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Abstract

During the �ight of an aircraft, the formation of ice on the surfaces represents one of the

main concerns; consequently, its prevention and management play a crucial role in aircraft

design and safety requirements. The water collected on the surfaces could freeze during a

�ight in cold wet air, bringing to a degradation of the aerodynamic performances or com-

promising the controllability of the aircraft, and therefore, the safety of the passengers.

The design of a reliable ice protection system requires a deep knowledge of the physics

of ice accretion and accurate predictions from numerical model employed. However, the

reliability of numerical models is a�ected by the uncertainty deriving from not only the

computational framework, but also the environmental conditions: indeed, these are re-

trieved from the experimental setup, and therefore, a�ected by the uncertainty. In this

context, the focus of this thesis is to investigate the collection e�ciency under paramet-

ric uncertainty and extend current uncertainty quanti�cation approaches for Supercooled

Large Droplets (SLD) regime. The latter has a more complex physics since the parti-

cles of water present in the cloud can deform under aerodynamic force and, moreover,

they can splash or rebound when impinging the surfaces. To assess the principal statis-

tical moments related with the numerical solutions, the uncertain input parameters are

forward propagated in the computational framework using the Polynomial Chaos Expan-

sion (PCE) method. In the presented work, diverse initial conditions and two di�erent

two-dimensional aeronautical geometries are considered with the aim to reproduce the

experimental data carried out at NASA's Glenn Icing Research Tunnel (IRT). The study

is performed considering test conditions related to the Appendix-C and Appendix-O of

Federal Aviation Administration (FAA) airworthiness standard. This work aims at quan-

tifying the sensitivity of the predicted collection e�ciency in uncertain test conditions

with a twofold objective. On one hand, the aim is to shed light on the physics by expos-

ing the relative importance of the diverse uncertain inputs to the resulting quantity of

interest. On the other hand, this work is also meant to be an embryonic e�ort towards

assessing the accuracy of numerical predictions against uncertain observations.

Keywords: Ice accretion, SU2, PoliDrop, splash model, Supercooled Large Droplets

(SLD), Polynomial Chaos Expansion (PCE), uncertainty quanti�cation.
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Abstract in lingua italiana

La formazione di ghiaccio su un velivolo rappresenta una delle maggiori problem-
atiche durante il volo; essa ricopre quindi un ruolo chiave nei requisiti di sicurezza.
L'acqua raccolta sulle super�ci può ghiacciare quando il velivolo vola in condizioni
esterne di aria fredda e umida, causando un peggioramento delle performance
aerodinamiche; nei casi peggiori, può inoltre comportare la perdita di controllo
del velivolo e mettere a rischio la sicurezza dei passeggeri. Il design dei sistemi
di protezione dal ghiaccio richiede quindi una profonda conoscenza della �sica
di accrescimento e i modelli numerici che vengono sviluppati devono accurata-
mente prevederne la forma. Tuttavia, l'a�dabilità dei modelli numerici è messa
in discussione dall'incertezza derivante non solo dal contesto computazionale, ma
anche dalle condizioni ambientali; questi ultimi sono recuperati dal setup di lab-
oratorio in letteratura e sono a�etti da incertezza strumentale. In questo con-
testo, l'obiettivo della tesi è di investigare il calcolo della collection e�ciency con-
siderando l'incertezza parametrica ed estendere gli attuali approcci di quanti�-
cazione d'incertezza al regime di Supercooled Large Droplets (SLD). Quest'ultimo
presenta una �sica più complessa da modellare in quanto le particelle d'acqua
presenti nelle nubi possono deformarsi sotto l'azione delle forze aerodinamiche e,
inoltre, possono avvenire fenomeni di splash o rebound durante l'impatto con il
velivolo. Per calcolare i principali momenti statistici, e quindi propagare in avanti
l'incertezza dei parametri di input, è stato utilizzato il metodo dell'Espansione
in Caos Polinomiale (PCE). In questo lavoro sono stati presi in considerazione
due pro�li aeronautici e diverse condizioni iniziali con l'obiettivo di riprodurre i
dati sperimentali raccolti dal Glenn Icing Research Tunnel (IRT) della NASA.
Sono state considerate diverse condizioni di input relative sia all'Appendice-C sia
all'Appendice-O degli standard di idoneità al volo de�niti dalla Federal Aviation
Administration (FAA). L'obiettivo di questo lavoro è quanti�care la sensitività
della collection e�ciency predetta dalle simulazioni numeriche rispetto alle con-
dizioni sperimentali incerte. Lo scopo è duplice: da una parte si vuole fare luce
sulla �sica dell'accrescimento del ghiaccio esponendo l'importanza sulle quantità
d'interesse dei diversi input a�etti da incertezza. Dall'altra parte, questa tesi è
anche un primo tentativo di valutare l'accuratezza di una predizione numerica
rispetto alle osservazioni incerte.

Parole chiave: Accrescimento del ghiaccio, Polidrop, SU2, Supercooled Large
Droplets (SLD), espansione in caos polinomiale, quanti�cazione d'incertezza.
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1| Introduction

One of the main concerns during the �ight of an aircraft is the formation of ice on its
surfaces, which can lead to a worsening of the aerodynamic performances [1]: the passive
drag increases, as does the weight, resulting in more fuel consumption; at the same time,
the lift and the stall angle can considerably decrease. The ice formation can also impact
the aeroelastic stability and control of the aircraft, especially if it takes place on the
manoeuvring surfaces or in the external sensor [2], leading to a lack of control and safety.
It can not only occur on the external surface, but also in the nacelle of the engine or in the
rotating surfaces, hence, altering the �ow at the inlet and possibly causing an unbalanced
load or shedding phenomena [3]. For these reasons, icing is a fundamental point of the
safety regulations, and plays a crucial role in aircraft design.

The importance of icing determines the necessity to develop e�ective tools that are able
to perform a prediction of the ice formation. The studies in this �eld started in late 1920s,
but only with the World War II the �rst icing tunnels were built in response of the war
e�ort [4]. Up until 1978, the studies were mainly experimental and focused on the icing
e�ects on lift and drag coe�cients, and in general the aerodynamic performances of the
aircraft. In 1929, Carroll and McAvoy [5] recognized that the aerodynamic penalties of
icing are more severe than an additional weight and their paper "recommends avoidance
of conditions under which this (ice formation) is most likely to occur". The modern
study on aircraft-icing began in 1978, after a workshop proposed by NASA and FAA
(Federal Aviation Administration) [6]: the computational �uid dynamics (CFD) began to
be developed and be applied to the prediction of icing on the surfaces, and to compute
the aerodynamic performances of airfoils with ice. The focus of icing research shifted
in 1994, after the ATR-72 accident in Roselawn; indeed, the research changed "its focus
from a scienti�c exercise to one clearly focused on aircraft safety" [4]. The report on the
accident �gured out that the issues on the control surfaces was caused by icing in particular
condition; consequently, the research focused on di�erent type of ice accretions, including
the Supercooled Large Droplets (SLD), to identify the critical condition and design more
e�ective Ice Protection Systems (IPS).

Flight tests, wind tunnel experiments and numerical simulations are complementary in
the icing investigation; however, �ight tests are complicated and particularly expensive
since another aircraft or a speci�c system is needed to spray water droplet on tested craft;
an example of �ight test on a rotorcraft is shown in Fig. 1.1. Moreover, to perform a
wind tunnel test, a special con�guration is needed: the wind tunnel must operate at low
controlled temperatures, resulting in higher operational cost than for classic aeronautical
wind tunnel. For these reasons, the CFD simulations can be used during the design phase
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to reduce the economic costs: it can be used to predict ice shapes, and the worsening of
the aerodynamic and control performances of the aircraft surfaces. However, �ight and
wind tunnel tests cannot be totally replaced in the certi�cation phase of a new aircraft.

Figure 1.1: AgustaWestland's AW189 icing trials of full icing protection system. [7]

The development of mathematical models de�ned to predict ice accretion stem from the
work of Stefan [8], which was related to the formation of ice in the Artic Sea; the �rst
model speci�cally de�ned for the aeronautical case was developed by Messinger in 1953
[9]. Nowadays there are several ice accretion codes capable of predicting di�erent ice
shapes for any types of ice in many geometries, and also three-dimensional cases. The
huge database of experimental activity in di�erent conditions, obtained in the �rst phase
of icing research, is used to �ne-tuning the models; moreover, the comparison between
experimental and numerical data is used to de�ne the reliability of the models.

However, numerical models and experimental tests are a�ected by uncertainty, which
could put under question their reliability. For this reason, an uncertainty quanti�cation
study is needed to characterize and then reduce the source of uncertainties. It is possible
to identify their main sources: uncertainty in the model inputs, such as the model param-
eters, the boundary conditions and forcing term; discrepancy between the model and the
physics; uncertainty due to the algorithm, which is unavoidable in CFD; computational
costs, due to the higher computational time and memory requirements needed for more
precise models.
One of the main di�culties in UQ is to forward propagate the uncertainty. The aim is
to evaluate the statistical moments of the numerical outputs propagated from uncertain
inputs, namely, in this work, the uncertainties retrieved from the experimental setup.
The stochastic analysis of the model allows to evaluate the reliability of the outputs and
hence, the numerical model.

In this thesis, the uncertainty quanti�cation will be performed on the computation of
collection e�ciency, which is the parameter that describes the fraction of water mass
contained in the cloud collected at a certain location of the aircraft surfaces. The statis-
tical moments are computed on the collection e�ciency obtained on di�erent airfoil and
experimental conditions; furthermore, a comparison is performed between the conditions
described in Appendix-C and Appendix-O of the FAA regulations. These appendices
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de�ne two di�erent icing conditions and their respective regulations for the design of the
aircraft: Appendix-C describes icing conditions and certi�cation requirements for clouds
containing droplets with Median Volume Diameter (MVD) of less than 40µm and a lowest
temperature of 233 K. At these temperatures only small droplets can exist in supercooled
state and the assumption of spherical droplets can be assessed. After the ATR-42 accident,
the Appendix-O was instead de�ned to consider di�erent icing condition related with Su-
percooled Large Droplets (SLD), hence for higher temperature and for MVD larger than
40µm; for these droplets the physics is more complicated because the particles are de-
formed by the aerodynamic shear forces, and they can splash or rebound when impacting
the surfaces.

The uncertainty quanti�cation on the collection e�ciency can be assessed with di�er-
ent methods. In this work the Polynomial Chaos Expansion (PCE) will be employed to
forward propagate the uncertainties of the input parameters, which are retrieved in the
experimental setup from the literature. The aim of this method is to de�ne a polynomial
approximation of the results of the simulations, as a function of the random variables
of interest. The objective is to compute the coe�cients of the polynomial expansion:
a good choice of the polynomial basis could, indeed, bring useful statistical information
such as stochastic moments, probability density and sensitivity analysis; furthermore, this
method could be less expensive in terms of computational cost than the Monte-Carlo and
other sampling methods.
Even if this method is widely used in uncertainty quanti�cation studies, at the time of
writing, only a few research are published which employ it on ice accretion over aeronau-
tical surfaces. [10�13], and even less UQ research consider the Appendix-O conditions
[14].

1.1. Important parameter of ice accretion

Icing on aircraft surfaces happens when the �ight is among clouds at a certain range of
temperature, or when the aircraft encounters precipitations such as drizzle rain and snow.
Under the freezing temperature of the water, the droplets should freeze and form ice;
however, it is possible that the particles remain in the liquid state due to their relatively
small size; this state of the particles is named Supercooled State. Here the particles
can remain liquid at as far as 253 K, and down to 238 K if the droplets are very small;
however, the latter case is less frequent [15]. In Supercooled state the particles can freeze
spontaneously at a temperature below 233 K, or if a perturbation occurs on their unstable
equilibrium, such as the impact on the aircraft surfaces.

The ice accretion can be divided in two di�erent phases: the �rst one is related to the
water particles impingement and its rate; the second one is related to the freezing rate of
the water droplets collected on the surface. This work considers only the �rst phase of the
ice accretion, which depends on di�erent parameters: the local curvature of the surface;
the velocity of the aircraft; the size of water particles contained in the clouds. The main
parameters, considered in this work, will be described below.
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Collection e�ciency (β)

The collection e�ciency β is the local value which describes the fraction of water mass
which impacts, and it is collected at a given location on the surface. It is one of the most
important parameters in icing since it is strictly related to the accretion rate; moreover,
since it represents the water collected by the surface, it is useful to de�ne the area where
the ice accretion can occur. Given the trajectories of the particles, which in this work
are computed using the Lagrangian approach (described in Sec 2.2), di�erent schemes are
available to compute β; however, all the methods link the initial cross-sectional area of the
droplet stream tube to the area of impact on the surface. In two-dimensional geometries,
the collection e�ciency is approximated as the ratio between the total separation δy of
the trajectories in the freestream, and the total separation δs between the trajectories at
the impact on the surface (Fig. 1.2):

β =
δy

δs
(1.1)

In three-dimensional geometries, instead, β can be de�ned as the area upstream dA∞ over
the surface dAi enclosed by the same trajectories of the droplets (Fig 1.3):

β =
dA∞
dAi

(1.2)

Figure 1.2: Collection e�ciency computed for a two-dimensional geometry. Picture from

[18].

The value of collection e�ciency typical goes from 0 in the clean surface, to 0.8. It
typically has a peak on the stagnation point of the surface, then decreases until it reaches
0. The point in the surface where β reaches 0 is de�ned as the impingement limit. High
values of β are related to high values of icing rate.

Median Volume Diameter (MVD)

The Median Volume Diameter de�nes the median value of the probability distribution of
the droplets diameter; this means that half the volume of the water is contained in droplets
larger than the MVD value; the other half is contained in particles with a diameter below
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Figure 1.3: Collection e�ciency computed for a three-dimensional geometry. Picture from

[18].

the median value. MVD is typical between 15 and 40µm, however, in this work, larger
values will be considered. Droplets with diameter larger than 40µm are called Supercooled
Large Droplets.

As shown in Fig. 1.4, taken from the paper by Gent [18], the MVD directly a�ects β: the
mass of water of a droplet is directly proportional the cube of its diameter, whereas the
in�uence of the air�ow on the droplet is directly proportional to the square of the diam-
eter. Consequently, droplets with larger diameter have the tendency to follow straighter
trajectory because they are less a�ected by the local aerodynamic force; on the other
hand, the small particles have smaller mass and tend to follow the streamlines, hence the
latter could not impact the surfaces resulting in a lower collection e�ciency. In Fig. 1.4,
it is also possible to highlight that for higher MVD, the area where the droplets impinge
is larger, hence the impingement limits are moved further aft.

Figure 1.4: E�ect of MVD on the collection e�ciency. [18]
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Liquid Water Content (LWC)

The LWC expresses the mass of water per cubic metre of air. Generally, it is expressed
as g/m3. The term Liquid indicates the supercooled nature of the droplets and acts to
distinguish the state of the cloud from the ice crystal alternative. In general, a larger
value of LWC implies a larger mass of water collected, hence a larger accumulation of ice.
However, this is not strictly correct since the collection e�ciency is equally important.
If a large mass of water is contained in particles small enough to have no capability to
impact on the surface, the resulting ice accretion will be small. Typically, LWC values
are between 0.2 g/m3 and 1.5 g/m3, depending on the type of cloud.

Freestream velocity (u∞)

The airspeed is not an icing condition itself, but it in�uences the water collected. At a
given time, the higher velocity of the aircraft, the larger is the intercepted volume of air,
and hence, the larger the mass of water that impacts on the surfaces. It is therefore the
product of the collection e�ciency, the LWC and the speed of the aircraft or the rotor
which determines the mass of water that will impact the surface, and hence the amount
of accretion.

1.2. Scope and structure of the thesis

The design of new aircraft and ice protection system must follow strict regulations and
nowadays the �ight tests are still used to assess the required certi�cation. However, they
are very expensive and in order to reduce the operational costs, the numerical prediction
of ice accretion is a useful tool in the design phase of a new aircraft.

However, the reliability of numerical simulations and the computational models are ques-
tioned by the uncertainties. Their derive from the approximation in the numerical models
as well as the uncertainty in the experimental setup. This work aims to forward prop-
agate these uncertainties throughout the numerical simulations using PCE to compute
the statistical moments. Moreover, the objective is to perform a sensitivity analysis on
the di�erent input parameters to de�ne their in�uence on the uncertainty. The analysis
is performed on two di�erent airfoil, namely a MS(1)-317 and a NACA-23012, and for
di�erent MVD considering also the SLD regime. The sensitivity analysis is performed
computing the Sobol indices. To assess the accuracy of numerical predictions over real
data, the predicted collection e�ciency is compared with data of wind tunnel tests carried
out in NASA Glenn Icing Research Tunnel (IRT). In particular, the focus is on particles
lying in SLD regime: these droplets, due to their bigger size, tend to deform under the
in�uence of aerodynamic shear forces and they could splash or rebound when impacting
the aircraft surfaces.

The present work is organised as follows. In Chapter 2 the governing equations to compute
the particle trajectory are presented both for small particles and SLD regime; moreover,
the LEWICE splash model, used to compute β, is described. In Chapter 3, the theory of
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Polynomial Chaos Expansion is presented; furthermore, the algorithm used to assess the
uncertainty quanti�cation is also described in detail. Chapter 4 deals with the presenta-
tion of the results and their comparison with the experimental data from the literature;
furthermore, a stochastic analysis is also performed investigating the statistical moments
and the Sobol indices obtained for each case. Eventually, Chapter 5 provides conclusions
and recommendations for future developments.
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2| Lagrangian particle tracking

The main objective of this chapter is to explain how the collection e�ciency β will be
computed on the surface of the body, both in the theory and the computational setup.
For the latter a particle tracking code is needed and this work has exploited PoliDrop,
an in-house software. The chapter will brie�y describe the algorithm, the models used
and eventually the results of the simulations in comparison with the experimental data
extracted from the literature.

2.1. Introduction

First of all, it is necessary to compute the characteristics of the �ow �eld with a CFD
solver. SU2 has been chosen, which is "an open-source collection of software tools written
in C++ and Python for the analysis of partial di�erential equations (PDEs) and PDE-
constrained optimization problems on unstructured meshes with state-of-the-art numerical
methods" (see [16] for more details). It includes, among others, tools to compute com-
pressible and incompressible Euler equations, Navier-Stokes equations and also RANS
solver. In particular, it provides a grid-based solution in which the velocity is known
in certain discrete points by interpolating the velocities of the surrounding points. The
models and the solvers implemented consequuently allow the operator to choose the most
suitable solver for the speci�c case studied. The ones selected for this work are described
in Sec. 2.5.

The purpose of PoliDrop is to track down the clouds particles and their impact on the
surface and then to compute the collection e�ciency.
Regarding the computation of the particles' trajectory, there exist two di�erent ap-
proaches: the Eulerian approach and the Lagrangian approach. The Eulerian approach is
based on a set of partial di�erential equation representing the continuity and the momen-
tum equations so that the volume fraction is computed directly on the nodes of the grid
ensemble with the �ow variables and it is not tracked the trajectory of each particle [17].
This approach is particularly useful in complex three-dimensional geometry or �ows and
it is gaining relevance in the last few years. On the other hand, the Lagrangian approach
tracks the trajectory of each particle from the starting point to the impact or to the end
of the simulation's time and it's commonly used for simpler problems due to the larger
computational costs which increase with the number of drops.
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2.2. Governing equations

In this work the Lagrangian approach will be used for the computation of the particle
solution. The code integrates in time the equations for droplets trajectory. It is necessary
to set some assumptions to derive the equation used [18]:

� The droplets are spherical and they do not deform.

� There is no collision or coalescence of droplets.

� Turbulence e�ects may be neglected except those a�ecting the mean �ow �eld.

� The only forces acting on the droplet are due to aerodynamic drag and buoyancy.
The e�ects of gravity are not taken into account, as they are considered negligible
with respect to aerodynamic forces.

� The water droplet concentration is su�ciently small for the droplets to have a neg-
ligible e�ect on the aerodynamic �ow and, therefore, the air�ow and water droplets
may be treated as independent systems.

Based on these assumptions the equations for the trajectory are derived from the momen-
tum equation:

mp
dup

dt
= Fa (2.1)

where mp is the mass of the particle computed from the density and the volume of the
particle and Fa are the aerodynamic forces e�ecting on the particle:

mp = ρp
4

3
π

(
dp
2

)2

(2.2)

Fa =
1

2
ρf (uf − up)CDπ

(
dp
2

)2

(2.3)

Where ρf and uf is respectively the density and the velocity of the �ow and CD is the drag
coe�cient which is an important point of the numerical model and it will be explained in
Sec. 2.3.
Substituting eq. 2.2 and eq. 2.3 in the momentum equation and de�ning the relative
Reynolds number of the particle:

Rep =
ρfdp (uf − up)

µf
(2.4)
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The system 2.5 is obtained where the quantities with the subscript p are referred to the
particle and f to the �ow: 

dup

dt
=

3

4

CDRepµf
ρpd2

p

(uf − up)

dxp

dt
= up

(2.5)

The system describes the trajectory of the particle, where the �rst equation is its accel-
eration and the second its velocity. The trajectory is obtained by integrating in time the
system 2.5. PoliDrop adopts the forward Euler method to solve the system. For the sake
of this work, the method is only brie�y described:

1. retrieve the �ow variables at the nodes of the owner cell because the aerodynamic
�eld was computed on a node-centered Finite Volume (FV) discretization as will be
explained in the following;

2. interpolate the aerodynamic solution at the particle position;

3. solve the system 2.5 and compute the new position and velocity;

4. �nd the new owner cell and compute the boundary intersection if needed. The new
owner is found using a known vicinity search algorithm that �nds the new owner
by computing the intersections between the particle trajectory and the faces of the
crossed elements (Fig. 2.1).

The process is iterated until one of the following situation is obtained: the �nal integration
is reached, the droplet has left the domain (this case is better to be avoided), or the particle
has impinged on the surface. In conclusion, the collection e�ciency in the algorithm is
computed as the ratio between droplet panel density and cloud density. The droplet panel
density is de�ned as the number of parcels impinging on the panel divided by its area.
The cloud density is computed as the total number of droplets in the cloud, divided by
the volume of the cloud:

β =
collected parcels/panel area

total parcels/cloud volume
(2.6)

(a) (b) (c)

Figure 2.1: Scheme of the PoliDrop algorithm computation
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2.3. Cd-Re model

In Eq. 2.3, CD is the drag coe�cient of the particle. The particles are assumed as
spherical, therefore CD is approximated as the drag coe�cient of a sphere. There are
several models to describe it as a function of the particle Reynold number. The simplest
one is the Stokes model which works well for Re < 100. Increasing Re the model di�ers
from the experimental data and corrections to this model are introduced. Some models
are presented (eq. 2.7 - 2.11) while others can be found in [18] and [19].

CDStokes
=

24

Re
(2.7)

CDGent
=

24

Re
(1 + 0.197Re0.63 + 2.64× 10−4Re1.38) (2.8)

CDSchiller Naumann
= max

(
24

Re
(1 + 0.15Re0.687) , 0.44

)
(2.9)

CDMorris
=

24

Re
+ 2.6

Re
5

1+(Re
5 )

1.52 + 0.411
( Re
263000)

−7.94

1+( Re
263000)

−8 +
Re0.8

461000
(2.10)

CDShankar Subramanian
= 0.19− 8× 104

Re
(2.11)

The models can be linked to de�ne a better approximation for a large scale of Reynolds
number:

CDMSS
=

{
CDMorris

Re < 106

CDShankar Subramanian
+ δ Re > 106

(2.12)

where δ = 0.0315 is a correction factor needed to link the two curves. As shown in �g.
2.2, this is the best model to �t the experimental data

Figure 2.2: Representation of the di�erent CD model of the sphere as a function of Re

and the experimental data retrieved in [19]
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2.4. Splash model

As mentioned before, this work considers also some cases where MVD is larger than
40 µm and they are de�ned as Supercooled Large Droplet (SLD). These droplets can
violate the assumption of sphericity made for the previous case (see Sec. 2.2). Large
droplets can bring di�erent icing condition from the icing described in Appendix-C of
FAA (Federal Aviation Administration) regulation. The regulation requirements used
to consider only clouds with a maximum droplet diameter dmax < 100µm [20], but in
1990's the regulations was expanded to include SLD in order to increase the level of
safety. The new rule was introduced after the accident occured to an ATR-72 aircraft
in 1994 in Roselawn, Indiana. The report on the accident compiled by the National
Transportation Safety Board (NTSB) reported that "the probable causes of this accident
were the loss of control, attributed to a sudden and unexpected aileron hinge moment
reversal that occurred after a ridge of ice accreted beyond the deice boot" due to a prolonged
operation in freezing drizzle environment beyond the certi�cation envelope. After this
report, the Appendix-O to the regulation was written to de�ne the di�erent icing condition
and the new certi�cation requirements (for a more depth analysis see [21]).

The reason behind the di�erent behaviour of larger droplet lies in the fact that the particles
can deform due to the aerodynamic and shear forces, leading to a grater aerodynamic
drag. They can lead to a phenomenon called run-back ice, this is crucial, because ice
accretion could extend on the entire surface of the wing and not only on the leading
edge, compromising the ice protection systems (IPS). This is the problem that occured
on the ATR-72 in Roselawn. The phenomenon is caused, in particular, by the possibility
of larger droplets to bounce or to splash: only a partial fraction of the particle impinge
the leading edge, while the other fraction is reintroduced in the �ow �eld, making a new
impingement in the back of the wing possible. This chance of splashing and rebounding
is the reason why modelling the SLD cases is more complicated than the other cases, and
it is necessary to modify not only the ice accretion model, but also the particle tracking
model as described in the next section.

2.4.1. Extended CD −Re model
The three main forces acting on the particles which determine their deformation and
breakup are the dynamic pressure and the viscous forces, which enhance the deformation,
and the surface tension σ, which counteracts the deformation. A new dimensionless
number is therefore de�ned to determine the �ow condition: the Weber number, which is
the ration between the inertial forces and the surface tension:

We =
ρpup

2dp
σ

(2.13)

in particular, what is needed is the breakup Weber number

We =
ρp (uf − up)2 dp

σ
(2.14)
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This parameter governs the deformation of the droplet. It goes from a sphere to a �nal
shape similar to a disk, passing for an oblate spheroid as shown in Fig. 2.3, from the
article by Kékesi [22].

Figure 2.3: Deformation increasing the Weber number [22]

It is possible to relate the shape of the particle and the drag coe�cient by de�ning f , the
eccentricity function of the particle. f is de�ned as the di�erence between the equatorial
and polar axis divided by polar axis as de�ned in 2.15:

f =
c− a
c

= 1− a

c
(2.15)

c is the polar axis and a in the equatorial axis. When c tends to a, f tends to 0 so the
particle tends to be a sphere. If f is equal to 1, the particle tends to be a �at disk.
According to Honsek and Habashi [23], it is possible to de�ne f as a function of the
breakup Weber number

f = 1−
(

1 + 0.07
√
Web

)−6

(2.16)

and consecutively the drag coe�cient could be written as a function of f

CD =

{
(1− f)CDsphere

+ fCDdisk
Web < 12

CDdisk
Web > 12

(2.17)

before reaching the limit breakup Weber number, which is equal to 12, the drag coe�cient
is thus a weighted mean between the CD of the sphere and the disk; then the droplet breaks
up and it is modelled as the drag coe�cient of the disk. For the sphere, the model used is
the one by Morris and Shankar Subramanian as de�ned in Eq. 2.12; for the disk, a model
de�ned by Clift [18] is considered:

CDdisk
=



64

πRe

(
1 +

Re

2π

)
Re ≤ 0.01

64

πRe
(1 + 10x) 0.01 ≤ Re ≤ 1.5

64

πRe

(
1 + 0.138Re0.792

)
1.5 ≤ Re ≤ 133

1.17 Re ≥ 133

(2.18)

where Re is Rep of Eq. 2.4 and x = −0.883+0.906 (log10Re)−0.025 (log10Re)
2. As shown

in Fig. 2.17 the drag coe�cients are almost the same at low Reynolds number and di�ers
when Re increases.
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Figure 2.4: CD − Re curves for sphere and disk

2.4.2. LEWICE Splashing Model

In order to compute the collection e�ciency and to take into account the possibility
of the particle to splash and bounce, the model used is the LEWICE splashing model
[24] developed by NASA. This is a semi-empirical model where the two possible e�ects
of the drops impinging the surface are combined into a single correlation, determined
by matching the β results of the experimental database on ice shapes and collection
e�ciencies generated in the NASA Glenn Icing Research Tunnel [25�27]. Before describing
the model, the Ohnesorge number needs to be de�ne: this is the ratio between viscous
forces and the product between the inertial forces and surface tension:

Oh =

√
We

Re
=

µp√
σρpdp

(2.19)

According by the studies of Mundo, Sommerfeld and Tropea [28�30], splashing occurs
when K = OhRe1.25 > 57.7.

In LEWICE splashing model the parameter use to de�ne if the splash occur is KL:

KL =
0.859

√
OhwRe0.125

w

( ρw
LWC

)1.25

(sinαimp)
1.25 (2.20)

Where the subscript w stand for "water" and αimp is the impingement angle of the droplets
on the surface.
If KL > 200, then the fraction of mass loss is determined by:

mloss

mimp

= 0.7 (1− sinαimp) (1− exp (−0.0092026 (KL − 200))) (2.21)

It is interesting to note that if αimp is equal to 90°, so that the droplets are impinging
perpendicular to the surfaces, there is no splashing.
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2.5. Comparison with experimental data

In this last section of the chapter, the results on the collection e�ciency obtained with
PoliDrop are compared with the experimental data from a NASA report [33]. The sim-
ulations are run both considering splashing and rebounding with the LEWICE splashing
model, and also not using it, in order to show the di�erent solutions obtained. The airfoil
used for the tests is a MS(1)-317 shown in Fig. 2.5. It was designed in mid 1970's for
general aviation aircraft [31]. The two-dimensional model of the airfoil used for the test
is made of �berglass skin and has a chord of 0.914 m.

Figure 2.5: MS(1)-317 airfoil used for simulations

Experimental tests were conducted at the NASA Glenn Icing Research Tunnel (IRT): a
refrigerated closed-looped tunnel that can have a controlled temperature and pressure.
The closed test section can reach a range of controlled temperature from 244K to 273K.
The droplets are generated by a spraying system capable of recreating clouds with LWC
of 0.3 − 3 g/m3 and MVD of range between 14 − 40µm but also from 70 to 270µm for
a limited range of clouds. Further details concerning the IRT facility are provided in
[34]. The tests are performed at a velocity of 80 m/s and an angle of attack of 8°. The
static pressure is set to 94 806 Pa corresponding to an altitude of 598 m. The collection
e�ciency is determined by a dye-tracer method, which consists in a known concentration
of blue dye put in distilled water and sprayed in the air stream through a speci�cally
designed system of 16 nozzles. The airfoil model is covered in thin strips of blotter paper
in the areas of interest and exposed to the spray for a certain time. Using a spectroscopy
re�ectance technique, which quantitatively measures the color and density of the light
re�ected by the surface, it is possible to determine the dye mass per unit area. Then, the
collection e�ciency is retrieved by converting the dye color density distribution on each
strip in to the water impingement density, by using the developed calibration curves.

As for what concerns the computational setup, the numerical simulations are computed
on a hybrid mesh of 42116 elements. Near the surface quadrilateral elements are used
in order to better catch the boundary layer. In the free stream, triangular elements are
used. Before computing the simulations using PoliDrop, a study of grid convergence has
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been carried out. In order to take into account the errors due to the closed test section
of IRT a study to retrieve the angle of attack has been performed to best reproduce the
experimental condition. To achieve that, this work compares the curve of the pressure
coe�cient along the airfoil, resulting from the SU2 simulations at di�erent angles of
attack, and the experimental data from [33] as shown in Fig 2.6. In accordance to the
experimental data, the AoA chosen for the PoliDrop simulations is 6.5o

Figure 2.6: Cp − x curves for di�erent angle of attack compared with the experimental

data from [33]

As mentioned before, the CFD solver used in this work is SU2 and the �ow �eld is com-
puted solving the Reynolds Averaged Navier-Stokes equations (RANS) using the Shear-
Stress Transport model (SST) proposed by Menter [32]. This is a two-equation model
which combines the k − ε and the k − ω models where k is the turbulent kinetic energy,
ε is the dissipation ratio and ω is the characteristic frequency of the eddies de�ned as
ε / k. It combines the equation through a scaling factor, which near the surface tends to
0 so that the equation is identical to k − ω model; in the outer region instead, the model
tends to k − ε. SST model take the computational advantages of the latter, avoiding its
singularity at the wall. This method is nowadays largely used in the industrial sector,
especially in turbomachinery.
Once the �ow is computed, the collection e�ciency β is retrieved with PoliDrop, setting
the initial position of the cloud. In the case where the splash and rebound of particles are
not considered, a branch of the software named CloudAdaption is used. For every itera-
tion it performs an adaptation of the cloud for better computing the collection e�ciency.
When considering the splash and rebound a convergence study, varying the number of
parcels in y-direction, is needed. It is important to consider that, studying too few par-
ticles could provide a poor solution, while taking into account too many of them would
increase the computational cost. For both cases it is important to set the right time of
the simulation and the delta time of the integration in order to obtain the impingement
of each particle over the entire surface, but avoiding their exit from the domain.
Collection e�ciency is presented as a function of the curvilinear abscissa where 0 is the
leading edge, the positive x is the upper surface of the airfoil and the negative x is the
lower one. The curve presents a skewness due to the pro�le and the angle of attack: this
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implies a greater impingement on the top of the airfoil.

Figure 2.7: Comparison between PoliDrop simulations and experimental data from [33]

The simulations present a good �t with experimental data, especially using the splash
model, as expected due to MVD= 92µm. Only the peak is overestimated; this is where
there is the peak of the variance on the results as presented in Chapter 4.
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As shown in Fig. 2.7, the nominal condition does not perfectly �t the experimental data
and this is not only due to the approximation in the numerical model. The main rea-
son can be retrieved in the uncertainty of experimental settings, which implies that a
stochastic computation must be applied in order to forward propagate these uncertain-
ties. A commonly used method to forward propagate the uncertainty is the Monte Carlo
Sampling (MCS) method or one of its variants. It consists in computing independent re-
alizations of random inputs, based on their prescribed probability distribution. For each
realization the input values are �xed so that the problem becomes deterministic. The
statistical information is then extracted from these realizations. This method is simple,
but has a signi�cant drawback, as large number of realizations is needed in order to obtain
accurate results; many realizations lead to an excessive computational cost, especially in
systems which are computationally expensive in their deterministic settings. A method
which goes beyond this limit is the Polynomial Chaos Expansion (PCE) method and it
will be applied in this work to execute the statistical analysis. This method is nowadays
widely used in uncertainty quanti�cation studies, but few studies are implementing it in
aeronautical case, and even less in Appendix-O conditions.

The PC expansion is a probabilistic method consisting in the projection of the model
output on a basis of orthogonal stochastic polynomials in random inputs. The projection
provides a compact and convenient representation of the model output variability with
regards to the inputs.
The idea is to build a polynomial approximation of the results of the simulations as a
function of the random variables of interest, with the aim is to compute the coe�cients
of the polynomial expansion. A good choice of the polynomial basis could bring useful
statistical information such as stochastic moments, probability density and sensitivity
analysis; furthermore, this method could be less expensive in terms of computational cost
than MCS and other sampling methods.
With PCE, it is possible to write a surrogate of the CFD model, which links the Quantities
of Interest (QoIs), i.e. the output of the model, to the random variables of input.

3.1. Polynomial Chaos Expansion

Polynomial Chaos expansion was introduced by Wiener in 1938 [35] and it well approx-
imates any random variable by a series of polynomials in centered normalized Gaussian
variables. Considering a set of in�te independent random variables ξ

.
= [ξ1, ξ2, ...], in

which each variable has a known normalized gaussian probability density p (ξ). Consid-



20 3| Uncertainty quanti�cation

ering a function f (ξ), which is a random variable itself due to its dependency on random
parameters, it is possible to write f as a series of polynomials multiplied by appropriate
coe�cients:

f (ξ) =
∞∑
k=0

ck Ψk (ξ) (3.1)

where ck are deterministic coe�cients, namely the PC coe�cients of the expansion, and
k indicates the polynomial order. For practical reasons, the upper index of the series has
to be truncated at an arbitrary value P ; a �nite number d of Gaussian variables are used
for the same reason. The latter is not a limitation since the physical problem has a �nite
number of random inputs as presented in Sec. 3.2.
Ψ are random polynomial basis chosen to be orthogonal in the L2 space following the
relation:

〈Ψi (ξ) ,Ψj (ξ)〉 =

∫
Ψi (ξ) Ψj (ξ) p (ξ) dξ =

〈
Ψi (ξ)

2〉 δij (3.2)

These polynomials are multi-variate Hermite polynomials which represent the best choice
for these cases. One of their de�nition in one dimension is:

Hei (x) = (−1)i e
x2

2
di

dxi

(
−e

x2

2

)
(3.3)

where i is the order of the polynomial.
The convergence of 3.1 is ensured in a L2-sense, as shown by Cameron and Martin in [36].
Eventually, the �nite dimensional and �nite PC order of expansion lead to:

f (ξ) =
P∑
k=0

ck Ψk (ξ) (3.4)

The basis dimension is retrieved from d and p:

P + 1 =
(p+ d)!

p!d!
(3.5)

For example: in this work the independent variables are 5 and the approximation is a
third order polynomials; the PC expansion will consequently have 56 terms.
The PC expansion proposed by Wiener can be applied to measures which have Gaussian
probability distribution, but it can be also generalized for non-Guassian probability den-
sities, as presented by Xiu and Karniadakis [37] using the Wiener-Askey scheme presented
in Table 3.1.

Once the PCE coe�cients are computed, the statistical moments and sensitivity analysis
can be straightforwardly derived by manipulating the coe�cients. For example the ex-
pected value of the output y, which is related to one of the quantities of interest (QoI)
y = f (ξ), is:
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Distribution Orthogonal polynomial Support
Gaussian Hermite (−∞,+∞)
Uniform Legendre [−1, 1]
Exponential Laguerre [0,+∞)
Poisson Charlier {0, 1, 2, ....}
Binomial Krawtchouk {0, 1, 2, ...., N}

Table 3.1: Examples of di�erent variable distribution and orthogonal polynomial family

y = E [y] ≈ E

[
P∑
k=0

ckΨk (ξ)

]

=

∫
RP

(
P∑
k=0

ckΨk (ξ)

)
p (ξ) dξ

=
P∑
k=0

ck

∫
RP

1 ·Ψk (ξ) p (ξ) dξ

=
P∑
k=0

ck 〈Ψ0,Ψk〉

= c0 〈Ψ0,Ψ0〉 = c0

(3.6)

The expected value is therefore the �rst coe�cient of the polynomial expansion and it is
obtained using the property of the expected value and the orthogonality of the polynomi-
als.
Using the same approach it is possible to derive the variance of the system:

σ2 = E
[
(y − y)2] ≈ P∑

k=1

c2
k (3.7)

Another important advantage of using the PCE is that it allows to directly derive the
Sobol indices [38]; the indices can then be applied in a global sensitivity analysis; in order
to study which parameters in�uence more the uncertainty of the output. As presented by
Crestaux and Le Maître [39], the Sobol indices, and even more the Sobol's decomposition
and the ANalysis Of VAriance (ANOVA) decomposition, can be directly deduced from
the PCE of the model output. In the next paragraph the main passages of the theory are
presented; more in depth, demonstrations and details can be retrieved in [39]. Starting
from the Sobol decomposition:

f (ξ) =
∑

u⊆(1,2,...,d)

fu (ξu) (3.8)

Where u is a set of integers ξu = (ξu1 , ..., ξus), with s = card (u) = |u|.
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De�ning D as the variance of the output y = f (ξ) and Du as the conditional variances
of the function fu of the Sobol decomposition:

D =

∫
Ωd

f 2 (ξ) p (ξ) d (ξ)− f 2
0 (3.9)

Du =

∫
Ω|u|

f 2
u (ξu) p (ξu) d (ξu) (3.10)

The Sobol indices are de�ned by:

Su =
Du

D
(3.11)

so that: ∑
u⊆(1,2,...,d)

u6=∅

Su = 1 (3.12)

In PCE it is possible to de�ne a simple expression for the variance and the covariances:

D̂ ≈
P∑
k=1

c2
k (Ψk,Ψk)

D̂u ≈
P∑

k=Ku

c2
k (Ψk,Ψk)

(3.13)

where Ku are a set of indices that only depend on the PC basis and not on the function
f :

Ku = {k ∈ {1, ..., P} |Ψk (ξ) =

‖u‖∏
i=1

φαk
i

(ξui) , α
k
i > 0} (3.14)

Where φk represent the one-dimensional polynomial which composes the orthogonal basis.
The Sobol indices is therefore computed as:

Su ≈ Ŝu =
D̂u

D̂
(3.15)

Each of the Sobol sensitivity indices measures the sensitivity of the variance of y with
respect to the interaction between the variables ξu. Since there are 2d − 1 Sobol indices,
they quickly increase when the variables increase.

The orthogonal basis of the expansion are known and they are chosen in accordance with
the probability densities; the only unknowns are the coe�cients of the expansion. When
ck are computed, the expansion of the output y can be retrieved and it is possible to
make a complete characterization of the uncertainty and, therefore, perform a sensitivity
analysis.
In this work, y is the result of a numerical simulation, i.e. the output of mathematical
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model. Traditionally, for this cases there are two classes of methods to compute the PCE
coe�cients for this case: the intrusive methods and the non-intrusive ones. In the intru-
sive method the objective is to de�ne a weak solution by means of a Galerkin projection
of the model equations on the PC basis. This method is more complex with respect to
the non-intrusive one because in CFD applications it requires access to the source code
of the computational solver. On the contrary, the non-intrusive methods require a �nite
set of deterministic realizations of the numerical code where the input can be sampled
with di�erent strategies. For example, in this work a Latin-Hypercube Sampling (LHS)
method is employed as will be explain in Sec. 3.3.3.
Among the non-intrusive methods, there are several methods to compute the PC coef-
�cients, such as the Non-Intrusive Spectral Projection (NISP) or the Least Square (LS)
approach; the latter is applied in this work and it consists in retrieving the PC coe�cients
that minimize the approximation error, so that the square of the residual:

c = min
c∈RP

d∑
i=0

∥∥∥∥∥f (ξ(i)
)
−

P∑
k=0

ckΨk

(
ξ(i)
)∥∥∥∥∥

2

(3.16)

Where the function f
(
ξ(i)
)
is unknown, except at i data points. The matrix Z is de�ned

as:

Z =


Ψ0

(
ξ(0)
)

Ψ1

(
ξ(0)
)
· · · ΨP

(
ξ(0)
)

Ψ0

(
ξ(1)
)

Ψ1

(
ξ(1)
)
· · · ΨP

(
ξ(1)
)

...
...

. . .
...

Ψ0

(
ξ(d)
)

Ψ1

(
ξ(d)
)
· · · ΨP

(
ξ(d)
)

 (3.17)

3.2. Uncertain parameters in icing simulations

The phenomenon of the collection of water on the aircraft depends on a set of di�erent
uncertain parameters: the freestream pressure and temperature, which are related to the
aerodynamic environment; the Median Value Diameter that characterizes the cloud; and
the �ying condition with the Mach number and the Angle of Attack. These inputs have
several uncertainties due to the experimental setup; in this work, they are assumed as
uniformly distributed within an interval centered on their nominal values. The aim is to
recreate the conditions present in the wind tunnel.
The nominal test conditions and the uncertainty bound for the MS(1)-317 airfoil are
presented in Table 3.2 and they are imposed in accordance with the data reported in
cited work [33].

Mach Pressure [Pa] Temperature [K] MVD [µm/s] AoA [deg]
0.24± 0.03 94540± 134 277± 0.5 92± 18.4 6.5± 0.2

Table 3.2: Nominal test conditions and uncertainty bounds for MS(1)-317 case

For the Median Value Diameter the uncertainty is ±12% of the nominal value for droplets
with MVD smaller and around SI50µm/s, and an uncertainty of ±20% for larger parti-
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cles. The uncertainties are in accordance with the recent experimental setup of the IRT
mist generator [40].
For the case study of NACA-23012 airfoil, the MVDs considered are 20µm/s, 52µm/s,
111µm/s, 154µm/s and 236µm/s, and their uncertainties coincide with the ones men-
tioned above. The other parameters and their uncertainties are the same for each of the
�ve MVD cases and are presented in Table 3.3.

Mach Pressure [Pa] Temperature [K] AoA [deg]
0.23± 0.03 94860± 134 289.9± 0.5 2.5± 0.2

Table 3.3: Nominal test conditions and uncertainty bounds for NACA-23012 cases

Every parameter of each case is uniformly distributed, but, as explained in Sec. 3.1, this
is not a limitation due to the generalization of PCE by Xiu [37].

3.3. Algorithm

This section presents the algorithm used for every case considered. The results for each
speci�c will be presented in Chapter 4.

3.3.1. Grid convergence

The �rst step of the work is to perform a convergence study on the mesh. The dual aim
is to ensure the correct computation of the �ow and to avoid using mesh with too many
elements which would lead to an excessive computational burden. The meshes taken into
account are hybrid and compiled by the software UhMesh, which is a hybrid mesh gener-
ation code for high-Reynolds �ows [41]. The mesh is structured near the surface, so that
rectangular elements are employed to better compute the boundary layer; in the outer
region the mesh is unstructured with triangular elements in which their lengths increase
when the distance from the airfoil increases.
To make the grid convergence, several CFD simulations on SU2 are run with the same
inputs over meshes with increasing number of elements. The aerodynamic �eld around
the airfoil is computed using the SU2 RANS solver where the RANS equations are dis-
cretized using a �nite volume method with a standard edge-based structure. Convective
�uxes are discretized using a limited second order MUSCL scheme with an Approxi-
mate Riemann Solver (ARS) of Roe type. The Venkatakrishnan �ux limiter is employed.
Viscous �uxes are discretized using a standard average of gradients approach. Source
terms are approximated at each node using a piecewise-constant reconstruction within
each control volume. Gradients are obtained using a weighted least-squares approach. A
time-marching approach is used to drive the RANS system to a steady solution using an
implicit Euler scheme. The convergence of the simulation is monitored by checking the
root mean square of the density equation residual and it is stopped when the residual is
eight order smaller than the �rst iteration.
The input parameters of the simulations are set as reported in [33] and they are the
nominal values of Table 3.3 for the NACA-23012 and Table 3.2 for the MS-317 case, with
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the exception of the AoA which is equal to 8o in accordance with the NASA report (the
reason of this di�erence will be explained in Sec. 3.3.2).

The convergence of the mesh is then checked by the lift coe�cient CL. After a certain
number of elements, the value of CL slightly changes and the convergence is obtained.

3.3.2. Replicate test condition

The next step is to retrieve the nominal test conditions of the wind tunnel, so that the
outputs of simulations can be compared with the experimental data from the literature
[33].
The aerodynamic �eld is compared via the Cp−x/C curves, where Cp is the local pressure
coe�cient. The aim is to de�ne the best angle of attack which replicates the experimental
data from literature.

An important parameter to monitor as to ensure that the simulations are correct is y+,
which is the dimensionless wall distance. The value of y+ must be near the value of 1
in each control volume of the airfoil; this requirement ensures that the �rst cell center is
placed in the viscous sublayer, hence it is possible to capture the sublayer.

After the computation of the aerodynamic �eld, the next step is to retrieve the operative
condition for the trajectory of the droplets and the computation of the collection e�ciency
β. In PoliDrop the input values for the simulations are related to the con�guration of the
clouds and the particles: the MVD, the extension of the cloud, the position of the cloud
and the number of droplets; but they are also related to the simulation framework: the
splash model employed, the total time of the simulation and the integration time-step.
The aim is to perform a sort of convergence study on the β, used to de�ne the best inputs
to recreate the wind tunnel condition. Recalling from the case study that the MVD is
�xed, the objective is accomplished by following this algorithm:

� De�ne the initial position of the cloud ahead of the airfoil in an unperturbed region
of the domain;

� de�ne a properly �nal simulation time in order to let the particles impinge the
surface;

� set an integration time-step to obtain converged results;

� enable the splash and rebound of the droplets by setting the splash model.

The particle resolution is automatically adjusted by computing beta iteratively until the
L2 norm of the value of two successive iteration is below a given threshold.

3.3.3. Latin Hypercube Sampling (LHS)

As mentioned in Sec. 3.1, the method employed in this work to compute the coe�cients of
the PCE is a non-intrusive method with LS approach. Consequently, a set of deterministic
realizations is needed, and the input values of these realizations are sampled with the Latin
Hypercube Sampling (LHS) method.
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LHS generates a near-random sample values from a multidimensional distribution. It is
a generalization of the Latin Square to an arbitrary number of dimensions, inspired by
the works of the Korean mathematician Choi Seok-Jeong and, afterwards, by Leonhard
Euler. The LHS method, used in numerical simulations, was �rstly described by McKay
in 1979 [42].

Let X = {X1, ..., XK} be the K selected random input variables with known probability
distribution p (x), and let S be the sample space of X; the idea is to partition S in strata
to ensure that all portion of the space are sampled. Moreover, de�ning N as the number
of samples, the range of each input variable Xk is divided into N strata of equal marginal
probability 1/N and randomly sampled, once, from each stratum; this ensures that all
the portions of the distribution of the input variables are represented by the input values
extracted. Once all the N sample for each Xk are sampled, they are randomly combined.
In this work the random inputs variables are 5 and they are shown together with their
respective uniform distribution in Table 3.2 and Table 3.3; the number of sample is 224
for each variable and it is chosen in order to obtain 4 datapoints for each PCE coe�cient.
An additional set of 50 points, sampled with LHS as well, are computed to de�ne a test
set of realizations in order to assess the accuracy of surrogates

LHS is employed because it reduces the computational burden with respect to other
sampling methods: indeed, a smaller number of samples is needed to obtain a precise
statistical estimator [42].

Once the input values are sampled, the deterministic realizations of the model are com-
puted by loosely coupling SU2 and PoliDrop. Due to the large siza of the simulation set,
the simulations are run on Megamind, the computer cluster of CREALab at the Politec-
nico di Milano. Megamind is a Linux based remote server and it has 204 CPU cores units
that can be fully exploited to execute parallel simulations. In this work the simulations
for each case are performed in series but they are indipendent, therefore, they can be
executed concurrently.

3.3.4. PCE

This section presents the algorithm applied to perform the LS �t for the PCE of the
collection e�ciency which is computed on each element of the surface mesh.

The �rst step is to retrieve the points and the connectivity of the surface elements. The
next step consists in reading the parameters of the sampled point from the �le output of
the LHS algorithm. The input values are expressed as the variance between the sampled
and the nominal values, both multiplied by two and normalized with the interval of
respective uniform distribution. This passage renders the di�erent parameters comparable
to each other; indeed now the data set can only have values belonging to the interval
[−1, 1].

The coe�cients are computed employing the LS approach; the Z matrix de�ned in Eq.
3.17 is computed by de�ning a multivariate function in Matlab derived from the compu-
tation of the �rst four polynomial of Legendre, using the normalized sampled values; the
polynomials are chosen in accordance with the Table 3.1 and the order of the PCE.
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At this point, read the output of each deterministic realizations has to be read and it is
possible to compute the upper and lower impingement limits, where β is equal to 0. The
aim is to get rid of the panels where water is never collected in any simulations, in order
to reduce the surrogates to model and, consequently, to reduce the computational burden.

Once the collection e�ciency and the matrix Z are available, it is possible to perform
the LS approach; in Matlab, this can be done with the function mldivide(Z,y) which
returns the least-square solution of the system Z ∗ c = y, i.e. the matrix that contains
the PCE coe�cients.

To validate the surrogates of the model, the Root Mean Square Error (RMSE) is computed
by comparing PC prediction against the deterministic realizations of testing data set.
The expected value, the variance and the Sobol indices are straightforward computed
manipulating the vector containing the PCE coe�cients. The results of the stochastic
analysis will be presented in the next chapter.
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4| Simulations and results

Being the cases studied in this work real, they have uncertainties; therefore, the aim is to
propagate them on the simulations. In this chapter the collection e�ciency β numerical
results is analyzed in both airfoils taken into account.

This chapter is divided in a �rst section where the results of the grid convergence study
are presented; and two sections related to the two di�erent airfoil studied. The latters
section are divided in a �rst part where the results of the nominal condition are presented;
and a second one where the UQ study is discussed. For the NACA-23012 case, the UQ
study is split in the Appendix-C and Appendix-O to better present the results and the
comparison between both cases.

4.1. Preliminary study

As mentioned in Sec 3.3, the �rst step of the work is to de�ne the better choice for the
mesh. In Fig. 4.1, the grid convergence study is shown.

(a) MS(1)-317 (b) NACA-23012

Figure 4.1: Grid convergence

In accordance with Fig. 4.1 the mesh selected for the study on MS-137 airfoil has 42116
elements, while for the study of NACA-23012, the mesh is composed of 34529 elements.

In Fig. 4.2, it is possible to note that y+ is around 1 for each control volume along the
surface meaning that the meshes are well de�ned and they are able to catch the sublayer.
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(a) MS-317 (b) NACA-23012

Figure 4.2: y+ curves.

4.2. MS-317

4.2.1. Replicate test condition

From Fig. 4.3 the curve that better �ts the experimental data is the one related to 6.5o.
The reason for the di�erent AoA between the computational case and the experimental
setup is due to the wind tunnel calibration.

Figure 4.3: Cp over the curvilinear abscissa curves comparison. MS-317 case.

In Fig. 4.4, the results of this work for the nominal case for the collection e�ciency are
presented in comparison with the experimental data from the literature [33]. It is possible
to note that when the splash model is employed, the curve obtained has a good overlap
with the experimental data.
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Figure 4.4: Collection e�ciency's nominal case. MS-317 case.

4.2.2. UQ study

Fig. 4.5 shows the surrogates assessment and, in particular, the mean β obtained by the
�rst coe�cient of the PC expansion computed, together with the Root Mean Square error
calculated with respect to collection e�ciency output of the 50 additional sampled set
which was mentioned in Sec. 3.3. Both results are plotted w.r.t. the curvilinear abscissa
of the airfoil: the origin is the Leading Edge (LE) and it is positive counterclockwise.

(a) No splash model employed. (b) LEWICE splash model employed.

Figure 4.5: Mean β (left scale) and RMSE (right scale) of PC predictions.

The maxima RMS errors are, respectively, in Fig. 4.5(a) in the region of impingement
limits, marked as grey area in Fig. 4.7; and in Fig. 4.5(b) in the area of the LE. For both
cases, the PCE is a good prediction because the maxima RMSE is below 1% of the bulk
coe�ction e�ciency.

Fig. 4.6 shows the comparison between the numerical prediction and experimental data.
The red shaded areas are obtained by adding twice the standard deviation (2σ) to the
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β̄ computed; 2σ is de�ned as the uncertainty bound of the numerical output and the
standard deviation is computed as the square root of the variance σ2, which is a result of
manipulating the PCE coe�cients.

(a) No splash model employed. (b) LEWICE splash model employed.

Figure 4.6: Comparison among numerical prediction and experimental data.

The curve shows a good overlap with the experimental data in the case where the LEWICE
splash model is employed (Fig. 4.6(b)); on the contrary, the curve of Fig. 4.6(a) is not a
good overlap, especially in the LE and in the upper surface. This behaviour is expected,
since in this case the MVD is equal to 92µm; being larger than 40µm, it must be related
to SLD and appendix-O conditions.

(a) No splash model employed. (b) LEWICE splash model employed.

Figure 4.7: Variance decomposition and impingement limits.

The variance decompositions w.r.t. the curvilinear abscissa are shown in Fig. 4.7: for
the case where the LEWICE splash model is employed, the peak of the variance is in the
region of the LE, then it rapidly decreases on the pressure side of the airfoil and remains
almost constant to a much lower value than the peak; however, on the suction side, the
variance increases almost linearly from the impingement limit to the peak of the curve.
In Fig. 4.7(a), instead, the maxima of the variance are in the region of the impingement
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limits and the absolute maximum is in suction side of the airfoil, where, in the test data
set, the collection e�ciency is often near or equal to 0. It is also possible to notice that
the variance throughout the airfoil is one order of magnitude lower than in the case where
the splash model is employed. This behaviour can be explained by the fact that the latter
can better replicate the physics of the problem, it is also important to remember that the
starting data are taken from real tests conducted in a wind tunnel and the aim of the
numerical simulations is to reproduce that values of collection e�ciency.

The Sobol indices decompositions, normalized by the local value of the variance, are
presented in Fig. 4.8 w.r.t. the curvilinear abscissa of the airfoil. They show the local
dependence of the random parameters on the variance, and therefore which random input
contributes the most to the uncertainty of the output. It is possible to note that in the case
in which the splash model is not employed, the purple area is predominant, meaning that
MVD contributes the most on the variance throughout the surface. On the other hand,
where the LEWICE splash model is employed, it is possible to note the most contributing
parameter is the AoA in the area near the LE and on the pressure side. The reason for this
di�erence depends the angle of impact of the droplets, which is an important parameter
to de�ne the splash or rebound of the particle; moreover the di�erence is placed on the
pressure side of the airfoil due to the positive AoA and the camber of the surface. Table
4.1 shows the integrate values of the Sobol indices: they are normalized over the integral
value of the variance of β and the table gives an idea of which parameter contributes the
most on the uncertainty of the whole airfoil. Indeed, it is possible to note that in both
cases the parameters have almost the same incidence, and MVD contributes the most
to the variance. Moreover, the AoA increases its incidence on the total variance in the
case where the splash model is employed, but not as much as can be expected from Fig.
4.14(b); this happens is because the majority of the variance is in the suction side of the
airfoil, as it is possible to see in Fig. 4.13(b).

(a) No splash model employed. (b) LEWICE splash model employed.

Figure 4.8: Variance decomposition in �rst order sobol indices.
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Mach Pressure Temperature MVD AoA Higher Order
No Splash 0.0048% 0.0039% 0.0048% 95.5290% 4.2813% 0.1763%
Splash 0.0248% 0.0277% 0.0238% 93.7796% 5.7682% 0.3758%

Table 4.1: Integral values of Sobol indices normalized by the total variance of β

4.3. NACA-23012

This section is divided in three parts: in the �rst one, the results related to the nomimal
condition will be shown; in the second one, to the appendix-C conditions will be presented;
in the last one, the results related to the SLD cases, i.e. for larger MVD, will be shown.

4.4. Replicate test condition

For the NACA-23012 case, it is possible to note in Fig. 4.9(a) and in its enlargement (Fig.
4.9(b)) that a larger AoA, which in the speci�c example is equal to 2.9o, better reproduces
the experimental pressure coe�cient on the upper surface of the airfoil w.r.t. to an AoA
equal to 2.5o; however, a larger AoA also produces a worsening on the lower surface. On
the contrary, a smaller AoA, such as equal to 2.1o, shows the opposite behaviour. For
these reasons, in the work an AoA of 2.5o will be employed.

(a) (b) Zoom on (a)

Figure 4.9: Cp − x curves for di�erent angle of attack compared with the experimental

data from [33]. NACA-23012 case.

Fig. 4.9 shows the collection e�ciency obtained with PoliDrop using the nominal condition
as input variables. As expected, for SLD cases, β obtained employing the LEWICE splash
model better �ts the experimental data. When MVD is equal to 20µm, instead, the two
curves nearly overlap.
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(a) MVD = 20µm (b) MVD = 52µm

(c) MVD = 111µm (d) MVD = 154µm

(e) MVD = 236µm

Figure 4.10: Collection e�ciency's nominal case. NACA-23012 case.
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4.4.1. UQ study for Appendix-C condition

As for the MS-317 case, all the results are plotted over the curvilinear abscissa of surface.
Fig. 4.11 shows the mean collection e�ciency β̄ obtained by the study of the PCE
coe�cients of the surrogates modelled. The dashed line is related to the RMSE of the
PC prediction which is computed w.r.t. the test data set: it is possible to note that the
curve has two peaks in rthe region of the impingement limits, which are the grey area of
Fig. 4.13; however, the maximum RMSE is below 1% of the bulk β so that the PCE can
be considered a good prediction of the collection e�ciency.

Figure 4.11: Mean β (left scale) and RMSE (right scale) of PC predictions.

The comparison among numerical results and experimental data (Fig. 4.12) shows a
moderate overlap considering β̄, while a better overlap is shown considering the red shaded
area; this corresponds to the uncertainty bound of the mean β, computed as twice the
standard deviation.

Figure 4.12: Comparison among numerical prediction and experimental data.

The variance decomposition curve, Fig 4.13, has two maxima in the region of the impinge-
ment limits, the grey areas, and a minimum near the leading edge: this behaviour is due
to the positive angle of attack and characteristic when the splash model is not employed.

Considering the sensitivity analysis, i.e. the Sobol indices shown in Fig. 4.14, it is possible
to note that the uncertainty on the MVD is prevalent along the curvilinear abscissa; this
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is true also taking in to accout the integral values of Table 4.2. Moreover, the latter shows
that, in this case, the AoA contributes more than in MS-317 case.

Figure 4.13: Variance decomposition and impingement limits.

Figure 4.14: Variance decomposition in �rst order Sobol indices.

Mach Pressure Temperature MVD AoA Higher Order
0.1465% 0.0040% 0.0069% 92.9306% 7.0786% 1.0068%

Table 4.2: Integral values of Sobol indices normalized by the total variance of β

4.4.2. UQ study for Appendix-O condition

In this section, the results on the Appendix-O condition for the NACA-23012 will be
presented and compared with the Appendix-C condition.

Fig. 4.15 shows the mean collection e�ciency: it is interesting to note that the maximum
of the solid line increases when MVD increases; this behaviour is expected in accordance
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with the experimental data, as shown in Fig. 4.16. In the latter �gure, the comparison also
shows that the overlap between the red and black curve increases when MVD increases; for
MVD equal to 236µm, the PC prediction is remarkably accurate w.r.t. experimental data.
The uncertainty bounds of the red curve, highlighted with the red shaded area, becomes
less notable as the median diameter of the particle increase, also in comparison with the
previous case regarding the appendix-C condition (Fig. 4.12). This demonstrates that
increasing MVD, the precision of the surrogate prediction increases. Only for MVD equal
to 52µm and 111µm, the peak of the collection e�ciency appears to be overestimated.

The trend of a better approximation increasing the diameter, is also con�rmed by looking
at the maximum of the curves of the variance decomposition (Fig. 4.17). Indeed, they
decrease because particles with larger diameter are less perturbed by the �ow �eld due to
the larger Stokes number; the numerical outputs depend on geometrical parameters and
particle trajectory, so that considering larger droplets, the uncertainties on the geometry
has a milder impact on the collection e�ciency.
It's important to highlight that the trend of the variance curves is similar to the one for
MVD larger than 40µm: starting from the impingement limit on the suction side, σ2

increases almost linearly until the peak, located in the region of the leading edge; then, it
rapidly decreases to a value that remains almost constant throughout the pressure side.
However, this trend is extremely di�erent w.r.t. the variance's curve of the appendix-C
case (Fig 4.13).

The Sobol indices also have a di�erent distribution throughout the airfoil w.r.t. the 20µm
case: on the upper part of the surface, the behaviour is almost constant at di�erent
diameter; on the contrary, at lower surface, the AoA has an increasing relevance when the
diameter increases, as shown by the green area in Fig. 4.18. This incresing relevance is
also highlighted by Table 4.3. This is due to the fact that for larger droplets, the angle of
attack and the angle of impingement of the particle play an important role on the physics
and. therefore, also on the model employed; they are, indeed, two of the parameters
governing the splash of the droplets. As mentioned before, if the impact angle tends to
be normal to the surface, the droplets splash. However, in accordance with Table 4.3, the
most of the uncertainty on the output is due to MVD, since it is still more relevant than
the other parameters in the suction side of the airfoil, which is the area with larger values
of variance. This can be explained by the positive angle of attack and the camber of the
airfoil.

Mach Pressure Temperature MVD AoA Higher Order
MVD=52µm 0.0615% 0.0046% 0.0024% 82.7863% 19.8405% 0.1720%
MVD=111µm 0.0097% 0.0023% 0.0029% 89.5360% 11.4417% 0.1017%
MVD=154µm 0.0077% 0.0035% 0.0035% 86.0803% 15.1185% 0.1165%
MVD=236µm 0.0077% 0.0088% 0.0187% 77.9539% 23.7944% 0.1898%

Table 4.3: Integral values of Sobol indices normalized by the total variance of β
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(a) MVD = 52µm. (b) MVD = 111µm.

(c) MVD = 154µm. (d) MVD = 236µm.

Figure 4.15: Mean β (left scale) and RMSE (right scale) of PC predictions.
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(a) MVD = 52µm. (b) MVD = 111µm.

(c) MVD = 154µm. (d) MVD = 236µm.

Figure 4.16: Comparison among numerical prediction and experimental data.
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(a) MVD = 52µm. (b) MVD = 111µm.

(c) MVD = 154µm. (d) MVD = 236µm.

Figure 4.17: Variance decomposition and impingement limits.
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(a) MVD = 52µm. (b) MVD = 111µm.

(c) MVD = 154µm. (d) MVD = 236µm.

Figure 4.18: Variance decomposition in �rst order Sobol indices.
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5| Conclusions and future

developments

This thesis presented a computational framework to compute the collection e�ciency
under uncertainty. The in-house Lagrangian particle tracking code PoliDrop is coupled
with the open-source CFD solver SU2 to calculate the aerodynamic �eld and the collection
e�ciency β. The uncertainties of the random input variable is propagated through the
entire computational model using a PC approach in order to de�ne the uncertainty bounds
of the numerical output. This process is applied using two di�erent two-dimensional
geometries, however, it can also be employed to any geometrical problem, and even three-
dimensional cases.

The numerical outputs are preliminary compared with the experimental data collected at
NASA IRT and described in [33]. The simulations fairly reproduce any case presented,
demonstrating the capability of the computational framework to predict the experimental
observations.

The stochastic analysis is performed by computing and manipulating the PCE coe�cients
obtained. The analysis shows di�erent, yet similar behaviour between the cases proposed.
Considering the MS-317 airfoil a comparison among employing or not a splash model to
the particle tracking software is done. When the LEWICE splash model is employed,
the PC prediction better replicates the experimental data; moreover, the variance is one
order of magnitude smaller than the case where the assumptions described in Sec. 2.2 are
implemented. This behaviour was expected due to the physics of the problem, which is
better approximated by applying a splash model to PoliDrop, since the MVD of this case
is larger than 40µm, therefore lying in the Appendix-O conditions.
The variance curves also show di�erent characteristics: where the splash model is em-
ployed, the maximum of the curve is in the region of the LE, while in the suction side
of the airfoil it decreases almost linearly until the impingement limit; on the other hand,
the curve has the peak at the impingement limit on the upper part of the surface, then
it decreases until a minimum in the neighborhood of the LE and it slightly increases to a
new maximum at the impingement limit in the lower part of the surface.
The sensitivity analysis is obtained by studying the �rst Sobol indices: the major contribu-
tion to the variance in both cases is due to the uncertainty on the MVD, and furthermore,
the relevance of the AoA increases when the splash model is used, especially near the LE
in the pressure side of the airfoil. The other random parameters have much lower in�uence
on the uncertainty and, therefore, can be neglected in future analysis.
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Considering the NACA-23012, the uncertainty quanti�cation study is performed increas-
ing the diameter of the particles, while comparing the collection e�ciency results for
Appendix-C and Appendix-O conditions. The variance shows di�erent behaviour between
these cases: in the Appendix-C condition, the curve has two peaks in the impingement
limit and a minimum at the LE; for MVD greater than 40µm, the curves increase from
the impingement limit on the suction side of the airfoil until the maximum near the LE,
then rapidly decrease to a value which remains almost constant throughout the pressure
side of the surface. Moreover, considering the SLD cases, the collection e�ciency presents
a more prominent peak and longer tails when MVD increase; furthermore, the impinge-
ment limits move further aft, in a manner which is directly proportional to the MVD.
Concerning the Sobol indices, in each case taken into account the major contribution
to the uncertainty is related to the MVD. However, it is important to highlight that in
Appendix-C conditions, the uncertainty on the cloud contributes likewise along the sur-
face. In the SLD cases, instead, the indices exhibit a di�erent composition on the suction
and on the pressure side of the airfoil: in the suction side, where the variance is larger,
the most contributing parameter is the MVD; in the pressure side, where the variance
is smaller, AoA increases its contribution as the particle diameter increases. The other
parameters considered can be neglected in future works due to their minimal contribution
on the uncertainty of the output.

The main objective of this thesis was to propagate the experimental uncertainty through
the entire computational framework in order to compute the collection e�ciency. The
results, compared with the experimental data, give important insights about the validity
of the code and they demonstrate that assessing the input uncertainties is fundamental to
retrieve the experimental condition. However, the reasons for the overestimated peaks of
β in some Appendix-O cases are not related to the experimental setup and they must be
investigated in numerical models, such as the drag coe�cient model or the particle break
up.
Considering the sensitivity analysis it is possible to extract another important information:
the MVD is the most contributing parameter to the uncertainty of the collection e�ciency;
however, the AoA increases its inl�uence when the diameter of the particles increases. This
insight can be useful for future tests setup in the wind tunnel or in the design of the IPS.

In this work the uncertain parameter are related to the experimental setup; a possible
future development could aim at fully characterizing the sources of uncertainty, such as
the empirical model of the particle break up, or the CD-Re model. This would lead to
a complete de�nition of the sources of uncertainty in the SLD model of the physics and,
consequently, in the numerical simulations.
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