

the stride and the padding. The depth of the output volume corresponds

to the number of filters we would like to use. The stride and the padding,

instead, are used to control the spatial dimension of the output [33].

Pooling Layer It is common to periodically insert a Pooling layer

in-between successive Convolutional layers. Its purpose is to progressively

reduce the spatial size of the features representation, allowing the research of

interesting patterns at different image scales, reducing the amount of param-

eters and computation in the network, and hence also to control overfitting.

Figure 2.4: Pooling layer. This image is from [33].

The Pooling layer operates independently on every depth slice of the

input and resizes it spatially. The most common form is a Max Pooling

layer with filters of size 2 × 2 with a stride of 2: it downsamples every

depth slice in the input by a factor of 2 along both width and height. Every

2 × 2 region is then replaced by its maximum value. The depth dimension

remains unchanged [33]. Many other Pooling layers exist, which apply other

operations such as minimum and average.

Fully-Connected Layer Neurons in a Fully Connected layer have full

connections to all activations in the previous layer, as seen in Feed-Forward

Neural Networks.

These layers are placed at the end of the network to process the output

of the previous layers in order to produce the expected output [33]. In

Anomaly Detection, for example, the possible output is a 2-dimensional
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Figure 2.5: Fully Connected layer. This image is from [33].

vector containing the probability of belonging to the two classes named

Anomalous and Normal.

Loss function The loss function is the measure that tells how much

the output is far from the target value. This measure is used to learn the

parameters that minimize it. Clearly, it depends on the task that the model

will tackle. For example in supervised binary classification, in which we

want to learn the label to assign to each input image, it is common practice

to define the loss function as the binary cross-entropy function:

L(w) = −
N∑
i=1

ti log(φ(xi, w)) + (1− ti) log(1− φ(xi, w)), (2.7)

where xi and ti correspond to the input and the target label of the ith sample

over N , φ(xi, w) is the Convolutional Neural Network that takes in input

xi, and produces in output the probability of the correct class label using

parameters w.

Deep One-Class classification

A remarkable example of a CNN employed in Anomaly Detection framework

is the Deep Support Vector Data Description (Deep SVDD) by Ruff et al.

[28]. In contrast to the other methods presented here, it does not produce

a full resolution anomaly map, but an anomaly score that says how much

the whole image is far from the normal distribution. In principle, it could

be possible to revisit this approach to produce an anomaly map. One could

train Depp SVDD patch-wise, then evaluate a test image by extracting the

anomaly score of each single patch and upsamling the scores to the original

patch size.

The idea is to train a Convolutional Neural Network to produce a com-

pact representation of the input images in the latent space F ∈ IRp, while

14



minimizing the volume of a hypersphere that encloses the representations

of normal data. This method forces the network to extract a compact data

representation, since the network must closely map the data points to the

center of the sphere. The authors define Deep SVDD optimization problem

as:

arg min
ŵ

1

n

N∑
i=1

‖φ(xi; ŵ)− C‖2 +
λ

2

L∑
l=1

‖ŵl‖2F , (2.8)

where φ(xi;w) ∈ F is the compact representation of input x given by the

network φ with parameters w. The second term is a network weight decay

regularizer with hyperparameter λ > 0. This minimization aims to find a

hypersphere of minimum volume with center C ∈ F , minimizing the mean

distance of all data representations to the center.

Figure 2.6: Deep SVDD learns the parameters of a CNN while it attempts to map most

of the data network representations into a hypersphere characterized by center C of

minimum volume. Normal examples should fall within, whereas anomalies should fall

outside the hypersphere. This Figure is from [28].

For a given test point x, the anomaly score s is defined as the distance

of the point to the center of the hypersphere:

s(x) = ‖φ(xi; ŵ)− C‖2 , (2.9)

where ŵ denotes the learned parameters during training. The center of

the hypersphere C can be found empirically as the mean of the network

representations, that results from performing an initial forward pass on some

training data samples.

Anomaly Detection by CNN-based self-similarity

Another method that applies CNN to Anomaly Detection is [20] by Napole-

tano et al., which propose a Semi-Supervised method for automatic detection

and localization of anomalies on images of nanofibrous materials. This is
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a region-based method: it measures how much a region of the test image

is anomalous with respect to a dictionary composed of “normal” patches

taken from the training images. The goal is to segment (localize) the re-

gion in the image which is anomalous, building the corresponding anomaly

map. This approach exploits the feature extraction properties of the Con-

volutional Neural Networks into a dictionary learning approach.

In contrast to Deep SVDD [28], in this case this is not an end-to-end

learning approach, but the features vectors are extracted exploiting a pre-

trained Convolutional Neural Network. In particular, the network architec-

ture adopted is based on the ResNet-18 architecture, pre-trained on the set

of images defined by the ILSVRC 2015 challenge, which, as demonstrated in

[20], works particularly well as a feature extraction model on texture images

similar to the visual appearance of the SEM images.

The features vectors extracted by the CNN from normal patches are first

reduced in dimension, applying the Principal Component Analysis (PCA)

[39] and then grouped by subregions into K clusters, using the K-Means

algorithm [2], forming the dictionary of normal features.

Figure 2.7: Dictionary creation during the training phase. This figure is from [20].

The degree of abnormality of a patch is obtained by processing it as in

the training phase (feature extraction and PCA) and then averaging the

Euclidean distances between its features and the m most similar subregions

of the dictionary. Once all the patches coming from the test image are

evaluated, they are merged to create a full resolution map in which anomalies

are highlighted with respect to the rest of the image.

2.2.3 Convolutional Autoencoder

Convolutional Autoencoders (CAE) belong to the family of Convolutional

Neural Networks used for data reconstruction. The original aim was to deal

with dimensionality reduction problems [36] or feature extraction in an un-

supervised fashion.
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The general structure of an autoencoder is composed by two sub-networks:

Encoder and Decoder. The encoder E(·) is a classical CNN which takes in

input the image x and generates a compressed features vector called latent

representation z = E(x) (also referred as bottleneck). The decoder D(·) is

another network that, starting from the latent representation z, upscales the

feature vectors to the resolution of the input image y = D(z) = D(E(x)).

The scheme of the network can be found in Figure 2.8.

Figure 2.8: Convolutional autoencoder architecture.

The training of a convolutional autoencoder takes place in an unspervised

fashion, since it is trained to reconstruct its input, and thus it does not need

any supervised label. The most common used loss function is the Mean

Squared Error (MSE):

LAE(x, y) =
1

N

N∑
i=1

(xi − yi)2, (2.10)

where x and y are respectively the input image and the reconstructed one

and N is the number of pixels involved in the comparison. This point-by-

point metrics simply calculates the l2 distance between the corresponding

pixels in the two images and averages the distance.

The idea behind CAE is to compress the data into the latent repre-

sentation z, which represents the features of the input data. Without this

compression-decompression approach, the model will learn the trivial iden-

tity function. The Convolutional term indicates that all the layers presented,
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both in the encoder and in the decoder, are Convolutional and Pooling lay-

ers. Clearly, in the encoder the Pooling layers reduce the spatial dimension

of the input, while in the decoder they increase it.

In the test phase, the autoencoder will not be able to perfectly recon-

struct the potential anomalies, since it is trained only with normal images.

For this reason, comparing the input image and the reconstructed one, it

is possible to generate a pixel-wise anomaly map, using as anomaly metrics

the function defined in (2.10). Finally, defining a threshold α, we can label

all the pixels below α as normal (since the l2 distance is low) and all the

others as anomalous.

Improving Unsupervised Defect Segmentation by Applying Struc-

tural Similarity To Autoencoders

The main issue of the above Anomaly Detection approach is that the l2

distance yields high residuals in locations where the reconstruction is only

slightly inaccurate (e.g. due to small localization imprecisions of edges) and

fails to detect structural differences between the input and reconstructed

images, when the respective pixels’ color values are roughly consistent. To

alleviate the aforementioned problems, Bergmann et al. in [3] propose to

measure the reconstruction accuracy using the structural similarity (SSIM)

metrics [38].

The primary motivation in the development of the Structural Similar-

ity (SSIM) index is to allow non-structural contrast and intensity changes,

as well as small translations, rotations, and scaling changes, which are de-

tectable but do not affect the perceived content of an image [41]. The main

approach to accomplish this goal is to compare local image statistics in cor-

responding sliding windows (for example, 7 × 7) in the two images and to

pool the results of such comparisons. The sliding window procedure follows

a regular grid sampling strategy with stride 1. It is possible to define µix
and σix as the mean and the variance values of image x at window position

i. Then, σixy as the covariance between image x and y, at the same window

location i.

To evaluate the similarity metrics, the system separates the task into

three comparisons: Luminance, Contrast and Structure. Notice that the

three components are relatively independent. The Luminance component is
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defined as:

li(x, y) =
2µixµ

i
y + C1

(µix)2 + (µiy)
2 + C1

, (2.11)

where C1 is a small constant to avoid instability when the denominator tends

to zero. The Contrast comparison takes a similar form:

ci(x, y) =
2σixσ

i
y + C2

(σix)2 + (σiy)
2 + C2

. (2.12)

Thus, the Structure term is defined as:

si(x, y) =
σixy + C3

σixσ
i
y + C3

. (2.13)

At this point, the SSIM index can be written as a function of the three

previously presented terms:

SSIMi(x, y) = [li(x, y)]α[ci(x, y)]β[si(x, y)]γ . (2.14)

That if we set α = β = γ = 1, it results in a specific form of the SSIM index:

SSIMi(x, y) =
(2µixµ

i
y + C1)(2σ

i
x,y + C2)

((µix)2 + (µiy)
2 + C1)(σix)2 + (σiy)

2 + C2
. (2.15)

The final SSIM score is calculated averaging the contributions from all

the window locations:

SSIM(x, y) =
1

N

N∑
i=1

SSIMi(x, y). (2.16)

The index ranges between [-1, 1], where 1 indicates maximum similarity.

The training procedure proposed by Bergmann et al. in [3] requires in in-

put patches coming from images that do not contain anomalies. The model

is a classical convolutional autoencoder trained using SSIM as loss function

between patches. This choice results in an improved reconstruction quality

with respect to the MSE loss function in (2.10).

The anomaly score is calculated applying SSIM in the classical way, but

then the scores across all the sliding windows are not averaged, but assigned

to the center of the corresponding window. This results in an anomaly map

in which pixels with higher structural dissimilarity are highlighted.
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Figure 2.9: A toy example from [3], illustrating the advantages of SSIM over l2 for the

segmentation of defects. (a) 128 × 128 checkerboard pattern with gray strokes and dots

that simulate defects. (b) Output reconstruction x̂ of the input image x trained with

an l2 autoencoder. The defects have been removed by the autoencoder. (c) l2 residual

map. Brighter colors indicate larger dissimilarity between input and reconstruction. (d)

SSIM residual map. In contrast to the l2 error map, SSIM gives more importance to

the main visual differences than to the slight inaccuracies around reconstructed edges.

2.2.4 Variational Autoencoder

A variational autoencoder (VAE) is a probabilistic model whose posterior

distribution is approximated by a neural network, forming an autoencoder-

like architecture [15]. Using the same notation of Section 2.2.3, the encoder

E(·) is designed to reproduce in output data which belong to the variational

approximate posterior pE(z|x), that can be defined as multivariate Gaussian

with a diagonal covariance structure:

pE(z|x) ∼ N (z;µ, σ2I), (2.17)

where µi and σi are the mean and the standard deviation of the outputs of

the encoding function E(x). This distribution will be trained to be close to

the prior distribution defined as N (z; 0, I), which is the centered isotropic

multivariate Gaussian, working as a regularization term.

The decoder D(·), instead, will produce in output data that belong to

the distribution pD(x|z), namely the likelihood of the input data x, given

the latent variable z sampled from the encoder distribution z ∼ pE(z|x).

The distribution pD(x|z) depends on the nature of the data. If the data are

binary a Bernoulli distribution is used. If the data are in continuous form,

a Multivariate Gaussian is a possible choice.

The loss function is defined as the Kullback-Leibler divergence (KL) [16]

between the latent distribution and the prior, plus the variational lower-
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Figure 2.10: Variational Autoencoder architecture.

bound on the marginal likelihood with respect to x:

LV AE(x, y) = −KL(pE(z|x),N (z; 0, I)) + EpE(z|x)[log(pD(x, z))]. (2.18)

The first term of (2.18) is the KL divergence between the approximate pos-

terior and the prior of the latent variable z. This term forces the posterior

distribution to be similar to the prior one, working as a regularization term.

The second term of (2.18) can be rewritten as:

EpE(z|x)[log(pD(x, z)) =
1

L

L∑
l=1

log(pD(x|zl)), (2.19)

where L samples from the latent distribution are drawn to evaluate the like-

lihood distribution. After the training phase, the VAE can be employed to

compute an anomaly score in two different ways:

• Using the Latent Space Representation. One option is to com-

pute the KL divergence KL(pe(z|x),N (z; 0, I)), and to indicate de-

fects for large deviations from the prior distribution [32]. However,

to use this approach for the pixel-accurate segmentation of anomalies,

a separate upsampling for each pixel of the input image has to be

performed.

• Using the Reconstruction Probability. Choi et al. [1] propose a

different approach: for each sample from the encoder zl, the mean µyl
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and the standard deviation σyl of the decoder output are calculated in

order to build the likelihood probability:

pD(x|zl) = pD(x|µyl , σ
y
l ). (2.20)

Then, these likelihoods are averaged over all the L samples. This pixel-

wise probability is then used to determine weather a pixel belongs to

the normal class or not by a threshold.

2.2.5 Generative Adversarial Network

Generative Adversarial Networks (GANs) are Convolutional Neural Net-

works able to generate new unseen data belonging to the same unknown dis-

tribution of the training data [12]. They are composed by two sub-networks:

the generator G() is trained to learn the input distribution, while the dis-

criminator D(·) learns how to distinguish data coming from G() from data

belonging to the input dataset. We remark that the generator has the same

structure of the encoder E(·) presented in the two previous sections.

Figure 2.11: Generative Adversarial Netowrk architecture.

To learn the generator’s distribution x′ ∼ pG over input data x ∼ pdata,
a prior distribution on input noise variables z ∼ pz (white noise) is defined.

The generator G(z) is used to map the input space to the data one. D(x)

represents the probability that x came from the data distribution rather than

pG. D(·) is trained to maximize the probability of assigning the correct label

to both training examples x and samples from G(z). Simultaneously, G()

is trained to minimize log(1 − D(G(z))). D(·) and G() play the following

two-player minimax game with value function V (G,D):

min
G

max
D

V (D,G) = Ex∼pdata [log(D(x))] +Ez∼pz [1− log(D(G(z)))]. (2.21)
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Bringing it to the image world, the idea is that while the generator at-

tempts to produce realistic images in order to fool the discriminator, the

latter learns how to distinguish images generated from realistic ones. The

term Adversarial in GAN comes exactly from the training procedure: the

two networks compete in this setting having two opposite objectives.

Unsupervised Anomaly Detection with Generative Adversarial Net-

works

As an Anomaly Detection problem, the goal is to produce an anomaly score

of test data over a pre-trained architecture. Schlegl et al. propose AnoGAN

[30], a GAN network which is trained only with normal images. The authors

define a loss function L for the mapping of new images to the latent space

that comprises two components, a residual loss LR and a discrimination loss

LD:
LD = λ |f(x)− f(G(z))| ,
LR = |x−G(z)| ,
L(z) = (1− λ)LR(z) + λLD(z).

(2.22)

The residual loss enforces the visual similarity between the generated image

G(z) and the query image x. The discrimination loss, instead, constrain the

generated image G(z) to follow the learned distribution of input data, where

f(x) is the output of an intermediate layer of the discriminator. There-

fore, both components of the trained GAN are used to adapt the network’s

weights via backpropagation. The summation in the loss formulae means

that the score over all the pixels has been summed. The discriminator loss

is inspired by the feature matching technique. Instead of optimizing the

parameters of the generator by maximizing the discriminator’s output on

generated examples as in (2.21), the generator is forced to produce data

similar to the training one, i.e. whose intermediate feature representation is

similar to those of real images. This way, feature matching addresses the in-

stability of GANs due to over-training discriminator response. The anomaly

map over test data will be calculated as:

S(x, z) = (1− λ) |x−G(z)|+ λ |f(x)− f(G(z))| . (2.23)
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Chapter 3

Background

In this chapter, we introduce some important concepts that will be useful

in the description of our methods. In Section 3.1, we present the Steerable

Filters, which we employ in our solution to extract interesting features from

the input images. Then, in Section 3.2, we present the Multi Scale Struc-

tural Similarity (MS-SSIM), an improved version of the Structural Texture

Similarity (presented in Section 2.2.3), which we use as a baseline method

in our experiments. Finally, in Sections 3.3 and 3.4, we describe in detail an

anomaly metrics named Mahalanobis Distance and an Anomaly Detection

algorithm called Kernel Density Estimation, which we will use in our first

solution based on STSIM as feature extraction algorithm.

3.1 Complex Steerable Filters

Complex Steerable filters are based upon the Discrete Wavelets Transform,

which is able to cut up data into different frequency components, and then

studies each component with a resolution matched to its scale [34]. In two

dimensions, this transform has been proven to be able to represent the image

with a set of basis functions which are related to translation and dilation

operations applied to a common kernel [34].

Freeman and Adelson [10] develop a technique to synthesize kernels of

arbitrary orientation from a linear combination of a fixed set of kernels

(Steerable Basis), describing the conditions under which a set of rotated

basis functions is steerable. Wang et al. [31] also design a two dimensional

transform that is jointly shiftable in orientation (multi-orientation property)

and position (multi-scale property), where the basis functions are transla-

tions, dilations, and rotations of a single kernel. The transform is then
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constructed as a recursive pyramid called Steerable Pyramid Decomposition

[31]. A pyramid in Computer Vision is composed by the repetition of the

same original image with a decreasing spatial resolution at each level of the

pyramid. Figure 3.1 illustrates an example of the orientation-shiftable basis

functions at one scale of the pyramid.

Figure 3.1: Example of Steerable filters applied to an image at a single scale of the

pyramid. a) Original image. b)-c)-d) are the Steerable oriented kernels at orientation

0°,90° and 30° respectively. e)-f)-g) are the subband results coming from the con-

volution between the original image and the kernels respectively. This image is from

[10].

The Steerable pyramid algorithm is based on recursive application of

filtering and subsampling operations. The input image is initially convolved

with a band-pass filter B(w) which, varying the frequency parameters w,

applies a number of orientated convolutions at each stage of the pyramid.

Then, before subsampling the image, a low-pass filter L1(w) is applied to

remove the most aliased components, which are high frequency, i.e. noise, in

the subsampled domain. The subsampled image iteratively passes through

the above procedure until the last scale of the pyramid, where another low-

pass filter L0(w) is applied. The last scale of the pyramid is not convolved

with oriented filters. The output comprehends also the input image con-

volved with a high pass filter H(w). The block diagram defining this proce-

dure can be found in Figure 3.2.

This procedure decomposes the input image into M different subbands.

Each subband represents the response of the convolutions between the orig-

inal image and O oriented kernels. These convolutions are repeated for the

number of scales defined by S, where for each scale the image resolution
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Figure 3.2: Illustration of a two-stage recursive cascade. This figure is inspired from

[31].

reduces by a factor of 2. In the end we have

M = O(S − 2) + 2 (3.1)

subbands, where the terms “2” indicates that on the first and last scales,

which represent respectively the outputs of H(w) and L0(w), the oriented

convolutions are not applied. The design of the filters and more implemen-

tation details can be found in [31] and [10]. An example of Steerable filters

decomposition with 5 scales 4 orientations can be found in Figure 3.3.
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Figure 3.3: Example of 5 scales 4 orientations steerable filters decomposition. a)

Original patch. b) Steerable oriented kernels at 0°, 45°, 90° and 130°. c)-e) Band-pass

coefficients in a multi-scale pyramid representation. (f) Low-pass image. This image is

from [10].
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3.2 Multi-Scale Structural Similarity

The Multi-Scale Structural Similarity (MS-SSIM) [37] was introduced as an

extension of SSIM [38]. The subjective evaluation of a given image and the

perceivability of details depend on many factors: the image signal, the dis-

tance from the image plane to the observer and the perceptual capability

of the observer. Because of that, a multi-scale approach is more convenient

when we want to incorporate image details at different resolutions [37]. MS-

SSIM takes two images in input, iteratively applies a low-pass filter and

downsamples the filtered images by a factor of 2. The scheme of the algo-

rithm can be found in Figure 3.4.

Figure 3.4: Multi-scale structural similarity measurement system. L: low-pass filtering;

2 ↓: downsampling by 2. This image is from [37].

This procedure generates two pyramids, one for each image, where at

each level the original image is halved in the spatial dimension. In these

pyramids, the original image is at scale one, while the last one is at scale M .

For each level of the pyramid, are computed the contrast term cj(x, y) (2.12)

and structure term sj(x, y) (2.13), where j indicates that the comparison is

performed at level j, while the luminance term lM (x, y) (2.11) is calculated

only at scale M . The overall MS-SSIM evaluation is obtained by combining

the measurement at different scales as follows:

MS-SSIM(x, y) = [lM (x, y)]αM

M∑
j=1

[cj(x, y)]βj [sj(x, y)]γj , (3.2)

where the exponents αM , βj , γj are used to adjust the relative importance

of different components, similarly to (2.14). In the performance evaluation

Section 6.4, where we will present our experimental results using this metrics

as loss function, we will refer to the coefficient configuration provided by [37].

Both MS-SSIM and SSIM work with local statistics and range between [-1,

1], where 1 indicates maximum similarity.
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3.3 Mahalanobis Distance

The Mahalanobis distance is a distance-based metrics introduced by P.C.

Mahalanobis [18]. It is a scale-invariant metrics and provides a measure of

distance, also referred as likelihood, between a point x ∈ Rp and a p−variate

probability distribution function (pdf) f(X) with mean µ = E(X) and co-

variance matrix Σ = Cov(X) of the distribution. The Mahalanobis distance

is defined by:

M(x, µ, σ) =
√

(x− µ)TΣ−1(x− µ). (3.3)

If the covariance matrix is the identity matrix, the Mahalanobis distance

reduces to the Euclidean distance. All values of x such that M(x, µ) = c,

for any specified constant value c, have equal likelihood. As we can notice

from Figure 3.5, the level sets produced by this metrics are ellipsoids. We

consider x an outlier with respect to f if it belongs to a region outside the

ellipsoid defined by a certain threshold η, i.e., M(x, µ) > η.

Figure 3.5: Mahalanobis distance 2D representation at c = 0.4, 0.6, 0.8 and 0.975.

3.4 Kernel Density Estimation

The Kernel Density Estimation (KDE) is a kernel-based method that pro-

duces a smooth estimation of the probability density function (pdf) of the

input data {x1, ..., xn} [23]. The goal is to learn the parameters θ to model

the pdf of the normal data fθ(X) using a kernel function K. The formal

definition of KDE is:

f̂θ(x) =
1

nb

n∑
i=1

K

(
x− xi
h

)
, (3.4)
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where f̂θ is the kernel density estimator of the function fθ. K(x) is the

kernel function, that is generally a smooth symmetric function, such as a

Gaussian, and b > 0 is called the smoothing bandwidth that controls the

amount of smoothing. Basically, the KDE smoothes each data point xi into

a small density bump and then sums all these small bumps together to ob-

tain the final density estimate [23], as we can see in Figure 3.6.

The anomaly score is defined as the log probability of having an incoming

data y belonging to the distribution fθ, i.e., the log-likelihood of y with

respect to the estimator f̂θ:

S = log(f̂θ(y)) = log(f̂(y|θ)). (3.5)

The more the likelihood is towards zero, the more y belongs to the same

distribution of fθ(X).

Figure 3.6: KDE first smoothes each data point (at 0.1, 0.2, 0.5, 0.7, 0.8, 0.15) into a

purple density bump and then sums them up to obtain the final density estimate – the

brown density curve. The image is from [23].
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Chapter 4

Our Contribution

In this chapter, we present two novel methods in the Semi-Supervised Anomaly

Detection framework. In particular, both of them are based on the Steerable

filters decomposition that is used to extract interesting features from tex-

tured images. The first method, named Anomaly Detection based on STSIM,

follows the Hand-Crafted Feature-based approach, where the Steerable fil-

ters are directly used over normal training patches to extract handcrafted

features. The feature extraction algorithm is based on the Structural Tex-

ture Similarity Metrics (STSIM) [41], which is a widely used metrics for

content-based retrieval. The idea is that all the normal features are dis-

tributed in a particular way with respect to the feature space. The goal is

to learn their posterior distribution, and detect as anomalous the patches

that fall in low density regions.

The second method, named Anomaly Detection based on CW-SSIM ap-

plied to Autencoders, follows the Data-Driven approach, where the features

to extract are learned through the use of an autoencoder. The novelty is

that we propose Complex Wavelet Structural Similarity (CW-SSIM) [29] as

loss function, which is based on the Steerable filters. We remark that this

similarity metrics was never used as loss function before. The rationale be-

hind this procedure is that the autoencoder during the training learns the

features that characterize normal patches, and thus will not be able to per-

fectly generate anomalies in evaluation. The reconstruction based Anomaly

Detection takes advantage of this fact calculating the structural similarity,

using CW-SSIM, between the reconstructed and the original image, as in

[3]. The locations where the autoencoder fails to reconstruct the anomalies

should present higher dissimilarity with respect to other regions.
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The first Section 4.1 proposes again the problem formulation reported in

the Introduction, focusing also into the requirements of our solutions. The

second Section 4.2 introduces the general outline of the patch-wise method-

ology, which is used by our two methods and also commonly deployed in

this framework. Finally, in Sections 4.3 and 4.4 we explain in details the

two proposed strategies, based on STSIM and CW-SSIM respectively.

4.1 Problem Formulation and Requirements

Let I be an image, i.e. a matrix, of size w × h × c of values I(i, j) ∈ N,

where h defines the height, w the width and c represents the number of color

channels. The latter in our case is set to one, since we are dealing only with

gray scale images. Each element, or pixel, of the image I(i, j) at position

(i, j) is a single value that can range from 0 to 2r − 1, where r is the color

depth (usually referred to as bit depth). For each image I, we define the

binary mask of anomalies ΩI as a matrix of size w × h such that:

ΩI(i, j) =

{
1, if I(i, j) is an anomalous element of image I,

0, otherwise.
(4.1)

Given an image I, the Anomaly Detection problem requests to automati-

cally find the binary mask Ω̂I that best approximates the reference mask of

anomalies ΩI , also referred to as the ground truth. Our goals are: (a) to

identify all the anomalous regions in the image I; (b) to cover the largest

number of anomaly pixels that belong to the identified anomalous regions;

(c) to label as normal all the other pixels that do not present anomalous

patterns.

4.2 Outline of our patch-wise solutions

The proposed solutions belong to the Semi-Supervised Anomaly Detection

framework, in which only normal images are used during the training stage.

The patches forming the training set T = {xi ∈ Rht,wt |i ∈ {1, ..., Nt}}
are extracted from normal images at random positions in such a way that

they have the same spatial dimension. We can define ht and wt as the

height and the width of the training patches. For simplicity, we use only

squared patches for both the methods. The training phase ends, producing

a model able to statistically distinguish a normal patch from an anomalous

one. For each test image I belonging to the test set, the patches in EI =

{xj ∈ Rht,ww |i ∈ {1, ..., Ne}} are extracted following a regular grid sampling
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strategy with stride s. Each of them is firstly evaluated, computing its

degree of abnormality, and then each anomaly score is combined to create

the anomaly map ωI . The output of both the strategies is the pixel-wise

classification of test images, also referred as the estimated binary mask of

anomalies Ω̂I , generated applying the threshold γ to the anomaly map.

4.3 Anomaly Detection method based on STSIM

We propose the use of Structural Texture Similarity Metrics (STSIM) [41],

as a feature extraction technique that relies upon Steerable filters decompo-

sition. STSIM was initially designed by Pappas et al. for image analysis and

content-based retrieval (CBR), in particular on the recovery of textures that

are identical to a query one, in the sense that they could be patches from

a large perceptually uniform texture even if they present important pixel-

wise differences. An example can be found in Figure 4.1. This approach is

particularly effective when we are dealing with textured images, as the one

in Figure 4.1 or the nanofibrous dataset [19], which we will use to evaluate

our performances.

Figure 4.1: Example of textured patches b)-c)-d) which are perceptually identical to

the query image a). This image is from [41].
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The features extracted with STSIM, belonging to normal patches, are

consequently used to train an Anomaly Detection model. In particular,

we propose the use of the Mahalanobis distance and the Kernel Density

Estimation. These metrics are able to tell, given a test patch, if it belongs

to the same distribution of the training set, i.e. if they are perceptually

identical (same texture images). Once the anomaly score is produced for

each test patch, they are upscaled and merged to create the anomaly map

ωI .

4.3.1 Preprocessing

The training set is filled with normal patches only if their median is above

a certain value ε > 0. This is done to avoid that entire dark patches pollute

the training set, since they could decrease the effectiveness of recognizing

normal textures.

T = {xi|median(xi) > ε}. (4.2)

It is worth mentioning that nanofibrous materials, which have too large

holes, might yield porosity defects. However, this sort of anomalies can be

detected by straightforward morphological operations over the whole image

[7].

4.3.2 Subband Decomposition

The first step is to apply Steerable filters decomposition to each training

patch xi ∈ T . Steerable filters are directional derivative operations, which

can vary in scale and orientation, in a way to provide multi-scale and multi-

orientation analysis. The motivation comes from the work of Portilla and

Simoncelli on texture analysis/synthesis [24], who show that a broad class

of textures can be synthesized using a set of statistics that characterize the

coefficients of a multi-scale frequency decomposition (Steerable filters).

This procedure decomposes each patch xi into M different subbands.

Each patch is initially brought to the frequency domain through the Discrete

Fast Fourier Transform (FFT). At each scale of the pyramid, a sequence

of filters in the frequency domain is convolved with the original image in

order to produce M Steerable subbands xmi with m = {1, ...,M}. Finally,

each subband is taken back to the image domain with the Inverse Discrete

Fast Fourier Transform (IFFT). We recall that at each scale the subband

is a complex matrix, where its spatial dimension reduces by a factor of 2
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each time the subsampling operation is applied. The subbands are defined

as xmi ∈ Cws,hs , where ws = hs (in our case) and m = {1, ...,M}. This

procedure is fully described in the Background chapter, in Section 3.1.

The number M is a manually tuned parameter that depends on many

factors. We recall from (3.1) that the parameter M depends on the number

of scales S, and on the number of oriented filters O. The parameter S is

intrinsically connected to the patch dimension, since it determines the num-

ber of subsampling operation that the pyramid will produce. In principle,

the upper bound in the number of scales is:

S ≤ log2(wt), (4.3)

since going further means to reduce the subband dimension to a single value.

This limit, in practice, is more restrictive since, as we have discussed before,

too small patches (and so also subbands) would not lead to capture the fea-

tures that characterize normal textures. Regarding the parameter O, there

is not a particular limitation, but it can be tuned according to the character-

istics of the patches which we are dealing with. Focusing on the nanofibrous

texture, we can notice that normal patches are characterized by high dif-

ferences in gradient in almost any direction. An example can be found in

Figure 4.2. This fact is due to the presence of the filamentous elements that

produce high variations with respect to the dark background. The band-

pass convolutions are exactly deployed to capture these types of changes

in all the O directions. Anomalous patterns, instead, are characterized by

uniform agglomerates that have almost the same response in any direction.

We can assume that, even applying a few number of oriented convolutions,

these differences can be captured by the Steerable filters. An example of the

Steerable filters decomposition applied to the nanofibrous dataset can be

found in Figure 4.2. All the images representing the nanofibrous dataset are

in gray-scale, but we decide to show them with different colors (the Virdis1

heatmap) based on their gray level. This choice is made to enable a better

interpretation by the viewer and will be maintained in the following pictures

regarding the examples from this dataset.

4.3.3 STSIM Feature Extraction

This step allows to effectively generate the set of features that we will use to

distinguish normal patches from anomalous ones. These features are based

1https://cran.r-project.org/web/packages/viridis/vignettes/intro-to-viridis.html

37



Figure 4.2: Steerable filters decomposition at one scale of the pyramid. a) Original

patch. b)-e) Steerable subbands at second scale of the pyramid with 4 orientations.

on statistical measurements from each subband and among different ones.

The first step to apply is to bring all the subband coefficients to the real

domain, calculating the modulus:

|xmi | =
√

(R(xmi ))2 + (I(xmi ))2, (4.4)

where R and I represent the real and the imaginary part of xmi respectively.

This step is applied because we need a real statistical value |xmi | ∈ Rws,hs .

This procedure extracts 4 single-band statistics from each subband xmi .

The first two statistics are the mean value:

µm|x| = E [|xm(i, j)|] , (4.5)

and the variance:

(σm|x|)
2 = E

[(
|xm(i, j)| − µm|x|

)(
|xm(i, j)| − µm|x|

)∗]
, (4.6)

where (i, j) represents the indexing of each single pixel. Then, the first-order

autocorrelation coefficients can be in the horizontal direction as:

ρm|x|(0, 1) =
E
[(
|xm(i, j)| − µm|x|

)(
|xm(i, j + 1)| − µm|x|

)∗]
(σm|x|)

2
, (4.7)

38



and in the vertical direction as:

ρm|x|(1, 0) =
E
[(
|xm(i, j)| − µm|x|

)(
|xm(i+ 1, j)| − µm|x|

)∗]
(σm|x|)

2
. (4.8)

The first-order autocorrelations of adjacent subband coefficients provide

structural and directional information. In particular, these terms are achieved

by calculating the cross-correlation between the same subband shifted of one

pixel in the horizontal or vertical direction. We specify that there is no need

to consider higher order autocorrelations, because this would be equivalent

to compute first-order autocorrelations of subsamppled images. This opera-

tion is effectively done when we compute the first-order autocorrelations of

lower frequency subbands. Thus, by computing (4.7) and (4.8) on a multi-

scale frequency decomposition, we are effectively computing higher-order

autocorrelations [41].

The last step extracts O(S−3) cross-band correlations between subbands

at adjacent scales for a given orientation, and (S−2)
(
O
2

)
correlations between

all orientations for a given scale:

ρm|x|(0, 0) =
E
[(
|xm(i, j)| − µm|x|

)(
|xn(i, j)| − µn|x|

)]
(σm|x|)(σ

n
|x|)

, (4.9)

where m and n are the two subbands involved in the calculation. These

features are used because the magnitudes of the wavelet coefficients are not

statistically independent: large magnitudes in subbands of natural images

tend to occur at the same spatial locations in subbands at adjacent scales

and orientations. The intuitive explanation that [41] gives for this fact is

that the “visual” features of natural images rise to large local neighborhood

spatial correlations, as well as large scale and orientation correlations. We

remark that since the first and the last layer of the pyramid are not con-

volved with the oriented filters, this correlation cannot be applied to them.

In the end, the total number of single-band statistics is:

Ni = 4(O(S − 2) + 2) = 4M, (4.10)

while the number of cross-band statistics is:

Nc = (S − 2)

(
O

2

)
+O(S − 3), (4.11)

for a total of Nf features:

Nf = Ni +Nc. (4.12)
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At this point, the procedure ends since we have extracted from each

training patch xi ∈ T the corresponding features vector fi ∈ RNf . The full

procedure can be found in Algorithm 1.

Figure 4.3: Complete feature extraction procedure. The template schema is taken from

[20].

Algorithm 1: ST-SIM Feature Extraction

Input: Set of normal images.

Output: Set of features vectors F .

1. Extract patches randomly from the training images: xi.

2. Apply the preprocessing step (4.2).

3. Decompose each patch into the corresponding Steerable subbands xmi
(as in Section 3.1).

4. Get the modulus of each subband |xmi | (4.4).

5. Extract the mean µm|xi| (4.5), the variance (σm|xi|)
2 (4.6), the horizontal

autocorrelation ρm|xi|(0, 1) (4.7), the vertical autocorrelation ρm|xi|(1, 0)

(4.8) and the cross-band correlation ρm|x|(0, 0) (4.9).

6. Pack all the statistical features in the STSIM features vector fi.

4.3.4 Learning Normal Features’ Distribution

Once all the features vectors of the training patches fi ∈ RNf with i ∈
{1, ..., Nt} are extracted, we need to learn the parameters of a density model

that characterize their distribution. The idea is that all the normal patches,

even in the test set, belong to the same posterior distribution in the feature

space, while anomalous ones have lower density with respect to this normal

distribution. The training procedure has to learn a model which represents
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the distribution of normal features. In our solution, we propose two different

Anomaly Detection models: the first based on Mahalanobis Distance and

the second on Kernel Density Estimation.

Before effectively learning these parameters, we need to split the train-

ing features into two sets: we can call the first one Tf , which is effectively

used to train the Anomaly Detection algorithms, and Vf , which is used to

calculate empirically the mean density of normal patches µv over the learned

distribution. This value will be used as the anomaly score on too dark test

patches.

Mahalanobis Distance is a distance-based method that, in our case,

provides a measure of distance between a single features vector fi ∈ RNf and

the mean µt ∈ RNf of the normal distribution of features. This is equivalent

to considering as anomalous any features vector having an indicator falling

outside a confidence region around µt, defined by the Chebyshev inequality.

The Mahalanobis model is composed by two parameters: the mean fea-

tures vector µt ∈ RNf , and the covariance matrix Σt ∈ RNf ,Nf over the

training set Tf . We calculate the mean features vector as:

µt = E [Tf ] . (4.13)

The covariance matrix, instead, is defined as:

Σt = E
[
(Tf − µt)(Tf − µt)T

]
, (4.14)

where the symbol T over the second term indicates the transpose of a matrix.

Finally, the mean density of normal patches µv is calculated averaging the

Mahalanobis distance (4.17) over the set Vf :

µv = E
[√

(Vf − µt)TΣ−1t (Vf − µt)
]
. (4.15)

Kernel Density Estimation is a kernel-based method that produces

a smooth estimation of the input data’s probability density function (pdf).

The goal is to learn the model characterized by the parameters θ of the

distribution φθ, which the training features vectors belong to: fi ∼ φθ :

∀xi ∈ Tf . In our experiments, we model the density estimate (3.4) using a

Gaussian Kernel with bandwith b equal to 0,5. This means that the param-

eters θ of the learned model represent a Gaussian distribution in the feature

space.
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The last step is to calculate the mean density of normal patches µv, by

averaging the log likelihood (4.18) over the set Vf :

µv = E [log(φθ(Vf ))] . (4.16)

The full training procedure can be found in Algorithm 2.

Figure 4.4: Normal distribution learning procedure. For each Anomaly Detection model,

we show the parameters learned.

Algorithm 2: Normal Distribution Learning

Input: Set of features vectors F .

Output: Normal distribution parameters.

1. Split the feature set F in Tf and Vf .

2. If algorithm = Mahalanobis

Calculate the distribution parameters µt (4.13) and Σt (4.14).

Calculate the mean distance of normal features µf (4.15).

3. If algorithm = KDE

Estimate the distribution parameters θ.

Calculate the mean density of normal features µf (4.16).

4.3.5 Distance-based Anomaly Detection

The rationale behind the proposed method is that, in order to detect anoma-

lies within an image, we have to estimate how much a subregion of the image

is far from being normal. We can split the test dataset in two sets: the vali-

dation set, used to decide the threshold value γ, and the test set, upon which
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the evaluation metrics are calculated. We postpone the discussion about the

threshold value in a separate section (see Section 6.2), since it refers also to

the other proposed method, based on CW-SSIM.

All the test patches xj ∈ EI , which respect the same brightness con-

dition of the training patches (4.2), are passed through the same feature

extraction procedure, explained in Section 4.3.3. Then, their anomaly score

Sj is calculated depending on the Anomaly Detection procedure chosen. For

the Mahalanobis Distance:

SJ =

√
(fj − µt)TΣ−1t (fj − µt); (4.17)

and for the Kernel Density Estimation as the log-likelihood of the test

data:

SJ = log(φθ(fj)). (4.18)

For the patches which do not respect the brightness condition, the assigned

anomaly score Sj is the mean density of the normal patches µv. An example

of the score provided by KDE can be found in Figure 4.5.

Figure 4.5: Score provided by the KDE: the more it is near to zero the more the input

belongs to the normal distribution.

Once the corresponding anomaly score Sj is calculated for all the patches

xj , the goal is to generate the anomaly map ωi. Each anomaly score is first

upsampled to the patch dimension, then the degree of abnormality of each

pixel is obtained by averaging the anomaly score of each corresponding sub-

region. The stride upon which the anomaly map is built is s, the same used

during patch extraction. An example of this can be found in Figure 4.6. We

remark that in this method it is fundamental to average the anomaly score

coming from overlapping subregions, in order to produce high resolution
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anomaly maps. The smaller the stride is, the more the evaluated patches

are, and so the higher the anomaly resolution but also the evaluation time.

Figure 4.6: Simulated example of the anomaly map generated by 4 upsampled anomaly

scores d. In this example the patch size is 5× 5 with stride s = 3. This image is from

[20].

The last step is to produce the binary mask of anomalies, which can be

achieved by applying the threshold γ to each pixel in the anomaly map:

Ω̂I(i, j) =

{
1, if ωI(i, j) ≥ γ,
0, otherwise.

(4.19)

Since the KDE estimation outputs a density metrics, the sign in the above

equation (4.19) is inverted. For the Mahalanobis procedure, instead, it is

correct since it provides a distance metrics. The complete evaluation proce-

dure can be found in Algorithm 3.
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Algorithm 3: Anomaly Detection Evaluation

Input: Test image I. Normal distribution parameters.

Output: Binary mask of anomalies Ω̂I .

1. Extract the test patches xj ∈ EI from the image I.

2. For each xj ∈ EI
If median(xj) > ε

Calculate the features vector fj .

If algorithm = Mahalanobis

SJ =
√

(fj − µt)TΣ−1t (fj − µt) (4.17).

If algorithm = KDE

SJ = log(φθ(fj)) (4.18).

Else

Sj = µf .

3. Generate the anomaly map ωI .

4. Apply the threshold γ to compute the binary mask of anomalies Ω̂I .
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4.4 Anomaly Detection method based on CW-SSIM

applied to Autoencoders

In our second method, we propose Complex Wavelet Structural Similarity

(CW-SSIM) [29] as loss function to train the convolutional autoencoder. The

idea comes as an extension of the work of Bergmann et al. [3], which use

the Structural Similarity Metrics (SSIM) [38] as loss function (see Section

2.2.3). The use of CW-SSIM allows to improve all the important contribu-

tions of SSIM, such as to avoid yielding high residuals in locations where the

reconstruction is only slightly inaccurate. CW-SSIM allows non-structural

contrast and intensity changes, which are detectable but do not affect the

perceived quality of an image, while it increases the tolerance to translation,

scaling and rotation with respect to SSIM.

Once the training phase has ended, we evaluate the abnormality of each

test patch with a reconstruction-based approach. We calculate the visual

similarity distance between the input and the output of the decoder (also

called reconstructed input) as anomaly map ωI . This calculation is done

applying CW-SSIM [29]. The rationale behind this solution is that the au-

toencoder is not able to correctly reconstruct anomalies, since it is trained

only with normal images, and in these areas the CW-SSIM distance will

be large. The great advantage of this evaluation phase with respect to the

previous one (4.3.5) is that the anomaly scores do not need to be upscaled.

4.4.1 Preprocessing

The preprocessing step consists in rescaling all the patches between 0 and 1:

{xi ∈ Rht,wt |0 ≤ xi ≤ 1}. This is done to improve the training convergence.

4.4.2 Autoencoder

The autoencoder is used in this method to extract the features of normal

textures in a Semi-Supervised fashion. We deploy a fully convolutional au-

toencoder (made only by convolution operations), since we want to provide

in input images of any dimension, without modifying the structure. We

define E(·) the encoder network that takes in input the image x and gen-

erates the compressed latent representation, also referred to as bottleneck,

z = E(x). Then, D(·) denotes the decoder network that, starting from the

latent representation z, upscales the features vectors to the resolution of the

input image y = D(z) = D(E(x)). The latent representation z ∈ RNl is a
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features vector with the same dimension Nl of the autoencoder’s bottleneck.

.

Figure 4.7: Autoencoder training scheme. The figure shows the encoder E(x) on the

left, the latent representation z in the center and the decoder D(z) on the right.

4.4.3 Loss Function

Complex Wavelet Similarity Metrics (CW-SSIM) is inspired by the impres-

sive pattern recognition capabilities of the human visual system, since it

was discovered that neurons in the primary visual cortex are well-modeled

localized multi-scale bandpass oriented filters (referred as wavelets), that

decompose images into multiple visual channels [5]. CW-SSIM attempts

to emulate these features in order to design a measurement that is insen-

sitive, up to a few pixels, to non-structured geometric image distortions [29].

The first operation is to decompose x and y into M subbands using the

Complex Steerable filters [31], as we have presented above in Section 4.3.2.

We recall that the number of subbands M depends on the scale S and orien-

tation O parameters. Regarding the number of scales S, we decide to deploy

a pyramid which allows us to achieve almost the same spatial dimension in

the last (low-pass) subband, with respect to the previous proposed method.

Concerning the parameter O, instead, we can follow the same reasoning of

the previous Section 4.3.2, assuming that, even applying a few number of

oriented convolutions, the differences between anomalous and normal tex-

tures can be captured by the Steerable filters. This procedure decomposes

each patch x and y into M different subbands: we can define xm and ym
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with m = {1, ...,M} the subband extracted at mth position in the input and

the reconstructed patch respectively.

The comparison takes place locally: this means that each subband is di-

vided in small windows of size L×L following a regular grid sampling strat-

egy with stride 1. We can define Cxm = {cixm |m = 1, ...,M ; i = 1, ..., L2}
and Cym = {ciym |m = 1, ...,M ; i = 1, ..., L2} the two sets of coefficients ex-

tracted at the same pyramid’s subband m and the local window position i.

The CW-SSIM index between two windows at the same spatial location i is

defined as:

CW(cix, c
i
y) =

2
∣∣∣∑M

m=1 c
i
xm(ciym)∗

∣∣∣+K∑M
m=1

∣∣(cixm)2
∣∣+
∑M

m=1

∣∣(ciym)2
∣∣+K

, (4.20)

where c∗ denotes the complex conjugate and K is a small constant that

avoids the denominator to tend to zero [29]. In order to produce the loss

function, we need a single score for the entire patch comparison. For this

purpose, the CW-SSIM index is averaged over all the windows:

Lcw(x, y) = 1− 1

L2

L2∑
i=1

CW(cix, c
i
y). (4.21)

The loss value ranges between [0, 2], where 0 indicates maximum similarity.

In CW-SSIM (as in SSIM), the processing is done on a sliding window

basis. This is essential when the goal is to ignore point-wise differences, but

we want to make sure that only local variations on the scale of the window

size are penalized by the metrics. Note that the window size determines

the texture scale relevant to our problem. Thus, if the window is large

enough to include several repetitions of the basic pattern of the texture,

then the statistical features extracted represent the image textures [41]. The

main reason why STSIM in Section 4.3.3 was applied on the entire patch is

that the goal was the overall similarity of two texture patches, where the

assumption was that they constitute uniform (homogeneous) textures. In

those settings, the global window produces more robust statistics, unaffected

by local variations [41]. The training Algorithm is described in 4.
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Figure 4.8: Data-Driven training procedure.

Algorithm 4: Autoencoder Feature Extraction

Input: Set of normal images.

Output: Trained autoencoder.

1. Extract patches randomly from the training images: xi ∈ T .

2. Apply the preprocessing by rescaling each image between 0 and 1.

3. Train the autoencoder only with normal patches T , using

Lcw(x,D(E(x)) as loss function (4.21).

4.4.4 Reconstruction-Based Anomaly Detection

The rationale behind the proposed method is to extract the features of nor-

mal patches in a Semi-Supervised approach. When these features, included

in the latent space z, flow through the decoder, they are reconstructed in

such a way that they become patches very similar to the input ones. When,

after the training phase, a patch which contains an anomalous blob is pro-

vided in input, the encoder E is able to extract only the features that cor-

respond to normal patterns. In the end, what the decoder reconstructs in

the place of the anomalous blob is the most similar normal pattern. At this

point, we propose to compare the original and reconstructed patch using

CW-SSIM, annotating as anomalies the pixels which present higher dissim-

ilarity. We can split the test dataset in two sets: the validation set, used

to decide the threshold value γ, and the test set upon which the evalua-

tion metrics are calculated. The full reconstruction-based Algorithm can be

found in 5. As before, we postpone the discussion about the threshold value

in a separate Section 6.2.

For each test image I belonging to the test set, the patches xj ∈ EI
are extracted following a regular grid sampling strategy with stride s. Each
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test patch is then processed by the autoencoder generating the correspond-

ing reconstruction patch yj . These patches are finally used to generate the

full resolution reconstructed image I ′, by averaging the reconstructed pixel

values coming from different patches. An example of a reconstructed patch

using the SEM dataset can be found in Figure 4.9.

Figure 4.9: Anomalous pattern from a 128× 128 patch, reconstructed by the autoen-

coder. a) The original patch. b) The patch reconstructed by the autoencoder. It is

possible to notice that what the decoder has reconstructed is the tubular pattern in

place of the anomaly.

In order to produce the anomaly map ωI , the reconstruction-based ap-

proach compares the original image I and the reconstructed one I ′. In con-

trast to the l2 distance (2.10), which is common practice to use, we propose

the use of CW-SSIM which gives more importance to the salient differences

than to slight inaccuracies around reconstructed edges. Another motivation

is that, in our case, the point-wise differences in anomalous areas are not so

large (since the gray level of an anomaly is similar to the tubular one), thus

a metrics that penalizes differences in a wider region is essential, as we will

demonstrate in the evaluation Section 6.4.

To compute the anomaly score between an entire image I and its re-

construction I ′, we first apply the subband decomposition on both of them,

upsampling each subband to the original patch size. At this point, we apply

the CW-SSIM equation in each window position (4.20), but then we do not

average all the anomaly scores, as we have done in the loss function. In the

end, the degree of abnormality of each pixel is obtained by averaging the

degree of abnormality of each corresponding window location on different

scales. In order to produce more robust results, we decide to average the
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anomaly maps coming from different CW-SSIM scores, which are built using

subband decompositions at various scales. An example of an anomaly map

coming from a test patch can be found in Figure 4.10.

Figure 4.10: Anomalous pattern from a 128×128 patch and the corresponding anomaly

map. a) The original patch. b) The anomaly map of the patch using CW-SSIM index.

The anomalous area is highlighted in the anomaly map.

The final step is to generate the binary mask of anomalies Ω̂I applying

the threshold γ:

Ω̂I(i, j) =

{
1, if ωI(i, j) ≥ γ,
0, otherwise.

(4.22)

This procedure requires also two post-processing steps; the first one al-

lows us to eliminate, from Ω̂I , anomaly values that refer to dark pixels in

the original image I:

Ω̂I(i, j) =

{
1, if I(i, j) ≥ δ,
0, otherwise.

(4.23)

Then, as the second post-processing step, a circular structuring element is

applied as a morphological operator to delete outlier regions that are only a

few pixels wide.
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Algorithm 5: Reconstruction-Based Novelty Detection

Input: Test image I. Trained autoencoder.

Output: Binary mask of anomalies ΩI .

1. Extract the test patches xj ∈ E from the image I.

2. For each xj ∈ E
Calculate the reconstructed patch yj .

3. Generate the full reconstructed image I ′.

4. Produce the anomaly map ωI by measuring the CW-SSIM

dissimilarity between the original image I and the reconstructed one

I ′.

5. Calculate the binary mask of anomalies (4.19).

6. Apply the threshold for dark pixels (4.23) and the morphological

operator.
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Chapter 5

Implementation Details

In this chapter, we present all the implementation details that are behind

the proposed solutions. We explain all the parameters’ choices that we made

focusing on the effective implementation of the algorithms presented before.

In particular, we discuss about the patch dimension that we have chosen in

the two methods, the subband decomposition parameters and the different

architectures of the two training procedures. This chapter is structured in

two main sections: in the first one 5.1 we present the implementation details

about the method based on STSIM, while in the second part 5.2 the details

about the method based on CW-SSIM.

5.1 Implementation of the STSIM based method

First of all, we make a brief recap of the Anomaly Detection method based

on STSIM. If we recall the scheme in Figure 5.1, the feature extraction pro-

cedure is composed by three different steps. In the first one, the training

patches are extracted from anomaly-free images. Once the extraction has

ended, the training patches are convolved with the Steerable filters in order

to produce their set of Steerable subbands. Finally, the STSIM statistics are

computed from each subband and will be used to create the features vector

of each training patch.

The Anomaly Detection training procedures will be deployed to learn

the distribution of the features, coming from normal patches, in the feature

space. The trained model, then, will be used to evaluate the anomaly score

of test images in a patch-wise fashion.
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Figure 5.1: Complete feature extraction procedure. The template scheme is taken from

[20].

5.1.1 Patch Extraction and Preprocessing

The patch dimension (wt = ht) is a critical choice because it determines the

anomaly map resolution, since each test patch provides a single anomaly

score that must be upsampled to the patch dimension. This means that too

large patches would lead to have less resolution in the anomaly map. This

choice also determines the dimension upon which the features are captured:

too small patches would not lead to capture the features that characterize

normal textures, while too large ones force the feature extraction procedure

to be less sensitive to small anomalous regions. For the aforementioned rea-

sons, the performances of our method based on STSIM highly depend on

this parameter. The research for the best trade-off in the patch dimension

is fundamental. We empirically choose wt = 20px for the implementation

that uses the KDE, while wt = 18px for the one that uses the Mahalanobis

distance as anomaly metrics. The choice of these values will be fully dis-

cussed in the evaluation Section 6.3.

The parameter ε defines the minimum median value of each training

patch (4.2). It is a manually tuned parameter that we set to 30 (out of

255, the maximum gray-scale value). During the training phase, we deploy

Nt = 500 patches for the Mahalanobis implementation andNt = 2500 for the

KDE one. The number of patches extracted will clearly affect the accuracy of

the Anomaly Detection procedures, thus we use a higher number of training

patches for the KDE algorithm, since it is based on a more complex model.

5.1.2 Subband Decomposition

We recall that the number of subbands M strictly depends on two factors:

the patch texture and its dimension. In our tests, the best configuration is

achieved with the number of scales S = 2 or S = 3 and the number of ori-

entations O = 4. We decide to try at maximum 3 scales, since going further
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means treating subband sizes of less than 9 or 10 pixels, that we consider the

lower bound in the subband dimension. Experimental results in the evalu-

ation Section 6.3 confirm that using lower sizes would not lead to capture

the features that characterize normal textures. Regarding the parameter O,

we can notice that normal patches are characterized by high differences in

gradient in any direction, whereas anomalous patterns are characterized by

uniform agglomerates that have almost the same response in any direction.

The experimental results prove that, even applying a few number of oriented

convolutions, these differences can be captured. An example of a 3 scales,

4 orientations decomposition applied to a 32× 32 input patch can be found

in Figure 5.2.

Figure 5.2: Steerable subband decomposition with S = 3 and O = 4, applied to a

32 × 32 patch. We decide to show a larger patch, with respect to the ones that we

really use, for better interpretability. a) Original patch. b) High-pass subband. c)-f)

Band-pass subband at scale 2. g) Low-pass subband. The oriented subbands (c-f) show

us that they present high differences in gradient and thus the probability of belonging

to normal textures is greater.
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5.1.3 Training Parameters

Once all the features vectors of the training patches are extracted, we need

to learn the parameters that characterize their distribution. In our experi-

ments, we fix the split of the training dataset explained in Section 4.3.4 as

80% (Tf ) - 20% (Vf ). Regarding the KDE training, we can mention that we

model the density estimate (3.4), using a Gaussian Kernel with bandwidth

b equal to 0.5.

5.1.4 Anomaly Detection

The Anomaly Detection evaluation needs that each test image I is divided

in patches. We choose to maintain the same patch size of the training set

following a regular grid sampling strategy with stride s = 1. We believe that

it is fundamental to keep the same size of the training patches in order to

extract the same type of features. We finally choose to have the minimum

possible stride in order to have the best possible accuracy in the anomaly

map ωI . The value of each pixel in the anomaly map is the mean value of

the anomaly score of all the patches over that position. An example of an

anomaly map computed using the aforementioned procedure can be found

in Figure 5.3.

Figure 5.3: Test image I and its anomaly map ωI computed using Mahalanobis distance.

We can notice that anomalous blobs are highlighted in the anomaly map. This is due

to the fact that the distance is greater in the anomalous areas.
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Figure 5.4: Reference binary mask ΩI and the one generated by our solution Ω̂I from

the anomaly map defined in Figure 5.3.
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5.2 Implementation of the CW-SSIM based method

In the Anomaly Detection method based on CW-SSIM applied to autoen-

coders, we extract patches from normal images in order to train an autoen-

coder to reconstruct its input. The objective of the network is to minimize

the perceptual similarity between the input and the output of the autoen-

coder. During this stage, the model learns how to extract features that

characterize normal patches.

Figure 5.5: Data-Driven training procedure.

This solution exploits the idea that the autoencoder is not able to cor-

rectly reconstruct anomalies, since it is trained only with normal patches.

In principle, the anomalous areas will be reconstructed with textures as sim-

ilar as possible to the normal ones, thus the CW-SSIM distance between the

original and the reconstructed patches will we be large in those regions.

5.2.1 Patch Extraction and Preprocessing

We choose to select a larger patch dimension with respect to the previous

method. This decision is motivated by two factors: the first one is that

we do not extract a single anomaly score from each patch during anomaly

evaluation, but one for each window. We recall that in the previous method

it was fundamental to choose a small patch size in order to increase the reso-

lution of the anomaly map. The second motivation is that CW-SSIM works

better with particularly large patches, as described in its original paper [29].

In any case, too large patches would require higher computational effort and

could lead to lower precision in the global anomaly score; for this reason we

manually tune the patch dimension to wt = ht = 128px.
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5.2.2 Autoencoder Architecture

The encoder E(·) is built by 5 convolutional layers, which reduce the input

space dimension to the latent dimension. They are all characterized by a

kernel dimension equal to 4. We select small filters in order to capture tiny

features from the beginning. The unique parameter that we vary between

different layers is the stride which indicates how many pixels skip after each

convolution: for example stride equal to 2 means that the output of the

convolution will be halved in spatial dimension. It also changes the filter

size, called also channel dimension, which indicates how many different 4×4

kernels are applied. We can notice that, from the structure that you can

find in Figure 5.6, as we approach to the latent space the number of filters

increases, while the spatial dimension decreases. This is a common proce-

dure able to capture features at different resolutions, until the latent space

E(x) = z. In particular, selecting wt = ht = 128px, we have that the z is a

one-dimensional vector of 512 features. The architecture of the decoder D(·)
is exactly the reverse of the encoder one, but instead of deploying classical

convolution operations, they are transposed convolutions which are able to

increase the spatial dimension. The upscale factor is tuned by the stride

parameter. The output of the decoder y = D(E(x)) has the same spatial

and color dimension of the input patch.

Each convolutional layer, both in encoder and decoder, is followed by

a Leaky Rectified Linear Unit (Leaky ReLU) activation function [17] with

slope 0.3, which introduces non-linearity in the model. The last convolu-

tional layer in the decoder, instead, is followed by a linear activation func-

tion. Since we train the model from scratch, i.e. do not apply transfer

learning, we initialize the weights with the Glorot initialization [11], which

allows faster training convergence in this setting. This architecture counts

5,573,057 number of parameters.

5.2.3 Loss Function

The autoencoder deployed is trained to minimize the perceptual similarity

between the input image and the reconstructed one using the CW-SSIM

index. This index is based on the complex Steerable decomposition, which is

implemented here as explained in its dedicated Section 4.3.2. Regarding the

number of scales S, we decide to deploy a pyramid which allows us to achieve

the spatial dimension of 16 pixels in the last (low-pass) subband, which

is similar to the one achieved in the STSIM-based method. Concerning

the parameter O, we can make the same assumption of the STSIM-based
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Figure 5.6: General outline for the encoder architecture. The decoder has exactly the

reverse structure, but with Transpose Convolution 2D layers.

solution that, even applying a few number of oriented convolutions, the

differences between anomalous and normal textures can be captured by the

Steerable filters. For the aforementioned reasons, we empirically choose S =

5 and O = 5. Once the subbands, both from the input and the reconstructed

patch, are generated, the CW-SSIM index can be calculated as in (4.21).

We recall that this metrics is computed locally with a sliding window of size

L× L. We empirically choose L = 7 as the best window size.

5.2.4 Training Parameters

The autoencoder architecture is trained on 50,000 defect free patches of size

128× 128, divided in batches of 256 patches in order to fit in memory. We
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train the network for 200 epochs, using the ADAM [14] optimizer with an

initial learning rate of 1×10−3 and a weight decay set to 0.5 every 20 epochs.

5.2.5 Anomaly Detection

At the end of the training procedure, we will have a network able to ex-

tract the features that characterize only normal patches. This solution uses

the CW-SSIM similarity metrics between the original and the reconstructed

patches in order to generate the heat-map of the anomalies. In principle,

anomalous areas are very different in the two patches and thus the similarity

score will be lower. The evaluation is performed by striding over the test

image I and reconstructing patches of size 512 × 512 using the trained au-

toencoder. We cannot fit the whole image to the autoencoder because it is

not squared. In principle, it would be possible to set the horizontal and ver-

tical stride to 512. However, at different spatial locations, the autoencoder

produces slightly different reconstructions of the same data, which leads to

some striding artifacts. Therefore, we decrease the stride to 16 pixels and

average the reconstructed pixel values [3]. In the end, we have produced the

full reconstructed image I ′. An example of a reconstructed test image and

its original version can be found in Figure 5.7.

Figure 5.7: Test image I and its version I ′ after the reconstruction procedure. We can

notice that anomalous blobs are reconstructed with filamentous textures.

The anomaly map is generated by computing the CW-SSIM similarity

between the original image I and the reconstructed one I ′. In our implemen-

tation, we average the scores of 3 CW-SSIM indexes coming from different

Steerable configurations at S = 7, 8, 9 and O = 6, all of them using a window

size of L = 7. These metrics, working locally, could produce false indications

near the image sides; for this reason we decide to suppress the anomaly score

over these pixels. In our configuration, we choose to halve the values of all

the scores which present a distance from the nearest border of 5 pixels at the
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most. An example of an anomaly map computed using the aforementioned

procedure can be found in Figure 5.8.

Figure 5.8: Test image I and its anomaly map ωI . We can notice that anomalous blobs

are higlighted in the anomaly map. This is due to the fact that the CW-SSIM index is

lower in anomalous areas (the colormap is inverted for better interpretability).

In the end, the binary mask of anomalies Ω̂I is generated applying the

threshold γ to the anomaly map ωI . The post-processing step is composed

of two operations: the first one allows us to eliminate, from Ω̂I , anomaly

values that refer to dark pixels in the original image I. To do this, we

manually choose the dark pixels threshold parameter δ = 30. Then, as the

second post-processing step, a circular morphological operator with diameter

10 is applied to delete outlier regions that are only a few pixels wide. An

example of binary mask of anomalies after the post-processing steps can be

found in Figure 5.9. From the resulting figures, we can qualitatively notice

that the anomaly detection capability is greater with respect to the previous

method, without loosing resolution. The motivation behind this differences

in the results will be fully discussed in the performance evaluation Section

dedicated to this method 6.4.

Figure 5.9: Reference binary mask ΩI and the one generated by our solution Ω̂I from

the anomaly map defined in Figure 5.8.
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Chapter 6

Experiments and

Performance Evaluation

In this chapter, we present the experimental evaluation of our solution. In

the first Section 6.1, we introduce the dataset upon which we base our ex-

periments. In the second Section 6.2, we provide which are the metrics that

we use to evaluate our methods. In the following two Sections 6.3 and 6.4,

we present the performance of the methods based on STSIM and CW-SSIM

respectively, with an in-depth discussion about the results. Then, in Section

6.5, we compare our results with three State of the Art techniques, which

use our same dataset: the one based on Sparse Dictionary Learning [7], pre-

sented in Section 2.2.1; CNN-Based Self Similarity [20], presented in Section

2.2.2; and finally the one that uses SSIM as loss function of an autoencoder

[3], presented in Section 2.2.3. In this section, we also report the evaluation

time analysis, regarding both the training and the evaluation phase of our

methods compared with the ones in literature. In the last Section 6.6, we

report some experiments in which we modify the CW-SSIM method, using

a latent based anomaly score in place of the reconstruction error to generate

the anomaly map. We decide not to add this solution among the proposed

ones, since it achieves very poor results in our experiments.

6.1 Dataset

The dataset used in this work is composed of images of nanofibrous materi-

als acquired with the FE-SEM (Carl Zeiss Sigma NTS, Gmbh Oberkochen,

Germany). The Field Emission Scanning Electron Microscopy (FE-SEM) is

an electron microscope which provides topographical and elemental informa-

tion with a minimum spatial resolution of 1nm. All images are acquired in
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the same conditions and using the same parameters. The external appear-

ance of the basic material can be seen as a non-periodic continuous texture

of filamentous elements that look like bright wires [20]. The anomalous ar-

eas, instead, are composed by agglomerates of filamentous material which

can appear in any position of the image. Some examples with and without

anomalies are in Figure 6.1.

Figure 6.1: Portions of normal and anomalous images. a) Portion of normal images.

b) Portion of anomalous images.

The dataset is composed of 45 images, 5 of them are normal (do not

contain any anomaly) and the other 40 are anomalous images (contain at

least an anomaly). In order to make a fair comparison with the State of the

Art, we use the same database splitting between training, validation and test

sets present in literature. The training set is composed by all the 5 normal

images. The other 40 images are divided in the test set, which contains 35

images, and the validation set, which contains the other 5 images. For sake of

comparison with the State of the Art, we fix the validation set with images at

the following positions: 8, 15, 27, 31, 35. All the defects have been manually

annotated. The dataset and the defect annotations are publicly available at

[19]. Each image I is a 8-bit gray-scale of size 696 × 1024. The annotation

associated with each anomalous image is the map Ω̂I ∈ {0, 1}. Figure 6.2

shows an anomalous image along with its defect annotation. The training

set will be used by our two methods to learn the model characterized by
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normal data. The validation set will be used to determine the threshold γ,

while the test set, instead, will be used to assess the quality of the proposed

solutions with respect to the current State of the Art techniques. Finally,

we remark that the overall defects in anomalous images are very small: on

average they cover 1.3% of the image, and only the 0.5% of the anomalies

exceeds the 2% of the image size [7].

Figure 6.2: Portion of an anomalous image and the corresponding anomaly mask. a)

Portion of a normal image I. b) Portion of the reference anomaly mask ΩI .

6.2 Evaluation Metrics

In this section, we present the metrics that we will compute to evaluate

the performance of our proposed solutions. We decide to propose the same

metrics used by the selected reference methods in literature, in order to have

a fair comparison with them. In particular, we are going to present the Area

Under Curve (AUC), which provides an aggregate measure of performance

across all possible classification thresholds, and the Defect Coverage as the

percentage of pixels covered by the binary mask at a certain threshold.

Moreover, we provide another metrics called Intersection over Union (IoU),

used to measure the accuracy of the model’s prediction with respect to the

ground-truth, which is not reported in the reference methods.
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6.2.1 Area Under Curve

The AUC index is based on the generation of the Receiver Operating Char-

acteristic curve (ROC curve), that is a graph showing the performance of a

classification model at all classification thresholds. It is a two dimensional

graph composed of the True Positive Rate (TPR) in the vertical axis and the

False Positive Rate in the horizontal one. The TPR (also called as recall)

is defined as:

TPR =
TP

TP + FN
, (6.1)

where TP is the number of pixels correctly classified as anomalous, and FN

the number of pixels that are not recognized as anomalous by the model.

The FPR is defined as follows:

FPR =
FP

FP + TN
, (6.2)

where FP is the number of normal pixels that are wrongly classified as

anomalous (they are normal), and TN the number of pixels correctly clas-

sified as normal. Each point in the ROC curve indicates the intersection

between the TPR and FPR at different thresholds, thus the line from (0,0)

to (1,1) indicates the random classification. The Figure 6.3 shows an exam-

ple of two ROC curves.

Figure 6.3: ROC curve of the solution based on CW-SSIM (blue) vs. random classifier

(aquamarine).
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AUC measures the entire two-dimensional area underneath the entire

ROC curve (integral from (0,0) to (1,1) of the curve). AUC provides an ag-

gregate measure of the performance across all possible classification thresh-

olds. One way of interpreting AUC is as the probability that the model ranks

a randomly chosen positive example more highly than a random negative

one [9].

6.2.2 Defect Coverage

The second metrics that we want to use is the one proposed in [7]. This

metrics represents the coverage percentage of defects at a certain level of

threshold. We use the same configurations of all the other solutions in

literature, choosing a threshold value γ such that FPR is about 5% over the

validation set. To compute the Defect Coverage percentage, we detect each

defect within each reference map ΩI , by finding each connected component

ccj ∈ ΩI . Each ccj with j = {1, ...D} represents a single anomalous blob,

out of D, in ΩI . For each of these defects j, we calculate the Coverage Factor

as follows:

Coverage Factorj =
TPj

TPj + FNj
. (6.3)

Therefore, the Coverage Factor of a connected component is the number of

correctly detected pixels over its area. The Defect Coverage metrics reports

the minimum Coverage Factor over more than 50% anomalous blobs in the

test set.

6.2.3 Intersection over Union

The IoU index is one of the most popular metrics in the Semantic Segmenta-

tion field. It is used to measure the accuracy of the model’s predicted binary

mask with respect to the reference one, penalizing the wrong classification

more than the previous two indexes. It is defined as the area of overlap

between the predicted segmentation and the ground truth, divided by the

area of union between the predicted segmentation and the ground truth:

IoU =
TP

TP + FN + FP
. (6.4)

This index is particularly penalizing when, as in our case, we have an im-

portant unbalance between the two classes (we recall that on average the

anomalies cover 1.3% of the test images). The threshold γ is chosen for

completeness as we have done before, in such a way that FPR is about 5%

over the validation set. In IoU this threshold results too low, producing
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many false indications. For this reason, we also report the performances at

FPR of 3%, only for the best configuration.

6.3 Evaluation of the STSIM based method

In this section, we report the performance evaluation of the Anomaly De-

tection method based on Structural Texture Similarity. Initially, we discuss

about the possible parameters’ choice, such as the patch dimension, and

how they affect the results. Here we also report the performance evaluation

achieved by the best configuration. In the end, we add some graphic results,

correlated by some considerations about its strengths and limitations.

6.3.1 Algorithm configuration performance comparison

In order to search the best configuration of our first solution and present

its results, we tune the three main parameters: the patch dimension (that

we can call simply wt, since we use only squared patches), the subband

decomposition number of scales S and orientations O. We recall that the

number of scales S strictly depends on wt while, for the parameter O, we

have more freedom in the choice since it does not depend on any other

parameter. The complete performance evaluation using KDE as anomaly

metrics can be found in Table 6.1, and using Mahalanobis distance in Table

6.2. The research for the best configurations follows a greedy approach: in

the beginning, we focus mostly on the patch size, starting from 16 pixels and

increasing it until we realize that the performance starts to decrease. This

procedure is applied with S = 2 and O = 4, which we empirically consider

good configurations. The configurations that reach the best performance are

investigated further by tuning initially S and then O, looking for different

feature characteristics.

From the evaluation tables, we can notice that this method achieves the

best performances with a patch size of 18px using Mahalanobis and 20px

using KDE anomaly metrics. The difference between the two solutions is

very small and can be related to the choice of the KDE’s bandwidth b.

Tables 6.1 and 6.2 show that the implementation with the Mahalanobis dis-

tance outperforms the KDE one in the AUC metrics. Instead, both of them

achieve almost the same performances in the Defect Coverage. Regarding

this metrics in particular, the choice of the parameter S is fundamental for

both the implementations, since it describes the low-pass filter resolution.

The results tell us that the number of orientations O do not affect so much

68



the anomaly map resolution. In Figure 6.4 and 6.5, we report some anomaly

maps coming from the two implementations. From these examples, we can

realize that the implementation with the Mahalanobis distance is less coarse

and reports fewer false indications with respect to the version with KDE.

Apart from this, they seem to have the same recognition capability. In

the end, the STSIM based solution reaches the best performances using the

Mahalanobis distance, with the configuration wt = 18px; S = 2 ; O = 4,

achieving an AUC of 0.818, an IoU of 0.126 covering more than 50% of the

defects with a minimal overlap of 0.240.

Algorithm configuration performance comparison with KDE

Parameters AUC Defect

Coverage

IoU

wt = 18px

S = 2 ; O = 4

0.693 0 0.075

wt = 18px

S = 3 ; O = 4

0.638 0 0.045

wt = 20px

S = 2 ; O = 4

0.779 0.007 0.088

wt = 20px

S = 2 ; O = 7

0.774 0.021 0.087

wt = 20px

S = 3 ; O = 4

0.771 0.201 0.126

wt = 20px

S = 3 ; O = 7

0.767 0.208 0.124

wt = 22px

S = 2 ; O = 4

0.779 0 0.096

wt = 22px

S = 3 ; O = 4

0.770 0 0.116

Table 6.1: Performance evaluation of the Anomaly Detection method based on Struc-

tural Texture Similarity using KDE as anomaly metrics at different algorithm configu-

rations.

Furthermore, we report the performances at a lower threshold (3% of

validation FPR) in the best configuration, achieving an IoU of 0.153, but

dramatically decreasing the Defect Coverage to 0.127.
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Algorithm configuration performance comparison with Mahalanobis

Parameters AUC Defect

Coverage

IoU

wt = 16px

S = 2 ; O = 4

0.798 0.225 0.119

wt = 16px

S = 3 ; O = 4

0.831 0.180 0.110

wt = 18px

S = 2 ; O = 4

0.818 0.240 0.126

wt = 18px

S = 2 ; O = 7

0.818 0.240 0.126

wt = 18px

S = 3 ; O = 4

0.848 0.124 0.135

wt = 18px

S = 3 ; O = 7

0.846 0.128 0.121

wt = 20px

S = 2 ; O = 4

0.821 0.140 0.126

wt = 20px

S = 3 ; O = 4

0.844 0.009 0.133

Table 6.2: Performance evaluation of the Anomaly Detection method based on Struc-

tural Texture Similarity using Mahalanobis distance as anomaly metrics at different

algorithm configurations.

6.3.2 Final considerations

The major drawback of this method is that STSIM was originally designed

to deal with large patches. In the original paper [41], the authors use patches

of 128× 128 pixels wide, but here we are constrained to work with as small

as possible ones. The rationale behind larger patches is that they allow to

deploy more scales in the subband decomposition and thus extract more

information at different subband resolutions. The evaluation Tables 6.1 and

6.2 also tell us that increasing the number of orientations does not add any

interesting information. As we can see in the Figures 6.4 and 6.5, this fact

does not lead to recognize the overall defects but only the parts that are

almost regular or very bright. Moreover, very bright zones that are not

anomalous, such as the intersection of many fibers, are miss-classified pro-

ducing false indications.

The exact opposite drawback is the use of a too large patches’ anomaly
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score as per-pixel evaluation. This fact leads to produce square-like regions

in the anomaly maps where the defects are present, which will reflect in the

degradation of the Anomaly Detection resolution. In addition, we recall that

only the 0.5% of the anomalies exceeds the 2% of the image size, so these

tiny anomalies have a high probability not to be considered with respect to

the rest of the patch. The trade-off that we have reached does not satisfy

too much the metrics that we have chosen, in particular the Defect Coverage

and the IoU report very low performances. We will see that the solution

based on CW-SSIM will produce better results, particularly on these last

two metrics, addressing the aforementioned problems.

Figure 6.4: Portion of test images evaluated with the STSIM based method imple-

mented with KDE as anomaly metrics. From left to right we can find the original test

image I, the anomaly map ωI and the binary mask of anomalies Ω̂I .
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Figure 6.5: Portion of test images evaluated with the STSIM based method imple-

mented with Mahalanobis distance as anomaly metrics. From left to right we can find

the original test image I, the anomaly map ωI and the binary mask of anomalies Ω̂I .
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6.4 Evaluation of the CW-SSIM based method

In this section, we report the performance evaluation of the Anomaly Detec-

tion method based on autoencoders. This method trains a fully connected

autoencoder with normal patches, using CW-SSIM as loss function. As in

the previous section, we initially investigate about the possible parameters

configurations and their related performance evaluations. In the following,

we compare CW-SSIM with the other distance metrics present in litera-

ture both as loss function of an autoencoder and as similarity metrics in

the anomaly maps generation. We refer to CW-SSIM as anomaly metrics

when we use it as similarity distance in the anomaly map generation. In the

specific, we show that CW-SSIM increases the performances of the recon-

struction error in autoencoder trained with a different loss function. But it

achieves the best results when it is used both as loss and as anomaly metrics.

In the end, we add some considerations about the performances of our two

solutions.

6.4.1 Algorithm configuration performance comparison

As in the above Section 6.3, we report the performance of our solution tun-

ing the most important parameters: the patch dimension wt, the subband

parameters S, O and finally the window size L upon which the loss is calcu-

lated. We recall that all these parameters are interesting for the calculation

of the visual similarity between the input and the reconstructed patch. We

can assume that, the more this index is precise in the identification of vi-

sually similar patches (without penalizing small geometry perturbations),

the more the autoencoder is able to extract the features that enable this

type of reconstruction. The complete performance evaluation with different

configurations can be found in Table 6.3.

The research for the best configurations follows again a greedy approach

similar to the one explained in the previous section: in the beginning, we

focus mostly on the patch size, starting from 64 pixels and increasing it

until we notice that the performance starts to decrease. This procedure is

applied choosing S in such a way that the low-pass subband is 16 pixels

wide and O = 5, which we empirically consider good configurations for the

CW-SSIM calculation. The configurations that reach the best performance

are investigated further varying the parameters O and L.

The Table 6.3 with the performances of different configurations reports
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Algorithm configuration performance comparison

Parameters AUC Defect

Coverage

IoU

wt = 64px ; L = 7

S = 4 ; O = 5

0.974 0.947 0.254

wt = 128px ; L = 7

S = 5 ; O = 5

0.977 0.962 0.261

wt = 128px ; L = 9

S = 5 ; O = 5

0.972 0.933 0.253

wt = 128px ; L = 5

S = 5 ; O = 5

0.974 0.939 0.258

wt = 128px ; L = 7

S = 5 ; O = 7

0.973 0.946 0.249

wt = 256px ; L = 7

S = 6 ; O = 5

0.977 0.959 0.260

Table 6.3: Performance evaluation of the Anomaly Detection method based on CW-

SSIM at different algorithm configurations.

that there are no huge differences in the parameters’ choice. Regarding the

patch size in this method, we have also to consider that smaller patches

would decrease the overall training time. A patch size of 128px, in addition

to reach the best performances, seems a good trade-off between the number

of possible subbands deployed and the training time. The window dimen-

sion L is an important parameter, since it regulates the sensibility of the

metrics; we empirically found that a window size of 7px achieves the best

performances. In the end, considering more orientations do not produce any

interesting results.

6.4.2 Loss function performance comparison

In this section, we show that using CW-SSIM as loss function yields bet-

ter Anomaly Detection performance than alternatives in the literature. For

this purpose, we report the results of experiments in which we use the same

autoencoder trained with Mean Squared Error (MSE) (2.10), Structural

Similarity (SSIM) (2.15) and Multi-Scale Structural Similarity (MS-SSIM)

(3.2). For sake of comparison, the training procedure, the parameters and

the Anomaly Detection metrics are the ones that we proposed in the im-

plementation Section 5.2, equal for all the experiments. It is not common

practice to use an anomaly metrics different from the loss function; here
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this choice is made only for comparison purposes. The SSIM experiment

is deployed as described in [3], where the window size of CW-SSIM is set

to 11. The MS-SSIM metrics is implemented as in its original paper [37],

with five scales and the window size set to 11. In Table 6.4, it is reported

the performance evaluation over the nanofibrous dataset with different loss

functions applied to the same autoencoder configuration.

Loss function performance comparison

Loss function AUC Defect

Coverage

IoU

MSE 0.962 0.865 0.245

SSIM 0.969 0.905 0.249

MS-SSIM 0.970 0.931 0.255

CW-SSIM 0.977 0.962 0.261

Table 6.4: Performance evaluation of the Anomaly Detection method based on CW-

SSIM involving different loss functions, applied to the same autoencoder configuration.

In order to bring a visual proof of the performances reported in Table 6.4,

in which our method outperforms all the others in each performance met-

rics, we report in Figure 6.6 the reconstruction of three different 128× 128

patches in the four previous experiments. The first two patches present

medium/small anomalous blobs, while the third is a normal one.

Looking at the anomalous patches in Figure 6.6, we can clearly see that

all the four methods achieve different results in the reconstruction of the

anomalies. Since it is trained only with normal patches, the first goal of

the autoencoder is to reconstruct anomalous blobs in such a way that they

look as similar as possible to normal textures. From the first two columns

of Figure 6.6, we can notice that the experiment involving MSE (b) poorly

achieves this result, generating undefined masses, because this metrics fo-

cuses mostly on the pixel wise-differences and not on general textures. From

the tests with SSIM (c) and MS-SSIM (d) as loss function, we can perceive

that the reconstructed anomalies are more similar to tubular patterns, and

this clearly improves the performances. The last patch shows the result of

the reconstruction using CW-SSIM (e) as loss function, which is the one

that is the most able to replace anomalous blobs with normal textures. We

think that it is fundamental to have a pattern in the reconstruction, which is

as visually dissimilar as possible to the original one. These large differences

allow to generate accurate anomaly maps when we use as anomaly metrics
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the one that we have proposed.

The second goal of the autoencoder is to perfectly reconstruct normal

textures, in order to avoid the generation of false indications in the anomaly

map. From the third column of Figure 6.6, we can realize that in this

case all the four experiments achieve almost the same reconstruction ability.

However, the reconstruction on the experiment with CW-SSIM results less

blurred with respect to all the others. An explanation could be that the

low-pass filters L1(w), in the Steerable filters decomposition, are effectively

able to remove most aliased components increasing the definition of the

filamentous material (see Section 3.1). Moreover, this fact is true also for

the patches involving anomalous blobs.

6.4.3 Anomaly metrics performance comparison

Now we want to prove that also the metrics that we propose to compute the

anomaly map, in which different configurations of CW-SSIM are applied,

particularly increase the performances. To accomplish this, we repeat the

experiments that we have presented before, but now the anomaly metrics

used to compare the original and the reconstructed image is the one used as

loss function. In this case, we have to make additional comments about the

experiment involving MS-SSIM. As pointed out in [21], this metrics is unde-

fined in the points where the covariance function, that is the numerator of

the structural coefficient (2.13) in MS-SSIM equation (3.2), is negative. The

numerical problem comes to light when MS-SSIM rises the structural term

to a positive, non-integer number as it is proposed in the original paper [37].

One could argue that this problem is present also when MS-SSIM is used

as loss function and not only to compute the anomaly map, that is correct.

In that case, however, the structural term is averaged over all the window

positions before applying (3.2). This fact allows to mitigate the presence of

negative structural values, which are relevant when the two images in that

specific window are very dissimilar. For the aforementioned reasons, we use

SSIM as anomaly metrics in this experiment.

Comparing the two Tables 6.4 and 6.5, it is clear that CW-SSIM gives

an important boost in the recognition of the anomalies over the nanofibrous

dataset, both in terms of loss function and anomaly metrics. In particular,

when using MSE, it is essential to use a metrics that penalizes differences

in a wider region since, as we discussed in Section 4.4.4, the point-wise

differences in anomalous areas are not so large. This fact is clearly visible
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Anomaly metrics performance comparison

Loss function &

Anomaly metrics

AUC Defect

Coverage

IoU

MSE 0.665 0 0.062

SSIM 0.961 0.881 0.231

MS-SSIM 0.962 0.872 0.237

CW-SSIM 0.977 0.962 0.261

Table 6.5: Performance evaluation of the Anomaly Detection method based on CW-

SSIM involving different loss functions and anomaly metrics, applied to the same au-

toencoder configuration.

in the second row (b) of Figure 6.7, where the pixel-wise l2 metrics (which

is MSE but not averaged) is applied. In the rest of the figures, the anomaly

maps originated from the other experiments are reported. We can notice

that the anomaly maps generated by SSIM (c) and MS-SSIM (d) are very

similar, probably because they are produced with the same metrics. It is

possible to realize that the CW-SSIM map (e) is much more defined with

respect to the previous two, due to the averaging of CW-SSIM metrics at

different window size L (see Section 4.4.4 for more details). In the end, we

remark that these anomaly maps, related to the CW-SSIM configuration,

show that the identification of the anomalies is more accurate. This is

probably due to the analysis of the images at different scales and orientations

using the Steerable filters decomposition.
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Figure 6.6: Comparison of 128× 128 patch reconstructed with different loss functions.

a) Original patches. b) MSE Reconstructed patch. c) SSIM Reconstructed patch. d)

MS-SSIM Reconstructed patch. e) CW-SSIM Reconstructed patch.
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Figure 6.7: Comparison of 128×128 patch evaluation after applying the corresponding

anomaly metrics between the original patches and the reconstructed ones shown in

Figure 6.6. a) Original patches. b) Anomaly maps generated with l2 metrics. c)

Anomaly maps generated with SSIM metrics. d) Anomaly maps generated with MS-

SSIM metrics. e) Anomaly maps generated with CW-SSIM metrics.
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6.4.4 Final considerations

In this final section, we want to reconnect to the drawbacks of the STSIM

based method and understand how they are solved. The first advantage

is the use of the Steerable filters decomposition on large patches, which

allows to extract more scale-related information. Then these features are not

directly used as normal reference in the Anomaly Detection, but as anomaly

metrics in an autoencoder. The benefit is that the features are learned

forcing the autoencoder to reconstruct textures of nanofibrous materials,

as perceptually identical to the input ones. Taking advantage of the way

in which CW-SSIM works, it is possible to achieve fine-grained anomaly

map resolutions, since the similarity metrics between images are computed

in small windows. Moreover, we average the metrics that comes from the

application of CW-SSIM at different windows size, increasing the robustness

of the calculations. In a nutshell, we are able to train the model with larger

patches, allowing more information extraction, and to evaluate the images

in smaller windows increasing the anomaly map resolution.

Figure 6.8: Portion of test images evaluated with the Anomaly Detection method

implemented with CW-SSIM as loss function and anomaly metrics. From left to right

we can find the original test image I, the anomaly map ωI and the binary mask of

anomalies Ω̂I .
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6.5 Comparison with the State of the Art

The Table 6.6 reports the three State of the Art performances and the ones

achieved with our solutions using AUC metrics, Defect Coverage and IoU.

We want to state that for the CNN-Based Self-Similarity performances in

Table 6.5, we report the ones present in the paper since the code is not pub-

licly available. For this reason, they are highlighted with an asterisk and

only the AUC and Defect Coverage metrics are reported. Regarding the

other two methods, instead, we repeat the experiments in our configuration

and show the complete performances. From the evaluation table, we can

clearly state that the STSIM based solution achieves worst performances

with respect to the ones in literature, probably due to all its drawbacks.

The CW-SSIM based method, instead, achieves comparable performances

in the AUC scores, especially with respect to [20], but it outperforms by far

all the other methods in the second metrics, covering more than 50% of the

anomalies for more than 96% of their area. We want to finally report that

this solution using the best configuration reaches an IoU of 0.326 using the

threshold coming from FPR set to 3% in the validation set. In this settings,

it reaches also the 0.92 in the Defect Coverage, which is still better than the

State of the Art.

State of the Art performance comparison

Method AUC Defect

Coverage

IoU

Sparse Dictionary

Learning [7]

0.926 0.65 0.223

CNN-Based

Self-Similarity [20]

0.974* 0.85* n.e.*

SSIM Applied to

Autoencoders [3]

0.961 0.88 0.231

STSIM based

method

0.818 0.24 0.126

CW-SSIM based

method

0.977 0.96 0.261

Table 6.6: Performance comparison between the State of the Art and our solutions.

We refer to Sparse Dictionary Learning to [7], CNN-Based Self-Similarity to [20] and

SSIM Applied to Autoencoders to [3].

Both our two methods are trained and evaluated on a Windows 10 PC
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with an Intel i7-8700 3.20GHz × 12 CPU, 16 GB GDDR4-RAM and an

NVIDIA GTX 1060 GPU with 4GB of dedicated RAM. The great advantage

of the STSIM based procedure is that the training is very fast, since it takes

on average 2.3 seconds for the KDE implementation and 1.3 seconds for the

Mahalanobis one. This fact is really useful in an environment in which the

normal textures continuously change, for example due to the degradation

of the image source. The CW-SSIM based method, instead, takes about 11

hours to complete the training procedure described in the implementation

Section 5.2. Table 6.7 reports the evaluation time of our solutions, compared

with the ones in literature. We can notice that ours and [3], which are

based on autoencoders, are much faster with respect to the previous two [20]

[7]. This is for sure due to the avoidance of any learning during evaluation

and, in particular for the second method involving the autoencoder, the

execution of the most computational demanding operations in the GPU.

The evaluation time of the STSIM method is very low, and very similar for

both the implementations; the reason could be that we based our evaluation

on few training data. Regarding the second method, we can realize that

there are some differences between our evaluation time and the one in [3];

this could be related to the different autoencoder architecture, patch striding

and evaluation procedure, but also for the GPU used.

Evaluation time comparison

Method Evaluation time

Sparse Dictionary

Learning [7]

50s ∼ 55s

CNN-Based

Self-Similarity [20]

15s ∼ 55s

SSIM Applied to

Autoencoders [3]

3.61s

STSIM based

method

0.02s

CW-SSIM based

method

13.73s

Table 6.7: Evaluation time comparison between the State of the Art and our solutions.

We use the same reference of Table 6.6.
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6.6 Anomaly Detection Experiments based on Au-

toencoder Latent Distribution

The use of the reconstruction error, as anomaly score in autoencoder based

methods applied to Anomaly Detection, is not mandatory. Many researches

focus their attention upon the latent space, namely the distribution of the

features in the bottleneck. Upon them we can cite some works based on Vari-

ational Autoencoders [1] [32], introduced in Section 2.2.4, which regularize

their latent space in order to follow a prior distribution during training. In

this case, the anomaly score is computed comparing the posterior distribu-

tion produced by test patches with respect to the prior one. Another similar

approach [40] models the latent space of an autoencoder using the Gaussian

Mixture Model (GMM) technique. Basically, GMM is a probabilistic model

which assumes that all the data points are generated from a mixture of a

finite number of Gaussian distributions with unknown parameters. One can

think of mixture models as generalizing k-means clustering [2] to incorporate

information about the covariance structure of the data as well as the cen-

ters of the latent Gaussians [26]. In [40], the authors jointly learn both the

parameters of the deep autoencoder and the mixture model simultaneously

in an end-to-end fashion. In this case, the anomaly metrics of a test patch

is evaluated through the GMM, which predicts its posterior probability.

6.6.1 Experimental procedure

In these experiments, we take inspiration from [40], easing its algorithm in

order to generate a pixelwise Anomaly Detection, based on the latent rep-

resentation of an autoencoder. We have decided not to add this method

among the core ones, since we have studied it less than the others, achiev-

ing very poor results. Furthermore, for the largest part of the experiments,

we report only qualitative results, since we believe that they explain better

than any other performance metrics the outcome that we have achieved.

This procedure, somehow, can be seen as a compromise between the

STSIM and CW-SSIM based techniques. The training phase is very similar

to the one in CW-SSIM based method: the autoencoder’s parameters are

learnt only with patches coming from anomalous-free images with the CW-

SSIM loss function. In this phase, however, we do not use the entire training

set. To ease the procedure, we separate the autoencoder training with the

KDE one, used here as Anomaly Detection algorithm (as GMM in [40]).

Once the autoencoder is trained, we extract the latent features providing
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the second normal set as input to the autoencoder, fit them to KDE and

learn its parameters. The evaluation procedure follows exactly the STSIM

based one: each test image is divided in patches, the anomaly score of each

of them is computed through KDE and finally the anomaly map is built

merging all the evaluations.

6.6.2 Latent Space Regularization

In the first experiment, we try to use the best autoencoder configuration

of CW-SSIM based method. We recall that this autoencoder accepts input

patches of 128 × 128, deploying a latent dimension of 512 features. The

CW-SSIM has 5 orientations, 5 scales and a window size of 7px. Then, we

fit KDE with 2500 features vectors coming from the same amount of normal

patches. Regarding the evaluation, we extract the patches from test images

with a stride equal to 1, in order to have the highest possible resolution

in the anomaly map. At this point, the latent features of test patches are

computed and KDE calculates their posterior.

In order to qualitative evaluate the performances, we test this method on

the abnormal image number 8 which presents both large and small anoma-

lies. From Figure 6.9, which reports the anomaly map generated following

the above procedure, we can clearly see that the latent dimension does not

seem regular with respect to normal features.

Figure 6.9: Latent-Based Anomaly metrics evaluation. Experiment number one: use

the same autoencoder configuration of the best CW-SSIM based method. a) Test

image. b) Anomaly map.

The idea is to regularize the latent distribution, as suggested in [25],

adding a penalty term to the loss function. We add an l2 regularization to
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the latent dimension, rewriting the loss function as:

Lreg(x, y) = Lcw(x, y) +

a∑
j=0

z2j , (6.5)

where z is the latent vector (E(x) = z) and a is the latent dimension (equal

to 512 in this case).

Figure 6.10: Latent-Based Anomaly metrics evaluation. Experiment number two: use

the same autoencoder configuration of the best CW-SSIM based method but with (6.5)

as loss function. a) Test image. b) Anomaly map.

Figure 6.10 shows that we have effectively regularized the anomaly map

assigning almost the same posterior to every normal patch, but still we have

a low resolution in the anomaly map.

6.6.3 Increase Anomaly Map Resolution

The problem of producing a coarse anomaly map has been already analyzed

in Section 6.4, when we have discussed the performance evaluation of the

STSIM based method. We recall that this problem rises because we assign,

for each patch of 128× 128 in input, a single anomaly score. This score has

to be finally upscaled to the patch size, producing a low resolution anomaly

map. In that case, the research for the best trade-off on patch dimension

is crucial, in order to produce high resolution map without loosing informa-

tion. The substantial difference here is that we have replaced the STSIM

feature extraction with an autoencoder that provides feature information as

well.

One of the possible solutions is to increase widely the latent spatial di-

mension, moving from a latent vector to a three dimensional one. This
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modification allows to generate a number of features vectors, for each in-

put patch, that is proportional to the spatial dimension of the latent space.

Each features vector in the latent cuboid is then evaluated through KDE,

producing a bi-dimensional matrix of anomaly scores. At this point, up-

scaling a score matrix would generate a more accurate anomaly map with

respect to a single score. The right latent dimension, however, is not easy

to find: increasing only the spatial dimension would generate too much la-

tent features (the number of features is given by the volume of the cuboid),

leading the autoencoder not to accurately compress the information. One

should consider to reduce the channel dimension, but then the accuracy of

KDE could be compromised. In Figure 6.11, it is shown the anomaly map

produced using an autoencoder with a latent dimension of 8 × 8 × 64 (for

a total of 4096 features). We can clearly notice that even if the resolution

is increased, the autoencoder was not able to extract the features of the

normal textures due to a large latent space. Some other experiments were

deployed with different configurations but without particular gaining. One

of the biggest limitations is the large training time (almost half a day on

our machine) that slows down particularly these researches.

Figure 6.11: Latent-Based Anomaly metrics evaluation. Experiment number three: use

an autoencoder with (6.5) as loss function and a latent dimension of 8 × 8 × 64. a)

Test image. b) Anomaly map.

Another possibility is, following the same reasoning of the STSIM based

solution, to reduce the input patch size. In this case, we also need to reduce

the latent dimension in order to keep a certain compression factor among the

two. In Figure 6.12, it is reported the anomaly map using an autoencoder

that accepts patches of 32 pixels wide and with a latent space of 64 features

(1×1×64). This experiment allows to reach the best qualitative performance

in this approach. We also report that it achieves an AUC (on image number
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8) of 0.689 that is much smaller than the ones achieved with the STSIM

based method (0.849) and CW-SSIM based solution (0.987), which uses the

reconstruction error as anomaly metrics.

Figure 6.12: Latent-Based Anomaly metrics evaluation. Experiment number four: use

an autoencoder with (6.5) as loss function, input size of 32×32 and a latent dimension

of 64. a) Test image. b) Anomaly map.

The reasons for this poor performance could be many and regard both

the autoencoder architecture and KDE parameters. In this section, we want

to focus the attention only on the autoencoder choice. Figure 6.13 reports

the reconstructed image produced merging all the decoder outputs. We

can realize that, even if the reconstruction seems to be very accurate, the

anomalies are reported without modifications, with respect to the previous

method (see for example Figure 6.6) in which the anomalies are replaced

with filamentous textures. This issue could be related either to a large latent

dimension deployed, or to the possibility that the autoencoder is not able

to extract features of normal textures from too small patches. As a final

observation, we could also argue that having a reconstructed image with

filamentous textures in place of anomalies is not helpful: it might mean that

the only features extracted are the ones of normal textures, thus KDE will

be unable to distinguish normal from abnormal patches.
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Figure 6.13: Latent-Based Anomaly metrics evaluation. Reconstructed image of ex-

periment number four: using an autoencoder with (6.5) as loss function, input size of

32× 32 and a latent dimension of 64. a) Test image. b) Reconstructed image.
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Chapter 7

Conclusion and Future Work

In this thesis, we proposed two Semi-Supervised methods based on the Steer-

able filters decomposition to detect anomalies in textured images. The goal

is to generate the full-resolution anomaly map of the input image, which

classifies each pixel as normal or anomalous. Both of our two solutions are

based on a patch-wise training procedure, in which the features that char-

acterize normal textures are extracted. The Anomaly Detection method

based on STSIM exploits the Steerable filters decomposition to extend the

expressiveness of the images, looking for the response of different oriented

convolutions and subsamplings. These responses, also referred to as sub-

bands, are used to extract the features using STSIM which combines single-

and multi-bands statistics. The rationale behind this procedure is that fea-

tures extracted from normal patches should follow a certain distribution,

while the ones from the anomalous patches might not follow the same dis-

tribution. The anomaly score of a test patch is achieved by calculating the

marginal probability that its features belong to the normal distribution. In

our method, we use the Mahalanobis distance and KDE to build the den-

sity model that provides this anomaly score. Our second method consists in

an Anomaly Detection method based on autoencoder that uses CW-SSIM

as loss function. This solution relies upon a different concept: instead of

forcing the algorithm to extract a particular type of features, we train a

Deep Neural Network to extract the features in a Semi-Supervised fashion.

In this case, the neural network is trained, given in input a training patch,

to reconstruct itself minimizing CW-SSIM. This similarity metrics exploits

the Steerable filters decomposition, focusing on the perceptual similarity

between patches with respect to their pixelwise differences. The general

idea is that the anomalous blobs in the test patch are not perfectly recon-

structed by the autoencoder, since it tries to generate normal textures in
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their place. The more the original test patch is different with respect to the

reconstructed one, the higher the probability that it contains an anomaly is.

CW-SSIM conducts two key roles in this method: the first one is to force

the autoencoder to generate textures as similar as possible to the normal

ones, especially in place of anomalies. The second role is to calculate the

pixelwise similarity in the anomaly evaluation that, as we have proven in

our experiments, outperforms the methods in literature. Both of our two

solutions merge the anomaly scores of each test patch to create the anomaly

map.

The first method, as we have reported in performance evaluation Section

6.3, suffers mostly the patch dimension chosen, and a trade-off partially mit-

igates its drawbacks. Furthermore, the training patches indicated are really

few to incorporate all the normal texture possibilities, but empirical results

proved us that increasing them would decrease dramatically the sensitivity

of the anomaly metrics. This is something that in future works should be

investigated further. With the second Anomaly Detection method, instead,

we outperform the results in the literature but still achieve very low per-

formances in the IoU metrics. The Figure 6.8 clearly shows that there are

several false indications in the anomaly maps, that force us to use a big

morphological operator (10 pixel) to get rid of the smallest ones. Deeper

investigations report that most of them are produced by the low similarity

score between the input and the reconstructed patch’s background. The rea-

son is that the autoencoder seems to have great difficulty in the generation

of dark areas, and thus forces us to eliminate anomalies in the binary mask

concerning too dark pixels. In the end, we have to report that sometimes

the training procedure ends in such a way that the learned autoencoder

produces inverted reconstructions. This implies that one should check this

possibility, and if it is the case either retrain the whole model or simply

multiply the output of the autoencoder by minus one.

In future works, we propose to focus on the Anomaly Detection method

applied to autoencoders, since it can open many more paths. In the devel-

opment of this thesis, we tried to use STSIM also as loss function of the

second proposed method, but it achieved poor results. This is something

that could be investigated further, because STSIM comes as an extension

of CW-SSIM, achieving in literature better results in textured image clas-

sification [41]. Another possible path could be to investigate further the

experiments in Section 6.6, in which we tried to exploit the latent represen-

tation of the autoencoder. The first step could be to investigate the issues
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left opened by our considerations in order to clarify the aspects related to

the patch and the latent dimension. As an improvement, we propose to

follow the idea in [40], in which the autoencoder and the anomaly metrics

are trained together in an end-to-end fashion.
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[30] Thomas Schlegl, Philipp Seeböck, Sebastian M Waldstein, Ursula

Schmidt-Erfurth, and Georg Langs. Unsupervised anomaly detection

with generative adversarial networks to guide marker discovery. In In-

ternational conference on information processing in medical imaging,

pages 146–157. Springer, 2017.

[31] Eero P Simoncelli, William T Freeman, Edward H Adelson, and David J

Heeger. Shiftable multiscale transforms. IEEE transactions on Infor-

mation Theory, 38:587–607, 1992.

95



96 Chapter 7. Conclusion and Future Work

[32] Daniel Soukup and Thomas Pinetz. Reliably decoding autoencoders’ la-

tent spaces for one-class learning image inspection scenarios. In OAGM

Workshop, 2018.

[33] Stanford.edu. Cs231n: Convolutional neural networks for visual recog-

nition. Accessed: 2021-01-19.

[34] Gilbert Strang. Wavelets and dilation equations: A brief introduction.

SIAM review, 31:614–627, 1989.

[35] D-M Tsa and S-K Wu. Automated surface inspection using gabor fil-

ters. The International Journal of Advanced Manufacturing Technology,

16:474–482, 2000.

[36] Yasi Wang, Hongxun Yao, and Sicheng Zhao. Auto-encoder based di-

mensionality reduction. Neurocomputing, 184, 11 2015.

[37] Z. Wang, Eero Simoncelli, and Alan Bovik. Multiscale structural simi-

larity for image quality assessment. Conference Record of the Asilomar

Conference on Signals, Systems and Computers, 2:1398 – 1402 Vol.2,

12 2003.

[38] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli.

Image quality assessment: from error visibility to structural similarity.

IEEE transactions on image processing, 13:600–612, 2004.

[39] Svante Wold, Kim Esbensen, and Paul Geladi. Principal component

analysis. Chemometrics and intelligent laboratory systems, 2:37–52,

1987.

[40] Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian

Lumezanu, Daeki Cho, and Haifeng Chen. Deep autoencoding gaus-

sian mixture model for unsupervised anomaly detection. In Interna-

tional Conference on Learning Representations, 2018.

[41] Jana Zujovic, Thrasyvoulos N Pappas, and David L Neuhoff. Struc-

tural texture similarity metrics for image analysis and retrieval. IEEE

Transactions on Image Processing, 22:2545–2558, 2013.



Appendix A

User Manual

The code of two methods presented in this thesis is publicly available on

the GitHub website under the Anomaly Detection based on STSIM1 and

the Anomaly Detection based on CWSSIM2 repositories. Both of them are

developed in Python 3.7, where the Steerable filters decomposition’s func-

tionalities are implemented with TensorFlow 2.1.0. A list of all the other

minor dependencies can be found in the main page of each repository. Both

of them present a really simple Command Line Interface (CLI), which asks

to provide the configuration file with the training and/or evaluation param-

eters.

In the STSIM based implementation, the CLI wants two parameters in

input: using the prefix -t, it is possible to define the anomaly metrics to

use, specifying one of Mahalanobis or KDE. After the prefix -f, instead,

the path to the configuration file is required. Both the training and the

evaluation parameters are required to be in a single file. Once both of them

are specified, the software starts to train over normal patches and then

evaluates one or more test images, based on the configuration file.

$ python Main . py [−h ] [HELP] −t TYPE −f FILE

In the CW-SSIM based implementation, we have decided to divide the train-

ing from the evaluation procedure, since the first is particularly time de-

manding. For this reason, using the prefix -a, the CLI accepts the action

to perform specifying one between training or evaluation. As before, after

the prefix -f, the path to the configuration file is required. In this case, the

1https://github.com/AndreaBiondaPolimi/Anomaly-Detection-method-based-on-

STSIM.git
2https://github.com/AndreaBiondaPolimi/Anomaly-Detection-method-based-on-

CW-SSIM-applied-to-Autoencoders.git

https://github.com/AndreaBiondaPolimi/Anomaly_Detection_STSIM.git
https://github.com/AndreaBiondaPolimi/Anomaly_Detection_CWSSIM.git
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training and evaluation parameters should be in different files; we have made

this choice only for better usability. After the CLI input, the software starts

performing the specified action. The documentation of each configuration

file can be found inside the files themselves, under Configuration reposito-

ries’ folder. All the default configuration files report the parameters of the

best experiment.

$ python Main . py [−h ] [HELP] −a ACTION −f FILE
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