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1. Introduction 

The increase of life expectancy occurred in the last 

decades contributed to the spreading diffusion of 

Neurodegenerative Diseases (NDs) in elder 

individuals. As a result, the scientific community is 

highly invested in the investigation of biological 

hallmarks of both ND presence and progression. In 

this context, White Matter Hyperintensities 

(WMHs) – a common finding on brain Magnetic 

Resonance Imaging (MRI) usually associated to 

normal aging – have recently gained increasing 

importance as neuroimaging sign for several 

neurological and cerebro-vascular conditions[1]. 

They have been associated to demyelination, 

axonal loss [2] and lesions of the small blood 

vessels, often causing micro-bleedings with ferritin 

and calcium deposits. Alongside this, the existing 

literature has reported their correlation with 

progressive cognitive impairment, and several 

NDs such as Alzheimer’s Disease (AD), 

Parkinson’s Disease and Multiple Sclerosis [3], [4].  

The need for semi-automated and automated 

approaches allowing for WMH segmentation is 

useful to provide clinician and researchers with a 

deeper level understanding around their origin 

and progression. But, most importantly, to prove 

their relevance in the early-stage diagnosis of such 

conditions, since early therapy is the only way to 

slow neurodegeneration progression, so far. In 

order to automatically segment and quantify their 

volume, many Machine Learning (ML) algorithms 

have been developed over the last twenty years. 

However, the lack of generalized quantitative 

standards and of fully optimized performance 

have prevented their widespread diffusion to most 

clinical contexts. 

The primary aim of this thesis is therefore to 

evaluate and improve the application of BIANCA, 

a fully automated and supervised tool developed 

by the Oxford University to segment WMHs. 

BIANCA is based on the K-Nearest Neighbors (k-

NN) algorithm[5] and works by classifying the 

image’s voxels based on both their local intensity 

and spatial features. Despite the widely known 

robustness of these algorithms, some aspects still 

remain unexplored and require further 

investigation. 

Therefore, with this project, we aimed at 

evaluating BIANCA performance on a population 
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of subjects affected by AD, according to different 

parameters: (i) the number of subjects used for 

training BIANCA; (ii) the combination of MRI 

modalities involved in the process; (iii) the utilized 

training strategy (mixed vs single-site). The 

ultimate goal was to find the proper combination 

of values able to optimize results. While carrying 

out the third step, a harmonization training set 

derived from a previous study [6] was also 

validated.  

Alongside these aspects, we also aimed at 

validating the role of WMHs as early-stage 

biomarker for AD dementia. This was carried out 

by feeding both imaging data (i.e., WMH volumes 

extracted using BIANCA) and clinical variables to 

different ML algorithms trying to predict the 

Clinical Dementia Rate (CDR) of the OASIS3 

participants. Evaluating the importance exerted by 

WMHs on the final classification allowed us to get 

a sense of their relevance in diagnostic 

frameworks. 

2. Materials 

Dataset 

The third release of the Open Access Series of 

Imaging Studies (OASIS3) is a longitudinal cohort 

of data which collected, over the course of thirty 

years, thousands of medical records across several 

different research projects [7]. 

The OASIS3 focuses on the effects of both normal 

aging and early-stage AD including a compilation 

of data from 1076 participants. Out of those, 605 

were cognitively normal adults, while the 

remaining 493 were affected by various stages of 

AD cognitive decline.  

As regards the imaging sub-part, the dataset 

includes over two thousand MRI session with a 

combination of various contrast: T1-weighted (T1-

w), T2-weighted, FLAIR, Susceptibility Weighted 

Imaging (SWI), diffusion weighted imaging and 

many more. As for the non-imaging sub-part, there 

are over six thousand records present in OASIS3 

containing information about the demographic, 

habits, medical history, and cognitive status of 

participants. 

All the available OASIS3 data is hosted by the 

XNAT central repository (central.xnat.org). 

3. Methods 

The full details on the experiments conducted 

during this thesis are presented below. Two 

sections are outlined according to the aspects on 

which we focused: evaluation of BIANCA 

performance or the classification algorithm. 

3.1. Evaluation of BIANCA 
performance  

Data selection 

After accessing the OASIS3 database, we identified 

the imaging sessions having a combination of the 

following MRI modalities: FLAIR, T1-w and SWI. 

We downloaded 206 sessions relative to 172 

patients. Then, we decided to keep a single session 

for patients who had multiple ones and to use only 

images acquired with the 3T Siemens TrioTim 

35248, which was the scanner utilized in the 

majority of cases. We therefore remained with a 

total of 159 sessions (from 159 patients). 

Eventually, we further narrowed the dataset by 

visually inspecting the FLAIR images of each 

participant and considering the following 

inclusion criteria: high lesional loads for WMHs, 

no strong artifacts of any kind, and a “regular” 

brain anatomy. Accordingly, we selected a group 

of 40 patients on which we carried out the final 

analysis. Information about their demographics is 

reported as follows:  

- Age = 69.83 ± 6.67; 

- Female:Male ratio = 23:17. 

 

Manual WMH mask creation 

To derive the proper ground truth necessary to train 

BIANCA, we manually segmented WMHs from 

the FLAIR scans of all subjects involved in our 

analysis. At this purpose, we used the Jim8 

software, a display package developed by Xinapse 

that allows for an easy viewing and easy analysis 

of MRI, CT and other types of medical images.  

We first created regions of interest underlying WMH 

contours, and then used the masker tool to derive 

binary images from them. Eventually, we repeated 

the segmentations 4 months after the first round. 

The different available masks were referred to as 

“preliminary” and “expert”, respectively. Indeed, 

the former were outlined in a time span of 4 weeks 

at the very beginning of the project, thereby being 

associated to little experience on both WMH 

morphology and Jim8 usage. On the other hand, 

the “expert” segmentations were performed in a 

time span of 5 days half of the way into the project.  

Thus, they reflected higher experience and 

improved rating abilities. 
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Image pre-processing 

In order for BIANCA to perform optimally a 

thorough data preparation is required. Firstly, 

since the tool works in single subject's space, all the 

input images need to be registered to a common 

MRI scan (FLAIR in our case). In addition, the 

spatial inhomogeneities of the magnetic field 

should be corrected and at least one MRI modality 

has to be brain-extracted. Finally, a registration 

matrix from base image to standard MNI space 

needs to be derived, to allow for the extraction of 

spatial features without the presence of any bias. 

Therefore, every MRI scan at our disposition 

underwent the following steps, carried out using 

tools from the FSL library [8]–[10]: i) brain 

extraction conducted using BET; ii) biasfield 

correction conducted using FAST; iii) registration 

between the current image space and the FLAIR 

space conducted using FLIRT (performed only on 

the T1-weighted and SWI images). A registration 

matrix from FLAIR to MNI space was also derived 

for each subject using FLIRT and combining its 

results with that of former pre-processing steps. 

Finally, an exclusion mask was applied to FLAIR 

scans to exclude anatomical structures that might 

be incorrectly classified as WMHs. 

 

Running BIANCA 

Once pre-processed, the images were ready to be 

fed to BIANCA. The algorithm could be trained 

and tested either separately or with a leave-one-out 

validation approach. In both cases, a masterfile 

containing all the required images and matrices 

had to be created. Specifically, the masterfile is a text 

file containing a row for every subject involved in 

the analysis and, for each row, a list of all the 

necessary files (i.e., their paths). These latter are 

written following a specific order, which needs to 

be maintained throughout the whole document. 

The masterfile was the starting point to run 

BIANCA from Terminal and perform the analysis 

steps outlined below. 

 

Incremental Training analysis 

At first, we evaluated the performance of BIANCA 

obtained with an incremental number of training 

subjects (i.e., 10, 15, 20, 25, 30). The aim was to 

assess the existence of numerosity ranges that 

applicable in the BIANCA training to 

segmentation. The analysis was conducted for 

every combination of MRI modality described in 

the following section, using separate procedures 

for training and testing. Performance was 

evaluated by comparison with both the 

“preliminary” and the “expert” manual 

segmentations. 

 

Multimodality analysis 

Secondly, we evaluated how the different 

combination of MRI modalities impacted on the 

final performance. To do that we fixed the number 

of training subjects to 40 (using a leave-one-out 

validation approach), including the entire dataset 

at our disposition. Then, using the “expert” 

manual masks, we assessed the following MRI 

combinations: 

 FLAIR only 

 FLAIR + T1-weighted 

 FLAIR + SWI 

 FLAIR + T1-weighted + SWI 

 SWI only 

Harmonization pipeline 

Then, we evaluated the performance reached by 

BIANCA when trained on a well-known 

population and tested on a different one (mixed 

training approach). In particular, we used the 

training set from [6] designed with the purpose of 

harmonizing data from heterogeneous cohorts. 

The result obtained on their testing set were overall 

satisfying. However, the training outcome had 

never been validated on different datasets with 

respect to the one involved in its development – 

Whitehall and UK Biobank. So, confirming the 

previous results on OASIS3 was done in the 

present study to show the widespread 

applicability of the previous training when 

presented completely new data coming from 

different protocols. 

Finally, results from the mixed training approach 

were compared with those obtained from the 

incremental training set analysis (representing a 

single-site training approach) to evaluate the 

difference between different training strategies 

(mixed vs single-site). The analysis was conducted 

using the “expert” manual masks. 

 

 

 

Performance evaluation 

Performance was evaluated by means of the Dice 

Similarity Index (DICE), calculated as 2*(voxels in 

the intersection of manual and BIANCA 
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masks)/(manual mask lesion voxels + BIANCA 

lesion voxels). The statistical significance for the 

evaluated comparisons was assessed by means of 

ANOVA tests. 

3.2. The Classification algorithm 

Data selection and pre-processing  

In order to build the classification algorithm, we 

extended the analysis to a larger fraction of the 

OASIS3 dataset. In particular, we selected 471 

imaging sessions with available FLAIR and T1 

scans, among which there were the 40 manually 

labeled used for the former evaluations. The MRI 

data had to be processed and fed to BIANCA after 

training the tool on data from the Whitehall and 

UK Biobank populations. This, in order to derive 

the volumetric amounts of WMHs used as imaging 

variable within the model. Secondly, we had to 

download all the clinical records available from the 

OASIS3 (which were higher in number with 

respect to their imaging counterpart) and to 

eventually select only the ones that matched our 

471 images according to a time gap minimization 

criterion.  

Eventually, the dataset had to be filtered and 

properly organized to be suitable for the step of 

model creation. First, the target variable (namely 

the CDR) was binarized, creating two groups: CDR 

= 0 and CDR = 1. After that, all NaNs values were 

eliminated from the remaining variables, 

categorical features were turned into binary ones 

and continuous features were normalized. 

 

Model Creation 

The dataset was split in training, validation and 

testing sub-sets which allowed to build and evaluate 

the following machine learning models: support 

vector machines (SMVs), random forest classifier 

(RFCs) and artificial neural networks (ANNs). The 

RFC was trained both with and without a step of 

principal component analysis (PCA) carried out on 

the continuous variables of the dataset. The model 

hyperparameters were tuned using a Grid Search 

approach with 5-fold Cross Validation for the SVM 

and RFC models. This step was instead carried out 

manually for the ANN. Each model was trained 

and tested using three different datasets, each with 

a specific ratio between the CDR = 0 and CDR = 1 

records: 1:1, 2:1, 3:1. The last analysis aims at 

training performance evaluation in the presence of 

a decreased prevalence of positive AD cases. 

Results were evaluated separately for each case. 

 

Performance evaluation 

Performance was assessed throughout confusion 

matrices and of the following indexes: accuracy, 

precision, recall, F1-score. The importance exerted 

by the different input variable on the final 

classification was instead evaluated by means of 

the permutation importance score. 

4. Results and discussion 

Evaluation of BIANCA performance 

As regards the incremental training analysis, two 

major information can be derived from results 

(displayed in Fig. 1). First, SWI alone does not carry 

any information as for the WMH segmentation, 

providing very poor outcomes. Second, there is an 

increase in performance when adding more 

subjects to the training which, however, reaches a 

plateau either around 20 or 25 subjects. This 

depends on to the segmentation round used to 

carry out the evaluation (“preliminary” or “expert” 

manual masks, respectively). This difference led us 

to assume that the “expert” segmentations were 

more accurate and therefore suitable to assess 

results, and further highlighted the need for 

accurate ground-truth (alias, gold-standard) in the 

training process.  

As for the multi-modality analysis (see Fig. 2), a 

significant difference in BIANCA performance was 

demonstrated for the following: 

- “FLAIR” against “FLAIR + SWI” (0.01 < p-value < 

0.05); 

- “FLAIR + T1w” against “FLAIR + SWI” (p-value 

<0.001); 

- “FLAIR + T1w” against “FLAIR + T1w + SWI” (p-

value < 0.001); 

 

In particular, the first combination was always 

better than the second. These results indicate 

“FLAIR” and “FLAIR + T1w” as the best 

combinations of MRI modalities to run BIANCA 

with. In addition, they acknowledge a worsening 

in performance caused by the addition of the SWI 

contrast, which seemed to act as a source of noise 

for the algorithm. 
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Figure 1. Boxplot of the DICE index (represented on the y axis) 

between BIANCA outputs obtained training with an increasing 

number of subjects (represented on the x axis) and the 

corresponding “expert” segmentations. 

 

 
Figure 2 Pairwise comparisons of the distributions present in 

Fig. 3.6. Full lines indicate significant differences (p-value < 

0.05) between distributions, calculated using a RANOVA test. 

 

As for the harmonization pipeline, after testing it 

on data from the OASIS3, results were compared 

with the existing literature (in which the testing 

phase was conducted on the Whitehall and UK 

Biobank populations). We summarize the main 

descriptive statistics of both cases in Table 1. 

Results appeared being fully comparable and 

proved the achievement of a certain degree of 

validation for the training set of [6]. 

 

 
Testing on 

OASIS3 

Testing on Whitehall 

and UK Biobank 

Mean 0.61 

0.52 (for WH Scanner1); 

0.47 (for WH Scanner2); 

0.63 (for UK Biobank); 

Median 0.63 

0.54 (for WH Scanner1); 

0.47 (for WH Scanner2); 

0.65 (for UK Biobank); 

Std 0.12 

0.10 (for WH Scanner1); 

0.05 (for WH Scanner2); 

0.10 (for UK Biobank); 
Table 1. Segmentation performance obtained testing with: i) 

data from the OASIS3; ii) data from the Whitehall and UK 

Biobank datasets. The training phase was conducted in both 

cases using the Whitehall + UK Biobank dataset from [6]. 

 

Additionally, in Fig. 3 we report the results 

obtained when comparing the mixed training 

strategy (i.e., training on Whitehall + UK Biobank 

and testing on OASIS3 – blue) with the single-site 

approach represented by the incremental training 

analysis (orange). A significant improvement was 

provided by the latter only when the number of 

involved subjects was higher than or equal to 20. 

 

 
Figure 3. Boxplot of the DICE index (represented on the y axis) 

between BIANCA outputs obtained with both a mixed training 

strategy and a single-site training strategy. 

 

Classification Model 

As regards the implemented models, SVM was the 

one providing the best tradeoff between 

classification performance and explainability. Its 

quantitative evaluation metrics reported the 

following values: 80% accuracy, 54% precision, 

85% recall, 66% F1-score. On the other hand, results 

from the permutation ranking (displayed in Fig. 4) 

indicated the WMH volume among the most 

relevant features as for the classification of CDR, 

thus confirming their importance as neuroimaging 

hallmarks for AD dementia. A great role was also 



Executive summary Name Surname 

 

6 

played by the subjects’ age and by the number of 

years passed since they were first included into the 

study. 

 

 
Figure 4. Permutation importance (reported on the x 

axis) of the different input variables (reported on the y 

axis) involved in the SVM model. 

 

As for the RFC model, results obtained using PCA 

were slightly better with respect to the SVM (82% 

accuracy and 80% for precision, recall and F1-

score). However, this model suffered from 

significant explainability limitations due to the 

presence of linear combinations of imaging and 

non-imaging features among the most important 

variables. On the other hand, the RFC model 

without PCA gave the worst performance (76% 

accuracy, 80% precision, 60% recall, 68% F1-score) 

and a great deal of variability in the permutation 

importance results. 

Finally, the ANN model reached the best 

classification performance but, due to its lack of 

explainability, we only used it as gold standard for 

the other models. Its results were: 84% accuracy, 

76% precision, 81% recall, 78% F1-score. 

5. Conclusions 

contrast and recognized its presence as potential 

source of noise for the segmentation. Finally, we 

found that the well-known superiority of the 

single-site training with respect to the mixed, is 

held only if a minimum number of subjects are 

used for training. This was again represented by 

20. Furthermore, the results obtained when 

applying an external training set – developed with 

harmonization purposes – to our population gave 

a performance comparable with that of the 

corresponding literature. This reinforced the 

evidence of the widespread applicability of the 

previous training of BIANCA, based on 

harmonization techniques. Finally, the ML models 

we built, successfully confirmed the importance of 

WMHs in the assessment of AD Clinical Dementia.  

With these findings we have strengthened our 

former knowledge on the automatic segmentation 

strategy represented by BIANCA. In addition, we 

have validated a harmonization pipeline to derive 

integrated measures of WMH volumes. 

Eventually, we have brought further evidence 

about the role of WMHs as early-stage hallmark of 

AD dementia. 
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