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Abstract

Traditionally, wood has been one of the most widely used materials in the construction
of musical instruments, as its high stiffness-to-density ratio makes it an excellent sound
radiator. Some specific kinds of woods, commonly referred to as tonewoods, are held in
high regard, as they tend to exhibit just the right mechanical properties necessary to
produce high quality instruments. The supplies of these woods, however, are especially
prone to shortages due to deforestation or to climate change-related habitat shrinking.
Moreover, even within the same species, wood exhibits high variability in its mechanical
properties, so only a fraction of the samples from an available supply will be suitable for
use in high-end musical instruments. Having the possibility of deliberately engineering
the mechanical behaviour of wood would make sourcing the materials easier and cheaper,
and it would allow for greater consistency across similar instruments.
Searching for a means to achieve this, we look to the field of mechanical metamaterials
for inspiration. Metamaterials are composite materials which exhibit unique mechanical
properties derived from their structure rather than their composition and as such, they
offer a great deal of control over their properties. The starting point of our work is rep-
resented by recent results which show that the mechanical properties of rectangular, thin
wooden plates can be purposefully adjusted by carving them with specific patterns of
holes, effectively creating a 2D wooden metamaterial. In this thesis we investigate the use
of such metamaterials in the soundboards of classical guitars. By way of finite element
simulations, we study their effect on the modal behavior and on the mobility frequency
response of the instrument, and on its ability to sustain the load exerted by the tension of
the strings. Our results show that it is possible, thanks to the metamaterials, to build an
instrument which is overall louder than the traditional design without radically altering
its timbre, and without compromising its structural integrity. As such, metamaterials
have the potential to represent a new and powerful tool in the arsenal of guitar makers.

Keywords: musical acoustics, mechanical metamaterials, classical guitar, finite element
modeling





Abstract in lingua italiana

Tradizionalmente, il legno è sempre stato uno dei materiali più usati nella costruzione
degli strumenti musicali, essendo un materiale al contempo molto leggero e molto rigido,
proprietà che gli permettono di irradiare suono in maniera molto efficiente. Alcuni tipi di
legno sono considerati particolarmente adatti all’uso in strumenti musicali di alta qualità,
poichè tendono ad esibire le proprietà meccaniche ideali allo scopo. La disponibilità di
questi legni, tuttavia, può spesso essere limitata, a causa della deforestazione o del re-
stringimento degli habitat causato dal cambiamento climatico. Il legno, inoltre, presenta
proprietà meccaniche estremamente variabili, anche all’interno della stessa tipologia, per
cui solo una frazione del legno disponibile ha le caratteristiche adatte per l’uso in stru-
menti di pregio. Avere la possibilità di intervenire a piacimento sulle proprietà meccaniche
del legno, dunque, renderebbe l’approvvigionamento di materiali molto più semplice ed
economico.
Con questo scopo in mente, ci rivolgiamo al campo dei metamateriali meccanici in cerca
di ispirazione. I metamateriali sono materiali compositi che presentano proprietà mec-
caniche particolari derivate dalla loro struttura, invece che dalla loro composizione. Il
punto di partenza di questa tesi è un recente studio che dimostra che le proprietà mec-
caniche delle piastre sottili di legno possono essere modificate ad hoc intagliando degli
specifici pattern di buchi, creando così un metamateriale 2D su base legnosa. In questa
tesi studiamo l’uso di tali metamateriali nelle tavole armoniche delle chitarre classiche.
Tramite modellazione a elementi finiti studiamo il loro effetto sui modi di vibrazione e
sulla risposta in frequenza dello strumento, nonchè sulla sua capacità di sopportare il
carico imposto dalla corde in tensione. I risultati mostrano che è possibile, con questi
metamateriali, costruire uno strumento più sonoro senza alterarne radicalmente il timbro
caratteristico e senza comprometterne l’integrità strutturale. Ne concludiamo che i meta-
materiali potrebbero rappresentare uno strumento potente per l’innovazione nella liuteria.

Parole chiave: acustica musicale, metamateriali meccanici, chitarra classica, model-
lazione a elementi finiti
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Introduction

Traditionally, wood has been one of the most widely used materials in the construction
of musical instruments. There are, of course many reasons why this is the case. First
of all, wood is a relatively abundant and highly workable material and, historically, it
would have been readily available to skilled craftspeople who used it to for a plethora of
applications. Moreover, the specific mechanical properties of wood in general (and some
specific kinds of woods in particular) are greatly beneficial for the construction of an
object that must be “loud”, i. e. that must radiate sound efficiently. Indeed wood, by its
very nature, is a material that exhibits remarkable strength and stiffness (along the grain,
at least) despite being generally very light. As we will discuss later, these features are
especially desirable in materials for musical instruments [1, 2]. Thus, wood has come to
dominate many instrument making traditions, and in particular the tradition of European
style stringed instruments, as the undisputed material of choice.
Despite its many advantages, however, this widespread adoption does present some issues.
First of all, not all woods are created equal, and some are better than others when it
comes to their use in musical instruments (or at least they are traditionally regarded
as more desirable). When it comes to the finest instruments, makers are usually quite
selective about the species of woods that they use for the various components. Many
of these prized species can be in short supply due to deforestation or climate-change
related habitat shrinking [3–5]. This issue is compounded by the high variability of the
mechanical properties exhibited by single wood species across different samples [6, 7], as
not all samples of a given species will exhibit the necessary features. This great variance,
together with the increasingly waning supplies, means that sourcing materials with the
desired characteristics for the construction of high quality instruments can prove to be a
difficult task.
Of course the variability in the properties of the material poses an ulterior problem for
makers, that of consistency across different instruments. A luthier could craft many
seemingly identical instruments out of the same materials, with the same techniques and
dimensions, and the great variance in the mechanical properties of the wood could make it
so no two of these instruments would sound the same. While many would argue that this
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only adds to the charm of each individual piece, on the other hand the lack of consistency
prevents the craft from advancing incrementally in a scientific fashion, with the ultimate
result of stifling innovation.

With all this in mind, it’s clear that having the possibility to deliberately intervene on
wood to tune its mechanical response would be greatly beneficial for instrument makers.
First of all, it could allow for a more efficient use of the available supply of wood, as samples
that would otherwise be discarded could be modified to meet the desired requirements.
Instruments could also be manufactured with a wider range of wood species, as woods
that aren’t usually regarded as appropriate could be adapted suitably, and used in place
of other less available types. Greater consistency across different instruments could also
be easily achieved, as individual components could be tuned so that the final structure
exhibits an established target response. Furthermore, new opportunities for the creation
of innovative instrument designs could be opened by a tool or technique capable of giving
makers this new degree of control over the materials they use.

In order to find such a tool or technique, we look for inspiration in the field of mechani-
cal metamaterials. Broadly speaking, a metamaterial is a fabricated composite material
designed either to mimic known material behavior, or to exhibit a completely novel be-
havior uncommon in readily available materials [8]. These composites are usually realized
by embedding artificial inclusions or inhomogeneities in a host material. The appeal of
metamaterials lies in the possibility to directly engineer their properties during fabrication.
When it comes to mechanical metamaterials, the last few decades have seen considerable
advancements in research and innovation [9]. However, very few studies towards the ap-
plications of metamaterials to musical instruments can be found in the literature. One of
the few studies that exist, however, has recently shown that the mechanical properties of
rectangular, thin wooden plates can be purposefully altered by carving bespoke patterns
of circular or elliptical holes, effectively creating a novel tunable wooden metamaterial
[10]. These results are promising, and they represent the main inspiration behind the
present work. Here we set out to study the effect that using similar metamaterials in the
construction of a finished instrument (and in particular the classical guitar) would have
on its mechanical behavior, and whether their use would be feasible and beneficial.

Our studies are conducted entirely via finite element analysis. After having realized a
3D model of a classical guitar, inspired by a traditional design, we produced several
different variations with elliptical holes carved in the underside of the lower bout of the
soundboard, varying the holes’ size and orientation. We then proceeded to perform a
series of modal studies. First, we studied the eigenfrequencies and the eigenmodes of the
soundboards detached from the body, without bracing and in free boundary conditions.
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Then, we added simply supported boundary conditions. We repeated both steps for the
soundboards with bracings, then, finally, we analyzed the modal behavior of the complete
instruments. From the comparison of the effects of the metamaterials in these different
cases, we seek to gauge how significant their impact remains when moving from a simple
free rectangular plate to a plate with a different shape, with bracings, and mounted to
a complex structure. The next part of the work deals with the ability of the instrument
to bear the load imposed by the tension of the strings. We performed a series of static
simulations aimed at assessing if and how the introduction of the metamaterials affects
the stability of the guitar, and how much the soundboard is warped in the different cases.
We also investigated how to correct for these adverse effects by adding thickness to some
of the braces. Finally, we performed a series of frequency domain simulations of the
guitar body, imposing an harmonic load in the bridge area of the soundboard, to recover
the frequency response of the instrument. The resulting driving point mobilities were
compared to understand the effect of the metamaterials on the sound of the guitar.

This thesis is organized as follows:

• In Chapter 1 we cover the relevant theoretical background on the theory of elas-
ticity in solids and on the mechanics of thin plates, with a focus on the specific
properties of wood and on the mechanical parameters which are most relevant for a
stringed instrument’s soundboard. We also give a brief review of the literature on
mechanical metamaterials, and we present the state of the art on their application
to musical instruments.

• In Chapter 2 we describe how the 3D model of the guitar body was created. We
also describe how the hole patterns were created. We then report which wood species
were chosen for the various components and how the model of the materials was
implemented.

• In Chapter 3 we give an exhaustive description of the studies that were performed
and the results that were obtained. We start from a discussion of the modal analyses
that were performed on the soundboard with and without braces and with different
boundary conditions and on the complete body of the instrument. We then move
on to a series of simulations aimed at assessing the behavior of the instrument under
the static load imposed by the tension of the strings. Finally, we report another set
of studies that were performed in order to obtain the mobility response spectrum
of the instruments. In all cases we compare and discuss the results with different
configurations to gain insight into the effect of the metamaterial on the behavior of
the instrument.
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• Finally, in Chapter 4, we elaborate on which conclusions can be drawn from our
results and what possible future developments might be needed to build on the
present work.
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Background

In this chapter we present a summary of the theory of linear elasticity as it pertains to
the mechanical characterization of wood. We then present the equation of motion for the
bending vibrations of thin plates under the assumptions of Kirchhoff-Love’s theory and
highlight the relevant elastic constants for an orthotropic plate. In the following section,
we introduce the sound radiation coefficient, a quantity that has been used in the literature
to quantify the efficiency of sound radiation from plates based only on their Young’s
moduli and densities. We then move on to a brief overview of the literature on mechanical
metamaterials, their historical development, and their applications, largely based on a
review by Yu et al. [9]. This is followed by a discussion on the use of wood in instrument
making, and in acoustical and mechanical metamaterials, before introducing recent results
by Gonzalez et al. [10] on wooden metamaterials and their possible applications to the
manufacture of musical instruments. These results are of particular relevance here, as
they represent the main inspiration behind the present work.
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1.1. Mechanics of linear elastic materials

1.1.1. The elasticity tensor and the elastic properties of solids

As far as the stresses and strains involved that are concerned in most structural vibrations,
including those at play in stringed musical instruments under normal operating conditions,
we can safely assume to be in the elastic domain of the structure’s materials. This term
[11] refers to the region in the material’s stress space where variations in the stresses
only lead to variations in the elastic strains, i. e. the strains associated with reversible
deformation. Under these conditions, the stress-strain relationship is linear, taking the
form of a generalization of Hooke’s law to continuum mechanics:

σij = Aijklεkl (1.1)

where σij is the stress tensor and εkl is the strain tensor. The fourth-rank tensor Aijkl is
the so called elasticity tensor, and it completely characterizes the elastic behavior of the
material. It has 81 distinct components, but as a consequence of the symmetry of the
stress and strain tensors, for an anisotropic elastic material this number is reduced to 21,
which allows us to represent it as a symmetric 6× 6 matrix.
The simplest situation is that of an isotropic elastic material, i. e. a material whose
elastic properties are the same in all directions. In this case, the number of independent
components drops down to two: in terms of the Lamé parameters λ and µ, (1.1) becomes,
using Voigt notation:

σxx

σyy

σzz

σzx

σyz

σxy


=



λ+ 2µ λ λ 0 0 0

λ λ+ 2µ λ 0 0 0

λ λ λ+ 2µ 0 0 0

0 0 0 2µ 0 0

0 0 0 0 2µ 0

0 0 0 0 0 2µ





εxx

εyy

εzz

εzx

εyz

εxy


(1.2)

The elastic tensor in (1.2) can also be defined in terms of two commonly used properties
which can be readily measured on samples of the material: the Young’s modulus E and the
Poisson’ratio ν. These, together with the second Lamé parameter µ, which in the context
of solid mechanics is more commonly called shear modulus and denoted by the letter G,
will be the parameters we will use to define the elastic properties of the wood in the
numerical model. Let us therefore introduce briefly their definitions and interpretations.
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First of all, the Young’s modulus is defined as the ratio between stress and strain under
uniaxial loading, where only one normal component of the stress and strain tensors is non
null:

σxx = Eεx (1.3)

As such, this parameter describes the compressive stiffness of the material. For an
isotropic material, the Young’s modulus can be written in terms of the Lamé parame-
ters as E = µ(3λ+2µ)

λ+µ
.

A sample subject to uniaxial loading, however, doesn’t undergo deformation only in the
direction of the applied stress, but also in the transverse directions. This is what is re-
ferred to as the Poisson’s effect, and its extent is described by a dimensionless parameter
called Poisson’s ratio, denoted by the letter ν and defined by the following relations:

εyy = −ν
σxx

E
, εzz = −ν

σxx

E
(1.4)

For an isotropic material, the Poisson’s ratio can also be written in terms of the Lamé
parameters, in the form ν = λ

2(λ+µ)
. Thus, specifying both E and ν is enough to completely

define the elastic tensor in (1.2).
Finally, the shear modulus G is defined by the relation between shear stresses and shear
strains; for instance, for the x and y components [12]:

σxy = 2Gεxy (1.5)

As already mentioned, in an isotropic elastic material G = µ. It’s also useful to report
the expression of G in terms of E and ν, which reads G = E

2(1+ν)
.

1.1.2. Wood as an orthotropic elastic material

While many materials can be modelled effectively as isotropic with regards to their me-
chanical properties, wood is not one of them. However, even in anisotropic materials some
symmetries can be found which reduce the number of independent parameters needed to
fully specify their elastic properties. This applies to wood as well, which can be considered
to be orthotropic.
A medium is said to be orthotropic with respect to a given property if said property is
invariant under rotation on two orthogonal planes (which implies rotational symmetry
on the third orthogonal plane as well). The axes of symmetry for these planes are the
principal axes of the material. This kind of symmetry makes it so that the elasticity
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tensor only has 9 independent components. Equation (1.1) takes the form:

εxx

εyy

εzz

εzx

εyz

εxy


=



1
EL

−vRL

ER
−vTL

ET
0 0 0

−vLR

EL

1
ER

−vTR

ET
0 0 0

−vLT

EL
−vRT

ER

1
ET

0 0 0

0 0 0 1
2GLT

0 0

0 0 0 0 1
2GTR

0

0 0 0 0 0 1
2GRL





σxx

σyy

σzz

σzx

σyz

σxy


(1.6)

where the subscripts L, R and T refer to the principal axes of wood, which are identified
by the directions of the fibers and of the growth rings, as shown in Fig. 1.1. The 12

Figure 1.1: The three principal axes of wood, from [13]. The picture shows the direction
of the fibers, which coincides with the longitudinal axis, and the growth rings, which are
perpendicular to the radial axis.

constants appearing in (1.6) (three Young’s moduli, three shear moduli, and six Poisson’s
ratios) are not independent of each other; the Young’s moduli and Poisson ratios are
related by the following equations:

νij
Ei

=
νji
Ej

, i ̸= j, i, j = L,R, T (1.7)

To fully characterize the elastic behavior of wood, therefore, it is sufficient to specify the
shear and Young’s moduli and three of the Poisson’s ratios.

1.2. Mechanics of thin wooden plates
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1.2.1. Equation of motion for bending vibration

The preceding discussion regards the elastic deformation of the bulk material in all three
spatial dimensions. However, an object where one of the dimensions is significantly shorter
than the others (such as a guitar soundboard) can be accurately described as a 2D system.
The most common model used for the description of bending vibrations in such systems is
Kirchhoff-Love’s theory of thin plates. Under these assumptions, the equation of motion
for an homogeneous and isotropic plate is written as [14]:

ρh
∂2w

∂t2
+D∇4w = 0 (1.8)

where w is the out-of-plane component of the displacement, ρ is the material’s density, h
is the plate thickness, and the symbol ∇4 denotes the square of the Laplacian operator.
The constant D, sometimes referred to as the plate’s bending stiffness, is defined as
D = Eh3

12(1−ν2)
.

For an orthotropic plate, the elastic properties differ in the x and y directions. As such,
(1.8) becomes:

ρh
∂2w

∂t2
+D1

∂4w

∂x4
+D3

∂4w

∂y4
+ (D2 +D4)

∂4w

∂x2∂y2
= 0 (1.9)

where the stiffness constants are defined as:

D1 =
Exh

3

12 (1− νxyνyx)
, D2 =

Exνyxh
3

6 (1− νxyνyx)
=

Eyνxyh
3

6 (1− νxyνyx)
,

D3 =
Eyh

3

12 (1− νxyνyx)
, D4 =

Gxyh
3

3

(1.10)

The bending vibrational properties of orthotropic thin plates is therefore governed by
four elastic constants: the Young’s moduli along the two in-plane principal directions,
the in-plane shear modulus, and either one of the two Poisson ratios νxy and νyx. Gui-
tar soundboards are usually made of quarter-sawn wood, where the in-plane principal
directions correspond to the longitudinal and radial axes, as shown in Fig. 1.2.

1.2.2. Sound radiation: a merit index

Having estabilished a model for the study of thin plates, we now ask ourselves how the
properties of the material influence the sound generated by such a structure. In the
literature on the topic [1, 2] we can find a proposed merit index for the efficiency of the
sound radiation, which only depends on the Young’s moduli and density of the plate’s
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Figure 1.2: Comparison of a quarter sawn (left) and a plain sawn board, showing the
reference frame of the principal axes of the wooden log. Image from [15].

material. This is a good target metric for acoustic instruments, as a poor efficiency of
transduction between the mechanical and acoustic domain cannot be compensated by
electrical sound reinforcement. In the following we present an argument for the definition
of the index taken from [1].
The loudness of the sound radiated from a plate-like structure (such as a soundboard)
is directly related to the magnitude of its mechanical admittance (also referred to as
mobility), which is defined in the frequency domain as:

Y(ω) =
v(ω)

F(ω)
(1.11)

where v(ω) and F(ω) are the velocity on the plate’s surface and the applied force, re-
spectively. In general these are taken at any point on the plate, but we will restrict our
discussion to the driving-point admittance, i. e. the admittance obtained by taking the
velocity at the point where the force is applied. This point in stringed musical instruments
will correspond with the location of the bridge, as we will discuss in Chapter 3.
From [16] we know that the mean value of the driving-point admittance for a finite plate
coincides with the driving point admittance for an infinite plate. For an isotropic plate
this is:

Y =
1

4h2

√
3(1− ν)

Eρ
(1.12)

We seek to alter the parameters in (1.12) in order to increase the value of Y . However,
we cannot do so indiscriminately: an instrument’s soundboard is carefully tuned to have
a specific “signature" frequency response, and this is a feature that we want to preserve
if we want to produce an instrument that sounds as expected. The tuning is primarily
done by adjusting the thickness of the plate. As a measure of the tuning we will take the
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modal density, which for an isotropic plate this can be written as:

n(ω) =
A

2πh

√
3(1− ν)

E
(1.13)

where A is the area of the plate. Having fixed the modal density, (1.13) defines the
required thickness h. We can then substitute h in (1.12), finding that Y ∝

√
E/ρ3. We

can thus define the sound radiation coefficient as1:

R =

√
E

ρ3
(1.14)

Raising this quantity will increase the mean value of the admittance, resulting in a “louder"
plate. The definition of this index underscores the necessity for materials that are both
very stiff and very light. As one would expect, woods typically used in the manufacture
of soundboards tend to have remarkably high values of R. However, the last few decades
of developments in materials engineering have opened the possibility of deliberately con-
trolling these parameters, as we will see in the next section.

1.3. Mechanical metamaterials

A metamaterial is a fabricated composite material designed either to mimic known ma-
terial behavior, or to exhibit a new behavior that isn’t commonly observed in readily
available materials [8]. These composites are often realized by way of artificially fab-
ricated inclusions or inhomogeneities embedded in a host medium or connected to or
embedded on a host surface. Their appeal lies in the potential to deliberately engineer
their physical properties for a wide variety of applications.
The concept of metamaterial first appeared in optics [17, 18], but it was soon applied
to acoustics and mechanics [19, 20]. Our interest in the present work is mainly in the
applications of these concepts to mechanics. Mechanical metamaterials differ from regular
composites in that, ultimately, their mechanical properties depend on the geometries of
their subunits rather than from their material composition [9]. In the past decades, a
wide variety of such materials has been developed, exhibiting a wide array of enhanced
mechanical properties: materials with zero or negative Poisson ratio [21, 22], vanishing

1For an orthotropic material the definition is

R =
[ExEy]

1/4

ρ3/2
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shear modulus [23], negative stiffness [24], negative compressibility [25] and many other
properties that aren’t observed in conventional materials.
The manufacturing of musical instruments is far from the only context in which materials
that are simultaneously very stiff and very light can be useful. Indeed, many different
classes of metamaterials exhibiting remarkable stiffness-to-density ratios have been de-
veloped [26], varying widely both in their construction and in their mechanical behavior.
Examples include micro/nanolattices, chiral metamaterials, origami-like metamaterials
and hierarchical metamaterials [9].

Figure 1.3: (a) Octet-truss unit cells packed into a cubic microlattice [26]. This material
exhibits vary high stiffness-to-density ratio. (b) 2D periodic porous structure, from [21].
The mechanical properties of this structure can be controlled by compressing it.

When it comes to the use of metamaterials in the construction of musical instruments,
research is very scarce. To the best of our knowledge, only two works exist. One is a
work by Bader et al. [27], where the authors apply a ring of masses to the membrane of
a frame drum, leading to a cloaking behavior. The other one is a work by Oñate et al.,
that shows that the application of a sample of a tunable mechanical metamaterial to the
soundboard of a guitar can modify the acoustic power spectrum of the instrument.

1.3.1. New materials for musical instruments

Wood has traditionally been the material of choice for musical instruments, and for good
reason: we have already discussed how it is particularly well fit for structures that need to
radiate sound efficiently. However, the use of wood in this context doesn’t come without
problems.
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R

L

b

a

Figure 1.4: Example diagram of a wooden plate carved with a pattern of elliptical holes,
from [10]. The image shows a periodic pattern obtained by the repeated juxtaposition of
a unit cell. The authors varied the holes’ size, aspect ratio and orientation to investigate
the effect of these changes in the geometry on the elastic behavior of the plates.

First of all, not all woods are equally apt for use in musical instruments, with regards to
their physical properties. Even fewer are those that are widely adopted, for a mixture of
technical reasons, aesthetic considerations, and desire to adhere to tradition. The supply
of these varieties of woods (commonly referred to as tonewoods) is prone to shortages due
to deforestation [3] or to climate change-related habitat shrinking [4, 5]. Thus, sustain-
able sourcing of tonewoods is already an issue for makers, and it could become harder
in the coming decades. All of this is compounded by a second problem, that of the high
variability of physical properties between different samples of the same wood [6]. This
further restricts the availability of high quality tonewood. Moreover, even within selected
woods for musical instruments, the variation in density and mechanical constants can be
as high as 20% [7], which represents an inconvenience for manufacturers who could benefit
from a material that performs reliably across different samples.
In light of these issues, it’s clear how finding suitable substitute materials could be of great
use for guitar makers. Many have been using carbon fiber in their instruments [28, 29].
Composite materials have also been used commercially, as in the case of Ekoa®, devel-
oped by Blackbird Guitars [30]. In the academic literature we can find at least one work
proposing the use of a composite with adjustable mechanical properties [31]. However,
our interest throughout this work isn’t to find a strictly new material for the manufacture
of musical instruments, but rather to investigate how we can modify thin wooden plates
in order to control and enhance their vibroacoustic properties. This approach has the
advantage of meeting the current aesthetic and tonal preferences of luthiers and players,
while still offering the possibility to make better use of the existing supply of wood by
artificially improving the grading of samples that don’t meet requirements. Such improve-
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ments could be achieved by using wood as a substrate for the development of mechanical
metamaterials.

1.3.2. Wooden metamaterials

Most of the examples discussed in our brief review on metamaterials are constructed out
of polymers and man-made materials. Nevertheless, examples of the use of wood as a
substrate for metamaterials can be found in the literature, both in structural [32] and
acoustical [33] applications. The present work is predominantly inspired by the findings
in [10], where the authors show, first by way of simulations and then with experiments,
that the effective elastic parameters of rectangular thin wooden plates can be selectively
adjusted by carving patterns of holes such as those shown in Fig. 1.4. The authors stud-
ied various geometries of such hole patterns, all with elliptical holes in a lattice with a
square unit cell with a 20 mm long side. The holes’ sizes, aspect ratios, and orientation
were varied independently throughout the study to investigate how changing them would
affect the mechanical properties of the plates. The ultimate aim here is to understand
whether it’s possible to use these geometrical parameters to tune the mechanical response
of a wooden plate. Both the simulations and the experimental results suggest that this
is indeed the case. In particular, it seems that it’s possible to obtain a strong reduction
in density accompanied by a comparatively low decrease in stiffness, in particular for
the case of elliptical holes oriented with their major axis parallel to the longitudinal axis
of the wood (see Fig. 1.5). This, as already discussed, is desirable in soundboards for
stringed instruments, and it results in an increase of the sound radiation coefficient R for
increasing hole size.
As promising as the results are, they have been obtained for the case of rectangular plates
in free boundary conditions. Musical instrument soundboards are less straightforward
systems: they usually have more complex shapes, they are mounted to and interact with
the instrument’s main body, and they they’re almost always reinforced with braces, as
is the case for the piano and the guitar. These factors lead us to question whether the
expected improvements introduced by the use of metamaterials would translate clearly
to a finished instrument. Therefore, studies about metamaterial structures in complete
musical instruments are needed to evaluate if such designs are feasible and/or beneficial.
At the time of writing, the only such study is Marelli’s master thesis [34], which is about
the use of wooden metamaterials like the ones we described in the tapa of a cajón pe-
ruano. The tapa is a rectangular plywood board, without braces, so it’s very similar to
the rectangular plates we have just seen. The metamaterial tapas exhibit the expected
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mechanical behavior on their own, but the results are less clear-cut for the simulations of
the complete instrument coupled with the acoustic field. The differences in the frequency
response with respect to the regular instrument are hardly appreciable, and the most
noticeable changes are in the modal shapes at high frequencies.
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Figure 6: Effects of changing the aspect ratio for different effective densities. The cell diagram on the left side shows the meaning of the
colours in each vertical line: black is the unit cell with circular holes and the further away from it, the larger the aspect ratio for longitudinal
(in red) or radial (orange) ellipses. (a) Longitudinal and radial elasticity. (b) Anisotropy ratio. (c) Acoustic radiation.

For the rest of the paper we will only focus on the216

eigenfrequencies of the modes associated to the longitudi-217

nal and radial stiffness, namely f0,2 and f2,0, disregarding218

the variation in the modal shapes.219

3.2. Effective density ρ′ (Circular holes)220

Figure 5 shows the variation in the quantities of interest221

caused by different sizes of circles (i.e., different effective222

densities). Young’s Moduli increase as we decrease the223

circle size. The experiments show a maximum decrease224

of 78% in the longitudinal direction and 76% in the radial225

direction, reaching 1.96 [GPa] and 0.27 [GPa] respectively.226

On the other hand, both the anisotropy ratio and the227

acoustic radiation show an increase of 14% and 85% over228

the original, respectively. The anisotropy ratio shows a229

maximum value of 0.146 while the acoustic radiation reaches230

23.13 [m4/kg·s].231

3.3. Aspect ratio232

A straightforward improvement appears as soon as the233

aspect ratio is not constant, changing the hole in the unit234

cell to an ellipse. By keeping the area of the hole con-235

stant and varying the aspect ratio we can study how the236

geometry of the hole affects the stiffness.237

Figure 6 shows the behaviour of the quantities of inter-238

est for different aspect ratios and effective densities, both239

for ellipses parallel and orthogonal to the longitudinal axis.240

It is remarkable to see that now, in contrast with the cir-241

cular holes, for every effective density there is an interval242

of reachable values instead of just a point, effectively in-243

creasing the dimensionality of the parameter space we can244

cover.245

The longitudinal stiffness E′L shows maximum and min-246

imum variation of 81% and 11%, reaching 1.72 [GPa] and247

7.96 [GPa] respectively. On the other hand E′R varies be-248

tween maximum and minimum variations of 79% and 3%,249

reaching 0.24 [GPa] and 1.10 [GPa].250

While with circular holes the anisotropy ratio and acous-251

tic radiation always increase, changing the aspect ratio and252

orientation it is possible to decrease both values. With el-253

lipses perpendicular to the longitudinal direction the value254

of E′R/E
′
L increases up to 0.377 with a maximum variation255

of 195%. Ellipses parallel to that direction decrease the256

anisotropy ratio by 46% with a value of 0.068.257

The acoustic radiation changes in the opposite way. El-258

lipses perpendicular to the longitudinal direction decrease259

the value by a maximum variation of 38% at a value of260

7.72 [m4/kg·s]. The value with longitudinal ellipses in-261

creases up to 95% at a value of 24.39 [m4/kg·s].262

3.4. Angle variation263

Now we focus our attention on the dependence of the264

stiffness and both acoustical factors on the angle with re-265

spect to the longitudinal direction at which the ellipse is266

positioned.267

Figure 7 shows changes of the quantities of interest for268

three different effective densities, each one with the maxi-269

mum aspect ratio such that the ellipse fits inside the unit270

cell, rotating the ellipses from 0 to π. The shaded area cor-271

responds to values reached rotating different areas of the272

Figure 1.5: Variation of the longitudinal and radial Young’s moduli of the plates when
varying the aspect ratio of the holes, for different effective densities, from [10]. The terms
“longitudinal" and “radial", here as well as in later chapters, refer to the orientations of
the holes’ major axes with respect to the principal axes of the wood, as shown in the
diagram reported alongside the graph. For the longitudinal modulus, the introduction of
the holes results in a lowering of the value. The effect is compensated when the major axis
of the ellipses is parallel to the longitudinal axis of the plate’s wood, and it is accentuated
when it’s parallel to the radial axis. For the radial modulus, we see an analogous effect.
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Guitar

This chapter describes the process of creating a 3D reference model of the guitar body.
This was done using Autodesk Fusion 360®, a commercial CAD + CAM software.
Much of this model, and in particular the strutting of the soundboard, follows a traditional
design by Antonio de Torres, as described in [35]. Torres, whose work spans the second
half of the 19-th century, is widely credited with perfecting and popularizing the so-called
"fan"-strutting design, which has since become a staple of classical guitar construction.
An exhaustive account of Torres’s life and works has been given by luthier José Romanillos
in [36] .
A detailed description of how the hole patterns that make up the metamaterial were
realized is also given, as well as a description of the choice of the woods for the various
components and the related elastic constants.
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2.1. Construction of the classical guitar’s body

The guitar, as most musical instruments, is a sophisticated piece of fine craftsmanship,
constructed by careful assembly of many individual components (see Fig. 2.1). To build
a numerical model, some degree of simplification is going to be needed, and this applies
to our case too: accordingly, we modeled, first of all, only the main part of the body,
omitting the neck and the strings, as we are primarily interested in the efficiency of the
mechanoacoustical transduction from the body and soundboard. We are also included
a model of the bridge, but it has only been used in stationary simulations, as will be
explained in Chapter 3.
Further adaptations have been made both for ease of modeling and as a way to reduce
the amount of fine geometrical detail of the model, which results in added computational
cost in the FE simulations. For instance, the linings at the joints between the ribs and
the back/top plate have been ignored. Moreover, while guitar makers will usually vary
the thickness of the soundboard and of the back plate throughout their extent, constant
thicknesses were used here in both plates. Finally, whereas most handcrafted instruments
will exhibit a curvature both in the top and in the back plate, the former has been modeled
completely flat. The curvature of the back plate, however, has been included, since it is
usually more pronounced.

2.1.1. The outline

The outline was obtained by tracing the drawing in Fig. 2.2 and interpolating with spline
curves. This design, as reported in the drawing, has a length of 483 mm, while the width
is 272 mm at the upper bout, 235 mm at the waist, and 360 mm at the lower bout.

2.1.2. Soundboard and bracing

The soundboard was obtained via extrusion from the outline. It is 2.5 mm thick and it
has a circular soundhole with a radius of 42.5 mm.

The bracing has also been designed following closely the drawing in Fig. 2.2.The "fan"-
struts, "V"-struts and the three struts in the upper bout have been left flat on top, whereas
many makers would work them to have a curved or triangular section. The harmonic bars
have a rectangular section as well, and they have been scalloped towards the ends.
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Figure 2.1: Exploded view of a classical guitar, from [37].
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Figure 2.2: Soundboard drawing used as a reference, from [35]. This is in turn modeled
after a Torres guitar from 1864. All the dimensions in the figure are in mm.

Figure 2.3: Bottom view of the soundboard model with the bracing.
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2.1.3. Back

Figure 2.4: Model of the back plate, showing the three transverse braces, and the rein-
forcing strip.

The back was modeled with a thickness of 2 mm and a spherical arching of 16′ (=4.8768
m). The arching is offset towards the lower bout, so that the soundbox is deeper at the
tail than at the heel.
Three transverse bars were added, as well as a reinforcing strip. The latter runs along
the main axis of the instrument, and it is meant to reinforce the joint between the two
book-matched pieces that compose the plate. It is 15 mm wide and 3 mm thick.
The back braces, on the other hand, are meant to add rigidity to the back in the transverse
direction. They are 6 mm wide and 15 mm thick, and they have a rounded profile and
scalloped ends.

2.1.4. Ribs, tail block and heel block

The ribs are also 2 mm thick; their height at the tail is 94 mm, while their height at the
heel is 88 mm.
Two reinforcing blocks are placed at the joints between the ribs. The tail block is 20x18
mm in section; the heel block is 20x80 mm at the top, and it tapers towards the bottom,
where it curves into a horizontal piece over that extends towards the joint strip. The
models of the tail and heel blocks and of the ribs can be seen, assembled with the back
plate in Fig. 2.5.
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Figure 2.5: Model of the ribs and blocks, assembled over the back plate.

2.1.5. Bridge

Figure 2.6: Model of the bridge.

A simplified model of the bridge has also been included for the stationary simulations
aimed at studying the deformation of the top plate under the tension of the strings. Here
the bridge design has been reduced to a rectangular block with two rounded arms on each
side, as seen in Fig. 2.6.

2.2. Parametric Model of the metamaterial top

The reference models of the soundboard and of the complete body designed with Autodesk
Fusion 360® have then been exported as STEP files. The finite element simulations in
this work are all performed with the COMSOL Multiphysics® software [38], as detailed in
Chapter 3; this software, however, also has built-in CAD capabilities. Taking advantage
of these features, we used COMSOL software to import the STEP file of the reference



2| Building a 3D Model of the Guitar 23

Figure 2.7: Diagram showing the underside of the solid top plate, as well as those with
longitudinal (left) and radial (right) holes. The arrows show the directions of the longi-
tudinal (L) and radial (R) axes of the plate’s wood. The colors mark the height of each
surface with respect to the lower surface of the plate.

guitar model, and to modify it by generating parametrically the patterns of perforations
in the guitar’s top plate that are the main object of study of the present thesis. This
allowed us to perform parametric sweeps in COMSOL that let us launch simulations over
many different choices of hole patterns with a single command, simplifying the workflow.
The hole patterns are generated by juxtaposition of several copies of the same unitary
cell (see Fig. 2.8) over the lower bout of the soundboard. The cell is rectangular, with
a size of 26×12 mm for all simulations, but we distinguish between two kinds of holes
based on its orientation: here and throughout the rest of this work, when the long side is
parallel to the longitudinal axis of the soundboard’s wood, we’ll talk about longitudinal
holes, while when it’s aligned with the radial axis, we will talk about radial holes. The
choice of these two orientations has the aim of studying whether the effect of changing
the angle of the holes on the effective mechanical properties of wooden plates, observed
in [10], would translate to the finished instrument.
The holes themselves are elliptical in shape, and they are centered with respect to the cell.
In the reference cell (Fig. 2.8), the semi-major axis a is 10 mm long, while the semi-minor
axis b is 2.5 mm long. The size of the holes is changed via a single parameter p ≤ 1 that
scales both a and b simultaneously, keeping the aspect ratio fixed.
Finally, the modification of the soundboard is completed by carving the holes in the
underside of the plate by extruding the ellipses to a depth of 2 mm and deleting the
intersections between the resulting extrusions and the soundboard.
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Figure 2.8: Unit cells with three different hole sizes. The hole size is varied with a scaling
parameter p ≤ 1, while both the aspect ratio of the holes and the size of the cell are kept
constant.

2.3. Wood choice and mechanical properties

Figure 2.9: 3D cut view of the model of the instrument’s body, showing all the individual
components and the material that was chose for the main parts.

Several wood species have historically been used in guitar making, with choices varying
depending on the time of manufacture, on location, on wood availability and on the partic-
ular instrument’s intended use. Although red cedar is also widely adopted, the traditional
choice for classical guitar soundboards is spruce. Among the wide variety of wood species
that exist, spruce is one of those that exhibit the best combinations of high stiffness and
low density, while still being strong enough to withstand the tension of the strings [1].
This makes it an excellent choice for the principal sound producing component of the gui-
tar. Traditionally, spruce for guitar soundboards would be sourced from Central Europe;
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however, measurements on average material properties for North American varieties are
more readily available [13], so we used data for Engelmann spruce (Picea engelmannii),
which is also commonly used in classical guitars [35]. We used the same material for the
braces and the harmonic bars in the top too.
For the back plate and the ribs many choices are available: for instance, cypress is com-
mon, especially in flamenco guitars, and maple, while out of fashion in contemporary
guitars, has occasionally been used in the past. However, the favourite choice for concert
guitars is by far rosewood, both the Brazilian (Dalbergia nigra) and East Indian (Dalbergia
latifolia) types. Despite this, due to a lack of data regarding properties in the directions
perpendicular to the longitudinal axis we have decided not to use rosewood for the back
and sides, and to use another species which is also a common choice for these components,
mahogany. This material is also used for the back braces. Rosewood is still used for the
bridge, and its tranverse properties are approximated to be analogous to those observed
in other species [39].
Apart from this exception, all material properties are taken from [13], and their values
are reported in Table 2.1. The choices of materials for the components of the instrument
are also illustrated in Fig. 2.9, alongside a 3D cut view of the instrument’s body.

Density [kg m-3]
Spruce 350
Mahogany 450
Rosewood 609

Young’s Moduli [GPa]
EL ER ET

Spruce 9.79 1.253 0.578

Mahogany 10.12 1.083 0.648

Rosewood 15.8 1.64 0.820

Shear Moduli [GPa]
GLR GRT GLT

Spruce 1.214 0.0979 1.1748

Mahogany 0.668 0.283 0.870

Rosewood 1.52 0.351 1.52

Poissons’s Ratios
νLR νRT νLT

Spruce 0.422 0.530 0.462

Mahogany 0.314 0.600 0.533

Rosewood 0.3 0.35 0.35

Table 2.1: Properties of the materials chosen for the simulations. For each of the mate-
rials we define 9 constants, which, as explained in Chapter 1, are enough to completely
characterize its elastic behaviour.
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In this chapter, we describe the simulations that were performed with the numerical model
of the guitar and present their results. These simulations represent an exploration of the
effect of the use of wooden metamaterials in the finished instrument on its mechanical
behavior. First, a modal analysis of the soundboards in free boundary conditions and
of the complete guitar bodies is presented, comparing the natural modes and frequencies
for the different choices of holes with those for the solid top and with each other. Next,
we describe a series of stationary simulations aimed at studying the deformation of the
soundboard under the tension of the strings. Finally, we report on the frequency domain
simulations which were conducted in order to evaluate the driving point mobility of the
instrument’s body in the area under the bridge.
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3.1. FE Analysis in COMSOL Multiphysics®

The finite element simulations were all performed with COMSOL Multiphysics® software
[38]. As already explained in Chapter 2, the models of the soundboard and of the complete
instrument designed with Fusion 360® were imported in COMSOL and, when needed,
modified with the desired hole patterns for the simulations. The elastic constants of the
materials were then properly specified as detailed in Section 2.3, taking care of defining
correctly the directions of the principal axes for all the components. The models were
discretized with 3D solid elements, using the Solid Mechanics interface from COMSOL’s
Structural Mechanics Module [40]. The mesh was generated by the software using a
mixture of unstructured free tetrahedral mesh parts and structured swept mesh parts
(both from triangular and quadrilateral surface meshes).

3.2. Eigenfrequency simulations for modal analysis

Unbraced 
soundboards

Braced
soundboards

Complete 
guitar body

• free
• simply supported

• free
• simply supported

Free rectangular
plates

Background (Gonzalez et al.)

Present work

• free

Figure 3.1: Diagram of the workflow for the eigenfrequency simulations. The results
in [10] have been obtained by studying the modal behavior of free rectangular plate.
To investigate possible applications to guitar soundboards, we performed eigenfrequency
studies on the soundboard by incrementally adding elements, increasing the complexity of
the structure from the free unbraced plate toup to the complete body of the instrument.
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The first studies that were performed are a series of eigenfrequencies simulations, aimed at
characterizing the vibrational behavior of the soundboard and of the instrument through
modal analysis. We focused our attention at first on the metamaterial soundboards alone,
with and without braces, both in free and simply supported boundary conditions, and
then applied the same analysis to the complete body of the instruments. A diagram
illustrating the workflow has been reported in Fig. 3.1. We seek not only to gain insight
into the effect of the metamaterial on the mechanics of the soundboard, but also into how
they compare to those introduced by the addition of the braces and the interaction with
the ribs and the back plate.

3.2.1. Modal analysis of the free, unbraced plates

Figure 3.2: Mode shapes of the unbraced solid soundboard in free boundary conditions
for the 5 lowest eigenfrequencies, in ascending order from left to right.

First of all, eigenfrequency simulations were performed with the unbraced soundboard in
free boundary conditions. The first 12 eigenfrequencies and corresponding modal shapes
were computed for various hole sizes, both with radial and longitudinal orientation, and
the results were compared to those obtained for the solid soundboard (without perfora-
tions). The modal shapes corresponding to the 5 lowest eigenfrequencies of the solid plate
can be seen in Fig. 3.2. Fig. 3.3 shows the computed eigenfrequencies with longitudi-
nal (p=1) and radial (p=1) holes as well as those of the solid plate. The effect, overall,
appears to be a slight decrease in the value of the eigenfrequencies, more accentuated
in the case of the radial holes. This trend is confirmed by Fig. 3.4, which shows the
percentage variation of the eigenfrequencies relative to the solid plate, for all the choices
of hole size and orientation that were simulated. In most cases, we observe lowering of the
frequencies, an effect which is strengthened with increasing hole size, and appears more
pronounced for the radial holes. Another interesting effect is revealed by the variation of
the frequencies for modes 2 and 3. These are related to the fundamental cross grain and
long grain modes for a free rectangular wooden plate, whose frequencies are respectively
proportional to

√
ER and

√
EL [41]. We expect the frequencies of modes 2 and 3 of the
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Figure 3.3: First 12 eigenfrequencies for the free, unbraced soundboard, with longitudinal
holes (p=1), radial holes (p=1) and in the case of the solid plate.

free unbraced soundboard to be similarly related to its effective elastic moduli, so we can
gain insight into the effect of the different hole sizes and orientation on these parameters.
For mode 2, we can see how the variation is more pronounced in the case of the longitu-
dinal holes (-7.1% for p = 1) than the case of the radial holes (-3.4% for p = 1). This
points to sharper decrease in the effective value of ER with longitudinal holes compared
to the radial holes. Conversely, for mode 3 we see the opposite effect, with an even starker
contrast: with longitudinal holes the frequency is only slightly lowered (-1.4% for p = 1),
while there is a significant decrease with radial holes (-10.6% with p=1). In turn, this
points to a more pronounced decrease in the effective value of EL in the case of the radial
holes, compared to the longitudinal holes. Notably, this is the same trend observed in
rectangular wooden plates in [10].

The modal shapes are compared with the Modal Assurance Criterion (MAC)[42], a widely
used indicator which offers a quantitative measure of consistency between pairs of modal
vectors. Fig. 3.5 shows the matrices of the MAC coefficients comparing the modes of the
plates with longitudinal (p=1) and radial (p=1) holes with the modes of the solid plate.
It’s immediately apparent that most modal shapes are not significantly modified by the
introduction of the metamaterial, since we have values close to unity in the diagonal, and
close to zero outside. The only deviation in the case of the longitudinal holes appears
for modes 9 and 10; however, given the high values of the coefficients (9,10) and (10,9),
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Figure 3.4: Percentage variation of the eigenfrequencies for the unbraced plates in free
boundary conditions, with different hole sizes and orientations, with respect to the eigen-
frequencies of the solid plate.

this appears to be a simple mode switch i. e. a case where the eigenfrequencies of two
modes cross each other changing the ordering of the mode pair. For the radial holes we
have a slightly more complex situation for what concerns modes 9, 10 and 11. First of
all, mode 9 of the metamaterial plate still appears mostly correlated to mode 9 of the
solid plate, but with coefficient (9,9) being ∼ 0.6 and coefficients (9,10) and (11,9) being
∼ 0.3, it’s evident that the modal shape has been modified to a significant degree. For
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Figure 3.5: Matrices of the MAC coefficients between the modal shapes of the free, un-
braced metamaterial soundboards, and the modal shapes of the solid plate. On the left
the matrix for the case of the longitudinal holes (p=1), on the right the one for the case
of the radial holes (p=1).

what concerns modes 10 and 11, then, we can identify a mode switch, but given a value
of ∼ 0.7 for coefficient (11,10), plus the non-negligible values of coefficients (9,10) and
(11,9), we can conclude that here too the modal shape has changed conspicuously.

3.2.2. Modal analysis of the unbraced plates in simply sup-
ported boundary conditions

Figure 3.6: Mode shapes of the unbraced solid soundboard in simply supported boundary
conditions for the 5 lowest eigenfrequencies.

The very same studies were conducted for the unbraced plate in simply supported bound-
ary conditions as well. These boundary conditions, for 2D plates, impose zero vertical
displacement and zero bending moment at the boundaries. However, since we used a dis-
cretization with 3D solid elements, these conditions had to be replicated indirectly. The
approach we used was to impose a fixed constraint on the outer edge of the lower surface
of the soundboard. Movement of this edge is thus prevented, constraining the vertical
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displacement of the plate, while still allowing free bending rotation at the plate’s sides.
This situation is closer to that of the soundboard attached to the ribs of the finished
instrument than the case of the free plate (even though the actual boundary conditions
are somewhere in between simply supported and clamped [43]). Fg. 3.6 shows the first 5
eigenmodes of the solid plate with these boundary conditions, while Fig. 3.7 shows the
computed eigenfrequencies in the cases of the solid plate, of the longitudinal holes (p = 1)
and radial holes (p = 1). As expected, the introduction of the boundary conditions raises
the values of the eigenfrequencies. As for the variation introduced by the metamateri-
als, a separation in the observed effects seems to be introduced by the orientation of the
holes. As shown in Fig. 3.8, where the percentage variations in the eigenfrequencies are
reported, most values are lowered in the case of the radial holes, and the largest the size
of the holes, the more significant the decrease. On the other hand, with longitudinal holes
the variations are both less one-sided, with many of the eigenfrequencies having been
raised, and smaller in absolute terms. Here too, however, increasing hole size appears to
be correlated, for most frequencies, to a lowering of the values.
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Figure 3.7: First 12 eigenfrequencies for the unbraced soundboard in simply supported
boundary conditions, with longitudinal holes (p=1), radial holes (p=1) and in the case of
the solid plate.

The modal shapes have also been compared with the MAC. The computed values of the
MAC coefficients comparing the modes of plates with longitudinal (p = 1) and radial
(p = 1) holes to those of the solid plate are reported in Fig. 3.9. The matrix for the
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Figure 3.8: Percentage variation of the eigenfrequencies for the unbraced plates in simply
supported boundary conditions, with different hole sizes and orientations, with respect to
the eigenfrequencies of the solid plate.

longitudinal holes shows fairly high values on the diagonal and low values outside for the
first 8 modes, while the mode shapes for higher modes present more significant changes.
For the radial holes, we can identify a mode switch between modes 4 and 5, as well as
modes 11 and 12. Interestingly, modes 8, 9 and 10 seem to undergo a three-way mode
switch, where mode 8 in the metamaterial plate is similar to mode 10 of the solid plate,
mode 9 of the metamaterial plate is similar to mode 8 of the solid plate, and mode 10 of
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the metamaterial plate is similar to mode 9 of the solid plate.

Figure 3.9: Matrices of the MAC coefficients between the modal shapes of the unbraced
metamaterial soundboards in simply supported boundary conditions, and the modal
shapes of the solid plate. On the left the matrix for the case of the longitudinal holes
(p=1), on the right the one for the case of the radial holes (p=1).

3.2.3. Modal analysis of the free, braced plates

Figure 3.10: Mode shapes of the braced solid soundboard in free boundary conditions for
the 5 lowest eigenfrequencies, in ascending order from left to right.

Following the studies on the unbraced soundboards, a study on the modes of the braced
soundboard was carried out, in free boundary conditions. Mode shapes for the lowest
modes of the solid soundboard are reported in Fig. 3.14. Fig. 3.11 shows a plot of the
eigenfrequencies for the cases of the metamaterial plates with the largest holes (p=1) in
both orientations, compared with those of the solid plate. The values are increased with
respect to the free unbraced plate as a consequence of the extra stiffness introduced by
the braces, but they are still slightly lower than those of the unbraced simply supported
plate. Overall there seems to be a slight increase for the longitudinal holes and, conversely,
a slight decrease for the radial holes. This trend is confirmed by looking at Fig. 3.12,
which reports the percentage variation in the eigenfrequencies for all the hole patterns
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that were simulated. For the radial holes, in particular, all eigenfrequencies are lowered
by ∼ 2% or more, the effect being clearly accentuated by increasing the size of the holes.
As for the the longitudinal holes, there is an overall increase in the eigenfrequencies with
respect to the solid plate, but the trend with increasing hole size is less clear: indeed, the
eigenfrequencies are clearly raised with greater hole size only for modes 2, 3, 4 and 6.
The MAC values comparing the modal shapes of the free, braced metamaterial plates
with longitudinal (p=1) and radial (p=1) holes with those of the solid plate are reported
as a heatmap in Fig. 3.13. It appears evident that there is a strong correlation between
the modes in the different frequencies, as all non-null values are close to unity, suggesting
that the modal shapes aren’t altered significantly. Furthermore, most of these high MAC
values lie on the diagonal of the matrices, and those that don’t are clearly the result of a
mode switch (namely modes 9 and 10 with the radial holes and modes 5 and 6 in both
cases).
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Figure 3.11: First 12 eigenfrequencies for the braced soundboard in free boundary condi-
tions, in three cases: with longitudinal holes (p=1), with radial holes (p=1) and the solid
plate.
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Figure 3.12: Percentage variation of the eigenfrequencies for the braced plates in free
boundary conditions, with different hole sizes and orientations, with respect to the eigen-
frequencies of the solid plate, in ascending order from left to right.
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Figure 3.13: MAC matrices comparing the modal shapes of the free, braced metamaterial
soundboards with those of the solid one. On the left the matrix for the case of the
longitudinal holes (p=1), on the right the one for the case of the radial holes (p=1).
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3.2.4. Modal analysis of the braced plates in simply supported

boundary conditions

Figure 3.14: Mode shapes of the braced solid soundboard in simply supported boundary
conditions for the 5 lowest eigenfrequencies.

Once again, the same kind of analysis we have described so far was applied to the braced
soundboards with simply supported boundary conditions. We notice, first of all, that
the values of the eigenfrequencies, reported in Fig. 3.15, are significantly higher than
those of the free, braced soundboard. This is an expected effect of the imposition of
these boundary conditions. It’s also clear that the variations are even smaller than in the
aforementioned case. This behavior seems to be confirmed by looking at the percentage
variations, reported in Fig. 3.16. Notice how this time, while there seem to be clear
trends with varying hole size for some of the eigenfrequencies, it’s not really possible to
identify an overall upwards or downwards shift with either longitudinal or radial holes.
The comparison of the modal shapes obtained with the MAC, the values of which are
shown in Fig. 3.17, seems to also show little variation between metamaterial plates and
the solid one. In the case of the radial holes (p=1), the MACs are close to unity on the
diagonal and very low elsewhere, indicating that the modal shapes are almost unaltered.
For the radial holes, the situation is very similar, except for a mode switch between modes
9 and 10, and low MAC values for the 12th modes.

3.2.5. Modal analysis of the complete body

Finally, the same kind of simulations performed on the soundboard so far has been applied
to the complete model of the guitar body (without the bridge). Fig. 3.19 shows the first
12 eigenfrequencies for the cases of the metamaterial tops with the largest holes in both
orientations, as well as those computed for the case of the solid top. Very little difference in
the eigenfrequencies between these instances can be appreciated from this graph. Indeed,
the variation in the eigenfrequencies is overall the smallest observed so far: from the graph
in Fig. 3.20, which shows the percentage difference in the frequencies relative to the body
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Figure 3.15: First 12 eigenfrequencies for the braced soundboard in simply supported
boundary conditions, in three cases: with longitudinal holes (p=1), with radial holes
(p=1), and with the solid top.

with the solid top, we can see that there is no case where we have variations greater than
3%.
Very little difference is also observed in the modal shapes, when comparing them with
MAC, as shown in Fig. 3.21. Apart from a mode switch between modes 10 and 11 in
the case of the longitudinal holes (p=1), the matrices appear pretty much diagonal. The
diagonal coefficient for mode 12 in the same case, however, is quite low, indicating a
significant change in the corresponding modal shape.
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Figure 3.16: Percentage variation of the eigenfrequencies for the braced plates in simply
supported boundary conditions, with different hole sizes and orientations, with respect to
the eigenfrequencies of the solid plate.
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Figure 3.17: MAC matrices comparing the modal shapes of the braced metamaterial
soundboards in simply supported boundary conditions with those of the solid soundboard.
On the left the matrix referring to the case with the longitudinal holes (p=1), on the right
the matrix referring to the case with the radial holes (p=1).

Figure 3.18: Mode shapes for the first 3 eigenfrequencies of the complete guitar body with
a solid top.
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Figure 3.19: First 12 eigenfrequencies for the complete body of the guitar, in three cases:
with longitudinal holes (p=1), with radial holes (p=1) and with the solid top.
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Figure 3.20: Percentage variation of the eigenfrequencies for the complete body of the
guitar, with different hole sizes and orientations, with respect to the eigenfrequencies of
the body with the solid plate.
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Figure 3.21: MAC matrices comparing the modal shapes of the body with the metama-
terials with those of the solid one. On the left the matrix for the case of the longitudinal
holes (p=1), on the right the one for the case of the radial holes (p=1).
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3.3. Deformation under static load

Next, simulations of the deformation of the soundboard under a static load were per-
formed. The goal of these simulations is to assess the amount of warping in the sound-
board caused by the tension of the strings. This effect could indeed be accentuated to an
excessive degree in a metamaterial instrument, so we seek to quantify it in the numerical
model we have built. The results will also allow us to compare the bending stiffness of
the different soundboards with realistic boundary conditions and loads.
The static load simulations have been performed on the complete model of the guitar
body, including the bridge. A fixed constraint is imposed on the outer surface of the ribs,
while the load is applied on the lower side of the bridge as shown in Fig. 3.22. Assuming

x

y

z

Figure 3.22: 3D model of the guitar body with the bridge. The red arrow shows the
direction of the applied load.

a typical range of tensions of 50-80 N for nylon guitar strings [43], we used a total force
of 480 N; this load is uniformly distributed on six small circular areas with a radius of 1
mm, corresponding with the points where the strings would be mounted in a real guitar.

3.3.1. Effect of varying hole size and orientation

First, we computed the displacement field of the top plate for various hole sizes in both
longitudinal and radial orientation. Fig. 3.23 shows the normal displacement on the
surface of the soundboards for some of the longitudinal holes. As expected, the warping
appears to be accentuated when increasing the size of the holes.
In order to quantify the variation in stiffness compared to the variation in mass of the

different soundboards, a scalar value quantifying the average magnitude of the deformation



3| Finite Element Analysis of the Guitar 47

Figure 3.23: Normal displacement on the surface of the soundboard under the static load
for different sizes of the holes. The top row shows results for the longitudinal holes, while
the bottom row shows results for the radial holes.

is needed. For this purpose, the quadratic mean of the normal displacement w over the
top surface was used, in the form:

wRMS =

√
1

A

∫
A

|w|2dxdy (3.1)

where A refers to the surface of the soundboard. Fig. 3.24(a) shows the values obtained
from the simulations, as a function of the effective density of the lower bout ρeff . It’s
clear how the deformation increases for lower densities (larger holes) both for the lon-
gitudinal and radial orientations. However, as we discussed in Chapter 1, the decrease
in stiffness must be compared to the decrease in mass, as our main goal is to obtain a
soundboard that is both very light and relatively stiff. As such, we seek to increase the
sound radiation coefficient R =

√
E/ρ3, already introduced in Section 1.2. At this point

we need to introduce an assumption in order to give an estimate of this quantity: we will
assume that, given that the load case is identical, the RMS value of the displacement is
inversely proportional to the effective longitudinal modulus of elasticity of the material.
We can then observe the relative change in the R coefficient by computing the quantity√

1/(ρ3effwRMS). The black dotted lines in Fig. 3.24 are the constant-value curves of this
quantity: clearly there is an increment for diminishing density. This is even more evident
in Fig. 3.25, where the values of the same quantity normalized to the value for the solid
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top are displayed as a function of the effective density: the relative change reaches +27%

for the largest longitudinal holes.
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Figure 3.24: RMS value of the normal displacement on the surface of the soundboards, as a
function of the effective density in the lower bout ρeff . The black dotted lines are constant-
value curves of

√
1/(ρ3effwRMS). The values they refer to are reported normalized by the

value for the the solid top.

In order to further asses the capacity of the metamaterial instruments to withstand the
tension of the strings, we can also look at the distribution of stresses in the soundboard.
Unfortunately, we cannot develop a way to predict failure, as failure theories in anisotropic
materials require the definition of a number of constants to be determined experimentally
[44]. However, looking at the Von Mises stress can still give us an idea of where stresses
are concentrated, as wall as provide us with a way to gauge the differences in the stress
state between different configurations. Fig. 3.26 shows the Von Mises stress for the case
of the solid plate and for a few metamaterial soundboards with different hole sizes and
orientations. As expected, stresses throughout the plate are accentuated when increasing
the holes size. The plates with radial holes, however, seem to exhibit a greater concen-
tration of stresses around the area of the bridge, which points to an increased potential
for failure of the material. This, together with our analysis of the deformation of the
soundboard, suggest that the longitudinal holes are a more suitable design choice when
it comes to the stability of the instrument under the tension of the strings.
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Figure 3.25: Values of
√

1/(ρ3effwRMS) normalized to the value for the solid top (marked
in the graph by a black asterisk).

Figure 3.26: Von Mises stress on the surface of the soundboard under the static load for
different sizes of the holes. The top row shows results for the longitudinal holes, while the
bottom row shows results for the radial holes.

3.3.2. Compensating with the braces

Next, we turned our attention to trying to compensate for the loss of stiffness by adding
thickness to the fan braces: the goal is to make up for the increased warping without
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re-adding too much mass to the structure. Here we focus exclusively on the case of
longitudinal holes with p = 1. The braces are originally 3 mm thick, and they have been
uniformly increased in thickness in 0.5 mm increments up to 5 mm total. These changes
have not been applied at the same time to all seven fan braces, however: referencing Fig.
2.3 and numbering the braces from left to right, they have been applied first to the central
brace (brace 4), and then to the three pairs of braces 1 and 7, 2 and 6, and 3 and 5. The
simulations are set up in the exact same way as those in the previous section. We focus
here exclusively on the largest longitudinal holes (p=1) as, by the metrics we estabilished
earlier, that particular choice seemed to be the most promising one. There is, however,
no particular reason to expect that the effects observed when varying the thickness of the
braces would be qualitatively different with a different size or orientation of the holes.

Figure 3.27: Normal displacement on the surface of the soundboard for varying thickness
of the central brace (brace 4), indicated as d. The soundboard used here is the one with
longitudinal holes, p = 1.

Fig. 3.27 shows the normal displacement on the surface of the soundboard for different
values of the thickness of the central brace (brace 4), denoted as d. Comparison between
the graphs seems to suggest that there is indeed a reduction in the deformation as d is
increased, as is very much expected. However our stated goal here is to recover the same
deformation observed in the case of the solid plate, so we need a way to compare how
close to this case we get with any choice of brace thickness. This is done by defining
a scalar quantity meant to evaluate the difference between the deflection shapes of the
metamaterial surface and that of the solid plate. Such quantity is defined as the quadratic
mean of the difference between the normal displacements:

w − wsolid =

√
1

A

∫
A

|w − wsolid|2dxdy (3.2)

where w is the normal displacement on the surface of the metamaterial plate and wsolid

is the normal displacement on the surface of the solid plate.
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Figure 3.28 shows the values of this quantity computed for different thicknesses of the
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Figure 3.28: Quadratic average over the lower bout of the difference between the dis-
placements in the metamaterial soundboards and the solid plate, computed as in (3.2).
The values are reported for varying thickness of the braces: these were altered in pairs,
except for the central one. The solid lines represent the results of a best fit to a quadratic
polynomial. A diagram of the 7 fan braces with the same color coding used in the plot is
also shown.

braces. It’s immediately apparent that varying the outermost pairs of braces, i. e. the
pairs (1,7) and (2,6), has little if any effect on the deflection shape of the board. This is
expected, as most of the deformation is localized in the middle of the lower bout, around
the bridge. When it comes to the pair (3,5), adding thickness has a clear effect on the RMS
difference: we see that by adding up to 1 mm of material there’s a reduction, while going
further results in an “overcorrection” of sorts. Finally, for the central brace, increasing
the thickness further, up to 4.5 mm, seems to have the best compensating effect overall.
Having observed this behavior, a quadratic fit to the data has been performed, as reported
in Fig. 3.28. The resulting parabolic functions have minima at d = 4.13 mm for braces
3 and 5, and at d = 4.78 mm for brace 4. However, the reduction in the RMS difference
for brace 4 at thickness d = 4.5 mm can be considered already satisfactory, and it comes
at the small cost of adding back 0.88 g of material to the soundboard.
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3.4. Mobility at the bridge

Returning our focus onto the dynamic behavior of the instruments, frequency domain
simulations were performed to evaluate the frequency response of the guitar body models.
These were obtained by imposing a normal, harmonic load on a circular area with a 2 mm
radius on the top surface of the soundboard, located under the bridge, in the middle of the
lower bout. The normal component of the velocity was then recovered at the same place,
in order to measure the driving-point mobility. The numerical model here differs from
the one used in Sec. 3.2.5 in one way: whereas earlier we ignored the effect of structural
damping, here it is accounted for in the form of proportional, or Rayleigh damping. In
particular, following [45], we use a stiffness-proportional damping matrix, in the following
form:

C = βK (3.3)

where C and K are the damping and stiffness matrices of the finite element model, and
β = 2 · 10−6 s. No mass-proportional damping term is included in order to avoid over-
damping at low frequencies.
Fig. 3.29 shows the magnitudes of the driving-point mobility for the solid top and for the
top plates with the largest holes in both the longitudinal and radial orientations. In order
to compare the mobilities at resonance, simulations were also ran at the eigenfrequencies
corresponding to the first three peaks in Fig. 3.29. This gives us the possibility of directly
comparing the peak magnitudes of the mobility in the different cases. The results can be
seen in Fig. 3.30 and 3.31, which show the peak mobilities with longitudinal and radial
holes respectively, reported as a function of the effective density. Overall, we observe
an upwards trend with decreasing density (increasing hole size), but the effect is not
particularly pronounced.

Another way to compare the different mobility response functions is to compute the
average of their magnitude. After all, as explained in Chapter 1, the main effect of
raising the sound radiation coefficient R should be an increase of the mean value of the
mobility. Fig. 3.32 shows the average values of the mobility for different cases, with both
longitudinal and radial holes, as a function of the effective density. Here we can see a
stronger effect of the metamaterials, with a clear increase in the average level compared
to the solid top for all the cases under study. Furthermore, there seems to be an upwards
trend with decreasing density, particularly for the longitudinal holes. This effect, however,
is not very clear-cut: for instance, the largest observed value, the one for longitudinal holes
with ρeff = 299.09 kgm−2 (p=0.9), is indeed larger than the value for longitudinal holes
at ρeff = 287.15 kgm−2.
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Figure 3.29: Magnitude of the driving-point mobility at the bridge location, for the solid
top and two of the metamaterial plates. Above the the first three peaks the shapes of
the first three modes are reported. The first mode involves ”breathing” motion of the
structure, with the top and back plate moving outwards in phase; The relative phase
between the two plates is instead inverted in the second mode.
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Figure 3.30: Magnitudes of the mobility at resonance for the first three peaks for the
longitudinal holes, with varying hole size, reported as a function of the effective density.
The asterisks correspond to the results for the body with the solid top.
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Figure 3.31: Magnitudes of the mobility at resonance for the first three peaks for the
radial holes, with varying hole size, reported as a function of the effective density. The
asterisks correspond to the results for the body with the solid top.
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Figure 3.32: Average of the mobility for varying hole size, reported as a function of
the effective density. Results for both longitudinal and radial holes are reported. The
horizontal dotted line represents the average of the mobility for the body with the solid
top plate.
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4| Conclusions

The aim of the present work was to evaluate the effect of the use of wooden mechanical
metamaterials in a classical guitar’s soundboard, in order to establish if these materials
could represent a useful tool for luthiers and manufacturers. We have accomplished this
by way of numerical simulations, building a numerical model of the instrument where we
could vary the orientation and size of the holes of the metamaterial in order to compare
the effect of different geometries. The reference for the construction of this model is an
instrument built by Antonio de Torres in 1864, which was then modified as needed by the
introduction of the hole patterns that implement the metamaterial. The reference was
chosen as the design of this and other similar instruments represents a hallmark in the
tradition of guitar making. Using this design as our base point, then, allowed us to study
the effect of an innovative material in an otherwise very traditional instrument.

Our studies have shown that the use of mechanical metamaterials in the soundboards of
classical guitars is feasible, and under many aspects, beneficial. We have found that the
introduction of the metamaterials does not modify radically the modal behavior of the
instruments, meaning that the timbral characteristics of the guitar are preserved, and
that the difference between the different orientations of the elliptical holes do not produce
vastly different outcomes. We have thus shown that the variation in the mechanical
properties of the plates found in [10] have a somewhat reduced impact on the mechanics
of the complete instrument. This, however, is not surprising: we know from the literature
that the vibrational behavior of a guitar is strongly influenced by many different material
parameters corresponding to the various components of the instrument, and the elastic
moduli of the soundboard are not the most important in this respect [46].
A stronger effect has been observed in the deformation of the soundboard under the
static load imposed by the tension of the strings. With the simulations we performed
we found that, as expected, the introduction of the metamaterials increases the extent
of the warping that the soundboard undergoes when the strings are mounted and tuned.
This effect is accentuated when increasing size of the holes. Most importantly, though,
it appears to be more pronounced in the case of the radial holes, as with this choice of
orientation the effective stiffness of the top plate in the longitudinal direction (parallel to
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the applied load) is smaller. This shows that the orientation of the holes is relevant at least
for what concerns the load-bearing capacity of the instrument, and that in this respect
the longitudinal holes are preferable to the radial holes. Soundboards with longitudinal
holes were indeed also shown to be advantageous when comparing the increase in the
deformation (sign of a decreased stiffness) to the corresponding reduction in mass. One of
our goals is raising the effective sound radiation coefficient R =

√
E/ρ3 of the soundboard,

and the fact that we saw significantly less pronounced deformation in the soundboards
with longitudinal holes compared to those with radial holes for similar effective densities
means that we expect a better performance of the former in terms of sound radiation. We
have also shown that the increased deformation can be corrected for by slightly increasing
the thickness of one of the fan braces of the soundboard. Therefore, by adding back very
little mass to the plate we can have a very light top plate which can still bear the load of
the strings like a regular solid plate.

Finally, we have also studied the effects of the metamaterials on the admittance spectrum
of the instrument. As we have seen in the modal analysis, the shape of the frequency
response does not appear to be heavily impacted. However, an important effect was
observed, which we expect to see when raising the sound radiation coefficient of the
soundboard: the average level of the admittances is raised significantly. Effectively, this
means that the metamaterial instruments are overall louder, a feature which is highly
sought after in classical guitars. The average levels seem to be overall slightly higher
with longitudinal holes than with radial holes, indicating that the former design might be
preferable.

Our results are novel as very few works on the application of mechanical metamaterials
to the construction of musical instruments can be found in the literature. These new
materials could be a very useful tool for instrument makers, as they could afford them a
new degree of control over the vibrational response of their instruments. They also have
the potential to allow for the use of some kinds of woods that are not usually employed
in fine instruments, or to let makers make a more efficient use of the existing supplies of
the species of wood that are traditionally used. This is important as the supply of the
woods typically used in instrument making are especially prone to shortages, a problem
which is only going to worsen with increasing climate change. These findings, moreover,
could prove to be of great interest even beyond the field of musical acoustics, as they
could represent a starting point to study the applications of wooden metamaterials to all
kinds of complex structures.
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4.1. Future Works

In this work we have only studied the application of a few particular configurations of the
hole patterns that make up the metamaterials to a particular instrument, the classical
guitar. Our results could be expanded upon by performing the same studies with different
configurations: this could mean changing different parameters of the elliptical holes, such
as the aspect ratio and orientation, or exploring hole patterns with nonuniform hole
sizes, or studying different shapes and tilings of the unit cells. Our work could also
be complemented by the addition of a coupling of the structure with the acoustic field,
which would allow for a more direct way to investigate the sound radiation properties of
the instrument. Moreover, similar studies can also be conducted on other instruments
which feature a wooden plate as one of the main radiating elements: this has already
been done, for example, by fellow student Gabriele Marelli in his master’s thesis [34]
for the cajón peruano, but similar designs could be applied to a number of stringed and
percussion instruments.

However, the future development that our numerical studies calls for the most is, natu-
rally, experimental validation. This means building real instruments based on our virtual
designs, and performing experiments to quantitatively characterize their mechanical and
acoustical properties, as well as evaluating subjectively their sound and timbre. Building
real world prototypes would allow for a definitive assessment of the feasibility and of the
(expected) advantages of metamaterial instruments. The realization of the metamaterial
soundboards can be faithfully reproduced from our CAD designs with the use of a CNC
machine, allowing for direct validation of the numerical models. Planning for the real-
ization of this next phase in the study of metamaterials for instrument making has been
under way for a few months at time of writing, and experiments will be carried out by
collaborators at Politecnico di Milano and Universidad de Chile.
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