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Abstract

The latest technological advances in the field of unmanned aerial vehicles (UAV)
have promoted a great interest in the development of aircraft due to its wide range
of applicability. Therefore, controllability and automation problems have become
one of the first lines of research in this area.

The basis of the control of these aircraft is usually defined by attitude control,
where theoretical or experimental model approaches are frequently used for the
development and tuning of the controllers. However, this approach entails many
limitations corresponding to the fidelity of the model.

To solve these limitations, data-driven control techniques have been developed
dealing with the uncertainty of the system to be controlled, from which a reference
model is used for the system to replicate its dynamics. Although this methodology
is functional for a large part of systems, in the case of underactuated non-linear
systems, the choice of a suitable reference model turns out to be critical for the
stability and performance of the aircraft.

In view of this problem, the introduction of optimization algorithms within the
framework of data-driven controllers turns out to be considered as an alternative
approach for the design and synthesis of the same. In this thesis, a two-level
optimization method has been implemented within the virtual reference feedback
adjustment algorithm to generate a free model alternative for application within
the UAV quadcopter, considering a cascade structure of the controller.

The algorithm has been tested using different simulation scenarios to validate
the operation and the results generated. Likewise, an experimental test has been
conducted with measurement data of an aircraft in controlled flight conditions
where an algorithm performance metric is produced within this frame of reference.
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Sommario

Gli ultimi progressi tecnologici nel campo dei veicoli aerei senza equipaggio (UAV)
hanno promosso un grande interesse nello sviluppo dei velivoli a causa della
sua vasta gamma di applicabilità. Pertanto, i problemi di controllabilità e au-
tomazione sono diventati una delle prime linee di ricerca in questo settore.

La base del controllo di questi velivoli è solitamente definita dal controllo
d’assetto, dove approcci teorici o sperimentali del modello sono frequentemente
utilizzati per lo sviluppo e la messa a punto dei controllori. Tuttavia, questo
approccio comporta molte limitazioni corrispondenti alla fedeltà del modello.

Per risolvere queste limitazioni, sono state sviluppate tecniche di controllo
data-driven che trattano l’incertezza del sistema da controllare, da cui si utilizza
un modello di riferimento del sistema per replicarne la dinamica. Sebbene questa
metodologia sia funzionale per gran parte dei sistemi, nel caso di sistemi non lineari
sottoattuati, la scelta di un modello di riferimento adeguato si rivela critica per
la stabilità e le prestazioni dell’aereo.

Alla luce di questo problema, l’introduzione di algoritmi di ottimizzazione
nell’ambito dei controllori data-driven risulta essere considerato un approccio al-
ternativo per la progettazione e la sintesi degli stessi. In questa tesi è stato
implementato un metodo di ottimizzazione a due livelli all’interno dell’algoritmo
di regolazione del feedback di riferimento virtuale per generare un modello al-
ternativo libero da applicare all’interno del quadcopter UAV, considerando una
struttura a cascata del controller.

L’algoritmo è stato testato utilizzando diversi scenari di simulazione per con-
validare il funzionamento e i risultati generati. Allo stesso modo, un test speri-
mentale è stato condotto con i dati di misurazione di un velivolo in condizioni di
volo controllate, dove una metrica delle prestazioni dell’algoritmo è prodotta in
questo quadro di riferimento.
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Introduction

The growing development of unmanned aerial vehicles (UAV) in recent years pro-
moted by technological and theoretical advances in terms of dynamics and control
has led aircraft such as quadcopters to be a tool that offers a great variety of alter-
natives in their applications ranging from military or soil recognition for buildings
through cinematography, or recreational use. This great variety of applications
requires the aircraft to have specific characteristics in terms of safety and flight
handling, hence, the control designed must be optimal for each type of aircraft.

The attitude control paradigm is the main basis for the synthesis of controllers
in charge of mastering the dynamics of the quadrotors such as position, linear or
angular velocity which can be achieved through the generation of torque in the
desired axis. The construction and design of the quadrotors provides different
benefits in terms of dynamics, the symmetry of the aircraft is able to decouple
each component of the inertia while the blade structure which turn in opposite
directions, deals with the gyroscopic effect while provides more unstable responses
due to its increase in maneuverability. The variation of the thrust generated by
each of the rotors is the way to control the attitude itself, this is achieved through
the angular velocity of pitch and roll from which all the other dynamics can be
derived.

At the same time, the safety features of the aircraft rely on the stabilization,
disturbance, and noise rejection as well as robustness of the implemented con-
trollers which in combination with the attitude control specifications represents
a significant effort on the control design framework to provide the necessary and
sufficient conditions so the systems in control can achieve stable flight conditions.

Nowadays, the tendency to build smaller UAVs is greater, which implies that
the dynamic models of each aircraft must be more precise as the external excita-
tions have more influence, making the complexity greater, and thus, the applica-
tion within the control framework becomes increasingly difficult. The mathemat-
ical models established in the theory are based mainly on physical principles or
statistical methods in charge of identifying the parameters related to the dynamic
system through the usage of measured data. However, this type of modeling tends
to have certain drawbacks as the complexity of the system increases, within these
drawbacks related to physical models, there is the sub-modeling of the system
where dynamics that affect the real model are not taken into account due to lack
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of information, approximations, linearization, among others. This causes that at
the time of implementing the controllers an adequate or optimal performance is
not obtained. Moreover, this type of modeling does not usually consider wear and
operating conditions.

As far as statistical models are concerned, the unrepresentative excitation of
the system can generate under modeling or misidentification of the system. The
introduction of uncertainty factors in the measured data such as noise, distur-
bances, and uncertainty propagation within the parameters is another drawback
of the statistical models.

Improper modeling of the system has become one of the main limitations
of control strategies, and data-driven control techniques have been developed to
overcome these limitations. These techniques use optimization methodologies to
synthesize model-based controllers through the usage of measured data from op-
erating systems where uncertainty is considered. However, those control method-
ologies are not able to surpass all the limitations since the necessity of reference
models is still a problem that leads to sub-modeling limitations, and therefore,
sub-optimal performance.

Another research trend that has been reinforced during the last decades is
related to optimization methods, where highly complex problems are solved us-
ing new techniques that not only optimize the parameters but also have a high
processing capacity that allows the implementation in the UAVs themselves. The
use of these optimization algorithms within the control framework generates the
possibility of synthesizing controllers without the need to establish a model to
refer to, that being used as another layer of the control methodologies based on
data, generates a further enhancement on the synthesized controllers.

Thesis structure

The scope of this thesis is to implement and validate optimization techniques for
the reference models for data-driven controller tuning in order to get a model-free
data-driven methodology. The work is organized as follows:

• Chapter 1 – Attitude control – UAV: The principles of the unmanned
aerial vehicles dynamics are presented, establishing the proper derivation of
the model of a quadrotor. Furthermore, the logics of the attitude control
are introduced showing the importance of the actuator dynamics giving a
final definition of the dynamic model. An overview of PID controllers is
shown providing motivations and limitations to finally introduce the control
structure for the attitude control.

• Chapter 2 – Data-driven methods: An introduction of data-driven con-
trol framework is given, focusing in the Virtual-Reference-Feedback-Tunning
and its motivations related to the model reference control paradigm. The
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proper mathematical derivation is fully detailed giving an emphasis on noisy
realizations and how to the deal with them, additionally, the VRFT algo-
rithm is extended to cascade control structures. To conclude, a description
of the main drawbacks of the choice of reference models is presented.

• Chapter 3 – Optimization methods: The two optimization algorithms
(Particle swarm optimization and Covariance matrix adaptation strategy)
are formally presented showing its implementation within the VRFT algo-
rithm and its extension for the cascade VRFT structure.

• Chapter 4 – Simulation: Multiple simulation scenarios are used to vali-
date the algorithm results showing its performance capabilities with respect
to the nominal algorithms. A simulation of a real quadrotor is presented
where the algorithm is tested to give an overview of the algorithm within
UAVs framework.

• Chapter 5 – Drone platforms: A general overview of the experimen-
tal conditions is fully depicted showing the main features of the drone, its
software and hardware as well as the facilities where its measured.

• Chapter 6 – Experimental testing and results: The experimental
tests using the Cascade model-free VRFT algorithm into the ANT-X drone
platform using the in-flight experimental data are presented, portraying the
range of implementation and its limitations.

• Chapter 7 – Conclusions: The conclusions are formulated following the
results given by the simulations and the experimental testing where the
analysis is cited to give some insights on the future research direction.
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Chapter 1

Attitude control - UAV

This chapter introduces the principles of the quadrotor unmanned aerial vehicles
(UAV) dynamics, which serve as a basis for generating control methodologies
to obtain the desired flight behavior. Hence, preliminary notions within aerial
mobile robotics are introduced to derivate the quadrotor dynamics through a
mathematical model. Furthermore, an overview of the main goal of the attitude
control is given and the control design paradigm is discussed within the PID
control structure.

1.1 Mobile robotics

The unmanned aerial vehicles can be classified as mobile robots, understanding
robots as machines capable of carrying out a complex series of actions guided
or automatically. Within this field of study, the basic problem formulation starts
from the representation of a rigid body in the space. To achieve this goal, cartesian
frames are introduced, and the most common technique is to consider a reference
frame and attach a second frame to the body, such that the problem resides on
the characterization of the position and orientation of a frame with respect to the
other one.

For the UAVs, there are several choices for the reference frames that depend
on the application used, and each frame has its characteristics useful for simplifi-
cations of the model. In this case, two reference systems are commonly used, the
first one called North-East-Down (NED) -also called the inertial reference frame,
since the first Newton’s law is considered valid due to the fixed coordinate system-
the reference frame ONED originates as a fixed point on the surface of the earth
and its orientation is given by its name (NED). The second reference frame is
called the Aircraft body center OABC , and it is characterized to be a mobile ref-
erence system where its origin is aligned with the center of mass of the aircraft
and its axes XABC , YABC & ZABC points towards the front of the aircraft, right
propeller and downwards; a detailed illustration is shown in Fig 1.1.



6 Attitude control - UAV

Figure 1.1: Aircraft body center frame

Given the respective reference frame, the representation of the position is made
with the components of the origin of the body frame for the fixed frame, while
the representation of the orientation can be made considering unit length vectors
along the axes of the rotating frame and evaluating them in the reference frame.
The gathering of the three-unit vectors is known as rotation matrix R of the
frame {x′, y′, z′} with respect to the frame {x, y, z} since the following relations
holds:

x′Tx′ = 1, y′Ty′ = 1, z′T z′ = 1 (1.1)

x′Ty′ = 0, y′T z′ = 0, z′Tx′ = 0 (1.2)

Thus, the rotational matrix is orthogonal since:

RTR = I(RT = R−1) (1.3)

Note that the initial formulation of the rotation matrix uses nine parameters to
represent the orientation of a frame with respect to another one from which six
constraints exist, adding complexity to the general problem, conversely, another
minimal representation of the orientation known as ZYX Euler angles [3] described
by three independent parameters φ ∈ θ ∈ & ψ ∈ is used.
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Euler angles represent a sequence of three elemental rotations shown in Equa-
tions (1.4)(1.5)(1.6) from which any possible orientation can be described from
the combination of each element.

Rx (φ) =

1 0 0
0 cos(φ) − sin (φ)
0 sin(φ) cos(φ)

 (1.4)

Ry (θ) =

 cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(φ)

 (1.5)

Rz (ψ) =

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 (1.6)

Additionally, the position coordinates and the mobile body reference can be de-
fined with the Euler ZYX rotation matrix as:

Rzyx (φ, θ, ψ) = Rz (ψ) ·Ry (θ) ·Rx (φ) (1.7)

Moreover, by using the fixed and the mobile frames, the resulting Euler angle is
rewritten as:

RNED (φ, θ, ψ) =

c(θ)c(ψ) s(φ)s (θ) c (ψ)− c(φ)s(ψ) c (φ) s (θ) c (ψ) + s(φ)s(ψ)
c(θ)s(ψ) s (φ) s (θ) s (ψ) + c(φ)c(ψ) c (φ) s (θ) s (ψ)− s(φ)c(ψ)
−s(θ) s(φ)c(θ) c(φ)c(θ)

 (1.8)

Where s(·) stands for sin(·) and c(·) for the cos(·)

1.2 Model of the quadrotor

The mathematical model of the quadrotor is derived using Newton and Euler
equations for the motion of a rigid body in a 3D space. Thus, the definition of
the position for both reference frames is given by:

PONED
=


x
y
z
φ
θ
ψ

 (1.9)
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PABC =


u
v
w
p
q
r

 (1.10)

Where the first three terms of Equation (1.9) represent the linear position,
and the other three, the angular positions. Likewise, for Equation (1.10), the first
three terms represent the linear velocity and the other three, the angular velocity
linked to the body frame. Following the body dynamics, a relationship between
the two frames can be described as:ẋẏ

ż

 = RNED (φ, θ, ψ)

uv
w

 (1.11)

φ̇θ̇
ψ̇

 = TNED (φ, θ, ψ)

pq
r

 (1.12)

In which TNED is the transformation matrix for the angular positions that is
constrained by the so-called Gimbal lock problem, where one degree of freedom is
lost when the axes of two of the three gimbals are placed in parallel configuration,
generating a two-dimensional space. To deal with this problem, a fourth rotational
axis can be considered as shown in [4].

TNED (φ, θ, ψ) =

1 s (φ) t(θ) c (φ) t(θ)
0 c(φ) −s(φ)

0 s(φ)
c(θ)

c(φ)
c(θ)

 (1.13)

Where t (·) isthe tan (·)
To apply Newton and Euler equations, it is necessary to study the forces and

moments acting on the body frame. Furthermore, Fig 1.1 shows that three
external forces are actuating on the system, the first one being the gravitational
force Fg, which is related to the fixed axis; the second one is the total thrust
generated by rotors FMt , and finally the wind forces Fw actuating on each axis of
the quadrotor. Similarly, the external moments acting on the quadrotor are the
torques generated by the differential rotor speeds τMt , the gyroscopic moments τG
-which is a term related to the rotation of the rotors and the vehicle body-, and
finally, the wind torques τw.

Furthermore, the external forces are defined as:

FABC = FgR
T ·ẑNED − FMt ·ẑABC + Fw (1.14)
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While the external moments are given by:

mABC = τMt − τG + τw (1.15)

Finally, the dynamic model of the quadrotor in the body frame is derived from
the second Newton’s law, as follows:

m

pq
r

 xy
z

+

ẋẏ
ż

 = FABC =

FxFy
Fz

 (1.16)

Considering the symmetry of the aircraft, the inertial tensor is:

Jq =

Jxx 0 0
0 Jyy 0
0 0 Jzz

 (1.17)

Thus, the external moment equation can be formulated using Euler’s equations:

Jq·

ṗq̇
ṙ

+

pq
r

 Jq·
pq
r

 = mABC =

Mroll

Mpitch

Myaw

 (1.18)

Consequently,
Fx
Fy
Fz
Mroll

Mpitch

Myaw

 =


−mgs (θ) + fwx

mg [c (θ) s (φ)] + fwy

mg [c (θ) c (φ)] + fwz − FMt

τMtx − τGx + τwx

τMty − τGy + τwy

τMtz − τGz + τwz

 =


m(u̇+ qw − rv)
m(v̇ − pw + ru)
m(ẇ + pv − qu)

ṗJxx − qrJyy + qrJzz

q̇Jyy + prJxx − prJzz

ṙJzz − pqJxx + pqJyy

 (1.19)

1.3 Control design framework

The attitude control paradigm on quadrotors is ruled by the dynamics of the
propellers present in the aircraft. The speed control of the motors allows the
generation of moments and forces that are related to the thrust given by the
rotors, the pitching and rolling moments produced by differential speed on the
rotors while the yawing moment is counteracted when two rotors rotate in opposite
directions, as shown in Fig 1.1. Additionally, the motion of the quadrotors in
the space is described by six degrees of freedom, divided into three translational
degrees, namely, forward and backward, lateral and vertical movements, and three
angular degrees, described as roll, pitch, and yaw movements. Observe that a
quadrotor is an underactuated nonlinear complex system [5] due to the difference
between inputs (Rotor speeds) and six outputs (Forces and Moments). Usually,
the quadrotor is manipulated using four basic movements, specifically, according
to the notation of the propeller in Fig 1.1 the movements are defined as:
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• Thrust movement occurs when all four rotors have the same speed.

• Pitch movement takes place when rotor 1 speed is lower than the rest,
rotor 3 speed is higher and rotor 2 & 4 is equivalent.

• Roll movement uses the same dynamics as the pitch movement and instead
of rotor 1 being the lower and rotor 3 being the higher, the rotors 2 and 4
take those actions respectively.

• Yaw movement is generated by a reactive torque produced by the different
speeds on the four rotors, to get a counterclockwise yaw movement, the rotor
speed of 1 and 3 have the same magnitude and are lower than the 2 and 4
that also have the same magnitude.

1.3.1 Actuator dynamics

According to the previous motivation, it is essential to define the proper models
of the propellers to give the dynamic model of the quadrotor the necessary inputs
to control the motion of the system. Therefore, let the control inputs be defined
by the speed of the rotors Ω that consider four degrees of freedom, which ac-
count for the vertical thrust and the 3D angular motions, providing the following
formulation: 

FMt

τMtx

τMty

τMtz

 =


tf (Ω

2
1 + Ω2

2 + Ω2
3 + Ω2

4)
tf l(Ω

2
3 − Ω2

1)
tf l(Ω

2
4 − Ω2

2)
df (Ω

2
2 + Ω2

4 − Ω2
1 + Ω2

3)

 (1.20)

Where tf ∧df are the thrust and drag factors respectively, while l is the distance
between the propeller and the center of the aircraft. Introducing the actuator
dynamics on Equation (1.20) into (1.19), the dynamic model of the quadrotor
becomes:

Fx
Fy
Fz
Mroll

Mpitch

Myaw

 =


−mgs (θ) + fwx

mg [c (θ) s (ϕ)] + fwy

mg [c (θ) c (ϕ)] + fwz − tf (Ω2
1 + Ω2

2 + Ω2
3 + Ω2

4)
tf l(Ω

2
3 − Ω2

1)− τGx + τwx

tf l(Ω
2
4 − Ω2

2)− τGy + τwy

df (Ω
2
2 + Ω2

4 − Ω2
1 + Ω2

3)− τGz + τwz

 =


m(u̇+ qw − rv)
m(v̇ − pw + ru)
m(ẇ + pv − qu)

ṗJxx − qrJyy + qrJzz

q̇Jyy + prJxx − prJzz

ṙJzz − pqJxx + pqJyy


(1.21)

As for the control framework, Equation (1.21) can be rewritten into space-state
model described in [6] to formulate the proper analysis and design which are
outside the focus of this work, the reader is referred to [6][7][8] for further details
on this topic.
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1.3.2 Control configuration

The controller used on the quadcopter is the widely known PID controller, given
that nowadays more than 95% of all industrial control problems are solved by
PID control [9], due to the ease of implementation and performance capabilities.
According to the extensive implementation in the industrial sector, the knowledge
about this type of controller in terms of design, tuning, extension, advantages and
disadvantages is already well-documented, the reader is referred to the literature
in [10] & [11] for a more detailed description of this type of controllers.

PID controllers get their name according to their main characteristics of con-
struction and operation, P stands for a proportional -term that provides inputs
that correct the “current” errors-, the I is the integral term, which ensures steady
state zero error, and finally, the derivative term D that provides “anticipation of
upcoming changes”. More formally, the PID controller is defined as:

u (t) = kpe (t) + ki

∫ t

0

e (τ) dτ + kd
de (t)

dt
(1.22)

Where kp, ki ∧ kd represent the proportional, integral, and derivative gains, while
e(t) is the signal of error at time t, which is the difference between the desired
signal and the output signal of the plant; In contrast, u(t) is the output signal of
the controller or as usually used, the input signal for the plant. The PID controller
is commonly transformed into the Laplace-domain as:

Hue (s) = KP +KI
1

s
+KDs = k

(
1 +

1

Tis
+ Tds

)
=
kTD
Ti

(
s+ 1

Ti

)(
s+ 1

TD

)
s

(1.23)
At the same time, the controller can be discretized using several methods such

as the Forward Euler Discretization defined by:

z = esTs'1 + sTs (1.24)

Hence,

Hue (z) = Kp +KI
Ts
z − 1

+Kd
z − 1

Ts
(1.25)

Note that the controller is capable to give high gain at low frequency and phase
margin at high frequency, also it can be designed to cover a specific bandwidth
placing the poles of the transfer function in (1.23).

The formulation previously described accounts for the so-called parallel struc-
ture of PID controllers shown in Fig 1.2. However, the set-point kick phenomenon
happens when the reference signal is a step function, where the presence of an
approximation of a pure derivative action makes the variable u (t) to involve a
sharp pulse function, instead of an impulse function which is not acceptable in
the UAV framework. To overcome this phenomenon, the idea of a PI-D control
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shown in Fig 1.3 has been developed, where the derivative action is fed only by
the feedback signal Y (s) and not the reference signal R(s). Thus, the output
signal of the controller becomes:

U (s) = Kp

(
1 +

1

Tis

)
R (s)−Kp(1 +

1

Tis
+ Tds)Y (s) (1.26)

Figure 1.2: PID Controller

Figure 1.3: PI-D Controller

The introduction of PID controllers into the attitude control framework can
be achieved using a cascade controller structure, where the process variables can
be the roll and pitch angles depending on the scope of the problem. Furthermore,
it can be a single-input single-output (SISO) scope due to decoupled attitude dy-
namics from Equation (1.17), while a multi-input multi-output (MIMO) extension
is also valid especially when coupled dynamics diminish the performance of the
system. The control variables are the angular rates and the external moments
generated by the propellers, while the cascade control loop is divided into two
feedback loops; the outer loop, which is fed by the angular positions and uses a
P controller to provide the reference signal for the inner loop -which in this case
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are the angular rates- and the inner loop reference signal is processed by a PI-D
controller to feed the angular rate dynamics of the quadrotor.

The cascade control structure is particularly useful for this application accord-
ing to two intrinsic characteristics of the quadrotor control paradigm. The first
one is related to the difference between the attitude rate dynamics and angular
rate dynamics which, as can be seen from Equation (1.21), determines the attitude
of the quadrotor, swhilst the second characteristic is the availability of the data,
where measurement for both angular and attitude rates are reliably evaluated.
Conclusively, the final control structure used is presented in Fig 1.4.

Figure 1.4: Quadrotor cascade P, PI-D controller
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Chapter 2

Data-driven methods

This chapter is dedicated to the introduction of data-driven methods, showing
the latest developments, features, and advantages that they have concerning the
commonly used methods such as model-based control synthesis.

Furthermore, the Virtual Reference Feedback Tuning (VRFT) is meticulously
derived for Single-Input Single-Output (SISO) Linear Time-Invariant (LTI) prob-
lems starting from its motivations related to the model reference scope, followed
by its mathematical derivation, the different setup for the experimental realiza-
tion, and finishing with a generalization of the algorithm and its usage on the
cascade control framework.

2.1 Introduction

The data-driven methodology in the framework of control can be thought of as
a robust controller designed according to an approach having two levels of ab-
stractions, as shown in Fig 2.1. The upper level prescribes that the controller
is formed by two units with different aims: one unit (control unit) selects the
control action to apply to the system. This unit is not determined though as it
contains parameters that must be tuned; a second unit (tuning unit) is on duty
to perform the parameter tuning. This fundamental split is at the basis of the
concept itself of an adaptive system. The lower level consists instead in selecting
specific algorithms for the two units.

Nonetheless, the data-based methodology covers a very large spectrum of ap-
plicability, so it is necessary to define or classify the type of controllers that can be
generated. Consequently, different aspects are considered, such as the variability
concerning the time in which the controller estimates are tuned. In this particular
case, there is the online type of adaptability, where the tuning unit provides up-
dated estimates of the system at each instant of time, and these new estimates are
incorporated and used in the controller unit for the selection of control actions.
In contrast, when the controller is only sporadically updated, or the controller
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Figure 2.1: Data-Driven control topology

implementation and data acquisition phases are widely separated, it is considered
offline adaptation: after data collection, the operation of the control system stops,
and the controller is readjusted according to the tuning system parameters.

Off-line adaptation gains an important advantage over online adaptation: an
online adaptive controller is a truly complex nonlinear device whose behavior can
be hardly predicted in non-standard operating conditions. Moreover, even stabil-
ity is difficult to ascertain under general circumstances. In off-line adaptation, the
re-tuned controller can be tested before it is implemented so that it can be used
more safely.

At the same time, there is another way of classifying the methods that de-
pend on the procedure in which the controller parameters are estimated; the first
approach is based on generating an estimate Ŝt of the system S to optimize
the performance measure J(C, Ŝt), which aims to give the optimizer of J(C, S),
this is called the indirect method. On the other hand, the direct method tries to
estimate directly from the data the cost J(C, S) as a function of the controller C,

and the parameters are obtained by direct optimization of Ĵt(C, S) with respect

to C. Note that the estimate Ĵt(C, S) can be updated over time. Thus, the
direct method has the advantage that the parts of S that do not affect the cost
of control J (C, S) are automatically ignored.

The state-of-the-art shows that the research approach is taking place within
the group of direct and offline methods due to the advantages previously described
and their relative similarity with conventional control methods. Table 2.1 shows
the classification of the most used algorithms where VRFT is taken into account as
the main methodology for this thesis work due to its non-iterative nature compared
to CbT or IFT, as well as the saving of an identification step necessary to obtain
results in unfalsified control.
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ONLINE OFFLINE

DIRECT Q-Learning

Virtual Reference Feddback Tuning (VRFT)
Correlation-based Tuning (cbT)
Data-driven unfalsified control

INDIRECT Recursive Least Squares

Table 2.1: State of the Art Data-driven techniques

2.2 Model reference control

Model reference control is a development mainly based on aircraft control; it is
used to specify the desired response of a control system for command input, and
consequently, it is considered fundamentally as a command shaping filter that
obtains the desired command following. Typically, the model contemplated is
a Linear Time-Invariant (LTI) model, even though nonlinear models could be
used, the level of complexity in terms of practical considerations and analytical
tractability among others making them less appealing to work with. Notice
that the chosen model should capture all performance & robustness specifications
such as rise time, settling time, phase, and gain margins, so it is assumed that
the designer is sufficiently familiar with the system under consideration since the
structure, desired response, and parameters of the reference model are chosen
concerning the model outputs. [12][13]

The problem formulation regarding the model reference control is based on
linear-quadratic (LQ) theory, in an attempt to minimize the error transients be-
tween the responses of the actual plant and those of the desired target model. To
do so, an H2 or LQ minimization criterion is used to provide a controller capable
of minimizing the mismatch in the frequency domain between the plant and the
reference model responses. Thus, the model following control problem is detailed
in the following structured approach:

Given the model M(z), that is the designed transfer function of the closed-
loop from R to Y, the system plant P(z), a linear combination of basis transfer
functions C (z, θ) parametrized with the vector of parameters θ∈Rn, such that
C(θ) = {C (z, θ) = βT (z) θ}, and a frequency weight W (z) used to free the
mismatch between the closedloop and M at frequencies that are important for
the control goal. The resulting metric is:

JMR (θ) =

∥∥∥∥( P (z)C (z, θ)

1 + P (z) c (z, θ)
−M (z)

)
W (z)

∥∥∥∥2

2

(2.1)

JMR(θ) =
1

2π

∫ π

−π

∣∣∣∣ P (ejω)C (ejω, θ)

1 + P (ejω)C (ejω, θ)
−M

(
ejω
)∣∣∣∣2 ∣∣W (

ejω
)∣∣2 dω (2.2)
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Hence, the model following, or model reference control problem results in:

θ∗MR = argmin
θ

JMR(θ) (2.3)

Note that the assumption in which a linear combination of transfer functions is
used for the controller C(z, θ) and that the sensitivity function S(z) = I −M(z)
is close to the closed-loop sensitivity function for θ = θ∗, which ensures a convex
approximation to the optimization problem. However, this formulation does not
guarantee any stability criteria, since the problem focuses solely on the mismatch
between the output complementary sensitivity and the reference model.

Moreover, there is another formulation which is the unstructured formulation,
where the target of optimization is C(z). Nevertheless, this approach carries sev-
eral disadvantages concerning the structured problem because the solution might
not be feasible to implement caused by factors such as: the relative degree of the
transfer function showing an anticipative improper system, a high control effort
and the presence of high-frequency dynamics. Even if a model reduction could
be obtained on the system or the controller, other problems arise in terms of
performance and stability.

In essence, the solution of the model reference control problem using the struc-
tured approach relies on the a priori knowledge of the plant P (z), which in the
framework of data-driven and adaptive control remains unknown due to the pres-
ence of uncertainty on the system, providing a not well-defined optimization metric
JMR(θ). Therefore, another metric should be entirely constructed based on data
to overcome the uncertainty.

2.3 Virtual Reference Feedback Tuning (VRFT)

Virtual reference feedback tuning is a direct and offline data-driven method for
controller design, and is based on the framework of the model reference control
and attempts to solve the problem related to the uncertain systems through in-
put/output measurements of an unknown plant. This approach was introduced
in [14] for a generic nonlinear system, and then the first approach mainly focused
on the design of one degree of freedom controllers of a closed-loop linear time-
invariant system on [15]. Afterward, it was studied and developed in [16], [17],
[18] for several case studies such as procedures for nonlinear control, MIMO LTI
control or non-minimum phase systems.

The main feature that VRFT provides among the different approaches is that
there is no need for model identification of the plant, and it can be used applying
only a single data set generated by the plant. This data set can be generated from
a closed or open loop configuration of the experiment given certain conditions that
will be discussed later in this work. Additionally, this approach does not require
any type of iteration either for the data collection or for the control design. Lastly,
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since the VRFT works within the framework of the reference model, it is important
to emphasize that prior knowledge of the dynamics of the system is important to
design an adequate reference model that provides suitable responses for the system
itself.

This method relies on the so-called virtual reference, which is a signal that
would produce an output equal to measured data output if a perfect controller
C∗(z, θ) is placed in the control loop. Then, the idea is to choose the parameter
vector θ in such a way that this behavior is followed at best by the chosen
controller and that Equation (2.1) is minimized.

2.3.1 Mathematical derivation

The SISO formulation of the VRFT will be shown motivating a pre-filter of the
data, the treatment of the noise and its implementation on cascade control frame-
work. The source of the problem given by Equation(2.1), and its impossibility to
get the prior knowledge of the plant P (z), makes this method introduce a differ-
ent cost function that depends on a collection of input/output data from de plant
DN = {(ut, yt) , t = 1, . . ., N}. The so-called virtual reference Rr is the set-point
for when the desired response of the closed-loop ( M(z)Rr) is proper for the mea-
sured values of the output of P (z), during the experiment yt. The whole setup is
illustrated as:

Figure 2.2: VRFT block diagram

Where:

Rr (i) = M (z)−1 y (i) i = 1, . . ., N (2.4)
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y (i) = M(z)Rr (i) (2.5)

Introducing the virtual error:

ev (i) = Rr (i)− y (i) (2.6)

Observe that the VRFT is an offline method so Rr can be always computed even
if M (z)−1 is not proper. A Necessary condition for the method is that an
optimal controller C∗(z, θ) is such that:

(P (z)C∗ (z, θ))

(1 + P (z)C∗ (z, θ))
= M(z) (2.7)

If this is so:

(P (z)C∗ (z, θ))

(1 + P (z)C∗ (z, θ))
Rr (i) = M (z)Rr (i) = y (i) (2.8)

C∗ (z, θ) ev (i) = P (z)−1 y (i) = u (i) (2.9)

Thus, the optimization cost function constructed based on data becomes:

JVR (θ) =
1

N

N∑
i=1

‖u (i)− C(z, θ)ev (i)‖2
2 (2.10)

However, in most of the cases C∗ (z, θ) does not belong to the class of controllers
C producing a severe mismatch between Equation(2.1) and Equation(2.10). The
idea of introducing a pre-filter on the data is to exploit a new degree of freedom so
VRFT will behave close as a model reference control design, a more detailed de-
scription is shown in [14]. In order to compare both cost functions, the asymptotic
frequency domain expression of Equation (2.10) is described as:

JVR(θ) =
1

2π

∫ π

−π

|P (ejω)|2 |C∗ (ejω)− C (ejω, θ)|2

|1 + P (ejω)C∗ (ejω)|2
|L(ejω)|2

|M(ejω)|2
Φudω (2.11)

Where L(z) is the pre-filter and Φu is the spectral density of the input ut
which is chosen by the user. Note that an optimal choice of L(z) minimizes the
mismatch between Equation(2.11) & Equation(2.12).

L∗
(
ejω
)

=
|W (ejω)|2 |M (ejω)|2 |(1−M (ejω))|2

Φu

,∀ω∈[−π,+π] (2.12)

With this implementation, the data of Equation(2.10) becomes:

evL (i) = L (z) ev (i) (2.13)



2.3 Virtual Reference Feedback Tuning (VRFT) 21

uL (i) = L(z)u (i) (2.14)

Finally, considering a structured controller case with a linear combination of
basis transfer functions C (z, θ), parametrized with the vector of parameters θ∈Rn,
such that C(θ) = {C (z, θ) = βT (z) θ}, provides the Equation(2.10) to be:

JVR (θ) =
1

N

N∑
i=1

∥∥uL (i)− βT (z) θevL (i)
∥∥2

2
=

1

N

N∑
i=1

∥∥uL (i)− θTϕL (i)
∥∥2

2
(2.15)

Thus, the minimization problem of the cost function turns into a Least Squares
minimal equation:

θ∗VR = argmin
θ

JVR (θ) =

[
N∑
i=1

ϕTL (i)ϕL (i)

]−1 [ N∑
i=1

ϕTL (i)uL (i)

]
(2.16)

2.3.2 Experiment Setup

The collection of the input/output data from the plantDN = {(ut, yt) , t = 1, . . ., N}
can be done employing open or closed-loop experiments. Each of one of them can
be affected by additive noise d(t) in the output, leading to a biased parameter
vector in the case of an open-loop experiment and a correlation between the input
and the noise if the experiment is carried out with a closed-loop experiment. This
results in a significant deterioration of the performance of the VRFT algorithm,
since the cost function of Equation (2.11) may no longer approximate to Equation
(2.2). Such effect is described as:

ỹ(t) = P (z)u (t) + d(t) (2.17)

Additionally for closed loop experiments:

ẽL (t) = (I −M (z))P (z)u (t) + (I −M (z)) d(t) (2.18)

To deal with noisy data the concept of Instrumental Variables (IV) is introduced.
The main idea behind the IVs is that “the instruments must be correlated with the
regression variables but uncorrelated with the noise” [19]. Providing a reduction
in the impact of the noise in the dataset. In the case of VRFT, there are two
principal ways to implement the IVs:

• Repeated experiment method: Performing a second experiment on the
plant using the same input sequence u(t) as in the first experiment provides
a secondary output sequence ỹ′(t) and, assuming that the noise signals
on the different realizations are uncorrelated, then, with the instrumental
variable and for a dataset DN with N →∞, the resulting estimate θ̂ will
be consistent with the noiseless estimate.
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• System identification method: Identifying a model of the plant using
the dataset DN and retrieving output data from a simulated experiment
provides uncorrelated sequences to be used as IVs. Even though the iden-
tification procedure has its contradiction related to the direct data-driven
methods, it is worth remarking that the only objective of this model is to
generate de instrumental variable and, consequently, does not interfere with
the design of the controller.

Furthermore, the actual implementation and derivation of the instrumental
variables on SISO closed-loop experiments are in [20] and [21]; as for the MIMO
implementation, another further step must be made by introducing the Extended
Instrumental Variable (EIV) to accomplish the same goal. The reader is referred
to [17] for details and comments.

2.3.3 Cascade controller structure

As previously stated, the cascade control framework is commonly used to increase
the dynamic performance of systems and specifically in the case of study to con-
trol the kinematics related to velocity and position of the system. To transpose
this framework into the VRFT it is necessary to have at least a minimal prior
knowledge of the dynamics of both the inner and the outer feedback loops, since
the main approach to deal with this problem is to tune each loop separately by
the means of separate model references. The method proposed in [22] states that
the dataset DN = {(uit , yit , yot) , t = 1, . . ., N} is a collection of input and output
signals, where uit is the excitation input on the inner loop, yit is the output of the
inner loop and yot is the output of the outer loop. Under the VRFT formulation,
the inner loop controller parameters θ̂i can be estimated from DN , while for the
outer loop other further steps are needed considering that the input data of the
outer loop is affected by the controller of the inner loop, this relationship is shown
in Fig 2.3 and described as:

uot = r1 = e1 (t) + yit(θ̂i) (2.19)

e1 (t) = C−1
2

(
θ̂i

)
uit(θ̂i) (2.20)

Figure 2.3: Cascade VRFT block diagram
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Note that the calculation of Equation (2.20) requires an inversion of the inner
controller, implying that a necessary condition for the inner controller is that
the result is minimum phase. Once this condition is verified, another execution of
the VRFT algorithm is made using the calculated input data uot and the outer
error e to generate the outer cost function:

JVRo (θ) =
1

N

N∑
i=1

‖uot (i)− C1(z, θ)e (i)‖2
2 (2.21)

To sum up, a generalization of the complete VRFT cascade algorithm is shown
in the following pseudo-code.

Cascade SISO VRFT controller

1. Design Φui , W (z), Mi(z) and Mo(z)

2. Compute the optimal pre-filter L∗i (ejω) =
|W(ejω)|2|Mi(ejω)|2|(1−Mi(ejω))|2

Φu

3. Compute uLi (i) = Li(z)u(i)

4. Compute evLi (i) = Li (z) evi(i)

5. Identify the plant P̃ (z) and compute the output ỹit = P̃ (z)uit

6. Compute the instrumental variables ξi,t = C2i (z)
(
Mi (z)−1 − I

)
Li (z) ỹt

7. Compute the parameter vector θ̂i =?
[∑N

i=1 ξi,t (i) ϕ̃Li (i)T
]−1 [∑N

i=1 ξi,t (i)uL (i)
]

8. Check if minimum-phase, otherwise return to 1

9. Compute e1 (t) = C−1
2

(
θ̂i

)
uit(θ̂i)

10. Compute uot = r1 = e1 (t) + yit(θ̂i)

11. Compute the optimal pre-filter L∗o (ejω) =
|W(ejω)|2|Mo(ejω)|2|(1−Mo(ejω))|2

Φu

12. Compute uLo (i) = Lo(z)u(i)

13. Compute evLo (i) = Lo (z) evo(i)

14. Identify the plant P̃o(z) and compute the output ỹot = P̃ (z)uot

15. Compute the instrumental variables ξo,t = C1i (z)
(
Mo (z)−1 − I

)
Lo (z) ỹt

16. Compute the parameter vector θ̂o =?
[∑N

i=1 ξo,t (i) ϕ̃Lo (i)T
]−1 [∑N

i=1 ξo,t (i)uLo (i)
]
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Observe that steps 5 and 14 can be substituted for the repeated experiment
method only if the data set experiment is carried out in an open loop configuration.
In addition, this implementation is made with a structured control design so the
structure of the controller β (z) must be given before running the code. Finally,
the dynamics of the designed inner loop model reference must be faster than
the dynamics of the outer loop model reference otherwise the system will never
converge.

2.4 Reference models

Within the paradigm of data-driven methods, one of the main characteristics
is that there is no need to have prior knowledge about the plant to generate
a stabilizing controller. Nevertheless, the substantial influence of the reference
model within the VRFT framework makes it mandatory to obtain a minimum of
knowledge about the dynamics of the system to be able to generate an adequate
reference, where problems such as performance, stability, non-minimum phase
plant, among others, can be avoided.

As the main countermeasure for this problem, first or second-order reference
models are often implemented depending on the performance restrictions, where
metrics such as crossover frequency, damping ratio, or settling time are considered.
Even so, when the complexity of the system is higher, and particularly when
nonlinear dynamics exist, the reference models are not usually accurate enough
to obtain a controller capable of stabilizing the system, and therefore, data-based
methods do not perform as intended. This is expected, since there may be optimal
reference models that allow an improvement in the operation of the system in
which the algorithm is implemented.



Chapter 3

Optimization methods

Within the paradigm of data-driven methods, one of the main characteristics
is that there is no need to have prior knowledge about the plant to generate
a stabilizing controller. Nevertheless, the substantial influence of the reference
model within the VRFT framework makes it mandatory to obtain a minimum of
knowledge about the dynamics of the system to be able to generate an adequate
reference, where problems such as performance, stability, non-minimum phase
plant, among others, can be avoided.

As the main countermeasure for this problem, first or second-order reference
models are often implemented depending on the performance restrictions, where
metrics such as crossover frequency, damping ratio, or settling time are considered.
Even so, when the complexity of the system is higher, and particularly when
nonlinear dynamics exist, the reference models are not usually accurate enough
to obtain a controller capable of stabilizing the system, and therefore, data-based
methods do not perform as intended. This is expected, since there may be optimal
reference models that allow an improvement in the operation of the system in
which the algorithm is implemented.

PSO is a stochastic population-based optimization method proposed in [23];
it has been widely used due to its ease of implementation and fast convergence.
In PSO, the population is composed of several sample entities that are called
particles, each one of them is defined by three D − dimensional vectors:

• Current position −→x i: Contains the position of the particle. The current
position is evaluated as a problem solution and determines the quality of
the particle.

• Personal best −→p best : Consist of the best position that the particle has
achieved during its life span.

• Velocity
−→
V i: Represents the direction and length of movement of the particle

in the space and it can be seen as a step size for exploration.
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Each particle is placed randomly in a search space of a problem or function S,
defined by {−→y : li≤yi≤ui} where yi is the ith dimension of the vector −→y ; ui ∧ li
are the upper and lower boundaries of the ith dimension, respectively. After
evaluating the objective function at its current location, each particle defines the
velocity vector depending on its previous positions, the best location found so
far, some random perturbations, and most importantly, collecting information
of its neighborhood through the interaction between particles that determines
the best position explored −→g best . The definition of all velocities is done after all
particles evaluate the problem solution, and eventually, all particles converge to
an optimum of the cost function. This procedure is illustrated in Fig 3.1.

Figure 3.1: PSO particle update [1]

Furthermore, a formal generalization of the algorithm is shown in the following
pseudo-code:

PSO algorithm

1. Populate the particle swarm with random initial values on D dimensions

2. Loop:

3. Evaluate the cost function for each particle and set its current position
−→x i

4. Compare the evaluation of −→x i with cbest , if the current value is better,
then set cbest as the eval(−→x i), and set −→p best equal to −→x i

5. Search the best cost cbest and assign it into −→g best

6. Update the velocity and position of the particle with this formulation:{−→v i ← −→v i +
−→
U (0, ϕ1)⊗ (−→p i −−→x i) +

−→
U (0, ϕ2)⊗ (−→g best −−→x i)−→x i ← −→x i +−→v i
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-
−→
U (0, ϕi) represents a vector of random number uniformly distributed
in [0, ϕi] generated at each iteration

- ⊗ is component-wise multiplication

7. If a criterion is met, exit loop

8. End Loop

Note that the global optimum is not guaranteed since this application is ruled by
the exploration-exploitation dilemma. A more detailed description of the main
features, drawbacks, and constraints of the PSO algorithm is illustrated in [24][25].

3.1 Covariance Matrix Adaptation Evolution Strat-

egy (CMA-ES)

CMA-ES is a stochastic method for optimization of non-linear, non-convex, con-
tinuous domain functions. It belongs to the class of evolutionary algorithms that
are based on biological evolution from which the idea is to try to mimic this process
by implementing an iterative procedure of selection, mutation, and recombination
of the population of candidate solutions and its fitness represents the value of
the used cost function [26]. The selection process is made by comparing all the
individuals’ values, and the most suitable is used to develop a new generation
that is a recombined and mutated version of the best individual of the previous
generation, through the usage of Gaussian noise. CMA-ES is characterized by its
generation of the population of the individuals, which is achieved by sampling a
multivariable Gaussian probability distribution described as:

x ∼ N (m,C) (3.1)

Where the modal value corresponds to the distribution mean, m∈Rn and
its covariance matrix C ∈ Rnxn , which is symmetric and positive definite that
can be interpreted as an ellipsoid shown in Fig 3.2. As the figure shows, the
principal axes correspond to the eigenvector of C, while the squared axes lengths
correspond to its eigenvalues, the surface of the ellipsoid is depicted as the density
of the distribution. Thus, the covariance matrix C can be Eigen-decomposed as:

C = B
(
D2
)
BT (3.2)

From which Equation (3.1) can be written as:

N (m,C) ∼ m+ BDN (0, I) (3.3)

Where D scales the spherical distribution while B defines the orientation of the
ellipsoid.
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Figure 3.2: Ellipsoid decomposition for normal distribution

If this is so, the sampled search points for individuals of each generation g
can be determined as:

xg+1
k m(g) + σ(g)N

(
0, C(g)

)
m(g) + σ(g)BDZkfork = 1, . . ., λ (3.4)

Where σ is the step-size, λ is the population size, and Zk is a vector of
random numbers.

After the evaluation of the candidate solutions on each iteration, the param-
eters of Equation (3.4) are updated based on the fitness of the individuals. The
new mean m(g+1) is calculated as a weighted average ω of the best µ individuals
also called parents and its formulation is given by:

m(g+1) =

µ∑
i=1

ωix
(g+1)
i:λ (3.5)

As for the update of the covariance matrix C(g+1) and the step size σ(g+1), the
reader is referred to [27] since the complexity, motivation, description, and analysis
are beyond the scope of this work. However, the mathematical results of each of
the variables will be presented to give a complete vision of the method.

C(g+1) = (1− c1 − cµ)Cg + c1

(
p(g+1)
c p(g+1)T

c

)
+ cµ

λ∑
i=1

ωiy
(g+1)
i:λ y

(g+1)T

i:λ (3.6)

Equation (3.6) is a combination of different update methodologies that target
separate information on each term:

1. Weighted historical realization of the Covariance matrix (previous genera-
tion C(g))

2. Efficient information from the entire population ( rank − µ update)
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3. Exploitation of the evolution path given by information on the correlation
between generations (rank-one update)

As for the update of the step size, an empirical length of the evolution path is
used:

σ(g+1) = σ(g) exp

 cσ
dσ


∥∥∥p(g+1)

σ

∥∥∥
E ‖N (0, I)‖

− 1

 (3.7)

The CMA-ES algorithm results to be an advantageous method due to usage of
the covariance matrix C, where the dependencies between variables are modeled;
moreover, the update methodology provides robust adaptability on the search dis-
tribution, as well as the prevention on the degeneration of the population, while
the updates on the step size prevent a premature convergence of the population.
Furthermore, the CMA-ES is designed to have invariant and unbiased properties
that are highly desirable for evolution strategies, since it gives a uniform per-
formance on classes of functions considering variations of the parameters to be
tackled by the usage of the multivariable distribution.

To conclude, a general overview of the CMA-ES is shown in the following
diagram:

Figure 3.3: CMA-ES Flowchart algorithm [2]
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3.2 Model-free VRFT optimization implemen-

tation

Due to the setbacks previously described in (VRFT model-reference) and the fast-
tuning characteristics provided by the VRFT algorithm, the idea of implementing
iterative processes within the method becomes appealing. For instance, it is pos-
sible to develop strategies to improve certain aspects regarding the performance
and stability of the resulting closed-loop systems targeting the choice of the model
reference. To do so, it is necessary to introduce a reference signal r (0) . . .r(N−1)
that must supply a representative informative dataset of the system dynamics,
which in the study case a Pseudo-Random Binary Sequence (PRBS), is used due
to several characteristics in terms of implementation, scalability and harmonic
content given its binary nature and reproducibility due to its pseudo-randomness.
Note that the choice of r(i) depends on the application of interest, r(t) is not
restricted to PRBS signals. As in VRFT let the optimization problem be defined
as structured with respect to the model reference; where the number of real zeros
( nzr), complex conjugate zeros (n?zc), real poles ( npr), and complex conjugate
poles ( npc) are previously defined, if this is so, let the model reference M(z) de-
pends on a parameter vector θ to be optimized so the model reference becomes:

M (z) = M (θ, z) = K

∏nzr

l=1(z − zl)
∏nzr+nzc

l=nzr+1(z − zl)(z − z∗l )∏npr

l=1(z − pl)
∏npr+npc

l=npr+1(z − pl)(z − p∗l )
(3.8)

Where K enforces M(θ, 1) = 1 and zl, pl stands for the lth zero and pole, respec-
tively, whilst the parameter vector θ is defined by:

θ =


zl l = 1, . . ., nzr

<{zl} ,={zl} l = nzr + 1, . . ., nzr + nzc

pl
<{pl} ,={pl}

l = 1, . . ., npr

l = npr + 1, . . ., npr + npc

(3.9)

So, the VRFT Equation (2.16) will be equivalent to:

ϕ∗ (θ) = argmin
ϕ

N−1∑
t=0

(u (t)− C (ϕ, z) ev (θ, t))2 (3.10)

In addition, the cost function of the parameter vector θ is:

J (θ) =
1

N

N−1∑
t=0

Wy (r (t)− yp (θ, t))2 +W∆u∆u
2
p (θ, t) +Wfit(u (t)− C (ϕ∗(θ), z) ev (θ, t)) (3.11)

Where the first two terms account for error tracking and control effort, which are
the reflection of the performance of the reference model M(θ, z) is completely
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matched by the closed-loop system. This is described as:

yp (θ, t) = M (θ, z) r (t) (3.12)

up(θ, t) = C(ϕ∗ (θ) , z)(r (t)− yp(θ, t)) (3.13)

And

∆up (θ, t) = up (θ, t)− up (θ, t− 1) (3.14)

The third term is related to the model matching when C(ϕ∗ (θ) , z) is used while
Wy,W∆u ∧Wfit are nonnegative weights that are left as tuning parameters just
like Model Predictive Control (MPC) penalties. Finally, the optimal parameter
vector θ∗ is selected as:

θ∗ = argmin
θ

J(θ) (3.15)

As can be seen, the optimization problem becomes in a nonlinear, nonconvex one
(bi-level programming problem) which can be solved using PSO, the reader is
referred to [28] for details on motivations and derivation of the algorithm, while
a general pseudo-code of the implementation will be depicted below:

Model-free VRFT algorithm

1. Populate the particle swarm θi, i = 1, . . ., N with random initial values
constrained by the Routh-Hurwitz stability criterion for both poles and zeros

2. Loop: k

3. Loop: i

4. Set θi into M (θ, z)

5. Fix K such that M (θi, z) = 1

6. Compute the controller C(ϕ∗(θi, z) through VRFT

7. Set the cost function J (θi) adding a penalty function for poles and
zeros out or in the limits of the Routh-Hurwitz stability criterion

8. End Loop i

9. Set the global best particle position −→g ibest based on the cost function
J(θi)

10. Update the velocity and position of the particle using the formulation on
the PSO algorithm

11. End Loop k
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This algorithm provides a controller, which is fully data-driven, since the need
for prior knowledge of the plant P (z) is tackled by the model-free approach; it is
meaningful to mention that this method does not provide theoretical guarantees
of stability of the resulting closed loop. However, further developments of this
algorithm show that using the unfalsified control (UC) approach [29], it’s possible
to guarantee stability as shown in [28], despite the benefits of the guaranteed
stability of the resulting closed-loop system. Furthermore, the implementation of
the unfalsified control is less appealing for the study case considering that UC
is much slower tuning method than VRFT due to the necessity of estimation
through Prediction Error Methods (PEM) as well as a-posterior stability tests.

3.2.1 Cascade model-free VRFT optimization implemen-
tation

The interpolation of the algorithm described in the previous section can be made
using two different approaches. The first one, related to the cascade VRFT con-
troller design, previously described in section 2.3.3 which can be implemented
by using the Model-free VRFT algorithm first for the inner controller and after
computing the outer input signal shown in the Equation (2.19) another execution
of the algorithm can be done to provide the outer controller. However, this ap-
proach, which is fully data-driven and Model-free, does not account for cascade
loop theory by the fact that the outer loop must be at least one decade slower
than the inner loop to see a unitary closed-loop transfer function for the inner
one. Even more, this implies that for the resulting cutoff frequency of the model
references must be in accordance with the following inequality:

ωo≤
ωi
10
→ PiC2 (θ)

1 + PiC2 (θ)
= 1 seen from the outer loop (3.16)

Equation (3.16) is not compliant with the optimal value that the method is
capable to provide, making the resulting closed-loop system to be divergent. To
overcome this situation different scenarios had been tested, such as the intro-
duction of another constraint on the cost function on Equation (3.11) to provide
information of cascade controller restrictions into the optimization method.

Wcascade =

{
0 if ωo (θ)≤ωi

10

inf if ωo (θ) > ωi

10

(3.17)

Despite this, the condition does not provide any noticeable enhancement on the
resulting closed-loop and the only scenario from which the algorithm was able to
provide a convergent response was to impose a simulated output dataset using a
transfer function that follows the inequality on Equation (3.16). Nevertheless, this
requires prior knowledge of the system and thus goes in contradiction with the
model-free framework. The third scenario proposed is focused on the elimination
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of one calculation of an optimal model reference; in order to do so, the proposed
methodology described in 2.3.3 must be redesigned in the following way:

Consider the cascade control system shown in Fig 2.3, taking the same as-
sumptions of the VRFT formulation, so it is considered LTI SISO system in the
structured case with the cost function of the inner loop with the form of Equation
(36), thus, the function can be rewritten as:

JVRi (ϕ) =
1

N

N∑
i=1

‖uini (i)− C2 (z, ϕ) e1 (i)‖2
2 (3.18)

e1 (i) = r1 (i)− yini(i) (3.19)

Similarly, the outer loop virtual error and reference are given by:

e (i) = r (i)− yini(i) (3.20)

yini (i) = Mo(θ, z)r (i) (3.21)

As shown in Fig 2.3 the reference of the inner loop is also the output of the
outer controller:

r1 (i) = C1(ϕ, z)e (i) (3.22)

Substituting into Equation (3.18) the performance index of the cascade control is
obtained:

JVRi (ϕ) = 1
N

∑N
i=1

∥∥∥uini (i) + C2 (ϕ, z) y1ini (i)− C1(ϕ, z)C2 (ϕ, z)
(

1
Mo(θ,z)

− 1
)
yini (i)

∥∥∥2

2
(3.23)

In addition, the optimal parameter vector ϕ is a result of:

ϕ∗ = argmin
ϕ

JVRi (ϕ) (3.24)

The reader is referred to [30] for the full description and analysis of the derivation
of the cascade problem. As can be seen, Equation (3.23) is a non-linear optimiza-
tion problem that can be solved solidly using CMA-ES. This scenario provides a
solution for the model-free scope due to its one-time nature to provide both inner
and outer controllers just using one optimized model reference.

To sum up, the complete Cascade model-free VRFT can be summarized by
presenting a pseudo-code:

Cascade model-free VRFT algorithm

1. Populate the particle swarm θi, i = 1, . . ., N with random initial values
constrained by the Routh-Hurwitz stability criterion for both poles and zeros

2. Execute a one-shot experiment to get a dataset of the form {uini , y1ini , yini , ϕini}



34 Optimization methods

3. Loop: k

4. Loop: i

5. Set θi into Mo (θ, z)

6. Fix K such that Mo (θi, z) = 1

7. Calculate the virtual reference signal r (i) = 1
Mo(θi,z)

y(ϕini)

8. Construct JVRi (ϕ) as Eq.(3.23)

9. Compute the controller C(ϕ∗(θi, z) through CMA-ES

10. Set the cost function J (θi) adding a penalty function for poles and
zeros out or in the limits of the Routh-Hurwitz stability criterion

11. End Loop i

12. Set the global best particle position −→g ibest based on the cost function
J(θi)

13. Update the velocity and position of the particle using the formulation on
the PSO algorithm

14. End Loop k

Note that the performance of the PSO algorithm is highly influenced by the choice
of the weights in Equation (3.11), as well as the reference signal r(i), which, if
possible, should be adapted from the dynamics of the outer loop.



Chapter 4

Simulation

This chapter is dedicated to the execution and validation of the previously de-
scribed algorithms. The validation is achieved by using different well-known
benchmarks that will cover most of the scenarios from which the algorithms will
be tested within the UAVs framework. Three different benchmarks will be car-
ried out providing information about the performance, decoupling, and MIMO
extension.

4.1 Numerical simulation

This benchmark has been built to show the incidence of coupling effects with
respect to the controller synthesis and it is set to guarantee perfect tracking with
an adequate PI controller. The simulation has been used in [17] and [31] showing
the performance of different VRFT realizations.

Experiment setup

A discrete system of first order transfer functions with a sampling rate of 1Hz is
introduced:

G (z) =

[
0.09516
z−0.9048

0.03807
z−0.9048

−0.02974
z−0.9048

0.04758
z−0.9048

]
(4.1)

With a reference model M (z) of the form:

M (z) =

[
0.1
z−0.9

0

0 0.1
z−0.9

]
(4.2)

And its respective controller using standard VRFT method is given by:
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SISO MIMO[
1.082z−1.023

z−1
0

0 2.223z−2.057
z−1

] [
0.08406z−0.7606

z−1
0.5254z−0.4754

z−1
−0.6726z+0.6086

z−1
1.681z−1.521

z−1

]
Table 4.1: VRFT Controller parameters

4.1.1 Results

The experiment was tested implementing different configurations of the PSO to
give a clear overview of the incidence of the coupling effects between SISO and
MIMO configurations, and how the optimization is able to provide different re-
sponses according to the enforced performance action through the usage of the
weights described in Equation (3.11).

SISO Open loop

As can be seen in Fig 4.1, the decoupling in the SISO case is dealt as a distur-
bance rejection property of the controller. Moreover, note that the performance
of the closed-loop system is better in terms of settling time and disturbance rejec-
tion, as the enforcing weight wy is increased due to the resulting optimal model
reference detailed in Table 4.2. However, the algorithm is not capable to satisfy
the tracking requirements.

Wy M∗(θ, z) C∗(ϕ, z)

30

[
0.08224
z−0.9178

0

0 0.08224
z−0.9178

] [
0.8592z−0.777

z−1
0

0 1.767z−1.601
z−1

]

100

[
0.1252
z−0.8748

0

0 0.1252
z−0.8748

] [
1.12z−1.186

z−1
0

0 2.688z−2.437
z−1

]
Table 4.2: Numerical SISO Mode-Free VRFT Parameters

MIMO Closed loop with additive noise

A MIMO regulation approach for these specific case results in a significant
improvement, related to the tracking requirements since the off-diagonal terms
of the synthesized controller are now used as can be seen in Table 4.3. This
means that the coupling effect is mitigated from this approach, and also the PSO
algorithm is able to provide both a controller which follows the model reference
described in the setup of the experiment, and an enhanced controller that provides
better tracking response to the step reference as can be seen in Fig 4.2, this is due
to the optimal choice of the model reference.
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Figure 4.1: Numerical SISO step response

Wy M∗(θ, z) C∗(ϕ, z)

30

[
0.09884
z−0.9012

0

0 0.09884
z−0.9012

] [
0.8232z−0.7445

z−1
0.523z−0.4733

z−1
−0.6846z+0.6214

z−1
1.678z−1.517

z−1

]

100

[
0.1474
z−0.8526

0

0 0.1474
z−0.8526

] [
1.237z−1.12

z−1
0.4502z−0.7049

z−1
−0.9921z+0.898

z−1
2.474z−2.235

z−1

]
Table 4.3: Numerical MIMO Mode-Free VRFT Parameters
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Figure 4.2: Numerical MIMO step response

4.2 LVL100 gas turbine

This experiment is a well-known MIMO benchmark [32], which is a Gas Turbine
Engine that is represented by a linear continuous-time state-space model with
a two-input, two-output, five states, minimum phase system. To work in the
VRFT framework, the model is discretized using Tustin’s approximation with a
sampling period of 0.1 seconds, and the main objective of the experiment is to tune
a multivariable PI controller as has been done with several data-driven methods,
described in [17], [31], [33], [34], [33]. Additionally, 200 Monte-Carlo simulations
are performed to denote the variance of the closed-loop system and the robustness
of the algorithms.

4.2.1 Experiment setup

The goal of the experiment is to control the spool speed and its temperature with
respect to the fuel flow and the area of the turbine nozzle. The data generation is
done using a closed-loop experiment where an initial stabilizing controller defined
in Equation (4.3) has been used.

C0 (z) =

[
z−0.99
z−1

0.1z−0.099
z−1

−z+0.99
z−1

z−0.99
z−1

]
(4.3)

The system implemented is given by:
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ẋ = Ax + Bu y = Cx + Du

A =


−1.4 −0.055 0 43.0 6.3
0.093 −0.11 0 4.2 −0.76
−7.8 −0.26 −3.3 300.0 −4.5

0 0 0 −25.0 0
0 0 0 0 −33.0

 B =


0 0
0 0
0
1
0

0
0
1

 (4.4)

C =

[
1 0 0 0 0
0 0 1 0 0

]
D =

[
0 0
0 0

]

The input provided is as previously discussed PRBS signal with a frequency
bandwidth spanning from 0 to 30 rad/s for each channel of the system as shown
in Fig 4.3.

Figure 4.3: PBRS signal

Finally, the proper model reference has been chosen, its design considers de-
coupling effects that in the case of study are a relevant characteristic to deal with
since those effects can lead the turbine to malfunction, which in terms of safeness
is not desirable.

M (z) =

[
0.4
z−0.6

0

0 0.4
z−0.6

]
(4.5)

4.2.2 Results

Once again, the experiment was separated into different cases depending on the
used data-acquisition method. The first and second experiments are used to ex-
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plore the behavior of the designed closed-loop when the dataset is affected by
noise, while the third case focuses on the robustness of the algorithm with respect
to the variability on the noise realizations such that the variance of the closed-loop
systems becomes visible.

MIMO Open loop
In this example, it can be seen in Fig 4.4 that the choice of the weight does not

provide any further enhancement of what has been achieved using nominal VRFT
as it was shown in Fig 4.2. Nevertheless, it can be seen that the resulting optimal
model reference functions described in Table 4.4 reside in the neighborhood of the
proposed model reference.

Wy M∗(θ, z) C8(ϕ, z)

3000

[
0.2257
z−0.7743

0

0 0.2257
z−0.7743

] [
0.1893z−0.03358

z−1
11.19z−10.85

z−1
0.1998z−0.1428

z−1
−1.834z+1.302

z−1

]

10000

[
0.3426
z−0.6574

0

0 0.3426
z−0.6574

] [
0.2993z−0.06062

z−1
17.49z−16.96

z−1
0.3081z−0.2207

z−1
−2.868z+2.036

z−1

]
Table 4.4: LVL100 MIMO Open Loop Step Parameters

Figure 4.4: LVL100 MIMO Open Loop Step Response

MIMO Closed loop with additive noise
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The introduction of additive noise into the dataset generation reduces the
performance of the data-driven control techniques, as can be seen in Fig 4.5, due
to the presence of coupled effects that the MIMO-designed controller is not able
to effectively counteract as it was done in the second channel of Fig 4.4.

However, the Model-Free approach is able to get slightly better tracking capa-
bilities than the initial configuration using VRFT, meaning that the optimization
method provides an advantage in noisy conditions. This condition is reflected in
the remoteness of the models in Table 4.5 with respect to the initial model on
Equation (4.5). On the contrary, the computational effort required to execute the
PSO algorithm due to its iterative nature is not comparable with the nominal
VRFT.

Wy M∗(θ, z) C∗(ϕ, z)

3000

[
0.5154
z−0.4846

0

0 0.5154
z−0.4846

] [
0.4802z−0.1019

z−1
25.79z−24.98

z−1
0.5412z−0.3973

z−1
−4.105z+2.89

z−1

]

10000

[
0.6758
z−0.3242

0

0 0.6758
z−0.3242

] [
0.6739z−0.1456

z−1
34.66z−33.56

z−1
0.7622z−0.5633

z−1
−5.517z+3.893

z−1

]
Table 4.5: LVL100 MIMO Closed Loop Mode-Free VRFT Parameters

Figure 4.5: LVL100 MIMO Closed Loop Step Response
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Monte Carlo Simulation
A statistical analysis has been carried out to determine the robustness of the

algorithm for different noise realizations using a dataset of 1000 data points while
the other input conditions are maintained, and the same step reference is used to
simulate 200 cycles of control design and its respective response. Table 4.6 shows
the mean values, standard deviation, and the ratio between them. Moreover, it
can be seen that the variance of the Model-Free PSO method is higher than the
VRFT for each of the components of the resulting controller. This behavior is
due to the performance of the algorithm, the number of data-points simulated
motivated by the fact that the results on VRFT are related to its convergence
which is given when N → ∞, and finally, the optimization of each iteration
gives an optimal model-reference causing the resulting controller to have more
variability when compared between them.

µPSO σPSO σ/µPSO µVRFT σVRFT σ/µVRFT

Kp (1,1) 0.0197425 0.220617 11.1747 0.074188 0.09133 1.2311
(2,1) 11.3402 1.2051 0.106268 15.8591 1.10127 0.0694412
(1,2) 0.17882 0.1482 0.82876 0.29936 0.018815 0.062849
(2,2) -1.2907 0.22865 -0.17715 -1.7365 0.16102 -0.0092724

Ki (1,1) 1.7759 1.2597 0.70935 2.8343 0.16206 0.057177
(2,1) 3.8349 1.7725 0.46219 6.2614 0.77747 0.12417
(1,2) 0.66797 0.33379 0.4997 1.1262 0.056882 0.050506
(2,2) -5.751 1.1936 -0.20754 -8.8524 0.4944 -0.055849

Table 4.6: Statistical analysis of the controllers using PSO & VRFT

Fig 4.6 and Fig 4.7 show the results to a step response highlighting the mean
value of the whole execution. As can be seen, the change of the model reference
through the iteration achieves a smoother response, particularly on the first chan-
nel, where not only the variability is diminished but also the decoupling is more
effective than the VRFT due to decreased tracking capabilities that can be related
to the sensitivity of the parameter Kp(1, 1), where exists sign variations during
the experiment. As for the second channel, the peak values of the coupling effect
are reduced but the uncertainty is higher.

4.3 ANT-R Simulation

Complementing the previous benchmarks, a final experiment has been developed
to test the algorithm simulating a multirotor platform. This simulator is cre-
ated from real flying data using predictor-based subspace identification (PBSID)
techniques to provide an identified model of the quadrotor. The dataset used
is simulated using the same controller conditions C0(z) and the identified plant

model P̂ .
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Figure 4.6: 200 Monte-Carlo simulations using PSO

Figure 4.7: 200 Monte-Carlo simulations using VRFT
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Figure 4.8: ANT-R quadrotor

The simulation is then settled to test the weighting values on Equation (3.11)
and synthesize a SISO cascade P/PI-D controller for the pitch dynamics.

4.3.1 Experiment setup

For the first experiment, a set of increasing values is proposed as follows:
Wy W∆u Wfit

1 1 1
10
100
1000
10000

10
100
1000
10000

10
100
1000
10000

 (4.6)

The purpose is to test every possible combination of the arrange into the Model-
Free PSO algorithm, using as a base the inner control loop of the quadrotor
to synthesize a PI-D controller and evaluate the performance of the response
depending on the value of each weight.

The second experiment is based on the following cascade control loop:

Figure 4.9: Block diagram of the simulation

In addition, the dataset is collected exciting the input with a PRBS signal,
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while the output data is then collected from the identified plant model P̂1 and the
output of the known integrator that closes the outer loop.

4.3.2 Results

Sensitivity analysis of the PSO cost function (3.11)
The weighting factors are used to impose a relative performance goal (Tracking

Error, Control Effort, Model Matching) on the resulting closed-loop system. As
in MPC control design, the weights of the cost function must be tuned according
to the specifications of the problem. In this case, inaccurate tuning of the weights
will lead to divergent unstable closed-loop systems, and thus, the exploration of
a vast spectrum of incidence in the synthesis of the controller provides a metric
of usability for the algorithm in the UAV context.

Fig 4.10 exhibits on the left the stable responses of the closed-loop system,
while on the right, the selection of the best performing controllers. Note that Fig
4.10 does not have more than the 30% of systems evaluated, the more complex is
the problem, narrower is the spectrum of the weighting factors. In counterpart,
the arrange of (3.18) shows the weights of the right part of Fig 4.10 where it can
be highlighted a narrower spectrum of variables.

Figure 4.10: Step responses of the weights combinatorial


Wy W∆u Wfit

1 1000 1
1
10
10

10
10000
1000

10
1

1000

 (4.7)

Finally, the performance under highly demanding input of a controller synthesized
using the weights on (4.8) is shown in Fig 4.11. From the sensitivity analysis, it can
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be highlighted that the order of Wu should be at least three orders of magnitude
higher with respect to the other tuning variables.

Figure 4.11: PRBS Input Response

[
Wy W∆u Wfit

1 10000 10

]
(4.8)

ANT-R Simulation

According to the analysis previously done, the Model-free PSO algorithm is
then used without the additional optimization method, since the experiment setup
takes part in the convergent scenario previously described in 3.2.1. Furthermore,
the approach from the VRFT cascade controller shown in 2.3.3 is used with the
PSO algorithm.

As can be seen in Fig 4.12, the method provides an optimal model reference
with a settling time of 0.3080s and a stabilizing controller for the inner loop
collected in Table 4.7. It is clearly shown that the resulting inner control loop
does not follow completely the model reference as other performance factors are
being optimized.

M∗
i (θ, z) C∗(ϕ, z)

Kp = 0.0132
0.002701z+0.00268
z2−1.853z+0.8587

Ki = 0.0082

Kd = 2.56·10−6

Table 4.7: Model-free PSO inner SISO Parameters
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Figure 4.12: Inner loop closed-loop step response

Moreover, after obtaining the optimal inner controller, the input dataset of the
outer loop is computed, and then, together with the simulated output response,
the same algorithm is applied to give the following outcome:

M∗
o (θ, z) C∗(ϕ, z)

1.008z+0.007652
z2+0.01516z+5.74·10−5 Kp = 0.005679

Table 4.8: Model-free PSO outer SISO Parameters

In this case, Fig 4.13 shows that the tracking error is significantly higher than
the inner loop, while the outer model reference described in Table 4.8 has a settling
time of 1.7040. However, the result is generated from simulated outer loop plant
which means that further enhancements on the optimization algorithm had to be
done.
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Figure 4.13: Outer loop closed-loop step response



Chapter 5

Drone platforms

To create a basic background for the development of a new control system, it
is important to discuss the platforms used for validating the different iterations
of the code developed. The platforms, their construction, control strategies and
how they have evolved and modified to meet the objectives of this thesis will be
presented.

5.1 ANT-X

Figure 5.1: ANT-X quadrotor

5.1.1 Hardware

The hardware of the platform can be summarized as:
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The Flight control unit (FCU) is the Pixhawk Mini FCU. The configuration
for this FCU Features a modular circuit board that contains the controllers and
autopilot control.

The autopilot itself contains the inertial measurement unit (IMU); this device
integrates Micro-Electro-Mechanical Systems (MEMS) that act as accelerometers
and gyroscopes. The data gathered by the IMU is passed through a Kalman
Filter (KF) to account for the integration over time error of the attitude derived
from angular rates, the rate is also corrected by the information received from the
external sensors (GPS and magnetometer). This allows the autopilot to correctly
run the attitude and position control laws.

A remote controller or an Add-on Telemetry module is used to send the con-
troller setpoint, while the output is transformed into a Pulse-Width Modulation
(PWM) signal sent to the Electronic Speed controllers (ESC).

The Electronic Speed controllers work with a Brushless DC motor (BLDC),
as it cannot be controlled with a direct DC constant source, the BLDC receives
a PWM signal that allows more precise control of the speed of the rotors. As
the BLDCs are Synchronous, the ESC works as a three-phase inverter receiving a
constant DC Voltage from the Power Distribution module and the PWM control
signal from the FCU.

5.2 Control strategy

As has been discussed before, the control strategy for the Pitch, roll, and yaw
axes uses cascaded PID loops, this control architecture work on the platform and
runs at 250Hz. The base architecture of the drone is characterized by a MIMO
fed program, where the input vector contains the information of the roll and pitch
axis as can be seen on the block diagram of Fig 1.4.

On this diagram, each block is defined by a transfer function characterized by
a 2x2 controller matrix. The controller Matrix contains the controller parameters
for each axis where the diagonal terms control the action over the same axis being
measured. For instance, roll rate error leading to a roll moment. While the
ij (i = j) components of the matrix control the action on the other channel, that
is, that for a given non-diagonal component that has input on i for an error on
component j and therefore generating a decoupling action.

5.3 Testing facility

The Fly-ART laboratory was used as the testing ground for the drone. The
laboratory has an indoor flying test cage of 12m x 6m x 3m that allows the
experimentations to be done without any potential danger to the drones or testing
personnel.
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However, by performing an indoor test, the GPS accuracy is diminished, and
therefore a different external tracking source is needed to correct the state estimate
of attitude, position, and velocity. A 3D Motion capture system (MOCAP) is used
to feed the missing GPS data to the FCU. The OptiTrack MOCAP with aid of
reflective markers was used to send the information to a NanoPiboard connected
to the FCU.

Figure 5.2: Fly-ART laboratory

5.4 Software and firmware

The FCU uses a C++ code derived from a Simulink model that feds the attitude
control law function. The C++ is then compiled into custom firmware to be
loaded into the FCU. The compiler doesn´t need interaction as it only transfers
the code from one language to the other (Simulink onto C++) and onto the FCU
hardware (ARM Cortex).

The Optitrack system with its reflective marker aid required additional soft-
ware, Motive, the software computes the current velocity, position, and attitude.
Motive uses the Robot Operating System (ROS) Libraries to interpolate and pro-
cess the data for different robotic platforms.

The receiving NanoPi Board connected to the FCU is a MAVROS node con-
tained on the ROS library. MAVROS allows the interaction between the ROS
and MAVLink, therefore, creating a communication path between ROS and the
FCU. Moreover, this communication path can be used to send different setpoints
or inputs from a control station. A MATLAB script run on the ground control
station can be transferred to the ROS and therefore to FCU.
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Chapter 6

Experimental testing and results

The following chapter will present the experimental results related to the im-
plementation of the Cascade model-free VRFT algorithm into the ANT-X drone
platform using the in-flight experimental data collected in the laboratory facilities.

6.1 ANT-X

The ANT-X platform testing is divided into two different viewpoints. First, a
constraint local approach is taken to assess the convergence features of the algo-
rithm, once the first test is validated, the second approach will be evaluated using
the algorithm to synthesize a stabilizing controller from a global point of view.

6.1.1 Experimental setup

To use the Model-free cascade VRFT algorithm with the ANT-X platform it is
necessary to modify Equation (3.18) to account for the PI-D controller configu-
ration previously shown in Fig 1.3, and also, recalling Fig 2.3, thus, let the inner
controller be divided into:

C2 (θ, z) = C2PI (ϕ, z)∧ C2D (ϕ, z) (6.1)

So, the Equation (3.18) becomes:

JV (θ) = ‖uini − (C2 (ϕ, z) e1 + C2D(ϕ, z)y1ini)‖ (6.2)

From which:

e1 = r1 − y1ini = C1 (ϕ, z) e− y1ini = C1 (ϕ, z) (r − yini)− y1ini (6.3)

yini = M(θ (ϕ))r (6.4)
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e1 = C1 (ϕ, z)

(
1

M(θ (ϕ))
− 1

)
yini − y1ini (6.5)

With the resulting cost function of the form:

JV (θ) =
∥∥∥uini − (C2PI (θ, z)C1 (θ, z)

(
1

M(θ(ϕ),z)
− 1
)
yini − (C?2PI (θ, z) + C2D(θ, z))y1ini)

∥∥∥ (6.6)

Given the proper considerations, the dataset is gathered from the drone platform
and processed as shown in Fig 6.1.

Figure 6.1: Experimental dataset

Where PRBS is the excitation signal used for the PSO algorithm, Ut is the
input signal of the inner controller, ro is the reference signal, Yt is the output of
the ‘inner plant’ P1, and finally, Yot is the output of the closed-loop.

Finally, the dataset was collected using the following control parameters:

θini Kpi Kii Kdi Kpo

0.05 0.05 0.001 6.5

Table 6.1: Dataset initial controller parameters

6.1.2 Results

Local optimization
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Testing the algorithm with a constraint approach near a known “minimizer”
described as:

M∗
o (z) =

0.003066z + 0.002938

z2 − 1.874 + 0.8799
(6.7)

Fig 6.2 and Fig 6.3 illustrate that the algorithm is able to converge into a stable
controller. However, the PSO algorithm is not providing any deep exploration
while running and the convergence of the swarm it is accomplished on a few
trials.

Figure 6.2: Inner Step response of the local test

Figure 6.3: Outer Step response of the local test
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θini Kpi Kii Kdi Kpo

VRFT 0.0300 0.2157 0.0004 6.1029
Cascade-PSO 0.0298 0.2671 0.00011 5.452

Table 6.2: Controller parameters of the local approach

For the outer loop test, each weight of the optimization function must be
tuned to get a better result; however, the goal of the experiment is to evaluate
the approximation of the algorithm into the known controller parameters shown
in Table 6.2.

Global approach
The CMA-ES algorithm is meant to deal with the optimization of the controller

parameters from a nonlinear formulation of the inner VRFT cost function, as
shown in Equation (3.23). From Fig 6.4 it can be seen that the response is better
than the proposed known minimizer shown in Equation (6.7).

Figure 6.4: Inner Step response of the global test

While the optimization of the parameters of the controllers is given by the
CMA-ES algorithm, the outer loop model reference is provided by the PSO for-
mulation. Wherein accordance with the optimizer of the inner loop gives the
following result:

θini Kpi Kii Kdi Kpo

VRFT 0.0300 0.2157 0.0004 6.1029
Cascade-PSO 0.1145 0.4396 0.0000047 6.4652

Table 6.3: Controller parameters of the global approach
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Figure 6.5: Outer Step response of the global test

Even if the results previously shown are demonstrating an acceptable perfor-
mance on the simulation, the implementation on the real plant cannot be fulfilled
due to the lack of stability guarantees and the fact that the resulting closed-loop
response is not in accordance with the model reference shown in (6.8), This is be-
cause it is not physically implementable, and consequently the theoretical results
on the VRFT are not satisfied.

M∗
O (θ (ϕ) , z) =

1.002z + 0.002578

z2 + 0.0364z + 8.12·10−4
(6.8)
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Conclusions

In this work, a model-free data-driven approach for the attitude control of a
quadrotor UAV has been developed. The PSO algorithm has been implemented
into the VRFT method to solve a bi-level optimization problem where in the light
of simulation results, the algorithm presents a further enhancement of the nominal
virtual reference feedback tunning both in SISO and MIMO configurations, whilst
the presence of the algorithm limitations becomes notable when the scope of the
problem is to synthetize stabilizing controllers using the nominal VRFT approach
to work with cascade controller structures due to the lack of information related
to the settling time since the outer loop must be at least one decade slower than
the inner loop to see a unitary closed-loop transfer function for the inner-one.

This gives enough motivation to propose an extension of the algorithm to deal
with a cascade control configuration introducing a nonlinear cost function of the
VRFT minimized using CMA-ES algorithm. The experimental results using this
technique shows that the algorithm is capable to obtain stabilizing regulators with
fast dynamics on the output response.

Nevertheless, the resulting model reference given is not physically implementable
and the closed-loop response is in most of the cases far away from the reference
meaning that the main theoretical goal of the VRFT is not being fulfilled. More-
over, the lack of stability guarantees makes the algorithm not desirable for under-
actuated highly nonlinear systems such as the UAV quadrotors. In contrast, when
a local approach of the model-free algorithm is used, it’s possible to meticulously
tune the already known control parameters to enhance the performance of the
aircraft.

Future developments

Since the proposed methods did not work as expected within the UAV framework,
further exploration of the characteristics of the data must be performed to provide
a metric that is responsible for narrowing down the optimization spectrum of the
outer loop reference model. Likewise, data-based control methodologies that pro-
pose only a reference model for the cascade control structure as shown in [35] are
attractive to be combined with the proposed optimization models. Diversely, the
synthesis of controllers from the unfalsified control panorama contains theoretical
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foundations that guarantee the stability of the system [28], so its use within the
framework of the optimization of models can be advantageous in terms of perfor-
mance and simplification of the computational effort when tackling the problem
of cascade controller structures.
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[3] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo. Robotics: Modelling,
Planning and Control. Advanced Textbooks in Control and Signal Processing.
Springer London, 2010.

[4] R. Featherstone. Rigid Body Dynamics Algorithms. Springer US, 2014.

[5] Francesco Sabatino. Quadrotor control: modeling, nonlinearcontrol design,
and simulation. PhD thesis, 2015.

[6] Qasim Ali and Sergio Montenegro. Explicit model following distributed con-
trol scheme for formation flying of mini uavs. IEEE Access, 4:397–406, 2016.

[7] Samir Bouabdallah and Roland Siegwart. Full control of a quadrotor. In
2007 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 153–158, 2007.

[8] Nigar Ahmed and Mou Chen. Sliding mode control for quadro-
tor with disturbance observer. Advances in Mechanical Engineering,
10(7):1687814018782330, 2018.
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[26] Wojciech Jaśkowski and Marcin Szubert. Coevolutionary cma-es for
knowledge-free learning of game position evaluation. IEEE Transactions on
Computational Intelligence and AI in Games, 8(4):389–401, 2016.

[27] Nikolaus Hansen. The cma evolution strategy: a tutorial. 01 2010.

[28] Daniela Selvi, Dario Piga, Giorgio Battistelli, and Alberto Bemporad. Op-
timal direct data-driven control with stability guarantees. European Journal
of Control, 59:175–187, 2021.

[29] Giorgio Battistelli, Daniele Mari, Daniela Selvi, and Pietro Tesi. Direct con-
trol design via controller unfalsification. International Journal of Robust and
Nonlinear Control, 28, 02 2017.

[30] Huy Quang Nguyen, Osamu Kaneko, , and Yoshihiko Kitazaki. Virtual ref-
erence feedback tuning for cascade control systems. Journal of Robotics and
Mechatronics, 28(5):739–744, 2016.
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