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1. Introduction 

Digitalization, product servitization, big data and 

machine learning are now part of the ordinary 

language when it comes to manufacturing 

industries. Unfortunately, these trends are not 

exploited for their whole potential and, too 

frequently, are not employed at all by companies. 

This work has the ambition to provide clear 

guidelines and a framework to help manufacturing 

companies exploiting data collection and analysis 

for accelerating and enabling the large-scale 

introduction of Circular Economy related 

strategies. Most of the issues and challenges 

affecting European manufacturers and customers, 

indeed, have the potential to be solved with the 

introduction of circular techniques such as Reuse, 

Repair, Remanufacturing and Recycling, as long as 

they are supported by an integrated 

transformation of the entire business.  

The methodology presented in this work will deal 

with the strategic problems and implications of 

introducing AI and Machine learning in one of the 

most critical and relevant activity in a 

manufacturing company: product design, with a 

lifecycle perspective.  

2. Context 

The starting point is the consciousness about the 

need, at manufacturing industry level, to change 

perspective and to move to a more sustainable and 

efficient management of resources, mainly 

intended as time and materials. This is due to the 

combination of megatrends such as demographic 

growth and social change, emerging markets, 

climate change and scarcity of resources which 

lead to the need to revolutionize the way value is 

created.  

Circular Economy approaches represent the path 

to be followed. [1] However, their complexity still 

has to be tackled with a systematic and structured 

method. Circular economy processes like re-

manufacturing, disassembly and recycling are still 

far from being deployed at a large scale due to 

issues related to the inherent complexity of 

products and to the difficulties in managing and 

organizing the reverse chain and the collection of 
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returned products. These issues can be faced 

through the combination of different tools and 

strategies, which are reported in this work. Among 

all the complex products that are now present on 

the market, specific mention is done for Lithium-

Ion battery packs for Electric Vehicles, due to their 

increasing importance in current and future 

scenarios and to the high complexity related to 

their end-of-life management. The key finding, and 

the starting point of the work, is the major role that 

the design of products has in determining the 

feasibility and the easiness of adoption of the 

circular economy techniques. [2] Product design 

strongly influences the ability of a product to be 

handled, disassembled, inspected, repaired, and 

remanufactured. For this reason, product design is 

the target of the developed methodology. The first 

strategy which is introduced in the work is the 

design for product lifecycle. Particular attention is 

posed on the dynamics linking product to 

processes and system, dealing to the need to 

strategically consider the re-definition of 

companies’ processes and systems when acting on 

the product. Tools for achieving this goal are 

represented by the introduction of Artificial 

Intelligence technologies and in particular 

Machine Learning. Major issues in the adoption of 

this technology mostly regard the proper 

identification of needed data and their collection. 

In current scenario, attempts of using machine 

learning for solving circular economy issues have 

been made but are still very far from being 

deployed. Also, they do not focus on the design of 

products, rather on specific operational issues, 

with a very poor level of integration.  

On the other hand, new research are under 

development as concerns the introduction of 

machine learning in product design phase. 

Although they do not specifically target De-

manufacturing purposes, an interesting example of 

such kind of implementation is provided in [3] and 

[4].  

In this variegated and challenging context, this 

work has the aim to combine the mentioned 

aspects in a systematic way, trying to couple with 

their related issues.  

According to CIMO logic, he aim is to develop, 

considering manufacturing firms (Context), a 

structured methodology and framework 

(Intervention) allowing the exploitation of machine 

learning and strategic tools (Mechanism) to design 

CE oriented products (Outcome). 

 

3. Gaps and Objectives   

As concerns the use of machine learning for 

solving different de-manufacturing issues, no 

practical implementations nor clear frameworks 

illustrating the path to be followed are present. 

What is missing is a proper stage setting, i.e., a 

preliminary step to be performed in order to allow 

a systematic implementation of enabling 

technologies for solving specific operational and 

tactical needs in the adoption of Circular Economy 

strategies. To make and example, it is impossible to 

have an algorithm able to perform hard 

disassembly tasks if the product was not designed 

for enabling this kind of activity.  

This work poses itself at strategic level, providing 

a framework for supporting the design of products 

for Circular Economy purposes, i.e., for enabling 

future ML implementations at operational level 

through the design of the entire lifecycle of the 

product.  

This is carried out considering the design phase as 

a multi-stage process, which requires many inputs 

to be considered and a high level of integration and 

collaboration between companies.  

Until now, research and experiments on the 

introduction of AI in designing products are built 

considering the design phase as a simple, single 

stage one. This do not take into account the always 

increasing complexity of products’ structure and 

the unbreakable relation linking product to process 

and system.  

This work combines  

▪ Structured and multi-stage design 

approach in a co-evolutionary perspective 

▪ Lifecycle oriented design  

▪ Exploitation of machine learning and 

generative design  

For enabling the future use of machine learning for 

de-manufacturing processes, and in general for 

facilitating the introduction of CE strategies.  

4. Framework 

Built considering product design, process, and 

system together, the developed framework is 

illustrated in Figure 1.  
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Figure 1- Framework of reference 

The framework starts with the definition of the 

company strategy and the identification of the 

main business areas which will be impacted by the 

new pursued product design. This phase deals 

with the decisions about the supply chain 

organization, the reverse chain management, the 

specific circular economy approach that is willing 

to adopt, the key partners and activities, and with 

the possible re-thinking of the revenue stream and 

the way relationships with customers are built. In 

other words, the required level of integration and 

synergies between product, process and system 

leads to the redefinition of the entire business 

model. The second phase is a proper setting of 

measures for evaluating and assessing the 

performances of the company at every point in 

time, during the undertaken path. KPIs must cover 

▪ system performances, 

▪ processes efficiency and effectiveness, 

▪ product design compliance to 

requirements 

under the manufacturing and remanufacturing 

perspectives. This means that the set of measures 

must be chosen in such a way to guarantee the 

right assessment of circular economy related 

performances together with traditional economical 

and operational indicators. These last indicators 

are for example ROE, EBITDA, lead time, time to 

market ecc., while the circular economy related 

performances must be assessed with an integrated, 

holistic and scalable set of measures considering 

product, process and system together.  

After these preliminary phases, the framework 

continues with the definition of the current space 

of solutions, intended as the set of features and 

requirements that the product must satisfy. This 

space of feasible solutions can be divided into three 

main areas: 

▪ Product Definition, i.e., features of the 

product responding to specific customers’ 

needs. 

▪ Design Variables, i.e., technical, 

engineering specifications of the product. 

▪ Constraints represented by Circular 

Economy requirements.  

 

Once drafted, the list of features and attributes 

defining the solution space must be structured and 

transformed in a ordinate and readable set of data. 

The big effort in this phase lies in the translation of 

the unstructured information in a set of data which 

can be collected in an ordered and systematic way, 

and in the assignment of a relative importance to 

these data. 

The next step is a benchmark between needed data, 

i.e., those defined in the previous stage, and 

currently available ones. Due to issues related to 

data collection, it is common that companies are 

not provided with the tools for collecting the entire 

set of data they need for developing the method. In 

this case, a preliminary iteration of the method can 

be concluded with the modification of the 

informative system of the company, with the 

introduction of new tools for gathering data, with 

the collaboration with other companies or with the 

initial modification of the product design, in a way 

which allows needed data collection. In this sense, 

the developed method tackles the issues related to 

the lack of clear guidelines and systematic 

approaches for data collection, providing a tool for 

identifying the needed data and consequently 

gather them. Once fundamental data about the 

current product design are available, they have to 

be properly cleaned and pre-processed, following 

the traditional Data Mining activities, illustrated in 

Figure 2. 
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Figure 2- Data mining process 

Data present in the dataset (data mart) are split into 

categorical and numerical attributes, in order to be 

properly treated in the phase of “exploratory data 

analysis”.  

This is done to perform the core part of the method, 

which consists in the evaluation of current design 

configurations under the defined measures of 

interest. In this phase, the defined KPIs specifically 

targeting the product are used for modelling 

configurations to evaluate them and assess their 

level of adherence to requirements.  

 

4.1. Evaluation phase 

For evaluating existing configurations, the 

prepared data are used as input to feed regressive 

algorithms able to learn the existing relations 

between product characteristics and specifications 

and the related KPI. n different algorithms have to 

be trained, being n the number of defined 

measures used to assess the goodness of the 

configuration (i.e., the KPIs). The stage of attributes 

selection will be different for the trained 

algorithms since features are selected basing on 

their relevance and impact on the target variable. 

Changing the target variable, which is the specific 

KPI, different attributes will be considered relevant 

and will be selected. In this direction, the 

development of these algorithms also acts as a 

validation of the choice of data. The outputs of the 

training and development on the n algorithms will 

be n different models which describe the same 

configurations under different perspectives. In this 

way, future configurations can be easily evaluated 

through the trained algorithms and evidence of 

their ability to satisfy circular needs and customer 

requirements will be given. The nature of machine 

learning approach requires that the best algorithm, 

i.e., the one that performs better in assigning the 

right value of the KPI to each observation while 

guaranteeing the right level of generalization, is 

not known a priori. A grid search must be 

performed for testing different algorithms in a “try 

and error” perspective. Different algorithms are 

evaluated basing on defined measures which are 

typically: 

▪ MAE, which is the mean average error 

▪ MSE, which is the mean squared error 

▪ RMSE, which stands for root mean 

squared error 

▪ R squared.  

 

In case of very few data available, clustering can be 

used for grouping different configurations basing 

on the degree of their similarity and allowing 

further analyses to be performed at single cluster 

level. 

The case of new product design requires different 

approaches to be followed. In this situation, no 

available configurations are present in the market, 

and the only input is given by the upstream stage 

output, i.e., solutions provided by the Generative 

Design Algorithm. In this case, instead of using 

Black box machine learning algorithms, the best 

solution could be that of creating ad-hoc white box 

models, exploiting the knowledge of the physics 

behind the object design. White-box models, 

indeed, are based on known physical laws which 

are able to model the drafted product 

configuration (general representation) and link it 

to specific measures of interest. This process 

requires big efforts in the study of existing relations 

between variables, but it allows to extend the 

method to products for which old configurations 

are not available, or to companies which have a 

deep knowledge on the physics behind a product 

and prefer to apply them for evaluating solutions.  

Even in case of already existing products, each 

company can decide whether to develop white or 

black box models, or even to go for a double 

evaluation, trying to develop both approaches for 

improving the robustness of results.  

At the end of this stage, the output is a set of 

models describing the behavior of different 

configurations basing on n relevant metrics.  

This is fundamental for any kind of design process 

since it provides a clear and structured approach 
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for evaluating feasible or already existing 

configurations.  

4.2. Exploratory phase 

Exploration of results includes the merging of the 

different evaluations in a unique result, allowing to 

choose the best configuration or configurations.  

This can be done with the creation of a multi-

objective function, which comprehends all the 

measures of interest and synthesizes them in a 

single objective.  

After that, decision must be taken on whether to be 

satisfied with existing solutions or to generate new 

product configurations, after a proper adjustment 

of the solution space.  

In the first case, design guidelines are set, and a 

standard can be introduced, corresponding to 

product specifications related to the best 

configuration. 

In the other case, the new space of feasible 

solutions can be fed into a generative design 

algorithm. 

4.3. Generative Design Phase 

Generative design is an extensive explorative 

design process which consists in giving design 

goals as input to the generative design process, 

along with parameters such as performance, 

spatial requirements, materials, manufacturing 

methods, cost constraints etc. Unlike optimization, 

the system explores all possible permutations of a 

solution by quickly generating many design 

alternatives. The system learns through testing and 

receiving feedback on the various iterations of a 

solution, and applies updates based on that 

feedback to the next iteration, until the design 

satisfies the objectives required.  

Depending on the effort the company wants to put 

in preliminary phases and in training the 

algorithm, different approaches can be selected, 

which require different inputs and which 

consequently lead to diverse levels of quality of 

results. Lowest quality is gained with random 

sampling approach, which typically relies on 

pseudo-random number generators. In this case, 

bigger effort should be put in the next phase of 

evaluation and exploration of results. As shown in 

Figure 1, indeed, after generative design algorithm 

implementation, the process should be re-iterated 

for testing and evaluating the generated solutions. 

5. Lithium-ion Batteries  

The described method is applied to Lithium-ion 

batteries for Electric vehicles. The design 

complexity of this product and its logistic system, 

its complicated end-of-life management, and its 

increasing importance due to the growth of electric 

mobility market leads to the need to define a 

systematic way to tackle all these issues.  

After a careful selection of needed data defining 

the space of solutions, carried out through an in-

depth study on the functioning and architecture of 

battery packs, the phase of evaluation of current 

configuration has been performed. This was done 

considering a peculiar measure of interest when 

dealing with circular economy purposes: the 

easiness of disassembly of the product.  

Regressive algorithms were trained, feeding them 

with the relevant data selected and collected 

starting from existing electric vehicles models. The 

algorithm which performed best in learning and 

predicting the relationships between independent 

input variables (i.e., attributes corresponding to the 

product definition, the design variables and the CE 

constraints) and the easiness of disassembly was a 

Lasso regression algorithm, whose equation is 

reported in Equation 1. Performances of the 

algorithm and its hyperparameter are reported in 

Table 1. 

 

min
𝑤

𝑅𝑅 (𝑤 , 𝐷) =  min
𝑤

𝜆 |𝑤| + ∑(𝑦𝑖 − 𝑤′𝑥𝑖)2

𝑚

𝑖=1

 

Equation 1 - Lasso regression 

 

Best score: Lasso 

Regressor 

Negative Mean Squared 

Error = -0.550333 

Best 

hyperparameters 

Generalization 

term λ= 0.01 

Normalize 

= False  

PERFORMANCES Train set  Test set 

Mean Absolute Error 0.361 0.452 

Mean Squared Error 0.215 0.333 

Root Mean Squared 

Error 

0.463 0.577 

R squared  0.763 0.673 

Table 1 - Selected algorithm Performances 
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This was part of the evaluation phase, done for a 

single KPI (easiness of disassembly). The method 

can be fully performed, with the training of the 

other regressive algorithms able to evaluate 

configurations according to all the measures of 

interest identified. In the work, 10 KPIs are 

proposed, which cover all the aspects related to 

customers satisfaction (both B2B and B2C) and 

Circular Economy needs.  

Next steps of the framework application would 

lead to the exploration of results and se consequent 

decision on whether to be satisfied with an existing 

solution or to generate new design alternatives, as 

shown in Figure 3. 

 

 

Figure 3 - Framework application to LIB packs 

6. Conclusions 

The developed framework poses the attention on 

three important aspects: the fact that the phase of 

product design is complex and multi-stage and 

must be tackled accordingly, in a systematic way; 

important improvements should be addressed in a 

collaborative way, with the co-operation between 

all the companies involved; the introduction of 

enabling technologies like machine learning and 

generative design must be intended as a tool to 

support important decisions, always taken by 

humans. 

Compared to related research in generative design 

and in the use of AI for designing products, this 

work contributes by including all the aspects 

related to the business management and to the 

exploitation of synergies for manufacturers, by 

considering Circular Economy requirements as 

fundamental constraints when designing a 

product in order to simultaneously design its 

lifecycle, and by creating a more generic 

framework that shows the technical and strategical 

workflow of the generative design system. 

It also contributes by further exploring the effects 

of the framework adoption on potential future 

iterations, explaining the benefits of a closed loop 

methodology aimed at continuously improve 

results.  

Finally, the field of generative design and its 

application in the lithium-ion batteries for EV 

context shows promises and has the potential to be 

a part of a future designer’s toolkit. The main 

findings in this direction regard the 

- validation of the relevant set of variables 

for describing the easiness of disassembly 

behavior (mix of categorical and numerical 

variables), and 

- the values assumed by these variables 

which characterize a configuration that is 

easy to disassemble. Furthermore, the  

- identification of a precise model for 

describing such behavior, which can be 

easily replicated for other behaviors.  
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Abstract 

The multitude of changes that are happening in the world must be tackled in a 

structured and rigorous way. Given the importance of manufacturing industry in the 

European context, the impacts that these changes have on it are huge and should be 

addressed. Scarcity of resources, demographic growth and social changes, 

environmental issues and climate change are just some of the most important 

megatrends which are leading to the need to revolutionize the way value is created 

and delivered to customers.  

The adoption of Circular Economy approaches represents the solution to most of these 

issues and must be supported by a strict strategy which should start with the complete 

re-design of products and, consequently, of business models. Currently, products are 

designed and engineered for satisfying functional requirements and ensure the pace 

of technological change, without any particular attention posed on their lifecycle. The 

path toward a large-scale implementation of Circular Economy approaches like Reuse, 

Repair, Remanufacturing and Recycling must be undertaken and should start with a 

correct design for product lifecycle. 

A clear framework is presented for tackling all the critical aspects related to the 

introduction of CE strategies in every manufacturing industry, allowing to guarantee 

the maximum exploitation of synergies for the manufacturers. An important boost is 

provided by the introduction in the framework of enabling technologies like Machine 

learning algorithms and Generative design, which allow to speed up and lighten some 

phases of the process. The proposed framework starts with the definition of the 

strategy that is willing to pursue, and the consequent setting of KPIs for measuring the 

desired performances in a co-evolutionary approach, thus considering products, 

processes, and system together. These preliminary stages are followed by the core part 

of the method which consists in the exploitation of Machine Learning tools for 

enabling a precise evaluation of existing design configurations under the defined 

measures of interest. The phase of evaluation and exploration of results is followed by 

the decision on whether to be satisfied with an existing solution or to generate new 

design configurations, through the use of Generative Design tools, modifying the 

existing space of feasible solutions. Particular attention is posed on the phase of 
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relevant data identification and collection, in order to guarantee the robustness of 

Machine Learning built models.  

The methodology is then applied to a complex and critical product which is Lithium-

ion batteries for Electric Vehicles. The relevance of this product in the current and 

future scenarios and the complexity related to its end-of-life management makes it a 

perfect starting point for testing the proposed method. The phase of evaluation of 

solutions is carried out through the training of a regression algorithm able to learn the 

existing relationships between variables describing the product configurations and the 

related Easiness of Disassembly. 

 

Key-words: Circular Economy, Product Design, Re-manufacturing, Machine learning, 

Key Performance Indicators (KPI), Lithium-ion Batteries. 
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Abstract in lingua italiana 

I continui cambiamenti che si stanno svolgendo negli ultimi anni devono essere 

affrontati con un approccio sistematico e rigoroso. Vista l’importanza che l’industria 

manifatturiera ha nel contesto europeo, le conseguenze dei cambiamenti su 

quest’ultima sono molto importanti e devono essere trattate.  

La scarsità di risorse, la crescita demografica ed il cambiamento sociale, il 

cambiamento climatico ed i problemi ambientali che ne derivano sono solo alcune 

delle più importanti tendenze che stanno portando alla necessità di una completa 

ridefinizione del modo in cui il valore è creato e offerto al cliente.  

L’adozione delle tecniche e degli approcci legati all’Economia Circolare rappresenta 

l’unica soluzione per fronteggiare gran parte dei cambiamenti menzionati, ma deve 

essere supportata da un approccio strategico e rigoroso che dovrebbe partire con la 

riprogettazione dei prodotti, e conseguentemente del modello di business 

dell’azienda. Al momento, i prodotti sono pensati e disegnati per rispondere ai bisogni 

dei clienti, e per garantire il giusto tasso di cambiamento tecnologico. Nessuna 

attenzione è posta al ciclo di vita del prodotto al momento della sua progettazione. Il 

percorso che porta ad una introduzione su larga scala di tecniche come il riuso, il re-

manufacturing ed il riciclo deve essere intrapreso e deve partire con il corretto design 

dei prodotti pensando al loro ciclo di vita. 

All’interno dell’elaborato viene presentato un preciso framework che affronta tutti gli 

aspetti critici legati all’implementazione delle tecniche di Economia Circolare 

all’interno di una qualsiasi azienda manufatturiera, consentendo di sfruttare le 

potenziali sinergie per i produttori. La metodologia prevede l’utilizzo di importanti 

tecnologie di supporto quali il Machine learning, che rappresenta uno strumento per 

alleggerire e velocizzare certe fasi del processo. Il framework proposto inizia con una 

chiara definizione della strategia che l’azienda vuole perseguire, proseguendo con la 

configurazione di un insieme di KPIs volti a misurare le prestazioni seguendo un 

approccio di co-evoluzione, ossia tenendo conto dell’indivisibile relazione tra 

prodotto, processo e sistema. Queste prime fasi sono seguite dal fulcro della 

metodologia, che prevede l’utilizzo di algoritmi di Machine learning per valutare le 

configurazioni di prodotti esistenti, in base a ciascuna misura definita 
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precedentemente. Dopo una precisa valutazione ed esplorazione dei risultati, 

l’azienda deciderà se esistono configurazioni in grado di rispettare le performance 

desiderate, o se proseguire con la fase di Generative design, dando in input al sistema 

le giuste variabili e vincoli. 

Un’attenzione particolare è posta alla fase di selezione e raccolta dei dati necessari ad 

alimentare gli algoritmi, per garantirne la robustezza e l’ottimizzazione dei risultati.  

Il framework è applicato ad un prodotto complesso e di particolare interesse: le 

batterie agli ioni di litio per i veicoli elettrici. L’importanza di tale prodotto nello 

scenario attuale e futuro, assieme alla complessità della sua gestione a fine vita fa sì 

che questo prodotto sia un perfetto punto di partenza per testare la metodologia 

proposta. La fase di valutazione delle configurazioni esistenti è svolta allenando un 

algoritmo di regressione capace di imparare le relazioni esistenti tra specifiche del 

prodotto ed una particolare performance che è la facilità di disassemblaggio.  

 

Parole chiave: Economia Circolare, Progettazione del prodotto, Re-manufacturing, 

Machine Learning, Indicatori di Performance (KPI), Batterie agli Ioni di Litio. 
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Introduction 

Fourth industrial revolution is completely changing the scenario in which 

manufacturing companies are operating. It is a complex phenomenon, affecting 

economical, social and environmental aspects. While other historical industrial 

revolutions were concentrated on the development of a particular technology, which 

for sure had impacts on each of the three aspects mentioned before, this fourth 

revolution embeds an enormous and continuously growing number of technologies 

and tools.  

Instead of thinking about the fourth industrial revolution as a responsible of the 

stabilization and empowerment of the take-make-use-dispose model due to mass 

production and increased rate of technological change, this work will concentrate on 

its potential to overcome barriers and enable big changes in business models and value 

creation, in a Circular Economy perspective. Technological innovation plays a major 

role in bringing the circular economy vision to life. For instance, intelligent and 

connected assets can enable predictive maintenance to prolong the asset life; 

blockchain can create traceability and transparency in supply chains to reduce waste; 

and repair is made easier by 3D printing of spare parts. However, the starting point 

must be the products’ design. AI, as an emergent ‘Fourth Industrial Revolution’ 

technology, can support and accelerate the pace of human innovation to design 

products, can bring together aspects of successful circular business models, and 

optimize the infrastructure needed to loop products and materials back into the 

economy. Utilizing AI capabilities could create a step change which goes beyond 

realizing incremental efficiency gains, helping to engineer an effective economic 

system that is regenerative by design. 

It is important to dominate the change, to foresee and exploit opportunities and to 

strategically keep an eye on what determines the success/unsuccess of a company. 

These last responsible of the fate of a company are well represented by the ability to 

create a sustainable business, both under the economical and environmental point of 

view. This brings to the identification of two most important megatrends:   

• Right understanding of customer needs, 

• Attention to environmental impact of production and resources criticalities. 
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This is the reason why the two main topics of the work arise: Circular Economy 

strategies which allow to decouple resources consumption and economic growth, thus 

strongly and positively affecting environmental problems while guaranteeing the 

right level of social and economic development; Artificial Intelligence technologies as 

a strong tool to properly understand the real needs of the customers, combining them 

with the requirements coming from a circular strategy and allowing to create lean and 

slim processes.  

It is clear how powerful can be the implementation of AI enabling technologies in the 

creation of a structured methodology allowing to quickly and wasteless find new 

circular product designs that are fully able to satisfy customers’ real needs.  

To synthesize and visualize the concept, Figure 1 shows the described mechanisms. 

 

Figure 1- Problem setting 

Climate change, demographic change, scarcity of resources, emerging markets, 

product servitization and increasing customers’ requirements are some of the main 

megatrends; challenges for manufacturers are represented by increasing competition, 

volatility of raw material market, government policies and restrictions aimed at 

mitigating climate change. New solutions are represented by Circular Economy, and 

the wide range of Artificial Intelligence tools plays the role of Enabling technologies.
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1. Circular Economy and De-

Manufacturing 

In the last years, the frequency of disruptions has risen. Disruptions may affect the 

technology, and we talk about technological disruption, or the entire business models.  

Aim of the Circular Economy is to integrate these two types of innovation to promote 

energy and resource efficiency in an integrated way, in every kind of industry.  

Ensuring a higher life quality with less resources extracted and consumed is one of the 

clearest strategical points of a circular economy approach.  

The solutions allowing to decouple production and resource extraction are embedded 

in a sophisticated and continuously improving set of technologies, tools, processes, 

and knowledge-based methods aimed at recovering and re-using functions and 

materials from industrial waste and post-use high tech products, which goes under 

the name of De-manufacturing and Remanufacturing.  

It is important to underline that benefits of circular economy can not be simplified and 

led back to purely environmental benefits. Innovations and changes linked to a circular 

way of making business have a strong and positive impact at social and economic 

level.  

Equilibrium-modelling results and a comparative labor study suggest that, for the 

European economy at large, circular economy could produce better welfare, GDP, and 

employment outcomes than the current development path. This is also due to the 

highly volatile nature of raw materials market, to its intrinsic risk connected to politics 

and social instability typical of the countries in which raw material are extracted. 

Interrupt the dependency to this market represents a fundamental action to be 

undertaken. 

Decoupling production and resources extraction through re-use, repair, 

remanufacturing, and recycling is going to delete and reduce some jobs but also to 

create new ones, with a positive delta and a positive impact on the life quality of 

workers all over the world. 
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The starting point is that circular economy is not about consuming less. Instead, it 

promotes a model in which all the people have the same chance to consume high 

quality products. This is achievable with a growth within strategy.  

Social advantages of Circular Economy can be clearly summarized as follow. 

▪ Creation of new jobs, as  reported in Figure 2. 

▪ Bringing of new efficient and effective technologies helping humans and 

allowing to reduce those tasks that are dangerous and with reduced added 

value. 

▪ Improvement in the image of companies adopting such kind of strategies. 

▪ Energy savings, since raw material extraction is much more expensive in terms 

of energy consumed than re-work or recycling, given the same level of purity 

required. 

▪ Political benefits deriving from the independency from volatile and risky 

markets. 

▪ Reduction of the gap between countries and social classes, allowing to gain a 

more homogeneous distribution of products and resources.  

Figure 2- Qualitative employment effects of a Circular Economy transition [82] [83] 

[84]  
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This last point is crucial and of central importance under the social point of view. It 

can be reached only through a large-scale deployment of activities related to De-

manufacturing like remanufacturing and recycling.  

CE is not moving activities along the lifecycle of the product, it is changing the entire 

business model, therefor the way the lifecycle is designed and created.  

According to McArthur Foundation [1], value is created through four major 

mechanisms, which involve different strategies and different De-manufacturing tools. 

1. The power of the inner circle.  

 

Figure 3- The power of inner circle 

Higher margins can be reached with the ability to keep the product as close as 

possible to direct reuse. Gains in terms of money come with savings in 

materials, labour, energy, capital and related externalities. 

2. The power of circling longer. 

 

Figure 4- The power of circling longer 

It’s achieved by keeping the product/component/material in use as long as 

possible. This mechanism can be further split in two different strategies: 

enabling more cycles of the same product/single component or increasing the 

timespan of a single cycle. In the first case, attention can be posed on the entire 

product or on single components, allowing those components with a higher 

expected lifecycle to remain in use longer, through their proper implementation 

in different products. 
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3. The power of cascaded use. 

 

Figure 5- The power of cascaded use 

This mechanism is also known as Industrial Symbiosis. It consists in recovering 

not only products but also energy and materials.  

4. The power of pure circles. 

 

Figure 6- The power of pure circles 

Cross-sectorial strategy. It enables to create value using materials discarded 

after the value creation by another value chain, as if they were virgin materials. 

This can happen exploiting different materials properties that have not been 

exploited in previous value-chain. Value creation happens thanks to the 

increased efficiency in redistribution and collection of materials through 

uncontaminated material streams, while guaranteeing high quality and service 

level.  

 

Advantages of Circular Economy are many and involve both companies and 

consumers. The path through the implementation and spread of CE activities has been 

undertaken by some companies but, in order to reach the expected and desired results, 

a large-scale commitment is needed.  

Such commitment must be supported by a systematic approach to tackle major 

challenges and critical steps, beside Cross KETs innovations in both traditional and 

emerging sectors. Innovations should involve: 
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▪ Digital innovations; 

▪ Value chain building innovations;  

▪ Enabling technologies and processes innovations.  

1.1 Circular Economy in Manufacturing Industry 

Concentrating on the Circular Economy enabling technologies and processes, which 

continuously need to innovate and improve, it is fundamental to pose the attention on 

the different strategies by which Circular Economy is expressed. Depending on the 

point at which the reverse chain intercepts the traditional value chain, different 

approaches can be identified. 

 

Figure 7- Circular Economy business options to close the loop 

1.1.1 Reuse 

This activity, which mostly exploits the power of inner circle, comprehends the set of 

operations aimed at putting a return product back in the market. The product keeps 

the same form it had in its previous cycle, with or without the need of repair or 

remediate it.  

The product can revert to the market with the same purpose it had in its previous 

lifecycle, for instance being deployed in the same complex product as before, or with 

a completely new purpose (cross-industry reuse).  
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1.1.2 Repair 

Repair involves the correction of faults. It comprehends the set of actions needed to 

return a product or component purely to a functioning condition after the detection of 

a failure.  

Yet at this point, it starts to be clear how fundamental it is to have a proper product 

design, in order to easily identify and reach those components that caused the failure 

and directly act on them, without damaging other components.  

1.1.3 Remanufacturing for Function Restore/Upgrade 

Remanufacturing for function restore returns a used product to at least its original 

performance. From a customer viewpoint, the remanufactured product can be 

considered the same as a new product. 

Remanufacturing for function upgrade provides new functionalities to products, 

extending their value and enabling the introduction of technological innovation into 

remanufactured products. This is done preserving as much as possible the physical 

resources employed in the process.  

Many of the advantages of CE, listed in previous section, can be achieved through 

remanufacturing. This strategy has the potential to provide benefits to the 

remanufacturer, to the customer and to the environment at the same time.  

Both in case of function restore and upgrade, remanufacturing activity is complex and 

multi-stage, involving many actors and requiring many features to be satisfied by the 

return product. Figure 8 shows the path to be followed for performing any kind of 

remanufacturing activity. 

 

 

Despite the presence of many cleaning stages, each stage of the remanufacturing path 

is different from the others as concerns treated parts, and consequently for the adopted 

techniques. For this reason, remanufacturing is a very complex process which needs 

Figure 8- Remanufacturing stages 
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to be optimized and tackled with a structured approach, that should allow to rise the 

margins for remanufacturers.  

Currently, issues and criticalities affect all the operations present in the process, 

especially when dealing with high value-added products.  

The first issue is intrinsic in the nature of the returned products market, and it is related 

to the uncertainty about the conditions of the cores and returned products. 

Remanufacturing, indeed, is a much more complex process than manufacturing itself, 

due to the variety of inputs.  

Stages which are mostly affected by the uncertainty of inputs are the cleaning stages. 

Cleaning in remanufacturing is performed on parts which are of high variability in 

sizes, materials, shapes, and surface conditions. Even the level of contamination and 

the entity of the dirtiness is highly variable and dependent on many factors 

comprehending the upstream works done to the part/component. It is possible to 

distinguish between “unusual” deposits which are deposited on the core surface 

because of the long-term effects of physical, chemical, or biological agents during the 

core’s use phase, and fouling, which is introduced during the remanufacturing 

process.  

 

Besides being complex, cleaning stages are upstream to the most important and critical 

steps of remanufacturing, having a strong impact on their efficiency and on the 

Figure 9- Comparison along the Product lifecycle of factors influencing the cleaning 

efforts [85] 
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effectiveness of the entire process. Five different cleaning steps are identified, which 

are performed for different purposes and on very different parts of the product.  

1 Pre-Cleaning before Disassembly 

2 Cleaning of components and parts after disassembly 

3 Cleaning before Reconditioning 

4 Cleaning before assembling remanufactured parts 

5 Cleaning before painting remanufactured parts  

Also, cleaning in remanufacturing is done for the whole mechanical parts, in order to 

meet the quality requirement after remanufacturing.  

Disassembly represents the first step needed for remanufacturing after a rough 

cleaning of the core. It is the preliminary process also for recycling and recovery and 

as such it absorbs the most variability typical of the reverse chain. It comprehends a 

large set of criticalities and system optimizations needed, summarized in the concept 

of disassembly line design optimization.  

Disassembly 
Main difficulties in disassembly are related to:  

▪ Unknown defect types at components level 

▪ High risk of damaging components during  disassembly operations 

▪ Potential risk of some components (inflammable materials, dangerous 

reactions) 

▪ Multiple core models and multiple quality classes for each core 

▪ Need for precision for performing very difficult operations (low level of 

automation allowed). 

Disassembly is itself a multi-stage process, which mainly involves the need to take 

decisions and optimize solutions subject to multiple and stochastic constraints.  

Table 1- Cleaning stages in Remanufacturing 
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Figure 10 - Disassembly stages        

1. Product analysis is carried out in order to cope with variability and requires  

(i) Collection of information about product’s qualitative and quantitative 

characteristics 

(ii) Identification of KPIs for measuring such characteristics 

(iii) Perform of a statistical analysis for identifying the factors that are more 

relevant to keep into consideration 

(iv) Classification of cores in order to properly treat them 

(v) Collection of information about products assembly and disassembly 

through graphical representation, classification and research of the 

disassembly mechanisms according to fastener type.  

2. The definition of the optimal disassembly level is mostly an economical issue 

aimed at minimizing total costs. Costs comprehend cost of disassembly (both 

fixed costs and variable costs dependent on the task time), cost of non-

disassembly, and set up costs. It is usually carried out through a table 

identifying the delta between costs and benefit of disassembling each 

component.  

PRODUCT 

ANALYSIS 

OPTIMAL 

DISASSEMBLY LEVEL 

DEFINITION 

DISASSEMBLY TASK 

SEQUENCING 

DISASSEMBLY LINE 

BALANCING  

DISASSEMBLY 

LINE DESIGN 
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Figure 11- Optimal disassembly level 

3. Disassembly task sequencing is mostly given by product analysis and 

economical convenience. It deals with the optimization of the sequence in which 

activities have to be performed in order to minimize set up costs, under the 

constraints given by the structure of the product. 

4. Disassembly line balancing is the most critical and time-consuming activity, 

and it can be performed at different levels of approximation and adherence to 

reality. The more the modelled problem is similar to real issue, the higher the 

number of constraints and the higher their stochastic and uncertain nature.   

It is about computing the minimum number of stations required to perform the 

tasks and allocate each task to workstations according to different measures and 

constraints.  

5. Disassembly line design adds the complexity related to coupling between 

machines, adding buffers and optimize their size and number to handle 

variability.  

Despite being sequential according to a purely logical perspective, the mentioned steps 

must be handled in an integrated way. It is not convenient nor suggested to solve each 

point independently or separately from the others. In every Circular economy 

implementation, the links between single stage (process) and system must be always 

considered and tackled. The risk is ending up with a sub-optimal or even infeasible 

solution.  

As mentioned, disassembly is just the starting point of the complex and articulated 

remanufacturing process. After the second cleaning stage, which involves the 

disassembled parts, inspection and sorting of these parts must be performed.  
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This stage represents another key point. Errors in this phase have a strong impact on 

the efficiency of the entire system and on the effectiveness of remanufacturing. In 

remanufacturing in general, inspection can have three targets: cores, parts, and final 

remanufactured product. Every inspection step is followed by a testing phase needed 

to validate results and verify the correct sorting of cores and parts and the correct 

functioning of final products.  

▪ Cores inspection and testing is mostly needed for an economical assessment. 

Aim of this stage is to remove cores that would be uneconomical or impossible 

to remanufacture due to technical constraints. It is carried out through visual 

inspection, physical inspection, or identification inspection. 

▪ Part inspection and testing is carried out after disassembly phase, and it is 

fundamental for selecting only those parts that are worthy to be 

remanufactured. The more the structure of the product is modular and 

standardized, the easier the way this stage can be performed. Another time, it 

is clear how the design of the return product strongly affects the ability to 

perform these tasks in an easy and automatic way. Functional and geometric 

inspection are used for this purpose. 

▪ Final product inspection and testing is the very last stage before the product is 

put back in the market. Warranties on product functionalities needed for 

putting remanufactured products back in the market are delivered through this 

step.  

The stage which characterizes the single remanufacturing process is the re-

conditioning one. Despite being the core of the strategy, it is less crucial and critical 

than other stages. Types of reconditioning processes can be classified into 5 categories: 

▪ Remove surface and shape defects; 

▪ Material addition or surface replacement; 

▪ Restore material properties; 

▪ Assembly and fastening manipulation; 

▪ Surface finishing. 

1.1.4 Recycling  

Recycling is the most expensive and energy consuming activity among the CE 

approaches. It requires well-structured processes and in-depth studies for optimizing 
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the systems and tools exploited for this aim. Nevertheless, in some cases, when reuse 

or remanufacturing are not possible nor convenient, recovering materials through 

recycling can be a good and sustainable option for the business. Recycling systems are 

multi-stage systems including a wide range of possible operations grouped in four 

main categories:  

1. Size reduction: it deals with only one input and one output streams. This stage 

changes the properties of materials in input, thus the belonging of a particle to 

a certain class defined by three orthogonal features: size, liberation, and shape. 

2. Separation: it deals with one input stream and multiple output flows. This stage 

does not change the state of nature of the particles but only their concentration. 

3. Mixing: has multiple input and just one output stream since it merges incoming 

input flows in just one flow. It changes the concentration of particles in the 

output flow. 

4. Splitting: single input and multiple output flows since it separates the incoming 

flow in order to reduce the total throughput entering the downstream stages. 

Output flow rates are thus fractions of the total incoming flow rates. Splitting 

has no impacts on the concentrations of different materials in the output 

streams.  

The objective of recycling systems is to process an incoming input (composite product 

or component) in order to obtain as output separated flows of pure materials which 

can be re-used as secondary raw materials in any other manufacturing process.  

 

Figure 12- Recycling systems 
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Size reduction, also called comminution or shredding, is the only stage which brings 

transformations on particles structure. It brakes large particles into small particles until 

they reach a certain size threshold which allows them to be more easily separated 

through mechanical processes. This stage increases the fraction of liberated particles 

(i.e., homogeneous as concerns the type of composing material). The efficiency of size 

reduction depends on  

▪ Design parameters, which are non-dynamically controllable. It means that are 

static parameters which can not be changed once the design of the stage is set. 

Such parameters are for example the kind of mechanical process used, the size 

and geometry of tools, the chamber capacity.  

▪ Operational parameters, which instead can be changed and controlled after 

having designed the process. Such parameters are for instance the shaft speed, 

the grid size etc.  

Separation stage changes the concentration in output of single flows. It splits a mixed 

input stream into two or more output streams in which the concentration of target 

material is greater than in the input flow. In general, it exploits a particular property 

of the target material. Using this property, an environment is created in which particles 

with high value of the property are forced to move in a different direction to that of 

particles with low value of the property. A taxonomy is given for categorizing different 

separation processes:  

▪ According to the objective: Extraction, in which the target is represented by high 

purity of a single output stream; Separation; De-contamination, in which the 

target is high purity of one or more hazardous materials. 

▪ According to the type of process applied: chemical, thermal, or 

mechanical/physical. 

▪ According to the material property exploited by the process: magnetic 

susceptibility, electric conductivity, density, particle shape or size, colour, 

transparency. 

▪ According to the environment in which the separation takes place: wet or dry.  

It is not uncommon that different separation processes are used in the same system. 

This is what happens for critical products like PCBs, in which a thermal separation 

(Pyrolysis) process is performed upstream to a mechanical size reduction and a 

mechanical pre-treatment separation (electrostatic separation), which are followed by 

another size reduction based on chemical treatment (hydrometallurgical process).  
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Both separation and size reduction efficiency and effectiveness are strongly affected 

by a huge number of factors. This is the main reason why a multi-stage approach is 

needed.  

In particular, the efficiency of separation is undermined by the presence of multi-layer 

particles, which creates impacts among them and prevents the separation to be 

accurate. The probability of having impacts increases with the flow rate increase, and 

therefore splitting stage is sometimes needed upstream to separation process. 

Splitting, indeed, has no impact on particles structure or concentration, it only reduces 

the quantity of mass present in the flow. 

Also, particles shape and liberation have a strong impact on the selectivity of the 

process.  

Separation process is also influenced by static parameters (given by the choice of the 

machine) and dynamically controllable ones, like size reduction stage.  

For better comprehending the complexity linked to such kind of process, and to the 

design of a recycling system in general, the notions of recovery and grade must be 

explained, which are the performance measures of interest for a real separation 

process. 

• Recovery of a target material belonging to a mixture i, in the output flow j is the 

quantity of target mass in output on the total mass in input. 

 

[𝑜𝑢𝑡𝑝𝑢𝑡]

[𝑖𝑛𝑝𝑢𝑡]
 

 

• Grade of a target material belonging to mixture i in the output flow of interest j 

is the mass of target material in output from the mixture i on the total mass of 

target material in output.  

 

[𝑜𝑢𝑡𝑝𝑢𝑡]

[𝑜𝑢𝑡𝑝𝑢𝑡]
 

                         

While Recovery is a measure of the quantity of material recovered, Grade is a measure 

of the quality, i.e., the level of purity of the target material.  

Equation 1- Recovery of target material in the mixture i 

Equation 2- Grade of target material in mixture i 
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Since no real process can provide an ideal separation, it is important to design a 

process allowing to gain the right trade-off between grade and recovery. Optimal 

trade-off is not fixed, rather, it changes with market requirements and volatility of 

prices of materials. Therefore, a sustainable and profitable recycling system should 

provide the right level of flexibility, allowing to match the best economic point for the 

specific point in time.  

Considering the whole recycling system, composed by a specific sequence of all the 

stages described, important KPIs are: 

▪ Grade i,j (z) i.e., grade of flow between stage i and stage j of material z 

▪ Recovery  i,j (z) i.e., recovery of flow between stage i and j of material z 

▪ Total throughput E i,j [kg/hour] i.e., the total (average) amount of material 

crossing a branch (i,j) 

▪ Effective throughput EEFFECTIVE  i,j i.e., the subset of the total throughput 

represented by the only target materials. It is a very important KPI since it 

combines the quantity of material crossing a branch with the quality of material 

in output.  

▪ Specific energy 

▪ Work in progress 

▪ Profit 

These KPIs can be applied to one stage at a time. However, in order to measure the 

overall system efficiency, the definition of a clear strategy is needed. This strategy 

deals with the design of the recycling process, i.e., the setting of a feasible sequence of 

visiting different stages and their definition/design. It is important to keep in mind the 

strong link existing between single process level and system level, since the decisions 

taken at every single stage have a huge impact on the downstream stage and thus on 

the overall result.  

To the aim of this work, explaining the complexity of recycling processes has a 

meaningful scope since it allows to understand how a structured and clear strategy 

plays a fundamental role when it comes with turning complex activities into 

sustainable and profitable ones.  

In recycling case, in fact, suitable systems can be built through the ability to predict the 

particle features in output from a certain stage together with the energy consumption 

of that stage, knowing the input particle features and the machine parameters. Also, 

the knowledge of the effects that upstream stages have on the performance of 

downstream stages are needed to determine the right choice of machine parameters. 
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The development of a methodology aimed at allowing this prediction, and gaining this 

knowledge, is a key activity which involves the exploitation of mathematical tools and 

complex equations, and which can be supported and enhanced by the collaboration 

between humans and enabling technologies like machine learning.  

This strategy can be extended to many other purposes, including the broader aim of 

this thesis. The concept of integration between system and single process will be 

extended to the whole company, considering as process the single company 

function/operation and as system the overall enterprise. Synergies and relations will 

be investigated within the development of a framework.  

The first point to highlight is that, despite the big efforts required by these activities, 

and the need to invest time and money in designing flexible and reconfigurable 

systems, results in terms of monetary savings deriving from their implementation will 

always be positive for manufacturers.  

Manufacturers, indeed, already have a big advantage deriving from the knowledge of 

the product, beside owning infrastructures and machines to be exploited also for 

reverse chain activities.  

1.1.5 Manufacturer-centered approach  

A conceptual model which synthesizes the existing synergies and mechanisms 

between manufacturers and CE approaches is present, known as manufacturer 

centered approach. It provides the right key to understand how business models and 

value chains must be adapted to circular economy requirements in order to create a 

concrete advantage for the manufacturer.  

The key concept is that manufacturers have a favorable position with respect to 

independent remanufacturers since they own the knowledge base related to how the 

product is built and commercialized and why it had been thought and designed in a 

certain way. Manufacturers have the potential to exploit synergies. This potential can 

turn into effective gain only if they are able to properly modify their value chain and 

their business model, besides to correctly re-think and think new products that are 

compliant to circular specifications.  
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Figure 13- Manufacturer-centered Approach 

The framework (Figure 13) matches the dynamics of the product, the process, and the 

system life cycle, and it was designed to address the request of improving 

manufacturing performance in dynamic and unpredictable environments. The three 

elements (product, process, and system) should be profoundly linked and evolve in a 

coordinate manner to achieve the said goal. Product area comprehends the product 

design, while in the process area there are the methodologies and technologies to 

achieve production, fed by the knowledge base which is founded on the product 

characteristics as well. The system level comprehends both manufacturing and De-

manufacturing activities, particularly the ones illustrated in remanufacturing and 

repair processes, that can be located under one roof to exploit resources synergies. 

Another important stage connecting the manufacturer with other actors outside the 

company is logistics: for companies implementing De-manufacturing operations 

logistic is bi-directional, that is, it has the role of shipping manufactured and 

remanufactured products to the global market, and to recover used products from it. 

The post-use product conditions will be more diverse compared to pre-use products. 

Another time, in order to gain the maximum from a circular approach, it is necessary 

to carry out a value chain and business model reconfiguration. 

Today, there are few virtuous producers that are worthy to mention since they 

represent a good example of implementation of the manufacturer centric approach. 

Talking about remanufacturing for function restore, that is of primary interest in this 

work, one of the most involved industries is the automotive one, and products that are 

more affected are the mechatronics components, since they are increasing their 

presence in new vehicles. It’s interesting to know that the only 17% of profit in 
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automation industry comes from the selling of new products; and as far as the 40% of 

profit comes from post-use services. [2] Remanufacturing has the potential to have an 

impact and improve the main source of profit of automotive industry. 

One of the consequences that remanufacturing implementation has on the supply 

chain is the creation of competitiveness between suppliers and the original equipment 

manufacturers that are both in possession of the knowledge base about cores features; 

another actor that takes part to the competition is the independent remanufacturer. 

However, he starts with a disadvantage since he has to collect lot of information about 

the cores and components and thus is placed in a disadvantageous position.  

An example of supplier who put an effort in the creation of a sustainable re-

manufacturing system is Knorr-Bremse, which reconfigured its business model in 

order to remanufacture EBS (electronic braking systems) for trucks. The stages related 

to re-manufacturing activities (Figure 8) are performed in a dedicated plant in Czech 

Republic, exploiting the work of high skilled operators. Indeed, due to the high 

variability which characterizes returned products market, human intensive operations 

are needed. Nevertheless, the Re-Assembly operation of re-manufacturing 

components is done in Germany, where the new products are produced. This is done 

to guarantee the same high-quality of re-manufactured components, which are tested 

with the inspection machines used to test new products. This also avoids additional 

costs related to the purchasing of other inspection machines which are extremely 

expensive. Knorr-Bremse exploits the synergies between manufacturing and de-

manufacturing within the same organization, but in different production sites, while 

it conducts the expensive testing and inspection activities in the main plant in 

Germany.  

It’s interesting to notice that, when improvements in design for product lifecycle will 

allow less human-intensive activities to be carried out for remanufacturing, all the 

stages of the reverse-chain could be performed in the original manufacturing plant, 

allowing to save additional costs and fully exploit the knowledge-base.  

Caterpillar, the largest Construction-equipment manufacturer, is developing a 

decision support system for future re-manufacturing operations. This system is 

composed by in-line inspection and core classification as upstream stages to the 

remanufacturing process. This will allow to have more accurate information on the 

way products have been used, reducing the uncertainty about core conditions, and 

allowing a better understanding of the operations to be carried out. With an overall 

speed up of the process.  

Shifting the attention to recycling, always remaining in the automotive sector, it’s 

interesting to have an overview on the recycling systems for end-of-life vehicles. ELV, 
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in fact, present a large variety of critical commodity materials that can be recovered 

and used for different applications. ELV are usually treated with an integrated de- and 

remanufacturing process flow, meaning that as soon as the materials are 

removed/disassembled, they are sent to re-manufacturing or recycling steps. The last 

step of this integrated process is shredding of the remaining part (ASR= automotive 

shredded residuals). Here opens the large issue briefly introduced and not tackled in 

this work which regards the way recycling systems are designed. Recycling systems 

must be extremely flexible and smart in order to adapt to the volatile and changing 

needs of the market, beside of course being efficient and effective in recovering target 

materials.   

It is straightforward that some components are more critical than others, either to be 

disassembled, either to be remanufactured/recycled. Batteries in ELV represent one of 

the most critical components.  

As an example of manufacturer-centric approach application, Renault created its own 

network of dismantlers, recyclers, and remanufacturer partners (Indra Group). The 

aim of the French company is to keep everything inside in a complete growth-within 

perspective, enabling the re-use of its own materials. In this way the added value and 

the gain of implementing such a strategy are fully exploited. CEO of Renault stated: 

“Who is better than the producer of the goods (and corresponding services) to detect potential 

resources in EoL products and safeguarding their technical and economic value”. This can be 

made through a careful control, quality, traceability, and optimization process.  

Renault also adopted the design for disassembly and design for re-manufacturability 

strategies, adapting the design of vehicles to specific needs imposed by De-

manufacturing processes. This kind of action brings new constraints in the design 

process since it forces to consider the whole product lifecycle while designing it. These 

strategies will be briefly tackled in next sections.  

Indra group developed and industrialized advanced engineering applications for 

disassembly lines optimization, while improving the overall recycling rate of materials 

coming from the core business. The challenge for Renault is to keep the pace of the 

technological change: the development of new dismantling procedures for hybrid and 

electric vehicles is in progress together with the establishment of a proper recovery 

network for End-of-Life batteries.  

Separate mention must be done for the treatment of WEEE (Waste of Electric and 

Electronic Equipment). In this case the collection per se is a problem. In Italy the 

current collection system works but it is not efficient and not sustainable overtime. 

This is because manufacturers do not know anything and do not care about the 

collection and the reverse part of the chain. The need is to involve manufacturers in a 
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more sustainable and conscious way of doing their business and producing their 

products, also given the potential advantage they could gain. Thanks to the 

implementation of a proper and structured methodology, WEEE, in particular PCBs, 

could finally be recycled and treated in the most efficient way. Problems related with 

PCBs are many and regard all the stages of the value chain. The starting point for 

overcoming these issues could be a smart and circular oriented design, enabled by the 

exploitation of data and machine learning tools, which could help for example in 

solving the issue related to different concentration of critical materials in different 

parts of the product, with key metals highly concentrated in small parts of PCBs. 

Furthermore, the reuse and repair that nowadays are not supported at all, could find 

their scope thanks to proper data collection. However, in conventional Linear 

Economy, electronic manufacturing is well a matured industry operating at very low 

cost and re-usability workflow and detachable provision for certain long-life chipsets 

or devices have not been included due to additional cost incurred during the 

production. To mitigate certain issues associated, it is mandatory to understand the 

customer needs aligned with CE and therefore Quality Function deployment (QFD) is 

an efficient tool to design a product that has reusability function. The very starting 

point, however, is the commitment of the manufacturer and his willing to undertake 

a circular approach. [3] 

To put this into context, across all e-waste categories, 48% of the monetary value is 

embedded in the PCBs fraction, yet PCBs account for only 8% of the overall e-waste 

mass. For IT and Telecommunications equipment, or consumer electronics, this PCB 

mass fraction is even higher, typically 13% – 14%. PCB fraction recovery rates can vary 

greatly. While 100% recovery can be achieved through labor intensive manual 

disassembly and separation, mechanical shredding or crushing, if coupled with 

automated flake sorting, results in poor recovery – typically 30% – 80%. About 20% of 

precious metal content is lost to non-recoverable output side-streams such as plastics, 

process residues or saleable metals when e-waste items are mechanically pre-

processed. 

Through a proper design of e-products and PCBs, this issue could be overcome, and 

an easy and automated efficient material recovery could be implemented.  

1.1.6 Open Issues 

As clearly inferable from the PCBs example, the complexity related to the reverse chain 

management and to circular manufacturing approach still have to be tackled. This 

complexity is the result of hundreds of years of development of a linear model of 

production and consumption all over the world. European economy, indeed, is 

surprisingly wasteful in its value creation model. 
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All the strategies related to a circular approach, which involve the introduction of a 

closed loop at different levels, have the potential to become a profitable solution for 

companies and for customers. Profitability comes with a proper market 

transformation, which requires a structured and rigorous approach to be followed.  

For this reason, complexity can be classified basing on the level of integration 

considered. Starting from the highest degree of integration, at Strategic level, the 

previously mentioned challenges related to the change management to a new business 

model and to the creation of a new value chain can be mentioned. The change must 

happen both at technological and business model level, with a wave of disruptions 

targeting all the aspects related to value creation. One of the main problems and 

challenges of such a change lies in the paradigm shift to a growth within model. Also, 

the need to build flexible systems and processes able to follow the market 

requirements and to be sustainable and feasible under the economical point of view. 

Complexity at strategic level Complexity at tactical/operational level 

Build reverse chain and manage reverse 

logistic  

Cores classification, also due to increasing 

product variety  

Predict remanufacturing demand Manage cores variability (quantity and 

quality) 

Forecast cores quantity Manage preliminary stages like sorting and 

inspection  

Adapt the business model Deal with optimal disassembly level and 

disassembly line design 

Adapt the product design  Manage cleaning processes 

Build flexible recycling systems  Deal with high investments and costs for size-

reduction processes 

Build flexible and profitable remanufacturing 

systems  

Deal with criticalities in separation processes 

Choose the right statical parameters in 

recycling processes 

Choose the right dynamic parameters in 

recycling processes 

Development of a proper performance 

measurement system 

Table 2- Taxonomy of Circular Economies criticalities 

At tactical and operational level, all the problems related to the choice of machines’ 

dynamic parameters and optimization of functions related to disassembly.  

Critical stages of de-manufacturing strategy, indeed, still require huge number of 

resources seen as humans and time, thus compromising the perceived potential gain 

of this model implementation.  
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Main issues are summarized in Table 3, labelled according to the De-manufacturing 

process they refer to.  

Challenges and issues Process 

High variability in the conditions of end-of-life 

products 

Inspection, Disassembly 

Poor information about return products Inspection 

Increasing product variety Inspection, Disassembly 

High cost and amount of resources required for 

cleaning 

Cleaning 

High cost of manual labor-based disassembly Disassembly 

High cost of size reduction process Size reduction 

Randomness of separation process Separation 

High fluctuation in materials’ value Recycling 

Input uncertainty for remanufacturers Remanufacturing, 

Logistics 

Table 3- Challenges and issues of De-manufacturing at operative level 

Another important gap at strategic level that has risen in recent studies and that 

prevents CE from being an established strategy, is the lack of an integrated, holistic, 

and scalable framework for measuring Circular Economy performance. The 

measurement of performance is paramount to track progress and foster the 

implementation of the CE paradigm [4] . Despite all the reviewed contributions are 

focusing on issues of interest to the industrial decision-maker (IDM), they take 

different perspectives. The majority address frameworks at the single-product or the 

materials-and-resources level, some consider the firm level, others consider a system 

perspective, while only a few studies analyze different levels simultaneously.  The use 

of an index, i.e., a combination of indicators providing a snapshot of a given 

performance area, presents several benefits: it is easy to understand, communicate, 

and benchmark efforts towards CE. Among the most common indexes, it is possible 

to cite the Circular Economy Indicator Prototype [5], the Circular Economy Toolkit [6], 

the Material Circularity Indicator [7]. All three are nonetheless related to the product 

level and focus mainly on environmental aspects, although business opportunities are 

described by the Circular Economy Toolkit. Despite being straightforward in their use, 

indexes present drawbacks in their application, as they neither distinguish between 

different loops (e.g., reuse, remanufacturing, recycle) nor provide guidance for circular 

product development. The measurement of performance should allow internal 

improvement, communication with external stakeholders, and benchmarking with 
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peers. In this way, a performance-measurement system should be general enough to 

be applied in different contexts, such as sector and geographical area, while also 

allowing a tailored approach to possible distinct needs. To reduce the complexity of 

the measurement process, it is suggested for an effective performance-measurement 

system to meet all the above-mentioned features (integrated, holistic, and scalable). 

As for integration, an effective performance-measurement system for CE should 

provide clear indications regarding the simultaneous coverage of other paradigms 

within the manufacturing firms. For developing such an integrated system, a great and 

deep understanding of the interrelations and overlaps between the paradigms would 

be required, and additional value could derive from the simultaneous consideration 

of the perspectives of multiple IDMs within the same manufacturing firms and their 

industrial systems. 

As for the holistic perspective, an effective performance-measurement system for CE 

should thus provide coverage of different CE levels and approaches, understanding 

the interrelations among them. Again, it is advisable to have a single, unique system 

for measuring performance at different levels, rather than separate ones.  

As for scalability, an effective performance-measurement system for CE should be 

adapted to different firms, specifically SMEs and New Adopters, according to their 

characteristics and their evolving needs, while also simultaneously allowing for 

internal performance measurement and benchmarking activities. 

McKinsey, [8], provides a very general and aggregated framework for measuring CE 

performances at very high level. 

 

 

 

 

KEY PRINCIPLE PRIMARY METRIC SECONDARY METRICS
Annual monetary benefit of 

ecosystem services 

Annual degradation

 Overall remaining stock

Product utilization

Product depreciation/lifetime

Material value retention ratio

Cost of land, air, water, noise 

pollution

Toxic substances in food 

system

Climate Change, congestion 

and health impacts 

1

2

3

Preserve and enhance natural capital by controlling 

finite stocks and balancing renewable resource flow 
Degradation-adjusted net value add (NVA)

Optimize resource yields by circulating products, 

components and materials in use at the highest utility 

GDP generated per unit of net virgin finite 

material input

Foster system effectivenes by revealing and designing 

out negative externalities 

Total cost of ecternalities and oppurtinity 

cost 

Table 4- Aggregated CE measures 
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Structured methods and frameworks are needed for solving all these issues. Important 

tools can help in the achievement of results, allowing to save time and resources. 

Artificial intelligence represents one of these key instruments, being a support for 

speeding up processes and reduce wastes and losses, while allowing to consider many 

aspects at a time, in an integrated perspective. 
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2. Artificial Intelligence 

“Artificial intelligence enabled big data analytical tool coupled with data compression could 

revolutionize the IoT industry and move at the edge for real-time decision making. In a nutshell, 

IoT is the senses, Big Data is the fuel, and artificial Intelligence is the brain to realize the future 

of a smart connected world.” [3] 

Artificial intelligence is an overarching term for a collection of technologies, dealing 

with models and systems that perform human-like cognitive functions such as 

reasoning and learning. AI helps to solve problems through pattern recognition, 

prediction, optimization, and recommendation generation, based on data from videos, 

images, audio, numeric, text and more. 

Wide set of technologies cover a huge number of fields of application. However, 

common path can be identified, as a general framework that is necessarily followed by 

all the Artificial Intelligence technologies.  
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Figure 14- Data mining Process [9] 

After the problem definition and formalization, the required data are collected through 

capturing images and other metadata collected through sensors. Data may come from 

different sources and therefore require integration. Data sources can be internal, 

external, numerical, or categorical. Data integration aims at giving data a common 

structure to carefully represent the real-world application under investigation. Data 

are then consistently labelled and engineered into a format which is machine-readable. 

Preliminary and qualitative conclusions are drawn for any kind of data in the 

exploratory analysis phase, while the selection of attributes usually involves a more 

quantitative and automated process, supported by mathematical tools. After that, an 

algorithm is developed. Different types of algorithms can be employed depending on 

the use case.  

All these steps require a certain amount of human work, which depends on the specific 

application field and starting condition. Future of IoT will trigger massive amount of 

structured, unstructured, real-time, images, videos, information data into the cloud 

network. The staggering amount of data needs to be stored, processed and hence it is 

a critical challenge to process data when it is still in motion and extract valuable 

information from it. Big Data Analytical tool coupled with Artificial intelligence will 

be employed to derive conclusion, examine raw data with the purpose of finding 

patterns by deep learning algorithm. For example, understanding the 
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information/data from the sensors/ things connected and running through several data 

sets to look for meaningful correlations between each other to positively impact 

businesses.  

AI is not new, its application can be draw back to the beginning of the 50s. What is 

changing now is the ability to collect and store amounts of data which are not 

comparable to those available in the past. Consequently, the amount of work required 

to process, clean, structure these data is continuously growing. There is a common 

misconception that AI algorithms are ‘smart’ by themselves. In fact, AI is dependent 

on humans to clearly establish the inputs and outputs for a model (piece of software) 

before a machine can solve it. As mentioned, AI encompass a multitude of specific 

applications which mainly differ for the “Model development” stage. Indeed, each 

algorithm is trained to perform a very specific function, such as object detection for 

autonomous driving, identifying fraudulent financial transactions or delivery route 

optimization. 

 

 

 

 

 

 

 

 

 

Table 5- AI applications [10] 

 

Within all the different fields, the work concentrates on industrial applications, which 

mainly relates to Prediction applications, pattern recognition and Integrated solutions 

with robots, involving a specific branch of AI which is Machine Learning.  

AI Application Functionalities  

Pattern recognition Financial Risk estimation 

Classification 

Data model building 

Music and voice recognition 

… 

Prediction Medical diagnosis 

Targeted advertising 

Recommendation engines 

… 

Optimization and Planning Route planning 

Spend optimization 

Dynamic pricing 

Integrated solutions with robots  Autonomous driving 

Robotic surgery  

Household Robots 



30 Artificial Intelligence 

 

 

Within the era of the fourth industrial revolution, in fact, it is not uncommon to hear 

about artificial intelligence when talking about manufacturing industries. The reason 

is fully explainable starting from one of the definitions of the technology: it is a way to 

make objects learn and predict what is happening and so enabling them to help 

humans in performing every kind of task.  

As an example, rather than building a control system that works to rigid tolerances, 

pre-defined by human analysis, Machine Learning (ML) could be used to define 

tolerances for industrial control systems with little data. In addition, ML could be used 

to progressively improve the performance of a specific task using an ever-increasing 

amount of data captured. Machines could be able to ‘intelligently’ identify and 

disassemble e-waste items and sort sub-assemblies and components into categories 

without human intervention, only after a proper and structured stage setting. This 

work will provide the basis for preparing the stage for a full exploitation and 

deployment of such functionalities.  

2.1 Machine Learning 

Machine learning is a sub field of computer science, a type of Artificial Intelligence 

(AI), that provides machines with the ability to learn without explicit programming. 

Machine learning evolved from pattern recognition and Computational Learning 

Theory and collocates itself in the interface between mathematics and computer 

science.  

Following the typical AI path described in Figure 14, ML has the aim to learn from 

experience through a specific learning process.  

This process is synthesized in the last steps of the path (represented in Figure 15) and 

comprehends a set of stages which involve different algorithms and approaches 

according to the specific situation and aim, and in particular to the quantity and 

quality of data available. 

 

 

 
 

 

Figure 15- last stages of Data Mining 
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The steps of the learning process are: 

▪ Training of a selected model with the previously transformed data 

▪ Testing of the model using a sub-set of data in order to validate performances 

linked to the ability of the model to be accurate and general at the same time, 

with the right trade-off. 

▪ Eventual comparison between different models trained and tested, using 

specific performance indicators. 

▪ Feeding the developed model with new data in order to derive knowledge and 

conclusions.  

Before entering the details of the possible different ways these steps can be performed, 

it is worthy to concentrate on the upstream stages of the data mining process, which 

are common for every kind of machine learning approach, independently on the 

availability of data and the specific purpose. 

After a proper setting of the objective, and the identification of needed information, 

the unstructured and not easily interpretable amount of data must be structured and 

ordered. Here starts the Data preparation phase. 

2.1.1 Data preparation phase 

It is aimed at solving typical problems related to collected data, such as: 

▪ Incomplete data 

▪ Noisy data (Outliers) 

▪ Inconsistencies  

▪ Excessive amount of variables/records 

Incomplete data  

Some records may contain missing values corresponding to one or more attributes, 

and there may be a variety of reasons for this. It may be that some data were not 

recorded at the source in a systematic way, or that they were not available when the 

transactions took place. In other instances, data may be missing because of 

malfunctioning recording devices. It is also possible that some data were deliberately 

removed during previous stages of the gathering process because they were deemed 

incorrect. Incompleteness may also derive from a failure to transfer data from the 

operational databases to a data mart used for a specific business intelligence analysis. 
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In order to treat these data, it is important to have an acknowledgment of the reason 

behind, and consequently operate in a consistent way. Since missing data have to be 

managed in order to be recognized by the machine and the algorithm, here are listed 

the possible solutions: 

• Elimination. It is possible to discard all records for which the values of one or 

more attributes are missing. In the case of supervised learning, it is essential to 

eliminate a record if the value of the target attribute is missing. 

• Inspection. Alternatively, it is possible for experts in the application domain to 

inspect each missing value to obtain recommendations on possible substitute 

values. Obviously, this approach suffers from a high degree of subjectivity, and 

is rather burdensome and time-consuming for large datasets. On the other 

hand, experience indicates that it is one of the most accurate corrective actions 

if skillfully exercised. 

• Identification. As a third possibility, a conventional value might be used to 

encode and identify missing values, making it unnecessary to remove entire 

records from the given dataset. For example, assigning the value {−1} to all 

missing data. This solution is particularly interesting in case of categorical 

attributes. 

• Substitution. Several criteria exist for the automatic replacement of missing 

data, although most of them appear somehow arbitrary. For instance, missing 

values of an attribute may be replaced with the mean of the attribute calculated 

for the remaining observations. This technique can only be applied to numerical 

attributes, but it will clearly be ineffective in the case of an asymmetric 

distribution of values. Finally, the maximum likelihood value can be used, 

estimated using regression models or Bayesian methods, but it can become 

rather complex and time-consuming for a large dataset with a high percentage 

of missing data. 

Noisy data (outliers) 

Data may contain erroneous or anomalous values, which are usually referred to as 

outliers. Other possible causes of noise are to be sought in malfunctioning devices for 

data measurement, recording and transmission. The presence of data expressed in 

heterogeneous measurement units, which therefore require conversion, may in turn 

cause anomalies and inaccuracies. 
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Ways for identifying outliers are usually suitable only in case of numerical attributes 

having a normal distribution. These ways are based on the computation of the 

dispersion: 

▪ Central limit theorem [9] 

▪ Z-index [9] 

Extension to other distributions is provided by the Tchebysheff theorem, allowing to 

identify those records that are farer from the sample mean than a certain acceptable 

threshold.  

Multidimensional analysis, comprehending more than one attribute at a time, can be 

done through clustering techniques which derive homogeneous groups of 

observations. The ones which remain alone are more likely to be considered outliers. 

Clustering techniques will be further explored in next section as they represent one 

learning approach based on unsupervised learning.  

Only in case of certainty about the reasons behind, noisy data can be substituted with 

the values that would have been expected if the particular event which caused the 

presence of outliers never occurred. 

Inconsistencies  

Sometimes data contain discrepancies due to changes in the coding syntax used for 

their representation, and therefore may appear inconsistent. Also, in case of numerical 

attributes, inconsistencies may occur when different variables have completely 

different order of magnitude.  

To solve this last problem, some techniques such as (i) Decimal scaling, (ii) Min-max 

method (normalization), (iii) Z-index method (also known as standardization, which 

is only applicable to normally distributed data), can be applied. [9] 

Excessive amount of variables/records 

When dealing with a small dataset, the transformations described above are usually 

adequate to prepare input data for a data mining analysis. However, when facing a 

large dataset, it is also appropriate to reduce its size to make learning algorithms more 

efficient, without sacrificing the quality of the results obtained. In these cases, Data 

reduction is a fundamental step with three main objectives: 

▪ Increase the efficiency in model identification.  

The reduction of the number of total tuples of a dataset can significantly 

decrease the computational time for each model training iteration, and this 
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computational time reduction is exponential in the training phase if the 

algorithm uses functions of higher complexity. 

▪ Preserve model accuracy. 

In most applications, the accuracy of the models generated represents the main 

criterion followed to select one class of learning methods over another. Data 

reduction techniques should not significantly compromise the accuracy of the 

model generated. In some cases, data reduction techniques based on attribute 

selection will lead to create models with a higher generalization capability on 

future records. 

▪ Achieve simpler models. 

In some data mining applications, models should produce rules easily 

interpretable by experts in the application domain. Data reduction often 

represents an effective technique for deriving models that are more easily 

interpretable. 

Depending on the specific aim, data reduction can be performed in different directions. 

▪ Sampling techniques can be applied for reducing the number of records, 

distinguishing between pure sampling and stratified sampling in those 

supervised learning cases in which the analyst wants to preserve the same 

proportion between different classes.  

In general, a sample comprising a few thousand observations is adequate to 

train most learning models. It is also useful to set up several independent 

samples, each of a predetermined size, to which learning algorithms should be 

applied. In this way, computation times increase linearly with the number of 

samples determined, and it is possible to compare the different models 

generated, in order to assess the robustness of each model and the quality of the 

knowledge extracted from data against the random fluctuations existing in the 

sample. It is obvious that the conclusions obtained can be regarded as robust 

when the models and the rules generated remain relatively stable as the sample 

set used for training varies. 

 

▪ Attribute reduction can be performed in different ways. The idea is to keep 

only those attributes that are significant for the learning process, i.e., those 

features that are able to describe and influence the desired output of the model. 

Attribute selection can be done by the user through filtering methods (which 
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make use of linear correlation index) and present some disadvantages linked to 

a simplistic management of the problem and to the fact that the algorithm is 

only applied after the attributes have been discarded. A more accurate set of 

methods performed by the user is called Wrapper Methods and consists in 

continuously applying the algorithm and evaluating each time the consistency 

between the model and the selected attributes. Relevant attributes are chosen 

after running several times the model. The drawback of this approach is surely 

the complexity and the amount of time and effort required. 

A great advantage in this direction is given by the so-called Embedded 

methods: some algorithms automatically perform the feature selection in the 

same moment they are trained. The problem with these methods is that they 

use heuristic and greedy search scheme like forward elimination, backward and 

forward-backward elimination. In this way there is no guarantee that the 

selected variables are the most relevant ones.  

In practice, filter methods are the best choice when dealing with very large 

datasets, whose observations are described by many attributes. In these cases, 

the application of wrapper methods is inappropriate due to very long 

computation times. Moreover, filter methods are flexible and in principle can 

be associated with any learning algorithm. However, when the size of the 

problem at hand is moderate, it is preferable to turn to wrapper or embedded 

methods which afford in most cases accuracy levels that are higher compared 

to filter methods. 

 

▪ Dimensionality reduction  

Principal component analysis (PCA) is the most widely known technique of 

Dimensionality reduction by means of projection. The purpose of this method is 

to obtain a projective transformation that replaces a subset of the original 

numerical attributes with a lower number of new attributes obtained as their 

linear combination, without this change causing a loss of information. The idea 

is to project attributes in the direction(s) of maximum variation, in order to have 

a clear representation of data with less space needed. Experience shows that a 

transformation of the attributes may lead in many instances to higher accuracy 

in the learning models subsequently developed, and a decreased training phase 

time of processing since less attributes are present. 
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Before applying the principal component method, it is expedient to standardize 

the data to obtain for all the attributes the same range of values, usually 

represented by the interval [−1,1], with the mean of each attribute made equal 

to 0 by applying the transformation. 

PCA is widely used in case of image data. On the other hand, it is discarded in 

those cases in which a clear interpretation of the model is needed.  

▪ Data discretization. For reducing the total number of records, in case of 

numerical attributes one can build classes of equal size or equal width (related 

to values assumed) and substitute the classes with just one value. In case of 

categorical attributes, a hierarchical discretization can be performed. 

2.1.2 Exploratory data analysis 

The primary purpose of exploratory data analysis is to highlight the relevant features 

of each attribute contained in a dataset using graphical methods and calculating 

summary statistics, and to identify the intensity of the underlying relationships among 

the attributes. Exploratory data analysis includes three main phases: 

1. Univariate analysis. The properties of each single attribute of a dataset are 

investigated. Attention must be posed on the fact that categorical and numerical 

variables must be treated in distinct ways. It is important in this phase, with the 

support of the domain expert, to understand if the distribution of each 

numerical variable is coherent with the phenomenon under investigation. It is 

crucial to understand if there is any biased trend in the data with respect to a 

nominal condition, and in some cases you want to train the model on the most 

general data points in order to generalize well for future example of data points, 

so some transformations could be suggested by the domain experts in order to 

fit the data into a more typical distribution. 

For categorical attributes, main verifications concern the computation of 

empirical frequencies, and the level of heterogeneity between different classes, 

which is measured through Gini index or Entropy index. The best case is that 

in which one has maximum homogeneity. 

Numerical continuous variables are visually analyzed through histograms and 

can be quantitatively evaluated thanks to a large set of indicators covering (i) 

measures of central tendency, (ii) measures of dispersion, and (iii) indicators of 

relative location. 

Another important and very used visual tool is the box and whisker plot, useful 

for visually detecting outliers and understand the right distribution of the 

attribute under analysis. 
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Another role of box-and-whisker plot is the assessment of 

symmetry/asymmetry of data. 

Non graphical tools exist for the same purpose, like asymmetry index (also 

known as skew index).  

2. Bivariate analysis. Pairs of attributes are considered to measure the intensity of 

the relationship between them. For supervised learning models, it is of 

particular interest to analyze the relationships between the explanatory 

attributes and the target variable. Even relationships between pairs of 

independent features are of particular interest and they are usually evaluated 

through a widely used graphical representation method which is scatterplot 

diagram. Another graphical tool is the LOESS diagram (local regression 

diagram), which tries to identify the trend of the two considered variables in a 

more detailed way compared to simple scatterplot, through the use of 

parameters describing the degree of the polynomial and the size of the 

neighborhood.  

3. Multivariate analysis. The relationships holding within a subset of attributes 

are investigated. Widely used methods for such kind of evaluation are (i) 

scatterplot matrix (n dimensions), (ii) star plots which consist in designing each 

observation for every attribute in order to have a clear view of the presence of 

recurring patterns among distributions of the observations, and (iii) spider web 

charts. These last represent the most effective approach in those cases in which 

the dataset contains very large number of records. 

2.1.3 Selection of attributes and feature extraction 

After the exploratory data analysis, evidence could arise of the need to further 

eliminate some variables due to redundancy of information, or to correlation. Also, the 

need to extract features from available attributes can be satisfied through the creation 

of additional columns of data.  

At this point, the peculiar stages related to the learning process itself are ready to be 

performed. As mentioned, different approaches correspond to different objectives, but 

also to inequal availability of data. 

2.1.4 Model development 

Machine learning algorithms can be divided into categories basing on their scope. 

Predictive models are used for those applications in which the prediction of a value is 

required, and it is derived through the use of other variables present in the dataset. 

These algorithms manage to discover and model the existing relationship between the 

target variable (the one whose value is going to be predicted) and other features. Even 
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though the word “prediction” can remind to some kind of forecast, it is not always 

true that predictive models are used to foresee future events or values assumed by 

some variables. Indeed, predictive models can be used to model past events, like for 

instance deriving the time at which a command was issued, given the start of the 

inducted action. Also, these algorithms can be used to model real time events. These 

algorithms know exactly the variable whose values are going to be modeled and 

receive precise instructions during the training phase of the behavior of this target 

variable. For this reason, such kind of models are called supervised learning models. 

Descriptive models are used for applications which would gain from a knowledge 

obtained through a new and structured representation of data. Differently from 

predictive models, which observe and predict a specific variable they are interested to, 

in descriptive models no target variable is present, and each feature of the model 

assumes the same importance in defining the objective. For this reason, descriptive 

algorithms are called unsupervised learning models. These models are widely used 

both in standalone applications, and as preliminary steps to supervised models. 

2.1.5 Learning Process 

As mentioned, given a set of data, a supervised learning algorithm attempts to 

optimize a function (i.e., the model) in order to find the combination of values of the 

features which produce the output representing the target. During the training phase, 

the target variable is fed into the algorithm together with the independent attributes, 

so that the algorithm can develop and improve the model (learning process). After the 

training phase, by feeding the algorithm with unlabeled observations, i.e., set of 

attributes without the target variable, it should be able to predict the target according 

to the learnt relationships.  

Unsupervised learning algorithms usually rely on iterative processes, which aim to 

strengthen and get better at each iteration through the adjustment of important 

parameters. 

Supervised learning 

Supervised learning algorithms can be divided basing on the nature of the target 

variable they want to predict. In case of categorical variable, classification is used. As 

suggested by the name, the target variable represents the class to which the related 

observation belongs to. If the target variable is numerical and continuous, the selected 

approach is regression.  

Classification:  

Classification usually has a twofold objective:  
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▪ Make predictions on new data coming from the same source of the training set; 

▪ Better understand the domain involved in the analysis. 

The purpose of each classification algorithm is to define a set of possible functions able 

to learn the separation of observations in different classes. It is common to 

automatically think about binary problems, i.e., separations done basing on binary 

targets such as black-white, yes-no, ill-healthy, etc. however, it is also frequent to have 

multi-category classification problems. However, classification algorithms can only 

perform with binary target, thus, any multi-category problem can be reduced to a set 

of binary problems. More specifically, two approaches can be followed to split the 

multi-category problems into a set of binary ones: (1) One-against-all: consists in 

training k= number of classes different algorithms. (2) One-against-one: the effort is 

greater since 
𝑘(𝑘−1)

2
 binary classifiers must be trained, but it can lead to better results.  

In Figure 16, a synthesized description of the structure of any classification method is 

provided. 

 

Figure 16- Classification methods 

Assessing the goodness of classification methods is a key activity since the drown 

conclusions about the ability of the algorithm to learn correctly strongly depend on the 

criterion used. 

When the future becomes present and then past, it is possible to perform a check to 

verify whether the predictions were aligned with the expected Accuracy. 

Data set 

Past data 

Future data 

CLASSIFICATION ALGORITHM 

TRAINING + VALIDATION  

ACCURACY ASSESSMENT  

RULES (ALGORITHM) 

KNOWLEDGE  
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To judge the performances of classification algorithms, thus their prediction accuracy, 

the suggestion is to consider different rules at a time.  

The loss function (L) counts the number of misclassifications, i.e., the observations 

falling in the wrong class.  

Empirical error (Remp) is an average measure of the error, expressed by the sum of all 

the errors divided by the total number of observations.  

Accuracy is equal to 1 - Remp, thus providing a measure of the goodness of the method.  

Nevertheless, the accuracy measured through these indicators does not allow to have 

a view on the actual quality of prediction. Indeed, the abovementioned measures can 

be suitable only if the two considered classes have almost the same size. On the 

contrary, they are quite useless in case of unbalanced population classes.  

More reliable ways to assess accuracy exist, and they mostly rely on graphical 

representation. 

a) CONFUSION MATRIX 

It indicates the number of records correctly classified and those that have been 

misclassified, considering the proportion with the total number of observations 

actually falling in the different classes. 

Rows represent the real values, while in the columns are registered the 

predicted ones.  

 

 

 

 

 
 

In particular, it allows to derive important indicators such as: 

o Precision. Looking at the column of the positive: 

𝑇𝑝

𝑇𝑝 + 𝐹𝑝
 

𝑇𝑝 = true positive (those records classified as 1 that are 

actually 1); 

𝐹𝑝 = false positive (those records classified as 1 that are 

actually 0). 

o Recall, also called true positive rate: 

Figure 17- Confusion Matrix 
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𝑇𝑝

𝑇𝑝 + 𝐹𝑛
 

𝑇𝑝 = true positive (those records classified as 1 that are actually 

1); 

𝐹𝑛 = false negative (those records classified as 0 that are 

actually 1) 

 

o F-measure is defined as: 

(𝛽2 –  1) ⋅ 𝑇𝑝 ⋅ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝛽2 ⋅ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑇𝑝
 

Where 𝛽2 ∈ [0, ∞) regulates the relative importance of the precision with 

respect to the true positives rate. Of course, the higher this value, the better the 

accuracy of prediction. The F-measure can also be equal to 0 if all the predictions 

are incorrect. 

 

b) ROC Curve 

Receiver operating characteristic (ROC) curve charts allow the user to visually 

evaluate a classifier’s accuracy and compare different classification models. A 

ROC chart is a two-dimensional plot with the proportion of false positives (fp) 

on the horizontal axis and the proportion of true positives (tp) on the vertical 

axis. The point (0,1) represents the ideal classifier, which makes no prediction 

error since its proportion of false positives is null (𝐹𝑝 = 0) and its proportion of 

true positives is maximum (𝑇𝑝 = 1). The point (0,0) corresponds to a classifier 

that predicts the class {−1} for all the observations, while the point (1,1) 

corresponds to a classifier predicting the class {1} for all the observations. 

 

Figure 18- ROC curve and underneath Area [11] 
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c) Cumulative Gains 

Graphically represent the gain achieved in the prediction using different 

percentages of the records in the dataset. It is also a measure of speed and 

robustness of the method,  since it allows to understand whether it’s worthy or 

not to use the entire dataset.  

 

d) Lift 

This plot is derived from the Cumulative Gains one. On the x-axis are still 

reported the percentages of the records taken into consideration, while on the 

y-axis, ratios are computed  between the values on the y-axis of the cumulative 

gain chart and their related values on the abscises. It is a measure of how better 

your algorithm is with respect to the random selection method.  

Analyzing the classification method illustrated in Figure 16, attention must be posed 

on how to split the set of past data used to run the algorithm between training and test 

set. The training set is used to practically make the algorithm learn the relations 

between variables. Errors and the abovementioned measures of the goodness of the 

model are computed for the predictions made using this subset and it’s usually greater 

in terms of number of records than the test set. This last is used to double-check the 

developed algorithm, always computing and drafting the graphs needed to evaluate 

the method.  

It is straightforward that the decision on how to split training and test sets has an 

influence on the related results. Different methods are possible, having pros and cons 

leading them to be more or less suitable for specific cases.  

1. Holdout methods randomly select test set from the entire available dataset. It is 

not robust since the measured accuracy strongly depends on the random 

extraction of the dataset. 

2. Repeated random sampling methods are more robust since the accuracy is 

measured many times, varying at each iteration the choice of the test set. 

Nevertheless, the time and effort required are greater than for the holdout 

method. 

3. K-fold cross validation is the best practice since it is a systematic procedure, less 

dependent on the random extraction. The method is the following: the entire 

dataset is divided into K folds (groups) and at each iteration, one-fold is used 

as test and all the others as training set. This method can be used in case of 

small/medium datasets (maximum 1000 observations), with an optimal K 
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almost equal to 10. In case of big datasets, it is however preferable to go with 

holdout methods, allowing to have a large test set which avoids fluctuations.  

4. A particular case of K-fold cross validation is the “Leave-one-out” method. K is 

set equal to m, i.e., the number of observations. In this way, each single 

observation is used as test once. It is obviously suitable only in case of very 

small datasets. 

The learning process can be very different considering the set of existing algorithms 

performing classification task.  

In almost every algorithm, preliminary decisions must be taken by the data analyst 

about some values to be set. These values are called hyperparameters and represent 

levers to play with in order to increase the performances and the potential goodness 

of each algorithm.  

CLASSIFICATION ALGORITHMS: 

▪ K-Nearest Neighbour classifier. It is a heuristic method which makes use of the 

notion of distance in order to determine whether observations are similar or 

not.  

Hyperparameters to be tuned in this case are:  

o K, which is the number of observations that are considered as 

“neighbourhood”, i.e., the number of observations taken into consideration 

when assigning the next observation to a certain class. 

o The notion of distance. Distance can be measured through different 

methods like Euclidean distance, Mahalanobis, ecc. 

 

▪ Classification trees are heuristic, iterative and greedy algorithms. Starting from 

the whole set of data, they compute the impurity index on the root node (i.e., 

the one embedding all the observations), and it is set as the upper bound for the 

next split, in order to compute the information gain.  

 

 
 

Equation 3- information gain computed through impurity index 
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Iteratively, impurity indexes are computed for the nodes generated by the splits 

done basing on all the different attributes present in the dataset. Through the 

impurity index, the information gains achieved through the different attributes 

are also computed. The attribute which maximises the information gain is 

selected as split criterion. In this case hyperparameters are  

o Impurity index (Gini, Entropy) 

o A set of pruning criteria to avoid overfitting: choice of the maximum 

number of leaves, maximum depth of the tree, maximum purity, and 

maximum gain. This last represent the threshold for avoiding further splits 

which would lead to an increase in the information gain which is not worthy 

to be reached.  

 

▪ Bayesian methods calculate the posterior probability P(y|x) through Bayes 

Theorem. Where x is the observation vector (of size n= number of attributes 

related to the observation) and y the specific target class. In this case no 

Hyperparameters are present, but human effort is largely required for 

estimating the probability that a specific observation occurs, given that it 

belongs to a certain class (P(x|y)). In fact, P(y|x) can be only computed starting 

from that probability and applying the MAP hypothesis (maximum a 

posteriori), meaning that x is assigned to the class y if and only if y is the most 

probable value among all the values belonging to the target variable. Huge 

computational power is needed to compute these probabilities, especially in 

case of big number of attributes (large dataset). 

More advanced versions of Bayesian methods have been developed for 

reducing the computational power and time required (Naïve Bayesian 

method) and for introducing some flexibility to the concept of conditional 

independence, allowing reticular hierarchical links which assign selected 

stochastic dependencies between explanatory (independent) variables (Belief 

networks). 

 

▪ Logistic regression is a probabilistic method like Bayesian methods and it 

allows to convert binary classification problems into linear regression ones. It 

postulates that P(y|x) follows a logistic function. Computing the ODDS Ratio, 

it ends up with the formula z= w’ x , where z is the dependent variable (target 
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one) and x is the vector of independent variables. Weights w, which represent 

the linear term connecting dependent and independent variables, are computed 

using an iterative method aimed at maximizing the likelihood. This technique 

presents all the problems related to linear regression, which will be briefly 

explained in next section. (Especially multi-collinearity of independent 

variables). 

At this point, an improvement in the development of algorithms is introduced.  

So far, classification algorithms were aimed at minimizing the empirical error, i.e., the 

number of misclassified observations, without considering the generalization error. 

This last is fundamental in order to prevent the algorithm to perform overfitting and 

to overcome the problem of robustness of the solution.  

Algorithms aimed at minimizing the structural risk, which is the sum of empirical 

error, overfitting and ill-posed risks have been developed. 

▪ Support vector machines. The principle used is the SRM= structural risk 

minimization, with a modified risk function represented in Equation 4. 

 

𝑹̂(𝒇) =  
𝟏

𝒎
 ∑ 𝑽(𝒚𝒊, 𝒇(𝒙𝒊))

𝒎

𝒊=𝟏

+  𝝀 ||𝒇||𝒌
𝟐 

                            Equation 4- modified risk function 

Lambda is the regularization term used to tune the trade-off between empirical 

error and generalization capability and it is an hyperparameter of the method. 

SVM bases on the notion of hyperplanes which separate the dataset into correct 

classes. The nearest the separating hyperparameters are to the training set, the 

lower the generalization capability. The aim is to maximise the minimum 

distance in order to increase the generalization capability while keeping the 

right level of accuracy of predictions. Training points lying on canonical 

supporting hyperplanes are called support vectors.  
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In the most probable case of not linearly separable points, the need is still to 

separate them through a linear function. For this reason, use is made of linear 

kernels which help to easily linearize complex functions. Kerner, indeed, are 

functions for which the mapping of original observations into transformed 

space is not explicitly computed. This allows very efficient linear separation 

also in infinite-dimensional space. Examples of kernels, which represent 

another hyperparameter of the process, are (i) Polynomial Kernels (of degree 

d); (ii) Radial basis function kernels (rbf); (iii) Neural Networks Kernels with 

hyperbolic activation function. 

 

▪ Neural networks.  

A neural network is an oriented graph consisting of nodes which, in the 

biological analogy represent neurons. Nodes are connected by arcs, which 

correspond to dendrites and synapses. Each arc is associated with a weight, 

while at each node an activation function is defined which is applied to the values 

received as input by the node along the incoming arcs, adjusted by the weights 

of the arcs. The training stage is performed by analyzing in sequence the 

observations contained in the training set one after the other and by modifying 

at each iteration the weights associated with the arcs.   

The perceptron (Figure 20) is the simplest form of neural network and 

corresponds to a single neuron that receives as input the values (x1, x2, … , xn) 

along the incoming connections, and returns an output value f(x). The input 

values coincide with the values of the explanatory attributes, while the output 

value determines the prediction of the response variable y. Each of the n input 

connections is associated with a weight wj. An activation function g and a 

constant θ, called the distortion, are also assigned. 

        Figure 19- Canonical hyperplanes and support vectors 
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Figure 20 - Perceptron 

Supposing that the values of the weights and the distortion have already been 

determined during the training phase, the prediction for a new observation x is 

then derived by performing the following steps.  

First, the weighted linear combination of the values of the explanatory variables 

for the new observation is calculated and the distortion is subtracted from it, as 

reported in Equation 5:                                                

𝑤1𝑥1  + 𝑤2𝑥2  +··· +𝑤𝑛𝑥𝑛  −  𝜃 = 𝒘′𝒙 −  𝜃 

Equation 5- linear combination of predictors net of distortion   

The prediction f (x) is then obtained by applying the activation function g to the 

linear combination of the predictors:                                                              

 𝑓(𝒙) = 𝑔(𝑤1𝑥1  + 𝑤2𝑥2 +··· +𝑤𝑛𝑥𝑛  − 𝜃) = 𝑔(𝒘′𝒙 − 𝜃) 

Equation 6 - prediction f(x) 

The purpose of the function g is to map the linear combination into the set of 

values H = {v1, v2, . . . , vH } assumed by the target variable, usually by means of 

a sigmoid, relu, sign or an hyperbolic tangent function. 

An iterative algorithm is then used to determine the values of the weights wj 

and the bias θ, examining the examples in sequence, one after the other. For each 

example xi the prediction f(xi) is calculated, and the value of the parameters is 

then updated using recursive formulas that take into account the error yi − f(xi).  

A multi-level feed-forward neural network (Figure 21) is a more complex structure 

than the perceptron.  
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Figure 21- Multi-layer network 

Each node of the network is a single perceptron, in the sense that given weights 

are associated with the input arcs, while each node is associated with a bias and 

an activation function. It is composed of one (passthrough) input layer, one or 

more layers of perceptron, called hidden layers, and one final layer called the 

output layer. It is called a feed-forward network because every layer, except the 

output one, includes a bias neuron and is fully connected to the next layer. In 

this way the signal flows only in one direction, from the inputs to the outputs. 

Input nodes. The purpose of the input nodes is to receive as input the values of 

the explanatory attributes for each observation. Usually, the number of input 

nodes equals the number of explanatory variables. 

Hidden nodes. Hidden nodes apply given transformations to the input values 

inside the network. Each node is connected to incoming arcs that exit from other 

hidden nodes or from input nodes, and it is connected with outgoing arcs to 

output nodes or to other hidden nodes. 

Output nodes. Output nodes receive connections from hidden nodes or from 

input nodes and return an output value that corresponds to the prediction of 

the response variable. In classification problems, there is usually only one 

output node.  

The method that determines the weights of all the arcs and the distortion at the 

nodes is called the backpropagation algorithm and follows a similar logic to that 

used for the single perceptron. The weights are initialized in an arbitrary way, 

for instance by setting their value equal to randomly generated numbers. The 

examples of the training set are therefore examined in sequence, using at each 

iteration the current values of the weights, to calculate the prediction and the 
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corresponding misclassification error. This latter is used to recursively correct 

the values of the weights, then used to analyze the subsequent example within 

the procedure. The weights are updated using a Gradient Descent algorithm, 

which is a variant of the gradient method. 

Deep learning occurs when more than 3/5 hidden layers are set. Deep learning 

also learns the representation of the dataset (trainable features extraction) 

through a hierarchical abstraction of features. 

 

▪ Ensemble classifiers. Are heuristic but very efficient methods which work 

combining predictions obtained by simple, heuristic classifiers like 

classification trees. Basing on the way they repeat and combine such methods, 

ensemble algorithms can be categorized distinguishing between: 

o Bagging methods: they split the dataset into subsets and make predictions 

in parallel, training different classifiers (or the same but with different 

hyperparameters set) using the different subsets. Then, all the trained 

classifiers are applied to the new observations sequentially, and the 

definitive class is assigned the target class through majority voting or 

through a weighted average of votes in case of higher importance of any 

trained algorithm. Examples of this method are Random Forest classifiers, 

which allow to gain good predictions but with very low interpretability.  

o Boosting methods: they make repeated predictions sequentially, using the 

whole dataset for each prediction or subsets of it. At the first iteration, all 

observations have the same weight. At each iteration, weights are updated 

basing on the errors performed during the previous iteration (higher 

weights for misclassified instances). To better explain, each observation has 

its own weight which is increased or decreased iteration by iteration basing 

on whether that observation is correctly classified or not. The weight 

represents the chance of being selected as part of the training set in the next 

iteration, thus increasing the accuracy of classification. The “learning rate” 

is a measure of how much the observations are weighted.  
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Regression: 

Some of the considerations made for classification can be applied to regression. The 

method described in Figure 16 can also be valid for regressive algorithms. Same 

criteria can be used for splitting the dataset into training and test sets. 

Nevertheless, regression has a slightly different purpose. Aim of this technique is to 

predict the numerical values assumed by a dependent variable, given a set of 

independent attributes describing the observations, through a proper function as 

shown in Equation 7. For this reason, regression appears much more complex and 

requires a higher degree of attention. Of course, methods for assessing the goodness 

of a regressive model are completely different from those used for classification.  

Y= f(x1, x2, x3, …, xn), being f: ℝ𝑛 ⟹ ℝ 

Equation 7 - Function 

A first distinction must be made regarding the fact of having just one independent 

variable (simple regression), more than one (general case of multiple regression). In 

the first case, function f is defined from ℝ ⟹ ℝ.  

Simple linear regression model can be represented by: 

Y = w X + b + ℇ 

Where ℇ is the random residual variable. 

Identifying the regression line means finding the right values of parameters w and b. 

(slope and intercept of the line). 

One of the algorithms in charge of making such computation is the Least-Squares 

Linear Regression. It identifies the regression parameters (w and b) minimizing the 

sum of squared errors, i.e., 

𝑆𝑆𝐸 =  ∑ 𝑒𝑖
2

𝑚

𝑖=1

=  ∑[𝑦𝑖 − 𝑓 (𝑥𝑖)]2 =  ∑[𝑦𝑖 − 𝑤 ×  𝑥𝑖 − 𝑏]2

𝑚

𝑖=1

𝑚

𝑖=1 

 

Equation 8- Sum of Squared Errors 

However, the most common case is the case of multiple linear regression, which adds 

the complexity related to the fact of operating with vectors and matrices and to the 

possible, crucial, presence of correlations between different independent variables.  

Multiple-least square linear regression applies the same principle aimed at 

minimizing the SSE.  
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This technique presents a lot of criticalities and issues: 

▪ ILL-POSED PROBLEM. Stating that the problem is ill-posed means that the 

solution, whatever it is, will not be robust. That means that small changes in 

the input data (training set) result in large changes in the output 

(approximation and prediction). This is due to the fact that the technique is 

formulated for minimizing the SSE on training data, thus providing a 

“tailored” function which poses all the attention on accuracy and no attention 

on the generalization factor.  

 

▪ MULTICOLLINEARITY. The matrix used to have pointwise estimates of the 

vector of regression parameters  𝒘̂ .  (X’X) is not always invertible. However, it 

has to be inverted in order to find the estimates of regression parameters. The 

matrix is not invertible when columns are not orthogonal, thus when 

independent variables are actually correlated one to the other. Also, given that 

independent variables are not correlated, even if the matrix in in principle 

invertible, when the structure of its eigenvalues is very spread (i.e., there is too 

big difference between the biggest and the smallest eigenvalue), (X’X)’(X’X)≠I. 

This happens when the number of observation m is not enough. 

For this reason, variants of the least squares regression techniques have been 

proposed, which take into consideration the REGULARIZATION term (Lambda) also 

seen in Classification techniques. This term is aimed at reducing the space of 

hypothesis, setting a limit on the norm of the function f. 

Such methods are: 

Ridge Regression, in which regression coefficients are obtained solving the 

minimization problem described by Equation 9: 

min
𝑤

𝑅𝑅 (𝑤 , 𝐷) =  min
𝑤

𝜆 ||𝑤||2 +  ∑(𝑦𝑖 −  𝑤′𝑥𝑖)2

𝑚

𝑖=1

 

Equation 9- Ridge regression 

Lasso Regression only differs for the norm of the vector of parameters.  

Note that, with λ=0, the problem is reconduct to a Least-square regression. 
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Other techniques allow to adapt to the situation in which there is no linear relation 

between explanatory variables and target one. Gaining in flexibility, these techniques 

loose performances related to interpretability of results. 

Such kind of algorithms are very similar to those seen for Classification problem: 

▪ K-NN for regression 

Instead of having labels related to each observation, like in classification 

problems, numbers are associated to each point. In this case, the measure used 

to make the prediction is no more majority voting, rather a measure of central 

tendency used to assign the right number to a new observation. (Usually the 

average is adopted). 

 

▪ Regression Trees  

Impurity indexes are substituted by a measure which maximises similarity 

among observations. Usually, this measure coincides with the variance S of 

each descendant note (i.e., the nodes resulting from a split). Basically, the 

algorithm searches for small variances in each leaf of the tree, allowing the 

observations in the same leaf to be as similar as possible in terms of values of 

the target variable y. 

The goal is thus to minimize the total variance, expressed as the sum of all the 

variances in all descendants.  

 

▪ SVM for regression 

The aim is to set a fitting hyperplane and let all the points (observations) being 

as close as possible to it. A hyperparameter is set to define the admissible 

variation forming canonical hyperplanes. The distance ξ of each observation 

from the canonical hyperparameters is the error. It is nothing but an 

optimization problem like the one seen for classification: on the one hand we 

are trying to minimize the empirical error, on the other to increase the 

generalization minimizing the risk of overfitting and reducing the space of 

hypothesis.  

▪ Neural Networks for regression  
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The only difference with neural networks for classification lies in the 

activation function. For the output node, there can only be linear activation 

function.  

 

Unsupervised learning 
Clustering 

Purpose of clustering methods is the identification of homogeneous groups of records 

called clusters, by defining appropriate metrics and the induced notions of distance 

and similarity between pairs of observations. With respect to the specific distance 

selected, the observations belonging to each cluster must be close to each another and 

far from those included in other clusters. In other terms, each cluster has to be as 

homogeneous as possible within itself, while being very different from the other 

clusters.  

Clustering methods can be classified into a few main types based on the logic used for 

deriving the clusters: partition methods, hierarchical methods, and density-based 

methods. 

▪ Partition methods. Partition methods develop a subdivision of the given 

dataset into a predetermined number K of non-empty subsets. They are suited 

to obtaining groupings of a spherical or at most convex shape and can be 

applied to datasets of small or medium size. The most used partitioning 

methods are K-means and K-medoids.     

▪ Hierarchical methods. Hierarchical methods carry out multiple subdivisions 

into subsets based on a tree structure and characterized by different 

homogeneity thresholds within each cluster and inhomogeneity thresholds 

between distinct clusters. Unlike partition methods, hierarchical algorithms do 

not require the number of clusters to be predetermined, but a similarity target 

level to be reached given in input by the user (hyperparameter). They are 

divided in agglomerative and divisive hierarchical methods. In both cases, they 

follow a dendrogram structure: in agglomerative methods each observation 

starts as a single cluster and then they are agglomerated into bigger clusters 

based on their similarity level, in the divisive process the method is the 

opposite, hence the whole set of observations is included in one big clusters, 

and at each step they are divided in two separate clusters at each step until the 

desired level of similarity is obtained.  
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▪ Density-based methods. Whereas the two previous classes of algorithms are 

founded on the notion of distance between observations and between clusters, 

density-based methods derive clusters from the number of observations locally 

falling in a neighborhood of each observation. More precisely, for each record 

belonging to a specific cluster, a neighborhood with a specified diameter must 

contain a number of observations which should not be lower than a minimum 

threshold value. Density-based methods can identify clusters of non-convex 

shapes and effectively isolate any possible outliers. 

A second distinction can be made basing on the methods used for assigning the 

observations to each single cluster. It is possible to include each observation 

exclusively in a single cluster or to place it by superposition into multiple clusters. 

Furthermore, fuzzy methods have been developed which assign the observations to the 

clusters with a weight between 0 (the observation is totally extraneous to the cluster) 

and 1 (the observation exclusively belongs to the cluster), with the additional condition 

that the sum of the weights over all clusters be equal to 1. Finally, a distinction should 

be made between complete clustering methods, which assign each observation to at 

least one cluster, and partial methods, which may leave some observations outside the 

clusters 

Associative rules  

These unsupervised machine learning techniques are used for identifying regular 

patterns and recurrencies within a large set of Transactions. The fields of application 

are many and range between market basket analysis, web mining, fraud detection and 

healthcare services. For this reason, they are not of particular interest for the 

development of this work. However, they are based on an interesting principle which 

is called “A Priori Principle”, and which allows to eliminate set of data (called itemset) 

Figure 22- Dendrogram structure 
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exploiting the fact that if an itemset is not relevant, then all the itemsets of greater 

cardinality containing that itemset are not relevant too. 

As mentioned, contrary to all the previously mentioned techniques, associative rules 

are not of relevant concerns for the aims of this work. 

Novelty detection 

In between the supervised learning process and the unsupervised one, Novelty 

detection is particularly used in industrial applications. Novelty detection can be 

applied for a specific area which has gained great concern in the last years: Predictive 

Maintenance.  

This machine learning approach can be compared to a classification problem in which 

the available data used for training the algorithm only belong to one particular class. 

Algorithms deal with a supervised problem, called one-class classification problem, in 

which a training dataset is available, with the characteristic of presenting only (or 

mainly) “normal” (i.e., non-target class) behavior outcomes, and insufficient data 

describing the “abnormal” (target) ones.  

For this reason, Novelty Detection (ND) can be defined as the task of recognizing that 

test data differ in some respect from the data that are available during training phase. 

Approaches to novelty detection include both Frequentist and Bayesian approaches, 

information theory, extreme value statistics, support vector methods and neural 

networks.  

In general, all these methods build models upon a training set that is selected to contain 

no examples (or very few) of the target (i.e., novel) class.  

Novelty scores z(x) are assigned to observation x, and deviations from normality are 

detected according to a decision boundary that is usually referred to as the novelty 

threshold z(x)=k.  

Different metrics are used to evaluate the effectiveness and efficiency of novelty 

detection methods. The effectiveness can be evaluated according to how many novel 

data points are correctly identified, and according to how many normal data are 

incorrectly classified as novel data. The latter is also known as the false alarm rate.  

Novelty detection techniques should aim at having a high detection rate while keeping 

the false alarm rate low. On the other hand, the efficiency of novelty detection 

approaches is evaluated according to computational cost, and both time and space 

complexity. 

As regards the Predictive Maintenance field of application, it is of particular interest 

in this work, due to its strong relation with Circular Economy needs. One of the 
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objectives of CE, indeed, is to longer the product lifecycle and saving resources while 

gaining high quality results.  

The adoption of Novelty detection methods for assessing the state of health of 

machinery and products represents an important enabler for achieving longer 

lifetimes. Collecting data about normal behavior of machinery/product while they are 

on health (healthy state), allows to build models which are able to identify the point in 

which these behaviors start to change, allowing to predict the eventual need of 

maintenance interventions.  

In this work a preliminary issue will be tackled: the importance of the 

product/machinery design in determining the ability/inability of collecting such kind 

of data, and thus to apply Novelty detection techniques. 

The approaches analyzed so far are part of the wide machine learning set of algorithms 

called Discriminative models: 

Discriminative models  

Discriminative models are those used for 

most supervised classification or regression problems. As an example of a 

classification problem, suppose to train a model to classify images of handwritten 

digits from 0 to 9. For doing so, a labeled dataset containing images of handwritten 

digits and their associated labels indicating which digit each image represents could 

be used. 

During the training process, a specific algorithm will be used to adjust the model’s 

parameters. The goal would be to minimize a loss function so that the model learns 

the probability distribution of the output given the input. After the training phase, 

one could use the model to classify a new handwritten digit image by estimating the 

most probable digit the input corresponds to, as illustrated in the figure below: 

 

 

 Figure 23- Discriminative model 

https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Loss_function
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Discriminative models for classification problems can be seen as blocks that use the 

training data to learn the boundaries between classes. They then use these boundaries 

to discriminate an input and predict its class. In mathematical terms, discriminative 

models in general learn the conditional probability P(y|x) of the output y given the 

input x. 

Besides these models, other objectives can be reached through the use of a different 

kind of algorithms, that is of particular interest for manufacturing industries: the 

Generative models. 

Generative models  

Generative models are trained to describe how a dataset is generated in terms of 

a probabilistic model. By sampling from a generative model, you’re able to generate 

new data. While discriminative models are used for supervised learning, generative 

models are often used with unlabeled datasets and can be seen as a form 

of unsupervised learning. Using the dataset of handwritten digits, the training of a 

generative model to generate new digits can be performed. During the training phase, 

some algorithms will be used to adjust the model’s parameters to minimize a loss 

function and learn the probability distribution of the training set. Then, with the model 

trained, one could generate new samples, as illustrated in the following figure:  

 

To output new samples, generative models usually consider a stochastic, or random, 

element that influences the samples generated by the model. The random samples 

used to drive the generator are obtained from a latent space in which the vectors 

represent a kind of compressed form of the generated samples. 

Unlike discriminative models, generative models learn the probability P(x) of the 

input data x, and by having the distribution of the input data, they’re able to generate 

new data instances. 

A recent development of Generative algorithms is represented by Generative 

Adversarial networks. 

Figure 24- Generative model 

https://en.wikipedia.org/wiki/Unsupervised_learning
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Generative adversarial networks are machine learning systems that can learn to 

mimic a given distribution of data. They were first proposed in a 2014 NeurIPS 

paper by deep learning expert Ian Goodfellow and his colleagues. 

GANs consist of two neural networks, one trained to generate data and the other 

trained to distinguish fake data from real data (hence the “adversarial” nature of the 

model).  

In brief, GANs work this way: the generative algorithm is pitted against an adversary: 

i.e., the discriminative model that learns to distinguish whether the sample comes from 

the dataset or from the generative model. To provide an analogy:  Generative 

algorithm is a team of counterfeiters, that produce fake currencies and the 

discriminative model is the police that is trying to distinguish whether money are fake 

(come from the model) or real (from dataset). Both models are trying to improve 

themselves until the counterfeits are indistinguishable from the real currencies.  

Features can be learned automatically from the input data. In this area, mainly four 

different approaches can be differentiated:  

(i)  Multi-view images 

(ii)  Voxel models 

(iii) Point clouds   

(iv)  Graphs  

Simple GANs, however, generate random data, with no specified way. Conditional 

GANs enable feature specification to control the output of generative models. The idea 

of these conditional GANs was first presented in [12] where images are conditioned 

on their class labels.  

Although GANs have received a lot of attention in recent years, they’re not the only 

architecture that can be used as a generative model. Besides GANs, there are various 

other generative model architectures such as: 

▪ Boltzmann machines 

▪ Variational autoencoders 

▪ Hidden Markov models  

▪ Models that predict the next word in a sequence, like GPT-2 

Furthermore, recent algorithms can generate new 3D objects. They make use of a 

combination of autoencoders and generative models, such as GANs, to create new 3D 

objects. An autoencoder is a deep learning architecture consisting of an encoder and a 

decoder that is trained to first encode the input into a low dimensional representation, 

https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
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and then to reconstruct the original input from this compressed latent representation 

again (learn the data representation).  

2.1.6 Open Issues  

Starting from general issues related to AI adoption, mentions will be made of the 

criticalities related to specific machine learning technologies. 

General issues related to AI mostly involve barriers to adoption due to investments, 

security, ethics, accessibility, inclusion. 

AI has the potential to accelerate shifts in market share, revenues, and profit pools. 

However, some issues are present as concerns the large-scale adoption of such kind of 

technology. AI can deliver real value to those companies that have a strong 

involvement in digitalization and that are able to combine strong digital capabilities 

with proactive strategies.  

Therefore, the adoption of AI is more spread in firms and industries already on the 

digital frontier, but others are hesitant to act. Moreover, some key enablers to AI 

adoption have been identified [13]: leadership from the top, managements and 

technical capabilities, seamless data access. There are no shortcuts for companies for a 

profitable and efficient adoption of AI; changes are needed at corporate and business 

level. One of the strategies adopted by big giants of tech industry is the so called 

“acqui-hiring” process. This means that these big companies have been buying start-

ups to secure qualified talents and to ensure the right technology acquisition, 

overcoming some of the main issues related to AI adoption.  

In adopting AI, attention must be posed on ethics and security, beside keeping into 

account implications of such technology on humans and relations. Reliable AI has 

three fundamental components which should be met throughout the system’s entire 

life cycle: (I) it should be lawful, complying with all applicable laws and regulations; 

(II) it should be ethical, ensuring adherence to ethical principles and values; and (III) 

it should be robust, both from a technical and social perspective, since, even with good 

intentions, AI systems can cause unintentional harm. In particular, the EU High-Level 

Expert Group on AI presented Ethics Guidelines for Trustworthy Artificial 

Intelligence, based on seven key requirements. [14] :  

1. Human agency and oversight. Including fundamental rights. 

2. Technical robustness and safety. Including resilience to attack and security, fall 

back plan and general safety, accuracy, reliability, and reproducibility. 

3. Privacy and data governance. Including respect for privacy, quality and 

integrity of data, and access to data. 
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4. Transparency. Including traceability, explain-ability, and communication. 

5. Diversity, non-discrimination, and fairness including the avoidance of unfair 

bias, accessibility and universal design, and stakeholder participation. 

6. Societal and environmental wellbeing. Including sustainability and 

environmental friendliness, social impact, society, and democracy. 

7. Accountability Including auditability, minimisation and reporting of negative 

impact, trade-offs, and redress. 

Besides purely social-oriented issues, even at operative level many companies do not 

have clear view of the kind of data to be collected nor the right consciousness of the 

importance of data collection itself.  

Focusing on traditional manufacturing companies, it results evident the need to 

consider all the critical aspects in the definition of a structured plan for systematically 

collect data and feed them into the right algorithms. 

The methodology presented in this work will deal with the strategic problems and 

implications of introducing AI and Machine learning in one of the most critical and 

relevant activities in a manufacturing company: product design.  

Shifting to operative-level issues, many times companies are still unable to proper 

collect and organize their data, beside not having a clear view of which data they need 

to gather.  

To capture value from AI, organizations need to establish digital processes, and an 

open culture around AI. On a technical level, appropriate processing power to handle 

all data inputs is needed. Machine learning algorithms can be very complicated and 

onerous in terms of time and computational power, therefor requiring the right 

infrastructures, and a certain level of efficiency in the data preparation phase.  

Main issues related to Machine learning implementation are:  

Insufficient Quantity of Training Data 

For a human being to learn what a car is, all it takes is to point to a car and tell him that 

is a car (possibly repeating this procedure a few times). Now he/she can recognize cars 

in all sorts of colors and models. Machine Learning is not quite there yet; it takes a lot 

of data for most Machine Learning algorithms to work properly. Even for very simple 

problems, it typically needs thousands of examples, while for complex problems such 

as image or speech recognition millions of examples may be needed. 

The Unreasonable Effectiveness of Data 



2. Artificial Intelligence 61 

 

 

In a famous paper published in 2001 [15], Microsoft researchers Michele Banko and 

Eric Brill showed that very different Machine Learning algorithms, including fairly 

simple ones, performed almost identically well on a complex problem of natural 

language disambiguation once they were given enough data.  

As the authors put it: “these results suggest that it should be appropriate to reconsider 

the trade-off between spending time and money on algorithm development versus 

spending it on data quality.” 

Nonrepresentative Training Data 

To avoid the problem of having very precise predictions on the training set and bad 

ones on future data (test set and future observations), it is crucial that the training data 

are representative of the whole set of possible cases which may occur. For example, 

Figure 25 shows an attempt to find a linear function for modelling, thus predicting, the 

life satisfaction given the GDP per capita. To do so, different countries have been taken 

as training set (blue dots). The resulting model is not correct if other countries are 

considered (red squares). This is representative of the fact that, in order to build a 

general model, the right choice of training set is fundamental.  

 

Figure 25- Predictions obtained through non-representative training data 

The model trained on the uncomplete data points is represented by the blue dotted 

line, while the new model is represented by the black straight line. With respect to the 

old dataset, the model is significantly altered, thus implying that even for a simple 

linear regression model, a nonrepresentative training set leads to more inaccurate 

predictions.  

It is crucial to use a training set that is representative of the situation that is willing to 

predict. This is often harder than it sounds: in case of too small sample data, sampling 

noise (i.e., nonrepresentative data given by chance) will occur, but even very large 

samples can be nonrepresentative if the sampling method is flawed. This is called 

sampling bias. 

Overfitting 
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That’s the risk when dealing with algorithms that concentrate all the effort in creating 

accurate models, without considering the generalization error.  

Figure 26 graphically shows the effect of overfitting, and of its opposite issue, which 

is underfitting, in shaping the distribution of data. It is evident that, in the last 

scatterplot, future data may behave slightly different, and the model would not be able 

to properly predict this behavior.  

 

Figure 26- Overfitting and Underfitting models [16] 

The correct model is the one which is able to be precise in shaping training data, but 

also to have a good generalization ability when it comes with new data. The solution 

lies in a correct choice of the algorithm and of its hyperparameters, besides the starting 

point which has to be a proper availability of data.  

In practice, when training an algorithm, overfitting can be spotted, and consequently 

corrected through hyperparameters tuning, by looking at the output errors. If the 

model is very precise in predicting the training test (errors are low), but less precise in 

predicting the test set, it’s almost sure that the algorithm performed overfitting.  

As stated, a proper re-setting of hyperparameters can correct this issue, giving more 

importance to the generalization term than to the empirical error for those algorithms 

which have both the terms. Even in case of heuristic algorithms like Classification and 

regression trees, overfitting can be corrected through hyperparameters tuning, for 

instance reducing the maximum depth of the algorithm or reducing the maximum 

number of leaves. 

Besides tuning the hyperparameters, other possible solutions to avoid overfitting are: 

• To simplify the model by selecting one with fewer parameters (e.g., a linear 

model rather than a high-degree polynomial model), by reducing the number 

of attributes in the training data or by constraining the model 

• To gather more training data 
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• To reduce the noise in the training data (e.g., fix data errors and remove outliers, 

data cleaning) 

Nevertheless, the amount of regularization to apply during learning can be only 

controlled by hyperparameters, which represent parameters of the learning algorithm. 

As such, regularization is not affected by the learning algorithm itself; it must be set 

prior to training and remains constant during training. By setting the regularization 

hyperparameter to a very large value, the learning algorithm will almost certainly not 

overfit the training data, but it will be less likely to find a good solution. Tuning 

hyperparameters is an important part of building a Machine Learning system and is 

often performed using an iterative trial of different combinations of different 

hyperparameters settings (called GridSearch) in combination with K-fold Cross 

Validation.
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3. Artificial Intelligence for Circular 

Economy 

Previous disclosure on Circular Economy and Artificial Intelligence were fundamental 

to fully understand the reasons behind the developed work.  

The starting point is the consciousness about the need, at manufacturing industry 

level, to change perspective and to move to a more sustainable and efficient 

management of resources, mainly intended as time and materials.  

Having understood the potential of Machine learning as a tool to support this process, 

attention must be posed on how to deploy it in all its complexities and critical aspects. 

First, in order to exploit Machine learning, high quality data are needed.  

Where does the data exist? 

This work builds upon the confidence that the way products are designed and thought 

determines the ability or inability to extract data and derive information from them, 

thus enabling or disabling the process of knowledge creation needed to perform any 

kind of upgrade in the business. In particular, the upgrade tackled in this work deals 

with the large-scale implementation of a Circular Economy approach in 

manufacturing industry.  

Data exist in the product itself and in the market, intended as both end-users and B2B 

in case of products that are built to be deployed on more complex products, and in the 

entire supply chain. The criticalities lie in a proper identification of relevant data, in 

their collection, and in the subsequent manipulation done in order to extract 

knowledge. In many cases, problems arise since the very first step of this multi-stage 

process: companies are not able to recognize and properly collect the relevant data. 

The proposed method tackles this issue through the creation of an iterative, closed 

loop methodology. This allows to improve the gathering of data at each iteration, 

trying to exploit as many information as possible from already existing products 

currently on the market, while providing solutions for improving them through new 
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configurations, leading to the ability to validate the selection of data, to gather them 

and to extract from them the related information at next iteration. 

In order to build an efficient process, a clear definition of the objective is needed.  

What well defined Circular Economy problems could Artificial Intelligence help to 

solve? 

The areas of possible improvement of Circular Economy are many; Artificial 

intelligence has all the potential to be a change enabler. AI can play a fundamental role 

in the creation of efficient disposal and collection systems, in the reduction of 

uncertainty and variability that are typical of the reverse chain inputs, in the reduction 

of costs related to critical activities such as shredding for recycling materials, and in 

the reduction of human work required with the consequent speed up of processes like 

sorting and disassembling.  

At the state of the art, some CE related problems have been discussed and attempts to 

use artificial intelligence as a tool for solving them have been made.  

Nevertheless, in all the cases the proposed solutions are not well defined nor 

structured and occur as rough guidelines which do not consider the overall impacts at 

system level.  

In the following, a brief overview of the problems attempted to be solved through 

machine learning is provided. Re-taking the taxonomy proposed in section 1.1.6 - 

Open issues related to CE, examples of Machine learning based solutions can be 

provided for almost every mentioned field. For an easier reference, CE problems that 

can be solved using Artificial Intelligence have been grouped into 3 categories 

representing the decision-making levels and the consequent degree of integration in a 

company: 

▪ Single machine level (operational). It affects the single operation or sub-

process. 

▪ Process level (tactical). It affects a system of 2 or more sub-processes and their 

interaction. 

▪ System level (strategic). It affects the whole company and / or the interaction 

with other companies in the supply chain. 

3.1 Operational level 

▪ Automated cores classification 

The issues related to the identification of valuable components and to their 

separation from the rest of the product have been discussed in the section 

dedicated to remanufacturing activity. Inspection usually consists of a 
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combination of visual and dimensional measurements, non-destructive tests 

and functional tests performed by a skilled operator who knows the core thanks 

to his knowledge-base about the original product, and with the support of 

standard operator sheets (SOS) reporting a checklist for the components’ status. 

The challenges of this process are the high variability in the conditions of End-

of-life products, the poor information about return products and increasing 

product variety. Machine learning is the ideal tool to face these challenges 

because it allows to speed up the decision-making process exploiting the 

machine data on processing power; indeed, it can support the operator in the 

process to increase his productivity (decreasing the average task time), or even 

substitute the operator with a completely automated process. However, as 

discussed in section 2.1.6, suitable training data covering all the cases must be 

provided to the algorithm.  

Existing solutions have been searched in the manufacturing field, and the 

application which seems to be closest to the core classification is the surface 

defect detection tool of Landing AI, which is a company that provides 

customers with AI-powered industrial computer vision applications [17]. 

 

▪ Automated disassembly 

Product disassembly is one of the most manual labor dependent activities in 

remanufacturing, due to the complexity and variety of operations that must be 

performed on cores to obtain single components. Manual labor is generally 

more expensive than activities performed by machines, so the economic 

feasibility of disassembly tasks is hard to achieve. Also, flexibility is key for 

disassembly tasks and flexibility has a cost. 

Products disassembly can also be dangerous for the safety of operators due to 

the presence of hazardous components in products, mainly toxic materials, and 

sharp edges typical of a product or created by product breakages. The use of 

toxic materials inside products has been reduced in the recent years thanks to 

severer regulations, nevertheless many products are still around to be retrieved 

as cores (e.g., cathode-ray tube televisions containing phosphates and lead), and 

other products will continue to be produced even if toxic materials are required 

for their functioning, such as batteries. 

The most advanced solution found for automatizing disassembly is presented 

in the study by Vongbunyong et al. [18] regarding the prototype of an 

automated disassembly cell for LCD screens. 

The cell is provided with a 3D vision system that allows to: (i) detect the 

components of the product, (ii) detect connective components such as screws, 

(iii) determine changes in the disassembly state. Data collected from the vision 
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system are fed into the cognitive robotic agent powered by Golog, a 

programming language based on situation calculus. The actuator is composed 

of a grinder connected to a robotic arm, and a flipping table to remove 

disassembled components. In a series of experiments on 30 different models, 

the system has proven to be capable of disassembling LCDs with different 

components and different positioning of components as well, keeping a 

recognition accuracy higher than 90% and a position accuracy within 5 mm. 

 

▪ Predictive maintenance  

Predictive maintenance is a popular application of predictive analytics that can 

help businesses in several sectors to achieve significantly high asset utilization 

and savings in operational costs. Avoiding failures, a product can circle for 

longer in the market, following one of the four value creation mechanisms 

theorized by Ellen MacArthur Foundation [10]. 

Depending on the product and the context considered, the prediction could 

refer to different elements: 

1. Anomalies detection in product or component 

performance and functionality. 

2. Predict failures in the near future. 

3. Estimate the remaining useful life of a product or 

component. 

4. Identify the main causes of a failure. 

5. Identify when and which maintenance actions are needed 

on the product or component. 

Predictive maintenance potential has been considered extensively: in fact, 

predictive maintenance requires to continuously assess the status of 

components through set parameters, therefore the same information can be 

used to predict the quality state of a component even when it is in the hands of 

a customer. Moreover, the same product information gathered for predictive 

maintenance could feed the high-level operations planning of a company 

applying De-manufacturing, making the product return a quasi-deterministic 

variable. 

Many companies are already providing predictive maintenance services based 

on machine learning, and they are mostly adopted for very valuable products, 

such as industrial equipment, trains, buildings cooling systems, etc. 

 

▪ Automated optical separation 
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Separation in recycling plants is a process that can occur at two different levels 

depending on the company business: 

High level. If the recycling company collects various end of life products and 

waste from the market, it consists in separating them grossly depending on the 

type of product and on the material of which they are prevalently made. Then 

the company can process the different products internally or send the 

aggregated similar materials to a specialized company for the recycling of such 

material. 

Low level. Is the one described in section 1.1.4, when the recycling company, 

which receives in input similar products, separates the particles obtained from 

the grinding of such products to obtain in output a flow of particles of the same 

material as pure as possible. 

There could be companies which perform both the two levels of separation. For 

example, Relight receives different types of lamps that must be treated 

separately because they could be made of different materials. After a high-level 

separation, lamps are shredded and a low-level separation is performed to 

separate target materials from non-target materials. 

High level separation is usually performed by operators who pick manually 

objects from a conveyor belt and put them into bins depending on the object 

category or material. The throughput of this operation is constrained by the 

operators picking speed and the number of operators. Increasing the picking 

speed of operators increases the risk of alienation due to the repetitiveness and 

quickness of the task. The presence of hazardous materials and products to sort 

is another possible threat to the safety of operators. 

Low level separation is usually automatically performed thanks to processes 

that exploit physical properties of materials (e.g., conductivity, magnetism, 

density, particle size, etc.). Such solutions could be useless or underperforming 

in some situations, for example when separating different kinds of plastics or 

when separating particles with different colors. 

3.2 Tactical Level 

▪ Optimal disassembly level 

As shown in Figure 11, setting the optimal disassembly level is one of the most 

critical decisions in De-manufacturing.  

To assess the optimal disassembly level, it is fundamental to determine the costs 

and revenues that drive this decision considering component by component. 

Only variable costs that arise from this decision are accounted: 
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Disassembly costs. They are the costs to disassemble the component, which are 

function of the task time for the disassembly, the setup time to have the core in 

the right position and to prepare the right tool to disassemble the component, 

and the energy required from tools to carry on such operations. Task time and 

setup time are linked then to the labor cost in case of manual disassembly, or to 

the machine usage and depreciation in case of automated disassembly. 

 

Reconditioning costs. They are the costs to recondition the component to make it 

usable again and warranted like new. Examples of reconditioning costs are: (i) 

labor cost, dependent on the task time and the setup time, (ii) material cost, for 

instance if material addition is needed to refurbish surfaces, or if working fluid 

should be substituted or refilled, (iii) cleaning cost, which is usually performed 

several time during the reconditioning process, (iv) packaging cost to deliver 

the product to the customer, (v) energy and machine depreciation to perform 

various reconditioning operations previously mentioned, (vi) delivery cost to 

the customer. 

 

Reconditioned components revenues. It is the gain from selling a reconditioned 

component. 

 

Disposal cost. If a product cannot be reused or it is not convenient to be reused, 

a cost will be associated with his disposal, which can consist in recycling cost if 

the component’s materials can be extracted and recycled, or in landfill cost. 

Moreover, the transportation cost could be accounted. Usually, those costs are 

embedded into the extended producer responsibility (EPR), which is a strategy 

used by many countries to add all the environmental costs associated with a 

product throughout the product life cycle to the market price of that product. 

 

The use of machine learning algorithms for this issue is mainly focused on 

gathering high quality data to find a more accurate solution rather than on 

optimizing the existing solution. In fact, the optimization issue is addressed by 

genetic algorithms, which are widespread tools in the optimization field. 

 

▪ Flexible cores routing 

As explained in the section dedicated to Disassembly, line configuration and 

setting is an important lever which acts on the profitability of the entire 

disassembly process.  

Keeping a fixed rule for the assignment of tasks to the disassembly stations 

could create strong workload unbalances generating queues, therefore 
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reducing throughput. Moreover, workload unbalances are a source of 

dissatisfaction for humans, leading to social problems which may undermine 

the sustainability of these solutions.  

Using machine learning algorithms, it could be possible to create a flexible 

system for the routing of cores, gathering more precise data about cores status 

as explained in the optimal disassembly level section and predicting in a more 

reliable way disassembly task times and their variance thanks to historical 

disassembly data. 

As regard the use of product data and other historical data to predict 

disassembly task times, no solution can be found in literature. However, as 

highlighted by Usuga Cadavid et al. [19], it is possible to find various studies 

about manufacturing production planning and scheduling focused on time 

estimation of tasks due to the increasing complexity of products and continuous 

pursuit of process efficiency. 

 

▪ Dynamic recycling routing 

As explained in the dedicated section (1.1.4) the obsolescence risk of a fixed 

recycling system is a major threat for the owner of a plant or a possible investor. 

A rigid architecture could also reduce the recycling performance in case of a 

varying composition of the input material. Two elements are mandatory to 

create a flexible system with a dynamic routing: 

▪ A dynamically changeable transportation system which connects the 

stages of a recycling system that guarantees both the flexibility in the use 

of the system thanks to the possibility of routing selection, which allows 

the particles to visit only the stages needed and eventually to re-visit 

them, and it allows to add modules to treat different input materials 

following the trends of the offer of End-of-life products and components 

inbound. 

▪ An intelligent planner which can quickly define the best routing and 

machine parameters for each batch of materials inbound. The behavior 

of a recycling system stage, i.e., separation or size reduction, is hard to 

predict, except by using complex simulation tools, which require the 

modelling of physics behind the process that depend on particles 

characteristics (dimension, shape, material, orientation), on their 

interactions and on-stage parameters. A machine learning algorithm 

could quickly gather particles data from visual sensors and reading 

machine parameters to predict the output of the stage in a matter of 

milliseconds, therefore triggering the decision to keep the same routing 

and parameters or to change them. 
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No practical implementations nor theoretical results have been found in the 

De-manufacturing field. However, machine learning algorithms have been 

used to predict the recovery and in general the performances of material 

extraction processes in the mining industry. 

3.3 Strategic Level 

▪ Selective reverse logistic 

Machine learning algorithms could improve the reverse logistic process in two 

ways. The first is the prediction of the quantities of returned products at a 

retrieval point, which is hard to perform, and can be only made possible 

through a proper data collection. The second is the use of automated 

performances assessment solutions and predictive maintenance models to 

make a first rough core assessment at the collection point or even when the 

product is still in customer’s hands. 

Reverse logistics optimization tools such as the network design process to find 

the optimal position and number of collection nodes minimizing shipment costs 

and warehouse costs, and the selection of logistic suppliers are other useful 

artificial intelligence tools to reduce reverse logistic costs. For example, Yanchao 

et al. study [20] reports a model for multi-objective optimization considering 

the location, frequency of collection, quality and quantity of materials collected 

for recycling. Another example from Jeong-Eun et al. presents a model for the 

optimization of reverse logistics networks through a hybrid genetic model [21]. 

 

▪ Recycling exchange platforms  

A wasted opportunity for circular businesses resides in the missing 

communication among companies of different sectors to create an extended 

supply chain. In other words, the power of cascaded use and the power of pure 

circles are not exploited at all. In fact, material that is considered the byproduct 

of a process for a company could be used as primary raw material for 

production by another company. Sometimes the company that treats the 

material as waste pays to get rid of the material that is discarded, while the 

company that purchases it pays to obtain the material which is extracted or 

obtained through an industrial process. This situation can be turned into a win-

win condition if both companies would share their data on common platforms 

and match their requirements through machine learning algorithms, bringing 

systemic benefits and cost reduction to both parts. The solution here presented 

could be the incentive to boost downcycling processes which struggle to spread 

among industries. 
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Another scenario of value loss due to missing communication is the 

degradation of raw materials obtained through recycling processes that have 

worse properties compared to virgin raw materials. The discrepancy could be 

so high that the recycled material cannot be used for the same purpose as the 

virgin material, but it could still be used for lower value products. For example, 

plastics can be recycled few times, and the value depends on the polymer 

considered, before losing their properties such as tensile strength and 

transparency. The maximum number of cycles decreases if the plastic is 

recycled mixing different polymers or if the material is contaminated with 

additives.  

A few waste exchange platforms exist online, however, one of the few examples 

of platforms using machine learning models to facilitate the match between 

demand and offer is WSX-BM, a European platform born to promote national 

and international waste supply chains for companies of different dimensions. 

 

▪ Remanufacturing demand forecast 

The prediction capability of machine learning algorithms can be exploited also 

to have more reliable forecasts about customers’ demand. In fact, the products 

demand for companies adopting remanufacturing gets more variegated with 3 

main options for the customer: (i) newly manufactured products, (ii) 

remanufactured products, (iii) remanufactured and upgraded products. 

Various elements can have an impact on the customer’s decision, that will have 

impact on the production and remanufacturing planning to make the company 

aligned with the market. For example, if most of the customers of a specific 

product are unwilling to buy that product remanufactured, it means that 

allocating many resources to core collection and remanufacturing is 

inconvenient, and that the purchase of remanufactured products should be 

incentivized.  

The key is to discover which data can explain returns and demand, and to 

collect them in a reliable way. Also, solutions can be found in a proper product 

design for lifecycle, allowing to quickly upgrade products even in those cases 

in which the rate of technological change is high, without the need to 

completely change its configuration and materials. Then, the strategical 

decision lies in aligning internal operations with returns and demand. 

Having completed an overview of the potential implementations of AI for solving 

Circular Economy issues, it results clear that large-scale solutions are still far from 

being deployed. 
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The first step done had been finding a common factor that would combine all the 

above-mentioned issues.  

This resulted in the confidence that the most relevant and impacting lever for solving 

almost every kind of issue is represented by how products are designed, and that 

product design must bring adequate transformations to the processes and system 

behind.  

This wide and integrated concept embeds all the notions that are needed for tackling 

and targeting different issues, especially those at single machine and tactical level. 

Also, as explained in section 1.1.5 – Manufacturer centered approach, product re-

design must be always supported by a consistent strategy and a farsighted business 

model setting.  

In other words, acting on product design, building a structured framework which 

involves the use of artificial intelligence for re-thinking the way products are designed, 

represents a high-level decision which has impacts on all tactical and operative issues, 

allowing to easily deploy and implement all the solutions that are now hard to build 

and practice.  

Also, even if it could seem unrelated, a proper product design can help in developing 

solutions for other strategical issues like Remanufacturing demand forecast, selective 

reverse logistic and recycling exchange platform. This is due to the strong relation 

which links product design to system and process design, bringing to the evolution of 

the whole value chain and business model. In this direction, product design also has 

the potential to transform the way different actors interact with each other and with 

the product and components.  

Having said that, the answer to the third question is straightforward. 

Which applications would benefit most right now from Artificial Intelligence? 

All the Circular Economy related processes must be supported by a proper design of 

the products. Aim of the work is to exploit machine learning for enabling solutions 

which lay the groundwork for any other potential AI supported solution.  

“A design is a plan or specification for the construction of an object or system or for the 

implementation of an activity or process, and/or the result of that plan or specification in the 

form of a prototype, product or process.” [22] 

Product design has a significant effect on de-and re-manufacturing systems since it 

affects the existing circular economy business options that the manufacturer can adopt 

as strategic actions to regain functions or materials from the post-use products. It also 

influences the selection of the technological solutions that should be adopted for a 

proper post-use product treatment, and the efficiency, effectiveness, and profitability 
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of the de-and remanufacturing process. This lever constitutes a unique strategic 

competitive asset for manufacturers, especially in the case of manufacturer-centric 

circular economy businesses. By evaluating the effect of product design decisions on 

the post-use value and function recovery processes in advance, it is possible for the 

manufacturer to anticipate potential issues that can undermine the feasibility of the 

treatment and implement corrective design changes towards a sustainable business 

development, since the early-stage design phase of the product. 

The links between product design and De and Re-manufacturing solutions have been 

investigated by many authors and researchers [23] [24] [25], within the broader field 

of “design for X” activities; in this work these research will constitute the starting point 

and the basis of the proposed methodology. For the sake of completeness, some 

important findings will be mentioned as regards the impact of particular features of 

the product on its ability to be easily disassembled and remanufactured. The starting 

point is the adoption of a ‘lifecycle thinking’ vision, which considers both product and 

process, in a co-evolutionary approach. Conclusions as regards the guidelines for a 

lifecycle-oriented design concern the product materials and their coupling, the 

product structure and geometry, the fastening and joining methods that can support 

an easier and more efficient disassembly and remanufacturing process [26]. In Figure 

27, a synthesis of the impacts of different design aspects on Circular economy purposes 

is proposed.  

 

Figure 27- Circular product Design Tool [24] 
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Other pre-conditions to the application of a design for product lifecycle approach 

include the existence of a market and a demand from customers for the 

remanufactured product and the capabilities to simultaneously achieve benefits in 

terms of economic and environmental performance. The work will tackle all these 

aspects, presenting a methodology that is able to organize and manage all the 

criticalities and strategic issues. 

Also, within the large field of “Design for X” research, besides the more traditional 

“design for disassembly” and “design for remanufacturing”, supported by the concept 

of modular design, “Design for Upgradability” has recently been developed. It is a 

product design approach intended to easily upgrade product functions with the 

addition or the reconfiguration of one or more modules. Design for Upgradability uses 

modularity to conceive products that are thought to be remanufactured and upgraded. 

Practically speaking, the aim is to design products that can be easily cleaned, 

disassembled, repaired (through the substitution of broken modules) and upgraded 

(through the addiction of new modules or the change of modules). The idea of 

remanufacturing with upgrade is to extend products’ value with their lifecycle, 

enabling the introduction of technological innovation into remanufactured products 

in order to satisfy evolving customers’ preferences and, at the same time, preserving 

as much as possible the physical resources employed in the process [27]. Many authors 

have built models or tools to define the optimal modular structure of a product to be 

upgraded [28], [29], [30], [31], and [32]. Product design for upgradability should also 

support the diffusion of new “product-service systems” based circular economy 

business models, aiming at selling the product use instead of the physical product and 

offering product upgradability options throughout the product life cycle [33]. 

Design for product life-cycle methods are powerful enablers for the development of 

manufacturer-centric circular economy businesses through smart De and Re-

manufacturing systems. It was shown through the analysis of specific real cases, that 

design for product life-cycle methods can improve the ability to automate De and Re-

manufacturing processes [34].  

However, as a matter of fact, despite the wide availability of these tools in the 

literature, concrete methods have not yet massively penetrated industrial practices. 

The main reason is the additional cost that they can introduce in the very critical phase 

of New Product Introduction, were most of the costs and business risks are absorbed 

by companies. Indeed, design for product life cycle may introduce additional 

constraints to the design process and this can translate into a more expensive product 

design process, under a short-term view. [35] 

Also, the act of balancing multiple requirements and needs imposed by customers and 

government regulations on cost, space, aesthetics, and sustainability becomes harder. 
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Meeting these requirements and needs can involve novel design solutions and the 

expansion of the solution space beyond that of previous designs. This process can 

involve both exploration and exploitation, depending on the project situation and the 

capabilities of the design team. However, time and resource limitations can restrict the 

opportunities for exploration. This is the main reason why Machine Learning 

algorithms can help in this ambitious process, helping companies in overcoming time 

and resources constraints.  

3.4 State Of the Art and Research Gaps  

So far, state-of-the-art research have been presented as regards two macro topics: the 

use of Machine Learning for tackling specific Circular Economy issues and the 

implementation of design for product life-cycle methods. The link between these two, 

apparently disjoint, issues has already been explained and lies in the definition of this 

work. The aim is thus to exploit Machine Learning for enhancing the process of design 

for product lifecycle. Besides the already mentioned research and gaps in the effective 

implementation of design for product life-cycle methods, a literature review has been 

performed for identifying the current state in the utilization of machine learning for 

product design purposes. [36] [37] [38] [39]. 

Despite the huge number of articles mentioning AI, academic literature presents a 

clear gap as regards the adoption of artificial intelligence for industrial purposes. Some 

theoretical research have been published but they are usually not well disclosed and 

do not find any practical application/use. 

The most interesting examples come from China, Korea and Japan. 

3.4.1 Fujitsu 

In a paper published in 2017, [40] (Artificial Intelligence applied to design), authors 

promote AI systematization through Fujitsu “Human Centric Artificial Intelligence 

Zanrai”, thanks to data collected in Monozukuri. 

Aim of the paper is to evaluate the effectiveness of machine learning in product design. 

An example is provided for machine learning applied to PCBs design. They try to 

estimate the number of layers of the PCBs using Support Vector Regression technique 

with important initiatives to continuously improve accuracy of results.  

It’s a very interesting example of machine learning applied to 3D structural design 

components based on the recognition of 3D items using the same technique applied to 

2D objects. The method is as follow: 

1. Collection of images for each component generated from past data 
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2. Extraction of features vectors from images 

3. Generation of images for each new components for which similar shaped 

components have to be detected  

4. Extraction of vector features from these last images and calculation of 

similarity with the features vectors stored in the database and detection of 

similarly shaped components. 

5. Important initiatives to improve accuracy (like changing the point of view 

for image acquisition to avoid repetitions for symmetric components 

 

Authors also provide a general framework of reference for applying Machine Learning 

to product design. The framework is called Monozukuri AI framework and is 

composed by: 

1- Collecting training data (removing those training data that are pure noise) 

and classify the retained training data by applicable theme. To make the 

selection of training data more efficient, they have developed tools to 

visualize the characteristics of design data in the form of graphs. 

2- After training data have been collected, one has to extract features vectors 

from them (feature vectors are usually numerical data that assume very 

different forms depending on the field and sector). Feature vectors will 

represent input data for the learning model.  

3- Analysing the learning model created from the training data and improve 

accuracy. 

Even for this step, a standardized method which makes use of an integrated 

platform is under development. The main optimization goal is to minimize 

rework activities. 

3.4.2 GANs 

Recent article about Generative Adversary Networks in collaboration with 

Autoencoders for automatic design process. It is somehow one step ahead the 

methodology presented in this work. Also, it seems to be only applicable to quite 

simple products (with small number of features to take into consideration). But it is for 

sure a starting point and a model to be considered for the huge findings and 

conclusions brought. [41]  The functioning of GANs have already been disclosed in 

dedicated section (Generative models). In this research, the target is Conditional 

Generative Adversarial Networks. 
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The formalized approach can be well synthesized as in Figure 28:  

 

Specifications are derived from training Point Clouds. Point Clouds are encoded by 

the encoder to a latent representation k and merged with their respective specifications 

c to a real discriminator input k+c. The generator receives random noise input z and 

random specifications c to generate a fake latent object representation k, which is 

merged with its specifications c to a fake discriminator input k+c. Fake and real inputs 

are classified by the discriminator alternately. The fake latent representations k can be 

decoded by the decoder to receive new object Point Clouds with considered 

specifications. 

3.4.3 Generative Design 

Many articles tackle the issue of Generative design. Generative design is an extensive 

explorative design process which consists in giving design goals as input to the 

generative design process, along with parameters such as performance, spatial 

requirements, materials, manufacturing methods, cost constraints etc. Unlike topology 

optimization, the system explores all possible permutations of a solution by quickly 

generating many design alternatives. The system learns through testing and receiving 

feedback on the various iterations of a solution, and applies updates based on that 

feedback to the next iteration, until the design satisfies the objectives required [42]. 

This tool is useful in a circular economy perspective for minimizing the quantity of 

material needed to manufacture the product, to reduce the number of components 

connected and to use more often easy-to-remove joints. 

Generative models can be used also for the design of new materials at molecular level, 

searching for desired properties better suited for their employment. With circular 

Figure 28- Conditional GAN process [41]  
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economy principles in mind, the aim could be to generate materials able to last longer, 

to be easily recovered and to be non-toxic for the environment [43] [44]. 

This design approach applied for Circular economy allows for instance to create 

product design that reduces the task time needed to disassemble the product using 

easy-to-remove joining systems and reduces the number of components of which the 

product is made, therefore improving the economic feasibility of disassembly 

operations. Moreover, for products presenting a simple architecture, it is easier to 

automate the disassembly operations using simpler systems.  

Generative design algorithms are already successfully adopted by some companies. 

For example, Autodesk offers software solutions to apply generative design, even 

specifying the possibility of designing products with the aim of improving 

disassembly and recycling operations. The software is said to be capable of generating 

thousands of designs based on constraints, while a human can only generate about ten 

designs in the same time window. The software can create out of the box solutions 

hard to be conceived by humans, solving at the same time conflicting design 

constraints, and letting designers focus more on product innovation. 

There are multiple ways thorough which a generative design approach can be realized. 

For example, Singh and Gu [45] presented a review of five generative design 

techniques (L-systems, cellular automata, genetic algorithms, swarm intelligence, 

and shape grammars). They identified potential uses of each technique given a design 

problem’s characteristics and highlighted each technique’s benefits and challenges. 

Based on their study, they argued that no technique could match all design problems’ 

needs, and that those needs might change during the process itself. It was therefore 

suggested that a generative design system needs to be flexible and provide agency to 

its user to select techniques used both initially but also progressively during a 

generative design process. Given this, generative design has a large scope of potential 

implementations and applications. 

Interesting research [46] discusses the implementation of generative algorithms for a 

particular case study in the real-estate sector. In that specific case, attention is posed 

on the possible utilization of two completely different generative design approaches: 

genetic algorithm and random sampling. The generator is described as a method that 

can generate solutions based on the definitions and boundaries of the solution space, 

with its goal being to autonomously generate a set of solutions. A genetic algorithm 

approach is driven by a set of biologically inspired processes (e.g., mutation, crossover, 

and selection), where each solution is evaluated by a fitness function (a function that 

numerically depicts the performance of a solution based on a given problem’s 

objectives). In each iteration of a genetic algorithm approach, the biologically inspired 

processes are used to generate a solution set (called a ‘population’) that with each 
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iteration increasingly improves the fitness of its solutions. Given the focus of genetic 

algorithms on minimizing or maximizing different objectives (e.g., minimizing cost), 

genetic algorithms’ presence is typically seen in optimization problems, and has been 

shown to have potential for design problems with distinct and measurable objectives 

[47]. Despite the existence of various intelligent and advanced methods (e.g., genetic 

algorithms), it can also be argued that some of the methods pose a hindrance because 

of knowledge requirements, implementation difficulties, or time-constraints: all 

factors that should also be taken into consideration. For example, setting up variables 

and objectives is a crucial activity in genetic algorithms that can require substantial 

skills and knowledge. As such, simpler methods like random sampling can offer a 

suitable approach for conceptual design problems that are focused on exploration [48]. 

A random sampling approach typically relies on pseudo-random number generators 

to generate solution sets by selecting solutions within the solution space at random 

locations. Using random sampling poses few restrictions on a problem’s maturity and 

criteria, as random sampling is not driven by well-defined measurable objectives and 

is arguably easier to set up and use (in contrast to genetic algorithms, for example). 

This also means that the responsibility of guiding the exploration’s direction is up to 

the user, which can facilitate the inclusion of qualitative assessments of solutions (e.g., 

standardization of components for mentioning one CE criterion). 

Many other research have been conducted and a few implementations are available. 

To provide an industrial example, General Motors is trying to benefit from generative 

design capabilities through Autodesk software by rethinking the seat belt bracket, 

which secures the seat belt fastener to the seat. [49] After setting the objective and 

constraints the algorithm came up with 150 possibilities from which the designers 

could choose. The one chosen heavily changed the aspect of the component merging 8 

components into just one part 40% lighter and 20% stronger compared to the previous 

solution. The new part was designed with the objective of cost reduction and weight 

reduction for a potential future use in electric vehicles; however, having one single 

component instead of 8 also brings positive impacts on the ease of disassembly and 

recycling. Results of the implementation could therefore be even greater, with 

Autodesk already having an embedded function to improve disassembly and 

recycling operations. Unfortunately, no reported cases in this field are available. 

Generative design for materials has been already employed by companies as well: for 

example, the European Space Agency has funded a project called “Accelerated 

Metallurgy” with the aim of employing generative design to develop, produce and test 

rapidly and systematically novel alloy combinations. The new alloys were designed to 

be more performant and durable compared to known alloys and to be non-toxic for an 

improved environmental sustainability [7]. Machine learning is the best tool for this 
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research because it can quickly examine a vast number of atoms combinations and 

exclude a priori most of the almost infinite combinations thanks to the learning process 

that is able to predict the wanted properties. Therefore, the molecule research method 

is organized in a new paradigm, which consists in virtually simulating a product using 

molecules obtained from algorithms, and finally synthesize the molecule. Generative 

design for molecules is also widely used in the pharma industry where it was born to 

reduce greatly the time to market of new products screening a wide number of 

molecules. [50] 

3.4.4 Gaps 

What is missing in all these innovative and challenging solutions is a proper “stage 

setting”. The papers present solutions which build upon the idea that the process of 

designing a product can be deemed as simple, single-stage process. 

This consideration unavoidably leads to the inability of implementing the proposed 

solutions, or at least of implementing them at large-scale in the manufacturing 

industry.  

Covering this gap, providing a systematic and clear framework to be followed by any 

manufacturing company can be a strong boost through the creation of a global 

commitment towards circular economy. 
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4. Objectives 

Preparing the stage for a large-scale implementation of Circular Economy principles 

is the main objective of this work. Starting from the way products are designed, 

attention will be posed on the interactions and synergies between product design and 

the entire system and processes composing a manufacturing company. For doing so, 

Machine learning solutions will be presented, and strategical issues will be tackled. 

This work sets itself at a strategical level, with the aim of defining a framework of 

reference which can be adapted and adopted by any manufacturing company 

operating in different industries.  

The aim is to facilitate the exploitation and effective implementation of the mentioned 

solutions regarding the use of Machine learning for solving specific De-manufacturing 

issues. 

A structured approach which keeps in consideration input data definition and 

collection, strategic decisions, upgrades in terms of methodology implementation and 

related technologies will be presented.  

The work is focused on the definition of a framework aimed at tackling and 

overcoming the existing issues and gaps in the implementation of a Circular Economy 

approach exploiting Product Design enabled by Machine Learning. In doing so, 

related issues and gaps will be tackled regarding the means used to achieve this goal. 

As mentioned, this means are represented by specific Artificial Intelligence 

technologies which are Machine Learning tools.  

Many discussions and research have been conducted as regards the adoption of 

artificial intelligence and machine learning for automatic disassembly, cleaning, 

sorting, testing and re-use for high-value-added products. Upstream, these processes 

must be supported by a proper design of the product.  

The objective is to use AI for this preliminary step: efficiently combine multiple 

requirements coming from different customers all along the value chain and from 

Circular approaches like remanufacturing and upgradability in an innovative product 

design.  
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This will be done covering the gaps related to:  

o Adoption of Design for product lifecycle strategies 

o Exploitation of Machine learning for product design  

In order to allow the  

o Exploitation of Machine learning solutions for Disassembly purposes 

According to the CIMO logic [51], the aim is to develop, considering manufacturing 

firms (context), a structured methodology and framework (intervention) allowing the 

exploitation of machine learning and strategic tools (mechanism) to design CE 

oriented products (outcome). 

The purpose of trying to couple innovative and complex design techniques with 

circular economy purposes considering all the aspects involved in the path will be then 

applied to a product of interest which is lithium-ion batteries for electric vehicles. 
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5. Methodology 

The developed methodology has the aim to organize, in a structured and systematic 

way, all the previously mentioned aspects linked to product design strategies and 

related circular economy needs. 

The goal is to provide a clear framework which can be adopted and adapted by all the 

manufacturers, according to specific needs and technical constraints. 

The conceptual flow, which comes as a result of in-depth studies on the mechanisms 

of a correct design approach, is represented in Graph 1. 

 

 

Graph 1- Conceptual Flow 
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The starting point is a clear strategy definition, which considers business 

sustainability in all its declinations. This means that the first step in undertaking this 

kind of strategical path linked to product re-design is considering all the important 

aspects which play a role in the long-term development of the manufacturing 

company. 

More precisely, strategy is a set of plans and policies with which a company tries to 

respond to market needs gaining advantages over its competitors. A company strategy 

must consider all the functions present in the enterprise, like Research and 

Development, Finance, Sales, Marketing, Strategic planning, and Production. 

Although product design seems to be more related to the Production process, it has 

and it must have huge impacts on all the other strategic levels, especially when it is 

studied and engineered for circular purposes. 

This is due to the intrinsic and strong relation which links product, process, and system 

and which forces the fact that the evolution in one of these fields (product in this 

specific case) necessarily means evolution in all the other fields (process and system).  

5.1 Strategy Definition 

The strategic aspects comprehend: 

▪ The choice of the main target of the circular approach that is willing to pursue 

through product re-design. May it be repair, ruse for same purpose, reuse for 

different purposes, remanufacturing or closed loop recycling;  

▪ The consequent adjustments needed at strategic level, strictly intended as the 

eventual re-positioning of the company in the market, its perceived delivered 

value, and the eventual need to rise entry barriers to protect the business from 

cannibalization or threatening new entrants. Also, decisions must be taken on 

how to acknowledge customers and other players of the new value that is being 

created and of the potential gains it brings.  

▪ The choice of key partners; re-organizing the entire value chain is fundamental 

for building a valuable and sustainable circular approach. Value chain must be 

intended as both direct and inverse value chain.  

In the best-case scenario, indeed, Circular Economy aims at creating a circular, 

unified supply chain in which every actor – from the OEM to the logistics to the 

final customer – shares information and responsibilities. This means that, if a 

product is conceived in a circular perspective, the benefits of this choice will be 
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shared and perceived by all the supply chain actors. The OEMs will have their 

manufacturing costs reduced thanks to the standardization of processes and the 

reutilization of materials and components; the customers will have costs 

savings coming from an extended products’ life and improved quality; the 

middle-tiers actors will benefit from the standardization of technologies among 

manufacturers and from the higher level of information provided, facilitating 

maintenance and recovery operations. In general, the requirements that the 

product must satisfy are given by the necessities of a large set of stakeholders 

and can be expressed as a list of Redesign Requirements. 

These points are well summarized by the wide concept of business model.  

“Business Model is the conceptual and architectural implementation of a business 

strategy and represents the foundation for the implementation of business processes 

and information systems.” [52] 

The idea is that the methodology for implementing Circular Design in manufacturing 

industries should start with the re-setting of the business model. This kind of 

integration is fundamental in order to exploit the benefits of a product design 

conceived for circular purposes.  

Exploiting the clearness of the business model canvas as a visual tool, it can be stated that 

the first point of the method developed in this work is the re-definition of the 9 boxes 

which composes such model.  

 

Besides the already mentioned points to be defined, which are contained in the model 

respectively as Value Proposition, Customer relationships, Customer Segments and 

Key Partners, the approach should start with the clear definition of: 

Figure 29- Business Model Canvas 
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key activities related to the circular approach adopted; 

key resources which in this case are most likely to be represented by data, data 

collection enablers (IIoT instruments like sensors) and data analysts; 

channels through which the product is distributed and, above all, re-collected at the 

End-of-life.  

cost structure which involves the definition of the way costs are organized, in the case 

in which the adoption of the new circular strategy has a strong impact on the 

proportion of variable and fixed costs and on the way they are distributed in time. 

Revenue streams, i.e., the way the company receives the value created in terms of 

money. Another time, the adoption of the new circular strategy may, and should, have 

an impact on this. Examples of revenue streams are pay-per-use, fixed fees, only 

maintenance payments ecc. 

Examples of new business models which may support Circular Economy approaches 

are present and can be grouped into five main models. 

1. Availability guarantee 

Especially applicable in machine tools industry. The machine tool builder keeps 

the responsibility of maintenance, thus has the possibility to continuously 

monitor the state-of-life of its manufactured product and to collect many data 

on it. This represents a huge advantage for manufacturers who want to 

undertake a circular economy approach. The machine tool builder is paid for 

availability, meaning that he guarantees an agreed availability rate and he’s 

paid by the customer to maintain it.  

2. Providing personnel assistance for customers operations 

The manufacturer is paid for the service provided in terms of product 

performances guarantee and operative actions. Also in this case, operative and 

maintenance activities are responsibility of the manufacturers, who assist the 

customer with skilled personnel paid for the provided result (quality, 

productivity,…). Circular economy gains of this business models are always 

related to the possibility for the manufacturers to continuously collect data on 

the product conditions and state-of-health, thus enabling the implementation 

of solutions for keeping the product live longer like the one presented in this 

work.  

3. Production services to cover peaks/smooth demand 

It’s a kind of downstream integration done by machinery tools builders. Instead 

of providing the customers with machinery, in those periods in which 

customers have to face picks in demand, manufacturers directly provide them 
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with parts produced with the machines they usually sell. This allows a higher 

utilization rate of machines since manufacturers sell their parts produced to a 

large set of industrial customers. The revenue stream in this case is “pay per 

parts sold”.  Although this innovative business model is not strictly related to 

Circular Economy purposes, it is worthy to mention due to the intrinsic 

flexibility notion it brings. It is a clear example of the ability of a manufacturer 

to change its business model to adapt to strategic needs like increase 

productivity and make revenues form through other sources than the core 

business.  

4. Build (or operate) own business models 

The manufacturer keeps the ownership of the product and is paid for the 

service/value that the product delivers to the customer. Also in this case the 

manufacturer exploits the synergies of maintaining the product and updating 

it, also through its perfect knowledge of the business of the customer.  

5. Lean machine adaptation services 

This innovative business model deals with the bringing to the market of 

modular and scalable products. In particular, staying in the machinery tools 

sector, the manufacturer shoulders the costs of flexibility instead of making the 

customer pay for it. In other terms, instead of flexible and expensive machines, 

the manufacturer sells lean machines with only basic and essential 

functionalities (frugal products) with the agreement to reconfigure the 

machines in case of new production needs of the customer. Also in this case 

Circular economy arises: thanks to a new design of the product (machinery 

tool), which must support modularity and reconfigurability, the manufacturer 

is able to (i) save resources for the production of next generation machines 

which will be built directly adding functionalities to the existing ones instead 

of being produced from scratch; (ii) fully and flexibly satisfy customer needs 

without wastes and useless costs; (iii) continuously keep an eye on the 

customer, thus being able to forecast his future needs and make monetary 

assessments of future required reconfigurations of the machine. (iv) maintain 

customer loyalty, thus a sustainable business. 

Having understood the importance of a clear strategy setting, especially when dealing 

with circular economy purposes, the proposed methodology continues with the 

awareness of the importance of measuring results.  

After a proper strategy setting, performances of the company must be measured and 

evaluated in order to verify whether they are aligned with the stated strategy.  

For this reason, a proper set of KPIs must be defined. 
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5.2 KPIs Setting 

Whenever a company wants to act on its business, either for improving it or just to 

bring it to a desired level, the fundamental need is to know: 

▪ The exact level of performance the company wants to reach; 

▪ The starting point;  

▪ Performances reached in intermediate steps (i.e., keep track of the evolvement 

of improvements). 

For doing so, a structured and precise set of measures has to be identified. 

Key performance indicators are measures of the most relevant performances of a 

company.  

For the purposes of this work, besides KPIs directly addressing the typical strategic 

performances of a company (financial indicators like ROA, ROE, EBITDA, and 

operative ones like Throughput, cycle time, average delay, etc.) [53] , specific KPIs 

targeting circular needs must be set.  

As explained in section 1.1.6, a holistic, integrated, and scalable set of measures for 

circular economy is still missing, despite being essential for a large-scale 

implementation of CE.  

A set of fundamental KPIs is here reported, starting from the general and holistic ones, 

to arrive to those related to specific CE approaches.  

▪ Cycle time. It is the total time from the beginning to the end of a process, which 

includes the useful time to process a product to increase its value or to recover 

value from it, and the waiting time, which is time spent performing non-value-

adding operations. Cycle time can be referred to a whole De-manufacturing 

process or to the sub-processes. Cycle time should be aligned to the lead time 

requested by the customer. Through the implementation of the improvements 

targeted in this work, artificial intelligence can be used to reduce it by acting on 

product design, simplifying it as much as possible to avoid duplicating 

resources like machines and operators and to reduce investments and variable 

costs. 

▪ Resources saturation. Increasing saturation of resources allows to exploit 

completely their value, reducing variable costs of an operation. This is required 

for those systems which rely on expensive machinery and require very long 

planning time, like recycling systems. However, in high variability scenarios, 
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like the inverse-value chain one, increasing saturation is not always the best 

choice, as the idle time of a resource can be used to satisfy demand peaks or 

variability in the cycle time of a process. 

▪ Number of operators. De-manufacturing processes are highly dependent on 

manual labor due to their already disclosed complexity which prevent them 

from being automated. The costs reduction to make De-manufacturing 

operations more economically feasible can be reached, thanks to the 

implementation of this methodology, but only through a proper measure of the 

costs themselves. Number of operators required, indeed, can be a good measure 

of the cost of performing some tasks. Moreover, some activities can be 

alienating to be performed by a human, like quick sorting of products. For the 

two reasons above, reducing the number of operators given the same amount 

of workload is a key factor for the feasibility of De-manufacturing processes. 

▪ Safety. De-manufacturing operations could involve treatment of hazardous 

materials and risky tasks for operators’ health. Aim of the new product design 

specifications and of the improvement process proposed in this work is also to 

reduce the presence of these kind of materials and components. Also, solutions 

powered by machine learning can solve these issues avoiding manual jobs or 

supporting operators. 

▪ Energy saved. Energy is a variable cost for both manufacturing and De-

manufacturing processes. Therefore, this metric considers both savings from 

avoided production of new products in manufacturing and energy savings in 

De-manufacturing processes. This metric is also strictly related to the 

greenhouse gases (GHG) emissions avoided, due to the still too high 

dependency of energy from fossil fuel. Therefore, keeping track of energy 

consumption with the aim of reducing it, also means reducing GHG emissions 

and the consequent costs related (due to government policies restrictions). 

▪ Virgin material saved. This KPI highlights whether the solution allows to save 

more virgin material for a reasonable cost. Material saving has an impact on the 

environment as well, reducing the depletion of virgin material reserves and 

avoiding introducing new material in the system that will end up in landfills. 

▪ Inventory carrying costs. They identify all the expenses related to holding and 

storing unsold goods. It is generally an important metric to assess, and for De-

manufacturing operations characterized by uncertainty its importance could 



92 Methodology 

 

 

even be greater. Companies account for different costs to obtain the total value, 

however the most used are: warehousing costs, opportunity costs, obsolescence 

costs, transportation and handling, taxes, and depreciation. 

Recycling-specific metrics: 

Besides the fundamental KPIs listed in dedicated chapter (1.1.4), another important 

indicator must be added in order to keep track of the actual profitability of recycled 

materials (WMV ratio).  

▪ Recovery. As already explained in Chapter 1.1.4, it is the quantity recovered of 

target material in the output flow of interest. Increasing the recovery of a target 

material means to increase the quantity obtained overall, which increases the 

profit. 

▪ Grade. As already explained in Chapter 1.1.4, it is the quality of the target 

material in the output flow. Increasing the grade of a material stream increases 

its value, because a purer material is worth more. The unitary value of a 

material is proportional to the square of the grade. It is important to remember 

that the two quantities are in a trade-off relationship, so it should be found the 

optimal process which maximizes the revenues from the two. 

▪ Waste / material value ratio. Measure the profitability of the waste collected by 

the recycler considering the recycled material selling price and the cost to obtain 

and recycle such material: 

𝑊𝑀𝑉 =
𝐶𝑤𝑎𝑠𝑡𝑒

𝑃𝑚𝑎𝑡
 

Where:  𝐶𝑤𝑎𝑠𝑡𝑒= Waste Acquisition and Processing Cost 

  𝑃𝑚𝑎𝑡= Recycled Material Selling Price 

The target is to reach the value 0 and in general to remain below the value 1. 

Remanufacturing-specific metrics [54]: 

▪ Core / product value ratio. Measure the profitability of a core with the objective 

of sourcing high value ones and reducing the cost of core reconditioning: 

𝐶𝑃𝑉 =
𝐶𝑐𝑜𝑟𝑒

𝑃𝑐𝑜𝑚𝑝 − 𝐶𝑑𝑖𝑠𝑝
 

Where:  𝐶𝑐𝑜𝑟𝑒= Core Acquisition and Processing Cost 

  𝑃𝑐𝑜𝑚𝑝= Price of Sold Components 

  𝐶𝑑𝑖𝑠𝑝= Disposal Cost of Unsold Components 
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 The target is to reach the value 0 and in general to remain below the value 1. 

▪ Core class distribution. It indicates the average quality of the cores retrieved 

from the market and in different stages of remanufacturing process. The higher 

is the quality of the cores, the higher is the potential profit obtainable. An 

example of a numerical representation of the metric is shown below: 

𝐶𝐶𝐷 =
1 ∙ 𝑁𝑎 + 𝑤𝑏 ∙ 𝑁𝑏 + 𝑤𝑐 ∙ 𝑁𝑐

𝑁𝑡𝑜𝑡
 

Where:  𝑤𝑥= Weight of Class x (0 ≤ 𝑤𝑥 ≤ 1; 𝑤𝑎 = 1) 

  𝑁𝑥= Number of Cores of Class x 

The target is to reach the value 1.  

In addition to these two KPIs found in literature, other measures could be set 

for indicating the extent to which a particular product is worthy to be 

remanufactured for different purposes other than the ones it had in its previous 

life-cycle.  

It’s important to underline that KPIs defined in this section are indicators related to 

the overall system (and sometimes to the whole process) performances, and not to the 

specific results strictly related to product design. 

These measures have the aim to control and evaluate the improvements brought at 

Process and System level by the implementation of the new guidelines of product 

design. This is due to the above-mentioned strong integration between product, 

process and system, according to which it is not possible to act on product design 

without having to modify and improve also the processes and the system in which the 

product is produced and sold.  

A model can be introduced to formalize the concept of integration of products, 

processes, and production systems. [55] 
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Figure 31 - Integration 

A configuration approach is the entire procedure followed to configure the product, 

process and production system. Indeed, product, process and system must all be 

designed to carry out a production transformation, according to the following logic:  

 

 

 

For this reason, KPIs are set at process and system level according to the strategy 

defined, even if the concrete actions are taken starting from product design or re-

design.  

KPIs directly targeting product design are strongly dependent on the specific industry 

and company, since the product characteristics and functional requirements vary with 

the type of product considered. These KPIs must cover both performances related to 

Figure 30- Co-Evolution  

   

 

Figure 32-Sequential configuration [86] 
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customer satisfaction and circular economy requirements, according to the new 

strategy.  

 

Figure 33 - Product KPIs 

Once the spectrum of indicators to be considered for the evaluation and assessment of 

the undertaken actions has been set, the core part of the methodology starts.  

In the conceptual flow in Graph 1, the next step is called “Solution Space Identification” 

and it is necessary when designing new products.  

 

5.3 Solution Space Identification 

If a manufacturing company wants to place a new product on the market, before 

searching for the optimal solution, it has to put an effort in identifying and defining 

the feasible set of solutions among which the exploitation (optimization) will take 

place.  

As shown in Graph 1, since the proposed methodology has a continuous improvement 

goal, this phase of exploration of possible solutions has an iterative nature, and the 

solution space is continuously re-defined even for already existing products after the 

phase of evaluation of current solutions, in those cases in which it ends up with 

designers’ decision to search for new solutions. In this case, Generative algorithms 

help humans in reaching solutions which otherwise wouldn’t be reached, in a very 

short time compared to that required by humans and in a more efficient way. This can 

only happen through a careful identification of the space of solutions, i.e., the setting 

of the ranges of values to be assigned to the selected input variables. 

At first iteration, however, a starting solution space must be provided by means of a 

set of features that the product must satisfy. This set of features must cover three main 

macro-fields:  

▪ PRODUCT DEFINITION, i.e., features of the product responding to specific 

customers’ needs. 

 

PRODUCT 

DESIGN 

KPIS 

Circular 

Economy 

Requirements 

Customer’s  

Requirements 
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▪ DESIGN VARIABLES, i.e., technical, engineering specifications of the product. 

▪ CONSTRAINTS represented by Circular Economy requirements.  

In case of new products introduction, after the definition of the solution space, 

solutions can be generated through a proper generative design algorithm, which is fed 

with the defined variables. In this case, in-depth study must be carried out on both the 

sizing of the inputs and on the proposed solutions, in order to collect data for 

evaluating them. 

In case of already existing product design, the initial solution space is already defined, 

and the first iteration of the methodology is an in-depth study of the current design, 

which must be performed to assess the current performances. In this last case, the 

solution space identification coincides with the search for most relevant data 

describing the main features of the product and the target features of interest.  

To provide another view of the framework of reference describing the methodology, 

summarizing the concepts explained so far, Figure 34 shows the main blocks involved 

in the path creation without posing any attention to the complex structure of the 

Machine Learning Algorithms.  

As can be seen in the diagram, the space of solutions composed by the three above-

mentioned fields represents the input of the Machine learning Algorithms block, 

which coincides with the multi-stage process of product design (later represented in 

Graph 2).  

Inputs must be fed in the form of structured data.  
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The fact that these structured data are available or not at the very first adoption of the 

method did not represent a constraint in the development of the method itself. The 

work has been carried out following a PROBLEM DRIVEN APPROACH, meaning 

that the solution has been developed starting from the definition of the problem, rather 

than from the available data.  

5.4 Problem Driven Approach 

This kind of approach has many reasons behind.  

First, it ensures the wide-coverage and broad application field that the methodology 

is willing to reach. Without rigid constraints on the type of input data and on their 

structure, diversified companies acting on different industries, at different levels of 

any kind of supply chain, and with different starting points as concerns the level of 

digitalization and AI adoption, can be able to adapt the method and apply it. The 

method, indeed, provides guidelines and a path to be followed.  

As a secondary aspect, the problem driven approach ensures the achievement of an 

optimal solution, which can be continuously upgraded as a consequence of 

improvements in technological development or changing requirements and 

constraints. Finding a solution starting from the definition of the problem itself is the 

Figure 34- Framework 
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best way to solve the problem, even if it requires higher efforts in the starting phases. 

Also, efforts are required by single companies, which have the duty to understand 

which kind of data they actually need, and collect them in a precise and structured 

way, always according to their specific target strategically defined. 

Another reason which stands behind the decision to follow a problem driven 

approach, and which is strongly linked to the previous one, is the iterative nature of 

the method.  

The problem driven approach allows to identify gaps in the current availability of data. 

Thinking about how to solve an issue only looking at the problem itself, in fact, allows 

to find optimal solutions, which however could not be always immediately applicable.  

The strength of such approach is exactly this one: provide a clear way to understand 

which kind of data are missing in order to implement the right solution, and 

consequently which actions to undertake in order to collect these data. Actions may 

involve the product design itself or the entire business model definition and design. 

Therefore, the awareness about the lack of fundamental data do not constitute a barrier 

for the adoption of the method, instead it is the first step of the implementation of the 

method itself. Though the realization of the need of precise data, and the execution of 

corrective actions aimed at collecting them, a first iteration of the method can be 

already performed.  

Many times, indeed, the major issue for companies who want to improve processes 

through data collection and analysis is the comprehension of which data to collect. 

This approach can help in solving this issue, providing a clear view of the gaps to cover 

in order to implement the solution.  

For better explaining the concept, an example is provided: 

By dint of the adoption of the method, a company gets aware of the fact that data are 

needed on the level of wear of a certain component due to its contact with another 

adjacent component in order to implement the desired solution. Following the path 

described, this company will think about a design of the product which allows to 

gather this kind of information. For instance, creating a configuration through which 

the two target components are easily accessible for monitoring them. Another 

intervention on product design could also be to put a sensor on the two components 

which collects data on temperature or other measures that are linked to the level of 

wear, or even assembling them in a way through which they can be more easily 

disassembled or replaced. Also, the business model can be modified in order to gain 

such kind of information. If the manufacturer keeps the responsibility on the product 

maintenance or operativity, he can continuously monitor the product thus gathering 

the needed data. 
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Therefore, following a problem driven approach allows to  

1- Achieve awareness of the needed data 

2- Eventually notice that some of these data are missing at the beginning 

3- Take actions to gather these data  

This third point represents, for all intents and purposes, a first application of the 

method itself, since it involves the introduction of new guidelines for the design of the 

product with implications on the business model and on the supply chain, and with 

the final goal of introducing or improving circularity in the value creation process. 

Nevertheless, these steps are actually a preliminary iteration of the method, aimed at 

collecting the needed data for applying the correct solution.  

As shown in the Framework (Figure 34), indeed, the output of each iteration, which 

comes as new design guidelines and business model adjustments, after being properly 

checked in accordance with strategic requirements, is re-fed into the algorithm in the 

form of new data coming from the market.  

Once the product is put on the market and used by consumers, indeed, it is able to provide 

additional data which may be the fundamental data initially needed in the cases explained 

before, or data which can be translated in information to continuously improve the process, 

allowing to expand the space of solutions initially defined and to pose the exploitation phase 

to next level. 

To provide guidelines about the needed data for starting the core part of the approach, 

a list of inputs has been drafted, categorized into the three macro-fields of interest.  

 

Figure 35- Input categorization 

PRODUCT DEFINITION 

DESIGN VARIABLES 

CONSTRAINTS  

Data coming from market requirements.  

FUNCTIONAL REQIREMENTS  

ENGINEERING SPECIFICATIONS  

CIRCULAR ECONOMY Requirements. Further  

Split according to the specific target process.   
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The starting point was a research done on the type of data that a product designer 

needs in order to start his work of engineering a new product. This is done to identify 

which are the most useful information for developing a product which brings 

improvements with respect to the existing ones, with a particular attention posed on 

circularity and life cycle. In this sense, the aim is to investigate and identify those data 

that are fundamental in order to have a deep knowledge on the product life cycle, at 

the moment in which it is designed and developed. 

5.4.1 Product Definition 

The first set contains data coming from customers and the market in general, needed 

for defining the product considering customer perspective. They are present in the 

market and constitutes those data which can be enriched through this methodology 

application, and which are iteratively added to the process.  

In particular, they can be labelled as: 

▪ Data regarding the expectations of the customer. 

Considering separately both b2b and b2c customers in case of products that 

have to be assembled and deployed on other complex products.  

These data, which may assume different structure and be of different type 

according to the specific application, are fundamental for designing a product 

which not only responds to customer needs, but also meets its expectations in 

terms of aesthetic and functionality. Such data can be represented by the 

usability of the product, the user interface in case of electronic products, the 

speed, and many other characteristics which depend on the industry and on the 

specific company. 

 

▪ Data regarding the way the customers use the product. 

These data are fundamental both for a reason linked to marketing purposes, 

which is the reason for which these data are collected and used by now, 

constituting a fundamental step in order to design a product that catches and 

satisfies customer needs, and for a reason that is more linked to the way the 

methodology is created. This last “Circular Economy” reason represents the 

target of the entire method.  

Knowing the way the product is used, consumed and managed by the customer 

allows first of all to easily predict how the product will look like at the end of 

its useful life, thus reducing one of the main issues linked to variability of 

returned products. As a second aspect, these data allow to foresee whether the 

customer is going to keep the product until the end of its useful life or not and 

why, thus reducing the uncertainty in the quantity of disposed products and 
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their actual condition. These data will be further investigated since they 

represent the most part of those data that are the result of previous application 

of the methodology. In other words, acquiring awareness of the fact that these 

data are needed and of the exact shape in which these data are needed, already 

constitutes a hint for the next product design and business model adjustment, 

which should facilitate the collection of such data.  

Stressing this point, product design and business model design represent 

strategic levers for a systematic collection of unbiased data from the customers. 

Starting from initial product and business configuration, the adoption of the 

method allows to find a way to gather this information, with benefits on the 

entire company.  

Such a systematic approach to collect these data is significantly helpful also for 

the traditional marketing purpose. Until now, indeed, these kinds of data are 

mainly collected through surveys and other post-use and unstructured 

methods always based on past experience or analysis of EoL products. These 

methods allow to gather biased data because occur in a moment that is 

subsequent to the actual usage of the product.  

 

▪ Data regarding the fundamental features of the product.  

First step in designing a product is collecting precise information concerning 

the key needs that have to be satisfied. Being able to distinguish between key 

needs that the product must satisfy and additional requirements is fundamental 

to avoid wastes in time and materials used. An efficient resource allocation 

must consider fundamental needs as high priority ones, to be accomplished and 

satisfied in an optimal way through an optimal product configuration.  

Also, these data are strongly dependent on the specific industry and product, 

and in case of IoT products, which are growing in the market, fundamental 

features must consider the level of intelligence of the product, its 

communicability with other devices/products and interoperability.  

 

▪ Data regarding those features that are not fundamental but highly 

recommended and expected. 

As explained before, these data are needed in order to conduct an optimization 

study on how to allocate resources for the fulfilment of different requirements. 

Big effort should be put in the design for those functions of the product that 

represent the response to crucial requirements, while for the other features, 

always according to the strategy of the company, the designer can choose not 

to waste too much time and materials, always gaining good results.  
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On the other hand, it is necessary to collect data describing these requirements 

also for spotting future trends and for embracing a circular approach through 

product design that can be modular and upgradable, allowing to satisfy 

possible future requirements without the need to produce from scratch.  

  

▪ Data regarding those features and functionalities that are not fundamental 

and not necessary but that, if present, represent a great advantage for the 

product in the market. 

These kinds of data are needed for those companies which pursue a quality 

leadership strategy and want to be the best on the market as concerns product 

functionalities. Also in this case, collecting the right data is crucial in order to 

avoid wastes and to avoid useless functions which do not add any value for the 

customer.  

5.4.2 Design Variables  

This set of data comprehends the engineering specifications of the product, i.e., 

technical data on product, materials and related characteristics which determine the 

product definition explained in previous chapter. Fundamental task for the product 

designer, indeed, is to find the relations linking engineering specifications and 

functional requirements, in order to precisely know whether a certain technical feature 

of the product is relevant or not in determining the fulfilment of a specific requirement. 

This analysis of the relations between technical features and functional requirements 

is usually performed using a visual tool called House of Quality, belonging to the 

management approach known as Quality Function Deployment [56]. The foundation 

of the House of Quality model is the belief that products should be designed to reflect 

customers’ desires and tastes. So, marketing staff, design engineers and manufacturing 

operators must work closely together from the time a product is first conceived.  

House of Quality has a complex structure, presented in Figure 36.  
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Figure 36- House of Quality [57] 

 

As can be seen in the representation, the model is composed by different parts, each of 

which has a precise purpose.  

▪ Rows of the central matrix represent customer specifications, i.e., the voice of 

the customers, translated in the Functional Requirements presented in section 

5.4.1. According to the schema presented in the section, which includes the 

discrimination of features basing on their role in satisfying customer needs, 

each functional requirement is associated with a weight representing the level 

of priority/importance of that specification. 

▪ Columns of the matrix are the Design Variables, i.e., the engineering 

specification whose set of data will be presented in this section.  

▪ In the middle of the house, the Relationship Matrix is the body of the whole 

model, as well as the visual tool in charge of explaining the above-mentioned 
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relations between product definition variables and design variables. Due to its 

strategical importance, it is filled in by a cross-functional team, and it indicates 

how much each engineering specification influences the customer 

requirements. Numbers or symbols are used to indicate the strength of these 

relationships, whose evaluations are based on both engineering experience and 

customer responses. The relationship matrix answers the question “How much 

do engineers influence customer-perceived value?”  

 

▪ Another important aspect tackled in the model is the evaluation of the existing 

relations between different design variables, which will be presented in this 

section. This is done through the Roof Matrix, a roof-shaped matrix giving the 

model its typical aspect of a house. This matrix is important for the engineering 

team since it shows the relationships between one engineering specification and 

all the others. If two features (A and B) are linked together for technical reasons, 

modifying one will inevitably require a change in the other one too. The roof 

matrix shows the complexity of the product architecture and answer the 

question “How does a change in one feature affect the others?”.  

 

▪ After the Relationship Matrix has been assessed, the output of the model is the 

evaluation of the Importance Weight of each engineering specification, usually 

located at the bottom of the house. Each evaluation comes from the importance 

of the Customer Specification multiplied by the Relationship that exists 

between them. In this way, the most relevant Design Variables are not the ones 

that affect the highest number of Functional requirements, but the ones that 

affect the most relevant Functional requirements.  

 

▪ Additional HoQ elements are the Comparative Assessment box, located on the 

right side in the picture, and the Objective Measures on the bottom of the house 

beneath the engineering specifications (design variables) to which they pertain. 

The former is a benchmarking tool used to assess where the company stands 

with respect to competitors. To do so, customers’ evaluations of competitive 

products are listed and compared to the target product by a trending line. The 

latter, instead, indicates the quantitative measures of the ES listed above.  
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The importance of this tool in developing this kind of methodology goes behind the 

marketing reasons explained before. It will be explained how the right definition of 

the relations between functional requirements and engineering specifications play a 

fundamental role also in the development of a correct circular approach.  

It’s important to underline how the preliminary step to the deployment of such kind 

of model is a correct collection of data regarding the voice of the customer, bringing 

back to the point disclosed in previous section (5.4.1) on the importance of creating a 

systematic way to collect the customer needs and feedbacks.  

The engineering specifications (design variables) among which relations have to be 

stated and which have to influence functional requirements, can be organized in a set 

of data which comprehends:  

• Data about all the possible materials that can be used for each component. 

(temperature of melt of each material, critical temperature, level of danger if 

subject to certain conditions,…)  

 

• Shape and dimensions of all components and of the entire product. 

 

• Data on how different components mechanically and electrically interact 

with each other. This is a very broad set of data comprehending the technical 

features which characterize specific products. Data are included regarding the 

assembly precedence, the way components are joint together, the presence of 

electronic connections and the type of connection used.  

 

• Costs related to different materials, components, junctions. Even if at high 

level, in the design phase it is important to cross the potential materials to be 

used with their related cost. 

 

Additional data not strictly linked to technical specifications can be fundamental, 

especially in particular industries, in the phase of design conception of products. These 

data can be defined as: 

• Data on product logistic and transportation (way of transport, time of 

transport, places in which the product passes through). These data are 

important when designing a product since they strongly influence the ability of 

some materials of maintaining their properties.  
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• Data on product distribution (where it is sold and how). 

• Data about substitute products and competitor products. This data may 

provide hints for enlarging the solution space. 

• Data about competitor SERVICES and substitute services. Fundamental for a 

correct co-evolution model development, discussed in previous sections.  

 

As mentioned, this list of data represents a guideline for companies. According to the 

specific aim, each company should be able to conduct an in-depth analysis for 

assigning correct weights to each kind of data. These weights are different form the 

ones present in the bottom part of the HoQ, which are related to the relevance of the 

specific Design Variable in determining the success of a design configuration. In this 

case weights indicates the importance of collecting and having the datum related to 

that variable, intended as the relevance of the engineering specification in defining the 

product design. Since the presented methodology has the willing to be applicable to 

any kind of industry, the aim is to distinguish which data are fundamental for 

developing this methodology and those that can be neglected, according to specific 

cases. In this way, through the mechanism described in in the Problem Driven 

Approach section, actions can be undertaken to gather those fundamental data that 

are missing.  

The correct matching of functional requirements and technical features which comes 

as output of the House of Quality model, can be seen itself as a first attempt to increase 

the circularity of the product. By correctly identifying those features which are most 

impacting fundamental needs, efforts can be put in creating a product configuration 

which concentrates on such features, using less materials and less resources for 

developing features which are not relevant for satisfying important requirements. This 

is the reasoning behind the “frugal design” approach, [58] which can be considered an 

important Circular economy enabler and facilitator.  

Despite the fact that the data listed so far were not specifically targeting circular 

purposes, they can be translated into circular constraints according to the specific 

product analyzed. 

The third set of input data, indeed, is composed by those specific values, or ranges of 

values, that technical features must assume in order to satisfy specific circular needs. 

Besides these constraints, additional data can be added in input according to the 

strategy that the company is willing to pursue. 
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5.4.3 Circular Economy Constraints 

As explained, the first step needed to undertake this kind of approach is a clear 

definition of the strategy that the company wants to adopt. This comprehends the 

setting of a target objective as concerns circular economy implementation, which must 

be decided a priori by the single company in compliance with features of the business 

and strategic objectives. Given the complexity of circular economy systems, indeed, it 

would be inconceivable, other than disadvantageous, to try to pursue all the circular 

economy strategies at a time. The methodology aimed at finding innovative product 

design must be tailored to one or two specific circular aims. 

For this reasons, data and constraints representing circular needs have been grouped 

into five main macro-areas, each of which targets a specific de-manufacturing process. 

Clearly, there can be overlapping in the data needed for different processes, but for the 

sake of completeness and clarity all the macro-areas contain the needed data to be 

collected in order to implement the method.   

The discussed five macro-areas are: 

▪ Increased life cycle (through reuse or repair or simply designing a product 

aimed at lasting longer). 

▪ Easy and automated disassembly. 

▪ Easy and automated sorting. 

▪ Re-manufacturability, which comes as a conjunction of the two previous 

objectives, adding other constraints specifically targeting other steps of the 

process.  

▪ Recyclability, which also includes disassembly and sorting and adds all the 

other constraints required by typical recycling processes.  

 

1. INCREASE PRODUCT LIFECYCLE  

Wanting to pursue this kind of strategy, machine learning algorithms must be 

fed with correct constraints specifically targeting those features that have an 

impact on the ability of the product to last longer. 

In particular, these set of data have been identified as useful for providing 

correct information for the product design.  
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▪ Data on the combined material properties of all the components of the 

product. These data are fundamental for selecting right materials and 

assembly which can last longer enabling to increase the product lifetime. 

Interactions among materials and components, indeed play a 

fundamental role in the degradation path of components and whole 

product.  

 

▪ Type of materials used for joints and connections. Also in this case, if 

the target is to design a product that have to last for a longer time, 

connections and joints must be studied in such a way to guarantee 

stability and hold. 

 

▪ Characteristics of joints and connections (whether they are mostly 

reversible or irreversible and other features). In particular, considering 

only re-use and repair purposes, irreversible connections are better since 

on average they last longer. It will be explained in next section how this 

constraint completely changes when dealing with the need to 

disassemble the product.  

 

▪ Level of homogeneity of the product. Intended as utilization of same 

material for each single component and for components having the same 

function. 

 

▪ Thermodynamic compatibility among metals involved and thermal 

reactions which may cause unavoidable degradation after a certain 

amount of time. 

 

▪ Data on the rate of technological change of the particular product. In 

case the rate in high, the reuse or repair solutions may not be the best 

and remanufacturing for function upgrade could be a better choice. In 

this case, constraints change, and the need becomes to design a modular 

product whose functions can be scaled and upgraded according to 

needs. 
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▪ The already discussed data on customers’ behaviours. Besides the 

general aim explained in previous section, mainly targeting the 

reduction of variability and uncertainty typical of the inverse chain, 

these data coming from the market can be used for specific re-use and 

repair systems building. Information on how customers interact with the 

product and on how the market is evolving allow to develop products 

that are able to live longer both in terms of technical obsolescence and 

degradation of components, both in terms of customer needs that have 

to be satisfied. The way data are collected now can be not enough to this 

aim. It could be necessary to initially modify products configurations 

adding sensors in order to have real time data, or to re-design of the 

entire business model: new BM related to product servitization, in fact, 

which expect the producer to keep the ownership of the product and so 

to maintain the responsibility for maintenance and control, enable this 

kind of data collection. Product servitization is for sure an advantage for 

the producer as concerns the Circular Economy purposes. 

 

2. EASY AND AUTOMATED DISASSEMBLY  

Issues and criticalities related to this kind of process have been largely 

discussed in section D and in section O.  

Through the exploitation of the following data, fed as input constraints to a 

proper machine learning algorithm, guidelines on how to design a product 

aimed at overcoming those issues can be found. In particular, data are: 

 

▪ Data on how the components are put together in already existing 

products. (Disassembly tree). This information is needed in order to 

know which are the existing relations among components and, thanks to 

the technical and functional knowledge of the product translated in 

input data, make the algorithm learn of a better configuration under the 

disassembly perspective. Note that the fact that this new configuration 

will always be feasible is guaranteed by  other inputs related to previous 

data on design variables, which define the solution space. As a 
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consequence, technical specification on the necessity that two 

components are physically connected are needed. 

 

▪ Data on how each component interact with the other ones. Both in 

terms of mechanical connections and electronic/electrical ones.  

 

▪ Number of rotations/movements needed to assemble/disassemble two 

components.  

 

▪ Characteristics of the materials of connected components. 

 

▪ Data on the number of layers needed for each component according to 

specific product requirements. These data are of particular interest in 

case of specific products like PCBs, which are critical under the circular 

economy perspective.  

By knowing in advance, thanks to proper and systematic data collection, 

how many layers are needed for specific requirements that the product 

in which the PCB is deployed must have, it would be easier to design the 

product standardizing it as much as possible. In this way, new design 

would support an easy and automated disassembly. 

 

3. EASY AND AUTOMATED SORTING  

 

▪ Data on the entire range of existing product as concern their 

composition, way of collection, usage, distribution. This is to identify a 

unique and global standard for every product belonging to a specific 

market segment. The introduction of a standard will allow to easily sort 

and recognize products and components even with a different level of 

consumption and dirtiness. Also, it allows to reduce the number of 

categories in which the components have to be sorted and classified. 
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▪ Data on the usage level of the product. If I previously know the 

conditions of my product at the moment it has to be sorted, I can easily 

and automatically do it. 

 

▪ Data that identify a specific component/product. RFIDs deployment on 

the interested component/product, for example, could help overcoming 

many issues related to complex products. In those cases, in which RFIDs 

are not present in current product configuration, their introduction could 

yet represent a guideline for the next product design. Algorithms will 

then help to reconstruct the whole product design resulting from the 

introduction of such technology in the product, thanks to the 

exploitation of data on how components must be connected, and other 

data listed before. As a result of this new design, simply passing through 

an active device, the product/component is automatically recognized 

and sorted.  

 

4. RE-MANUFACTURABILITY 

Data required for Re-manufacturability comprehend the sets of data required 

for easy disassembly and sorting, since they are stages of the complex re-

manufacturing process.  

All the needed data go in the direction of remanufacturability-through-design. 

Meaning that the only way to improve the ability of a product/component to be 

remanufactured is starting from its design. Remembering the steps of 

remanufacturing exposed in Figure 8, besides the already mentioned data and 

constraints needed for disassembly and sorting, the following data can be 

helpful:  

 

▪ Data on the rate of technological change of the product. If this rate is 

high, the product designer must be able to design a modular, scalar 

product in order for it to be easily upgraded and so to overcome this 

issue.  

 

▪ Data on possible legislative restriction that may prevent the 

remanufacturability of the product despite its design. 
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5. RECYCLABILITY  

The aim in this case is to keep every material internal, through the design of a 

product which allows an easier implementation of the complex and multi-stage 

process of recycling. To this aim, a mix of previously listed data is needed, since 

first recycling stages also start with disassembly and sorting. Besides those data, 

the collection and setting of other constraints can be useful: 

▪ Data on each single component of the product from the moment in exit 

the plant to the moment it ends its life.  

This is linked to the already mentioned concept of Design for product 

lifecycle (Chapter 3). 

It is important to build a business model that allows to keep track of the 

product avoiding that it is thrown away by the customer in an improper 

way. Another time, the strong link between product design and business 

model arises, especially in terms of value proposition delivered to the 

customer. The collection of these data, indeed, can be only possible 

through a sensibilization of customers and a proper strategy aimed at 

acknowledging them on advantages of proper product disposal. Instil in 

the customer the awareness and consciousness of the importance of 

proper disposal of EoL products is a fundamental step for gathering this 

kind of data, therefor being able to facilitate recycling.  

In this direction, the needed data are of course related to: 

➢ the already mentioned way in which the customer uses the 

product, 

➢ identification and tracking of each component (RFID), 

➢ data related to the potential danger of the materials present in the 

product, 

➢ data related to the way the product must be handled once arrived 

at the end of its useful life, (residual energy, dangerous 

materials/emissions,….) 

➢ data regarding the design properties of connected materials (at 

product and component level). This allows to predict and have an 

insight of what could be the liberation degree after shredding of 

different connected materials. 

These data are: 
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o combined materials properties of the 

connection/component/product 

o type of material joints and connections 

o characteristics of the joints/connections 

o level of homogeneity and complexity of the 

product/component/connection 

o thermodynamic compatibility among metals  

 

▪ Available data must cover also all the under-developing technologies 

that can be exploited in order to design a more sustainable product 

which do not represent a big danger in the moment it is not properly 

collected or disposed.  

Guidelines have been presented regarding the type of data needed in input to train 

algorithms and implement the methodology.  

It’s important to underline how the level of importance and relevance of each of these 

data strongly depends on the specific industry and company of reference.  

Each company should perform its specific analysis, assigning a degree of importance 

to the input data and eventually take actions to gather them. 

Following this logic, re-taking the path illustrated in Graph 1, after the definition of 

the feasible space of solutions, the phase of Extraction, Transformation and Loading 

(ETL) of currently available data have to be performed.  

5.5 Current Design: Available Data ETL 

This is the phase in which companies become aware of the current availability of data 

through a benchmarking between needed and available data. Thus, companies 

understand whether it is possible to proceed with the effective methodology or if 

preliminary actions must be performed.  

After the disclosure on open issues related to AI implementation (section 2.1.6), which 

mostly involve the early stages of data collection, it can be supposed that not all the 

companies are in possession of the entire set of needed data at the first attempt to 

implement the methodology. 

In such cases, corrective actions can be taken for gathering such data that are missing, 

yet crucial, for implementing the effective method. As already discussed, such kind of 
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actions can already involve the design of the product, or even the re-thinking of the 

entire business model.  

Even less impacting actions, which can be applicable in relatively short time could be 

enough in some cases in which data can be made available just bringing modifications 

to the way products are produced, or to the information system of the company, 

without directly impacting on the design of the product. For example, useful data 

related to the bill of material of complex products can be collected through the 

development of software within the ERP of a company also using already on the shelf 

and standardized solutions.  

These preliminary actions could involve the participation of all the employees of a 

company, especially operators, or even the cooperation of different companies 

operating in a particular industry, in order to gather a wider set of data considering 

different configurations.  

If the design of the product is implied in the preliminary stage of data gathering, the 

guidelines on the new product configuration to put in place it in order to collect 

fundamental data can be already considered a first output, therefore a preliminary 

iteration of the method.  

When needed data become available, they must be properly transformed following all 

the steps described in section 2.1.1, needed for being able to feed such data inside the 

complex system of Machine learning algorithms involved in the methodology 

development.  

The implementation of Machine learning algorithms strongly depends on the type of 

input, according to the principle of Garbage-in-garbage-out which highlights how the 

robustness of an output provided is undermined by the poor quality of input data. 

Recent studies, indeed, underline how the 50% of data analysis is composed by a 

careful data collection, cleaning, and transformation, together with a smart features 

extraction.  

The choice of the models to be built and trained is a strategic decision of the company 

according to its specific goals and constraints. However, even in this case, this work 

will present guidelines and possible ways on how to proceed depending on the 

situation.  

In particular, after a general framework describing the main steps of a design process 

(Graph 2), attention will be posed on the crucial activity which is Evaluation 

(Exploitative phase), showing that both black-box and white-box approaches are 

possible. 
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With black-box approach are meant all the models which do not rely on known and 

validated physical lows, rather on learnt relationships between a set of independent 

variables and a target variable of interest, following the typical learning process 

described in regression and classification techniques.  

White-box models, instead, are physical models for which the exact independent 

variables needed to describe a specific behavior of the examined system are well 

known, and so is the relation which links them. In this case, precise data to be collected 

and analyzed are fixed, and the task to be performed is to properly collect, clean, 

manipulate them and just put them into the known equation.  

Considering the complexity of the most part of product manufactured nowadays, 

data-driven models can be considered as a better solution for performing the 

evaluation phase. 

To enter the details of Machine learning implementation, the following graph has been 

drafted to illustrate the steps of product design in which ML algorithms can be 

involved. Precise details on the type of algorithm will be provided next.  

 

 

 

It can be noticed how every Design Process always comes as a combination of two, 

essential and crucial stages which correspond to two different ways of tackling the 

design issue.  

The first one is required as an initial step in case of design of a new product to be put 

in the market, and consists in the generation of design alternatives, given as input the 

feasible space of solution defined in previous section. While, in case of already existing 

Graph 2- Design process supported by Machine Learning Algorithms 
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products, this stage represents the iterative nature of the methodology, which 

necessarily comes after the phase of evaluation and exploration of existing solutions, 

i.e., once the directions of improvement have been identified. Directions of 

improvement are translated into modifications of the solution space, in the form of 

data. 

In both cases, the process can be supported and accelerated by AI thanks to the use of 

Generative Algorithms discussed in section “Generative models”. Specific generative 

algorithms developed to generate design configuration are called Generative design 

models, of which examples have been discussed (Section 3.4.3). Different types of 

approaches can be followed to generate design configurations, each of which requires 

different effort to be put in place in the phase of data preparation and in the training 

of the algorithm itself. The choice of the specific algorithm, thus, must be done in 

compliance with the industry of reference, the type of data available and the strategy 

that the company is willing to pursue, together with its availability of resources.  

Examples of such models are provided in [45], which proposes the five alternative 

techniques represented by L-systems, Cellular Automata, Genetic Algorithms, Swarm 

intelligence and Shape Grammars. Another alternative must be added which is linked 

to random sampling, applicable in those cases in which time constraints or resources 

constraints do not allow a proper definition of the space of solutions and of the 

objectives. However, the use of such technique will require greater human efforts in 

the next phase of evaluation. The output of this first stage is a set of feasible solutions 

which are provided by the algorithm at a state of general representations, and thus 

have to be re-organized in order to be evaluated.   

In the most common cases in which products are already on the market, and thus a 

current design is already available, this step can be implemented and must be 

implemented in order to find innovative and better solutions, but only after a proper 

evaluation of the current configurations. The conceptual flow presented in Graph 1 

strictly refers to this last case in which the Generative Algorithm development is a 

consequent phase to that of Evaluation (also called exploitation). This was done due 

to the iterative nature of the process, for presenting the most general case. For the sake 

of completeness, the conceptual flow can be split into two different cases: on the right 

the case of design of completely new product, in which the phase of training of a 

Generative Design Algorithm precedes the phase of configuration Exploitation.  

Anyway, this case will be then reconducted to the more general case of already existing 

configurations (see dotted row in Graph 3), which can be re-iterated n times.  
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Graph 3- Conceptual flow explicitly covering all the cases 

On the left, the so far discussed case in which the target is the re-configuration of 

already existing products.  

In any case, once data are available as concerns the possible configurations, being them 

in the form of output of generative design algorithms or in the form of structured data 

largely explained in the dedicated section, the second fundamental stage of product 

design must be performed. 

The second stage, which comes once the configuration design has been set, data have 

been gathered, cleaned, and properly transformed, is an evaluation of the space of 

solutions and corresponds to the Exploitative Phase.  

This phase is aimed at modelling solutions (i.e., configurations) with the objective of 

evaluating them under different perspectives. In other words, models are created, 

through the use of machine learning algorithms or other techniques, which comes as 

different representations of the solutions basing on different metrics.  

These models build on a principle described by Sandberg et al. [59], where a general 

representation, or even a structured set of data describing an existing configuration, is 

transformed into different models to enable its evaluation. Each model contains the 

specific data needed for its specific purpose, and models are used to handle different 
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representations of a solution so that it can be analyzed, evaluated, and visualized 

according to the requirements and objectives of the design problem and its metrics. 

Examples of models may include models of energy consumption, usability 

performances, safety of disassembly and sorting, among others. Depending on the 

model and on the type of measurement required, the evaluation can include 

calculations, simulations, analyses, or other processes deemed necessary. The 

evaluations are an essential part of providing input to the exploration approach in the 

form of metrics and potential sources of visualization of each solution, as this are the 

information that will guide the generator methods’, together with the designers’, 

decisions.  

This is the main reason why, in the conceptual flow presented in Graph 1, this step of 

solution Exploitation has been put upstream to the Exploration and Generation 

phases, even if for sure a starting configuration is required.  

This phase of modelling and evaluation can be done through the implementation of 

algorithms which learn the intercurrent relationships between the set of attributes 

describing the solution (i.e., all the data gathered in previous stages which determine 

the solution space), and a set of KPIs identified in order to evaluate each possible 

solution.  

These KPIs represent the specific metric on the basis of which the model is built and 

are exactly the KPIs strictly related to the design of the product, defined in 5.2 (see 

Figure 33).  

KPIs may have different natures and shapes depending on the specific field of 

application of the methodology but will be always related on both level of 

accomplishment of functional requirements and target circular needs.  

Even the number of KPIs, and thus of models to be created, is a parameter which must 

be decided at single company level, and which can vary even depending on the 

iteration performed.  

5.6 Evaluation Model Development and Training 

For creating models aimed at evaluating solutions, the algorithms presented in this 

methodology are regression algorithms, which take as input the proper set of 

independent variables describing the solution to be evaluated, plus a target variable 

which indicates the value assumed by the metric (KPI) in relation to that specific 

observation (set of independent features).  
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Number of regression algorithms to be trained corresponds to the number of models 

to be created, thus to the number of KPIs through which solutions are wanted to be 

evaluated. 

x1 x2 x3 x4 x5 … xn KPI1 

 

x1 x2 x3 x4 x5 … xn KPIN 

 

Regression algorithms can learn the relations between subsets of those data provided 

as input and explained in the “problem driven approach” section and KPIs set at 

strategic level. 

The issue related to regression implementation is that regression algorithms 

necessitate of a huge amount of data in input, well-structured and cleaned. For this 

reason, regression is only applicable in cases of products which are already on the 

market, and which are available in different configurations.  This is due to the need to 

train each algorithm using a large set of different configurations to which different 

values of the specific KPI are associated. In this last case, the best option to gather data 

could be the mentioned collaboration of companies which produce the same product 

following different configurations, and which share a common strategy linked to 

gaining circularity.  

In many cases, indeed, for reaching ambitious results linked to new strategies and 

innovative technologies, the best option is to go for a co-opetition instead of a 

competition. Dealing with new technologies and wanting to improve them bringing 

INDEPENDENT VARIABLES DESCRIBING THE CONFIGURATION 
DEPENDENT VARIABLE  

REPRESENTING 

THE METRIC 

INDEPENDENT VARIABLES DESCRIBING THE CONFIGURATION DEPENDENT VARIABLE  

REPRESENTING 

THE METRIC 
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them to their maximum level requires the commitment of all the actors playing in an 

industry. 

Assuming to have this kind of dataset, the training of the algorithm can be done using 

data analysis tools and languages like Python, supported by Anaconda. 

Once imported the needed libraries and data, as shown in Figure 37,  

 

Figure 37- Data import on Python 

Independent variables must be split between categorical and numerical ones, in order 

to properly act on them. Univariate, bivariate, and multivariate analysis must be 

performed before feeding the data into the algorithm, and these analyses are different 

basing on the nature of the variable (numerical or categorical). Even all the cleaning 

and preparation steps explained in dedicated sections must be performed separately 

for the two types of attributes. For example, numerical variables require a careful 

bivariate and multi-variate analysis to spot correlations between attributes which may 

undermine the feasibility of a model containing all of them; they also need to be 

properly standardized and cleaned from outliers. Categorical variables, instead, 

require a qualitative check on the extent of their relevance in determining the target 

variables and need to be properly transformed into dummies in order to be correctly 

evaluated and compared.  

Once data have been prepared, they can be re-merged through a proper function: 

 

Figure 38- Concatenate cleaned Dummies and Numerical 

And then, train and test sets must be split: 
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Figure 39- Dataset separation into training and test sets 

In this case, separation method used is the random selection called Holdout method. 

Nevertheless, other methods can be used, as explained in section 2.1.5.  

After the split phase, training set is ready to be fed into the algorithm.  

Since in most cases it is impossible to know a priori which kind of algorithm would be 

the best to predict target variable, usually a search grid is performed, which allows to 

train different algorithms and compare them basing on the measures seen for 

evaluating regression algorithms. The most used metric for such kind of evaluation is 

the MSE (mean squared error), but many other measures can be computed.  

In Python, this kind of analysis is performed as illustrated in next pictures:  

 

Figure 40- Model search setting 

Figure 40 illustrates the setting needed for comparing different algorithms basing on: 

▪ MAE, which is the mean average error 
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▪ MSE, which is the mean squared error 

▪ RMSE, which stands for root mean squared error 

▪ R-squared. 

After this step, each regression algorithm which is wanted to be trained and evaluated 

must be prepared, as shown in Figure 41, in order to perform a double search. Possible 

hyperparameters are set in input to the model, which will be trained different times 

using a particular value of the hyperparameter at a time. 

 

Figure 41- Models setting 

On the one hand, the output of each example shown in Figure 41 shows the 

performances of each algorithm as concerns the measures described in Figure 40, and 

on the other hand, these measures are already optimized since they are the result of 

hyperparameter tuning done automatically by the software. In other words, Python 

automatically searches for the best hyperparameters related to each specific algorithm 

and provides as output the errors gained with those hyperparameters, allowing a 

comparison of different algorithms.  

In this way, optimization is performed both in terms of algorithm training for avoiding 

overfitting while maximizing prediction ability, and in terms of algorithm type which 

is most able to predict the target variable given the inputs.  
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After this training phase, and thanks to this comparison, the best algorithm can be 

selected, and next configurations can be evaluated basing on the model created.  

If data are not enough to train such kind of algorithms, less precise approaches can be 

applied. 

One option could be to use classification, which however is a supervised learning 

method and as such requires the target variable to be defined. The difference will be 

that in case of classification, the target variable will be reduced to a binary categorical 

one, loosing information but allowing the number of records and of attributes to be 

lower. Or, in case of very few data available, clustering can be used for grouping 

different configurations basing on the degree of their similarity and allowing further 

analyses to be performed at single cluster level. 

The particular case of new product design requires different approaches to be 

followed. In this case, no available configurations are present in the market, and the 

only input is given by the upstream stage output, i.e., solutions provided by the 

Generative Design Algorithm. In this case, instead of using Black box machine learning 

algorithms, the best solution could be that of creating ad-hoc white box models, 

exploiting the knowledge of the physics behind the object design. White-box models, 

indeed, are based on known physical laws which are able to model the drafted product 

configuration (general representation) and link it to specific measures of interest. This 

process requires big efforts in the study of existing relations between variables, but it 

allows to extend the method to products for which old configurations are not available, 

or to companies which have a deep knowledge on the physics behind a product and 

prefer to apply them for evaluating solutions.  

Providing an example of new product, a new component for heavy vehicles is under 

developing phase. Once defined the set of feasible solutions and once generated 

innovative configuration solutions through the use of generative design algorithms, 

one possible target measure for evaluating these designs could be the time that this 

component takes to degrade until a certain threshold value. For a correct modelling of 

the general representations of the product, a model can be created which links the 

values of temperature and air friction to which the product will be subject during its 

life, to the related level of wear reached in time intervals. In this way, predictions can 

be made on the potential values of degradation of the product depending on specific 

values of temperature and friction, given specific design and configuration. This 

example can be expanded to many other fields and industries.  

Even in case of already existing products, each company can decide whether to 

develop white or black box models, or even to go for a double evaluation, trying to 

develop both approaches for improving the robustness of results.  
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At the end of this stage, the output is a set of models describing the behavior of 

different configurations basing on N relevant metrics.  

This is fundamental for any kind of design process since it provides a clear and 

structured approach for evaluating feasible or already existing configurations. 

5.7 Exploration 

The next step required is a synthesis of all the metrics, i.e., the setting of a unique way 

for evaluating the modelled solutions, keeping into account all the KPIs.  

 

Figure 42- Exploration of results 

This can be done in different ways, for example through the creation of a multi-

objective function.  

As stated, indeed, optimization phase always comes together with evaluation phase, 

following a closed loop control always aimed at controlling and improving solutions.  

 

Figure 43- Exploitative phase 
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Following the model creation and solution evaluation in the generative design 

framework, is the exploration approach itself. Because the existing/generated solution 

set can be considerable in size, and in order to support designers and analysts in the 

identification of potentially best/novel solutions, the existing/generated solution set 

needs to be explored, basing on the above-defined metrics. The objective of the 

exploration is to probe a set of solutions to identify interesting regions of solutions. 

The outcome should either be a solution, or a set of solutions deemed satisfactory to 

end the generative design process, or a set of modifiers sent back to the solution space 

and generator to generate a new set of solutions.  

The first mentioned scenario, in which the outcome of the exploration phase is a 

solution or set of solutions already considered satisfactory, is most likely to happen 

when the process shown in Graph 2 is performed from the beginning, starting from 

the generation of solutions through generative design algorithms. This is the case of 

design of new products, in which the solution space is already optimized and possible 

improvements may come after few years, or even the case of second iteration of the 

process for already existing products.  

Rather, as explained, in case of first iteration of the method for already existing 

products, the process shown in Graph 2 starts with the phase of model creation and 

solutions evaluation. In other words, the flow is intercepted after the phase of 

generative design since configurations are already available on the market. In this, 

more common, case, it is most likely that the outcome of the exploration phase is a set 

of hints and modifiers to be sent back to the solution space.  

Note that in case of large number of existing configurations, it could also be that the 

exploration phase identifies a solution that is better than the others as concerns all the 

evaluated metrics. However, since the method is applied for bringing important 

improvements in the direction of circular economy approaches, it is most likely that 

no available solutions are able to fully satisfy the set constraints. For this reason, the 

exploration phase will provide set of modifiers to be fed into the generative design 

algorithms, and the process should be re-iterated.  

Anyway, this decision is taken by the company according to the designers’ evaluations 

done on models’ results. After designers have been given the presentation of each 

solution in the solution set, the next stage is to manage their preferences. This stage 

builds on the notion that generative design approaches should not be thought of as 

autonomous solutions, but rather as ’collaborative partners’. Besides the responsibility 

of each company to define the set of metrics that are considered more valuable, indeed, 

even the final decision on whether to be satisfied with existing solutions or to iterate 

the process generating new configuration is a key role restricted to people.  
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5.8 Generative Design Algorithm Development 

As mentioned, this phase represents the iterative nature of the method.  

The choice to set it at the end is derived from the need to provide the most general 

case, in which new solutions are generated after a proper evaluation and exploration 

of already existing ones. 

In this case, after having derived the right kernel function which linearizes the 

relationships between all the KPIs or metrics and thus having explored the existing 

solutions basing on this synthesis measure, modification of the space of solution can 

be made and fed into the generative algorithm. 

Once more, the extend the solution space is created in order to reach innovative 

configurations which allow to continuously increase the upper bound of the multi-

objective function optimized through the process. 

Generative design approaches have already been tackled and have to be chosen by the 

company depending on available instruments and resources.  

As seen in the examples from literature (section 3.4.3), their development is quite 

simple, and strongly depends on the effort that is willing to put in the upstream and 

downstream phases.  

After new solutions have been generated, the already discussed phases of evaluation 

and exploration must be performed on the new set of configurations, and conclusions 

must be drawn. 

5.9 New Design Guidelines 

The final output of the process is always the identification of a solution, or a set of 

solutions, which are deemed satisfactory with respect to the specific KPIs defined.  

Thanks to the use of generative design algorithms, these solutions can be very different 

from the previous ones and important gains in terms of optimization of performances 

can be reached.  

The advantage of implementing AI technologies, indeed, mainly lies in the innovation 

rate which is gained in comparison to the one that would have been reached only 

exploiting humans’ knowledge. Also, important profit in terms of time saving can be 

reached through the use of machine learning and AI.  

Even in the intermediate stages of evaluation, the assessment of performance is 

enhanced by the use of AI, which help to consider many aspects with respect to the 

use of other statistical or physical methods.  
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Further steps could be developed, which involve the creation of 3D objects 

downstream to the phase of design guidelines generation. This step can be undertaken 

only after generated solutions have been evaluated and explored, so that only the 

chosen solution or the chosen solutions are produced. This additional step can be 

performed following the approach described in [41], and already discussed in section 

3.4.2. 
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6. Case study  

In this chapter, the developed methodology will be applied to Lithium-ion batteries 

for Electric Vehicles.  

The choice is driven by many factors regarding both design and circular economy 

concerns.  

Considering the aspects purely linked to design, the intrinsic complexity of the 

product provides a challenging way to test the method. The complexity of product 

design is consequently reflected on the systems and processes behind, and it is a good 

example for assessing the co-evolution approach described in the methodology 

definition. 

As for the circular economy aspect, the crucial position that this type of product will 

have in future scenarios must be tackled. Lithium-ion batteries (LIBs) have a double 

bond with circular economy issues since on the one hand they represent a “Green” 

solution allowing to cut the dependency of cars transport system from carbon fossil-

fuels, with related benefits on both environment and economy.  

On the other hand, also due to their design complexity, they are a critical product as 

regards their end-of-life treatment.  

Recent studies underline how the reduced emissions during the electric vehicle's 

lifetime are considered to outweigh the environmental effects of the production and 

end-of-life phases, always assuming to use renewable energy sources. However, the 

end-of-life issue must be tackled and solved through the implementation of a 

structured approach, which should engage all the companies involved.  

Also, more than any other electronic product, the electrochemical batteries represent 

an extremely profitable sector for the CE. On the one hand, they have a high 

recoverable value given by the skilled manufacturing processes required for their 

production and the presence of valuable metals such as Lithium, Cobalt, Nickel and 

others. On the other hand, their disposal will become more and more burdensome in 

the upcoming years, given the exponential increase of electric vehicle sales worldwide. 

The recovery of valuable components, the effective management of the return cycles 
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and the reduction of the environmental impact of battery disposal may be significantly 

improved thanks to the deployment of CE principles and design. 

6.1 Market Trends and European Legislations 

By 2035, an increase of more than 50% of the market of electric vehicles is to be 

expected worldwide. (See Figure 44). 

With Electric Vehicles sales progressively increasing, the question related to the 

production of their batteries and to their end-of-life management is becoming of 

greater importance nowadays. 

For this reason, battery design and production has become a key priority for the EU 

commission, for reasons linked to the European automotive market in general and on 

Circular economy issues. 

As regards the European automotive market, the concern is to be able to develop an 

EV industry which can become, in relatively short time, as robust as the traditional 

injection combustion engines (ICE) one, in order to answer to market needs and to be 

able to boost this solution. This can be only achieved with the development of a stable 

battery industry. 

 

Figure 44- EV Market forecasts 2035 [60] 

For building such stable industry, environmental and economical aspects must be 

tackled. In other words, Circular economy principles must be applied.  
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One of the EU Circular Economy & Green Deal principles, indeed, is the focus on 

keeping materials in the EU as secondary raw material and introduce back into the 

economy, rather than exporting these materials. 

The implementation of Circular Economy strategies such as Reuse, Remanufacturing 

and Recycling for EV LIB packs appears to be the only viable solution for a sustainable 

transition towards electric mobility. To enhance such transition, important decisions 

must be taken at a design stage in order to develop EV LIB packs which are conceived 

to be easily reused, disassembled, and tested.  

Providing an overview of the current EV market at global level, China is still the world 

largest electric car market: with 1.1 million electric cars sold in 2018 and 2.3 million 

units circulating, it accounts for almost half of the global electric car market share. 

Europe follows with 1.2 million units and then the United States with 1.1 million on 

the road at the end of 2018. The leader in terms of EV market share is Norway, with 

46% of new electric cars in 2018, followed by Iceland (17%) and Sweden (8%). [61]  

An important aspect to be mentioned is the one linked to legislations and government 

policies which are fundamental to consider when acting on current product design. 

Policies have a major influence on the growth and expansion of electric mobility. 

Leading countries like the ones participating in the Electric Vehicle Initiative are 

making progress in their policies implementation, starting with the setting of vehicle 

and charger standards, and then promoting economic incentives to bridge the cost gap 

between the EVs and the ICE vehicles. The main boost for covering this gap may come 

with taxation and restrictions on the use of ICE vehicles. Other actions include public 

procurement programs and early charging roll out. 

As concerns Europe, the European commission has developed a legal framework 

concerning electric vehicle batteries, both for batteries as such and for batteries in cars. 

The End-of-Life Vehicles Directive (2000/53/EC) exists since 2000, and batteries are 

included. [60] 

In last years, revisions have been made on this directive and the intention is to come 

up with a Batteries Regulation whereby the Extended Producer Responsibility 

becomes central and with new potential collection and recycling targets.  

The undertaken path goes in the direction of new directives and standardized 

processes for the collection and disposal of EV, which ensure an efficient and effective 

EPR (Extended Producer Responsibility). This comprehends the creation of the ATF+ 

(Authorized Treatment Facility), the development of a Norm for the correct 

application of takeback obligation (done by FEBELAUTO) and the related release of 

publication of a new Belgian Standard (R 03-001) since May 2021 which marks the link 

between the previously used ISO standard and the FEBELAUTO norm.  
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The development and carry out of an efficient and effective EPR would bring 

advantages as concerns business opportunities and costs reduction.  

However, the European efforts go in the direction of the creation of a structured and 

robust system for managing EoL vehicles, which has impacts on the responsibilities of 

producers and users and which is aimed at managing and reducing risks, while 

guaranteeing the highest level of recovery of batteries. This do not imply any 

modification in LIB packs design. 

The adoption of the proposed methodology would bring additional value to the efforts 

put in the creation of a solid collection system. 

Another important driver is the technological enhancement, promoted by an always-

increasing customer demand. Research and development activities have led to big 

progresses in battery performances in terms of energy storage, safety and reliability. 

This, in turn, has caused a cost drop that is likely to continue in the following decade. 

As a result of the falling in prices, experts predict price parity between EVs and ICE 

vehicles by the mid-2020s in most segments. 

All the mentioned features describing the current market show how this historical 

period can be a suitable moment for a large-scale implementation of the proposed 

methodology. 

With all the OEM and LIB pack assembler collaborating for solving common issues, 

the battery industry can become solid and overcome problems related to both 

environmental and economic issues, allowing an advantage for both manufacturers 

and end-users.  

6.2 Lithium-Ion Batteries  

A battery is an electro-chemical device converting stored chemical energy into 

electrical energy without gaseous emissions and with high efficiency. [62] 

Batteries for Electric Vehicle applications are complex and present articulated 

structures. However, the modularity of their architecture allows a classification of the 

main components that can be valid for all typologies of existing EVs. In general, an EV 

battery pack can be hierarchically broken down into three main levels: [63] 
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Figure 45- Structure of a battery pack- hierarchical view 

(i) cell level: a single cell is primarily composed of active materials of electrodes (anode 

and cathode), Electrolyte (highly dielectric solvent allowing the transfer of Li+), 

Polymeric separator preserving electrodes from direct contact, Cu and al current 

collector foils;  

(ii) module level: a set of multiple cells connected in series and parallel, held together 

by mechanical and/or physical joints;  

(iii) pack level: a collection of two or more modules, which are connected in series, 

with sensors and controllers, encased in a housing structure [64]. The number of cells 

that can be connected to form a module is normally limited by the monitoring 

capability of the battery management system. Indeed, every battery module has to be 

strictly monitored through electrical and thermal control components, which are 

tightly packed [65]. 

An EV battery pack communicates with different sub-systems on multiple parameters 

simultaneously through various interfaces, which are presented in [66] and reported 

in Table 6. 

INTERFACE DEFINITION COMPONENTS 

Mechanical Mechanical design features 

included for safety and 

functional reasons  

Cell spacers, damping pads, 

gaskets, valves 

Structural Members that provide needed 

protection and isolation 

Case, cover, end plates, tie rods, 

cross-members 

Thermal Regulates battery cell 

temperature 

Cooling system, fans, pumps, 

heat exchangers  
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Electrical Transmit power within, from 

and to the battery pack 

Bus bars, cables, contactors, fuse, 

relays 

Control Monitor and regulate the state of 

battery pack 

BMS (Battery management 

system), sensors  

Support Vehicle body parts providing 

additional crash worthiness 

Axles, chassis, seats, vehicle floor. 

Table 6- LIB pack interface system 

Communication through each of these interfaces can influence the reliability and 

safety of the battery pack. Every battery pack should be able to deal with several issues 

such as thermal stability, vibration control, isolation and impact resistance at micro 

and macro level. 

An overview of the basic structure of a battery pack is provided in Figure 46, [67]. As 

mentioned, main components are: 

▪ Modules, upon which sensors are deployed. 

▪ The cooling system which plays a fundamental role in maintaining normal 

operative conditions of the battery pack. 

▪ The Battery Management System (BMS) which can be considered as the brain 

of the pack. It is responsible of the control of the main parameters such as 

temperature, current and voltage. The BMS not only actively controls the 

functions of the battery to maximize its life, efficiency, and safety, but also 

provides accurate estimations of the status of the battery such as the state of 

charge (SOC), state of health (SOH) and remaining useful life (RUL). The main 

goal of the BMS, however, is to guarantee the passengers’ safety and avoid any 

hazards like fire, thermal shock, short-circuits or over-charge/discharge. 

▪ The Junction block responsible for the electrical communication between the 

battery pack and the external electrical system. 

▪ The Service Plug, which works as service disconnect switch. While the junction 

block is used for electrical switching of the heavy current circuits, Service Plug 

can be pulled out by hand in case of emergency. This manually operated 

disconnection switch allows to physically isolate the heavy current circuits from 

the vehicle. 
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Figure 46- LIB Pack basic components 

The complexity of this product would require an in-depth analysis and many aspects 

should be mentioned. However, for the implementation of this work, basics concepts 

on the structure of LIB Packs have been provided, and other data will be presented 

within the field of design variables that are needed for the framework development. 

In a CE scenario, design should facilitate the second use and the final disposal of the 

product through: 

▪ A proper LIBs labelling system (e.g., bar codes and RFID tags) 

▪ Standardization of formats, structure and composing materials 

▪ Reversible assembly strategy 

▪ Clear classification of inner hazardous components [62] 

▪ Reduced number of different materials used 

▪ Standardized connections 

▪ Reversible connections 

▪ Accessibility of each component  

▪ Modularity 

▪ Scalability 

To this aim, the proposed framework will be applied to LIBs complex architecture, 

starting from a clear definition of the domain of application. Given the purposes of the 
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method, indeed, the analysis will be carried out on the aspects which mostly impact 

on the re-manufacturability and reuse of the product.  

In particular, the aim is to find the best design to reduce the costs, the efforts, and the 

level of danger of remanufacturing LIBs. Nowadays, the economical unfeasibility 

represents the first barrier to the choice of remanufacturing for reuse in the EV sector, 

and other applications are preferred as more economically viable. 

Therefore, the application domain will cover the design of LIBs starting from the cell 

considered as an atom. The chemistry of cells will not be investigated, nor further 

information on different available chemistries will be provided.  

This is also due to the current direct logistic level of integration. At the moment, no 

cells producers are present in Europe; OEM or battery assemblers buy the cells from 

Chinese and Korean producer, which do not communicate anything about the 

chemical specifications of the cell. There is a big gap in the information system and the 

level of integration along the supply chain is very low, almost absent. Many times, 

thus, it is not possible to trace back the chemistry of a cell given the battery pack in 

which the cell is assembled. This fact also enhances the problems related to a fast 

diagnostic phase of the battery at its end-of-life. The only exception is Tesla, which 

produces its cells internally and which is the only OEM to deploy Cylindric cells in the 

LIB battery pack.  

Given the aim of the methodology application, which involves the re-design for reuse 

and remanufacturability, better solutions will be searched for in terms of 

▪ Redesign of some components starting from the cell level, with particular 

interest on joints and connections 

▪ Assembly structure, maintaining original design for some components and 

modifying the design of others. 

Without having impacts on single cells composition, and with no attempts to solve 

chemistry-related issues.  

6.2.1 Current Situation in CE approaches implementation 

Residual capacity of EoL LIBs from EV is on average the 80% of its initial capacity. This 

represents a great opportunity for reuse and remanufacturing. Despite this, due to 

already mentioned issues related to costs and to the difficulties in the assessment of 

battery features, solutions in this direction are far from being implemented.  

As concerns the assessment and evaluation of batteries features, different research 

have been conducted to determine the remaining life and LIBs degradation 
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phenomena and the first experimental systems were developed thanks to the 

collaboration between EVs manufacturers (e.g. BMW, GM and Nissan Motor) and 

energy management companies (e.g. Vattenfall, ABB and Sumitomo) [68]. 

Along with a fast and efficient diagnostic of LIBs status, another major challenge for 

remanufacturing and reuse is a safe and non-destructive disassembly of battery pack, 

based on automated process able to overcome product variability.  At the moment, 

remanufacturing of EV battery pack is manual: it is a laborious, time-consuming, costly 

process which also involves safety issues given by the toxic and inflammable materials 

as well as the high voltages. The issue of reliability and safety is found to be one of the 

main rationales behind the OEMs’ reluctancy to give their used battery packs to third 

parties. A manual process is still the only viable solution, given the highly specialized 

features of each battery pack model. Every manufacturer’s design has peculiar features 

that prevent automation of the main disassembly operations required for 

remanufacturing. Leaving apart automation, even manual operations are far from 

being established. Learning curve of operators cannot reach a steady state if the 

product features change continuously, and if the OEMs keep their specifications secret. 

Due to all these issues, so far, the only implemented CE solution for LIBs is Recycling.  

As explained in the introductory part, recycling is a complex and consuming process 

even for simple products.  

The high complexity of LIB packs increases and enhances the needs related to a proper 

recycling system design. 

At the moment, according to the combined effect of recycling feasibility and final gain, 

only Cobalt (Co), Copper (Cu), Steel, Nickel (Ni) and Aluminium (Al) are recycled, 

while plastics are incinerated for energy recovery and Lithium, Manganese and 

graphite are rarely considered.  

This selective nature of the current recycling system can not be considered as a 

sustainable solution. Also, considering, among the other things, the predominant 

trend to substitute cobalt in order to lower production costs, recycling processes 

should be developed to recover LIBs regardless their specific compositions and to 

balance treatment costs with the final effective revenue. 

An overview on the current recycling systems is presented in [62], with state-of-the-

art technologies as concerns (a) Preliminary waste preparation phase, (b) Thermal, 

Mechanical, Physical, Mechano-physical, Chemical and Mechanochemical pre-

treatments and (c) effective Treatment for metal extraction of metals enriched 

separated fractions. 
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“In an optimized circular economy model, wasted LIBs management starts with product 

design, developing systems easy to be reused and recycled and minimizing the amount of 

materials to be landfilled or incinerated. Furthermore, the residual features of end-of-life LIBs 

would be tested, in order to promote the reuse or to suggest remanufacturing solutions for new 

secondary applications. Recycling processes should be used as final option, developing 

treatments with the highest recovery efficiency and the lowest environmental impact, allowing 

primary raw material saving, economic gains, energy consumption reduction, waste 

minimization and safe management of harmful components.” [62] 

Through the large-scale implementation of the proposed methodology, important 

improvements would be brought to the process of reuse and remanufacturing of LIBs 

pack.  

Also, the aim of the method is to reduce the current space of solutions, through the 

identification of a unique standard, or a set of optimal configurations, which fully 

satisfy functional requirements and circular economy needs.  

The way to proceed will strictly refer to the framework of reference presented in Graph 

1 and adapted as in Figure 47:  

1. Evaluation of current solutions 

2. Exploration  

3. Identification of solutions deemed satisfactory OR modification of the space of 

solution with the consequent generation of innovative designs.  

 

Figure 47- Framework application to LIB packs 

LIBs current Design 

solutions 

Evaluation of 

current solutions 

basing on defined 

KPIs  
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design 
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The output of the methodology will also go in the direction of solving issues and 

conflicts between European commission and industrial associations like EUROBAT 

(Association of European Automotive and Industrial Batteries Manufacturers).  

EUROBAT welcomes the initiative of the European Commission on Modernizing the 

EU’s batteries legislation: in the past years, EUROBAT remarked several times the 

need to adapt the legislative framework on batteries to take into account the increased 

importance of batteries to decarbonize our economy. A coherent legislative framework 

is needed, considering the overlaps between the Batteries Directive, the End-of-Life 

Vehicles Directive, REACH and Occupational Safety and Health (OSH). 

On the other hand, the association do not regard positive the introduction of 

Regulations which set a minimum threshold on batteries performance, and which are 

willing to introduce a standard without carefully considering all the specific industrial 

needs and the actual relations between batteries performances and technical 

specifications. [69] 

6.3 Strategy Definition 

6.3.1 Common Strategy 

An important point to stress, which is linked to a higher strategical level with respect 

to the one tackled in the Methodology section, is related to the already mentioned co-

opetition between companies. In this kind of industry where many configurations exist 

on the market since every OEM adopts its own solutions to satisfy needs and 

constraints, common effort should be put in the path towards the implementation of 

this methodology. The aim should be that of finding better solutions and 

configurations which allow to overcome the issues linked to the end-of-life 

management of batteries, therefore providing advantages to the battery industry. The 

shared interest in this issue should be straightforward. 

Sharing information could become crucial for an efficient performance of the phases 

of evaluation and exploration, given the need to support these processes with machine 

learning algorithms which requires many data to be trained. This step is fundamental 

given the huge number of aspects to be considered for assessing the performances of 

a LIB pack.  

For reaching the stability of battery pack industry, which can be only made possible 

through the implementation of CE principles, common effort must be shared among 

all the companies involved. Big innovations and improvements, indeed, can only come 

with a large commitment and with the change of mind-set about the concept of 

competition. 
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The co-opetition strategy, thus, deals with the need to create a stable and sustainable 

battery industry, given the shared interest in this issue.  

After this, each company should perceive its own strategical business objectives, 

playing with the levers seen in section 5.1.  

Besides this highly strategical aspect, indeed, matters related to the business strategy 

of each company have to be defined. 

6.3.2 Single company strategy 

Due to the huge complexity of this product, and to the number of actors involved in 

the issue, the strategical aspect can be tackled assuming two different points of view: 

that of the battery producer (assembler) and the one of the OEM. In some cases, like 

Tesla, these two figures coincide; in some other cases, the OEM do not physically 

assemble the product but provides the assembler with design guidelines, so it can be 

considered as the case of Tesla. There are also cases in which the design is made by the 

assembler, and the OEM just purchases the battery pack as a black box, only providing 

specifications about the size, weight, performances, safety, and accessibility). This last 

case will be addressed considering the OEM like a B2B customer of the process.  

In any case, the strategic aspect involves the establishment of a proper system of 

design, production, distribution, collection, and treatment of LIB packs.  

As seen in the general methodology, these aspects can be organized within the 

business model framework, which help in structuring the approach.  

The correct choice of the business model, or the adjustment/modification of the current 

one, can be an important booster especially in this kind of industry. Playing with the 

relationships established with customers and with key partners, intended as both 

direct and inverse value chain suppliers, can become crucial in determining the 

possibility to properly implement the methodology. 

Leaving apart particular boxes of the business model canvas, which must be strictly 

linked to single companies’ decisions, and to the specific market segment they want to 

serve, common guidelines are presented. 

The new design will be directly addressing the specific needs related to 

remanufacturing for function restore and upgrade, considering the case of adapting 

the battery to the changes and improvements in technology without completely 

changing the battery pack. This would bring enormous advantages for both 

manufacturers and end-users, given the lower cost of modifying an existing battery 

compared to the design and production of a new pack, which reflects in a lower price 

for the customers.  
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Another addressed approach is the reuse of end-of-life batteries considering both the 

same purpose (inter-sectorial approach), with the possible deployment of the battery 

on less-performant vehicles, and a cross-sectorial approach linked to the use of the 

battery for stationary charge activities. For example, a growing market opportunity 

can be represented by the storage of renewable energy installations or within living 

environments (home, office).  

For doing so, the choice of key partners is fundamental and must adapt to new design 

specifications which will come as an output of the implementation.  

The introduction of a new design, or even the consciousness about the fact that an 

optimal configuration exists, should be accompanied by a structured building of the 

value chain, and a careful management of the end-of-life and disposal system which 

is being tackled by European commission and by responsible producers’ organizations 

(EPR).  

The strategic point lies in the re-organization of OEM business models according to 

the new design created for supporting remanufacturability and reuse. Even though 

the new design establishment goes in the direction of a unique standard, or at least a 

homogenization of the configurations, differentiation between companies is not 

undermined, and it will be given by the decisions of different companies on how to 

build or adapt their business model.  

To summarize, the aim of the methodology application is to find the optimal 

configuration in terms of  

▪ REMANUFACTURABILITY FOR FUNCTION RESTORE AND UPGRADE. 

Which includes requirements related to disassembly, cleaning, sorting, 

inspection, testing, and reassembly systems that will be different from the 

current systems adopted for recycling  

 

▪ ENHANCEMENT OF THE LIFECYCLE WITH POTENTIAL REUSE FOR 

THE SAME PURPOSE OR FOR OTHER INDUSTRIES. In this direction, the 

strategical aspect assumes an even more important role. With the adoption of a 

unique optimal standard, OEM serving the higher market segments can for 

example create a business model based on the continuous improvement of EV 

battery packs thanks to their scalability and standardization of components. In 

this possible scenario, a system can be created for which customers belonging 

to higher market segments are encouraged to bring back to the OEM their car 

for having their battery upgraded, while “obsolete” components can be 
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recovered by the manufacturer and deployed to other batteries which will be 

sold to lower market segments.  In this case requirements related to modular 

and scalable design with interoperable components are fundamental.  

6.4 KPIs Setting  

In this section, attention is posed on the definition of key performance indicators at 

product design level. As mentioned in the methodology part, the definition of these 

KPIs is linked to the specific product of reference and to the strategical decisions of the 

company. The set of KPIs must be a combination of measures assessing the 

performances of the product design in terms of: 

▪ Defined CE needs and requirements. Which in this case are 

Remanufacturability and Reuse. 

▪ Functional features which determine the success/unsuccess of the product 

design on the market, thus, features liked to customers satisfaction.  

These metrics will be then used to evaluate existing configurations. 

10 KPIs are here listed as considered to be fundamental for a complete evaluation of 

solutions basing on the scope of this analysis. 

Since each KPI is the future output of the models trained to evaluate solutions, the 

output of each regression model will be a numeric variable describing the ability of 

each combination of features to respond to customers’ and Circular Economy 

requirements. All the needs linked to a specific requirement have therefore to be 

aggregated in a few data able to synthesize many different conditions. 

In particular, as concerns the Remanufacturing needs, the following table was drafted 

for identifying the product features mostly having an impact on each stage of the 

process. 

 

Table 7- Remanufacturing stages and related product design needs 

Remanufacturing Stage

Related product features needed

X X X X

X X

X X X X X X

X X X X

X X X

X

X

X X X X

Ease of Alignment

Wear Resistance 

Reconditioning 

Ease of Identification

Ease of Verification

Ease of Access

Ease of Handling

Ease of Separation

Ease of Securing

Disassembly Sorting Inspection Testing Reassembly Cleaning
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The following key performance indicators were extracted:  

1. Recharging time 

2. Discharging rate 

3. Maintenance effort (considering both time and money) 

As concerns the end-users’ requirements satisfaction.  

 

4. Easiness of assembly  

For keeping into account those cases in which OEM purchase the battery from third 

parties. 

 

5. Easiness of battery performances assessment, implying the accessibility and 

identifiability of components, which in turn imply the standardization of 

components. 

 

6. Safety and easiness of disassembly. 

This KPI is particularly crucial since it gives evidence of the  presence of 

reversible connections and joints (Easiness of separation).  

Also, the definition of this KPI allowed to validate the hypothesis mentioned 

in the introductory part, for which the optimal disassembly level for a LIB, 

within the scope of this study, is the cell. Therefore, reversible connections 

are needed also between cells belonging to the same module and no 

investigations will be done at a higher level of detail (cell disassembly).  
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Figure 48- LIB module exploded view 

 

 

 

Figure 49- LIB module view until cell level 

 

7. Accessibility of electrodes at module level 

a b 

d 

c e 
d 

f g 

a: cover 

b: BMS 

c: cell connector (busbar) 

d: side wall 

e: compressive plate 

f: adhesive pad 

g: prismatic hard case lithium-ion cell 
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8. Modularity and homogeneity of materials in components with the same 

function  

 

9. Accessibility of electrodes at pack level 

 

10. Voltage scalability  

Following the methodology path, these KPIs will be assigned to the existing 

configurations with the aim to Evaluate them through a regression algorithm.  

6.5 Solution Space Definition/Modification 

In this section, input data will be listed using the framework of reference, thus 

identifying the specific information related to EV LIB packs application. 

6.5.1 Product Definition: Data coming from the market 

Data regarding the expectations of the customers, i.e., customer’s 
requirements that have to be satisfied by the product. 

B2B → CAR MANUFACTURERS/PRODUCERS.  

▪ Size of the pack : numerical attribute  

▪ Weight of the pack : numerical attribute  

▪ Cooling system: binary attribute indicating whether the cooling system is 

managed through automated thermal management systems or through passive 

cooling techniques.  

▪ Cooling system type of connections: categorical attribute describing mechanical 

joints existing between cooling system and other components  

▪ Type of Junction Block: categorical attribute describing mechanical, electrical 

and electronic connections of the junction block. 

▪ Cost of the battery: numerical attribute  

▪ Expected cycle life 

▪ Expected calendar life   

▪ Type of crash protection system present in the BMS 

▪ Type of vibration control system present in the BMS 

▪ Type of crash thermal resistance system present in the BMS 
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▪ Type of mechanical connections of the pack: categorical attribute indicating the 

easiness of assembly of the pack in the car. 

▪ Number of mechanical, electrical and electronic connections of the pack: 

numerical attribute  

B2C → END USERS OF THE ELECTRIC VEHICLE. 

• Recharging time: numerical attribute 

• Discharging rate: numerical attribute 

• Cost of maintenance: numerical attribute also linked to mechanical connections 

thus accessibility of all components 

• Time of maintenance: numerical attribute also linked to mechanical connections 

thus accessibility of all components 

 

Data about the way the customer uses the product  

This information would be fundamental in order to develop an algorithm which 

optimizes the aspects linked to the customers’ satisfaction. Giving as input to an 

optimization algorithm or to a generative one a set of constraints containing thresholds 

of the following variables, it would give as output configurations specifically targeting 

these issues. In particular optimization algorithms would most probably provide an 

optimized and upgraded version of already existing configurations (exploitative 

approach) while generative algorithm will explore innovative solutions not yet 

evaluated (explorative approach). These data result to be fundamental for assessing 

the state of the battery at its end of life.  

▪ SOH: numerical attribute 

▪ Average amount of kilometres run before recharging  

▪ Average time elapsing between consecutive recharges  

▪ Type of recharger used 

▪ SOC at which the battery in recharged on average 

▪ Highest and lowest external temperatures at which the battery is subject. 
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Data regarding the fundamental features of the product 
▪ Ability to properly generate electric current through chemical reaction and 

transfer it to the electric engine. Characteristics of the reaction (we will not 

investigate what happens in the cell).  

As a remark, joints play a fundamental role in the satisfaction of fundamental 

features and safety issues. Joints are responsible of the propagation of energy, 

beside covering structural needs. 

▪ Modular architecture 

▪ Safety 

▪ Ability to precisely communicate the level of residual energy stored (no latency 

and no errors) 

▪ Functionality of the junction block. As explained, it is mainly composed by the 

central relay that is responsible for the supply of DC from the battery (and it is 

immediately de-activated in case of malfunctioning), the pre-charge relay 

(protecting high-voltage circuits), and the sensor measuring the battery current. 

Data regarding those features that are not fundamental but highly 
recommended and expected. 

▪ Lightweight 

▪ Space optimization  

Data regarding those features and functionalities that are not 
fundamental and not necessary but that, if present, represent a great 
advantage for the product in the market. 

Service associated to product. In this set of data are contained all the decisions which 

must be taken at single company level about the business model. 

For instance, maintenance is no more responsibility of the customer but of the OEM.  

Integration along all the supply chain that is a fundamental feature for an optimized 

CE approach. 

Summarizing, the main topic related to these features is maintenance; customer is 

maintenance free, and product is designed in such a way to guarantee fast and cheap 

maintenance. 
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6.5.2 Design Variables: Technical Specifications 

▪ Type of electrical and electronic connections at different interface levels: 

o Cell-cell interactions → investigate joints  

o Cells-module interaction → investigate joints and case assembly 

o Module-module interaction → investigate joints  

o Module-pack interaction → beside connections between modules and 

the case, junction block, BMS, service plug. 

o Pack- extern interaction → case and joints connecting pack to electric 

engine,  control unit of the car, e-charging station, refrigerating part.  

It is a set of categorical attributes describing the current types of connections, 

especially those allowing the energy flow to the junction block and between 

modules.  

▪ Average lifetime of electrical and electronic connections: numerical attribute 

linked to proper propagation and transmission of energy and to safety issues. 

▪ Type of cells in each module: categorical attribute indicating whether cells are 

prismatic, cylindric or pouch. 

▪ Number of cells in each module. 

▪ Type and number of connections in a module: categorical attribute indicating 

whether cells are in parallel or in series, and the number of connections in series 

and in parallel. This information is linked to constraints on cells homogeneity 

in terms of size and capacity. 

▪ Number of modules in a pack. 

▪ Number of different materials used in each mechanical joint. 

▪ Material composition of the case 

▪ Type of assembly of the case 

▪ BMS topology: categorical attribute indicating whether the BMS is arranged 

according to a distributed, centralized or modular topology. 

▪ Types of sensors in the junction block. 

▪ Type of cooling system: categorical attribute indicating whether the cooling 

system is Active Air, Passive Air or Liquid Temperature Control. 

▪ Number of cables connecting cells and modules to the BMS.  

▪ Module-module interface. 
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▪ Modules- cooling system interface. 

6.5.3 Circular Economy Constraints 

Input constraints come from the need for a battery pack to be easily reused and 

remanufactured, thus, to be efficiently disassembled and to quickly have access to all 

the main components for cleaning, testing, substituting them.  

 

 

Graph 4- Goal composition 

A fundamental set of inputs for the methodology development is related to constraints 

set on product features which mostly have an impact on remanufacturing stage and 

reuse. The first step, thus, is to correctly identify the impacting features.  

To this aim, research about design for re-manufacturability have been reviewed and 

the following table have been drafted in order to clearly identify product specifications 

and characteristics which have an impact on different remanufacturing stages. [70] 

Remanufacturing stage  Guidelines  

Ease of Sorting i. Reduce the variety of products and parts  

ii. Provide clear distinctive features that allow for  easy 

recognition  

iii. Provide readable labels, text, and barcodes that do not 

wear off during the product's service life  

Ease of Disassembly i. Avoid permanent fasteners that require 

CIRCULAR 

ECONOMY GOAL 

 

REMANUFACTURING 

CONDITIONS (both 

function Upgrade and 

Restore) 

 

REUSE 

CONDITIONS 

INTER-SECTORIAL 

(SAME PURPOSE) 

CROSS-SECTORIAL 

(STATIONARY 

CHARGE) 
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destructive removal 

ii. If destructive removal is necessary, ensure that 

damage to the core does not happen 

iii. Reduce the number of fasteners prone to damage 

and breakage during removal 

iv. Increase corrosion resistance of fasteners 

v. Reduce total number of fasteners in the unit 

vi. Reduce the number of press-fits 

vii. Reduce the number of fasteners not in direct line of 

sight 

viii. Standardize fasteners by reducing the number of 

different types of fasteners and the number of different 

sized fasteners. 

Ease of Cleaning i. Protect parts and surfaces against corrosion and dirt 

ii. Avoid product or part features that can be damaged 

during cleaning processes or make them removable 

iii. Minimize geometric features that trap contaminants 

over the service life 

iv. Reduce the number of cavities that are capable of 

collecting residue during cleaning operations 

v. Avoid contamination caused by wear 

Ease of Inspection i. Minimize the inspection time 

ii. Reduce the number of different testing and 

inspection equipment pieces needed and the level 

of sophistication required 

iii. Provide good testing documentation and 

specifications 

Ease of Part Replacement i. Prevent damage during part insertion 

ii. Provide good documentation of specifications and 

clear installation manuals 

Ease of Reassembly i. Minimize the time required to reassemble the 

product 

ii. Make the assembly sequence efficient with as 

few steps as possible 

iii. Provide good documentation of specifications and 

clear installation manuals 

iv. Leave surfaces available for grasping 

v. Maximize part symmetry 

vi. Eliminate tangly parts 
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vii. Color code parts that are different but shaped 

similarly 

viii. Insert new parts into an assembly from above, or 

from the same direction; never require the assembly to 

be turned over 

ix. Proper spacing ensures allowance for a 

fastening tool 

Standardization i. Standardize and use common parts and materials 

ii. Standardize and use common fasteners 

iii. Standardize and use common interfaces 

iv. Standardize and use common tools 

Reusable Components i. Design a reusable platform and reusable modules 

ii. Select materials to ensure reliability and durability 

of the product 

iii. Make sure components are robust enough to reuse 

without replacement 

iv. Avoid toxic materials 

Table 8- Remanufacturing stages related requirements 

According to this table, synthesizing the information, for the Re-manufacturability for 

function upgrade and restore, here is the list of conditions that have to be satisfied, i.e., 

constraints that have to be set as input within the solution space definition. 

▪ Cell geometry standardization 

▪ Standardization of connections 

▪ Reversible mechanical connections at single module level 

▪ Accessible electrodes at module level 

▪ No temper-resistant screws 

▪ Minimized number and type of connections 

▪ No hidden or non-accessible joints  

▪ No glue and adhesives  

▪ Have each single component labelled  

▪ Maximise identifiability of functions 

▪ Maximise modularity and homogeneity in materials used for each component/ 

for components with the same function or belonging to the same sub-assembly.  

▪ Maximise standardization and simplicity in architecture 

▪ Minimize disassembly directions 
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▪ Ease of stacking/storage at module level 

▪ Minimize modules weight  

▪ Provide grasping elements 

▪ Identify high voltage components (for safety reasons linked to disassembly) 

▪ Minimize short circuit triggering 

▪ Maximise the separation of components with a different lifecycle in order to 

make them easily disassembled and reuse those components with higher 

lifecycle.  

Requirements specifically targeting the reusability for the same purpose: 

▪ Accessible electrodes at pack level 

▪ Clear and proven testing parameters 

▪ Ease of stacking/storage at pack level 

Conditions for cross-sectorial reusability, in particular for stationary charging: 

▪ Accessible electrodes at pack level 

▪ Clear and proven testing parameters 

▪ Ease of stacking/storage at pack level 

▪ Scalable voltage due to the need to invert direct current (of Batteries) with 

alternate current (every device operates with alternate current). Inverters are 

not customizable and only exist at 600V or 50V and batteries are exactly in the 

middle (on average 300V).  

6.6 Current Design: Available data ETL 

After having described the key parts composing any design approach, it results 

evident that, in case of already defined solution space and already existing solutions 

within this space, improvements only come with a correct evaluation of the current 

situation. This comes with a proper and detailed structure of the models for evaluating 

existing solutions.  

In this case study, before any trial to extend the solution space and find new 

configurations, attention is posed on a structured approach to evaluate solutions, 

through the setting of Key Performance Indicators (defined in section 6.4) derived 

from the main purposes of the study: 

▪ Create circular products 
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▪ Meet customer needs. 

Even in this practical application of the methodology, the followed approach had been 

a problem driven one. As stated in previous section, a broad list of data was initially 

drafted starting from the established strategical requirements, the examined system 

boarders, and consequent needed information. 

Here, data have been carefully selected and formalized in order to arrive to the final 

set of features to be given as input to the evaluation stage.  

Most relevant features identifying a specific battery pack configuration have been 

chosen among the complex list of attributes that can be used to describe a pack 

configuration, coming from the three macro areas comprising Product Definition, 

Design Variables and Circular Constraints.  

In particular, the first, very broad, list of features was the following: 

1- Pack size [m3] 

2- Pack weight [kg] 

3- Module size [m3] 

4- Module weight [kg] 

5- Module capacity [Ah], coinciding with battery pack capacity. 

6- Module voltage [V], which is extracted from the voltage of the whole battery 

pack by dividing it for the number of modules since they are always connected 

in series. 

7- Cells size (small, medium, large) 

8- Cells type (Pouch, Prismatic or Cylindric) 

9- Type of cell-busbar connections 

10- Number of cells in a module 

11- Number of series connections in a module 

12- Number of parallel connections in a module 

13- Number of modules in a pack 

14- Type of cooling system [liquid, air] 

15- Cooling system management [active, passive] 
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16- Cooling system - single module interface [0 if cooling system do not cross each 

single module, 1 otherwise] 

17- Cooling system single module interface [n=number of connections between 

single module and cooling system] 

18- Level of heterogeneity of mechanical connections between the battery case and 

the vehicle [high-medium-low] 

19- Presence of Mechanical joints connecting modules  

20- Number of Mechanical joints connecting modules and the pack 

21- Type of electrical connections between the modules 

22- Presence of mechanical connections between modules 

23- Type of mechanical joints connecting the Junction block to the cells and to 

modules 

24- Type of electrical joints connecting the Junction block to cells and to modules 

25- Way of assembly of the pack 

26- Way of assembly of the pack to the vehicle 

27- BMS topology 

28- Quantity of cables  

29- Presence of glues/adhesives [high-medium-low] 

These data have been further structured, lightened, and formalized. Also, correlations 

between data have been eliminated by keeping only one variable out of the ones that 

were clearly linearly correlated. 

The resulting list of features is reported in Table 9, where data are presented in terms 

of range of values assumed and related unit of measure. 

 

Design Variable Values Assumed Unit Of Measure 

Pack weight Numerical from 100 to 500 Kg 

Module Size Numerical from 4.500 to 49.000 Mm3 

Type of cooling system Air / Liquid / 

Cooling system management  Active / Passive / 
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Mechanical joints between 

battery pack and EV 

From 8 to 20 Screws 

Number of different screws 

at pack level  

From 1 to 3 Different types of 

screws  

Total number of screws at 

pack level 

From 16 to 60 Screws   

Metal sheet folding  Yes ; No / 

Cooling System – Module 

interface 

Yes ; No / 

Junction Block mechanical 

joints  

From 4 to 10 Screws 

Junction Block electronic 

connections type 

Plug ; Direct connection to PCB / 

Junction Block electrical 

connections type 

Plug ; Bolt / 

Module Capacity (coinciding 

with Pack Capacity) 

From 5 to 230  AmpèreHours 

[Ah] 

Module Voltage  From 3,7 to 100 Volt [V] 

Type of cells Prismatic Pouch; Prismatic; 

Cylindric 

/ 

Type of electrical 

connections between cells  

Ultrasonic welding; 

Ultrasonic wedge bonding; 

Laser welding; 

Resistance Spot/Projection 

Welding; 

Mechanical Assembly 

/ 

Number of cells in a module From 4 to 1.200* (from 2 to 1200) Cells  

Series connections in a 

module 

From 2 to 20 Number of series 

connections 

Parallel connections in a 

module 

From 1 to 4 for pouch and 

prismatic 150 for cylindric* 

(Tesla) 

Number of parallel 

connections 

Number of modules From 4 to 12  Modules  

Mechanical connections at 

module level 

From 4 to 10 Screws  

Electrical connections at 

module level 

Plug; Bolt / 

Connections between 

modules  

Yes; No / 
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Sensors per module  From 2 to 10 Sensors  

BMS topology Distributed; Centralized; 

Modular 

/ 

Adhesives  Yes; No / 

Glue From 0 to 5  Level of presence 

of Glue (0= almost 

absent; 5= high 

amount). 

Table 9- Input features 

6.6.1 Data Collection 

Data were collected through an analysis of the available configurations, searching 

through existing OEMs’ Electric Vehicle models. Differences between configurations 

belonging to diverse manufacturers are many, and frequently differences can be also 

seen through LIB packs designed for different car models of the same manufacturer. 

This additional complexity remarks the need for a collaboration and a cooperation 

between all the OEMs, in order to properly collect data that are continuously updated 

and validated. 

For this initial implementation, data were gathered searching on the websites of 

Manufacturers and extracting them looking at LIBs disassembly videos. More accurate 

and valid data are available for OEMs without any need to modify the information 

system of the company, only through the sharing of information between enterprises. 

This potential should be exploited for a correct and complete implementation of this 

methodology, which will bring advantages to every actor.  

As mentioned, for demonstrating the functioning of the methodology and the 

effectiveness of the framework, data have been gathered in a rough way, due to the 

impossibility to access to updated and precise data.  

However, 125 observations were collected, belonging to 33 different OEM. Considered 

car makers were Audi, BMW, Chevrolet, Citroen, Chrysler, Fiat, Ford, Honda, 

Hyundai, Jeep, Kia, Lamborghini, Lancia, Land Rover, Lexus, Maserati, Mazda, 

Mercedes-Benz, Mini, Mitsubishi, Nissan, Opel, Peugeot, Porsche, Renault, Rolls 

Royce, Smart, Suzuki, Tesla, Toyota, Volkswagen, Volvo. 

In particular, data were extracted from specific car reports like [71], [72], [73], [74], [75]  

Databases [76] [77] [78] , general reports on EV [79] and assembly/disassembly videos 

[80]  [81]. 
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For the 125 observations, all the features listed in Table 9 were collected (no missing 

values) and each raw (observation) was assigned with its related value of the KPI, 

basing on the acquired knowledge about the system.  

All the KPIs have been transformed into numerical measures ranging from 1 (lowest 

level of performance) to 6 (highest level of performance). 

Given the complexity of this activity, only one KPI was taken as a reference for testing 

the methodology, evaluating the existing configurations according to the measure 

“Safety and easiness of disassembly.” 

An important thing to mention is that the stage of assigning the correct value of the 

KPI to initial configuration is only needed at first iteration of the method, and do not 

represent a complex activity for manufacturers since they have all the needed 

knowledge base for performing such activity. It is needed only at first iteration for 

training the algorithms and creating the models. After that, generated configurations 

can be evaluated using the same models and scores related to each KPI will be 

automatically assigned by the trained algorithm. 

6.6.2 Data preparation 

Starting from the collected features listed in Table 9, preliminary actions were 

performed in a qualitative way, only basing on the knowledge base acquired through 

the study of LIBs functioning and dynamics.  

This preliminary cleaning phase was done on the variables which were somehow 

linked one to the other, discarding them in order to avoid building incorrect models 

due to correlations. Also, the label indicating the OEM was discarded, since it is not 

relevant for the purposes of the analysis.  

Linearly correlated features are for example the module voltage and the number of 

series connections in a module, since they are linked by the equation: 

𝑀𝑜𝑑𝑢𝑙𝑒 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 = 3,7 × 𝑆𝑒𝑟𝑖𝑒𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑎 𝑚𝑜𝑑𝑢𝑙𝑒 

For this reason, the feature indicating the number of series connections in a module 

was discarded a priori.  

The second important step in the data preparation phase was related to the choice of 

the data types. While for some variables it is straightforward since they are clearly 

categorical or clearly numerical, for other variables it is not immediate. There is not an 

absolutely correct or an absolutely wrong answer, but the decision strongly impacts 

on the model performances.  

In this case, the variables with an ambiguous nature were 
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▪ ‘Mechanical joints between battery pack and EV’, which was finally treated as 

Numerical. 

▪ ‘Number of different screws at pack level’, which was treated as Categorical 

since it only assumes 3 possible values, even if numerical.  

▪ ‘Mechanical connections at module level’ were largely discussed and, despite 

assuming numerical values ranging from 4 to 10, they were treated as 

Categorical in the developed analysis. This is due to a decision based on the 

fact that the number of screws in this specific case actually provide a kind of 

“categorization” of the LIB pack, given by the way modules are assembled with 

the other components.  

▪ ‘Parallel connections in a module’. The other way round is valid for this 

variable. It assumes only value 1,2,3 or 4 for almost all the batteries deployed in 

cars, with exception of Tesla. Despite this, it is treated as Numerical since the 

meaning of this variable is closer to that of a numerical attribute.  

▪ ‘Sensors per module’ is treated as a Categorical, for the same reasons valid for 

to the variable ‘Mechanical joints between battery pack and EV’. 

▪ Same applies for the variable ‘Glue’. 

For the categorical variables, the cleaning phase is, in most cases, attributable to the 

phase of size reduction specifically targeting attributes. 

Categorical Variables  

As explained, this stage of the framework consists in the creation of different models 

for evaluating solutions under a multitude of perspectives. Given the diversity of the 

perspectives adopted, the models will be different and will differ with respect to the 

considered attributes. This is way the phase of cleaning of categorical variables is 

fundamental and characterizes each trained algorithm: for each algorithm, each 

categorical variable is compared against the target variable, in order to assess the level 

of relevance and importance that the specific variable has in determining the values 

assumed by the target one. As a result of this, the models will be trained on a different 

sub-set of the entire set of data provided as input. 

In this specific case, the selected KPI (target variable), i.e., Safety and easiness of 

disassembly., has been tested against each categorical variable at a time, in order to see 

how its distribution varied according to the values assumed by the categorical 

attributes.  

This was done in two different ways in order to have a double check of results. 
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Beginning with a plot of the observations’ distribution according to the KPI (x axis) 

values, divided in n graphs, being n the number of possible values assumed by the 

categorical variable under analysis. The graphs are visualized in one single plot for 

providing evidence of the differences in the distributions of data depending on the 

selected value of the categorical attribute. 

Graph 5 shows the plot built considering the categorical variable ‘Junction Block 

electronic connections type’. In blue the distribution of observations when the value 

assumed by the variable was “DIRECT CONNECTION”; in orange the way data are 

distributed when electronic connections of the JB are “PLUG”.  

   

Graph 5- Plot of ‘JB_ELECTRONIC connections' possible assumed values 

The graph can be also split for having a clearer view of the different distributions of 

data, for instance in those cases in which the analysis is carried out on a variable which 

assumes more than 4 possible values.  

This is the case of ‘Mechanical connections at module level’, indicating the number of 

screws used to fix modules to the pack, whose plots are shown in Graph 6. On the x 

axis are always reported the values of the KPI. 
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Graph 6- Separated plot of 'MJ_Module' possible values 

The analysis continued with a box-plot analysis, in which, similarly to what performed 

before, for each categorical variable, the distribution of data depending on its specific 

value assumed was plotted.  

In Graph 7 is shown the box-plot obtained by the analysis carried out on the variable 

‘presence of Metal Sheet Folding”. As reported in the graph, this variable is strongly 

influencing the distribution of values of the KPI. 
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Graph 7- Box-Plot 'presence of Metal Sheet Folding' 

The analysis was carried out for all the attributes and the choice about the variables 

selection is based on the detected relevance of categorical attributes in determining the 

values assumed by the target one. In particular, the more the distribution of data 

according to the KPI varies with the values assumed by the attribute varying, the more 

that attribute will be relevant in determining the values assumed by the KPI. 

As for the ‘Presence of Metal Sheet Folding’ variable, all the other categorical variables 

have proven to be relevant in describing the behavior of the target variable. (See 

Appendix B, B.1 for the remaining graphs). 

After that, selected categorical variables must be transformed into dummies in order 

to be readable by the algorithm.  

Numerical Variables 

Shifting the attention to numerical variables, different tools can be exploited for the 

analysis. 

As a first step, numerical attributes have been plotted with simple histograms in order 

to see their distribution and detect the presence of normally distributed variables. As 

shown in Graph 8, no variables are normally distributed. Some present known 

distributions like ‘Module Voltage’ which can be considered as a Chi-squared 

distribution.  

Some plots present peculiar shapes due to the presence in the dataset of infrequent 

and far-from-the- mean values. This is the case of variables indicating the number of 

cells in a module and the number of parallel connections in a module, which are 

“contaminated” by the presence in the dataset of LIB packs belonging to Tesla models. 

Without knowing the data and the situation, the suggested solution should be that of 
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discarding the “strange” values, handling them as outliers. Nevertheless, having a 

base knowledge of the state of affairs, the best solution is to keep them in the dataset, 

in order to evaluate them with respect to the considered KPI. 

 

 

Graph 8- Numerical Variables Histograms 

Even the variable ‘Number of Modules’ presents a particular shape distribution given 

by the presence in the dataset of LIB packs having a big number of modules, like the 

ones deployed in the Audi e-tron and the Nissan LEAF.  

No outliers have been removed for the explained reasons. 

Next step in numerical variables preparation is the size reduction, performed with a 

correlation analysis. This stage has a double aim: on the one hand, similarly to what 

performed for categorical variables, the objective is to see how relevant each numerical 

variable is in determining the distribution of the target one. In this sense, the 

correlation analysis is performed in a bi-variate way considering the target variable 

and one numerical variable at a time.  

On the other hand, through a multi-variate correlation analysis, the aim is to spot 

correlations between variables and consequently discard them.  
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As shown in Figure 50, the variables ‘Number of cells in a module’ and ‘Parallel 

connections in a module’ present a strong correlation. For this reason, ‘Parallel 

connections in a module’ has been discarded. 

 

Figure 50- Heatmap of numerical variables 

As for the assessment of the relevance of numerical variables in determining, or at least 

influencing, the distribution of the target variable, the process can not be streamlined 

to an observation of the linear correlation between each variable and the target one. 

This analysis is however helpful and a visualization of the pair-plot distributions of 

variables have been done and is presented in Figure 51. Y-axis always presents the 

value of the target variable ‘Easiness of Disassembly’. 
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Figure 51- Pair-plot of numerical variables against 'Easiness of Disassembly' 

As already clear in the heatmap presented in Figure 50, no linear correlation seems to 

exist between the target variable and any other numerical variable. This is due to many 

reasons linked to the large number of variables considered, to their consequent 

interaction and to the fact that these plots can only spot the linear correlation.  

Given the objective of the analysis, some numerical variables have been discarded due 

to their irrelevant role in describing the easiness of disassembly. This lack of relevance 

is clearly inferable looking at Figure 51 and noticing the complete absence of patterns 

in some plots. These variables are: ‘Pack weight’, also given its slight correlation with 

the size of a module (Figure 52), Module Capacity and Module Voltage. 

 

Figure 52- Extract from the heatmap 

Once selected, numerical variables must be standardized in order to be treated by the 

algorithm without any bias. 

Since the Dataset has been built ad hoc for the purposes of the analysis, no need for 

features extraction arose. Indeed, the needed information were already collected and 

the work of extracting the features was in some cases performed during the phase of 

data collection itself. For example, in most cases the Module Voltage was obtained 

from the Pack voltage, which is a more accessible information, dividing this last for 
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the number of modules. Also, the Module capacity was mostly extracted from the total 

energy of the battery pack, which is one of the first information found on the websites. 

Energy of the battery expressed in kWh, indeed, is given by the capacity of the module 

(Ah) multiplied by the pack voltage (V).  

With the end of the phase of data cleaning and preparation, the two subsets composed 

by categorical (dummies) and numerical variables have been concatenated in order to 

obtain a unique set of data. 

The dataset is ready to feed the algorithm.  

6.7 Evaluation 

 

 

6.7.1 Algorithm Implementation and Selection 

After having merged the cleaned and prepared numerical and dummy variables, the 

entire dataset must be split into training and test set. 

Different models have been tested using the Grid Search tool combined with a cross 

validation as explained in section 5.6. 

Results from Linear regression, Ridge regression, Lasso regression, K-Nearest 

Neighbor, Decision Trees, Random Forest, Support Vector Regressor and Multi-layer 

Perceptron regression algorithms implementation have been compared. (see 

Appendix B).  

Graph 9- Problem setting 
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The best model results to be the one made with Lasso regressor algorithm (whose 

structure have been described in dedicated section - Supervised learning). 

Best score: Lasso 

Regressor 

Negative Mean Squared Error = -0.550333 

Best hyperparameters Generalization term λ= 0.01 Normalize = False  

PERFORMANCES Train set  Test set 

Mean Absolute Error 0.361 0.452 

Mean Squared Error 0.215 0.333 

Root Mean Squared Error 0.463 0.577 

R squared  0.763 0.673 

Table 10 - Performances of Lasso regression model 

Note that the selected measure for evaluating each algorithm is the Negative mean 

absolute error. This is for a pure logical reason linked to the fact of scoring better 

algorithms with a higher value of the measure. Since we are dealing with errors which 

are measures of the badness of a model, we take the negative value in order to select 

the algorithm with the highest score (i.e., the lower absolute value).   

As can be seen in the table presenting the results, the best Lasso model is the one with 

hyperparameter lambda (λ), which is the generalization term, equal to 0.01. This allow 

to have a very low level of overfitting, as shown by the values assumed by Mean 

absolute error, Mean squared error, Root mean squared error and R squared, which 

are pretty similar for training and test sets. R-squared is even higher for training set 

compared to test set, suggesting that no overfitting is present at all. 

Higher levels of overfitting are achieved with the implementation of more complex 

models like Multi-layer perceptron, with a delta between the training and the test sets 

errors which reaches the 5000 percent. (see Appendix B, B.2) 

The algorithm is now able to predict performances of new potential configurations, 

since it learned the intercurrent relations between the variables explaining the target 

behavior. By feeding the trained algorithm with unlabeled observations (i.e., 

observations with missing target variable), it would provide as output the target 

variable related to each new observation.  
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Given the poor quality of data collected, this algorithm only has been trained. 

Nonetheless, clear guidelines have been provided for a complete and correct 

development of the proposed framework. Also, tools and software are available for 

companies and industrial partners for performing the aggregation of the different 

measures in a single multi-objective function, with the aim to explore results and 

consequently decide whether to keep one solution or to modify the space of solutions 

and train the generative algorithm. 

It is worthy to highlight how the development of regression models has a second very 

important outcome. Besides the primary purpose of evaluating different solutions and 

learning the existing relationships in order to predict future performances, they 

represent a strong instrument for validating the choice of data. This means that, 

through the proper training of algorithms, clear evidence of the actual significance of 

collected data is provided for different purposes and measures.  

Resuming the general framework, another time, the information gain coming from the 

outcome of one iteration of the method enriches the input and the knowledge base of 

the system at the next iteration.  

The outputs of this evaluation are a validation of the selected features and the 

identification of the current best configuration under the “Easiness of disassembly” 

point of view. 

Validated variables are those which play a fundamental role in determining the 

performance of a configuration and are: 

- Module size 

- Type of cooling system 

- Cooling system management 

- External Mechanical joints 

- Mechanical joints at pack level, module level, cells level 

and at Junction block level 

- Different type of screws used for mechanical joints 

- Presence of the external metal sheet folding 

- Modules interfaces (between them and with the cooling 

system) 

- Electric and electronic connections at junction block level, 

module level and cells level 

- Type of cells 

- Number of cells 
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- Number of modules 

- Number of sensors per module 

- Presence of Glue 

- Presence of adhesives  

The best configuration is the one which combines a quite small module size, a high 

number of modules containing a few cells, an active air cooling system which do not 

present interfaces with all the modules, the absence of the external metal sheet folding, 

the fewer number of screws used for mechanically joining the pack, the modules, the 

junction block and the cells, only one type of screws used for joining the same 

components, Plug electric connections and Laser welding when mechanical joints are 

not possible. Also, the absence of adhesives and glue and the fewer number of sensors 

per module. 

 

6.8 Future Steps 

The completion of the method can be performed with the training of the remaining 9 

algorithms modelling the solutions and evaluating them under different perspectives. 

The steps to be followed are exactly the ones performed for the tested KPI and 

explained in previous section. This leads to a limited time consumption for companies 

for the activity completion. With the complete evaluation of solutions, after a proper 

exploration of results, companies should be able to decide whether to keep one 

configuration or to go for a modification of the space of solution and the generation of 

new design alternatives.  

For this last task, performant software are present on the market and can be exploited 

by companies in order to explore the results of the evaluation phase, synthesizing them 

in a unique function and providing clear inputs to the generative design algorithm.  

The proposed framework can be applied and extended to any other industry, 

providing guidelines and possible adjustments to be made for specific needs and 

strategies.  
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7. Conclusion and future development 

Product design plays a fundamental role in the possibility to implement de-

manufacturing at large scale. The phase of product design is complex and multi-stage; 

important improvements should be addressed in a collaborative way by all the 

companies involved. The efforts should go in the direction of a systematic 

identification and collection of data, which must be exploited for feeding algorithms 

and for deploying tools that can help to reduce the underneath complexity. 

Nonetheless, the exploitation of AI and machine learning can not be led back to their 

implementation on single operations: synergies must be exploited and a clear strategy 

have to be defined, which impacts on all the levels of the enterprise and of the entire 

supply chain. Collaboration and co-operation should be considered as important as 

the Machine learning tool itself, for guaranteeing the quality and relevance of data 

collected.  

7.1 The method 

The method has an iterative nature, and has been defined as follow: fundamental steps 

to be followed for reaching the objective are 

1. a clear strategy definition, which should address issues at every level of the 

enterprise, in an integrated way 

2. the setting of a complete and holistic set of KPIs, measuring company’s 

performance at system, process, and product level 

3. the utilization of a problem driven approach allowing a careful identification of 

fundamental data to be exploited in the product design phase. Such data must 

cover the areas identifying product definition, design variables and constraints 

4. establishment of a systematic way to collect fundamental data, which is 

embedded in the method itself. If data are not available, design guidelines can 

be found for enabling the gathering of such data.  

5. data cleaning and preparation for feeding algorithms able to validate such data 

and learn relations between product design and KPIs (Evaluation phase). This 
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allows to have clear and quantitative results about the ability of product 

configurations to satisfy those performances defined in step 2.  

6. Exploration of results. In this phase human effort is fundamental for defining a 

unique measure which synthesizes the results coming from the upstream stage. 

Such results are represented by a set of models describing the behaviours of 

product configurations basing on different indicators. The identification of the 

best configuration under all the defined measures is the output of this step. 

7. Decision on whether to be satisfied with the selected configuration(s) and 

consequently to end the process, or to re-iterate it, in a continuously improving 

perspective, moving on with step 8 

8. modify the inputs data and feed a generative design algorithm which provides 

new design specifications in the form of unstructured data. 

9. Go back to step 5.  

The framework gives evidence of the fact that, in product design, AI supports humans 

in a collaborative activity. Humans have to take important decisions like selecting the 

most suitable methods for evaluating solutions (black box, white box), the choice of 

the metrics (KPIs), and the final choice on whether to re-iterate the process or to be 

satisfied with a certain solution.  

The findings from this study also shed light on multiple aspects of generative design 

applications. The first of these is the importance of how a solution space is defined and 

how it should be given careful consideration not to be under- or over-constrained. 

Reducing the range or number of design variables, adding more constraints, or 

including more metrics is a way to potentially simplify the exploration process at the 

cost of potentially not finding novel solutions. Similarly, the inclusion of additional 

metrics, can result in a better evaluation of solutions that have the potential 

disadvantage of an increased complexity both in terms of the technical solution (i.e., 

calculating each metric) as well as in the analysis made by the users of a generative 

design approach. The exact selections of design variables, constraints, and metrics are 

considerations that might differ from project to project. Thus, the framework was 

designed to be adaptable and adoptable by different companies, with the potential 

addition of other setups than those used in this study, for reflecting the design context 

of other products and contexts.  

7.2 Conclusions on the case study  

The application of the framework to the LIBs pack design shed light to different 

interesting aspects mainly related to data identification and gathering. The framework 
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was partially demonstrated through the training of a regression model developed for 

the evaluation of existing solutions under the “easiness of Disassembly” metrics. 

The selection of variables came as a result of in-depth studies on batteries functioning 

and their production and distribution. The application of the evaluation phase allowed 

to validate the set of variables which are relevant and fundamental for assessing the 

easiness of disassembly of current and future configurations. Such variables are 

represented by: 

▪ Module Size, which is an important attribute linked to the easiness of handling 

the pack and performing actions on it. 

▪ Type of cooling system: air is better than liquid under the disassembly 

perspective 

▪ Cooling system management  

▪ Mechanical joints between battery pack and EV: the lower the better 

▪ Number of different screws at pack level: the lower the better 

▪ Total number of screws at pack level: the lower the better  

▪ Metal sheet folding: better not to have it  

▪ Cooling System – Module interface if present, is a further obstacle in the 

disassembly phase. Thus, better not to have it. 

▪ Junction Block mechanical joints is always the number or screws employed, so 

the lower the better. 

▪ Junction Block electronic connections type: better to have Plug. 

▪ Junction Block electrical connections type: Plug is the best option 

▪ Type of cells: generally Prismatic cells are associated with a higher level of 

easiness of assembly since they require easier-to-remove joints 

▪ Type of electrical connections between cells: Mechanical and Laser Weld are the 

best options. 

▪ Number of cells in a module: the lower the better 

▪ Number of modules: the higher the better  

▪ Mechanical connections at module level: the lower the better  

▪ Electrical connections at module level: Plug is the best option 

▪ Connections between modules: if present represent another obstacle to the 

disassembly activity.  

▪ Sensors per module: the lower the better. 

▪ BMS topology: better to have a centralized topology. 
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▪ Adhesives: if not present the disassembly is easier. 

▪ Glue: the lower the presence of glue, the easier the disassembly. 

The best configuration or configurations are those associated with a higher score of the 

KPI in the developed model.  

Despite the implementation being incomplete, the framework has proven to be 

efficient and effective. The incompleteness is only due to the poor quality of accessible 

data. High quality data are in turn available to companies and the method can be easily 

implemented and exploited in all its potential.  

Compared to related research in generative design and in the use of AI for designing 

products, this work contributes by including all the aspects related to the business 

management, by considering Circular Economy requirements as fundamental 

constraints when designing a product in order to simultaneously design its lifecycle, 

and by creating a more generic framework that shows the technical and strategical 

workflow of the generative design system. 

It also contributes by further exploring the effects of the framework adoption on 

potential future iterations, explaining the benefits of a closed loop methodology aimed 

at continuously improve results.  

The field of generative design and its application in the lithium-ion batteries for EV 

context shows promises and has the potential to be a part of a future designer’s toolkit. 
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