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Abstract

This project investigates the challenging problem of relative navigation in scenarios in-
volving unknown and uncooperative symmetric targets. The significance of this problem
is growing with the increase in the number of space debris. To address this issue, two
types of missions are gaining importance, On-Orbit Servicing and Active Debris Removal,
which involve the ability to safely conduct proximity operations around even completely
unknown targets.
CoMBiNa (COarse Model-Based relatIve NAvigation) and its reformulation represents a
new navigation technique for autonomous inspection. CoMBiNa uses measurements from
a stereo camera, and by combining Simultaneous Localization and Mapping (SLAM) tech-
niques, Bayesian Coherent Point Drift (BCPD) algorithm, and Unscented Kalman filters
(UKF), it estimates the relative pose and inertial properties of the target. The limitation
of CoMBiNa is that it fails with symmetric targets. A reformulation has been proposed in
which, in case of symmetric targets, the state variables are changed. This new formulation
allows to estimate the relative position and the relative velocity between the chaser and
the target and the orientation of the symmetry axis of the target body. Nevertheless it is
not able to compute the complete attitude of the target and its angular velocity. Starting
from this basis and taking advantage of artificial intelligence, in particular Convolutional
Neural Networks (CNNs), a new formulation is proposed in this project, that aims to
reconstruct the complete relative pose and the target angular velocity even for symmetric
targets. Through CNN, the presence of specific features on the target will be detected,
and after identifying them, this information will be combined with the already existing
CoMBiNa algorithm to try to estimate the complete state of the target. The features
allow us to derive attitude measurements of the target, even if it is symmetrical. The
CoMBiNa pipeline is modified introducing different methods to derive the measurements,
depending on the number of features available. To verify the validity of the algorithm,
numerical simulations are carried out, producing promising results.

Keywords: Resident Space Objects, Space Debris, Proximity Operations, Pose and In-
ertia Estimation, Stereo-Vision, Uncooperative and unknown, Symmetry, Convolutional
Neural Network, Object Detection
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Sommario

Questo progetto studia il difficile problema della navigazione relativa in scenari che coin-
volgono bersagli simmetrici, sconosciuti e non cooperativi. L’importanza di questo argo-
mento sta crescendo con l’aumento del numero di detriti spaziali. Per affrontare questo
problema, stanno acquisendo importanza due tipi di missioni, On-Orbit Servicing e Ac-
tive Debris Removal, che prevedono la capacità di condurre in sicurezza operazioni di
prossimità intorno a bersagli anche completamente sconosciuti.
CoMBiNa (COarse Model-Based relatIve NAvigation) e la sua riformulazione rappresen-
tano una nuova tecnica di navigazione per l’ispezione autonoma. CoMBiNa utilizza le
misure di una stereo camera e, combinando le tecniche di localizzazione e mappatura si-
multanea (SLAM), l’algoritmo Bayesian Coherent Point Drift (BCPD) e i Filtri di Kalman
Unscented (UKF), stima la posa relativa e le proprietà inerziali del target. Il limite di
CoMBiNa è che fallisce con bersagli simmetrici. È stata proposta una riformulazione in
cui, in caso di bersagli simmetrici, le variabili di stato vengono modificate. Questa nuova
formulazione consente di stimare la posizione relativa e la velocità relativa tra l’inseguitore
e il bersaglio e l’orientamento dell’asse di simmetria del corpo del bersaglio. Tuttavia, non
è in grado di calcolare l’assetto completo del bersaglio e la sua velocità angolare. Partendo
da questa base e sfruttando l’intelligenza artificiale, in particolare le Reti Neurali Con-
voluzionali (CNN), in questo progetto viene proposta una nuova formulazione che mira a
ricostruire la posa relativa completa e la velocità angolare del bersaglio anche per bersagli
simmetrici. Tramite una CNN, viene rilevata la presenza di caratteristiche specifiche sul
bersaglio e, dopo averle identificate, queste informazioni vengono integrate con l’algoritmo
già esistente per cercare di stimare lo stato completo del bersaglio. Le caratteristiche per-
mettono di ricavare misure di assetto del bersaglio, anche se è simmetrico. La pipeline di
CoMBiNa viene modificata introducendo diversi metodi per ricavare le misure, a seconda
del numero di caratteristiche disponibili. Per verificare la validità dell’algoritmo, sono
state effettuate simulazioni numeriche che hanno dato risultati promettenti.

Parole chiave: Oggetti Spaziali, Detriti Spaziali, Operazioni di Prossimità, Stima della
Posa e dell’Inerzia, Visione Steroscopica, Non Cooperativo e Sconosciuto, Simmetria, Rete
Neurale Convoluzionale, Rilevamento di Oggetti
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1| Introduction

Space debris is a growing problem in recent years. The number of launches that are carried
out each year is getting bigger, and consequently the number of space debris also increases.
Different sources contribute to space debris, with the primary one being the fragmentation
of spacecrafts and rocket bodies. This fragmentation often occurs as a result of explosions
involving residual fuel or reactive chemicals within rocket engines and fuel tanks used dur-
ing launches. Additionally, space debris includes inoperable or non-functional satellites.
Even without additional launches, the increase of space debris is expected to continue
and as the quantity of space debris increases, so does the likelihood of collisions, which
grows exponentially. Subsequently, collision fragments further collide, generating smaller
debris and amplifying the potential for future collisions. This phenomenon is recognized
as the Kessler Syndrome [4]. Currently, this predicament is primarily concentrated in the
Low Earth Orbit (LEO) region due to the extensive space activities conducted therein. In
2009, the first accidental in-orbit collision between two satellites occurred. The satellites
involved were a privately owned American communication satellite and a Russian military
satellite [4]. Two potential solutions mitigate the issue of space debris are Active Debris
Removal (ADR) and In-Orbit Servicing (IOS). ADR involves the removal of existing de-
bris from space, and its efficiency can be significantly enhanced by using specific criteria
during the selection of debris for removal. The chosen debris should have a large mass, a
high probability of collision, and it should be located at a high altitude [6]. An example
of an ADR mission is Clearspace-1, in which the objective is to capture and safely bring
down a large derelict object, the Vespa upper stage [5], on the other hand IOS refers to
extending the life or functionalities of spacecrafts that are already in orbit. This can be
done by performing maintenance, adjusting a spacecraft’s orbit, changing the direction
it is facing, providing more fuel, or even changing or upgrading the onboard instruments
[7]. Both ADR and IOS activities require proximity operations to their target objects.
Therefore, it is important to have precise information about the relative position and
orientation of the target spacecraft, in relation to the chaser. The techniques to collect
information about the relative pose are strongly influenced by the level of cooperation of
the target. As a result, the capacity to classify the target according to its cooperation
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level and the availability of information becomes crucial. This classification will facili-
tate the selection of the most suitable relative navigation strategy, tailored to the specific
characteristics of the target.

1.1. Literature review: Relative Navigation

Relative navigation in space has been a critical aspect of space exploration since the ear-
liest missions. It refers to the process of determining the position and velocity of a space-
craft relative to another object. Over the years, various techniques and technologies have
been developed to enable accurate relative navigation, allowing for precise rendezvous,
docking and proximity operations in space. Historically, a first example of proximity op-
erations is represented by the Apollo program. Relative navigation played a crucial role,
particularly during rendezvous, such as between the Lunar Module and the Command
Module [8]. However, this and other missions that came later were performed by the
crew on board. The Columbia accident in 2003, more research began toward autonomous
on-board operations [45]. The first experiment of unmanned spacecraft was the ETS-VII.
The mission consisted of two sub-tasks, which were the autonomous rendezvous/docking
and robot experiments [73]. Then, proximity operations around uncooperative satellites
were demonstrated by the Experimental Satellites System 10 (XSS-10) and 11 (XSS-11),
in which the objectives were the autonomous rendezvous and inspection of multiple space
objects [67]. In 2005 NASA’s mission DART was launched to demonstrate autonomous
proximity operations up to 5 meters to the target [59]. This mission was a partial failure
but, in 2007, it still helped in the successful execution of the Orbital Express mission
[45]. This mission demonstrates short range and long range autonomous rendezvous,
capture and berthing, on-orbit electronics upgrades, on-orbit refueling, and autonomous
fly-around visual inspection using a demonstration client satellite [3]. Another example
was the PRISMA mission, which was launched in 2010 by the Swedish National Space
Board. In this mission the servicer successfully performed semi-autonomous rendezvous
maneuver with a non-cooperative target. NASA and the Canadian space agency instead
demonstrated the TriDAR for performing relative navigation to an uncooperative but
known target [45].
In these missions, terms related to the knowledge and co-operation of the target often
recur. These terms are used to classify different types of targets. It is possible to start
analyzing targets by considering the degree of cooperativeness they possess. They can be
cooperative if they have active or passive equipment that allows them to communicate
with the chaser, otherwise they are called uncooperative. In the second case there is a
further subdivision with known targets on one side and unknown targets on the other. A
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target can be defined as known if prior information about its shape, mass, inertia, and
materials is available otherwise it is defined as unknown [71] [45]. In the last decades
missions at cooperative targets, or uncooperative but known targets, were already suc-
cessfully demonstrated using different methods of which a review will be presented in the
course of this chapter. The field of relative navigation at uncooperative and unknown tar-
gets is more challenging and it will be the focus of this work. The subsequent subsections
initially present various sensors employed for acquiring measurements. Subsequently, dif-
ferent relative navigation techniques are introduced based on the level of knowledge and
cooperation of the targets.

1.1.1. Sensors

Before analyzing the methods that can be used to study different types of targets accord-
ing to the level of cooperativeness and knowledge, it is important to present which kind
of sensors are available to obtain relative measurements during operations. It is possible
to identify three main families of sensors during proximity operations: radio frequency
sensors, satellite navigation systems and optical sensors. One of the main drivers in the
choice of the sensor is the level of cooperativeness of the target. If the target is actively
cooperative, radio frequency sensors can be used to obtain range, range rate, line-of-sight
and attitude measurements. However, radio frequency systems are characterized by high
mass and power consumption, making them impractical for small satellites with strict
mass and power budgets. Alternatively, cooperative satellites with a direct radio link
can leverage Global Navigation Satellite Systems (GNSS), which is composed of a space
segment and a user. The GNSS can provide information about the relative position and
velocity, if the target is equipped with GNSS receivers, and it requires a lower mass and
power budgets with respect to the radio frequency sensors. The main drawbacks are that
it is not able to provide information about the attitude of the target, and its restricted
use within LEO, due to the way the GPS constellation is made up [45].
When dealing with uncooperative targets, electro-optical sensors are currently the main
technology for pose (i.e., relative position and relative attitude) determination. They can
be either active or passive. The most common active technology is LIDAR, that can
measure the distance to the target by illuminating it with an infrared source and then
analyzing the back-scattered radiation. The information obtained is used to build a cloud
of 3D points of the target that will be used for the pose estimation [48]. It is possible
to classify this class of instrument according to the lights source used. Therefore, it is
possible to have continuous-wave light source, that are applied in close range missions,
and pulsed source, that instead can be used to compute bigger distances [45]. From a
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historical point of view, some examples of the use of this technology can be seen in the
Trajectory Control Sensor (TCS) on the Space Shuttle, the Videometer (VDM) on ESA’s
Automated Transfer Vehicle (ATV) and the RendezVous Sensor (RVS)/ Telegoniometer
(TGM) on the HTV/ATV [14].
Among the passive optical sensors the most common are the monocular and the stereo
camera. They can operate in a wavelength range from the visible to the infra-red. Monoc-
ular cameras provide a bi-dimensional information (i.e., the line of sight measurement),
so it is possible to determine the relative position of an RSO only up to a scale factor.
Conversely, stereo cameras can acquire 3D information about the target just like LIDARs,
and typically the point cloud generated by them is much denser than the one of LIDARs.
However, the maximum range at which the stereo camera performances is acceptable is
limited by the baseline of the stereo configuration. In general, passive sensors are char-
acterized by a lower cost, power consumption and hardware architecture complexity with
respect to LIDARs. Despite that, the high sensitivity to the illumination condition and
the potential presence of other celestial bodies in their field of view, make the use of these
sensor challenging. The sensitivity to the illumination condition can be compensated by
adding a light source within the sensor architecture, but it increases the power budget
[45]. Three different generations of vision-based systems have been developed and tested.
The Proximity Operation Sensor (PXS) was tested in the Engineering Test Satellite Pro-
gram (ETS-Vii) mission [39]. The Advanced Video Guidance Sensor (AVGS) was used in
the Demonstration of Autonomous rendezvous and Docking (DART) and Orbital Express
(OE) [31]. The Visual Based System (VBS) was tested during the PRISMA [51] mission.
These test demonstrate the ability to estimate the pose accurately [48].

1.1.2. Cooperative Target

Cooperative pose determination algorithms rely on extracting a limited number of features
from acquired data-set to estimate the relative attitude and position of a Target Reference
Frame (TRF) with respect to a Sensor Reference Frame (SRF). These features correspond
to passive or active artificial markers whose 3D position in TRF is known since they are
purposely mounted on the target. The pose determination process involves identifying
and matching the detected markers with a stored catalogue [48]. In the case of 2D
measurements, first of all the extracted features are matched to the real markers, resulting
in a 2D-3D point correspondences. The algorithm that is commonly used to perform this
task is the Perspective-n-Point (PnP) problem. An alternative to PnP is the Direct Least
Square PnP solution [32] or the EPnP problem [40]. EPnP is a non-iterative method
that guarantees a closed-form solution, still ensuring good accuracy of the solution. It
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will be better described in the Chapter 3. Once the 3D positions of the markers in
the SRF are known, the problem becomes similar to having 3D measurements, since it
consists of determining the attitude and relative position given a series of 3D to 3D point
correspondences [48]. If the number of matched features is 3, the relative rotation matrix
can be reconstructed by implementing TRIAD [2]. If the number of features n is larger
than three it is possible to distinguish potentially (n2 − n)/2 unit vectors, and they can
be used for relative attitude calculation using probabilistic approaches like the QUEST
algorithm [2].

1.1.3. Uncooperative and Known Target

This section focuses on the scenario where the uncooperative target is assumed to be
known, either through detailed geometry information or at least a simplified geometric
model. In such cases, model-based algorithms are used for pose determination. These
algorithms are very similar to those used in case of cooperative targets and they estimate
the pose vector by matching data obtained from monocular or 3D sensors with corre-
sponding information from the target model stored on-board. This task is accomplished
by using feature-based approaches, which rely on the capability of extracting natural geo-
metric features from the acquired data-set. Different techniques can be used depending on
the type of available data [48]. The analysis starts by considering the monocular sensors,
which provides 2D measurements. In this scenario feature-based algorithms can rely on
either PnP solvers or Template Matching (TM) approaches. For PnP solvers the main
challenge is finding the correct correspondence between the features from an acquired
image and the target model, due to the absence of fiducial markers on the target surface.
To solve this problem the SoftPOSIT [18] algorithm is used, which is an iterative but
linear method used to estimate the pose. First it uses the soft-assign [30] techniques to
determine image/model point correspondences, then the POSIT [21] algorithm is used
to iteratively estimate the pose. An alternative solution to the soft-assign algorithm is
given by RASCAN [26]. Once the matches have been determined, PnP methods can be
used. TM in computer vision is the process of searching a monocular image for specific
features and/or image sections which can be matched to an assigned template [48]. The
matching is typically done using correlation based approaches, such as the sum of absolute
differences [19], the normalized cross correlation [12] or the distance transform [27]. In
pose determination, TM requires to generate a data-set of templates by sampling the 6
DOF pose space. Each template is created based on a set of relative position and atti-
tude parameters, and the correlation function is used to evaluate the similarity between
each template and the acquired image. The template with the best correlation provides
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the unknown pose vector [48]. For monocular images, appearance-based methods provide
an alternative to feature-based techniques. They analyze the shape and the texture of
the acquired data-set by exploiting either Active Appearance Models (AAM) [15] or the
Principle Components Analysis (PCA) [72].
In the last years, approaches have been developed that perform TM with Convolutional
Neural Network (CNN) [53] [63]. These methods rely on an initial training phase on an
available data-set of real or simulated images, and the trained CNN can be used to de-
termine the pose from the images [20]. The main advantage lies in the reduced execution
time for this application compared to traditional TM methods. Chapter 3 will examine
the topic of neural networks in more detail, with a particular focus on the field of object
detection.
If 3D sensors are considered instead of the 2D, pose acquisition can be achieved through
algorithms that rely on global or local 3D feature descriptors. Alternatively to these
feature-based approaches it is possible to use point based techniques that directly process
3D raw data, such as range images or point clouds. For pose tracking, it is possible to use
also 3D data registration methods. The working principle of these algorithms is to find the
best rigid transformation to align two data-sets (registration) by minimizing a given cost
function which measures the similarity level between corresponding elements [48]. The
Iterative Closest Point (ICP) algorithm is commonly used for this purpose with all its
variants [45]. An alternative is represented by the Coherent Point Drift (CPD) algorithm
for non-rigid point set registration [47]. This latter method has been generalized in [33]
where the Bayesian Coherent Point Drift method is described. In this method the motion
coherence theory has been replaced with Bayesian Inference, and so the matches of the
points clouds is done in a statistical way, overcoming the issue of finding exact feature
correspondences [20].

1.1.4. Uncooperative and Unknown Target

In the context of space application, the focus is often on dealing with unknown objects
such as debris or asteroids. One approach to address this challenge is to build a model
directly on board of the spacecraft using available measurements. There are two ways to
accomplish this task. The first strategy is to build this model during a prior monitoring
stage, in which the spacecraft is at a safe distance from the target object. This allows
the application of reliable model-based algorithms for subsequent mission phases. The
second strategy is to build the model simultaneously with the pose estimation and this is
the object of study for Simultaneous Localization and Mapping (SLAM) [22]. SLAM is a
real-time process by which an autonomous agent, moving within an unknown environment,
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computes its own trajectory (localization) while simultaneously building a map of that
environment (mapping) [48]. In recent years, this technique has been analyzed in several
ways. The first approach to estimate the dynamic state, geometric shape, and mass model
parameters of an unknown target simultaneously is proposed in [22]. This method uses
a set of images acquired by a distributed set of 3D sensors, assumed to be uniformly
positioned around the target. This method also exploits a Kalman Filter for the pose
information. A feature-based SLAM algorithm that uses an Extended Kalman Filter
(EKF) is proposed in [64]. The focus of this work is on the filtering aspect, assuming that
a set of 3D features detected and tracked by a stereo-vision system is already available
as input to the EKF. In [62], the authors combine the EKF-based SLAM filter described
in [64] with a RASCAN-based surface reconstruction algorithm to generate a model of
the unknown target which can be used for further refinement of the estimated pose. The
key issue of these class of SLAM techniques is the matching between the on-board map
and measurements. Indeed, filters updates work better with few accurate matched points
rather than with many imprecise measurements. Moreover, the computational cost of
these methods grows with the size of the map.
Graph-SLAM approaches offer an alternative solution where online navigation estimates
are sacrificed in favor of improved mapping of the environment and better convergence
[45]. An example of these methods is presented in [66], in which the algorithm uses 3D
measurements from a stereo camera to estimate the complete relative state of the target,
including its linear and angular velocities, center of mass, principal axes, and diagonal
inertia matrix [48]. Another example is presented in [46], in which the ORB-SLAM
algorithm is tested on real images.
CoMBiNa is a method for estimating the pose of RSO that was first presented in [45]. This
method aims to estimate both the relative position and velocity between chaser and target,
as well as the attitude and inertial parameters of the target. Good results are presented
in [45] for the case of asymmetrical targets, whereas in the case of symmetry, it is shown
that the results worsen considerably. In [20], the author proposes a strategy for dealing
with the case where the target presents symmetry. This extension of CoMBiNa involves
approximating the symmetric target to a gyroscopic structure and reconstructing only
the orientation of the symmetry axis, dispensing with full attitude estimation, showing
good results. Although some information on the attitude of the target can be obtained,
it cannot yet be fully estimated.
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1.2. Thesis Objective

The aim of the first part of this work is to modify the CoMBiNa algorithm to estimate
the complete attitude of the symmetric target, rather than just the orientation of the axis
of symmetry. This involves integrating CoMBiNa with an operational neural network,
capable of supplying the precise locations of specific target features. Subsequently, in the
second part of the work, the feasibility of using such a neural network to identify the
locations of specific features on the target is demonstrated.

1.3. Thesis Outline

Chapter 2 first introduces the original version of CoMBiNa, providing a detailed analysis
of its pipeline. Then, a description of the extension of CoMBiNa to the case where a
symmetrical target is detected is provided, showing what modifications are required to
obtain an estimate of the position of the spin axis of the target. In Chapter 3, a brief review
on CNN is first made. Subsequently, several methods for carrying out object detection are
presented, with a brief description, and typical methods for evaluating their performance.
Finally, the Efficient Perspective-n-Point (EPnP) is presented, a method used to solve a
typical problem in computer vision, the Perspective-n Point (PnP) problem. The new
formulation of the CoMBiNa algorithm is presented in Chapter 4, where the different
methods for deriving the target attitude are presented in detail. The results achieved
through this new formulation are presented toward the end of the chapter. Afterwards,
Chapter 5 explains the reasons for choosing YOLOv8 as the neural network in this work.
It is also presented the procedure followed to train YOLOv8, including a description of the
process for generating the images, a description of the training process, and a presentation
of the results obtained. Finally, Chapter 6 contains the final conclusions and hints for
possible future work.
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2.1. CoMBiNa: Original Formulation

The Coarse Model-Based Relative Navigation (CoMBina) technique, introduced in [45], is
designed for navigating in the proximity of unknown and uncooperative RSO. CoMBiNa
carries out its operations through a two-phase approach. The initial phase, known as
the preliminary phase, involves placing the chaser into a safe relative orbit and using a
SLAM algorithm to construct a coarse model of the target. The second phase, named the
operational phase, focuses on estimating relative pose and dynamics. During this phase,
the process begins with the analysis of stereo images, which are then matched with the
coarse model generated in the preliminary phase using the Bayesian Coherent Point Drift
(BCPD) method, a statistical point-set registration technique [33]. Subsequently, the out-
put from this process is input into two Unscented Kalman Filters (UKF) [60], allowing
the recovery of both the target’s pose and inertia properties. However, in the case of sym-
metrical targets, the method fails, as these types of targets have unobservable rotations
that lead BCPD to converge to wrong solutions. Thus, in [20], a novel formulation of
the state vector is proposed specifically for symmetric targets, enabling the acquisition of
information regarding the symmetry axis.

2.1.1. Reference Systems

In Table 2.1, the reference systems that will be used and the symbols used to denote them
throughout the work are presented.
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Symbols Reference Frame

I Earth Centred, Inertial
L Chaser Centred, Local-Vertical Local-Horizontal
C Chaser Centred, Chaser Fixed
S Camera Centred, Camera Fixed
T Target Centred, Target Fixed ("real")
T̂ Target Centred, Target Fixed ("estimated")

Table 2.1: Reference frames

2.1.2. Preliminary Phase

During this phase, the chaser remains in a safe orbit around the target to obtain images
that will be used in a simultaneous localisation and mapping (SLAM) algorithm. In
[45] the images are generated through simulation using Blender and a 3D model of the
target RSO available online. Blender is able to render these models by simulating the
movement of the camera in proximity to the target. The technique chosen SLAM to
construct the preliminary model of the target is ORB-SLAM [46]. This system uses
ORB features, which are robust against rotation, scale, and illumination variations. An
example of the application of this technique in real-time operation can be found in [52].
After the execution of the ORB-SLAM algorithm, the point cloud is processed to remove
the outliers. Firstly, an outlier rejection process is carried out using a k-Nearest Neighbor
Graph (k-NNG) [23] approach. Secondly, to further enhance the construction of the
model, a probabilistic feature-based space-carving approach [50] is used.

2.1.3. Operational Phase

Stereo Measurements

The initial stage involves extracting features from the images and determining their po-
sitions within the chase body frame, enabling the subsequent application of the point
cloud registration technique. For optimal efficiency in executing this operation, a region
of interest (ROI), containing the target, is identified in the image. Subsequently, SURF
features [9] are extracted from this region. Following a further feature reduction process,
the 3D coordinates of each feature are acquired in terms of their horizontal and vertical
positions (u and v), along with the disparity value (α). It is now necessary to determine
the relationship between the camera frame to the chaser body frame.
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Figure 2.1: Parallel axis stereo camera model adopted in CoMBiNa (courtesy of [45])

In this work, it is assumed that a stereo camera is available, as it allows for a complete
reconstruction of the position of the target from the measurements. Unlike a monocular
camera, the stereo camera provides information about the range as well. The stereo
camera consists of two monocular cameras with the same focal length and pixel density.
Both cameras are oriented in the same way, with the only difference that the optical center
of one is shifted by an amount b (baseline) in the direction y. A schematic representation
is shown in Fig. 2.1. At this point, it is possible to define the relationship between the
points in the chaser system and those expressed in terms of pixel coordinates (ui, vi).

A point in the chaser frame pC
i = (px, py, pz) can be expressed in terms of pixel coordinates

of the first camera using the pinhole camera model as follows:

pSi = (ui, vi) =

(
u0 − fd

py
pz
, v0 + fd

px
pz

)
(2.1)

The expression of point pC
i with respect to the second camera is as follows:

pS̃i = (ũi, ṽi) =

(
ũ0 − fd

py − b

pz
, ṽ0 + fd

px
pz

)
(2.2)
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(u0, v0) and (ũ0, ṽ0) are the coordinates of the optical centers of the first and second
cameras, respectively. In this work, it is reasonable to assume that v0 = ṽ0, while the
difference between the horizontal coordinates can be defined as disparity α. Once the
3D coordinates of the i-th feature in terms of ui, vi and αi are known, it is possible to
determine the position of the feature in the chaser frame as follows:

pC
i =

[
− b

αi

(vi − v0),
b

αi

(ui − u0),−
fdb

αi

]T
(2.3)

Once all the extracted features are processed in this way, it is possible to obtain a 3D
point cloud in the chaser-fixed, chaser-centered frame, PC = {pC

1 , ...,pC
M} ⊂ R3×M , which

will be used in the subsequent steps of the operational phase.

Measurements Extraction from BCPD

In the point set registration phase, the goal is to align two distinct point sets: the first
set is constructed during the preliminary phase, while the second set is obtained from the
stereo measurements acquisition. The selected algorithm is known as Bayesian Coherent
Point Drift (BCPD) [33], which is a variation of the Coherent Point Drift (CPD)[47] algo-
rithm. The distinction between these two algorithms lies in their approach to determine
points correspondences and the parameters of the transformation between one model and
the other. CPD relies on the Expectation-Maximization algorithm, whereas in BCPD,
optimization is base on Variational Bayesian Inference (VBI). Equation (2.4) shows the
transformation model used in BCPD, which combines a similarity transformation and a
non-rigid transformation.

T (yk,ρ,vk) = sR(yk + vk) + t (2.4)

In this equation s ∈ R is a scaling factor, R ∈ R3×3 is a rotation matrix and t ∈ R3×1

is a translation vector. For simplicity these parameters are collected in a single set of
transformation parameters ρ. vk ∈ R3×1 is a displacement vector that characterize the
non-rigid transformation.

In [45], BCPD is used to determine the aforementioned parameters. These parameters
are used to align the coarse reconstructed model MT = {mT

1 , ...,mT
N} ⊂ R3×N , which

is represented in the target reference frame, with the point cloud derived from stereo
images PC, expressed in the chaser-centered , chaser-fixed reference frame. With an initial
estimate of the attitude and position of the target from the filter state, it is possible to
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project the point cloud PC into the estimated target reference frame T̃ as follows:

P T̃ = CT̃ CP
C − 1M ⊗ CT̃ Lr̂ (2.5)

In (2.5) r̂ represents the estimated relative position of the center of mass of the target with
respect to the chaser, expressed in LVLH reference frame, while CT̃ C and CT̃ L represent
the rotation matrices from the chaser frame and LVLH frame respectively, to the estimated
target frame. Having the coarse model of target MT available, it is possible to apply
BCPD to these two models to determine the parameters of the transformation responsible
for registering the measured point cloud with the coarse model. The transformation
between the two point clouds is given by the following equation:

PT = sRP T̃ + 1⊗ t (2.6)

where s is the scaling factor, R is the rotation matrix and t is the translation. The scaling
factor should be very close to 1, indicating that the measurements have not altered the
shape of the target. If this value deviates significantly from 1, the filter will reject the
measurement. The rotation matrix R is responsible for aligning the estimated target
reference frame T̃ with the real target reference frame T , so it can also be expressed as
CT T̃ . Consequently, the rotation matrix from the inertial system to the target system
can be derived as follows:

CT I = CT T̃ CT̃ I (2.7)

It is then possible to derive from the CT I matrix the set of Modified Rodriguez Parameters
(MRPs) with norm ||σT || < 1 describing the orientation of the target in the inertial
reference system as follows [35]:

[σ̃T ] =
CT

T ICT I√
Tr(CT I) + 1(

√
Tr(CT I) + 1 + 1)

(2.8)

This equation encounters a singularity at an equivalent principal rotation of 180◦, when
both numerator and denominator become 0. Although this condition is very rare, it is
possible to solve this issue by solving the following set of equations [34]:

σT σ
T
T =

1

2
(I + CT I) (2.9)
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The second of information derived from BCPD concerns the position of the target in
relation to the chaser. The position r is expressed in the LVLH reference system while
the translation term t obtained from BCPD is expressed in the target reference frame.
Consequently, it must be expressed in the LVLH system, and therefore the expression for
obtaining r is:

r = r̂ − CLT̃ CT
T T̃ t (2.10)

Summarising, the measurement vectors obtained from BCPD are:

zs = r za = σT (2.11)

These two vectors will be used in the update phase of the translational and rotational
filter respectively.

Definition of the State Vector & Equation of Motion

Before delving into the two filters, it is essential to introduce the state vectors that will
be provided to the filters, along with their respective equations of motion. Regarding
the translational filter, its state vector x̂s includes the relative position r̂ and velocity v̂

expressed in the LVLH reference system. The dynamics of this state vector are defined
in equation (2.13) and is described by the Nonlinear Equations of Relative Motion [61].

x̂s =

[
r̂

v̂

]
(2.12)

ẍ = 2nẏ + n2x− µ(Rt + x)[
(Rt + x)2 + y2 + z2

] 3
2

+
µ

R2
t

ÿ = −2nẋ+ n2y − µy[
(Rt + x)2 + y2 + z2

] 3
2

z̈ = − µz[
(Rt + x)2 + y2 + z2

] 3
2

(2.13)

In [45], it is assumed that the chaser does not perform any kind of translational manoeuvre
and, for this reason, control accelerations are not included in the equations of motion.

Concerning the rotational filter, the state vector is composed by the Modified Rodriguez
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Parameters σ̂T̂ [38, 61] of the target, the angular velocity ω̂T̂ of the target and a set of
two parameters k̂ =

[
k̂1, k̂2

]
, that parameterise the inertia matrix of the target. Indeed,

in the absence of external moments, the inertia matrix can be reconstructed as follows
[66]:

J t =

e
k̂1 0 0

0 1 0

0 0 e−k̂2

 , k̂1 = ln
A

B
, k̂2 = ln

C

B
(2.14)

where A, B and C are the principal inertia moments. Therefore, the attitude state vector
is:

x̂a =

σ̂T̂

ω̂T̂

k̂

 (2.15)

The first three equations used for the propagation are provided in equation (2.16), which
refers to the kinematics of the MRPs ([61], Chapter 3). Equations addressing the rota-
tional motion of the target are presented in equation (2.17) ([61], Chapter 4). The two
inertial terms, k̂1 and k̂2, are assumed to be constant over the time.

σ̇T̂ =
1

4

[(
1− σ2

T̂

)
I + 2 [σ̃T̂ ] + 2σT̂ σ

T
T̂

]
ωT̂ (2.16)

J tω̇T̂ + [ω̃T̂ ]J tωT̂ = 0 (2.17)

By leveraging this attitude parameterization, a director cosine matrix describing the ro-
tation from the inertial frame I to a general body frame B can be computed as:

CBI = I +
8 [σ̃] [σ̃]− 4(1− σ2) [σ̃]

(1 + σ2)2
(2.18)

As the attitude approaches a 360◦ principal rotation, the norm of the MRP goes to
infinity. Two sets of MRPs are used to solve this problem, the nominal σ and the shadow
σS set. When ||σ|| = 1 the switch between the two parameter sets occurs according to
the following relationship:
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σS = − σ

σ2
(2.19)

Navigation Filters

Once the measurements have been obtained, two different filters are used, one for relative
dynamics and one for attitude. The filters are used not only to reconstruct the state
variables, but also to filter out noisy measurements [16]. Standard filters are based on
two main steps. The first step (prediction) involves using the equations of motion to
predict the mean and covariance of the state vector and the measurements at time step
k+1. During the second step (update) the measurements are used to correct the predicted
state vector.
Assume the equation of motion and the measurements equation are:

x(k + 1) = f[x(k),u(k), k] + v(k) (2.20)

z(k + 1) = f[z(k),u(k), k] + w(k) (2.21)

where f[·; ·; ·] is the process model, x(k) is the state vector at the time step k, u(k) is
the vector of inputs and v(k) is the process noise perturbing the state, z(k + 1) is the
measurements at the time step k+1, h[·; ·; ·] is the measurements function and w(k) is the
measurements noise. v and w are assumed uncorrelated multivariate Gaussian processes
with zero mean and Q(k), R(k) covariances respectively.

In [45], the Unscented Kalman Filter (UKF) [68], which relies on the Unscented Trans-
formation (UT), was preferred over the commonly the Extended Kalman Filter (EKF).
This choice was driven by the fact that the EKF is dependent on the linearization of the
process around the current state. The accuracy of this linearization diminishes as the
state becomes more nonlinear or when the measurement frequency is low.
The first UKF that will be presented is the one dedicated to the estimation of the relative
dynamics (i.e., translational filter). First, the sigma points X (2.22) and the weights (2.23)
for the state at time step k are determined, using the mean x̂s(k|k) and the covariance
Ps(k|k).
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X [0]
s (k|k) = x̂s(k|k)

X [i]
s (k|k) = x̂s(k|k) +

(√
(n+ τ)Ps(k|k)

)
i

i = 1, ..., n

X [i+n]
s (k|k) = x̂s(k|k) +

(√
(n+ τ)Ps(k|k)

)
i+n

i = 1, ..., n

(2.22)

Ω[0]
m =

τ

τ + n

Ω
[0]
P = Ω[0]

m − (1− γ2 + β)

Ω[i]
m = Ω

[i]
P =

1

2(τ + n)
i = 1, ..., 2n

(2.23)

In (2.23) n indicates the number of states, whereas the subscript m is used to indicate the
weights relative to the mean value, finally, P is used for those relative to the covariance.
τ , β and γ are tuning parameters of the filter [68].

It is now possible to propagate the sigma points X s through the system dynamics (2.13),
resulting in the sigma points at time step k + 1. Consequently, this allows for the com-
putation of the mean value of the state and its corresponding covariance as follows:

x̂s(k + 1|k) =
2n∑
i=0

Ω[i]
mX [i]

s (k + 1|k) (2.24)

Ps(k + 1|k) =
2n∑
i=0

Ω
[i]
P

(
X [i]

s (k + 1|k)− x̂s(k + 1|k)
)
·

·
(
X [i]

s (k + 1|k)− x̂s(k + 1|k)
)T

(2.25)

The sigma points are also passed through the measurements function to compute the
predicted measurements Z [i]

s (k + 1|k) for each sigma points.

Z [i]
s (k + 1|k) =

[
I3 03

03 03

]
X [i]

s (k + 1|k) (2.26)

Now, mean expected measurements ẑs(k + 1|k), measurements covariance Pz,s(k + 1|k)
and state measurements cross covariance Psz,s(k+1|k) can be computed. These quantities
are retrieved with the following equations:
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ẑs(k + 1|k) =
2n∑
i=0

Ω[i]
mZ [i]

s (k + 1|k) (2.27)

Pz,s(k + 1|k) =
2n∑
i=0

Ω
[i]
P

(
Z [i]

s (k + 1|k)− ẑs(k + 1|k)
)
·

·
(
Z [i]

s (k + 1|k)− ẑs(k + 1|k)
)T

(2.28)

Psz,s(k + 1|k) =
2n∑
i=0

Ω
[i]
P

(
X [i]

s (k + 1|k)− x̂s(k + 1|k)
)
·

·
(
Z [i]

s (k + 1|k)− ẑs(k + 1|k)
)T

(2.29)

Before applying the correction step one last check to reject outliers is performed. Indeed,
if the scale factor s obtained from BCPD deviates too much from unity, the measurement
is rejected, and the update step does not take place. Additionally, if the measurement
obtained from BCPD has less than 99 % probability of being correct under its expected
mean and covariance, then also in this case the update step is skipped. This particular
condition is checked with the squared Mahalanobis distance, which can be computed as:

MD2 = (zs(k + 1)− ˆzs(k + 1))P−1
z,s(zs(k + 1)− ˆzs(k + 1))T (2.30)

and the threshold value is given by the inverse of the cumulative chi-square distribution
function.
If the measurement is not rejected, the Kalman gain K(k + 1) is computed (2.31):

K(k + 1) = Psz,s(k + 1|k)P−1
z,s(k + 1|k) (2.31)

Finally, it is possible to update the state and covariance:

x̂(k + 1|k + 1) = x̂(k + 1|k) + K(k + 1)(zs(k + 1)− ẑs(k + 1|k) (2.32)

Ps(k + 1|k + 1) = Ps(k + 1|k)− K(k + 1)Pz,s(k + 1|k)KT (k + 1) (2.33)

The second filter processes the attitude motion. The structure proposed for the first
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filter is also repeated for the second filter. However, since the state of the second filter
consists of σ̂T̃ , ω̂T̃ and k̂, the sigma points calculated using (2.22)-(2.23) will be propagated
by integrating the set of ODEs (2.16)-(2.17). The computation of the mean and the
covariance after the propagation remains unchanged. All sigma points are then passed
through the measurement equation, which now is:

Z [i]
s (k + 1|k) =

[
I3 03×5

05×3 05

]
X [i]

s (k + 1|k) (2.34)

The remaining steps of the procedure are the same as for the first filter.

Finally, an additional step is introduced for the rotational filter to ensure that the MRPs
do not encounter a singularity. When the estimated norm of the MRPs reaches the unit
value after the corrective step, the switch to the shadow set takes place. In this case, it
is also necessary to transform the covariance matrix as follows [38]:

T = 2
1

||σ̂T̂ ||4
− 4σ̂T̂ σ̂

T
T̂ − 1

||σ̂T̂ ||2
I

PS
z,a(k + 1|k + 1) =

[
T 03×5

05×3 I5

]
Pz,a(k + 1|k + 1)

[
T 03×5

05×3 I5

]T (2.35)

2.2. CoMBiNa: Symmetric Target

In [45], CoMBiNa is tested with both asymmetric and symmetric targets. However, with
the original formulation of CoMBiNa, a problem arises when dealing with symmetrical
targets. This problem comes from the fact that symmetrical targets have unobservable
rotations, leading the Bayesian Coherent Point Drift (BCPD) algorithm to potentially
converge to solutions where the two point cloud models have different rotations about the
symmetry axis. To address this issue, in [20] an extension of CoMBiNa to the symmetrical
case is presented. In this case, gyroscope theory is applied to the symmetrical body,
allowing the estimation of the orientation of the symmetry axis of the target without the
need to estimate the unobservable attitude and inertia properties. The pipeline of the
operational phase of the CoMBiNa extension is shown in figure 2.2.
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Figure 2.2: Extended CoMBiNa operational phase (courtesy of [20])

A rocket body was used as a symmetrical target, represented in Fig. 2.3.

Figure 2.3: Rendering of the 3D symmetric body (courtesy of [45])
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The structure of the algorithm is very similar to the original CoMBiNa. The operational
phase starts with the acquisition of stereo images, which are then processed to obtain
3D point clouds. The point clouds are given as input to an operation module, which
uses BCPD as a point set registration method to match them with the available coarse
model, providing a set of measurements. This measurements are checked for consistency
and treated in two UKF (transaltional and rotational). The main difference with respect
to the original formulation lies in the definition of the quantities to be processed in the
UKF. To change the definition of these quantities, the symmetrical RSO is approximated
to a gyroscopic structure. The goal, is to be able to reconstruct the orientation of the
spin axis J of the RSO.
The ODEs presented in Chapter 3 of [20] allows to reconstruct the spin axis J in a par-
ticular inertial system, IΓ, which has one of the axes aligned with the angular momentum
Γ(0) of the gyroscope. Therefore, a rigid rotation matrix to pass from IΓ to I is intro-
duced. In an initial analysis, the rigid rotation matrix is assumed to be known, while
later this assumption is removed, and it is considered as an unknown.

2.2.1. Measurements Extraction

As already seen BCPD allows for the estimation of three terms: scaling factor, translation
t, and rotation matrix R. The scaling factor should ideally be 1, indicating no change
in size. The rotation matrix aligns the estimated target frame with the coarse model
reference frame. In the symmetrical case, only the second row of this rotation matrix can
be used, since it provides the coordinates of the symmetry axis J . The first and third
rows, due to the geometry of the target, provide a random orientation of the other two
axes, and so they are discarded. Regarding the measurements of the expected position,
it is correct in the symmetrical case and can therefore be used.
In conclusion, the measurement vectors obtained with BCPD are:

zs = r za = J |I (2.36)

They represent the relative position in LVLH frame and the direction of gyroscopic axis
in the inertial frame I; they will be used in the update phase of the translational and
rotational filter respectively.
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2.2.2. Filter Structure for Known Rigid Rotation Matrix

In the symmetrical case the state vector x̂s remains the same as in the asymmetrical case,
while x̂a changes. Equation (2.37) shows the state vectors of the asymmetric case.

x̂s =

[
r̂

v̂

]
x̂a =

σ̂

ω̂

k̂1

 (2.37)

In the symmetrical case, the MRPs describing the attitude of the target σ̂T are replaced
with the three components of the symmetry axis J expressed in the inertial reference
frame I. Then, in order to make the state observable, the angular velocity of the target
ω̂T is removed from the state itself. A more detailed analysis on the observability of the
state is carried out in [20], where the procedure presented in [66] is adopted to carry out
this analysis.
The new formulation of the state vector x̂a is the following:

x̂a =


Ĵx

Ĵy

Ĵz
Γ̂(0)

A

 (2.38)

with equations of motion:



J̇x =
Γ(0)

A
Jz

J̇y = 0

J̇z = −
Γ(0)

A
Jx

d

dt

(
Γ(0)

A

)
= 0

(2.39)

Finally, since J is a unit vector, it can be expressed in spherical coordinates as follows:
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Jx = r cos δ cosϕ

Jy = r cos δ sinϕ

Jz = r sin δ

(2.40)

and due to the fact that r has unit value, the state dimension can be further reduced,
leading to the new formulation of the two state vectors, x̂s and x̂a as follows:

x̂s =

[
r̂

v̂

]
x̂a =


ϕ̂

δ̂

Γ̂(0)

A

 (2.41)

Therefore, it is not possible to compute directly the angular velocity of the target, but
two different quantities can be computed a posteriori. The first is the absolute value of
the equatorial component of the angular velocity, which turns out to be:

||e|| =
Γ(0)

A

√
− sin2 ϕ cos2 δ + 1 (2.42)

The second quantity is the square of the ratio between the angular velocity about the
symmetry axis and the moment of inertia A about the other two axes, and it can be
computed as follows:

(ωy

A

)2

=

(
Γ(0)

A

)2

sin2 ϕ cos2 δ (2.43)

Both of these quantities are constant over time due to gyroscopic properties of the body.

2.2.3. Filter Structure for Unknown Rigid Rotation Matrix

Equation (2.41) represents the two states, x̂s and x̂a, under the assumption of knowing
the rigid rotation matrix between the general inertial system I and the inertial system
IΓ with an axis aligned with the axis of symmetry of the target. It is now possible to
remove this assumption, and the rigid rotation matrix can be estimated using the filter.
Therefore, the MRPs of the rigid rotation matrix σ̂IΓI are added to the state x̂a, resulting
in the following state vectors:
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x̂s =

[
r̂

v̂

]
x̂a =


ϕ̂

δ̂

Γ̂(0)

A
σ̂IΓI

 (2.44)

Since σ̂IΓI represents a rotation between two inertial frames, its components do not change
over time since the direction of the angular momentum remains fixed in an inertial frame
in absence of external disturbances. Therefore, their equations of motion will be given
by:


σ̇IΓI,1 = 0

σ̇IΓI,2 = 0

σ̇IΓI,3 = 0

(2.45)
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3| Computer Vision

The recent massive development of Artificial Intelligence (AI) application technologies
has led to its widespread use in all fields of engineering and beyond. Machine Learning is
a category of research and algorithms focused on finding patterns in data and using those
patterns to make predictions. Machine Learning falls under the AI umbrella, which in turn
intersects the broader field of knowledge discovery and data mining. It can be very difficult
to extract high-level abstract features from raw data. Deep learning solves this central
problem by exploiting a set of nonlinear cascaded units to extract characteristics and
identify multiple levels of abstractions, called Neural Networks. Deep Neural Networks
are often chosen as a tool to perform computer vision tasks. In particular, they can
be leveraged to gain high level understanding of the environment from digital images or
videos. The most important tasks of the computer vision are [25]:

• Image classification: the algorithm must recognise which kind of object is repre-
sented in the image.

• Semantic Segmentation: the algorithm is able to label each pixel in an image
with a category, indicating what object or class it belongs to. However, it is not
possible to distinguish objects belonging to the same category.

• Object detection: The algorithm is able to distinguish several objects in the same
image, and identifies them with a bounding box.

• Instance Segmentation: it is a mix between object detection and semantic seg-
mentation. The algorithm does what is done in semantic segmentation, but is also
able to distinguish between different instances of the same type.

In this work, the aim is to train a neural network that is capable of performing the object
detection task on images. For this reason, this task is analysed more in details in the
following section, showing the current state-of-the-art for object detection methods.
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3.1. Object Detection

The goal of the object detection is to detect all instances of the predefined classes, i.e.
categories of objects we are interested in, and provide its coarse localization in the image
by axis-aligned boxes. The detector should be able to identify all instances of the object
classes and draw bounding box around it.
The methods used for object detection can be divided into three categories: region pro-
posal (two-stage), one-stage and transformer based detectors. Region proposal detectors
have a separate module for generating region proposals. These models try to find an
arbitrary number of objects proposals in an image during the first stage and then classify
and refine their localization in the second. One-stage detectors classify and localize se-
mantic objects in a single shot using dense sampling [74]. The transformer-based detector
category is less common, so it will not be discussed in detail in the following sections.
Detection Transformer (DeTR) [13] and Swin transformer [44] are among the main archi-
tectures.

3.1.1. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are specially designed networks optimized for
processing image data. They drive the data-driven classification and also handle feature
extraction. The CNN’s architecture consists of multiple layers, and once the image is
transformed into a vector shape, it is inputted into a traditional neural network for clas-
sification. A convolution is a linear transformation that employs filters to process the
input. This is achieved by summing a set of parameters (the filter/kernel) with a segment
of input of the same dimension, resulting in a scalar value. This operation is carried out
at each pixel of the input image. Filters are learned from data, and maintaining their
consistency is crucial.

The primary types of layers within a CNN are as follows:

• Convolutional layers: these layers blend all input components, producing a linear
combination of values within a region of the input, considering all channels. This
means that the activation map generated results from the outputs of neurons that
are locally connected to the input through weights corresponding to the filter’s
parameters.

• Activation layers: these introduce non-linearities into the network to differentiate
CNNs from linear classifiers. They are scalar functions that operate on each value
of the volume, preserving its size.
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• Pooling layers: these reduce the spatial dimensions of the volume while keeping the
depth unchanged. A global average pooling (GAP) layer is a type of pooling layer
used to reduce the spatial dimensions of a feature map. It works by calculating the
average of all values in the feature map, producing a single output value for each
feature map. GAP layers are often employed in CNNs to reduce the number of
parameters, simplify the network’s computational complexity, and enhance model
generalization.

• Dense Layers: these contain the CNN network’s learned features, and they are
responsible for the final classification. Spatial dimensions are lost, and the CNN
stacks the hidden layers. They are referred to as "dense" because each output
neuron is connected to each input neuron.

CNNs are mentioned in this work because they are used in various object detection tech-
niques. Their functioning involves assigning a fixed set of categories to an input image
containing an unknown and variable number of instances, and then drawing bounding
boxes around each object instance.
Fig. 3.1 shows the schematic architecture of the CNN.

Figure 3.1: CNN architecture (courtesy of [25])

3.1.2. Region Proposal Methods

The main region proposal methods are presented in this section [53] [24] [74].

Region-based CNN (R-CNN)

This algorithm [29] is based on three steps. First, selective search is used to find the
regions of the image where there is a higher probability of finding objects. Then the
detected regions are scaled to a fixed size and are then given as input to a CNN to extract
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the feature vectors. Finally, the feature vectors are passed into Support Vector Machine
(SVM) to obtain the confidence scores.
The algorithm is computationally inefficient, since the selective search repeats same op-
eration multiple times, making it unusable for real-time execution.

Fast R-CNN

Using Fast R-CNN [28], the image is first given to a CNN to obtain a feature map, then
the proposal regions are extracted with selective search and a second activation map is
produced. Finally, the activation map is passed to a single fully connected layer to obtain
bounding boxes. The improvement of this method over the previous ones lies in the fact
that selective search is no longer applied on the entire image, but only on the regions
provided by the first CNN.

Faster R-CNN

Despite the improvements brought by Fast R-CNN, the selective search algorithm used
to extract candidate regions represents a computational bottleneck. With Faster R-CNN
[58], a fully convolutional Region Proposal Network (RPN) is introduced to extract can-
didate regions instead of the selective search, decreasing the computational time by one
order of magnitude.

FPN

Feature Pyramid Network (FPN) [42], has a top-down architecture with lateral connec-
tions to construct high-level semantic features at various scales. FPN comprises two
pathways: a bottom-up pathway that uses ConvNet to compute feature hierarchies at
multiple scales and a top-down pathway that upsamples coarse feature maps to high-
resolution features. Lateral connections, established through a 1x1 convolution operation,
enhance semantic information in the features.

R-FCN

The Region-based Fully Convolutional Network (R-FCN) [17] is a novel approach that
differs from traditional two-stage detectors. Instead of applying resource-intensive tech-
niques to each proposal, R-FCN shares most computations within the network. It replaces
fully connected layers with convolutional layers but addresses the challenge of translation-
invariance in deeper convolutional layers by using position-sensitive score maps. These
maps encode relative spatial information and are pooled to achieve precise localization.
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R-FCN divides the region of interest into a grid and scores each cell for detection class
features, later averaging these scores to predict the object class.

DetectoRS

Many modern two-stage object detectors employ a two-step approach, first proposing
object candidates and then using these proposals to extract features for object detection.
DetectoRS [54] takes this approach and applies it at both macro and micro levels of
the network. At the macro level, they introduce a Recursive Feature Pyramid (RFP),
while at the micro level, they introduce the Switchable Atrous Convolution (SAC). The
combination of these two techniques, Recursive Feature Pyramid and Switchable Atrous
Convolution, forms DetectoRS. DetectoRS is not suitable for real-time applications, as it
can process only about 4 frames per second.

3.1.3. One Stage Methods

The main one stage methods are presented in this section [53] [24] [74].

YOLO

The You Only Look Once (YOLO) architecture is based on the idea of processing the
entire image with a convolutional network. YOLO has several versions that have been
developed over the years, with YOLOv8 being the most recent version in the current state
of the art.
YOLOv1 [57], published in 2016, divides the image into an S × S grid and predicts B
bounding boxes of the same class, along with its confidence for C different classes per grid
element. Each bounding box prediction contains the confidence score, the coordinates of
the bounding box’s center, and its height and width. YOLOv2 (2017) [55] includes many
improvements compared to the first version while still maintaining the same speed. In
2018, to be on par with other methods in the state-of-the-art, YOLOv3 [56] was developed,
which shows significant changes and a larger architecture while keeping real-time perfor-
mance. In the following years, several versions were developed, such as YOLOv4 [10],
YOLOv5 [36], YOLOv6 [41], YOLOv7 [69], leading to YOLOv8 [37]. YOLOv8 is intro-
duced by Ultralytics and offers five scaled versions, which differ in size: YOLOv8n (nano),
YOLOv8s (small), YOLOv8m (medium), YOLOv8l (large), and YOLOv8x (extra-large).
YOLOv8 supports multiple vision tasks, including object detection, segmentation, pose
estimation, tracking, and classification [65]. Over the years, other versions have also
been developed, which are covered in [65], along with a more detailed description of the
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aforementioned architectures.

SSD

Single Shot Multibox Detector (SSD) [43] was significantly faster and more accurate than
state-of-the-art networks like YOLO and Faster R-CNN, as of 2016. SSD was built on
VGG-16 [41], with additional auxiliary structures to improve performance. SSD detects
smaller objects earlier in the network, while the deeper layers are responsible for offset of
the default boxes and aspect ratio. The image and ground truth are fed to the network
which extracts several feature maps of different dimensions; for each location in each
activation map, a set of standard bounding boxes is proposed with different scales and
aspect ratios and, for each of them, both the offset from the ground truth box and the
confidence on each object category is computed.

3.1.4. Performance Metrics

The most common way to measure the accuracy of a detection is the Average Precision
(AP) [49]. Before describing AP in detail, it is important to introduce a few concepts. A
prediction, based on its correctness, can be classified as:

• True Positive (TP): it is a correct detection of a ground-truth bounding box.

• False Negative (FN): it is an undetected ground-truth bounding box.

• False Positive (FP): it is an incorrect detection of a nonexistent object or a misplaced
detection of an existing object.

• True Negative (TN): it is not applicable

In order to give these definitions, it is necessary to establish what the correctness of
a detection is. To do this, an index called intersection over union (IoU) is used. IoU
measures the area overlap between the predicted bounding box BBp and the ground truth
box BBgt, divided by their union.

IoU =
area(BBp ∩ BBgt)

area(BBp ∪ BBgt)
(3.1)

To determine whether a detection is correct or incorrect, a threshold value is defined.
If the IoU value is greater than the threshold, the detection is correct, otherwise it is
incorrect. The assessment of object detection methods is mostly based on the precision
P and recall R concepts, respectively defined as:
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P =
TP

TP+FP
=

TP
all detections

(3.2)

R =
TP

TP+FN
=

TP
all ground truths

(3.3)

The precision vs. recall curve can be seen as a trade-off between precision and recall for
different confidence values associated to the bounding boxes generated by a detector. The
area under this curve is defined as the AP and it is defined individually for each class in
the data-set. Its definition is:

AP =

∫ 1

0

P (R) dR (3.4)

If several classes are present, mean Average Precision (mAP) can also be introduced. mAP
is used to define the accuracy of the detector over all the classes, and it can be computed
as:

mAP =
1

N

N∑
i=1

APi (3.5)

where N is the number of classes in the data-set.

3.2. Perspective-n-Point problem

The Perspective-n-Point problem is the problem of estimating the pose of an object,
given a set of n points of the object itself with known 3D model coordinates, and given
the corresponding 2D projections in the image. The definition of the problem statement
is the following. Firstly, the reference frames of the camera and the target, which are
referred to as C and B respectively, are defined. It is possible to express a point rB in
the camera reference frame as follows:

rB =

xC

yC

zC

 = RB/CrB + tC/B (3.6)

In this context, RB/C represents the rotation matrix between the target and the camera
frames, while tC/B represents the translation vector from the camera to the origin of the
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target frame.

Subsequently, it is possible to introduce the pinhole camera model, which allows for
the calculation of the projection onto the image plane of a point in the camera frame.
Combining this model with equation (3.6), one can derive the perspective projection
equations:

u

v

w

 =


f

ρu
0 u0

0
f

ρv
v0

0 0 1


[
RB/C | tC/B

]

xB

yB

zB

1

 = AN


xB

yB

zB

1

 (3.7)

A is the intrinsic camera matrix, which contains some known parameters such that the
focal length f and the coordinates of the camera principal point. In (3.7), the unknown is
the matrix N. To find this matrix, there are various methods, both implicit and explicit,
and in the next section, one of the explicit methods called EPnP will be analyzed. When
distance information regarding the actual point is unavailable, the vector [u; v;w] under-
goes scaling in relation to the third component. So w is called scaling parameter. This
commonly occur when employing monocular cameras that do not offer distance informa-
tion. Conversely, the use of a stereo camera, which does provide distance information,
may avoid the need for the scaling parameter.

3.2.1. Efficient Perspective-n-Point Solver

The Efficient Perspective-n-Point (EPnP) [40] is a non-iterative solution to the PnP prob-
lem. The PnP problem consists in estimating the pose of an object given a set of n points
of the object with known 3D model coordinates and give the corresponding 2D projection
detected in the image. This type of non-iterative solution provides better accuracy and
lower computational complexity than other non-iterative methods, while it is faster but
loses slightly in terms of accuracy compared to iterative methods. The idea behind the
method is to express the n 3D points as a weighted sum of 4 virtual control points, and it
requires at least 4 point correspondences to be used. The reference points are defined as
pi (where i = 1, 2, ..., n), while virtual control points are called cj (where i = 1, 2, ..., n).
The relationship linking the reference points to the virtual control points is:

pi =
4∑

j=1

αijcj (i = 1, 2, ..., n) (3.8)
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where αij are homogeneous barycentric coordinates. This relationship holds for both the
world coordinate system and the camera coordinate system. Let’s now derive the matrix
M whose kernel contains the solution of the problem. The 2D projections of the reference
points in the camera coordinate system, ui (where i = 1, 2, ..., n), are obtained via the
internal calibration matrix A using the following equation:

wi

[
ui

1

]
= wi

ui

vi

1

 = Apc
i = A

4∑
j=1

αijccj =

fu 0 uc

0 fv vc

0 0 1

 4∑
j=1

αij

x
c
j

ycj

zcj

 ∀i (3.9)

Substituting the third row of the equation (3.9) into the first two rows gives the following
two equations:

4∑
j=1

αijfux
c
j + αij(uc − ui)z

c
j = 0

4∑
j=1

αijfvy
c
j + αij(vc − vi)z

c
j = 0

(3.10)

It is possible to rearrange the equations (3.10) in matrix form as follows:

Mx = 0 (3.11)

where x is the vector containing the unknowns of the problem and M is a 2n×12 matrix.
Therefore the solution of the problem lies in the kernel of M and it is expressed as:

x =
N∑
i=1

βivi (3.12)

where the set vi are the columns of the right-singular vectors of M corresponding to the N
null singular values of M. After calculating the initial coefficients βi, the Gauss-Newton
algorithm is used to refine them.
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In this chapter, modifications to the CoMBiNa algorithm for the full pose estimation of
symmetrical targets are presented. In [20], the problem is addressed through adjustments
to state variables and the reconstruction of the orientation of the symmetry axis of the
target in the inertial reference frame. The current objective is to determine the MRPs
σT , angular velocity ωT , and inertial terms k, following a similar approach to that used
for asymmetrical targets in [45]. This new process assumes the presence of features on the
outer surface of the target, such as stickers representing various state flags, symbols from
space agencies, or luminous LEDs. Furthermore, it is assumed that a neural network is
available to detect the positions of the centers of these objects in the images provided by
the stereo camera. Such a network has been trained in the course of this thesis and its
performances are shown in Chapter 5

Fig. 4.1 shows the new CoMBiNa pipeline, in which the neural network is integrated into
the pipeline presented in [20]. Two blocks are considered for BCPD. The first is called
BCPD standard, and provides measurements of the relative position and MRPs of the
target, while the block called BCPD rotational provides the measurement of the relative
position and orientation of the axis of symmetry J .

4.1. CoMBiNa: Symmetric Case with Features De-

tection

4.1.1. Features Choice

In this chapter, the objective is to establish that parameters can be determined by assum-
ing the knowledge of the features locations. To achieve this, features were manually placed
randomly on the coarse model, as illustrated in Fig. 4.2. This is performed because, dur-
ing the preliminary phase in which the coarse model is build up, also the positions of the
features on it are reconstructed. Their measurements, typically acquired through a neu-
ral network with stereo camera images as input (in a real-world application), are instead
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Figure 4.1: Pipeline for the CoMBiNa operational phase

simulated using the ground truth of the state vectors, since it is assumed that the neural
network is available and functioning already during the preliminary phase of combina.
This would allow to reconstruct a coarse model, while simultaneously characterizing some
recognizable features. Fig. 4.3 illustrates the coarse model with the features expressed in
the camera reference frame.

However, employing this method for simulating feature measurements results in not only
obtaining measurements for the visible features depicted in the image captured by the
stereo camera, but also for features that are not visible. This condition, being unrealistic,
requires the introduction of a visibility check for each feature at every time instant (Fig.
4.4). Consequently, the measurement vector at a specific time instant i will only include
measurements of features that are visible.
The visibility check is performed by taking into account the ground truth of the relative
position, the ground truth of the orientation of the axis J in the inertial system and
simulated feature measurements. The check consists, for each feature and for each time
step, of calculating the direction perpendicular to the orientation of the axis J passing
through the feature coordinates expressed in the target-centred inertial system. Then
the direction of the relative position between chaser and target in the inertial system
is calculated. Finally, having these two directions available, the angle between them is
calculated using the Matlab command atan2. If 0 ≤ angle ≤ 90, the feature is visible,
but if 90 < angle < 180, the feature is not visible and is discarded.
Furthermore, to closely replicate real-world conditions, a probability of failure in feature
detection by the neural network is introduced. This detection failure means that even if
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Figure 4.2: Coarse model and features expressed in the target reference frame

Figure 4.3: Coarse model and features expressed in the camera reference frame
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Figure 4.4: Visible e non visible features expressed in the image reference frame

a feature is visible, it might go undetected by the network, rendering its measurement
unavailable. The probabilities considered in this work are 0% (indicating no failure), 20%,
and 40%. This failure rate corresponds to the rate of false negatives of a network. As it
will be seen in Chapter 5, these false negative rates are an envelop of the ones obtained
by the trained network. Moreover, this work does not account for other failures which
are characteristic of neural networks such as false positives (i.e., identification of features
in wrong locations), detection of multiple features of the same type (i.e., introducing an
ambiguity), and the possibility of wrong feature classification (i.e., wrong assignment of
ID to an identified feature). The introduction of procedures to deal with these problems
constitute an interesting future research direction. However, some preliminary conclusions
about their impact can be drawn by looking at the performance of the trained CNN.

4.1.2. Algorithm’s Update

This section outlines the modifications made to the CoMBiNa algorithm in the context of
symmetrical RSO. Two algorithms, the Main Loop 4.1 and the Optimization Function 4.2,
have been modified in this work. The Main Loop includes the procedures for updating and
propagating states and covariance matrices using the UKF. The Optimization Function
describes the procedures for obtaining the measurements used in the filter.

Considering the Main Loop, in [45], the states employed are:
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x̂s = [r̂; v̂], x̂a,2 = [σ̂; ω̂; k̂] (4.1)

while in [20] x̂a,2 is substituted with a new state vector:

x̂a,1 =

[
ϕ̂; δ̂;

Γ̂(0)

A

]
(4.2)

This substitution is necessary because in cases involving symmetrical targets, the estima-
tion of the x̂a,2 state is inaccurate. Nevertheless, by incorporating information about the
position of the features in the image, acquired through the neural network, it becomes
possible to accurately estimate x̂a,2 even in symmetrical target scenarios. Consequently,
in the reconfiguration of the main loop, the quantity of available features at a given time
instant is very important.

In the reformulation of the Main Loop 4.1, the idea is to use x̂s and x̂a,2 as states,
introducing x̂a,1 only in the absence of features. If features are present in the image,
x̂a,1 is not reconstructed. In this case, the goal is to estimate only x̂s and x̂a,2. In
cases where no features are detected within the image, x̂a,1 is defined based on the last
available information about x̂a,2. In this scenario, the estimate of x̂a,2 is only propagated
by the filter, but its value is not corrected. Consequently, the longer the duration without
available features, the less accurate the x̂a,2 estimation becomes. The filter, therefore,
operates on x̂s and x̂a,1 in order to correctly estimates them, enabling the acquisition of
at least the orientation of the symmetry axis of the RSO.

The most significant change, enabling the correct estimation of x̂a,2 lies in the methodology
for deriving measurements. In [20], it is emphasized that the CT I matrix provided by
BCPD is incorrect for a symmetrical target. Only the information on the second line
of this matrix, which describes the orientation of the symmetry axis in space, can be
used, but it does not allow to derive measurements for MRPs. In the modification of
the optimization function 4.2, the objective is to obtain accurate measurements regarding
MRPs by leveraging information about the position of the features in the image, which is
provided by the neural network.
The choice of methodology used depends on the number of features available at a certain
instant in time.
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MRPs Estimation Using EPnP

When there are at least four features in the same image, it becomes possible to employ
EPnP to determine the CT I matrix and, subsequently, the MRPs. In this study, EPnP
with Gauss Optimization is used, and the corresponding code is provided in [1]. The
function used, "efficient_pnp_gauss", requires as input a vector containing the homo-
geneous coordinates of the points in the target reference frame, a vector containing the
homogeneous positions of the points on the image plane, and the intrinsic camera matrix
defined as follows:

A =

fu 0 uc

0 fv vc

0 0 1

 (4.3)

Among the outputs provided by the function, the most significant are the rotation RST

and translation TST of the camera reference frame with respect to the target reference
frame.
CT I can now be computed using the consecutive rotation rule (Eq. 4.4).

CT I = RT
ST CT

CSCCI (4.4)

To achieve this, two matrices need to be defined: the CCI matrix, computed using the
chaser MRPs, and the rotation matrix of the chaser frame in relation to the camera frame,
denoted as CCS . This matrix is determined by referring to Fig. 2.1, where it illustrates
that the x-axis of the camera frame aligns with the y-axis of the chaser frame, and the
y-axis of the camera frame aligns in the opposite direction of the x-axis of the chaser
frame. Therefore, CCS is defined as:

CCS =

 0 1 0

−1 0 0

0 0 1

 (4.5)

At this point, the MRPs of the target σT can be derived from CCI .

Regarding the measurement of the relative position between the chaser and target, it must
be defined in the LVLH reference frame. Starting with the value of TST obtained from
EPnP, the relative position in the LVLH reference frame can be determined as follows:
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r = CT
CLCCSTST (4.6)

where CCL is the rotation of the chaser reference frame with respect to the LVLH reference
frame, computed as:

CCL = CCICT
LI (4.7)

However, when the number of available points is equal to four, EPnP often yields incorrect
results. On the other hand, increasing the number of points in the image leads to improved
results; having five points available already provides much more accurate and precise
outcomes [11].
For this reason, after acquiring measurements from EPnP, the validity of the result is
verified by examining the squared Mahalanobis distance. This verification process is equal
to the one previously described in Chapter 2. If the verification is successful, meaning
that the squared Mahalanobis distance is less than the threshold value, the obtained
measurements are:

zs = r za = σT (4.8)

otherwise, if the EPnP results do not pass the verification, measurements are obtained
using the method described below.
The choice of using EPnP instead of BCPD, when sufficient features are present in the
image, is justified by the fact that EPnP provides measurement estimation faster than
BCPD.

MRPs Estimation Using Feature Reference Frame Method

In the cases where features are present in the image, but not in sufficient number to
use EPnP, or when the measurements provided by EPnP are rejected, this new method,
which starts by emploing BCPD, is used to derive the full attitude measurements of the
target. BCPD enables the accurate determination of the relative position measurement,
r, and the second row of the CT I matrix, representing the orientation of the symmetry
axis of the target J in the inertial system. Subsequently, a feature is selected from those
whose positions are provided in the image by the neural network and associated with
its corresponding feature in the coarse model. Considering this information, the method
aims to construct a reference system for the chosen feature.
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By using the measurement of the position of the feature in the image, the reference system
expressed in the inertial system is constructed. Simultaneously, using the feature in the
coarse model, the reference system is expressed with respect to the target reference frame.
The correct CT I can then be derived from these two reference systems.

Here, a more detailed explanation of the process by which the reference systems for fea-
tures are derived is reported.
Initially, the orientation of the symmetry axis J of the target is considered as the ori-
entation of the Y-axis, YI

F , of the reference frame of the features in the inertial system.
Subsequently, the idea is to establish a direction perpendicular to YI

F , passing through the
feature coordinates, expressed in the inertial reference frame. This direction represents
the orientation of the X-axis, XI

F , of the feature reference system in the inertial system.
Finally, by performing a vector product between XI

F and YI
F , it is possible to determine

the orientation of the Z-axis, ZI
F .

The neural network provides the position of the feature in the image, which subsequently
needs to be converted into the inertial system. To achieve this, the coordinates in the
chaser reference frame, fC are computed using the equation 2.3. Then, by using the CCI

matrix computed from the chaser MRPs, the coordinates of the feature in the inertial
system, centered on the chaser, are determined (Eq.4.9). Finally, the inertial system is re-
centered on the target, with the measurement obtained from BCPD for relative position,
which is converted from the LVLH system to the inertial system using the CLI matrix
(Eq.4.10), obtaining the coordinates of the feature in the inertial reference frame centred
on the target.

fIC = CT
CIf

C (4.9)

fIT = fIC − CT
LIr (4.10)

To determine the direction of the line perpendicular to the axis of symmetry J that passes
through point fIT , the process starts by identifying the point pperp, which is the nearest
point on J to fIT . The x,y and z components of J are called a, b and c respectively, while
the three components of the point fIT are called fIT

x , fIT
y and fIT

z . To locate this point,
a scaling parameter, denoted as ts, is computed (Eq.4.11). This parameter is employed
to scale the direction vector J and obtain the coordinates of pperp = [ats, bts, cts].

ts = afIT
x + bfIT

y + cfIT
z (4.11)
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Figure 4.5: Representation of the orientation of the reference frame of the feature in the
inertial reference frame

Subsequently, the components l, m, and n of the vector from fIT to pperp are computed,
and by normalizing these components, it is possible to obtain the direction of this vector,
that corresponds to XI

F .
Finally, after determining the value of XI

F , ZI
F is calculated as follows:

ZI
F = XI

F × YI
F (4.12)

It is possible to derive the CFI , which defines how the feature reference system is oriented
with respect to the inertial reference system. The first row contains XI

F , the second row
contains YI

F , and the third row contains ZI
F .

Figure 4.5 illustrates the results obtained by following this process. In this representation,
a randomly selected feature is chosen, and the orientation of the axes of the reference
frame of the feature in the inertial system is depicted. These axes are presented from
two perspectives: one with point pperp as the origin and the other with the center of the
target as the origin.

Now, the feature of the coarse model that corresponds to the one chosen from the image
is taken into account. The features of the coarse model were reconstructed during the
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preliminary phase, along with the model itself, and they are consequently available on
board. The coordinates of the selected feature fT are expressed in the target reference
frame. In this case, the reference system of the feature is constructed with respect to the
target reference system. Consequently, the orientation of the axis of symmetry J |T will
be:

J |T = YT
F =

[
0 1 0

]
(4.13)

The procedure for calculating XT
F and ZT

F , which represent the orientation of the x and z
axes of the feature reference system in the target reference system respectively is the same
as previously explained. Regarding the computation of XT

F , it is derived as the orientation
of the direction perpendicular to YT

F passing through fT . Once XT
F is determined, ZT

F is
computed through the vector product of XT

F and YT
F . The first row of the matrix CFI

contains XT
F , the second row contains YT

F and the third row contains ZT
F .

With knowledge of these two matrices, it is possible to calculate the CT I matrix by
applying the rule of consecutive rotations. After obtaining CT I , the MRPs for the target
can be derived from it.

In conclusion, using this method the available measurements are:

zs = r za = σT (4.14)

No Features Available

In this scenario, where no features are available, the algorithm back falls into the situation
previously outlined in [20]. Consequently, it becomes impossible to determine MRPs of
the target, and it is only possible to derive the orientation of its axis of symmetry, resulting
in the following measurements:

zs = r za = J |I (4.15)

Algorithms

The pseudo-code of the two algorithms, MainLoop and OptimizationFunction, is shown
in this paragraph. This helps to get a better view of what the two algorithms do by
highlighting key steps.
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Algorithm 4.1 Main Loop

1: Initialize all the variables. Define the state vectors x̂s = [r̂; v̂], x̂a,2 = [σ̂; ω̂; k̂] and

x̂a,1 =

[
ϕ̂; δ̂;

Γ̂(0)

A

]
and their covariance matrices Ps, Pa,1 and Pa,2

2: for i = 1 to N do
3: Compute the number of visible features Nf , and store this value into a vector Nf

4: Compute the sigma points for x̂s and x̂a,2

5: if Nf = 0 then
6: if i = 1 or Nf (i− 1) ̸= 0 then
7: Compute x̂a,1 and Pa,1 from the knowledge of x̂a,2 and Pa,2

8: end if
9: Compute the sigma points for x̂a,1

10: end if
11: Run the Optimization Function to compute the measurements vector
12: Store the measurements and pre-update the state vectors and covariance matrices
13: if s ≃ 1 then
14: if Nf > 0 then
15: Update x̂s, x̂a,2, Ps and Pa,2

16: Define x̂a,1 and Pa,1 as NaN

17: else
18: Update x̂s, x̂a,1, Ps and Pa,1

19: x̂a,2 and Pa,2 are not updated
20: end if
21: else
22: All the variables are not updated
23: end if
24: Store state vectors and covariance matrices post update
25: if Nf > 0 then
26: Propagate x̂s, x̂a,2, Ps and Pa,2

27: Define x̂a,1 and Pa,1 as NaN

28: else
29: Propagate all the variables
30: end if
31: end for
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Algorithm 4.2 Optimization Function
1: Definition of the number of available features Nf

2: if Nf ≥ 4 then
3: Use EPnP algorithm to compute the vector of measurements zs,a = [r;σT ]

4: Compute the Mahalanobis Distance MD
5: if MD2 ≤ threshold then
6: The measurements provided by EPnP can be used
7: else
8: Define a warning variable, warning = 0

9: end if
10: else
11: Define a warning variable, warning = 0

12: end if
13: if warning = 0 then
14: Run BCPD to obtain the vector of measurements zs,a = [r;J |I ]
15: if Nf = 0 then
16: The vector of measurements is zs,a = [r;ϕ; δ]

17: else
18: Compute the direction cosine matrix CT I

19: The vector of measurements is zs,a = [r;σT ]

20: end if
21: end if

4.1.3. Filter Structure for Unknown Rigid Rotation Matrix

In cases where the rigid rotation matrix is unknown, the same procedure as outlined in [20]
is applied. The MRPs of this matrix are introduced into the state vector x̂a,1, resulting
in an augmented state:

x̂a,1 =


ϕ̂

δ̂

Γ̂(0)

A
σ̂IΓI

 (4.16)

The equations governing the dynamics of these variables are detailed in Chapter 2, specif-
ically in Equation 2.45.
Within the algorithm, the MRPs of the rigid rotation matrix are treated as the parameters
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responsible for determining the orientation of the J axis. These parameters are computed
based on the latest available information concerning the attitude of the target, but only
if no features are detected in the image. Once computed, they are considered constant
throughout periods of feature absence, because of their dynamics.

4.2. Numerical Results

In this section, a numerical analysis is performed to test the new formulation of CoMBiNa.
Initially, the problem is outlined in a general context, providing a concise description of the
orbital scenario and presenting the ground truth of the different variables. In a subsequent
subsection, the outcomes achieved using the new algorithm formulation, assuming prior
knowledge of the rigid rotation matrix, are presented. Additionally, the results obtained
from a Monte Carlo analysis, conducted to assess the robustness of the algorithm, are
described. Lastly, the section presents the results obtained when the rigid rotation matrix
is unknown.

4.2.1. Problem Description & Ground Truth

To begin, it is essential to provide the specifications of the stereo camera used for capturing
measurements in this work. The focal length f , pixel density d, and baseline b of the
camera are detailed in Table 4.1.

Focal length f Pixel density d Baseline b

34 mm 48 pixels per unit length 1 m

Table 4.1: Stereo camera technical specifications

Nominal Relative Orbit

Regarding orbit, the chaser is considered to be on a circular orbit in LEO with a radius
of 800 km. The mean motion in this case is n ≈ 0.001 rad/s, whose inverse is used to
provide the scaled time unit in all simulations, that is TU = 963.65 s. On the other
hand, distances are scaled with the radius of the keep out sphere of the RSO, that is the
maximum dimension of the RSO (LU = 12 m). Considering this parameters, the initial
conditions of the nominal relative orbit are:

r = [2; 0; 0.2]LU; v = [0;−4; 0]LU/TU (4.17)
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Figure 4.6: Representation of the nominal inclined football orbit in the LVLH frame.

This particular initial condition produces an inclined football orbit in the CW dynamics
[70], and an approximate one in NERM. All simulations reported have been obtained by
propagating the variables for an observation time of 10 [TU] and a time step of 0.01 [TU],
obtaining 1000 time instants. The Fig. 4.6 represents the relative orbit, and the Fig. 4.7
shows the evolution of the relative position and velocity. The initial covariance matrix of
the state vector x̂s is:

Pxs = 0.1 · I6LU (4.18)

The measurement noise Rs is used as a tuning parameter of the filter and it is defined as:

Rs = 0.01 · I3 (4.19)

The mean motion n is also used to compute the direction cosine matrix CLI , expressing
the orientation of the LVLH frame with respet to the inertial frame, as follows:

CLI =

 cosnt sinnt 0

− sinnt cosnt 0

0 0 1

 (4.20)
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(a) Relative position (b) Relative velocity

Figure 4.7: Component-wise evolution of the relative position and velocity in the LVLH
frame

Chaser Attitude

The attitude of the chaser is initialize as follows:

σC = [0;−0.4437; 0]; ωC = [0; 0; 1]rad/TU (4.21)

the chaser vehicle is assumed to tumble according to Eq. 2.17 with a fully symmetric
inertia matrix. This particular choice of attitude parametrization allows the RSO to be
kept inside the FOV of the camera without having to maneuver the chaser spacecraft,
while the angular velocity remains constant [20].

Target Attitude

The attitude of the target is initialized with the following nominal values, which are used
in the simulated environment to produce the images used by the algorithm:

σT = [−0.083; 0.220;−0.500]; ωT = [−0.791;−1.1413;−1.631][rad/TU] (4.22)

Its inertial parameters, which remain constant in time, are defined as follows:

kT = [0.03;−0.03] (4.23)
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(a) Modified Rodriguez Parameters of the target (b) Angular velocity of the target

Figure 4.8: Component-wise evolution of the chaser’s attitude: discontinuities in the MRP
happen at switching location between nominal and shadow set

Fig. 4.8 shows the time evolution of Modified Rodriguez Parameters and angular velocity.

The initial covariance matrix and the measurements noise of the state vector x̂a,2 are:

Pxa,2 = 0.01 · I8 Ra,2 = 0.01 · I3 (4.24)

In the reformulation of CoMBiNa proposed in [20], the variables of interest change, and
it becomes necessary to specify their initial conditions. To maintain consistency with the
initial conditions for the target’s orientation as outlined previously, the initial values for
the new state are derived from the values of the original state. Consequently, the initial
conditions are:

ϕ = −0.986[rad] δ = −0.762[rad]
Γ(0)

A
= 2.2725[rad/TU] (4.25)

The rigid rotation matrix can be expressed in terms of Modified Rodriguez parameters
and by exploiting Eq. 2.8, it is possible to get:

σIΓI = [0.0224; 0;−0.1960] (4.26)

The evolution of these variables is represented in Fig. 4.9.

The Modified Rodrigues Parameters of the rigid rotation matrix remain unchanging over

time, as they represent a rotation between two fixed inertial reference frames.
Γ(0)

A
remains
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(a) Target’s symmetry axis spherical coordinates in

IΓ frame and
Γ(0)

A
ratio

(b) MRPs for rotation from I to IΓ

Figure 4.9: Evolution of the new attitude variables of the target

constant due to the absence of external torque. The last quantities computed are the
equatorial component of angular velocity e and the square of the ratio between the axial
component of angular velocity and the moment of inertia A. As expected, these values
remain constant over time and are represented in Fig. 4.10.

The initial covariance matrix and the measurements noise of the state vector x̂a,1 are:

Pxa,1 = NaN Ra,1 = 0.01 · I2 (4.27)

4.2.2. Known Rigid Rotation

In this section, the new algorithm is tested under the assumption that the rigid rotation
matrix is known. The algorithm is tested with different numbers of features on the target,
starting with 1 and going up to 14. In the analysis different percentage of failure detection
are used. Out of the 14 scenarios, three specific cases are reported, which correspond
to the use of 1, 6, and 14 features. The scenario with 1 features is chosen because it
represents the worst case considering the number of features. The case with 6 features
is chosen because there are often 4 features available to use EPnP but, due to its poor
performance with this number of points, its measurements are often rejected and BCPD is
used. Lastly, the 14-feature case is selected because it relies solely on EPnP to determine
measurements.
5 Since the problems highlighted in [45] and [20] are in the estimation of the attitude of a
symmetrical target, while the position and relative velocity are estimated correctly, only
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Figure 4.10: Evolution of attitude and inertia related quantities of the target

the convergence plots for attitude are shown below. The results obtained with a failure
detection probability of 20% are given in Appendix A.

Results with 1 Feature

The initial case examined has a failure detection percentage of 0. With only one feature
on the target, there are 423 time steps during which it remains unobservable in the image.
The convergence plots presented in Fig. 4.11 indicate that, during these intervals, when
the feature is not visible, the 3σ worsens for the MRPs σ and for the angular velocity ω,
although for the inertial parameters k it remains constant. Despite these small worsenings
at specific time steps, it is possible to achieve convergence.
In the context of a failure detection rate of 40%, there are 638 time steps where no features
are visible in the image. The behavior of the convergence plots is the same as in the case
described above (Fig. 4.12). In such scenarios, it is also very important to analyze the
convergence plots for the state xa,1, as it often represents the sole source of information
available for estimating, partially, the attitude of the target. It can be inferred that during
the time intervals in which this state is estimated, the estimate tends to converge.

Results with 6 Features

In the scenario where the failure detection percentage is 0, it’s ensured that at least one
feature is visible in the images for each time step. As previously highlighted, when EPnP
is used with limited features, there is a risk of obtaining imprecise measurements. Conse-
quently, such measurements are discarded, and the transition to using those provided by
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(a) MRPs of the target (b) angular velocity of the target

(c) Inertia parameters of the target (d) Target’s symmetry axis spherical coordinates in

IΓ frame and
Γ(0)

A
ratio

Figure 4.11: Convergence of the rotational filter (1 features and failure detection percent-
age = 0%)
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(a) MRPs of the target (b) angular velocity of the target

(c) Inertia parameters of the target (d) Target’s symmetry axis spherical coordinates in

IΓ frame and
Γ(0)

A
ratio

Figure 4.12: Convergence of the rotational filter (1 features and failure detection percent-
age = 40%)
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(a) MRPs of the target (b) angular velocity of the target

(c) Inertia parameters of the target

Figure 4.13: Convergence of the rotational filter (6 features and failure detection percent-
age = 0%)

BCPD takes place. This transition occurs 219 times. The convergence plots are depicted
in Fig. 4.13.
Upon increasing the failure detection percentage to 40%, there are 59 time steps during
which no features are available. At the same time, the occurrences of transitioning from
EPnP to BCPD decrease from 219 to 29. This happens because in many situations where
four features were present, having a failure in a detection leads to a reduction in the
number of times that EPnP can be used. In this particular case, the convergence plots
are displayed in Fig. 4.14.
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(a) MRPs of the target (b) angular velocity of the target

(c) Inertia parameters of the target (d) Target’s symmetry axis spherical coordinates in

IΓ frame and
Γ(0)

A
ratio

Figure 4.14: Convergence of the rotational filter (6 features and failure detection percent-
age = 40%)



4| CoMBiNa: New Formulation 57

Results with 14 Features

The presentation of the results starts by assuming a failure detection percentage of 0. In
this scenario, as previously explained, features are always present in the image, and EPnP
is employed throughout. As a result, the computation of the spherical coordinates for the

symmetry axis and
Γ(0)

A
is omitted throughout the entire operational phase. Consequently,

the graphical representation of these coordinates is not included. The convergence plots
for the attitude and the inertia parameters of the target are displayed in Fig. 4.15. The
next case under consideration is the one characterized by the worst failure detection rate,
specifically 40%. In this particular scenario, there is one time step where no features are
detected in the image, while there are 281 cases where EPnP measurements are inaccurate
leading to the use of measurements provided by BCPD. In the only time step where no
feature is present, the error of the xa,1 state with respect to its ground truth is less than
the value of the 3σ. The convergence plots are shown in Fig. 4.16.
By looking at the plots it is possible to understand that the convergence is achieved for
all the variables.

4.2.3. Monte Carlo Analysis

In this section, the results of the Monte Carlo analysis are presented, which is conducted
to assess the robustness of the algorithm. This analysis involves the consideration of
different initial conditions for the state x̂a,2, as well as the variation of both the number
of features (ranging from 1 to 14) and the value of the failure detection percentage. A
total of 1000 samples are generated based on the initial state and its initial covariance.
Subsequently, a selection of the 100 samples farthest from the mean value is made for
their use in the Monte Carlo analysis. Within this analysis, statistical simulations are
employed to replicate the measurements provided by BCPD. This approach is adopted to
prevent the use of BCPD due to timing constraints.

Statistical Simulation of BCPD

The statistical simulation of BCPD measurements was conducted by employing 10 samples
and taking into account the error between the measurements provided by the algorithm
and the ground truth. Each measurements of the samples were divided into two groups:
the first group encompassed the initial 500 measurements, while the second comprised the
last 500. This division was implemented because it is expected that initial measurements
provided by BCPD would exhibit higher inaccuracy compared to the later ones. This
discrepancy derives from the initial inaccuracies in estimating the target’s attitude and
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(a) MRPs of the target (b) angular velocity of the target

(c) Inertia parameters of the target

Figure 4.15: Convergence of the rotational filter (14 features and failure detection per-
centage = 0%)
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(a) MRPs of the target (b) angular velocity of the target

(c) Inertia parameters of the target

Figure 4.16: Convergence of the rotational filter (14 features and failure detection per-
centage = 40%)
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relative position.
The simulation of relative position measurement starts by considering all initial 500 errors
from each sample. Subsequently, the covariance is calculated based on these errors. The
same procedure is followed for the last 500 errors of each sample. To simulate BCPD
measurements of the relative position, the Matlab command mvnrnd is employed, where
the mean value is zero and the previously calculated covariance is used. This random
value is then added to the ground truth to generate the measurements. It is important
to note that the covariance obtained from the initial 500 measurements of each sample
is used for the first 500 simulated measurements, while the other calculated covariance is
applied to the last 500 measurements.
Regarding the simulation of the orientation of the J axis, the covariance and the average
of the error angle between J measured by BCPD and that of ground truth are computed.
Again, a distinction is made between the first and second 500 time steps. For the simu-
lation of the symmetry axis orientation measurement, an error angle is sampled for each
time step using a Gaussian mixture distribution. Subsequently, a spherical cap is defined,
centered around the ground truth of the orientation of J and identified by the sampled
error angle. Within this cap, any point on the circumference can be chosen by randomly
sampling an angle between 0 and 2π. This chosen point dictates the direction of the
measured J .

Results of the Analysis

The objective is to examine whether altering the initial conditions of x̂a,2 in a neighbour-
hood of the nominal value leads to convergence with the Ground truth. The convergence
of a sample is assessed according to two different conditions. The first condition requires
that the error between the estimated variables and the ground truth in the last 100 time
steps must always be less than the value of the 3σ, while the second requires that the final
error be at least one order of magnitude smaller than the initial error. The first condi-
tion is the most stringent one, establishing the failure condition of the method, while the
second ensures error reduction, hence enhancing precision in the estimations. The first
condition is always met except for the scenario where only one feature is available and a
40% detection failure rate is considered. In this case, the criterion is not satisfied as one
time step in the last 100 of the simulation has an error larger than 3σ. Fig. 4.17 shows a
graph that relates the number of converging samples with the number of features. This
graph reveals that the convergence rate stabilises at 97%-98% for all failure detection
percentage, and that these values are reached for all failure rates with at least 3 features.
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Figure 4.17: Number of convergences varying the number of features

4.2.4. Unknown Rigid Rotation

This section presents the analysis performed considering the rigid rotation matrix as an
unknown, and adding its MRPs in x̂a,1. As before, only the results considering 1, 6 and
14 features are shown.
The overall behavior of the plots aligns closely with that observed in the scenario involv-
ing a known rigid rotation matrix. Consequently, the considerations outlined earlier can
be extended to these cases as well.
What distinguishes the situation involving an unknown rotation matrix is the representa-
tion of its MRPs. As previously indicated, MRPs are exclusively defined in the absence
of features in the image, and during these periods, their values remain constant due to
their dynamics (Eq. 2.45). From a graphical point of view, a singular point is plotted
for each interval in which these MRPs are computed, enhancing the visualization of their
convergence trend. Due to the construction of this rigid rotation matrix, σ2Γ consistently
remains at zero. Consequently, the parameter plot associated with it is disregarded as it
would yield no meaningful information, consistently showing an error of zero.The results
obtained with a failure detection probability of 20% are given in Appendix B.
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Results with 1 Feature

In the scenario where only one feature is present on the target, the utilization of EPnP
is evidently not feasible. Considering the failure detection probability of 0% (Fig. 4.18),
there are 423 time steps in which no features are available, allowing for the accurate
reconstruction of only the orientation of the symmetry axis of the target. This count rises
to 638 when the failure detection probability increases up to 40% (Fig. 4.19).

Results with 6 Features

Alternatively, in a situation with a 0% (Fig. 4.20) failure probability, features are consis-
tently present in the images, although their limited availability results in frequent rejection
of EPnP measurements, leading to a switch to BCPD. This transition occurs 219 times.
Introducing a failure probability of 40% (Fig. 4.21) yields 59 instances where no features
are detected in the image. Regarding EPnP, its use diminishes due to non-feature detec-
tion, resulting in a reduced number of transitions to BCPD, specifically 29 times. This
happens because in many situations where four features were present, having a failure in
a detection leads to a reduction in the number of times that EPnP can be used.

Results with 14 Features

This test case marks the threshold where, under a 0% (Fig. 4.22) probability of failure
detection, features are consistently present, and only EPnP is employed for measurements.
Increasing the failure detection probability to 40% (Fig. 4.23) introduces a single time
instant without available features and 281 steps in which the switch between EPnP and
BCPD takes place. During the singular time step where no features are available, the
error between the estimated symmetry axis orientation and the corresponding ground
truth remains below 3σ. This also holds true when evaluating the MRPs of the rigid
rotation matrix.
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(a) MRPs of the target (b) angular velocity of the target

(c) Inertia parameters of the target (d) Target’s symmetry axis spherical coordinates in

IΓ frame and
Γ(0)

A
ratio

(e) MRPs of the rigid rotation matrix

Figure 4.18: Convergence of the rotational filter with unknown rigid rotation matrix(1
features and failure detection percentage = 0%)
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(a) MRPs of the target (b) Angular velocity of the target

(c) Inertia parameters of the target (d) Target’s symmetry axis spherical coordinates in

IΓ frame and
Γ(0)

A
ratio

(e) MRPs of the rigid rotation matrix

Figure 4.19: Convergence of the rotational filter with unknown rigid rotation matrix (1
features and failure detection percentage = 40%)
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(a) MRPs of the target (b) angular velocity of the target

(c) Inertia parameters of the target

Figure 4.20: Convergence of the rotational filter with unknown rigid rotation matrix (6
features and failure detection percentage = 0%)
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(a) MRPs of the target (b) angular velocity of the target

(c) Inertia parameters of the target (d) Target’s symmetry axis spherical coordinates in

IΓ frame and
Γ(0)

A
ratio

(e) MRPs of the rigid rotation matrix

Figure 4.21: Convergence of the rotational filter with unknown rigid rotation matrix (6
features and failure detection percentage = 40%)
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(a) MRPs of the target (b) angular velocity of the target

(c) Inertia parameters of the target

Figure 4.22: Convergence of the rotational filter with unknown rigid rotation matrix (14
features and failure detection percentage = 0%)
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(a) MRPs of the target (b) angular velocity of the target

(c) Inertia parameters of the target

Figure 4.23: Convergence of the rotational filter with unknown rigid rotation matrix (14
features and failure detection percentage = 40%)
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The objective of this chapter is to illustrate that through neural network training, it is
possible to identify specific features, such as a NASA or ESA sticker, on a symmetrical
target. These features correspond to the same ones that were previously considered as
known and integrated into the algorithm discussed in the preceding chapter. The goal,
therefore, is to generate output consisting of the coordinates of the centers of bounding
boxes associated with these features. These coordinates can subsequently be used in the
algorithm in the previous sections. Initially, the process of creating the image data-set,
used for training and testing the neural network, is described in detail. Subsequently, the
training process is described and its results are presented. Finally, an overview of the
results obtained from the image test set is provided.

5.1. Image Generation Process

When training a neural network, the most effective approach to enhance its ability to
confidently detect objects involves providing a vast data-set of images. Thus during the
training process, the network will learn to detect objects under many different conditions.
A CAD model of a satellite and Blender1, which is a 3D computer graphics software
toolset, are used to generate a sufficiently large data-set of images.
In this work, the satellite model shown in Figure 5.1 is used, which is different from the
symmetrical RSO used in the Chapter 4. The reason why the neural network was trained
on a different model with respect to the real one, is to simulate the case of an unknown
target. Since the focus of this work is relative navigation around unknown targets, no
prior knowledge of the target audience is available. Consequently, it is not be possible to
provide a model of the unknown target to the network for the training process.

Once the CAD model was loaded into Blender, features were manually incorporated onto
its external surface. The features were chosen to represent reality as much as possible.
It was decided to add flags of different states, the symbols of some space agencies and
LEDs. The first two categories of objects are detailed in table 5.1, and were uploaded

1Blender official site: https://www.blender.org

https://www.blender.org
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Figure 5.1: Model of the satellite

to Blender as images. As for the LEDs, on the other hand, they were modelled directly
within the Blender environment, with two distinct colors, red and green.

Features Figure

Italy flag

USA flag

Germany flag

NASA symbol

ESA symbol

Table 5.1: Features
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Figure 5.2: Model 5

Five different models were created to establish different conditions for the objects. On
each model, the arrangement, quantity, and size of the objects are different. The five
models created, with their respective features, are shown below:

• Model 1: 1 green led, 1 red led, 1 USA flag, 1 NASA symbol and 1 ESA symbol

• Model 2: 1 green led, 1 Germany flag, 1 USA flag, 1 Italy flag and 1 ESA symbol

• Model 3: 1 Germany flag, 1 Italy flag, 1 USA flag, 2 NASA symbol and 1 ESA
symbol

• Model 4: 1 green led, 1 red led, 1 Germany flag, 1 NASA symbol and 1 ESA
symbol

• Model 5: 1 green led, 1 red led, 1 Germany flag, 1 USA flag, 1 Italy flag, 1 NASA
symbol and 1 ESA symbol

Figure 5.2 shows one of these models.

JINS, introduced in [24], is used to obtain the images. The tool is able to automate
the rendering of images, and is composed of three different steps. After a pre-processing
phase, which is the first step, in which the spacecraft model needs to be adjusted in order
to be compliant with the requisites of the successive piece of software, the code generates
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Figure 5.3: File .txt used by YOLOv8

the different images with the respective masks of the objects in the image. These masks
delineate the regions within the image where the objects are located. Finally, using
the images and the masks, a second script generates an annotation .json file containing
information about the image and the objects in the image.
JINS employs a monocular camera for image generation. Conversely, CoMBiNa adopts
a stereo camera. Nevertheless, as previously stated, the objective of this chapter is to
demonstrate the possibility of detecting specific objects on the satellite’s outer surface.
Hence, it is possible to use any type of camera for this purpose.
Now, using another code, the .json file is converted into the format required by YOLOv8,
which is the network that is used in this work. This format is a .txt file that has a line
for each object contained in the image, in which the class number and the coordinates of
the bounding box enclosing the object are given. For YOLOv8, the coordinates of the
bounding box are its centre, width and height. These coordinates must also be normalised
with respect to the size of the image. An example of a .txt file is shown in Figure 5.3.

After generating 1200 images, 240 for each of the models presented above, and 1200
.txt files containing the bounding boxes, they are uploaded in Roboflow2. It is a toolset
designed for computer vision and image processing tasks. Roboflow was used because it
allows, in a very simple way, to divide the entire data-set into train, validation and test
set, and to do data augmentation. Another advantage is that, once the data-set has been
generated, Roboflow outputs lines of code that can be used to download the data-set,
directly from the site itself, during the training process.
Out of the 1200 uploaded images, 51 are discarded because they are “not annoted”. The
remaining 1149 images are divided into training, validation and test set as follows:

• Training set: 806 images (70%)

• Validation set: 227 images (20%)

• Test set: 116 images (10%)
2Roboflow official site: https://roboflow.com/

https://roboflow.com/
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It is useful to analyse the data-set in more detail to see whether the object classes are well
represented. Among the 1,149 images, there are a total of 3,178 annotations distributed
across seven distinct classes. Table 5.2 shows the numbers of annotations present for each
class. The data reveals a slight under representation of the FlagITA and LEDRed classes.

Class Number of annotations

FlagGER 492
FlagITA 323
FlagUSA 443

LEDGreen 486
LEDRed 315

SymbolESA 606
SymbolNASA 513

Table 5.2: Reference frames

The final procedure that can be executed in Roboflow, before generating the entire data-
set, involves data augmentation. This method is employed to expand the quantity of
images in the training set by implementing various transformations on the initially avail-
able images. In this work, both horizontal and vertical flips were applied to the entire
image as well as to the bounding boxes.

5.2. Training Process

One-stage detection methods are preferred over region proposal methods due to their
superior computational efficiency, a critical requirement for enabling real-time operations
in this specific application. In this study, the YOLO family of one-stage methods was
selected. As discussed in Chapter 3 different versions of YOLO exist, and Figure 5.4
provides a comparison of some of them. The figure on the left illustrates how the mAP
changes in relation to the number of parameters in the YOLO version, while the figure
on the right shows the mAP variations with respect to the speed of the method. It’s
evident that the most recent version, YOLOv8, stands out as the optimal choice, and is
consequently adopted for this work.
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Figure 5.4: Comparison between different YOLO’s architectures (courtesy of [37])

As previously mentioned, Ultralitics introduced five scaled versions of YOLOv8. They
are shown in Table 5.3, highlighting their variations in size and performance metrics
achieved by evaluating these models on the COCO data-set. For the purposes of this
work, the pre-trained model employed is YOLOv8s, as it represents a good trade-off
between mAP and execution speed. YOLOv8s demonstrates a significant enhancement
in mAP compared to the smaller model, with only a moderate increase in execution time.
Conversely, when considering the larger architectures, the improvements in mAP become
progressively smaller, while the corresponding increases in execution time grow in a more
significant way.

Model
size

(pixels)
mAPval

50−95

Speed
A100

TensorRT
(ms)

params
(M)

FLOPs
(B)

YOLOv8n 640 37.3 0.99 3.2 8.7
YOLOv8s 640 44.9 1.20 11.2 28.6
YOLOv8m 640 50.2 1.83 25.9 78.9
YOLOv8l 640 52.9 2.39 43.7 165.2
YOLOv8x 640 53.9 3.53 11.2 257.8

Table 5.3: Comparison between the different available model of YOLOv8

The training process was carried out using a number of epochs equal to 150. Initially, 100
epochs were employed, but the trends observed in the loss functions indicated that further
reductions in losses were possible, potentially leading to improved network performance.
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Consequently, the number of training epochs was extended to 150, and the behavior of
validation losses begins to stabilize.
During training, YOLOv8 uses a generalisation technique for neural networks called early
stopping, which aims to prevent overfitting. Among the parameters characterising early
stopping, the most important is the patience. This parameter determines after how many
epochs the training process must be stopped if the losses do not decrease. The standard
value of the patience used by YOLOv8, when not explicitly specified in the input, is
typically set at 50. However, for a more robust prevention against overfitting, a value of
20 is chosen.

5.2.1. Training Results

The training of YOLOv8 provides as output some charts that are useful to better un-
derstand the training process and the expected accuracy of the model. The first chart
analysed shows some key metrics tracked by YOLOv8 (Fig. 5.5). Specifically, the focus
is on the Box Loss and Class Loss for both the training and validation data-sets. Fig. 5.5
shows that the behaviour of this loss is correct and that the model is converging. The
trends observed in the Box and Class Loss metrics suggest that these values decrease as
the training epochs progress.

The second chart analysed is the Confusion Matrix, which shows how the model handles
different classes. From this matrix, it is possible to see how often an object of a certain
class is correctly detected, how often it is incorrectly detected as an object belonging
to another class and how often it is confused with the background and therefore not
detected. Fig. 5.6 shows the confusion matrix for the training process at hand. The
confusion matrix is diagonal, which means that the classes are detected correctly, and
they are not confused with other classes. There is only one term not on the diagonal
indicating that in 2% of the cases the flag of Italy is confused with the one of the USA.
This is an example of wrong feature classification. It should not represent a problem since
the confidence level of this detection is quite low, and by increasing the threshold value
of the confidence level it is discarded. However, this type of failure represents a possible
direction for future research.
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(a) (b)

(c) (d)

Figure 5.5: Losses and metrics of the training process
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Figure 5.6: Confusion matrix

Another chart that provides useful information for understanding the performance of the
network is the precision-recall curve, shown in Fig. 5.7. This curve shows the trade-off
between precision and recall for an IoU threshold of 50. In Fig 5.7, the area under the
curve has a very large value, representing both high precision and recall. High precision
relates to a low false positive rate, and high recall relates to a low false negative rate.
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Figure 5.7: Precision-Recall curve

Finally, the trained model is subjected to validation using a set of images not previously
used during YOLOv8’s training. Through validation, the AP values for each class and the
mAP are computed. The evaluation is carried out at different IoU thresholds. Initially,
AP50 and mAP50 are computed, where IoU threshold is set to 50. Subsequently, this
analysis is extended to AP50−95 and mAP50−95. In this case, 10 different APs and mAPs
are computed, each using a different IoU threshold (ranging from 50% to 95% with a 5%
increment). Finally, the values of AP50−95 and mAP50−95 are determined as the averages
of these 10 calculated values. The AP computed are presented in Tab. 5.4 and the mAP
are reported in 5.1.

Class AP50 AP50−95

FlagGER 0.977 0.823
FlagITA 0.905 0.737
FlagUSA 0.959 0.779

LEDGreen 0.959 0.597
LEDRed 0.914 0.527

SymbolESA 0.986 0.778
SymbolNASA 0.968 0.792

Table 5.4: Average Precisions
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mAP50 = 0.953 mAP50−95 = 0.719 (5.1)

5.3. Testing Results

The trained network is evaluated using a test set of images, allowing for an assessment of
its performance on previously unseen images. In this initial analysis, the satellite model
employed to create the test set is equal to the one on which the network was trained.
This section assesses several metrics, including the IoU, the pixel-wise error between the
center of the predicted bounding box and the ground truth, and the percentage of objects
that exist in the ground truth but were not identified by the network.
Fig. 5.8 shows two representations of how YOLOv8 generates output images. In these
images, a bounding box is delineated around the detected object, the corresponding label
is assigned to it, and the detection’s confidence level is indicated. The confidence level is
a measure of the network’s confidence that the assigned label is accurate for the detected
object. Consequently, the higher the value of the confidence level, the more reliable
the detection. The confidence level chosen in this work is 0.4. This means that all the
detection that have a confidence level lower than 0.4 are discarded.

(a) (b)

Figure 5.8: Output images generated by YOLOv8

The first metric that is analysed is the IoU. For every object detected within the image,
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this metric is computed using Eq. 3.1. Subsequently, the average value of these IoU
indices is determined, resulting in the following:

Mean IoU = 85.8203% (5.2)

The obtained value indicates that, on average, the predicted bounding boxes of the net-
work overlap with those of the ground truth to a great extent.

The second metric under examination is the pixel-wise error between the predicted bound-
ing boxes and the ground truth. This error is analyzed because the neural network pro-
vides as input to CoMBiNa the position of the features in the image, specifically in terms
of the center of the bounding box. Hence, minimizing the error between the predicted
and true centers is crucial. For each predicted bounding box, errors along both the x-axis
of the image (errx) and the y-axis (erry) are computed. Subsequently, the mean error
and standard deviation concerning both the x and y axes of the image are determined,
leading to the following results:

Mean Value (pixels) Standard Deviation (pixels)

errx 0.7342 1.0906
erry 0.4758 0.9052

Table 5.5: Mean errors and standard deviations

The mean errors for both the x and y axes of the image are less than one pixel. This
indicates that the network accurately predicts the center of the bounding box within the
image and, consequently, CoMBiNa receives highly precise feature information, thereby
enhancing its ability to accurately determine the target’s orientation.
Graphically, Fig. 5.9 displays histograms illustrating the distribution of these errors.

Finally, an assessment regarding the failure to detect objects is conducted, which accounts
for cases where an object exists within the image, but the network fails to identify it. This
analysis is carried out individually for each object class, and the non-detection percentage
is calculated as the ratio between the number of times an object of a class is not detected
and the total number of times the object of that class appears in all images. The outcomes
are presented in Tab. 5.6. The evaluation of non-detection percentages by the network is
used to validate the correctness of the introduced detection failure probabilities outlined
in Chapter 4 (0%, 20%, 40%). The failure percentage presented in the Tab. 5.6 for
different object classes are compliant with the values employed during the assessments in
Chapter 4.
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(a) x-axis error (b) y-axis error

Figure 5.9: Error distribution in bounding box centre detection

Class Failure detection percentage

FlagGER 9.7561%
FlagITA 3.3333%
FlagUSA 4.6512%

LEDGreen 36.3636%
LEDRed 19.3548%

SymbolESA 6.7797%
SymbolNASA 8.4746%

Table 5.6: Failure detection percentage for each class

Another type of issue is the identification of an object that doesn’t exist in the image.
To determine its occurrence, the total number of objects that are detected by YOLOv8
is calculated and this value is added to the total number of miss detections. The result
obtained is then compared to the total number of objects in the test set. If the two
numbers are equal, this failure condition does not occur, otherwise it does. In this scenario,
the quantity of labels predicted by the network exceeds the number of labels present in the
test set. As a result, YOLOv8 produces 4 additional detections, implying that 4 objects
are being identified even though they don’t exist in reality.
To address this problem, the proposed solution is to increase the confidence threshold of
the network for object detection. This is because when the network confuses two objects,
the confidence value is likely to be low, and increasing the threshold can help reduce the
identification of non-existing objects. This condition is very rare, which is why it was not
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dealt with in Chapter 4. Nonetheless, it represents a starting point for possible future
study.
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This chapter contains a brief summary of what is contained in this work, also presenting
some ideas for possible future work.

6.1. Conclusions

CoMBiNa, presented in [45], consists of a new technique to tackle the complicated problem
of relative navigation around unknown and uncooperative targets. CoMBiNa is designed
to handle any types of RSOs, both asymmetrical and symmetrical. Regarding asymmetric
targets CoMBiNa works well and provides very good results, while considering symmetric
targets the method fails. The reason is that symmetric RSO have unobservable rotations
around the symmetry axis, which cause the BCPD algorithm to converge incorrectly. To
address this problem, a reformulation of CoMBiNa is presented in [20], where the variables
within the attitude state vector are changed, approximating the RSO to a gyroscopic
structure. In this way, the orientation of the symmetry axis of the target in the inertial
system can be derived. This can be done since in the matrix describing the orientation
of the target in the inertial system derived with BCPD, the second row, which describes
the orientation of the axis of symmetry, remains accurate.

This study aims to achieve a complete determination of the attitude, even in the case of
symmetrical targets. To accomplish this, an integration of a neural network into CoMBiNa
is implemented, enabling the detection of features positioned on the surface of the target
in images obtained from a stereo camera. This process effectively breaks the symmetry
of the target, making possible the reconstruction of its complete attitude.
Chapter 4 outlines the modifications made to the CoMBiNa algorithm to incorporate the
information derived from the neural network. It assumes the availability and functionality
of the neural network, and consequently the measurements of the position of the features
are simulated. The effectiveness of the proposed method is assessed towards the end of
the chapter.
In Chapter 5, it is demonstrated that a neural network can accurately detect the position
of features, such as the NASA or ESA symbol, on the outer surface of the target. YOLOv8
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is trained and tested on a different target model from the one used in Chapter 4, resulting
in highly satisfactory outcomes.

6.2. Future Works

When addressing the navigation aspect, it becomes essential to incorporate the neural net-
work into CoMBiNa. This would lead to using, no longer the simulated measures, but the
real ones provided by YOLOv8 and to diversify the failure detection probabilities, which
instead in this work are assumed equal for the different feature classes. Subsequently, this
adjustment allows for a realistic assessment of the new formulation of CoMBiNa.

This work also exhibits certain limitations related to the training and testing of YOLOv8.
The training process was conducted using a single model, which was then utilized for
the testing phase. However, given the consideration of unknown RSOs, it would be
advantageous to evaluate the performance of the network on images containing a target
different from the one used during training. In the training phase, the incorporation of
different satellite models aims to introduce as much variability as possible into the image
conditions.
Another problem, which arises in the feature detection part, concerns the identification of
features when two of them belong to the same classes, e.g., in case there are two NASA
symbols. In this work this case is dealt with in a post-processing part of the results,
however, it is necessary to find a way to identify them a priori in order to then correctly
associate them with those stored on the coarse model. Two other types of failure, which are
not discussed in this paper since they occur rarely, are false positives (i.e., identification
of features in wrong locations), and the possibility of wrong feature classification (i.e.,
wrong assignment of ID to an identified feature). However, understanding the potential
influence of these two failure conditions on performances would be an interesting future
research direction.
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This appendix shows the results obtained using a detection failure rate of 20%, varying
the number of features, in the case of known rigid rotation matrix.

Number of time steps
without features

Number of switch from EPnP
to BCPD

1 feature 516 0
6 features 6 96
14 features 0 193

Table A.1: Number of time steps without features and with the switch from EPnP to
BCPD, by varying the number of features
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(a) MRPs of the target (b) angular velocity of the target

(c) Inertia parameters of the target (d) Target’s symmetry axis spherical coordinates in

IΓ frame and
Γ(0)

A
ratio

Figure A.1: Convergence of the rotational filter with unknown rigid rotation matrix (1
features and failure detection percentage = 20%)
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(a) MRPs of the target (b) angular velocity of the target

(c) Inertia parameters of the target (d) Target’s symmetry axis spherical coordinates in

IΓ frame and
Γ(0)

A
ratio

Figure A.2: Convergence of the rotational filter with unknown rigid rotation matrix (6
features and failure detection percentage = 20%)
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(a) MRPs of the target (b) angular velocity of the target

(c) Inertia parameters of the target

Figure A.3: Convergence of the rotational filter with unknown rigid rotation matrix (14
features and failure detection percentage = 20%)
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This appendix shows the results obtained using a detection failure rate of 20%, varying
the number of features, in the case of unknown rigid rotation matrix.

Number of time steps
without features

Number of switch from EPnP
to BCPD

1 feature 516 0
6 features 6 96
14 features 0 193

Table B.1: Number of time steps without features and with the switch from EPnP to
BCPD, by varying the number of features
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(a) MRPs of the target (b) angular velocity of the target

(c) Inertia parameters of the target (d) Target’s symmetry axis spherical coordinates in

IΓ frame and
Γ(0)

A
ratio

(e) MRPs of the rigid rotation matrix

Figure B.1: Convergence of the rotational filter with unknown rigid rotation matrix (1
features and failure detection percentage = 20%)
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(a) MRPs of the target (b) angular velocity of the target

(c) Inertia parameters of the target (d) Target’s symmetry axis spherical coordinates in

IΓ frame and
Γ(0)

A
ratio

(e) MRPs of the rigid rotation matrix

Figure B.2: Convergence of the rotational filter with unknown rigid rotation matrix (6
features and failure detection percentage = 20%)
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(a) MRPs of the target (b) angular velocity of the target

(c) Inertia parameters of the target

Figure B.3: Convergence of the rotational filter with unknown rigid rotation matrix (14
features and failure detection percentage = 20%)
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