
Development and comparison of
MQTT distributed algorithms for

HiveMQ

Filippo Antonielli
928440

Advisor: Prof. Alessandro E. C. Redondi

School of Industrial and Information Engineering
Politecnico Di Milano

This dissertation is submitted for the degree of
Laurea Magistrale in Computer Science and Engineering

Academic Year 2019-2020

1

.

2

To my family and friends.

3

.

4

Acknowledgements

Ringrazio di cuore tutti coloro che mi hanno accompagnato in questo percorso
universitario. Ringrazio la mia famiglia, che non mi ha mai fatto mancare nulla e
mi ha sempre sostenuto. Un ringraziamento va alle nuove amicizie nate e cresciute
in questi anni universitari e un ringraziamento per quelle più vecchie risalenti agli
anni del liceo o delle medie.

Per la realizzazione di questa tesi ringrazio in primo luogo il Professor Alessan-
dro Redondi per essere stato il relatore di questo mio ultimo lavoro universitario.
Desidero inoltre ringraziare Edoardo Longo per essere sempre stato disponibile a
rispondere a ogni mia domanda in tempi sempre celeri e per avermi aiutato a risol-
vere alcuni problemi sorti verso la fine del mio lavoro.

Un ultimo ringraziamento sentito va in particolare ai miei genitori, Nicoletta e
Mauro, a mio fratello Andrea, e a mia nonna Giorgia, che sono le persone che più
mi sono state vicine nella mia vita.

5

.

6

Abstract

MQTT is one of the most popular protocols for IoT. Its operation consists of a
central broker to which many clients are connected; the clients make requests and
publish data through a publish/subscribe architecture. This system is clearly in
antithesis with the Multi-Access Edge Computing (MEC), one of the main pillars
of the fifth generation of cellular data (5G). A distributed architecture of brokers,
where multiple brokers are connected and work together, would bring closer the
MQTT protocol to MEC.
This work’s goal is to use the MQTT protocol with the HiveMQ platform to create a
network of HiveMQ’s MQTT distributed brokers, loop-free, robust against failures,
organized through a spanning tree. To achieve such a goal, we developed different
HiveMQ’s plug-ins that integrate the already present Bridge extension. While the
Bridge extension is necessary to connect the brokers, all the developed extensions
contain the logic to avoid loops and to rebuild the tree in case of failures. In addi-
tion, we present advanced distribution features, such as an ad-hoc forwarding table
that keeps a record of the brokers interested in a Topic to forward the MQTT pub-
lishes only when necessary. The developed extensions have been tested in different
scenarios and topologies, monitoring the network overhead and the physical resource
consumption of every broker.
It turns out that the extension without any forwarding improvements in some sce-
narios can consume even 200% more bandwidth than the extension with the tables.

7

.

8

Sommario

MQTT è uno dei principali protocolli per IoT. Il suo funzionamento consiste
in un broker centrale a cui sono connessi diversi clienti; i clienti effettuano richi-
este e pubblicano dati tramite una architettura publish/subscribe. Questo sistema
è chiaramente in antitesi con il Multi-Access Edge Computing (MEC), uno dei pi-
lastri fondamentali della quinta generazione di rete mobili (5G). Una architettura
di broker distribuiti, dove molteplici broker sono connessi tra di loro e lavorano in-
sieme, farebbe avvicinare il protocollo MQTT al MEC.
Questo lavoro si propone di utilizzare il protocollo MQTT, insieme alla piattaforma
HiveMQ, per creare un network di broker distribuiti, senza loop, resistente alle
disconnessioni, organizzati attraverso uno spanning tree. Per raggiungere tale obbi-
ettivo, abbiamo sviluppato delle estensioni per HiveMQ da usare insieme alla Bridge
extension. Mentre l’estensione Bridge è necessaria per connettere i broker, tutte le
estensioni sviluppate consentono di evitare i loop e di ricostruire l’albero in caso
di guasti. Inoltre, proponiamo delle funzione avanzate di distribuzione, come una
tabella di forwarding che tiene traccia dei broker interessati a un Topic e inoltra
le pubblicazioni MQTT solo quando necessario. Le estensioni sviluppate sono state
testate in diversi scenari e topologie, monitorando il sovraccarico di rete e il consumo
delle risorse fisiche di ciascun broker.
Si è scoperto che l’estensione senza nessun miglioramento di forwarding in certi
scenari consuma fino al 200% più banda dell’estensione con le tabelle.

9

.

10

Contents

1 Introduction 13

2 State of the art 15

2.1 IoT Protocols . 15

2.2 Distributed MQTT . 15

3 Software development and implementation 17

3.1 Protocols . 17

3.1.1 MQTT . 17

3.1.2 STP . 17

3.2 HiveMQ . 18

3.3 Development . 20

3.3.1 HiveMQ-Benchmark . 21

3.3.2 Flooding . 22

3.3.3 Subscription Table . 24

3.3.4 Recap . 25

4 Experiments and results 27

4.1 Scenario Metrics . 27

4.1.1 Locality . 29

4.2 Test 1: 50 Publishes . 29

4.2.1 Tree . 30

4.2.2 Star . 32

11

4.2.3 Line . 36

4.2.4 50 Publishes: considerations 38

4.3 Test 2: 500 Publishes . 38

4.3.1 Tree . 38

4.3.2 Star . 42

4.3.3 Line . 44

4.3.4 500 Publishes: considerations 46

4.4 Test 3: 1500 Publishes . 47

4.4.1 Tree . 47

4.4.2 Star . 50

4.4.3 Line . 52

4.4.4 1500 Publishes: considerations 55

4.5 Summary . 55

4.6 Cluster comparison . 57

4.7 Subscription Table in-depth . 57

4.8 End to end Delay . 62

4.8.1 50 Publishes . 63

4.8.2 500 Publishes . 65

4.8.3 Cluster . 65

5 Conclusions 68

5.1 Future Works . 69

12

1 Introduction

Driven by the visions of Internet of Things and 5G communications, recent years
have seen a paradigm shift from centralized to distributed computing. One of the
main pillars of 5G is Multi-Access Edge Computing (MEC). MEC technology will
bring computational power, storage resources, and service infrastructures to the
edge, reducing the resources needed in the core network and decreasing latency.

In a nutshell, the main target of wireless systems, from 1G to 4G, was the pursuit
of increasingly higher wireless speeds to support the transition from voice-centric to
multimedia-centric traffic. As wireless speeds approach the wireline counterparts,
the mission of 5G is different and much more complex: to support the explosive
evolution of ICT (Information and Communication Technologies) and Internet. In
terms of applications, a wide-range of new applications and services for 5G are
emerging, such as real-time online gaming, virtual reality and ultra-high-definition
(UHD) video streaming, which require an unprecedent high access speed and low
latency. It is also predicted by Cisco that about 50 billions IoT devices will be added
to the Internet by 2020, most of which have limited resources for computing, com-
munication and storage, and have to rely on Clouds or edge devices to enhancing
their capabilities. It is now widely agreed that relying only on Cloud Computing
is inadequate to realize the ambitious millisecond-scale latency for computing and
communication in 5G. This makes it essential to supplement Cloud Computing with
Multi-Access Edge Computing that pushes traffic, computing and network functions
towards the network edges.
In recent years, the Internet of Things (IoT) has drawn significant research atten-
tion. IoT is considered as a part of the Internet of the future and will comprise
billions of intelligent communicating ‘things’. However MQTT (Message Queuing
Telemetry Transport) , that is the de-facto standard protocol for IoT solutions, is a
centralised protocol where there is a broker that is the single endpoint to which all
the clients are connected to. This protocol therefore is in contrast with the MEC
that is one of the main innovation of 5G.

The goal of this work is to connect multiple brokers using HiveMQ that is a
MQTT based messaging platform designed for the fast, efficient and reliable bi-
directional movement of data between device and the cloud. The brokers will create
a network among themselves that is completely transparent to the clients. A client
can subscribe to any topic on any broker and will receive the publishes related to
such topic even if they come from another broker in the network. The brokers in
fact communicate with each other and exchange information.
In this way there will not be a single broker with all the clients connected to him, sim-

13

ilar to the classical cloud-based architectures, but there will be many brokers closer
to the clients, more like Multi-Access Edge Computing. Such a distributed net-
work of brokers located near the clients can be very helpful to satisfy delay-sensitive
applications, like autonomous driving and health-monitoring, since the computing
tasks are no longer processed at the distant single-broker.
The starting point to create the distributed network of HiveMQ’s MQTT brokers
is the HiveMQ’s Enterprise Bridge extension that enables HiveMQ to bridge to one
or more MQTT brokers. Then we started the development of a plug-in that would
work together with the Bridge extension to create the loop-free distributed network.
In fact the Bridge extension enables only the bridges between the brokers, but it
does not contain any logic to avoid the creation of loops or an advanced routing
strategy.
We developed three different extensions: HiveMQ-Benchmark, Flooding and Sub-
scription Table. Every of this extension is to be used together with the Bridge
extension and every one succeeds in the creation of the distributed network, but
they are all different to one another and presents different distribution features, as
explained the the following sections.

14

2 State of the art

2.1 IoT Protocols

Several authors have done a comparative analysis between protocols for the IoT,
discussing the criteria for selecting protocols such as MQTT [1], CoAP [2], AMQP
[3], and HTTP[4] [5]. The main focus of such works is generally to study the per-
formance of the protocols in term of end-to-end delay, bandwidth consumption and
number of supported devices [6]. [7] compares the fraffic generated and the average
delay for MQTT and CoAP changing the network packet loss rate through a net-
work emulator (WANEM). In [8], the authors analyze the performance of mosquitto
and RabbitMQ regarding latency in the uplink data packets and present advantages
and drawbacks of the candidates in a Smart City scenario. They use the brokers
in cloud and as clients a Raspberry Pi and a common laptop.[9] use a peer-to-peer
communication model to select which MOM (Message-Oriented-Middleware) use for
industrial application. They find out that AMQP, KAFKA and ZeroMQ can achieve
a throughput of more than 1000mps while MQTT cannot. Kafka has low latency
but an higher overhead. [10] puts Mosquitto, BevyWiseMQTT, and HiveMQ in a
small-scale, single broker cloud scenario comparing their performance by subscrip-
tion throughput using mqtt-stresser and mqtt-benc . They find no big difference in
performance when MQTT broker are applied to a domestic deployment use case.

2.2 Distributed MQTT

The research for distributed MQTT solutions has been very active in the last years.
[11] proposes a distributed broker system for large-scale location-based IoT services.
[12] presents an edge-enabled publish-subscribe middleware, named EMMA, that
continuously monitors network QoS and orchestrates a network of MQTT protocol
brokers. It transparently migrates MQTT clients to brokers in close proximity to
optimize QoS. [13] compares different distributed MQTT brokers for performance,
scalability, resilience, security, extensibility, and usability in an enterprise IoT sce-
nario deployed to an edge gateway cluster; among them there is also HiveMQ, that
is the only one that shows no message loss. The paper [14] proposes Interwork-
ing Layer of Distributed MQTT brokers (ILDM), which enables arbitrary kinds of
MQTT brokers to cooperate with each other. In [15] is proposed a distributed
MQTT architecture based on the RPL protocol.
These papers study in deep different and interesting aspects of connecting dis-
tributed MQTT brokers, but none of these focuses on creating a loop-free network
without having a static topology.

15

Instead in [16] is presented MQTT-ST, a protocol able to create a distributed
architecture of brokers organized through a spanning tree. The main difference
between this work and the one written in the paper, is that the latter is build upon
Mosquitto, where as this work uses HiveMQ. There are therefore some differences,
starting from the language of development: C for Mosquitto and Java for HiveMQ.
In the signalling phase we had to use only Publish messages, where with Mosquitto
in possible to use PINGREQ messages and to append some information to it, like
the IP address of the Root broker. Both the works succeed in the creation of a
loop free network. We also implemented, in the third extension, a more advanced
routing strategy, where every broker knows if a specific message is interested by
another broker and only in this case it publishes the message. Such advanced routing
strategy is based on PADRES [17]. The PADRES system is a distributed content-
based publish/subscribe system which consists of a set of brokers connected by a
peer-to-peer overlay network. The overlay network connecting the brokers is a set
of connections that form the basis for message routing. The overlay routing data is
stored in Overlay Routing Tables (ORT) on each broker. Specifically, each broker
knows its neighbors from the ORT. Advertisements are effectively flooded to all
brokers along the overlay network using the ORT. A subscriber may subscribe at
any time. The subscriptions are routed according to the Subscription Routing Table
(SRT), which is built based on the advertisements in that broker.

16

3 Software development and implementation

3.1 Protocols

3.1.1 MQTT

There are two big families of application layer protocols for the IoT: Client/Server
and Publish/Subscribe. COAP (COnstrained Application Protocol) and MQTT
(Message Queuing Telemetry Transport) are the two most used protocols, the first
belongs to the family of Client/Server and the latter to the one of Publish/Subscribe.
The main difference between the two is that COAP uses a system of Request/Response,
a ”PULL” type, so the data is obtained by issuing and explicit request. With MQTT
[Figure 1] instead there is a PUSH paradigm: every client publishes and subscribes
to a broker, and the data are sent by the broker to the subscribers as soon as are
available. Every subscription sent by a client to a broker contains at least a Topic;
every following publishes that arrive at the broker, will be sent to all the subscribers
interested in that topic. MQTT runs over TCP/IP; each MQTT client opens one
TCP connection to the MQTT broker. There are different kind of messages: CON-
NECT and CONNACK, PUBLISH and PUBACK, SUBSCRIBE and others. Every
Publish message can have a value of Quality of Service (QoS): 0, 1 or 2.
MQTT is becoming more and more popular in IoT, such that the four major cloud
computing services all adopt MQTT as protocol for connecting IoT devices to their
endpoints: Amazon AWS, Google Cloud Platform, IBM cloud and Microsoft Azure.
In addition to this in a network of distributed brokers, as the one in this work,
MQTT’s publish/subscribe system is to be preferred over COAP’s request and re-
sponse system: in such a scenario there could be hundreds of brokers with thousands
of clients each. With so many clients every seconds there could be lots of new data
and thanks to MQTT’s publish and subscribe feature the clients can always be up
to date.

3.1.2 STP

The Spanning Tree Protocol (STP) [Figure 2] is a network protocol that builds a
loop-free logical topology. The basic function of STP is to prevent bridge loops and
the broadcast radiation that results from them.

The spanning tree is obtained by electing a root switch and blocking some of the
output ports of the other switches: blocked ports do not forward data frames, thus
avoiding broadcast storms. To agree on the root node and on which ports should be

17

Figure 1: MQTT architecture

blocked, switches exchange control packets known as BPDU (Bridge Protocol Data
Unit).
At startup, each node sets itself as root and start broadcasting BPDU. Each BPDU
contains (among other parameters) the identifier of the node and the transmitting
port, the identifier of the current root node selected by the transmitting node and
the root path cost. The node identifier, composed of both the node MAC address
and a configurable priority value is used for root selection: the node with the lowest
identifier is elected as root.
Upon the reception of a BPDU, a node reconfigures its state by modifying the
identifier of the (believed) root node and updating the root port (the port that
leads to the least-cost path to the root). The rest of the active ports are labeled
as either designated (used for forwarding traffic) or blocked. To avoid loops, nodes
agree on which port should be designated or blocked, based again on the least-cost
path to the root or the lowest identifier, in case of ties.
BPDUs are periodically transmitted by the root, and forwarded by all other nodes,
to keep the topology updated.

3.2 HiveMQ

The aim of this work is to implement the Spanning Tree Protocol for Distributed
MQTT Brokers using HiveMQ’s MQTT brokers.
HiveMQ is an MQTT broker and a client based messaging platform designed for
the fast, efficient and reliable movement of data to and from connected IoT devices.
It uses the MQTT protocol for instant, bi-directional push of data between devices

18

Figure 2: Spanning Tree Protocol

and the enterprise systems.
HiveMQ offers the possibility to create a cluster of brokers, which is very helpful
to create a service with high availability and can be utilized to achieve horizontal
scaling. However HiveMQ’s cluster does not support tree topologies with more than
one leaf, but only mesh network: in a cluster the brokers are all connected with one
another. Therefore in the next section where we will show and present the experi-
ments that we have done, we will only compare the cluster with the cases in which
all the brokers were fully connected.
Respect to the clustering, bridging ensures the possibility to create any network
topology, so we started to develop an extensions for HiveMQ that would work in
synergy with the HiveMQ Enterprise Bridge Extension. The HiveMQ Enterprise
Bridge Extension enables HiveMQ to bridge to one or more MQTT brokers for scal-
able, reliable, and bi-directional exchange of MQTT messages.

In order to test the code, we used Docker to launch different containers where
every container is a HiveMQ’s MQTT Broker. For instance the following command
starts a container named ”hive1” on port 1883, it uses the image ”hivemq4:4.3.1” and
copies everything there is in the folder case3 subTable/tree/broker A in the folder
”extensions” of hivemq-4.3.1 and it also copies the license. The license is necessary
to use the Enterprise version of HiveMQ which is needed to run the Enterprise
Bridge Extension. To run multiple container we simply run a similar command
changing the port, so for example broker B would have port 1884 instead of 1883.

19

docker run --rm -p 8080:8080 -p 1883:1883 --name hive1 -v

/Users/filippoantonielli/Desktop/Tesi/case3_subTable/tree

/broker_A/ :/opt/hivemq-4.3.1/extensions/ -v

/Users/filippoantonielli/Desktop/Tesi/case3_subTable/tree

/license :/opt/hivemq-4.3.1/license/ hivemq/hivemq4:4.3.1

3.3 Development

We developed all our extensions using IntelliJ IDEA, which is a IDE for Java. We
used Docker to integrate our extensions with HiveMQ and to launch multiple con-
tainers at the same time. Every container is build on top of a HiveMQ image. We
used Docker Stats to collect the data regarding the output network and CPU usage
of every container. Finally we also used Docker to launch another container with
tcpdump to save in an external file all the packets captured during our tests.
Every broker in our tests is a HiveMQ’s enterprise MQTT broker. Thanks to the
usage of a licence given us by HiveMQ, we are able to use the enterprise version,
and consequently to use the enterprise Bridge extensions to connect the brokers.
We are also able, thanks to the enterprise version, to connect multiple clients and
to publish many more messages than with the default and free version.

We developed three extensions: HiveMQ-Benchmark, Flooding and Subscription
Table. Every extension is to be used together with the Enterprise Bridge Extension
of HiveMQ. In the configuration file of the Bridge Extension every broker needs to
have an active bridge with another broker in order to be part of the network. If more
bridges are active between brokers, every extension will create a loop-free tree for
the exchange of the messages. The creation of the tree is RTT based: every broker
will keep using the bridges in order to have the lowest RTT to reach the Root. For
example, if there are three brokers A,B and C, all connected with each other and C
is the Root, in most situations broker A and B will keep active the bridge through
broker C and not use the bridge between A and B since the RTT to reach the Root
is lower, in most cases, then to go through another broker.
The Root is the broker that has the highest Capacity, as explained in the following
sections.
Once the tree is created, the bridges that are not to be used are not disabled: the
brokers know which bridges are to be used because, after the Setup phase, every
one will have a table with all the brokers it is connected to, and only the brokers
that are its next hop or one of its prev hop use an active bridge and are meant to
receive its messages.
The topology of the tree stays the same, as long the Root is the same. Every time a

20

broker PINGs another broker, a PUB message is exchanged between the two with
the information about the Root and its capacity. If the Root broker disconnects, the
brokers that are directly connected to the Root will advise all the other brokers and
a new Root will be selected and the topology of the tree will change accordingly.
During this phase all the next hop and prev hop will change, depending on the tree.

3.3.1 HiveMQ-Benchmark

The first extension is HiveMQ-Benchmark. It is the simplest way to connect multiple
brokers to form a tree without the creation of loops of messages. Once a broker
starts, it uses the following instructions to retrieve its number of CPU cores, how
many RAM memory it has available and its IP address.

long maxMemory = Runtime.getRuntime().maxMemory();

int cpu_cores = Runtime.getRuntime().availableProcessors();

String own_address = InetAddress.getHostAddress();

With the values of maxMemory and cpu cores, every broker calculates its Capacity
value C:

C = α ·maxMemory + β · cpu cores+ γ

Every broker has a Listener with the method onMqttConnectionStart : when a
broker tries to connect to another broker as described in the bridge configuration file,
this method is triggered on both sides. The brokers add in a table the IP address of
the other broker. The PingReqInterceptor is triggered every time a broker receives a
ping. Since with HiveMQ can only be sent Publish messages and not other kinds of
messages like PINGREQ, we made that every time a PING is received, the broker
sends a Publish message to the other to ask for its C value and RTT if they are not
already in the table.
Every broker has also a PublishInterceptor. It is triggered when a PUB is received.
If the PUB comes from another broker that is present in the table, the broker checks
the Topic. Thanks to switches and if cases, depending on the Topic string, some ac-
tions are triggered. For instance if the Topic starts with ”$SETUP”, then it checks
the remaining of the Topic: if it is ”c value” it publishes a message with its Capac-
ity value. If it is ”rtt value” then a couple of messages are exchanged between the
brokers to calculate the RTT between the two.
When the Table in every broker is complete, every PING corresponds to a Publish
with topic ”$TOPIC/root values”. With these Publishes the brokers decide which

21

is going to be the Root of the tree and they choose it based on the one broker
that has the best Capacity. So every broker sends as payload of this PUB the IP
address, the Capacity and RTT of the broker with the highest Capacity in their
table. Since it could happen that not every broker is connected to every other ones,
if a broker receives the PUB and the Capacity value is bigger than the one that is
the maximum in its Table, the broker updates the root and sends another PUB to
every other broker it is connected to to inform them about this change.
In this phase the brokers also come to knowledge about the fastest way to reach the
Root: if a broker is directly connected to the Root it will set as its next hop the
IP address of the root; otherwise if it is not connected to the root it will set as its
next hop the IP address of the broker that has advised him about the new Root. In
this second case the broker that was set as next hop in the first broker, will set this
broker as his prev hop. The root will set all the IP address in its table as prev hop.

The HiveMQ-Benchmark extension works in this way: when a broker receives
a PUB from a client, it forwards the PUB in the direction of the root, so to his
next hop. Another limitation that we’ve found with HiveMQ is that we can Publish
a message to only a client only if the client has a Subscription with the specific topic.
In this situation therefore, the broker has to forward the message to all the brokers
it is connected to. In order to avoid loops, in the PublishInterceptor there is a check
when a message is received: if the message is sent by a broker and this broker is
not set as prev hop, the message is not meant for the broker that has received the
message and therefore the message is blocked from actually reach the broker. On
the other hand, if the message is received from a broker where its prev hop is equal
to the IP address that has published the message, there are two cases: or the broker
is the Root, otherwise is another broker that has to forward the message to the root.
If we are in this second case, the broker adds to the Topic ”$FORWARD/” and then
Publishes the message. In this way the Root will receive the message, it will check
if it has any client interested in the Topic, and then it will publish the message back
to all the other brokers adding in the Topic ”$ROOT/”. When a broker receives the
Pub that starts with ”$ROOT/”, it knows is meant for him and checks if there is
any client subscribed to the Topic and then, if it has any broker set as his prev hop,
it will publish the message adding forward to the topic.

3.3.2 Flooding

The second extensions we developed is Flooding. The phase for the setup of the
tree among the brokers is the same as the one in the first extension. The biggest
problem of the first extension was that the brokers had to send a message to all the

22

bridges that are available and not to a single broker.
The possibility to send a message to only one broker is the main change with respect
to the first extension. When a broker receives a PUB from a client it forwards
the PUB in the direction of the Root using his next hop. The difference in this
case is that now the broker sends the message only to his next hop, while in the
HiveMQ-Benchmark extension the PUB would be received by all the other brokers
connected to the one that is sending. Once the message arrives to the Root, the
Root will send the Pub to all the brokers in order to reach every broker, similar to a
real Flooding. Once a broker receives the message from the Root, checks if there is a
prev hop and in case sends the Publish to that broker. This is possible because in the
bridge configuration file bridge-configuration.xml instead of having only one bridge
that forward everything with the filter ”#”, now we have one bridge with different
filters: the first is ”$SETUP/#” and it serves for the formation of the tree in the
connection phase of the brokers; the second filter is ”$ROOT/#”, useful for receiving
the messages from the root; the third instead is ”$BROKER/ip address/#”, where
”ip address” is the ip of the broker that is connected with the bridge. For example,
broker A has ip ”172.17.0.2” and broker B has ip ”172.17.0.3”. The two brokers are
connected with a bridge; the ”bridge-configuration.xml” file therefore will be:

<bridge>

<name> AtoB </name>

<remote-broker>

<connection>

<static>

<host>172.17.0.3</host>

<port>1883</port>

</static>

</connection>

<mqtt>

<keep-alive>11</keep-alive>

</mqtt>

</remote-broker>

<topics>

<topic>

<filter>$BROKER/172.17.0.3/#</filter>

<mode>PUB</mode>

</topic>

<topic>

<filter>$SETUP/#</filter>

<mode>PUB</mode>

</topic>

23

<topic>

<filter>$ROOT/#</filter>

<mode>PUB</mode>

</topic>

</topics>

</bridge>

Thanks to the filter ”$BROKER/ip address/#” two brokers can now communi-
cate without needing to send messages to all the other brokers. If broker A sends a
Publish with Topic ”$BROKER/172.17.0.3/test”, the message will only be received
by broker B, because even if broker A is connected to broker C, broker C will have
another ip address and therefore the filter in the ”bridge-configuration.xml” file will
be different.

3.3.3 Subscription Table

The third and final extension we developed we named it Subscription Table. The
configuration file of the bridge is the same as the one in the second extension, so
that a broker can send a message to only one other broker. The main difference
in this extension, in comparison with the previous two, is that every broker has
a table that keeps record of the subscriptions that are interested to his neighbors
brokers. This function has been developed keeping in mind the PADRES system,
[17], regarding the Network and the Broker Architecture.
The setup phase is the same as the other extensions. The key difference is that,
when a broker receives a Subscription from a client:

• it inserts in its subscription table (SubTable) the Subscription with its IP
address

• then sends a Publish to all the other brokers it is connected to to inform that
it has a client interested in that Topic.

• The brokers that receive the message will insert in their table that the broker
with its IP address is interested in the topic and will send another Publish to
inform all the other brokers in the tree.

With this configuration [Figure 3], if broker D receives a SUB on the topic ”test”,
it will send a message to broker E and broker C. Broker E and broker C will insert

24

Figure 3: Tree

in their table that broker D is interested in the topic ”test”. Then broker E has no
other broker to inform, while broker C will inform broker A and broker B. Broker A
and broker B will insert in their table that broker C is interested in the Topic, since
they have no way to reach broker D directly.
At the end, when a broker receives a PUB, it checks if has any client interested in
the message; then it checks its SubTable: if a broker is interested in that topic, it
will forward the message to that broker. Once the broker has received the PUB,
after checking for clients interested in the topic, checks in its SubTable for other
brokers interested in the Topic and so on.

3.3.4 Recap

We developed three different extensions and every one succeeds in the goal of cre-
ating a loop-free tree of distributed HiveMQ’s MQTT brokers when used with the
HiveMQ’s Enterprise Bridge Extension. However the three extensions don’t have
the same functionalities, but every one is an improvement with respect to the pre-
vious one.

• HiveMQ-Benchmark is the simplest one: it meets the goal of a loop-free tree

25

of distributed brokers and has the feature to rebuild the tree in case the Root
disconnects. The main drawback is the impossibility to Publish a message to
only one broker.

• Flooding presents the same functionalities of HiveMQ-Benchmark but it also
has the possibility to Publish a message to only one broker.

• Subscription Table is the most advanced extension. After the Setup phase,
that is the same between all the extension, and therefore the creation of the
Tree, this extension keeps track of the brokers that are interested in a specific
topic. Therefore the Publishes between the brokers are exchanged only if there
is the need, so only if there is at least a client that is interested in the topic
in some broker of the tree.

26

4 Experiments and results

During the tests we focused our attention on the network overhead and on the
resources utilization, in particular on the CPU. All our tests are done on my personal
machine, a MacBookPro early 2015, processor 2,7 GHz Intel Core i5 dual-core and
memory 8 GB 1867 MHz DDR3. Therefore, all the containers, and consequently
all the brokers, have the same resources. In order to have the tests as similar as
possible, the Root is always broker C and there are 5 brokers in every test. This is
only done for reducing the randomness: in a normal situation every broker could be
the Root, it only depends on the Capacity of the broker.

4.1 Scenario Metrics

We made different tests focusing mainly on how many Bytes are necessary to ex-
change the messages within the brokers keeping an eye on the usage of the CPU. For
checking the CPU we used Docker Stats: since every broker is a docker container,
Docker Stats shows us the percentage of CPU in use in every container; since every
container has at its disposal 4 CPU cores, the maximum value we can find in docker
stats is 400%. In order to save these data we copied the values of Docker Stats
in an external file every second. For checking how many Bytes were circulating in
the broker network we also used Docker Stats for taking the value regarding the
Network Input and Network Output at the end of any test. For every test we also
used tcpdump to save in a .pcap file every packet that has been exchanged during
the test; then we used these file to see how many bytes were MQTT packets, or how
many bytes it took an extension to create a table for instance.

The tests we made consist in sending Publishes to a broker, and having clients
interested in the topic of the PUB in other brokers. The topic in every Publish is
the same.
We tested the extensions with 50 Publishes, 500 Publishes and 1500 Publishes, so
we collected data about 81 different scenarios (every test consist in 27 different
situations). We also used the Cluster offered by HiveMQ to make a comparison
between our extensions and the default way to connect brokers. 9 are the tests
regarding the cluster, since we can only change the locality but not the conformation
of the tree since the brokers are always fully connected.
Taking for example our first test with 50 messages published, we have the following
scenarios:

• three extensions (HiveMQ-Benchmark, Flooding, Subscription Table)

27

(a) Tree (b) Star

(c) Line

Figure 4: Network topologies

• for every extension we test three different topology of the network (Tree, Star,
Line)

• for every topology we make three different tests about the locality of the
messages (100% locality, 0% locality, n% locality)

The first is locality 100% so 50 Published are on broker A and the only client inter-
ested in the messages is on broker A; 0% locality so the 50 publishes are on broker A
and the only client interest in the messages is on broker E ; the last is n% locality
where the total number of PUBs are divided in every broker, so 10 in every one,
and every broker has a client interested in the topic.

In every test we always used five brokers. We used three different shape to
connect the brokers: Tree, Star and Line. [4]

The dotted lines indicate an active bridge between the two brokers and the lines
indicate the tree that has been formed after the setup phase.

28

4.1.1 Locality

We used three different localities to test our extensions.

• 100% locality: all the publishes are on a Broker and all the subscribers are on
the same Broker

• 0% locality: all the publishes are on a Broker and all the subscribers are on a
different Broker

• n% locality: every Broker has the same number of publishes and every Brokers
has the same number of clients interested in the publishes

In this way more data regarding different, but all plausible, scenarios are collected
and confronted to find the best extension to be used in every situation.

4.2 Test 1: 50 Publishes

In [Figure 5] are shown the output data in all the three extensions in the case of 50
Publishes and the brokers linked to form a Tree. Every line represents the sum of
all the traffic in exit of every five brokers; ”SubTable-100%” is the sum of all the
five brokers when testing 50 Publishes with the third extension Subscription Table
with locality 100%, therefore all the Publisher were in Broker A and the only client
interested in the topic was in the same broker. In the total Byte of the traffic there
are of course the messages the brokers publish between themselves and the messages
the broker exchange every time there is a Ping Request to maintain the tree. In
fact, if the Root broker disconnects, the other brokers would rebuild another tree
choosing a new Root. This is possible only if the brokers are all connected between
themselves; if a broker is only connected to a single broker, and this one crashes, the
first broker cannot be reached by any other broker. Besides these messages there
are also the ACK for every publishes, since in every test we used QoS1 for the
publishes: QoS1 offers the best compromise between bandwidth usage and delivery
guarantee. These are the MQTT packets. In addition to these MQTT packets there
are other TCP packets which are indispensable to allow communication between the
brokers and the clients.

29

Figure 5: 50 Publishes, Tree topology

4.2.1 Tree

In the figure [5], the topology of the network is the Tree and even if the messages are
only 50, in the cases with locality 100% and locality 0%, it is possible to notice the
advantages of the Flooding extension and the Subscription Table extension. With
these 2 extensions is possible to exchange a message with only 2 brokers without
the need to send the messages to all the other brokers connected.

In [Figure 6] are shown the peak CPU values (in percentage with a maximum
of 400%) of every broker and the average. The values are taken from the moment
the first message is published. Even if the number of messages are not many, there
is a key point that can be noticed: in the extension Subscription Table (a) the
broker A, that is the one that receives the Publishes and is the only broker that
has a client interested, is the only broker with a moderate usage of CPU; with this
extension in fact broker A knows that there are no other brokers interested in the
messages therefore the other brokers don’t receive any of these messages. With the
other extensions instead broker C, that is the Root broker, has a pretty high usage
of CPU because is the one that receives the publishes from broker A and has to
forward them to the other brokers. Even broker D has a usage not negligible since
he has to rely the messages to broker E.

30

(a) Subscription Table (b) Flooding

(c) HiveMQ-Benchmark

Figure 6: CPU usage with Tree topology and 100% locality

(a) Subscription Table (b) Flooding

(c) HiveMQ-Benchmark

Figure 7: CPU usage with Tree topology and 0% locality

31

(a) Subscription Table (b) Flooding

(c) HiveMQ-Benchmark

Figure 8: CPU usage with Tree topology and n% locality

[Figure 7] and [Figure 8] refers to the usage of CPU in the tests with 0% and n%
locality. In the test with 0% locality the messages are published on broker A and
broker E has a client interested in the topic. In all the extensions broker A, broker C
and broker E have a moderate usage of CPU: for broker A and broker E is pretty
obvious and broker C is the Root. In average, the extension Subscription Table has
a lower consumption of CPU, followed by Flooding and then HiveMQ-Benchmark.
With n% locality all the brokers have a pretty high usage of CPU since every one
receives publishes and has clients interested in the messages. In this situation the
extension Subscription Table is the one with the highest usage in average, followed
by HiveMQ-Benchmark and the extension that has the lowest consumption of CPU
is Flooding.

4.2.2 Star

In [Figure 9] are displayed the data in output when the brokers are linked to form
a Star with broker C as the Root and the center of the star. The results are pretty
similar in the case of the Tree, even if here the extensions have less difference in
terms of the sum of the output of every single broker. Even in this situation, with

32

Figure 9: 50 Publishes, Star topology

few messages that are sent, in the test with n% locality, so where every broker has
some publishes and every one has clients interested in the topic, the Subscription
Table is outperformed by the Flooding extension, where in the other two cases of
locality the extension Subscription Table performs a little better that the others.

[Figure 10] presents the usage of CPU during the test with 50 PUB, with the
brokers linked as a star. The extension Subscription Table performs much better
than the other two; the peak in (a) is around 40% while in (b) and (c) is above 100%.
Even the average of the brokers is lower with the Subscription Table extension,
around the half of the other extensions.

In [Figure 11] are shown the usage of CPU of every broker in the three extensions.
Subscription Table average values are around the half with respect to the other
extensions and the peak values are also very low. In the Flooding extensions the
Root broker C has a very high peak value and even the average is high, similar
situation regarding the average values can be found in the HiveMQ-Benchmark
extension.

With n% locality [Figure 12] every extension has a very high peak with the Root
broker C. Flooding is the extension with the highest values, followed by HiveMQ-
Benchmark which performs a little better. Subscription Table has the lowest per-
centage of CPU usage in every broker, both regarding peak values and average.

33

(a) Subscription Table (b) Flooding

(c) HiveMQ-Benchmark

Figure 10: CPU usage with Star topology and 100% locality

(a) Subscription Table (b) Flooding

(c) HiveMQ-Benchmark

Figure 11: CPU usage with Star topology and 0% locality

34

(a) Subscription Table (b) Flooding

(c) HiveMQ-Benchmark

Figure 12: CPU usage with Star topology and n% locality

Figure 13: 50 Publishes, Line topology

35

(a) Subscription Table (b) Flooding

(c) HiveMQ-Benchmark

Figure 14: CPU usage with Line topology and 100% locality

4.2.3 Line

The last set of test with 50 Publishes is with the broker linked in Line. Even in this
situation the Subscription Table extension performs better in every situation. The
biggest advantage is obtained with locality 100%, since Subscription Table knows
when there is no need to forward the messages. Anyway even in this test the sum of
the output of every broker is very similar in the three extensions, probably caused
by the few messages that are published.

[Figure 14], [Figure 15] and [Figure 16] show the CPU usage of the brokers in the
three extensions. In all the extensions, in the case of 100% locality broker A has the
highest consumption of CPU, but in Subscription Table is remarkably lower than
in the other extensions; the other brokers have a minimal impact on the CPU with
Subscription Table, unlike the other extensions where the CPU’s usage of the other
brokers is not negligible. With 0% locality, broker E has the highest impact on the
CPU in Subscription Table and Flooding ; in HiveMQ-Benchmark broker E is not
the one with the highest values, probably because the other brokers have to forward
the messages to reach the end of the line. The average values anyway are pretty
similar in the three extensions. Finally, in the test with n% locality Subscription
Table has a slightly better usage of CPU in average compared with the other two

36

(a) Subscription Table (b) Flooding

(c) HiveMQ-Benchmark

Figure 15: CPU usage with Line topology and 0% locality

(a) Subscription Table (b) Flooding

(c) HiveMQ-Benchmark

Figure 16: CPU usage with Line topology and n% locality

37

extensions. Anyway all the extensions have similar results.

4.2.4 50 Publishes: considerations

In this first set of tests there were a few number of publishes, only 50. Regarding
the traffic analysis, the extension Subscription Table performs better than the other
extensions in almost every situations, being outperformed by the other extensions in
only a couple of situations; Flooding comes in second place, almost every time with a
slightly higher values than Subscription Table but better than HiveMQ-Benchmark.
This last extension is the one that consumes more Byte, as expected. In fact it does
not have any kind of optimization that the other two extensions have. On the CPU
side, even here usually Subscription Table is the one that performs best, followed
by Flooding and HiveMQ-Benchmark, even if in some circumstances Flooding takes
the upper end. In both the situation, traffic analysis and CPU usage, anyway the
differences are not that big: the average consumption of CPU is pretty similar among
all the extensions and taking a look at the Byte circulating in the network of the
brokers, the Subscription Table extension in most cases have a better value but the
difference with the other two extensions is not that remarkable.

4.3 Test 2: 500 Publishes

This second set of tests is very similar with the previous one, only that now there
are 500 Publishes instead of 50; this means that in locality 100% broker A receives
500 Publishes and sends 500 Publishes to a client, in locality 0% broker A receives
500 Publishes that need to reach broker E that has a client interested and in locality
n% every broker receives 100 publishes and every broker has a client interested in
these messages.

4.3.1 Tree

[Figure 17] shows the network traffic between the broker, that is the sum of the Bytes
in output of every single broker in every extension, when the broker are linked as a
Tree. Is evident that the extension Subscription Table is the one with the least usage
of data between the extensions, and the difference is pretty evident in the test with
locality 100%. The Flooding extension is always the second best and, besides the
case with locality 100% where is more similar to HiveMQ-Benchmark, usually has
a very good result, similar to the one of Subscription Table. HiveMQ-Benchmark
instead is always the one with the highest values.

38

Figure 17: 500 Publishes, Tree topology

(a) Subscription Table (b) Flooding

(c) HiveMQ-Benchmark

Figure 18: CPU usage with Tree topology and 100% locality

39

(a) Subscription Table (b) Flooding

(c) HiveMQ-Benchmark

Figure 19: CPU usage with Tree topology and 0% locality

(a) Subscription Table (b) Flooding

(c) HiveMQ-Benchmark

Figure 20: CPU usage with Tree topology and n% locality

40

Figure 21: 500 Publishes, Star topology

In [Figure 18] there are the percentage values regarding the CPU usage of every
broker taken with Docker Stats. Subscription Table has the highest peak value on
broker A than every extension, but the averages values are the lowest, and, besides
broker A that is in charge of all the publishes of the messages with this locality, the
other brokers have almost zero consumption. In (b) and (c) all the brokers have a
non negligible impact on the CPU, specially with broker A and broker C that is the
Root. With locality 100% is evident the better performance of Subscription Table,
but it is not always the case with the other localities. In [Figure 19] Subscription
Table has the highest peak value on broker A and overall has a slightly higher usage
of CPU. In this test with locality 0% is HiveMQ-Benchmark that holds the best
results, both regarding the peak values and the average values. With locality n%
[Figure 20], Flooding and HiveMQ-Benchmark are head to head while Subscription
Table is the one with sliglty higher peak values and average values. Flooding anyway
is overall the winner: the peak values are very similar to the ones of HiveMQ-
Benchmark but the averages are slightly lower. Until now, with 500 Publishes, we
have found that Subscription Table always performs better regarding the network
traffic, but the same is no longer valid for the CPU.

41

(a) Subscription Table (b) Flooding

(c) HiveMQ-Benchmark

Figure 22: CPU usage with Star topology and 100% locality

4.3.2 Star

[Figure 21] shows the traffic output when the brokers are fully connected with bro-
ker C as the center of the star. The values are very similar to the previous case:
Subscription Table always performs better, specially in the case of locality 100%.
Even here, with locality n%, that is where every broker is interested in the mes-
sages, is where the values are pretty similar, specially between Subscription Table
and Flooding.

Regarding the CPU usage, [Figure 22] shows the value of every single broker of
every extension when there is a Star conformation, with broker C as Root, and 100%
locality. As usual with 100% locality Subscription Table shows the best performance,
with only broker A that has a significant impact on the CPU while the other brokers
are very low, specially with the average values. Flooding and HiveMQ-Benchamark
have higher values, specially on the Root broker C, but Flooding performs a little
better with lower average and peak values. Analogous situation with 0% locality,
[Figure 23]. Subscription Table has the lowest peak and average values, followed by
the Flooding extension and finally HiveMQ-Benchmark. In every extension in clear
that Broker A, broker C and broker E are the ones with an average consumption
that is much higher than the other brokers, that are not interest in the messages.

42

(a) Subscription Table (b) Flooding

(c) HiveMQ-Benchmark

Figure 23: CPU usage with Star topology and 0% locality

(a) Subscription Table (b) Flooding

(c) HiveMQ-Benchmark

Figure 24: CPU usage with Star topology and n% locality

43

Figure 25: 500 Publishes, Line topology

With locality n% HiveMQ-Benchmark is the one that show the best values in [Fig-
ure 24]. Every extension has an elevate values with the Root broker C, since is
responsible to forward all the publishes to all the brokers. (c) anyway has the low-
est peak values and the lowest average values, followed by Subscription Table and
then Flooding.

4.3.3 Line

Finally, [Figure 25] shows the Net output when the broker are all linked in Line. Even
in this case Subscription Table is always the one with the best performance, and as
usual the situation where is more evident is in locality 100%. In this situation even
when all the brokers are interested in the publishes there is a pretty difference regard-
ing the total Byte in output between Subscription Table and HiveMQ-Benchmark.
Flooding is always the second best while HiveMQ-Benchmark is always the worse.

[Figure 26] shows how the extension Subscription Table only utilizes broker A,
in contrast with (b) and (c). Subscription Table has the lowest average values in
every broker beside broker A, where he has a very high peak value and a moderate
average. Flooding and HiveMQ-Benchmark have high average values with all the
brokers, not only broker A. With locality 0% [Figure 27], all the extensions have very

44

(a) Subscription Table (b) Flooding

(c) HiveMQ-Benchmark

Figure 26: CPU usage with Line topology and 100% locality

(a) Subscription Table (b) Flooding

(c) HiveMQ-Benchmark

Figure 27: CPU usage with Line topology and 0% locality

45

(a) Subscription Table (b) Flooding

(c) HiveMQ-Benchmark

Figure 28: CPU usage with Line topology and n% locality

similar values; to be noticed is the behaviour of Subscription Table on broker C : since
broker A already knows that its prev hop broker E is interested in the messages,
there is no need to reach broker C that therefore has a very low usage of CPU.
Finally [Figure 28] with n% locality, Subscription Table is the one with the highest
values, where Flooding and HiveMQ-Benchmark have very similar results.

4.3.4 500 Publishes: considerations

With a higher number of Publishes is more evident the advantages of the exten-
sion Subscription Table with regards to the other two in terms of network out-
put. Subscription Table always uses fewer Bytes, and the difference is very evident
with the tests with locality 100%. Flooding always performes better than HiveMQ-
Benchamrk but worse than Subscription Table. HiveMQ-Benchamrk is always the
one that the highest network output, and even with locality n%, that was the case
where with 50 Publishes was very similar if not better than the other extensions,
now the difference is pretty evident. On the CPU side, with locality 100% Subscrip-
tion Table is the one with the lowest averages values overall, but with a very high
peak value and average one on broker A. With 0% locality the values are almost
the same in every extension. With n% locality instead, Subscription Table has the

46

highest impact on the CPU while HiveMQ-Benchmark has the lowest, even if the
differences are not so marked.

4.4 Test 3: 1500 Publishes

In order to take these data, we repeated the past test of 500 Publishes three time
in a row: as soon as the 500 messages are published and received by all the brokers
interested in them, another 500 publishes are sent and after being received another
500. The results that we are going to expect are the same of the 500 Publishes, but
with an higher difference among the extensions, in particular in favor of Subscrip-
tion Table that, even with only 500 messages, was the one that performed better
regarding the network output.

4.4.1 Tree

The first set of test uses the tree topology [Figure 29]: as expected Subscription
Table is the one with the lowest values, and the difference with HiveMQ-benchmark
is always bigger. In locality 100% is where Subscription Table shows the best advan-
tages, and in this situation is more clear than ever: with around 500 kB in output
adding all its brokers, is the half of Flooding (around 1000 kB) and less than a third
than HiveMQ-Benchmark (around 1600 kB); there is a difference of more than 1100
kB, which is more than the traffic of Subscription Table and Flooding. When we
are in locality 0% the differences are shortened but is evident that Subscription
Table, with around 800 kB, is the best choice; not much distant there is Flooding
with 1000 kB. HiveMQ-Benchmark instead is over 1500 kB, almost the double of
Subscription Table with a difference of around 700 KB. With locality n% is where
the differences are the least, as the past tests have shown. However the more the
number of messages, the more the differences of Bytes between Subscription Table
and HiveMQ-Benchmark. In this instance, HiveMQ-Benchmark, with 2400 kB, con-
sumes 700kB more than Subscription Table, at 1700 kB. Very similar, as in the past
tests, are the results of Subscription Table and Flooding with this particular local-
ity: the feature of Subscription Table regarding the possibility to send a message
only when a broker is interested into it is not so useful when all the brokers receive
publishes and every one is interested.

On the CPU side, [Figure 30] shows the usage of CPU with a Tree conformation
and 100% locality. As usual, Subscription Table only has an high impact on the
CPU with broker A, while the other brokers have an average usage very low; the
peak value however is the highest among all the extension. Flooding and HiveMQ-

47

Figure 29: 1500 Publishes, Tree topology

(a) Subscription Table (b) Flooding

(c) HiveMQ-Benchmark

Figure 30: CPU usage with Tree topology and 100% locality

48

(a) Subscription Table (b) Flooding

(c) HiveMQ-Benchmark

Figure 31: CPU usage with Tree topology and 0% locality

(a) Subscription Table (b) Flooding

(c) HiveMQ-Benchmark

Figure 32: CPU usage with Tree topology and n% locality

49

Figure 33: 1500 Publishes, Star topology

Benchmark have very similar values, in which Broker A, broker C and broker D
(which is in charge to forward the messages to broker E) have not negligible values.
With 0% locality [Figure 31] in all the extensions broker B is the one that consumes
the least as expected. However Subscription Table has an overall lower average and
lower peak values, where Flooding is the one with the highest values. In the last
locality [Figure 32], the three extensions show similar pattern, but Flooding is the
one with a slightly lower average than the other two extensions.

4.4.2 Star

[Figure 33] shows the data regarding the network output when the brokers are
connected to form a Star with broker C as center of the Star. The results are very
similar at the case of the Tree. The extension Subscription Table is the one that
always consume less data, in particular in the case of 100% locality. In n% locality,
Flooding is really close to Subscription Table, as already seen in other circumstances.
HiveMQ-Benchmark instead is always the worst.

[Figure 34], [Figure 35] and [Figure 36] display the usage of CPU. With 100% lo-
cality, extension Flooding and the extension HiveMQ-Benchmark have much higher
peak values than Subscription Table. The average values are pretty similar, but a

50

(a) Subscription Table (b) Flooding

(c) HiveMQ-Benchmark

Figure 34: CPU usage with Star topology and 100% locality

(a) Subscription Table (b) Flooding

(c) HiveMQ-Benchmark

Figure 35: CPU usage with Star topology and 0% locality

51

(a) Subscription Table (b) Flooding

(c) HiveMQ-Benchmark

Figure 36: CPU usage with Star topology and n% locality

bit lower on Subscription Table that confirms itself as the best extension in 100%
locality. With 0% locality Subscription Table has a lower peak value and an overall
lower average values, but very close to the results of HiveMQ-Benchmark ; Flooding
instead has a bit higher values. Finally with n% locality HiveMQ-Benchmar has
some extremely high peak values with the Root broker C, but has the lowest average
values. Subscription Table and Flooding instead have almost identical results.

4.4.3 Line

The last test is with the broker connected to form a Line [Figure 37].

Even in this case, Subscription Table is the extension that uses less data, followed
by Flooding and then HiveMQ-Benchmark. As we have already seen with locality
100% Subscription Table is unbeatable with around 400 kB of data in output, when
Flooding has around 1050 kB and HiveMQ-Benchmark around 1500 kB. When the
locality is 0%, Subscription Table is still the best choice, but Flooding performs
really close. With n% is when there are fewer differences between the extensions,
but nevertheless Subscription Table consumes around 800 kB less than HiveMQ-
Benchmark to do the job.

52

Figure 37: 1500 Publishes, Line topology

(a) Subscription Table (b) Flooding

(c) HiveMQ-Benchmark

Figure 38: CPU usage with Line topology and 100% locality

53

(a) Subscription Table (b) Flooding

(c) HiveMQ-Benchmark

Figure 39: CPU usage with Line topology and 0% locality

(a) Subscription Table (b) Flooding

(c) HiveMQ-Benchmark

Figure 40: CPU usage with Line topology and n% locality

54

Taking a look to the CPU graphs [Figure 38], it is clear that Subscription Table
has a minor impact on the CPU with respect to the other extensions. With 0%
locality [Figure 39] peculiar is the CPU consumption of the Root broker C in Sub-
scription Table: since broker C is at the top of the line, broker A does not need to
reach the Root since it already knows if broker B, that is its prev hop, wants the mes-
sages; therefore the messages are published from broker A, received and forwarded
by broker B, received and forwarded by broker D and finally received by broker E.
Despite all of this, HiveMQ-Benchmark is the extension that consumes less CPU
resources, with Subscription Table that performs slightly better than Flooding. [Fig-
ure 40] shows how, with n% locality, the results are very similar in all the extensions.
Subscription Table seems the one with slightly lower values, but very close to the
one of HiveMQ-Benchmark

4.4.4 1500 Publishes: considerations

The more the messages the more evident are the advantages of the Subscription
Table extension regarding traffic data with respect to the other extensions. Taking
in consideration only the goal to minimize the network traffic, Subscription Table
is the best choice. To keep in mind that all the tests we have done have many
messages published but only on one Topic, topic ”test”. The real limitation of this
Subscription Table extension is when there are many clients interested in different
topics; in a following section there will be a deepening on this subject.

If the goal is to minimize the network traffic, while keeping an eye on the usage of
the resources, Subscription Table is still the best choice. In some specific situations
could be better the Flooding extension: in n% locality this extension performs really
well, very similar to Subscription Table in the data output and the CPU usage
sometimes is slightly better that Subscription Table. But overall the Subscription
Table extension is the best choice for these kind of tests.

4.5 Summary

This section presents three images that show side by side the network overhead in
every extension. Figure 41 represents the data when the topology of the network is
a Tree, figure 42 when the topology is a Star and figure 43 when the topology is a
Line. On the y axis are highlighted the number of publishes and to which locality
the data refers to.

55

Figure 41: Tree topology

Figure 42: Star topology

56

Figure 43: Line topology

4.6 Cluster comparison

HiveMQ offers a default way to connect the brokers: the cluster. This is ideal to
create a service with high availability, but not ideal in terms of network consumption.
In the following graphs, the data of the extension are taken always with the broker
connected as a Star, with the three localities and with 50, 500 and 1500 publishes.
The confront is only with the Star because in a HiveMQ’s cluster the brokers are
fully connected, and therefore the most similar situation is when the brokers are in
the Star situation.

[Figure 44], [Figure 45] and [Figure 46] show the network output of all the ex-
tensions side by side with the Cluster. It is evident that the Cluster consumes a
lot of data more than the extensions, in particular in the n% locality. The Cluster
consumes also a lot of data not only to create the cluster, but also to maintain it,
probably because of the high reliability and availability that the Cluster offers.

4.7 Subscription Table in-depth

In almost every test the extension Subscription Table has a lower network output
with respect to the other two extensions. This is specially true the more the Pub-

57

Figure 44: 50 Publishes, Cluster

Figure 45: 500 Publishes, Cluster

58

Figure 46: 1500 Publishes, Cluster

lishes are exchanged between the brokers. This is because the brokers know when
one of its neighbour is interested in a specific topic, because it has been advised.
Analysing the traffic data, taken with tcpdump, with Wireshark, is possible to see
how this phase of ”advising” works. With the following filter only the Publishes the
brokers exchange to inform about the interest of a topic are shown.

mqtt.topic == "$BROKER/172.17.0.4/$TOPIC" or

mqtt.topic == "$BROKER/172.17.0.2/$TOPIC" or

mqtt.topic == "$BROKER/172.17.0.3/$TOPIC" or

mqtt.topic == "$BROKER/172.17.0.5/$TOPIC" or

mqtt.topic == "$BROKER/172.17.0.6/$TOPIC"

Every of this Publish has the Topic in the form of ”$BROKER/Ip address/
$TOPIC”, so by putting all the IP addresses of the brokers all the messages are
displayed. Keeping in mind that we’ve used 5 brokers in all our tests, we noticed
that in the tests with locality 100% and 0% there are only 4 Publishes. In this
tests there is only one client interested in the topic, on broker A with 100% locality
and on roker E with 0% locality. The number of Publishes, 4, is the same with the
tests of 50 published and with 500, both with the broker linked to build a Tree, a
Star and a Line. This is because, taking for instance the locality 100%, with a Tree

59

Figure 47: Tree conformation

[Figure 47] we have that broker A receives the Subscription request by a client with
topic ”X”, broker A advises broker C, C advises B and D and finally D advises E.
So given N the number of brokers in the network, there is the need of N-1 Publishes
to advise all the brokers. Taking this formula, with n% locality, that is where every
broker has a client interested in the topic, there will be 20 Publishes, 4 · 5. And it
is the same that the Wireshark filter shows in the capture with the same filter. The
number of these Publishes could be less if some optimizations are implemented. For
example, let’s have a look at the Star conformation. [Figure 48]

In this situation the 20 messages are the following:

1: A->C, C->B, C->D, C->E

2: B->C, C->A, C->D, C->E

3: C->A, C->B, C->D, C->E

4: D->C, C->A, C->B, C->E

5: E->C, C->A, C->B, C->E

This means that Broker A receives a SUB from a client ”Y” with topic ”X”,
so broker A add to one of its table that the client ”Y” is interested in ”X” and
publishes a message to broker C with Topic ”$BROKER/172.17.0.4/$TOPIC” and
as payload ”X”. Broker C receives the message, and insert in its table that broker A

60

Figure 48: Star conformation

is interested in topic ”X”, then publishes a message to broker B, broker D and
broker E, changing the topic accordingly and with the same payload. Broker B,
broker D and broker C will insert in their table that broker C is interested in the
topic ”X”. The same is repeated for all the other Subscriptions on every broker.
If another client will then subscribe with the same topic ”X” on broker A, the
procedure will not be triggered since broker A already has a client interested in that
topic so the other brokers have been already advised. With a proper optimization
this result can be achieved:

1: A->C, C->B, C->D, C->E

2: B->C, C->A

3:

4: D->C

5: E->C

In this situation the are no doubles publishes: this can be achieved by not
forwarding immediately the publishes; however broker C should keep track of the
broker he has already advised in another table and this could cause more disadvan-
tages than advantages in terms of CPU and memory consumption.

61

To recap, with the extension Subscription Table and five brokers we have dis-
covered that every new Subscription with a different topic on a broker triggers 4
Publishes, and 4 ACKs since we are using QoS1, in order to inform the rest of
the network. To abstract, given N is the number of brokers in a network, a new
Topic triggers at minimum N − 1 publishes and at maximum N · (N − 1) if in every
broker there is at least a client interested in the topic. Indicating with ”n” the
number of brokers where there is at least a client interested in the new topic, we
have n · (N − 1) Publishes. All of this can have some negative effects: since every
new topic on a broker causes 4 new publishes, if there are very few publishes in
the network with such topic, this extension can have a bigger network output than
without the extension. Another consideration to keep in mind is that, if there is a
very large number of different topic on a broker, this can cause an excessive usage
of resources, in particular of memory, since every new topic is added to a table and
the same table is checked every time there is a new subscription.
After all of these considerations, Subscription Table remains the best extension
among the three, to be avoided only in very specific cases, where the Flooding ex-
tension can be preferred.

4.8 End to end Delay

We have used MQTT-Box for every test. Thanks to this software, we have also
collected the timestamps of when the messages are sent by the publishers and when
they are received by the subscribers interested. In this way is possible to calculate
the end to end delay to receive all the messages, and to calculate how many messages
are sent and received per second.
To be noticed that with MQTT-Box in every test there must be set the number of
messages to publish and the Run time, which is the number of seconds in which the
messages must be published. In all the test we have performed, the Run time is
always 5 seconds; this means that in the tests with 50 Publishes there are 10 PUB
per second while with 500 Publishes there are 100 PUB per second in average. The
tests with 1500 Publishes are done by repeating the 500 case three times in a row,
therefore the results we are gonna to show refers only to the tests with 50 or 500
Publishes.
In addition to this, the data displayed in the following sections refers only to the tests
with locality 100% and 0%. With locality n%, the results where very similar among
all the subscribers, one in each broker, because by the time we manually started
the fifth and last set of Publishes, the previous publishes were already received in
large part by the subscribers, and therefore the data obtained at the end would not
reflect the real end to end delay of the test.

62

4.8.1 50 Publishes

The following tables show the data regarding the tests with 50 Publishes and the
three topologies: Tree, Star and Line.
The column Extension indicates which extension the data refers to among Subscrip-
tion Table, Flooding and HiveMQ-Benchmark. The column Locality indicates which
kind of locality between 0% and 100%; Publishes is the number of Publishes in the
test, 50 or 500; Pub Time is in how many seconds the PUB are sent; Pub/s indi-
cates the ratio between the number of Publishes and the Time spent sending them,
so, since the Pub Time is always 5 in all the tests, is 10 in the tests with 50 PUB
and 100 with 500 PUB; Total Time are the seconds elapsed since the sending and
the reception of all the messages at the interested subscriber; Mgs/s indicates the
ratio between the number of Publishes and the Total Time to receive them at the
subscriber.

Table [1] shows the data of the tests with 50 Publishes and Tree topology. The
Total Times of Flooding and HiveMQ-Benchmark are very similar, but the ones of
Subscription Tables are lower, specially in the test with locality 100%. This results
in more messages received every second with the Subscription Table extension.
With the Star topology, Table [2], the Total Time of Flooding is very close to the
one of Subscription Table in the 100% locality, with HiveMQ-Benchmark that in-
stead uses a second more that the other extensions. With 0% locality instead, all
the extensions performs really similar and therefore have almost an identical Msg/s
result.
Finally, with a Line topology as shown in Table [3], we have that Subscription Table
performs much better both with locality 100% and 0%. Flooding has a very similar
Total Time with HiveMQ-Benchmark with locality 100% but much higher with 0%
locality.

To sum up, with 50 Publishes Subscription Table presents a lower Total Time,
and consequently a higher Msg/s, than the other extensions with 100% locality.
With 0% locality the results vary depending on the topology of the tree: with the
Star topology all the extensions presents a very similar Total Time, while with the
other topologies Subscription Table has a lower Total Time, but the differences are
smaller than with 100% locality.

63

Table 1: 50 Publishes, Tree topology

Extension Locality Publishes Pub Time[s] Pub/s Total Time[s] Msg/s

SubTable 100% 50 5 10 5,632 8,89

Flooding 100% 50 5 10 6,758 7,40

HiveMQ 100% 50 5 10 6,811 7,34

SubTable 0% 50 5 10 6,78 7,37

Flooding 0% 50 5 10 7,46 6,70

HiveMQ 0% 50 5 10 7,473 6,69

Table 2: 50 Publishes, Star topology

Extension Locality Publishes Pub Time[s] Pub/s Total Time[s] Msg/s

SubTable 100% 50 5 10 5,131 9,745

Flooding 100% 50 5 10 5,698 8,775

HiveMQ 100% 50 5 10 6,532 7,655

SubTable 0% 50 5 10 6,607 7,568

Flooding 0% 50 5 10 6,736 7,423

HiveMQ 0% 50 5 10 6,577 7,602

Table 3: 50 Publishes, Line topology

Extension Locality Publishes Pub Time[s] Pub/s Total Time[s] Msg/s

SubTable 100% 50 5 10 5,267 9,493

Flooding 100% 50 5 10 6,514 7,676

HiveMQ 100% 50 5 10 6,726 7,434

SubTable 0% 50 5 10 6,801 7,352

Flooding 0% 50 5 10 8,769 5,702

HiveMQ 0% 50 5 10 7,487 6,782

64

Table 4: 500 Publishes, Tree topology

Extension Locality Publishes Pub Time[s] Pub/s Total Time[s] Msg/s

SubTable 100% 500 5 100 13,274 33,668

Flooding 100% 500 5 100 17,35 28,818

HiveMQ 100% 500 5 100 17,631 28,359

SubTable 0% 500 5 100 18,311 27,306

Flooding 0% 500 5 100 18,324 27,287

HiveMQ 0% 500 5 100 19,338 25,856

4.8.2 500 Publishes

The following three tables show the data of the tests with 500 Publishes.
Table[4] is with the Tree topology. With 100% locality Subscription Table has a
much lower Total Time than both Flooding and HiveMQ-Benchmark ; with 0% lo-
cality instead the results are all close to each other, specially between Flooding and
Subscription Table.
Analogous situation is with the Star topology, Table [5]. With 100% locality Sub-
scription Table has a much lower Total Time and therefore a much higher number
of messages received every second at the subscriber. With 0% locality HiveMQ-
Benchmark is the worst between the extensions with an higher Total Time, while
Flooding and Subscription Table show similar results.
Finally, with a Line topology (Table [6]), Subscription Table performs the best both
with locality 100% and 0%; HiveMQ-Benchmark is the extensions with the highest
values of Total Time among the three extensions.

At the end, Subscription Table presents the lowest end to end delay among the
three extensions in almost every situation. With 100% locality is always better
Subscription Table, while with 0% locality, besides the case with the Line topology,
the Total Times are similar among all the extensions.

4.8.3 Cluster

Table [7] shows the Total Times and the Messages received per second using the
HiveMQ’s Cluster. Taking in comparison the Total Times of Subscription Table
with the Star topology, that is the extensions with the best results in the topology
that is the most similar to the Cluster one, the Cluster has in every situation a lower

65

Table 5: 500 Publishes, Star topology

Extension Locality Publishes Pub Time[s] Pub/s Total Time[s] Msg/s

SubTable 100% 500 5 100 13,649 36,633

Flooding 100% 500 5 100 18,012 27,759

HiveMQ 100% 500 5 100 21,59 23,159

SubTable 0% 500 5 100 16,77 29,815

Flooding 0% 500 5 100 17,125 29,197

HiveMQ 0% 500 5 100 19,9 25,126

Table 6: 500 Publishes, Line topology

Extension Locality Publishes Pub Time[s] Pub/s Total Time[s] Msg/s

SubTable 100% 500 5 100 14,66 34,106

Flooding 100% 500 5 100 18,905 26,448

HiveMQ 100% 500 5 100 24,97 20,024

SubTable 0% 500 5 100 17,524 28,532

Flooding 0% 500 5 100 21,463 23,296

HiveMQ 0% 500 5 100 29,696 16,837

66

Table 7: Cluster

Extension Locality Publishes Pub Time[s] Pub/s Total Time[s] Msg/s

Cluster 100% 50 5 10 5,021 9,958

Cluster 0% 50 5 10 5,01 9,98

Cluster 100% 500 5 100 13,966 35,80

Cluster 0% 500 5 100 14,228 35,142

Total Time. While with locality 100% the results almost identical, with locality 0%
the differences are notable.
This can be caused by the fact that the Subscription Table extension uses MQTT
publishes with QoS1 to exchange information among the brokers while the Cluster
uses its own proprietary protocol; with Quality of Service 1 every Publish packet
needs an ACK, and therefore the time necessary to reach the broker that has the
client interested in the messages can be higher. In fact, with locality 100%, Sub-
scription Table doesn’t have to send any Publish message to any broker since the
subscriber is on the same broker that receives the first publishes, and therefore with
such locality the Total Times are very similar to the ones of the Cluster.

67

5 Conclusions

With more and more ”things” connected, MQTT, the main protocol for IoT, needs
to move from a classical broker centric model to a distributed one with more bro-
kers connected between themselves and closer to the clients. In this work we have
developed three extensions for HiveMQ, in order to create a network of distributed
brokers that is completely transparent to the clients.
All the extensions allow the replication of messages between the brokers, are loop-
free and do not need a static topology. As long as a broker is connected through a
bridge to at least another broker, the topology of the network will change in order to
select as root the broker with the best Capacity. All the extensions are also resistant
to failures: if the Root, for any reason, is no longer operative, the brokers will create
another Tree electing a new Root; this is possible only if there are enough bridge
connections since it is not possible to modify the bridge extension file to create new
bridges at runtime.

The first extension, HiveMQ-Benchmark, is the simplest way to connect the bro-
kers in a loop-free network. As the name suggests it has been used in the tests as a
benchmark of HiveMQ.
The second extension, Flooding, presents some improvements. The main one is,
thanks to the presence of more filters in the bridge configuration file, the possibility
to send a Publish to only one broker.
In the third and last extension, Subscription Table, every broker has a table of sub-
scriptions in which are marked the brokers that are interest in a Topic.
We have conducted several tests keeping under observations the network overhead
and the CPU usage of the brokers. The tests consist in publishing a different number
of messages (50, 500 and 1500) on different brokers (all on broker A, all on broker E
and on every broker in equal number) in different network topologies (tree, star and
line).

It comes out that the Subscription Table extension is the best in almost every
situation. The more the messages are published the more advantages it has, with
the same number of topics.
The downside of this extension is that every broker needs to save in its table which
topic is of interest to whom. This, if the number of topics is very high, could lead
to an excessive usage of CPU and memory resources, and to an increase of network
overhead if the publishes on such topics are very few.
In these rare circumstances could be preferred the Flooding extension. This ex-
tension performs worse than Subscription Table almost every time regarding the

68

network overhead, but much better than HiveMQ-Benchmark.
HiveMQ-Benchmark is by far the worst one in network overhead, and the more the
messages the greater is the difference with the other two extensions.
Regarding the CPU consumption, no extension presents an excessive CPU overload.
Subscription Table performs better in the tests with locality 100%, where sometimes
is a little more expensive than the other extensions with 0% or n%.
Overall, Subscription Table is in almost every situation the best extension to use
with the HiveMQ’s enterprise Bridge extension to create a network of distributed
brokers.

In conclusion HiveMQ’s MQTT brokers could not be the best candidate for
creating a network of distributed brokers. It is possible to create it using the Bridge
extension along with one of the extension we developed. HiveMQ offers in fact the
possibility to develop and implement a plug in without the need to rewrite the code
from scratch. The extensions are written in Java, therefore can be personalized in
various ways, depending on the developer. I myself have developed three different
extensions, adding functionalities from one to another. At this link [18] is possible
to find all the APIs available for the development. They are many, useful to create
interceptors or publish messages for instance. One problem we have found however,
is the possibility to create on the fly only a limited type of messages. So we could
create Publish messages but not PINGREQ ones, like it was done in [16], and this
can cause an increment in the network overhead because of the size of a Publish
packet. Another very important problem is the fact that, with the bridge extension,
is not possible to send a message to only one brokers, but the message is sent to
all the brokers that satisfy the filter in the bridge configuration file: therefore if,
like in the first extension HiveMQ-Benchmark, all the filters in the file are ”#”, all
the messages are sent and received by everyone and this can cause other problems,
specially in the possibility of creating loops of messages. To avoid this situation,
we had to implement a publish interceptor in every broker in order to prevent the
reception of the messages that would cause the creation of loops.

5.1 Future Works

Starting with the extensions of this work, more brokers can be tested on different
machines instead of only on a single one. This would be more like a real deployment;
moreover, since on a single machine all the brokers have the same resources, this
could lead to different network topologies since every broker could be the Root.
The same tests that we performed can be replicated with others MQTT brokers like
verneMQ or EMQX, and the results can be compared in order to find the best to

69

create a network of distributed brokers.
Other metrics can be tested besides the network overhead and the CPU consump-
tion. For instance the delay from when the Publish in sent by a broker and when the
same is received by the subscribers (in this work we presented some data regarding
the end to end delay, but the main focus of this work was, beside the creation of
the network of distributed brokers, to study the network overhead); there can be
differences in the results depending on the network topology: if the subscriber is on
one leaf and the publish is in a broker on the opposite side of the Tree the delay can
be higher than in the case where publish and subscribe are on the same broker. By
studying these results, someone can propose a different way to build the Tree: if the
traffic between some brokers is more delay-sensitive respect to the traffic between
others, the Tree can be build by trying to minimize the delay between specific bro-
kers, by using a direct bridge for instance, and not focusing on having the lowest
RTT with the Root of the Tree.
One big limitation of this work is that the Bridge configuration file cannot be mod-
ified at runtime, therefore a new broker that has not already an active bridge with
another broker, cannot be part of the network. Hence, future works can study in
deep this aspect and find an alternative solution to bridge the brokers.

70

.

71

List of Abbreviations

MQTT: Message Queuing Telemetry Transport

IoT: Internet of Things

MEC: Multi-Access Edge Computing

ICT: Information and Communication Technologies

QoS: Quality of Service

IDE: Integrated Development Environment

COAP: Constrained Application Protocol

TCP: Transmission Control Protocol

IP: Internet Protocol

ACK: Acknowledge

PUB: Publish

STP: Spanning Tree Protocol

CPU: Central Processing Unit

72

List of Figures

Figure 1: MQTT architecture with a broker in the middle and 5 clients connected
to him. Every client can Subscribe and Publish

Figure 2: Spanning Tree Protocol

Figure 3: 5 brokers connected to create a tree topology; the dash lines indicate
an open bridge that could be used, the continuous lines indicate the active bridges.

Figure 4: the three topologies used to test my extensions. (a) is a tree, (b) is a
star and (c) a line. The dash lines indicate an open bridge that could be used, the
continuous lines indicate the active bridges.

Figure 5: output data obtained summing every broker’s output traffic in the
tests with 50 publishes with Tree topology and every locality.

Figure 6: CPU usage of every broker; the blue lines indicate the maximum
value, the green lines the average value. (a) refers to the extension ”SubTable”, (b)
to extension ”Flooding” and (c) to extension HiveMQ-Benchmark. These graphs
referes to the test with 50 Publishes, tree topology and 100% locality.

Figure 7: CPU usage of every broker; the blue lines indicate the maximum
value, the green lines the average value. (a) refers to the extension ”SubTable”, (b)
to extension ”Flooding” and (c) to extension HiveMQ-Benchmark. These graphs
referes to the test with 50 Publishes, tree topology and 0% locality.

Figure 8: CPU usage of every broker; the blue lines indicate the maximum
value, the green lines the average value. (a) refers to the extension ”SubTable”, (b)
to extension ”Flooding” and (c) to extension HiveMQ-Benchmark. These graphs
referes to the test with 50 Publishes, tree topology and n% locality.

Figure 9: output data obtained summing every broker’s output traffic in the
tests with 50 publishes with Star topology and every locality.

Figure 10: CPU usage of every broker; the blue lines indicate the maximum
value, the green lines the average value. (a) refers to the extension ”SubTable”, (b)
to extension ”Flooding” and (c) to extension HiveMQ-Benchmark. These graphs
referes to the test with 50 Publishes, Star topology and 100% locality.

Figure 11: CPU usage of every broker; the blue lines indicate the maximum

73

value, the green lines the average value. (a) refers to the extension ”SubTable”, (b)
to extension ”Flooding” and (c) to extension HiveMQ-Benchmark. These graphs
referes to the test with 50 Publishes, Star topology and 100% locality.

Figure 12: CPU usage of every broker; the blue lines indicate the maximum
value, the green lines the average value. (a) refers to the extension ”SubTable”, (b)
to extension ”Flooding” and (c) to extension HiveMQ-Benchmark. These graphs
referes to the test with 50 Publishes, Star topology and n% locality.

Figure 13: output data obtained summing every broker’s output traffic in the
tests with 50 publishes with Line topology and every locality.

Figure 14: CPU usage of every broker; the blue lines indicate the maximum
value, the green lines the average value. (a) refers to the extension ”SubTable”, (b)
to extension ”Flooding” and (c) to extension HiveMQ-Benchmark. These graphs
referes to the test with 50 Publishes, Line topology and 100% locality.

Figure 15: CPU usage of every broker; the blue lines indicate the maximum
value, the green lines the average value. (a) refers to the extension ”SubTable”, (b)
to extension ”Flooding” and (c) to extension HiveMQ-Benchmark. These graphs
referes to the test with 50 Publishes, Line topology and 100% locality.

Figure 16: CPU usage of every broker; the blue lines indicate the maximum
value, the green lines the average value. (a) refers to the extension ”SubTable”, (b)
to extension ”Flooding” and (c) to extension HiveMQ-Benchmark. These graphs
referes to the test with 50 Publishes, Line topology and n% locality.

Figure 17: output data obtained summing every broker’s output traffic in the
tests with 500 publishes with Tree topology and every locality.

Figure 18: CPU usage of every broker; the blue lines indicate the maximum
value, the green lines the average value. (a) refers to the extension ”SubTable”, (b)
to extension ”Flooding” and (c) to extension HiveMQ-Benchmark. These graphs
referes to the test with 500 Publishes, Tree topology and 100% locality.

Figure 19: CPU usage of every broker; the blue lines indicate the maximum
value, the green lines the average value. (a) refers to the extension ”SubTable”, (b)
to extension ”Flooding” and (c) to extension HiveMQ-Benchmark. These graphs
referes to the test with 500 Publishes, Tree topology and 0% locality.

Figure 20: CPU usage of every broker; the blue lines indicate the maximum
value, the green lines the average value. (a) refers to the extension ”SubTable”, (b)
to extension ”Flooding” and (c) to extension HiveMQ-Benchmark. These graphs

74

referes to the test with 500 Publishes, Tree topology and n% locality.

Figure 21: output data obtained summing every broker’s output traffic in the
tests with 500 publishes with Star topology and every locality.

Figure 22: CPU usage of every broker; the blue lines indicate the maximum
value, the green lines the average value. (a) refers to the extension ”SubTable”, (b)
to extension ”Flooding” and (c) to extension HiveMQ-Benchmark. These graphs
referes to the test with 500 Publishes, Star topology and 100% locality.

Figure 23: CPU usage of every broker; the blue lines indicate the maximum
value, the green lines the average value. (a) refers to the extension ”SubTable”, (b)
to extension ”Flooding” and (c) to extension HiveMQ-Benchmark. These graphs
referes to the test with 500 Publishes, Star topology and 0% locality.

Figure 24: CPU usage of every broker; the blue lines indicate the maximum
value, the green lines the average value. (a) refers to the extension ”SubTable”, (b)
to extension ”Flooding” and (c) to extension HiveMQ-Benchmark. These graphs
referes to the test with 500 Publishes, Star topology and n% locality.

Figure 25: output data obtained summing every broker’s output traffic in the
tests with 500 publishes with Line topology and every locality.

Figure 26: CPU usage of every broker; the blue lines indicate the maximum
value, the green lines the average value. (a) refers to the extension ”SubTable”, (b)
to extension ”Flooding” and (c) to extension HiveMQ-Benchmark. These graphs
referes to the test with 500 Publishes, Line topology and 100% locality.

Figure 27: CPU usage of every broker; the blue lines indicate the maximum
value, the green lines the average value. (a) refers to the extension ”SubTable”, (b)
to extension ”Flooding” and (c) to extension HiveMQ-Benchmark. These graphs
referes to the test with 500 Publishes, Line topology and 0% locality.

Figure 28: CPU usage of every broker; the blue lines indicate the maximum
value, the green lines the average value. (a) refers to the extension ”SubTable”, (b)
to extension ”Flooding” and (c) to extension HiveMQ-Benchmark. These graphs
referes to the test with 500 Publishes, Line topology and n% locality.

Figure 29: output data obtained summing every broker’s output traffic in the
tests with 1500 publishes with Tree topology and every locality.

Figure 30: CPU usage of every broker; the blue lines indicate the maximum
value, the green lines the average value. (a) refers to the extension ”SubTable”, (b)

75

to extension ”Flooding” and (c) to extension HiveMQ-Benchmark. These graphs
referes to the test with 1500 Publishes, Tree topology and 100% locality.

Figure 31: CPU usage of every broker; the blue lines indicate the maximum
value, the green lines the average value. (a) refers to the extension ”SubTable”, (b)
to extension ”Flooding” and (c) to extension HiveMQ-Benchmark. These graphs
referes to the test with 1500 Publishes, Tree topology and 0% locality.

Figure 32: CPU usage of every broker; the blue lines indicate the maximum
value, the green lines the average value. (a) refers to the extension ”SubTable”, (b)
to extension ”Flooding” and (c) to extension HiveMQ-Benchmark. These graphs
referes to the test with 1500 Publishes, Tree topology and n% locality.

Figure 33: output data obtained summing every broker’s output traffic in the
tests with 1500 publishes with Star topology and every locality.

Figure 34: CPU usage of every broker; the blue lines indicate the maximum
value, the green lines the average value. (a) refers to the extension ”SubTable”, (b)
to extension ”Flooding” and (c) to extension HiveMQ-Benchmark. These graphs
referes to the test with 1500 Publishes, Star topology and 100% locality.

Figure 35: CPU usage of every broker; the blue lines indicate the maximum
value, the green lines the average value. (a) refers to the extension ”SubTable”, (b)
to extension ”Flooding” and (c) to extension HiveMQ-Benchmark. These graphs
referes to the test with 1500 Publishes, Star topology and 0% locality.

Figure 36: CPU usage of every broker; the blue lines indicate the maximum
value, the green lines the average value. (a) refers to the extension ”SubTable”, (b)
to extension ”Flooding” and (c) to extension HiveMQ-Benchmark. These graphs
referes to the test with 1500 Publishes, Star topology and n% locality.

Figure 37: output data obtained summing every broker’s output traffic in the
tests with 1500 publishes with Line topology and every locality.

Figure 38: CPU usage of every broker; the blue lines indicate the maximum
value, the green lines the average value. (a) refers to the extension ”SubTable”, (b)
to extension ”Flooding” and (c) to extension HiveMQ-Benchmark. These graphs
referes to the test with 1500 Publishes, Line topology and 100% locality.

Figure 39: CPU usage of every broker; the blue lines indicate the maximum
value, the green lines the average value. (a) refers to the extension ”SubTable”, (b)
to extension ”Flooding” and (c) to extension HiveMQ-Benchmark. These graphs
referes to the test with 1500 Publishes, Line topology and 0% locality.

76

Figure 40: CPU usage of every broker; the blue lines indicate the maximum
value, the green lines the average value. (a) refers to the extension ”SubTable”, (b)
to extension ”Flooding” and (c) to extension HiveMQ-Benchmark. These graphs
referes to the test with 1500 Publishes, Line topology and n% locality.

Figure 41: Network overhead in every test with the Tree topology.

Figure 42: Network overhead in every test with the Star topology.

Figure 43: Network overhead in every test with the Line topology.

Figure 44: output data obtained summing every broker’s output traffic in the
tests with 50 publishes with Star topology and every locality and compared with
the traffic generated by the Cluster.

Figure 45: output data obtained summing every broker’s output traffic in the
tests with 500 publishes with Star topology and every locality and compared with
the traffic generated by the Cluster.

Figure 46: output data obtained summing every broker’s output traffic in the
tests with 1500 publishes with Star topology and every locality and compared with
the traffic generated by the Cluster.

Figure 47: 5 brokers connected to create a Tree topology; the dash lines indicate
an open bridge that could be used, the continuous lines indicate the active bridges.

Figure 48: 5 brokers connected to create a Star topology; the dash lines indicate
an open bridge that could be used, the continuous lines indicate the active bridges.

77

References

(1) Hunkeler, U.; Truong, H. L.; Stanford-Clark, A. MQTT-S—A publish/subscribe
protocol for Wireless Sensor Networks. 2008, 791–798.

(2) Shelby, Z.; Hartke, K.; Bormann, C. The constrained application protocol
(CoAP). 2014.

(3) Vinoski, S. Advanced message queuing protocol. IEEE Internet Computing
2006, 10, 87–89.

(4) Yokotani, T.; Sasaki, Y. Comparison with HTTP and MQTT on required
network resources for IoT. 2016, 1–6.

(5) Naik, N. Choice of effective messaging protocols for IoT systems: MQTT,
CoAP, AMQP and HTTP. 2017, 1–7.

(6) Kokkonis, G.; Chatzimparmpas, A.; Kontogiannis, S. Middleware IoT proto-
cols performance evaluation for carrying out clustered data. 2018, 1–5.

(7) Thangavel, D.; Ma, X.; Valera, A.; Tan, H.-X.; Tan, C. K.-Y. Performance
evaluation of MQTT and CoAP via a common middleware. 2014, 1–6.

(8) De Oliveira, D. L.; Veloso, A. F. d. S.; Sobral, J. V.; Rabêlo, R. A.; Rodrigues,
J. J.; Solic, P. Performance evaluation of MQTT brokers in the Internet of
Things for smart cities. 2019, 1–6.

(9) Sommer, P.; Schellroth, F.; Fischer, M.; Schlechtendahl, J. Message-oriented
middleware for industrial production systems. 2018, 1217–1223.

(10) Mishra, B. Evaluating the Performance of MQTT Brokers. 2018, 37.

(11) Kawaguchi, R.; Bandai, M. A distributed MQTT broker system for location-
based IoT applications. 2019, 1–4.

(12) Rausch, T.; Nastic, S.; Dustdar, S. Emma: Distributed qos-aware mqtt mid-
dleware for edge computing applications. 2018, 191–197.

(13) Koziolek, H.; Grüner, S.; Rückert, J. A comparison of MQTT brokers for
distributed IoT edge computing. 2020, 352–368.

(14) Banno, R.; Sun, J.; Takeuchi, S.; Shudo, K. Interworking Layer of Distributed
MQTT Brokers. IEICE TRANSACTIONS on Information and Systems 2019,
102, 2281–2294.

(15) An, H.; Sa, W.; Kim, S. Design and Implementation of RPL-based Distributed
MQTT Broker Architecture. Journal of Korea Multimedia Society 2018, 21,
1090–1098.

(16) Longo, E.; Redondi, A. E.; Cesana, M.; Arcia-Moret, A.; Manzoni, P. MQTT-
ST: A spanning tree protocol for distributed MQTT brokers. 2020, 1–6.

78

(17) Fidler, E.; Jacobsen, H.-A.; Li, G.; Mankovski, S. The PADRES Distributed
Publish/Subscribe System. 2005, 12–30.

(18) HiveMQ HiveMQ’s API https://www.hivemq.com/docs/hivemq/4.5/

extensions-javadoc/index.html.

79

https://www.hivemq.com/docs/hivemq/4.5/extensions-javadoc/index.html
https://www.hivemq.com/docs/hivemq/4.5/extensions-javadoc/index.html

	Introduction
	State of the art
	IoT Protocols
	Distributed MQTT

	Software development and implementation
	Protocols
	MQTT
	STP

	HiveMQ
	Development
	HiveMQ-Benchmark
	Flooding
	Subscription Table
	Recap

	Experiments and results
	Scenario Metrics
	Locality

	Test 1: 50 Publishes
	Tree
	Star
	Line
	50 Publishes: considerations

	Test 2: 500 Publishes
	Tree
	Star
	Line
	500 Publishes: considerations

	Test 3: 1500 Publishes
	Tree
	Star
	Line
	1500 Publishes: considerations

	Summary
	Cluster comparison
	Subscription Table in-depth
	End to end Delay
	50 Publishes
	500 Publishes
	Cluster

	Conclusions
	Future Works

