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Abstract

The regenerative instability, also known as “chatter”, is a phenomenon that may arise
during a milling process and it can lead to failure to achieve the minimum levels of
quality and productivity and to the breakage of the tool or of the spindle.Regenerative
instability is a process which may arise from the response of the machine to particular
cutting conditions, when chip thickness modulation increases up to the point in which the
cutting edges detach from the workpiece.

This thesis has the objective to real time estimate tooltip vibrations and cutting forces
during stable and unstable milling, and to identify of the possible onset of the aforemen-
tioned instability.

The considered system model is based both on the machine dynamics and the cutting
process. The study is performed relying on the particle filter, which is a state observer
based on Monte Carlo method, which allows dealing with non-linear time delayed dif-
ferential equations, typical of the analysed phenomenon. The implemented observer was
tested with two different type of plant simulations and in real cutting conditions with
experimental data.

The estimation results were in general good and reliable and interesting considerations
regarding instability and tool detachment came from the chatter indicator behaviour.
Possible area of improvements were identified as the reduction of computational cost or
the inclusion of cutting parameters as unknown variables.

Keywords: milling process, machine dynamics, cutting forces, chatter instability, state
observer, Particle filter





Abstract in lingua italiana

L’instabilità rigenerativa, anche nota come “chatter”, è un fenomeno che può svilupparsi
durante un processo di taglio e che può portare al mancato raggiungimento degli obiettivi
minimi di qualità e produttività e al danneggiamento di utensile e mandrino. L’instabilità
rigenerativa è infatti un fenomeno che si origina dalla risposta della macchina a particolari
condizioni di lavorazione, quando la modulazione sullo spessore del truciolo cresce fino al
punto in cui il tagliente entra ed esce ripetutamente dal materiale.

Questa tesi ha come obiettivo la stima, attraverso un osservatore di stato, delle vibrazioni
in punta utensile e delle forze di taglio in condizioni di fresatura stabile e instabile e
sull’individuazione della possibile insorgenza della suddetta instabilità. Il sistema consid-
erato si basa sia sulla dinamica della macchina che sul processo di taglio.

Lo studio è stato svolto affidandosi al particle filter, un osservatore basato sul metodo
di Monte Carlo che permette di trattare equazioni differenziali non lineari e con ritardo,
tipiche del fenomeno preso in esame. L’osservatore è stato valutato con due differenti
simulazioni della dinamica della macchina e in vere condizioni di taglio, con dati speri-
mentali.

In generale, i risultati sono soddisfacenti e il comportamento dell’indicatore di chatter
ha portato a considerazioni interessanti riguardo alla formulazione dell’instabilità e del
distacco dell’utensile. La riduzione del costo computazionale e l’inclusione dei parametri
di taglio come variabili non note sono possibili punti di partenza per futuri miglioramenti.

Parole chiave: fresatura, dinamica della macchina, forze di taglio, instabilità rigen-
erativa, osservatore di stato, Particle filter
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Introduction

Figure 1: Graphical abstract of the thesis



2 | Introduction

Figure 1 represents the structure of this thesis. in which a particle filter is designed for the
estimation of cutting forces and tooltip vibrations in stable and unstable cutting condi-
tions, a problem already discussed in literature and in which possible area of improvements
are defined.

In the last few years, high quality machining became the most crucial aspect in man-
ufacturing, in order to survive in a market in which China, India and other lower-wage
countries can offer lower costs. Machine tool builders are focused on designing and building
machines which are characterized by high performances (accuracy, reliability, productiv-
ity), customizability and high-quality technical support.

As a consequence of the increasing awareness on the climate change, more importance
is dedicated to the design of environmentally friendly machines, which has the reduced
energy consumption as a primary goal. The industrial sector currently consumes almost
one half of the total energy produced (44.1% in Italy in 2020 according to Terna S.p.A.,
the italian transmission system operator) and improvements in this area could be very
impactful. Machine tools will also have another role in the ecological transition. Wind
turbines require the production of high-precision blades and bearings, while all sorts
of components are machined for the utilisation of hydropower, from simple shafts and
bushings to hydro turbine housings, impellers and covers.

Considering the European and Italian situation, the machine tools sector has always been
one of the most important. The last available CECIMO report is from 2021. The machine
tools income grew up to 22.6 billion euros, a better result than the 20.2 of the 2020 but
fare from the 27.4 of the 2019, due to the COVID-19 pandemic. Even in this scenario,
Europe was able to keep its share at 34% of the global market. As regards Italy, 2021
income reached 5.7 billion euros, from the 4.7 of the 2020. This is a better result than
the European average and its share grew from 23.2 to 25.2% of the CECIMO market.

In order to improve performances in such a difficult market, Industry 4.0 paradigm is
a unique opportunity. Machines are becoming smarter and sensorization is becoming
cheaper and can be implemented for an increasing number of purposes. In machine tools
sector, data as cutting forces, vibrations, surface finish, temperature can be collected
to control the production. Thanks to sensors, computers can perform monitoring tasks
usually in charge of humans. In fact, data from internal sensors can be an estimator of the
cutting quality, but they also show information on the machine or tool status, useful for a
better maintenance scheduling which will reduce downtimes and guarantee a performance
regularity.

The process for sensor monitoring is divided in the following steps:
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• The signal coming from sensors is manipulated in order to obtain a meaningful value
about the tool or process state.

• Information is fed to a cognitive decision making system for the correct diagnosis.

• The support system can perform an adaptive or corrective action based on analyzed
data or suggest an operation which will be performed by the human operator.

The primary goal of a manufacturing plant is the high productivity and reliability. In
order to obtain it, cutting parameters such as axial depth of cut, radial immersion and feed
have to be maximized, with the drawback of increasing vibrations and possible instability.
Between manufacturing processes, milling is one of the most important and widespread,
thanks to its high material removal rate, precision and complexity of geometries which can
be obtained. Manufacturing companies strongly require cutting quality and good surface
finish, which are influenced by the tool dynamics or, more precisely, by physical variables
as tooltip displacement, vibration or deflection and cutting forces.
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1.1. Graphical abstract
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1.2. Cutting conditions and regenerative instability

During a generic cutting process, different types of vibrations can be observed. When their
amplitude is increased, they may lead to tool/inserts breakage, faster bearings wearing
or unacceptable surface quality. An online estimation of vibrations allows to have a real
time information on workpiece quality. Also the growing noise can be a clue for incorrect
cutting conditions. In stable conditions, oscillations have a small amplitude and a random
pattern. Higher amplitudes and the presence of a predominant frequency component are
synonymous of unstable conditions (Figure 1.1).

(a) Stable vibrations (b) Unstable vibrations

Figure 1.1: Different vibrations in stable and unstable conditions

It is possible to identify three main types of vibration, each of them being responsible of
a different chip shape as shown in Figure 1.2:

• Free vibrations, which are due to a perturbation from from the equilibrium state.
They are damped over time with an oscillatory motion.

• Forced vibration, as a result of a continuous perturbation and coherently with the
frequency response function.

• Self-excited vibrations, which occur when the structure is not able to damp the
energy introduced in the system from the interaction between workpiece and tool.

Self-excited vibrations are unstable vibrations originated from friction, mode coupling or
regenerative phenomena. In this thesis, "chatter" will identify the regenerative instability
occurring when the oscillation of the tooltip in one pass of the tool leaves a waved mark on
the machined surface, which will be regenerated by the following tooth. This oscillatory
motion generates a modulation of chip thickness and cutting forces, which leads to an
indefinite increase of the amplitude of vibrations. Actually, it can be observed that after
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a certain value of amplitude, the loss-of-contact between tool and workpiece occurs and
the amplitude will not further increase.

Figure 1.2: Effects of different vibrations on the chip shape.

Depth of cut and spindle speed are the two parameters which can be tuned in order to
avoid chatter. The most important contribution in this area was provided in 1995 by
Altintas and Budak [3]. Starting from:

• Transfer functions of the structure at the cutter-workpiece contact zone

• Static cutting force coefficients

• Radial immersion and number of teeth on the cutter

• Time varying dynamic cutting force coefficients, approximated by their Fourier series
components arrested at zero order (Zeroth Order Approach, ZOA)

it is possible to analitically predict the stability of the cutting process. Stability Lobes
Diagrams (SLD) are obtained from the resolution of the dynamic equilibrium equation
with regenerative effect. They show on the abscissas axis the spindle speed and on the
ordinates axis the axial depth of cut. A selection of this two parameters so that the point
relies below the line can assure stable conditions.
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Figure 1.3: Stability Lobes Diagrams (SLD).

1.3. Cutting forces and vibrations estimation

During a milling process, the measurement of cutting forces is a possible monitoring and
control strategy. As anticipated in the introduction, cutting forces can provide information
about cutting conditions and tool engagement, surface quality, tool wear and others.
There are two ways to measure cutting forces:

• Direct measurements

• Indirect measurements.

Talking about direct measurements, piezoelectric dynamometers are the most common
sensors. Fixed dynamometers are mounted between the work table and the workpiece
(Figure 1.4) and the force is transmitted from the workpiece to the sensors. Alternatively,
rotating piezoelectric dynamometers are mounted between the spindle and the tool, and
they are also able to measure torque, in addition to three directions forces. These devices
are not widespread in the industrial environment, because of their limited size, setting
difficulties and high costs and because they can reduce the machine stiffness. Piezoelectric
measurements will also include the workpiece inertia, if the workpiece is moved during
the machining operation.

Indirect measurements rely on a model explaining the relationship between the force
magnitude and the instrument reading. Altintas and Park show a possible setup [4]:
Spindle Integrated Force Sensors (SIFS) are placed into the stationary spindle housing
(Figure 1.5) and the structural dynamic model between the cutting forces at the tool tip
and the measured forces is identified. This approach allows significant advantages:

• Machine working space and cutting capabilities are not modified
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• Workpiece size is not reduced

• Sensors are not directly exposed to chip or coolant.

Figure 1.4: Fixed dynamometer (courtesy of Kistler)

Figure 1.5: SIFS configuration

Another possible indirect method relies on current drawn measurement, since the motor
load is proportional to the current. Unfortunately, this load does not include only the
cutting force, but also the effect of path and motion laws, control actions, dynamics of the
drive chain and friction. A reliable dynamic model describing the transmission of forces
from the tooltip to the drive can be difficult to be implemented.

A powerful method, which can be considered as an indirect force measurement, is the
implementation of a state observer. State observers are systems able to estimate the
internal states of the real systems from the measurements of inputs and outputs. In
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addition to the same advantages of indirect measurements, they offer the possibility to
use simple spindle-mounted sensors, such as accelerometers and inductive displacement
sensors, so a modified or retrofitted machine is not needed. A deeper discussion on state
observers implementation will be provided in the next chapters.

1.4. State observers for cutting forces estimation

In this thesis, state observers based on the Kalman filter will be considered the State of
the Art [12]. Equation (1.1) shows the continuous time system in state-space form, in
which x, u and y are respectively state, input and measurement vectors, while A, B, C
and D are systems matrices.

ẋ = Ax+Bu

y = Cx+Du

(1.1a)

(1.1b)

The state observer is designed introducing a corrective term on the measurement residual.

ˆ̇x = Ax̂+Bu+ L(y − ŷ)

ŷ = Cx̂+Du

(1.2a)

(1.2b)

L is the gain matrix, while x̂ and ŷ are the estimated states and measurements, respec-
tively. The state estimation error can be defined as e = x − x̂ and its dynamic equation
can be rewritten as:

ė = (A− LC)e (1.3)

L will be set in order to stabilize the term (A − LC). It can be seen as the gain of the
residual: it will be higher if the measurement is more reliable than the model and viceversa.
Kalman filter provides a state estimation for linear systems under the hypothesys of
Gaussian noise. Its estimation is optimal, since the state covariance matrix is minimized.

It is possible to find several works in literature about the use of the Kalman filter in
cutting force estimation in machining. For instance, piezo-electric load sensors mounted
in the spindle housing were used by Altintas and Park in the already cited work [4], and
their measurements were processed by a Kalman filter in order to compensate the effects
of structural flexibility on the force measurement. Albrecht et al. [2] developed an indirect
method for measuring the cutting forces, based on the spindle shaft displacements mea-
surements performed with capacitance sensors. Albertelli et al. [1] developed an estimator
according to the Kalman Filter approach, which relies on both a machine dynamic model
and on indirect measurements coming from multiple sensors placed in the machine. The
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machine dynamic model was obtained through an experimental modal analysis session,
which will be investigated in the next chapters.

Starting from Equation (1.1), the system is modified in order to consider also the input
(in this case, the cutting forces) as a state variable.{

ẋ

Ḟ

}
=

[
[A] [B]

[0] [0]

]{
x

F

}
{

y
}
=
[
[C] [D]

]{ x

F

} (1.4a)

(1.4b)

The vector y contains measurements coming from sensors placed on the spindle: spindle
shaft-housing relative displacements and housing accelerations, in both directions. Mea-
surement and process noises were of course considered for the calculation of the optimal
gain. The model was validated by experimental sessions and good results were achieved
in the estimation of tooltip vibrations and cutting forces in stable conditions.

Starting from Albertelli’s paper, Marzatico [9] developed a state observer based on the
Riccati Equation approach. It allowed a design methodology of state observers for state
delayed system described by Delayed Differential Equations.

˙x(t) = Ax(t) + Arx(t− τ) +BF (t) (1.5)

Equation (1.5) includes the term Arx(t− τ), which represents the regenerative contribu-
tion provided by subsequential passes (with delay τ) of the teeth. The Riccati Equation
approach allows the calculation of the gain matrix L including both nominal and regener-
ative matrices. The delayed observer performed better than the Kalman filter in unstable
conditions, thanks to the introduction of Ar, calculated with the Zero-Order approach
and including several cutting parameters.

The last theoretical contribution in this field of research was provided by Torricella [11],
who included the detachment phenomenon in the state observer formulation, which was
not considered in Marzatico’s work. It is known that when a high amplitude of vibration
is obtained, the tool can loose contact with the material, so the oscillation does not grow
indefinitely. The model relies on the assumption that, when the detachment verifies, the
system will not undergo the action of the cutting forces. Keeping the extended formulation
with forces as state variables, the switching observer will consider Equation (1.6a) when
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the tool is engaged and Equation (1.6b) when the detachment is occurring.{
ẋ

Ḟ

}
=

[
[A] [B]

[0] [0]

]{
x

F

}
{

ẋ

Ḟ

}
=

[
[A] [0]

[0] [0]

]{
x

F

} (1.6a)

(1.6b)

Torricella’s work proposes a simplified version of hybrid observers, but a real implemen-
tation was never performed.

1.5. Purpose of the thesis

The goal of this thesis is the development of a state observer based on a particle filter
for the estimation of cutting forces and tooltip vibrations, in stable and unstable cutting
conditions. Milling is a complex process, difficult to be fully described with the sim-
ple state-space formulation. As anticipated, the particle filter can both manage delayed
and non-linear systems, which previous works were not able to merge in the same ob-
server: these characteristics will be exploited to merge delayed and switching observers.
An important innovation will be the implementation of a chatter indicator. It is a state
variable considered in the state equation, which will change its value if the instability
condition occurs. Thanks to this formulation, it will be possible to consider the regen-
erative contribution only when needed and to understand if higher forces and vibrations
are a consequence of different engagement conditions or of the rising instability. This
update is expected to bring an important improvement of the tracking performances of
the observer.

In the first part, the system dynamics will be simulated with the Zero-Order Approach.
Then, it will be simulated considering the modulation of the chip thickness and the
detachment phenomenon. The implemented observer and its performances will be tested
with both models, in stable and unstable conditions. The observer will also be tested
in non-ideal conditions, with slightly wrong cutting parameters, in order to validate the
robustness of the algorithm and compare its performances with previous models.

The last section will be dedicated to the test of the implemented observer in real cutting
conditions, both stable and unstable, with experimental data coming from the MUSP
laboratory.
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1.6. Particle filters for estimations problem, state of

the art

Karlsson [7] provided a full review on particle filter algorithms, with a clear explanation on
their implementation. In estimation problems the task is to estimate unknown quantities
from noisy observations. For linear systems with a Gaussian noise assumption it is possible
to derive a finite dimensional solution for the estimate (Kalman Filter). For many practical
problems, linear models or the assumption of Gaussian noise, are not plausible. Particle
filters, or sequential Monte Carlo methods, provide general solutions to many problems,
where linearizations and Gaussian approximations are intractable or would yield too low
performances.

Consider the following discrete-time state space description.

xk+1 = f(xk, wk)

yk = h(xk, ek)

(1.7a)

(1.7b)

The state vector xk represents the unknown states or parameters at discrete-time index k.
The observation yk is often a nonlinear mapping of the current state. Inaccuracies in the
system model and in the measurement relation are described by the stochastic processes
wt and et.

The non linear prediction density p(xk+1|yk) and the filtering density p(xk|yk) for the
Bayesian inference are given below.

p(xk+1|Yk) =

∫
p(xk+1|xk)p(xk|Yk)dxk

p(xk|Yk) = p(Yk|xk)p(xk|Yk−1)

(1.8a)

(1.8b)

The particle filter approximates the probability density p(xk|yk) by a large set of N

particles {xk
(i)}Ni=1, where each particle has an assigned relative weight γ

(i)
k . The weight

of each particle reflects the value of the density in that region of the state space. The
main idea of the particle filter is to approximate p(xk|Yk−1) with samples, according to
equation (1.9), where δ is the Kronecker delta.

p(xk|Yk−1) ∼
1

N

N∑
i=1

δ(xk − x
(i)
k ) (1.9)
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A basic implementation of the particle filter is shown in the following algorithm.

Algorithm 1.1 Particle Filter

1: Set t = 0, generate N samples {xk
(i−)}Ni=1 (anterior distribution) from the initial

distribution px0(x0).
2: Compute the residual weigths γ

(i)
k = p(yk|x(i−)

k ).
3: Generate the posterior distribution {xk

(i+)}Ni=1 by resampling N times from
{xk

(i−)}Ni=1.
4: Predict new particles x

(i−)
k+1 = f(x

(i+)
k , w).

5: Increase t and continue from step 2.

Figure 1.6 offers a graphical representation of one possible resampling strategy. The basic
principle is that particles with small weights are likely to be discarded and particles with
large weights are copied, so that the number of copies reflects the probability of the
particle. This can be done by iterating over the ordered uniform samples u(j) = U(0, 1)
with j = 1, ..., N and comparing the cumulative sum of importance weights up to the
current index. If the residual weight γ

(i)
k is large enough to includes two samples of the

ordered uniform variables, the corresponding particle x
(i−)
k is duplicated and replaces a

bad particle. Another approach is to utilize deterministic resampling, calculating the
number of particles to be copied by using N (i) = N

(i)
γ , which could be somewhat faster.

In alternative, an efficient sort function can be used. In [5], four different resampling
schemes are compared with respect to their computational complexity and performance.

Figure 1.6: Graphical interpretation of the resampling strategy
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2.1. Graphical abstract
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2.2. Two degrees of freedom model

A milling system can be reduced to 2-DOF vibration system in the two orthogonal direc-
tions [8] as shown in Figure 2.1.

Figure 2.1: Dynamic model of milling system

The dynamics of the milling system can be described by the differential equations:

mxẍ+ cxẋ+ kxx = Fx(t)

myÿ + cyẏ + kyy = Fy(t)

(2.1a)

(2.1b)

where m, c and k are mass, damping coefficient and stiffness, respectively. They can be
rearranged as:{

ẍ

ÿ

}
+

[
2ξωx 0

0 2ξωy

]{
ẋ

ẏ

}
+

[
ω2
x 0

0 ω2
y

]{
x

y

}
=

{
Fx

Fy

}
(2.2)

in order to highlight the fact that the system is uncoupled. ξ is the damping ratio and ω

is the natural frequency of the considered direction. The total force acting on both axes
can be expressed as the projection of the sum of the contribution of each active tooth.

2.3. Plant identification

The modal identification carried out in [1] has the aim of identifying the vibration modes
of the considered milling machine. The tool parameters are:

• number of teeth, N = 4;
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• tool diameter, D = 80mm.

The sensors configuration used during the modal identification procedure is shown in
Figure 2.2.

Figure 2.2: Sensors for model identification

The analysis is performed with a sensorized hammer, able to excite the structure in a
target range of frequencies. A high number of vibration modes (n = 32 total, 21 along x

and 11 along y, Figure 2.3) is identified from the frequency response function (Figure 2.4)
of the instruments, which are inductive relative displacements sensors on the tooltip, tri-
axial spindle housing accelerometers and inductive relative displacements sensors on the
spindle housing, in order to have a reliable model also at high frequencies, where chatter
occurs.

Figure 2.3: Identified eigenmodes for X and Y directions



18 2| Problem formulation

Figure 2.4: Experimental FRFs (amplitudes) along X-Y directions

The system dynamics is described by the equation:

[
Ms2 +Rs+K

]
p(s) = F (s)

y(s) = gp(s)

(2.3a)

(2.3b)

where M, R and K are respectively mass, damping and stiffness matrices, F (s) is the
input, p(s) is the model coordinates vector and g is the output matrix. It is possible
to use the eigenvector matrix Φ, in order to decouple the equations and get the modal
coordinates of the system q(s).

p(s) = Φq(s) (2.4)

Substituting Equation (2.4) in (2.3), it is possible to obtain the uncoupled system in
modal coordinates. [

Is2 + Γs+Ω2
]
q(s) = ΦTF (s)

y(s) = gΦq(s) = Cq(s)

(2.5a)

(2.5b)
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I is the identity matrix, while Γ and Ω2 can be expressed as:

Γ =


2ξ1ω1 0 0 0 0

0 0 0 0 0

0 0 2ξiωi 0 0

0 0 0 0 0

0 0 0 0 2ξnωn

 Ω2 =


ω2
1 0 0 0 0

0 0 0 0 0

0 0 ω2
i 0 0

0 0 0 0 0

0 0 0 0 ω2
n

 (2.6)

2.4. State space formulation

In order to design the observer, the system is rearranged in order to obtain the state-space
formulation, already presented in Equation (1.1).

ẋ = Ax+Bu

y = Cx+Du

(2.7a)

(2.7b)

The state vector x contains the modal coordinates {q̇1 q1 ... q̇i qi ... q̇n qn}, u
is the force input vector, while y is the 4x1 measurements vector containing displace-
ments and accelerations coming from spindle mounted sensors. From the manipolation of
Equation (2.5), it is possible to obtain the state space matrices.

A =



0 1 0 0 0 0

−ω2
1 −2ξ1ω1 0 0 0 0

0 0 0 1 0 0

0 0 −ω2
i −2ξiωi 0 0

0 0 0 0 0 1

0 0 0 0 −ω2
n −2ξnωn


B =



0 0

ΦT
1,1 ΦT

1,2

0 0

ΦT
i,1 ΦT

i,2

0 0

ΦT
n,1 ΦT

n,2



C =


gΦ1,1 0 gΦ1,i 0 gΦ1,n 0

gΦ2,1 0 gΦ2,i 0 gΦ2,n 0

gΦ3,1 0 gΦ3,i 0 gΦ3,n 0

gΦ4,1 0 gΦ4,i 0 gΦ4,n 0

 D = [0]

(2.8)
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2.5. Input vector and regenerative contribution

The input vector consists of the cutting forces acting on the system. As previously stated,
the total force along x and y is the projection of the sum of the contribution of each active
tooth, whose transmitted force is proportional to the chip thickness. Chip thickness h is
the sum of a nominal component, due to the feed rate of the tool, and a dynamic one,
coming from tool vibrations.

h(φj) = [st sinφj + (vj−1 − vj)]g(φj) (2.9)

st is the standard feed, (vj−1, vj) are the tooltip displacements of the previous and actual
tooth. φj is the angular position of each tooth, expressed as φj(t) = (2πΩ

60
)t+ 2π

N
j, where

Ω is the angular speed [rpm] of the spindle and N is the number of teeth. The function
g(φj) is a unitary window function that limits the computation of the chip thickness only
when the tooth is engaged in the workpiece, expressed as follows.{

g(φj) = 1 if φin ≤ φj ≤ φout

g(φj) = 0 else
(2.10)

Considering ∆x = xj−1−xj and ∆y = yj−1−yj, as the differences in tooltip displacements
between previous and current tooth along X and Y directions, it is possible to finally write
the modulated chip thickness as:

h(φj) = [(st +∆x) sinφj +∆y cosφj]g(φj) (2.11)

The tangential and radial forces for each tool can be expressed as:

Ft,j = Ktah(φj) Fr,j = KrFt,j (2.12)

where Kt and Kr are costant cutting coefficients and a is the axial depth of cut. The
total forces along both directions are:

Fx =
∑
j

−Ft,j cosφj − Fr,j sinφj

Fy =
∑
j

Ft,j sinφj − Fr,j cosφj

(2.13a)

(2.13b)

Once that total forces are obtained, two different methods are now proposed in order to
highlight and exploit the difference between nominal and regenerative contribution.
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2.5.1. Zero Order Approach

This formulation is the one proposed by Altintas [3] and used more recently by Marzatico
in the development of his delayed observer [9]. It is also the formulation used as the
starting point of the particle filter. The general idea is to work on the regenerative
contribution of the forces in a matrix form, in order to write the system in a time-delay
form:

˙x(t) = Ax(t) + Arx(t− τ) +BFnom(t) (2.14)

F in this case is comprehensive of the lone nominal contribution. The expression of the
regenerative force component, indicated as Freg is the following:{

Fx,reg

Fy,reg

}
=

1

2
aKt

[
axx axy

ayx ayy

]{
∆x

∆y

}
(2.15)

where matrix entries are time varying directional dynamic milling force coefficients. In a
more compact form:

{Fr(t)} =
1

2
aKt[A(t)] {∆(t)} (2.16)

Substituting (2.16) in (2.2):{
ẍ(t)

ÿ(t)

}
+

[
2ξωx 0

0 2ξωy

]{
ẋ(t)

ẏ(t)

}
+

[
ω2
x 0

0 ω2
y

]{
x(t)

y(t)

}

=

[
Fx,nom

Fy,nom

]
+

1

2
aKt[A(t)]

{
x(t)− x(t− τ)

y(t)− y(t− τ)

} (2.17)

The system is now described by delayed differential equations with time-varying coef-
ficients. The next step is the approximation of the time-varying matrix [A(t)] with a
matrix of constant coefficients. It can be observed that the entries of [A(t)] are periodic
with freqency ω = NΩ. The Fourier decomposition allows to consider only the first r

harmonics. The Zero order method consists of negletting all the harmonic components
(r = 0) and considering only the average contribution.

[Ar] =
1

T

∫ T

0

[A(t)]e−irωttdt (2.18)

[A0] =
1

T

∫ T

0

[A(t)]dt (2.19)
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Equation (2.19) can be written as a function of the tooth angle.

[A0] =
N

2π

∫ φout

φin

[A(φ)]dφ =
N

2π

[
αxx αxy

αyx αyy

]
(2.20)

Equation (2.19) can now be written with a matrix of constant entries:

{Fr(t)} =
1

2
aKt[A0] {∆(t)} (2.21)

The state-space system is fully described in the required time-delay form, as shown in
Equation (2.14)

2.5.2. Tool detachment formulation

Another possible formulation of the plant behaviour is the one proposed by Torricella [11].
The starting point is Equation (2.13), the same of the Zero Order approach, while the
difference is the target formulation. It is not required to obtain a time-delay system but
a common state space formulation, in which the input vector contains both the nominal
and the regenerative contribution of the force.

˙x(t) = Ax(t) +BFtot(t) (2.22)

It is possible to affirm that in this case the dynamic oscillation of the tooltip never "leaves"
the input vector. The complete expression of the chip thickness is:

h(φj) =

(
st sinφj +

[
sinφj cosφj

] [ x(t)− x(t− τ)

y(t)− y(t− τ)

])
g(φj) (2.23)

The function g(φj) is the same unitary window function that limits the computation of the
chip thickness only when the tooth is engaged in the workpiece, shown in Equation (2.10).
Another condition is required in order to enforce the detachment of the tool from the
workpiece: {

h(φj) = h(φj) if h(φj) > 0

h(φj) = 0 if h(φj) ≤ 0
(2.24)

Except from the Zero Order method, the last equation is the main difference with the
Marzatico’s formulation, in which the chip thickness can grow indefinitely, also in the
negative half-plane. Once chip thickness h is fully described, it is possible to substitute
it in Equations (2.12) and (2.13) and obtain the complete input vector Ftot(t).
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2.6. Plant results

The plant was simulated in a plausible steel milling configuration, with 75% radial im-
mersion. The chosen parameters are shown in the following table.

Parameter Simbol Value

No. of teeth N 4

Entry angle φin 0°

Exit angle φout 120°

Spindle speed Ω 600 rpm

Feed rate st 0.2 mm
tooth

Tangential cutting coeff. Kt 1800 N
mm2

Radial cutting coeff. Kr 0.33

Depth of cut a 3-6 mm

Table 2.1: Cutting parameters

Looking at the depth of cut, the two different values are used to simulate both stable (3
mm) and unstable (6 mm) cutting conditions. In stable conditions, the two formulations
bring to almost coincident results (Figures 2.5 and 2.6), because the difference relies on
how the instability component is computed and in stable conditions it is almost negligible.
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The difference is considerable in unstable conditions, as it is possible to see in Figure 2.7
and Figure 2.8. The formulation with the detachment grows more rapidly in the first tooth
passes, but it reaches a sort of pseudo-stationarity pretty soon thanks to the detachment.
On the other hand, the Zero Order approach, since it does not include the detachment
phenomenon, leads to an indefinite grow of forces and vibrations, which are soon higher
and no longer reasonable.
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3.1. Graphical abstract
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In this chapter, the development of the observer is analysed. It was chosen to show the
implementation as it has been conceived, starting from more trivial concepts and then
implementing consequential improvements.

As a starting point, the model described by Equation (2.14) is chosen as the process
equation. It has a more compact form and it does not rely on the tooth angle at each
time step, thanks to the averaging performed.

3.2. Formulation of discrete matrices

The first challenge was that the particle filter is conceived for discrete systems, while
previous studies were all relying on continuous formulation. Jugo [6] offered an approx-
imated strategy to obtain the corresponding discrete matrices starting from continuous
ones. Thanks to his work, it was possible to switch from the continuous formulation of
Equation (2.14) to the discrete form:

xk+1 = Adxk +Ad,REGxk−κ +BdFNOM (3.1)

where κ = τ
Ts

and Ts is the sampling time. In particular:

Ad = eATs

Ad,REG = A−1 (Ad − I)AREG

Bd = A−1 (Ad − I)B

(3.2a)

(3.2b)

(3.2c)

The second challenge is the creation of extended matrices, since the input force is not
known, in order to obtain the following system:{

qk+1

Fk+1

}
=

[
[Ad] [Bd]

[0] [I]

]{
qk

Fk

}
+

[
[AdREG] [0]

[0] [0]

]{
qk−κ

Fk−κ

}
{

yk

}
=
[
[C] [0]

]{ qk

Fk

} (3.3a)

(3.3b)

In order to obtain this formulation, a strong assumption is made: the force is constant,
in fact the force value at the step k + 1 is coincident with the value at the step k. This
uncertainty is compensated by the process variance.

It is now possible to focus on the actual particle filter algorithm, with the implementation
of the process and measurement equations.
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3.3. Process Equation

It can be observed in Algorithm 1.1 that at each time step, the distribution of the previous
step is updated thanks to the ProcessEquation, exploiting the known mathematical
model and introducing a stochastic process variance Q. The design of the process equation
and the tuning of the aforementioned variance is one of the most delicate part of the whole
process. For each of the N particles, the process equation starts with:

Fxk = Fxk−1 +Q ∗ N (0, 1)

Fyk = Fyk−1 +Q ∗ N (0, 1)
(3.4)

These two new values are introduced in the state vector and the system is updated with
Equation (3.3a), which is reported below in a more compact form.{

qk+1

Fk+1

}
= [Ad]

ext

{
qk

Fk

}
+ [Ad,REG]

ext

{
qk−κ

Fk−κ

}
(3.5)

The set of N state vectors represents the prior distribution. The next step is the calcula-
tion of the estimated measurements that each sample would be expected to create. This is
performed with the MeasurementEquation, which was already shown in Equation (3.3b)
and is reported below in a more compact form.

{
yk

}
= [C]ext

{
qk

Fk

}
(3.6)

The estimated measurements are compared with the actual measurements coming from
the sensors mounted on the spindle. A weight is assigned to each particle, calculated with
the LikelihoodFunctionfrom a multivariate distribution depending on the measurement
variance matrix [R]. Particles which led to estimated measurements closer to the actual
ones will obtain a higher weight, which means that, given the measurement, they are the
most suitable to describe the evolution of the system at the specific time step. During the
resampling stage, particles with higher weights are more likely to be saved and therefore
to contribute at the identification of the posterior distribution of the state, whose average
will be the saved as the final value for that time step.



30 3| Particle Filter design

3.4. Chatter indicator

After having fully understood the working principle of the shown process equation, it is
possible to describe the focal point of this work: the implementation of a chatter indicator.
The lone estimation of forces may not be enough for the complete comprehension of the
cutting process. An increasing profile of forces and vibrations can be both a consequence
of different tool engagement required by the part program and of the rising instability.
The chatter indicator will help in the discrimination between these two possibilities.

The chatter indicator γ is thought as a state variable, whose value can be only 0 if the
system is stable and 1 when it is unstable. The difference between the two configuration
is [AREG], whose contribution is negligible in stable conditions but it is needed to describe
the chatter phenomenon.

Therefore, the system is further extended, in order to include the chatter indicator as an
additional state variable. Than, half of the population of N samples will be assigned γ = 1

while the other half will have γ = 0. After the stochastic estimation of forces described
by Equation (3.4), which is not modified, the next step in the ProcessEquation is:

qk+1

Fk+1

γk+1

 =

[Ad] [Bd] [0]

[0] [I] [0]

[0] [0] 1




qk

Fk

γk

+ γ

[AdREG] [0] [0]

[0] [0] [0]

[0] [0] [0]




qk−κ

Fk−κ

γk−κ

 (3.7)

The next part of the algorithm remains unchanged. Particles with the correct γ will be
privileged in the resampling stage. After performing the average at the end of the time
step, the value of the chatter indicator is expected to be close to 1 in unstable conditions
and close to 0 in stable cutting. It will be shown in the following chapter that this
prediction was not fully respected.

3.5. Adaptive process variance strategy

The implementation of the chatter indicator brings out a problem stated in the previous
section. An increasing profile of forces and vibrations can be both a consequence of higher
tool engagement or of the rising instability. The particle filter is still not able to detect this
difference. Some particles may obtain good likelihoods thanks to γ = 1, other particles
thanks to higher cutting forces. The tuning stage has not been treated yet, but it is
possible to anticipate that the process variance value was set quite high (Q ∼ 1000N), in
order to absorb the big step of the force profile when the tooth exits from the material
(Figure 2.5). A smaller process variance would improve chatter indicator performances,
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but it also would lead to the failure of the algorithm when the angle of the first tooth
φ1 becomes higher than φout. An adaptive process variance cycle is implemented. The
basic principle is to start from a small process variance, perform a step and calculate the
residual weights. If the best weight is lower than a certain value, expressed as a percentage
of the maximum achievable (estimated measurement coincident with the actual one), the
process variance is increased and the time step repeated. In pseudocode:

Algorithm 3.1 Adaptive Variance
1: Set c = 0, Q = Q0

2: while c < pcmax and Q < Qmax do
3: Update the system x−

k+1 = ProcessEquation(x+
k , Q)

4: Estimate the measurements y−k+1 = MeasurementEquation(x−
k+1)

5: Calculate the residual weights
6: Set c = max(ResidualWeights)

7: Increase Process Variance Q = nQ

8: end while

where p is the aforementioned percentage of the maximum achievable likelihood, expressed
as:

cmax =
1

4π2
√

|R|
(3.8)

n represents the speed at which Q is increased. It can be observed that the increase of
the process variance is performed after the assignment of weights to each particle. In this
way, the chatter indicator is privileged, and only if it is not enough to describe a force
variation, the variance is updated.

3.6. Particle filter parameters choice

For the particle filter algorithm devised in this work, different parameters have to be set,
in order to obtain a stable and efficient implementation.

First of all, all cutting parameters are needed for the writing of regenerative matrices.
The more precise they are, the better performances will be. The covariance matrix is
assembled with variance values obtained from a zero measure on both displacement and
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acceleration sensors.

V =


3.6× 10−15 0 0 0

0 3.6× 10−16 0 0

0 0 0.01 0

0 0 0 0.01

 (3.9)

The number of particles N should be kept as lower as possible for computational reasons.
On the other hand, there is a minimum value, depending on the complexity of the system
and on the number of states. Snyder [10] identifies a possible link between number of
states Ns with the minimum number of particles required.

log10N = 0.05Ns + 0.78 (3.10)

It was obtained calculating the regression of some recursive tests that he performed. The
obtained value should be N ∼ 10000, but after some tests, it was decided to choose
N = 2000 to keep computational time lower. This was probably possible because the
process variance is concentrated in just three state variables (Fx, Fy and γ) and not
spanned all over the 67 states. The other parameters are connected with the process
variance and its adaptive cycle. There is not much literature about this tuning process,
because it is too dependant on the particular process, so a trial-and-error strategy was
adopted.

Parameter Value Motivation

Q0 50 N
The maximum difference between two consecutive steps
can be even lower, but thanks to the high number of
particles the distribution is already well sampled.

p 20%
This value already represents a good match between true
and estimated measurements. A higher value will cause
the entrance in the while cycle also when not needed.

Qmax 1500 N
The principle of this choice was already explained: it
depends on the maximum jump of forces which occur
when the tooth exits the material

n 2
This parameter does not affect much the stability of the
algorithm. It was chosen as a compromise between speed
of computing and definition of the variance spectrum.

Table 3.1: Variance related parameters
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4.1. Graphical abstract
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4.2. Simulation with Zero Order Approach

In this section, the plant is simulated with the Zero Order Approach, with the same cutting
parameters shown in Section 2.6. In this condition, the particle filter should perform at its
best, since the plant is simulated with the exact same model implemented in the observer.
Both for stable and unstable conditions, plots regarding tooltip vibrations, cutting forces,
process variance and chatter indicator will be shown.

4.2.1. Stable conditions

In stable conditions, the estimated tooltip vibrations (Figure 4.1) practically coincide
with the actual ones. The resampling stage is working properly, the direct link between
housing and tooltip measurements expressed by matrix [C] is exploited at his best.
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Figure 4.1: Tooltip displacements in stable conditions

As regards the forces, the profiles again almost coincide (Figure 4.2). The particle filter is
able to absorbe in a few steps the big jumps of the forces, which are significant especially
along Y direction.
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Figure 4.2: Cutting forces in stable conditions

The process variance (Figure 4.3) remains at its minimum for the most part of the simula-
tion, except when the tooth exits the material. In that case, a higher value of variance is
needed to follow the actual forces profile. The while-cycle is performing as it was thought
during the design phase.
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Figure 4.3: Adaptive process variance in stable conditions

As regards the chatter indicator plot (Figure 4.4), the first 0.03 seconds of the simulation
represent the transient period in which the observer does not have any information of the
previous tooth dynamics, since it is the first one approaching. After this small amount
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of time, the chatter indicator stabilize around 0.5. Even if the idea was to have γ = 0

in stable conditions, it was possible to foresee this behaviour: in stable conditions the
contribution of [AREG] is so small that its presence does not make important difference.
because tooltip vibrations are in-phase with the machine dynamics and there is not chip
modulation. Particles with both values of γ are resampled and the final value is the
average between them.
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Figure 4.4: Chatter indicator in stable conditions

4.2.2. Unstable Conditions

The estimation of tooltip vibrations (Figure 4.5) in unstable conditions is as good as the
stable ones, even if they are exponentially increasing foor the effect of the chip modulation.
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Figure 4.5: Tooltip displacements in unstable conditions

As regards the forces (Figure 4.6 and 4.7), it can be interesting to show separately the
different contributions: nominal, regenerative and their sum. The estimation of the nom-
inal force is as good as the one in stable conditions. The regenerative contribution, since
it has a direct effect of vibrations, is also really good.
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Figure 4.6: Cutting forces along X in unstable conditions
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Figure 4.7: Cutting forces along Y in unstable conditions

The process variance (Figure 4.8) remains at its minimum for the most part of the sim-
ulation, except when the tooth exits the material. The behaviour is really similar to the
stable conditions, but it can be observed that once the process variance is increased, it
takes some additional step to go back to the minimum value, since the force is beginning
to increasing as in stable conditions, but with a remaining strong oscillation at the chatter
frequency.
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Figure 4.8: Adaptive process variance in unstable conditions

After the usual transient time, the chatter indicator (Figure 4.9) value begins to rise with
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an oscillatory motion, whose frequency is the tooth passing frequency. In this period, the
vibrations are high but they can still be justified with higher forces. After some tooth
pass, the chatter indicator reaches and stabilizes above 0.95, meaning that the system
is fully unstable and considering the regenerative contribution is mandatory for a good
estimation.
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Figure 4.9: Chatter indicator in unstable conditions

4.3. Simulation with tool detachment

It was shown that in stable conditions, the two analysed formulations are really similar,
because the regenerative contribution is really small. The results of the simulation with
the detachment formulation are shown only for unstable conditions. The tooltip vibrations
estimation is once again really good (Figure 4.10).
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Figure 4.10: Tooltip displacements in unstable conditions

As regards the cutting forces (Figure 4.11), it is quite difficult to perform the separation
between the nominal and the regenerative contribution, since the instability generated
by the chip thickness modulation is alternatively absorbed by the nominal force and by
regenerative vibrations. This behaviour will be easier to understand once the chatter
indicator is shown. The total forces estimation is quite good, still some underestimation
can be observed. This can be easily explained with the choice of implementing the observer
with the Zero Order Approach, which is based on an averaging and it is more prone to
loose picks in the force profile. The first 0.03 seconds of the plot, where profiles are
different, can be explained with the missing information regarding the previous tooth
pass, which are not available yet since the simulation has just started.
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Figure 4.11: Cutting forces in unstable conditions

The process variance (Figure 4.12)is of course higher, the plant is simulated with a different
formulation from the observer and the algorithm may need an increased variance to match
measurements.
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Figure 4.12: Adaptive Process Variance in unstable conditions

The chatter indicator (Figure 4.13) shows its best performances in this case. The detach-
ment phenomenon is complex to be described because the instability is not irreversible:
once the tool detaches from the workpiece, the system begins its ramp back from a stable
condition. The chatter indicator fully describes this behaviour: it starts from 0.5, which is
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the obtained value in stable conditions, it increases almost to 1 and then the detachment
occurs. The particular tooth is not engaged and it is not able to contribute in the regen-
erative effect. So the chatter indicator falls back to the initial 0.5 when the tooth starts
cutting again. This phenomenon is of course cyclical and the frequency of this oscillation
is the tooth passing frequency.
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Figure 4.13: Chatter indicator in unstable conditions

4.4. Nominal performances and robustness analysis

The discussion about the results was only qualitative until this point. In this section,
the performances will be analyzed from the point of view of the root mean square of the
difference between the estimated values and the ones of the plant simulation. The particle
filter will be compared with State of the Art methods in both nominal conditions and
off-design conditions, which means that the parameters of the observer are set slightly
different from the plant ones. This simulation is closer to experimental conditions, when
information on the engagement or on the cutting coefficients may not be precise. In
particular, the parameters which were modified were φex and the element aKt, considered
as a product since they can be identified as the gain of the matrix [AREG].



4| Results and validation tests 43

Parameter Plant
Observer
(Nominal)

Observer (Higher
engagement)

Observer (Lower
engagement)

φex 120° 120° 132° 108°

a 6 mm 6 mm 6.48 mm 5.7 mm

Table 4.1: Differences in parameters setting

These results are obtained in unstable conditions, since it does not make sense to verify
performance in stable conditions when [AREG] is not affecting the observer performances.
In nominal conditions, the parameters of the observer and of the plant simulation are coin-
cident. Using the Zero Order approach the delayed observer [9] keeps better performances
along Y-axis, while the particle filter is working much better along Y-axis.

Observer Fx [N] Fy [N] Xtp [mm] Ytp [mm]

Particle Filter 0.092 0.176 5.2e-7 2.2e-7

Delayed Observer 0.052 0.936 2.0e-9 3.1e-5

Table 4.2: Nominal conditions, Particle Filter vs Delayed Observer

When the plant is simulated with the tool detachment, the RMS of the error of the
considered variables similar along X but much lower than the Kalman filter [11] along Y.

Observer Fx [N] Fy [N] Xtp [mm] Ytp [mm]

Particle Filter 0.694 0.76 1.0e-6 4.4e-7

Kalman Filter 0.49 2.39 1.2e-6 8.4e-5

Table 4.3: Nominal conditions, Particle Filter vs Kalman Filter

The Kalman filter does not require cutting parameters, so it is not possible to talk about
off-design performances. This check is possible only for the comparison between the
delayed observer and the particle filter, with the Zero Order approach in the plant simu-
lation.

At first, the observer is set with a supposed higher engagement: the term aKt is increased
by 8% and φex by 10%.
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Observer Fx [N] Fy [N] Xtp [mm] Ytp [mm]

Particle Filter 0.196 0.32 6.8e-7 2.8e-7

Delayed Observer 0.45 1.46 2.8e-9 3.6e-5

Table 4.4: Higher engagement, Particle Filter vs Delayed Observer

Then, the observer is set with a supposed lower engagement: the term aKt is reduced by
5% and φex by 10%.

Observer Fx [N] Fy [N] Xtp [mm] Ytp [mm]

Particle Filter 0.134 0.246 7.0e-7 2.4e-7

Delayed Observer 0.458 1.24 2.2e-9 3.4e-5

Table 4.5: Lower engagement, Particle Filter vs Delayed Observer

In both these conditions, the only variable in which the delayed observer performs better
is the estimation of tooltip vibrations along Y, thanks to the coincidence of the observer
model with the simulated one. The real strong point of the particle filter is the cutting
forces estimation, goal of this thesis, especially in non-ideal conditions. Thanks to its
numerical formulation and the possibility to adapt the process variance in the most critical
steps, it is able to absorb settings errors and to overcome differences in the formulations.

4.5. Possibility of degeneration of the algorithm

It is a known problem for particle filters [7] that in some case the algorithm can resample
only one particle, because there is only one sample with a likelihood different from zero. In
order to verify that this problem does not occur, a plot of the whole particles population
is shown.
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Figure 4.14: Particle population in stable conditions

Figure 4.15: Particle population in unstable conditions

It can be observed that in both situations, a good number of particles is resampled at each
step. In particular, blue triangles represent stable samples (γ = 0), while red triangles
represent unstable particles (γ = 1). In stable conditions, there is almost the same
amount of red and blue triangles, for the already explained reason of small regenerative
contribution. In unstable conditions, the amount of resampled particles is once again
a good number, but there are only red triangles, because only unstable particles are
resampled.
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4.6. Experimental Data

Finally, the most challenging section is the test of the particle filter algorithm in real
cutting conditions. The sensors configuration used during the cutting tests is shown in
Figure 4.16 and includes inductive relative displacements sensors on the tooltip, tri-axial
spindle housing accelerometers and inductive relative displacements sensors on the spindle
housing.

Figure 4.16: Sensors for cutting tests

The cutting parameters are slightly different from the simulation ones. The simulation
goal was to show a periodic tooth engagement, while in cutting experiments it is common
practice to perform slot milling.

Parameter Simbol Value

No. of teeth N 4

Entry angle φin 0°

Exit angle φout 180°

Spindle speed Ω 915 rpm

Feed rate st 0.2 mm
tooth

Tangential cutting coeff. Kt 1800 N
mm2

Radial cutting coeff. Kr 0.33

Depth of cut a 3.5-4.5 mm

Table 4.6: Cutting parameters
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4.6.1. Stable cut

In stable conditions, it is possible to see that tooltip vibrations (Figure 4.17) and cutting
forces (Figure 4.18) are estimated quite well, even if some differences are caused by the
introduction of the dynamometer dynamics. Of course it is difficult to obtain results as
good as the simulations, because many approximations and simplifications are made in
the modelization of the problem.
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Figure 4.17: Tooltip displacements in stable conditions
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Figure 4.18: Cutting forces in stable conditions
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The process variance (Figure 4.19) is generally higher, because the theoretical system
implemented in the observer is only an approximation of the machine.
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Figure 4.19: Adaptive process variance in stable conditions

As regards the chatter indicator (Figure 4.20), the average is as expected close to 0.5. Of
course it is possible to see some larger oscillation around this value, but generally speaking
it is a good result.
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Figure 4.20: Chatter indicator in stable conditions
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4.6.2. Unstable cut

In unstable conditions, the performances does not change much. The experiment is per-
formed in slightly unstable conditions (the axial depth of cut is 4.5 mm while in the
simulation it was 6 mm) and the differences are not so evident (Figure 4.21 and 4.22).
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Figure 4.21: Tooltip displacements in unstable conditions
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Figure 4.22: Cutting forces in unstable conditions

The process variance (Figure 4.23) can be a little bit higher than the one observed in
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stable conditions, but once again the difference is not really high.
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Figure 4.23: Adaptive process variance in unstable conditions

The chatter indicator (Figure 4.24) is not showing the expected behaviour. It can be
seen that the average value is around 0.5 or slightly above and it is not possible to
see an increasing trend, even if the experiment is performed in unstable conditions. This
behaviour can be explained as a limit of the Zero Order approach. In fact, in the simulation
environment, an axial depth of 4.5 mm is not enough to create chatter. The computed
[AREG] may be not enough to bring the system of the observer to instability, but the
particle filter algorithm is able to match the experimental measurements with a simple
increase of forces. The presence of the regenerative contribution is not fundamental and
the average value of the chatter indicator is 0.5.
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Figure 4.24: Chatter indicator in unstable conditions
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5| Conclusions and future

developments

In this work, a state observer for the estimation of cutting forces and the detection of
regenerative instability in milling exploting information from both the machine and the
cutting process was implemented.

The work started with the study of the regenerative instability and with the identifica-
tion of the possible challenges in cutting forces measurements, both direct and indirect,
regarding the differences for the introduction of a dynamometer or for the development
of a strong model model explaining the relationship between the force magnitude and
the instrument reading. Previous methods for the estimation of forces and vibration in
machining were analyzed and possible area of improvements were found. A review on the
standard algorithm of a particle filter was provided, as the method able to merge already
existent observers and improve them.

Milling is a complex process, which can be formulated with different levels of approxi-
mation. The plant was simulated considering the Zero Order approach at first, and then
introducing the tool detachment. The observer is designed based on the Zero Order ap-
proach formulation, more suitable to be introduced in the process equation. It required
the discretization and the extension of the state space matrices, in order to include forces
as state variables. The implementation of the chatter indicator was only a consequence
of the high customizability of the particle filter, even if it required some modification in
the algorithm and a delicate parameters tuning.

In the simulation phase, the conceived observer performed as expected or even better.
The chatter indicator resulted to be a robust parameter which offered interesting consid-
erations. The estimation in real cutting conditions proved to be an important starting
point as regards forces and tooltip vibrations, even if the correct functioning of the chatter
indicator was not achieved.

Future works may take two different directions. The first one is the optimization of the
current algorithm, in order to reduce the computational cost of one single time step.
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Number of internal states, number of particles or sampling frequency are still high, but
they are needed for a correct working of the algorithm. A reduction of them may result
in the feasibility of an online observer, in which the cycle time is lower than the sampling
time. The other direction is the introduction of the cutting parameters as unknown
variables, since the workpiece fixing may be not optimal. This modification can improve
performances in real cutting conditions, where cutting coefficients or parameters may not
be so precise. On the other hand, increasing the number of states is in clear disagreement
with the goal of problem simplification, needed for an online observer.
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