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1. Introduction
In the realm of evolutionary game theory, clas-
sical models often narrow their focus to the sin-
gular metric of individual reproductive capacity,
overlooking the intricate dynamics of coopera-
tion prevalent in real-world scenarios. Recogniz-
ing the inherently social nature of many species
as well as human beings [4], this thesis delves
into the realm of Kantian game theory.
To rectify the limitations of traditional ap-
proaches, the study introduces the so-called
Moralisator equation. This equation pro-
vides insight into how a Kantian optimizer,
in contrast to a Nash optimizer, strategically
optimizes decision-making.
By embracing this novel perspective, the re-
search not only acknowledges but also empha-
sizes the collaborative potential among individ-
uals. Furthermore, the study extends these in-
sights to practical application, exploring the ap-
plication of these new optimization strategies to
classical symmetric two-player games. In do-
ing so, it aims to contribute to a more compre-
hensive understanding of evolutionary dynam-
ics, highlighting the significance of cooperation
in the intricate tapestry of group interaction.

2. Kantian game theory
Kantian game theory constitutes a branch of
moral-based game theory that integrates prin-
ciples from Immanuel Kant’s moral philosophy
into the analysis of strategic interactions. Here’s
a concise summary of Kantian game theory, with
a broader perspective on moral-based game the-
ory. Kantian game theory departs from tradi-
tional game theory by incorporating moral con-
siderations and ethical imperatives into strategic
decision-making. Immanuel Kant’s moral phi-
losophy, particularly his emphasis on the cate-
gorical imperative and the concept of treating
individuals as ends in themselves, serves as a
foundational framework. In this context, agents
are viewed as rational beings capable of moral
reasoning and are expected to act in accordance
with principles that could be universally applied.
Important contributions in the field include the
book "How we cooperate: A theory of Kantian
Optimization" by Roemer [2], which has big ap-
plications in collaborative economy, and the the-
oretical article by Istrate in game theoretic [3].
Moreover, in the Kantian game theory land-
scape, the work of Ingela Alger and Jörgen W.
Weibull has been instrumental as well as pre-
cursor in introducing the concept of the homo
moralis, a strategic agent guided by a certain de-
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gree of moral principles. One key contribution
is the formulation of the utility function of such
a player, providing insights into the decision-
making process of a Kantian optimizer in con-
trast to traditional Nash optimizers.
Formally, the utility of a Homo moralis with
a degree of morality k ∈ [0, 1], is given in a
normal-form game, where each of the n play-
ers has the same strategy possibilities. There-
fore, in this setting, if player i play strat-
egy xi against x−i would obtain the utility
ui(xi,x−i) = E[π(xi, x̃−i)].
x̃−i is a random vector, which derive from x−i

by replacing each of its n− 1 components by xi
with a probability equal to the degree of moral-
ity k. This definition, by construction, embeds
the Kant imperative by considering what will
the outcome be whether the other act as I do.

3. The Replicator dynamic
A population game is a type of mathematical
model used in game theory to study strategic
interactions among a large number of individu-
als or agents within a population. Unlike tra-
ditional game theory models that focus on the
strategies and payoffs of individual players, pop-
ulation games consider the distribution of strate-
gies in a population and how they evolve over
time. These games are particularly useful in un-
derstanding the dynamics of strategic interac-
tions in large-scale scenarios, such as biological
evolution, social networks, or economic markets.
The assumptions of such a model are that the
population has a large amount individuals, who
are indistinguishable and can only play a finite
number of pure strategies {ei}i∈[|1,n|]. each time
the game is played, two players are picked ran-
domly within this unique massive population in
order to interact with each other. As the pop-
ulation is large enough, we can focus on the
evolution of the different strategies’ proportion,
in a smooth way. Mathematically speaking, we
are looking for an Ordinary Differential Equa-
tion (ODE) that would describe the evolution of
those proportions through time.
As the set of strategies for each player is finite,
the payoff function of the game is summarized
into a squared matrix A of size n, where its
component Aij is the payoff of playing strategy
ei against strategy ej . In addition, the vector
x =

(
x1 . . . xn

)′ is the proportion vector i.e.

for all i ∈ [|1, n|], xi is the proportion of player
that plays the i-th strategy.
In this framework, the Replicator equation
provides the differential equation that describes
the system evolution in time and is given for all
component i ∈ [|1, n|] by

ẋi(x) = xi(

n∑
j=1

xjAij −
n∑

j=1

n∑
l=1

xjxlAjl) (1)

We first observe that the evolution of a propor-
tion is proportional to the proportion itself, and
also to the difference between the fitness of the
strategy with the average fitness of the popula-
tion, which are natural considerations if we want
to simulate the evolution of strategies in an en-
vironment ruled by pure natural selection.
Concerning the natural properties we can expect
from the equation, on the first hand, the sum
of derivatives components is always equal to 0,
a sufficient and necessary condition to keep the
overall proportion to 1. On the other hand, the
fact that the derivative vanishes when the asso-
ciated proportion becomes 0 ensures that pro-
portions remain positive or null.
Properties are indeed verified by the equation.

4. The Moralisator equation
In the same environment and theoretical pop-
ulation game setting as the one described for
the Replicator dynamic, we aim to investigate
the evolution of the strategies if the dynamic is
ruled by moral-based decisions instead of self-
ish and personally motivated. In order to do so,
we introduce the Moralisator equation, which
gives the evolution through time of each compo-
nent i ∈ [|1, n|] by

ẋi(x) = xi(Aii −
n∑

j=1

xjAjj) (2)

The interpretation of the equation can be done
as follows. The rise of a proportion i is propor-
tional to the difference between the i-th common
strategy and a reference payoff which is consid-
ered to be the weighted mean of common strate-
gies, where the weight associated with each com-
mon strategy is equal to the proportion of play-
ers currently playing this strategy.
This new way of comparing the potential strate-
gies, from the point of view of a moral player,
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makes sense as a player would compare himself
to the others, and takes as a moral reference
the common output of the mixed strategy pro-
file played in a coordinated way. In some ways,
the moral reference is taken as the mean output
of a player who knows every time the move of
the other and plays like him, as in the ’Eye for
an eye’ spirit from the law of exact retaliation.
Moreover, the variation of a given strategy ei
is also proportional to the current proportion of
players in this strategy xi, i.e ẋi ∝ xi, as in the
replicator equation. This term was indeed nec-
essary in order to fulfill the required equation
properties to keep proportions positive and the
overall equal to 1, but it could be nicely inter-
preted as well. As mentioned in [5], this term
was originally considered in order to represent
reproduction within the populations, of differ-
ent species of animal for instance. When we deal
with strategy choices, the more this strategy is
played, the quicker it would evolve, which rep-
resents the mimicking comportment within the
population, which implies sadly a limit in our
modelization.
Indeed, if at the beginning, or at some point,
a strategy ei has vanished then it cannot ap-
pear again even if it becomes later on advan-
tageous to be played once again. Therewith,
the human capacity to undertake and improve
is neglected, which is somehow understandable
as those characteristics are by nature stochastic
and we are working in a deterministic frame-
work. A stochastic approach might be a further
step in order to integrate this aspect, through a
Stochastic Differential Equation (SDE). For the
moment, as the integration of that undertaken
behavior is out of the scope of our studies, we
have to be very attentive to the initial state of
our system and not let proportions get too close
to 0 as we would get unrealistic simulation be-
haviors.

4.1. Properties of the Replimorator
equation

In the realm of full moral-based theory, the
quantity M(x(t)) =

∑n
j=1 xj(t)Ajj can be seen

as a moral reference of our system and can be
seen as the counterpart of the average fitness
given by

∑n
j=1

∑n
l=1 xjxlAjl in the case of the

classical evolutionary game theory where the
population evolves according to the Replicator

equation. Moreover, it is a well-established re-
sult that this reference in the case of the Repli-
cator is always growing through time [5]. We
establish a similar result when the population
evolves according to the Replimorator equation.
Theorem 4.1. The quantity M(x(t)) =∑n

j=1 xj(t)Ajj is an increasing quantity through
time when t → x(t) follow a moralisator dy-
namic.
Concerning the possible equilibriums, in the
Replicator framework, those equilibriums are
called ESS, standing for Evolutionary Stable
Strategy, and are associated with mixed strate-
gies Nash equilibriums of the associated two
players’ game. In the case of the Replimorator
framework, we have a similar association, with
simple Kantian equilibrium in this case, that
correspond to the strategies associated to the
maximum diagonal within the matrix A.
Theorem 4.2. Let A be the matrix of the game,
where strategies are reordered in order to get a
decreased diagonal. Denoting by r ∈ [|1, n|] the
last coefficient such that A11 = Arr, we have
that:

r∑
i=1

xi(0) > 0 =⇒
r∑

i=1

xi(t)
t→∞−−−→ 1

5. The k-Replimorator equa-
tion: the compromise

It is fairly known that in many aspects of
life, "things" are not simply black or white
but slightly more complex, like a scale of grey.
Human interaction is part of those "things",
whether it be in the economy, politics, geopoli-
tics, or even at the base scale in business, fam-
ily, or friendships. In all those fields, there are
countless situations where an individual extra-
benefit would be in opposition to a solution more
suitable for the other parties. In those situa-
tions, the outcome in general never ends up in
one of both extremes, but in a complex compro-
mise that has been driven by a mix of selfish and
moral forces.
Overall, in the symmetric games that are un-
der our studies, players can deeply feel the reci-
procity and have the sentiment of being part of
the same boat. In this framework, the moral
force should be as well considered in addition to
the self-interest intrinsic driver. In order to set
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what extent a player would be influenced by his
morality, we denote by k ∈ [0, 1] the degree of
morality, inspired by the Homo moralis utility
function. Under those assumptions, proportions
of strategies played in the game are then driven
by the k-Replimorator equation, defined as the
convex combination between the Replicator and
Moralisator equation, which leads for each pro-
portion xi the following ODE:

ẋi(x) = xi × k[Aii −
n∑

j=1

xjAjj ]

+xi × (1− k)[
n∑

j=1

xjAij −
n∑

j=1

n∑
l=1

xjxlAjl] (3)

As the Replicator and the Moralisator equation
did fulfill the basic requirement of such an equa-
tion, it directly follows that the convex combi-
nation of any kind will fulfill them as well. In
fact, for any linear combinations, the require-
ments would have to stand, which might open
the way to the integration of other behavior-
driving forces. The new equation would enable
us to study a wide range of population behavior
according to its degree of morality. The degree of
morality is kept constant in the equation to keep
things as simple as possible, even though making
it time and state path depend would be possible
in order to make it more refined. We are now go-
ing to simulate numerically the k-Replimorator
equation in different classical games.

5.1. The prisoner dilemma
The first game we would like to study is the
prisoner dilemma. Indeed, despite the fact
that it is the most famous game of the disci-
pline, some very interesting behaviors toward
the Replimorator equation can be expected. In
fact, this game has a Kantian equilibrium as well
as a Nash equilibrium that corresponds to the
two different possible common strategies. The
Kantian equilibrium corresponds to both con-
victs collaborating with each other and denying
(D), whereas the Nash equilibrium corresponds
to the situation where they both confess (C).

P2

Confess Deny
P1 Confess −10 0

Deny −15 −1

Figure 1: A matrix in the prisoners dilemma
setting

According to the theory, if the population con-
verges, it would converge to the Nash equilib-
rium if it evolves according to the replicator
equation, and to the SKE in the case of the
Moralisator equation. Therefore, in the case of
the k-replimorator equation, we can expect a dif-
ferent comportment according to the morality
coefficient k, with an increasing incentive to col-
laborate between prisoners as k increases.

Figure 2: Simulation in prisoners dilemma for
different values of k

We observed the rise of a critical value of k,
denoted by ktip. Indeed, if k > ktip then the
population converges to the Kantian equilibrium
and collaborates, and if k < ktip then it con-
verges to the Nash equilibrium. The value of
ktip is also very dependent on the initial situa-
tion, as if more people collaborate at the begin-
ning, then less morality would be necessary in
order to achieve full cooperation.
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Figure 3: ktip w.r.t the initial proportion of co-
operator

5.2. The hawk and dove game
The Hawk and Dove is another famous and well-
studied game. It represent a population of birds
where one comportment is aggressive and de-
noted by Hawk, whereas the other one is docile
and characterized by Dove.
Within this population, it often happens that
birds find a rival resource that would bring them
the payoff V . If they are both doves, they will
share the resource and get the payoff V/2, but
a hawk against a dove would take all the re-
sources. Finally, if two hawks meet in those cir-
cumstances, they will escalate the conflict and
fight which would cost C > V to the loser. The
average payoff, in that final case, is then equal
to (V − C)/2 < 0. The game is summarized in
Figure 4 and the matrix A is deduced from it by
taking the payoff matrix of the first bird.

Bird 2
Hawk Dove

Bird 1 Hawk (V−C
2 , V−C

2 ) (V, 0)

Dove (0, V ) (V2 ,
V
2 )

Figure 4: The general hawk and dove game

Moreover, it can be observed that neither the
Hawk nor the Dove strategy is Nash equilibrium.
Therefore, even if the population composed ex-
clusively of Dove is most optimal in terms of
common payoff, as no resources are lost dur-
ing conflicts, this equilibrium is not reached in
a classical evolutionary setting where the Nash
equilibrium corresponds to a proportion of hawk
of V/C.
We have performed the following simulation
with the values V = 4 and C = 10, and

started them for two different proportion set-
tings of (30%, 70%) and (70%, 30%), we can ob-
serve them in Figure 5. We observe, in this
game, a convergence of the strategy proportions
after a short time for each value of the morality
coefficient k. More precisely, the game converges
to the Nash equilibrium when k = 0, which cor-
responds to a proportion of C−V

C of doves, and as
long as k increases the proportion of dove corre-
sponding to the equilibrium increase as well. We
then observe a value critic of k, between 0.25 and
0.3 for the values of V and C previously selected,
where the equilibrium is exclusively composed of
Doves for values of k higher.

(a) Starting proportion of Dove = 0.3

(b) Starting proportion of Dove = 0.7

Figure 5: Hawk and Dove simulations throw
time and according to k

In particular, we empirically observe that the
equilibrium reached is independent of the ini-
tial proportion of birds, except for the degener-
ated case where only one kind of bird is initially
present.
As we previously discussed, the higher the pro-
portion of Dove, the higher the average payoff
within the population, as fewer resources are
lost in the fights. As an increasing moral co-
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efficient k induces a higher proportion of doves
at the equilibrium, we can conclude that an in-
crease in morality would imply an increase in
the common well-being of the population at the
equilibrium. This is a common feature with the
previous game studied, except that in that game,
the behavior is achieved in a continuous way un-
til the ktip is reached. Whereas, in the prisoner
dilemma the switch of behavior is binary, in the
sense that it switches from one extreme equilib-
rium to the other whether k is under or above
ktip.

5.3. The stag and hare hunters
The stag and hare hunters game is another
game theory classic, composed of two coordi-
nated Nash equilibriums of different qualities.
The common best one, but more risky in case
of miss-coordination, is to go hunting the stag,
and the other one to go both hunting the hare.

Hunter 2
Stag Hare

Hunter 1 Stag (1, 1) (−1, 0.5)
Hare (0.5,−1) (0, 0)

Figure 6: The stag and hare game

In Figure 7, we have reported the simulation of
the game for different initial conditions and dif-
ferent coefficients of morality k. We observe that
in the long run, the game ends up either in a stag
hunter or in an hare hunter society.
We also observe that whatever the initial pro-
portion in the game, there exists a morality co-
efficient ktip that enables the game to converge
to the cooperative equilibrium where players are
hunting the stag. This is a similar feature that
we have observed in the prisoner dilemma, ex-
cept that in the case the ktip is rather different
as we can observe in Figure 8. Indeed, there ex-
ists a threshold of cooperator proportion where
above, even a morality coefficient k = 0 makes
the game converge to a fully cooperating pop-
ulation, which is not the case in the prisoner
dilemma.

Figure 8: Value of ktip in the Stag and Hare
game according to the initial proportion of Hare
hunters

(a) Initial proportion of stag hunter = 0.3

(b) Initial proportion of stag hunter = 0.7

Figure 7: Stag and Hare simulations throw time
and according to k

5.4. A 3 strategies coordination game
In the continuity of the stag and hare game, we
consider a game with 3 Nash equilibrium, with
growing quality in the sense of Pareto, all local-
ized on the diagonal. The payoff matrix of the
game, that we named "cow, stag and hare", used
for the simulations is represented by 9.
It is, as the stag and hare hunters a coordination
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Player 2
Cow Stag Hare

Player 1 Cow (10, 10) (3, 6) (0, 8)
Stag (6, 3) (5, 5) (1, 4)
Hare (8, 0) (4, 1) (2, 2)

Figure 9: The cow, stag and hare payoff matrix

game and we aim to investigate the influence of
the morality coefficient on the capacity of the
players in order to coordinate themselves.

(a) morality coefficient
k = 0

(b) morality coefficient
k = 0.15

(c) morality coefficient
k = 0.2

Figure 10: Cow, Stag and Hare simulations with
initial proportions (0.1, 0.45, 0.45)

As we can expect, the higher the morality coeffi-
cient k, the better the capacity of the players to
coordinate on a higher-quality equilibrium. As
justified by the simulation summarised in Figure
10, which are performed with the same initial
proportions but with increasing k. In all cases,
the system ends up in one of the three possible
Nash equilibriums with a bigger incentive for co-
operation as long as k increases.

6. Conclusions
In conclusion, the exploration of Kantian game
theory within the evolutionary framework marks
a distinctive and innovative avenue in the field
of game theory. The incorporation of moral con-
siderations through the Moralisator Equation,
as introduced by Ingela Alger and Jörgen W.
Weibull [1], represents a departure from tradi-
tional game theory paradigms. The study of
how Kantian optimizers navigate strategic inter-
actions sheds light on the pivotal role morality

plays in shaping evolutionary dynamics.
However, this is just the beginning of a fas-
cinating journey. Kantian game theory, being
a relatively new theory, presents an open field
for theoretical exploration and practical applica-
tion. The Moralisator Equation provides a foun-
dation, but there remains much to discover both
theoretically and empirically.
Moreover, while morality is a central focus, the
framework is amenable to expansion. Future re-
search can delve into the incorporation of addi-
tional incentives, such as rivalry and altruism,
broadening the scope of the evolutionary game
theory lens.
In essence, as we venture into this novel inter-
section of non-Nashian optimization and evolu-
tionary game theory, we find a realm ripe for
exploration and discovery. The fusion of moral-
ity and strategic interactions provides a platform
for a deeper understanding of the dynamics that
govern the evolution of cooperation and compe-
tition within populations. The journey ahead
promises not only theoretical advancements but
also practical applications that can contribute
to our comprehension of biological, social, and
economic systems.
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