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1. Introduction

In this thesis, it will be presented a study con-
cerning the numerical and experimental char-
acterization of APC(PEKK-FC)/S2 laminates
produced with a hot-press process. This mate-
rial has been commercially available since 2017
and has not been characterized thoroughly. In
particular, a numerical optimization process has
been developed to determine the fracture tough-
ness of uni-directional laminates in a static en-
vironment and a study regarding its fatigue re-
sponse.

2. Experimental campaign

The double cantilever beam is the most used ex-
perimental method to evaluate the mode I frac-
ture toughness. In this particular case, it is used
to study the interlaminar fracture toughness of a
unidirectional laminate. The experimental setup
exploited is coherent with the ASTM standard
[1]. The laminate is produced with a pre-crack
obtained with an insert placed between the two
middle plies. The two external faces of the lam-
inate are attached through hinges to the tensile
test machine.

During the mode I traction the fiber-bridging
phenomena occurred as visible in Figure 1, this
experimental artifact modifies the response of

Figure 1: Fiber bridging

the specimen and drastically changes the prop-
erties of the material. Fiber bridging has histor-
ically been ascribed to next-layer fiber nesting
and weak interfaces. As data reduction method
is used the modified beam theory |7]. The expres-
sion of the energy release rate for this method is
reported in Equation 1.

3PS
GymBr = b (1)

Where P is the load applied, ¢ is the displace-
ment at the load point, a is the crack open-
ing, and b is the specimen width. This is one
of the most conservative methods that overesti-
mate fracture toughness.

The result of this computation on 4 differ-
ent specimens is reviewed in Figure 2. Fiber-
bridging induces an alteration of the fracture
toughness during the experiment. In fact, it en-
hances the mechanical properties of the lami-
nate. The fracture toughness increases during
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Figure 2: Mixed beam theory energy release rate

the crack growth, and it arrives at a constant
value when the process zone is fully developed.
A mode I fatigue test has also been performed,
the configuration of the test is the same as previ-
ously mentioned, however, a cyclic displacement
is applied instead of a quasi-static one. The test
result can be resumed with the Paris law, which
links the fracture toughness to the crack speed
propagation as in Equation 2 as Schon [§].

da
V=
Where da/dN is the crack speed, Gy is the
maximum fracture toughness of the cycle, and
C' and m are fitting parameters. The experi-
mental result and the fitting law are represented

in Figure 3, while the fitting parameters found
are reported in Table 1.
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Figure 3: Experimental fatigue law fitting

Clm?/kJ] | m[-]
0.0229 2.8438

Table 1: Paris law fitted parameters.

3. Static FEM analysis

Simulations are an important element of this
characterization because they reduce the need
for time-consuming and expensive experimental
studies. In this study, it is presented the Fi-
nite element analysis of the DCB test. Various
numerical techniques can be employed for this
crack development study, such as the Virtual
crack closure technique (VCCT) or extended
FEM (XFEM). The crack propagation is mod-
eled with Cohesive elements (CZM). CZM, first
introduced by Hillerborg [4], in the fracture me-
chanics context, is based on the presence of a
layer of particular elements, where the crack
will grow, endowed with a traction separation
law. The most common cohesive law is the bi-
linear one, which has a linear elastic part and
a linear degradation. Due to the occurrence of
the fiber-bridging phenomena and the strong in-
crease of fracture toughness during the test, the
most common law is not suitable. An alterna-
tive can be the tri-linear one, such as the one
proposed by Davila [2]|. In order to achieve a nu-
merical representation most compliant with the
test, it is selected the tri-linear model of Gong
[3], in which the peaks of the two super-imposed
cohesive elements do not coincide. The traction
response, depending on the separation of the el-
ement is described as Equation 3.

t= (1 - Dg)Kod (3)

Where t is the traction, Dg is the degradation
of the element, Ky is the slope of the elastic part
and ¢ is the separation of the element. The dam-
age function is formalized as a piece-wise defined
function, characterized in each part by a slope.
The damage function is written in Equation 4.
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The slopes of the law used in the previous for-
mulation are expressed in Equation 5.

Kos = K1+ Ko
K _ ty — (to + K250)

A8 Lo —to (5)
Kpo = —2
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Parameters Unit Value
K; MPa/mm | 10
Kir MPa/mm -
to MPa 50
trp M Pa 0.7
Gini kJ/m? 1.0
Gss kJ/m? 1.5

Table 2: Cohesive element parameters.

The nomenclature used and the final representa-
tion of the cohesive law are presented in Figure 4
and the parameters used in Table 2.
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Figure 4: Tri-linear traction separation law

The delamination simulation is performed in
Abaqus [9]. The commercial software is used to
build the Finite Element model as presented in
Figure 5. In the image, it is possible to see the
modeling approach.

The traction separation law parameters are par-
tially found in the literature such as the elastic
modulus and partly retrieved from the experi-
mental campaign such as the initial and steady-
state fracture toughness. The material variables
are reported in Figure 5.

Due to the presence of the fiber-bridging phe-
nomena, the fracture process zone does not in-
terest only the crack tip, but all the zone in
which the fibers perform an active resistance to
the detachment. A bi-linear cohesive, due to
the low final separation of the element, is char-
acterized by a small process zone, and it is not
able to describe the process zone length. In this
case, where the elements are active since a high
detachment, the process zone is more represen-
tative of what is observed experimentally. The

Figure 5: 3D FEM mesh and boundary condi-
tions

process zone at the end of the simulation is re-
ported in Figure 6.

Figure 6: Element degradation end of simulation

Cohesive elements are also strictly mesh-
dependent, the right decision in the mesh size is
crucial to obtain an accurate result. In order to
evaluate the mesh goodness of the model differ-
ent models with different mesh refinement have
been implemented and the results are pictured
in Figure 7.
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Figure 7: Load displacement curve

Coarser mesh such as the n°l are far from con-
vergence result and present an aliasing effect due
to the big effect induced by the total degrada-
tion of an elements’ row.

The most refined mesh is used to understand



how much the element size should be small. The
result of this analysis has also good compliance
between the numerical model and the experi-
mental one.

4. Parameters fitting

The further study performed in the thesis has
been the development of an optimization tech-
nique to obtain a numerical response that is
the best representation of the experimental one.
The parameter of merit of the fit between nu-
merical and experimental responses is the error
of the load-displacement curve. The error is for-
malized as Equation 6, which is a global error
on all the domains.

S <PF(61> - Pe<6i)>2 (5,- _ 51»_1)
err = =1 ~ (6)

Where Pr is the load experienced by the FEM
model, while P, is the experimental one.

The algorithm used is the Neldel Mead algo-
rithm [6].

The cohesive law is based on four variables, how-
ever, the optimization is conducted with two of
them considered fixed. In particular the maxi-
mum strength and the separation at which first
the degradation starts are not considered vari-
ables of the problem, in fact, both of them do not
reflect any properties of the material but they
are selected for stability reasons and to preserve
the linear part of the load-displacement curve.
The parameters of the fitting, instead, are the
initial fracture toughness G;,; and the fiber
bridging fracture toughness G gp, so respectively
the red and blue areas of Figure 4. The start-
ing points of the optimization are the initial and
maximum difference of fracture toughness re-
trieved with the modified beam theory.

Figure 8 reports the traction separation law be-
fore and after the parameter fitting.

The main effect of error minimization is the in-
crease in the maximum separation at which the
element fully degrade.

The algorithm finds a path in which the error
reduction is steeper and it follows it until the
reduction ends, then the second parameter op-
timization follows. Firstly it modified the fiber-
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Figure 8: Tri-linear constitutive law optimiza-
tion
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Figure 9: Tri-linear error minimization

bringing toughness because it allows a faster er-
ror decrement, this is related to the error defini-
tion.

In Table 3 the initial and final parameters of the
optimization are reported. Both the parame-
ters have increased their magnitude. Even if the
beam theory overestimates the fracture tough-
ness, the numerical approach requires higher pa-
rameters to catch the results, this shows a small
discrepancy between the numerical model and
the experimental one.

The fitting is also visible from the load-
displacement curve reported in Figure 10.

The error is decreased by the 60% as in Table 4.
The gain is significant and it allows the user to
achieve the best performances of the presented
model in the description of delamination.

Gini [kJ/mQ] GS’S [kJ/mQ]
Initial 1.0 1.6
Final 1.24 1.70

Table 3: Tri-linear cohesive optimization param-
eters.
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Figure 10: Tri-linear

displacement curve

optimized load-

Initial error 1.13

Final error 0.71

Table 4: Tri-linear cohesive optimization param-
eters error.

5. Fatigue modeling

Different strategies could be exploited in order
to model fatigue in a cohesive study. In this
case, to avoid an excessive computational load
for the fatigue analysis the displacement/load
is considered fixed during the fatigue step, and
degradation is only simulated by the cohesive
law depending on pseudo time. So instead of
replicating the cyclic behavior of the test, it used
only the envelope of the load such as Figure 11.
The fatigue implementation is obtained by
adding a fatigue degradation at the cohesive
level. In the fatigue study, the degradation is
composed of the summation of a static contri-
bution and a fatigue one.

D =D, + Dy (7)
In this thesis, Kawashita’s model [5], in a tri-

linear fashion is used for the cohesive elements
in the fatigue analysis.
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Figure 11: Numerical approach to fatigue
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Figure 12: Fatigue tri-linear law
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Figure 13: Crack evolution
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Figure 12 represents the cohesive law of a
single element subjected to a pre-aperture and
then a fatigue step. During the static part it
proceeds as in the previous analysis however
once the fatigue starts, at a constant aperture,
the element starts degrading without further
aperture.

In Figure 13 it is pictured the comparison be-
tween the numerical and experimental curve.
The latter starts with a non-propagating region
of the first cycle and some spikes appear. The
former presents a smooth behavior, character-
ized by a constant decrease of the derivative and
an immediate start of the crack propagation.

The fitting of the curve is more evident in the
last part, where the experimental one arrives in
a stable condition and the simulation is more
significant. The major discrepancy between the
two curves lies in the onset of the crack propaga-
tion, in fact, the numerical model is not able to
predict a quiescent part at the beginning of the
experiment. The laminate experiences a nucle-
ation period in which the crack does not evolve.
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Figure 14: Paris law fatigue

Further steps shall be moved to stem this in-
equality. The presence of spikes or crack acceler-
ation inhomogeneity during the test is expected,
due to the presence of defects, however, the con-
stant crack of the first cycles is common. It is
probably related to the opposition of the mate-
rial to the beginning of energy release.

Figure 14 shows the juxtaposition between the
numerical and the experimental fatigue law.
The behavior and the magnitude of the law ob-
tained are the same for the two scatter. The
compliance in this case is much more relevant
with respect to the crack length. This is caused
by the nature itself of the cohesive element,
which is a function of the Paris law.

6. Conclusions

The study presented focused on the experimen-
tal and numerical characterization of the mode I
delamination of a PEKK /carbon-fiber unidirec-
tional laminate both in static and fatigue condi-
tions. The use of cohesive elements is easy and
highly adaptable, however, they are only suit-
able for problems similar to delamination. Other
numerical tools can be used in a wider variety
of fields, such as XFEM or phase-field. Further
steps could be moved to obtain such results also
with other numerical methods. The study ended
with a parameter fitting for better compliance
between numerical and experimental results. In
recent years optimization algorithms have been
used intensively in structural mechanics in or-
der to design high-performance parts. It would
be interesting to use the same procedure for the
maximization of performances and not only for
parameter fitting. The major lack of this study
is the absence of different modes of delamina-
tion, this should be immediately the next step
of the thesis.
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