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Abstract

A Markov Decision Process (MDP) is a mathematical framework for mod-

elling sequential decision making problems. The decision maker is called

agent. That interacts with the environment, which represents everything

outside the agent. They interacts continuously: the agent selects an action

to perform and the environment responds to that action presenting a new

situation to the agent. In addition, the environment provides rewards, spe-

cial numerical values that the agent tries to maximize through the selection

of actions. In most applications, the environment is considered a fixed en-

tity out of the agent’s control. However, there are many real world problems

where we have the possibility to set some environmental parameters. Con-

figurable Markov Decision Processes (Conf-MDPs) are able to model these

configurable environments in order to find simultaneously the policy and the

environment’s configuration that maximize the agent’s performance. From

an abstract point of view, Conf-MDPs are composed by two cooperative en-

tities: a learning agent, whose aim is to learn the optimal behavior in the

environment, and a configurator, which selects environment dynamics that

best suit the agent’s needs. The question that gives birth to the research

topic presented in this thesis is: “what if the agent and the configurator are

no longer cooperative?”. In that case, the configurator is meant to achieve

its own goal possibly different from the one of the agent. In this thesis,

we deeply study the non-cooperative interaction between the learning agent

and the configurator. We introduce a new extension of Conf-MDPs called

Non-Cooperative Configurable Markov Decision Processes (NConf-MDPs)

in order to model scenarios where the goal of the configurator does not co-

incide with that of the agent. Indeed, in some cases it could be even the

opposite. Solving a NConf-MDP means finding the configuration that max-

imizes the configurator’s reward function knowing that the agent will act

to maximize its own reward function. We propose two algorithms, called

Action-feedback Optimistic Configuration Learning (AfOCL) and Reward-

feedback Optimistic Configuration Learning (RfOCL), that are able to ef-
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ficiently solve NConf-MDPs, leveraging the structure of the problem. We

provide theoretical performance guarantees of these algorithms showing both

theoretically and experimentally that they suffer only bounded regret. More-

over, we present an experimental evaluation on different application domains

comparing our algorithms with UCB, that solve NConf-MDPs ignoring the

structure of the problem.







Estratto in Lingua Italiana

L’Apprendimento per Rinforzo [39] rappresenta una delle tre branche prin-

cipali dell’Apprendimento Automatico, assieme all’Apprendimento Supervi-

sionato e Non Supervisionato. Gli algoritmi di Apprendimento per Rinforzo

si basano sull’interazione tra un un decisore, chiamato agente, e l’ambiente.

Questa interazione è spesso modellizzata usando i Processi Decisionali di

Markov (MDP) [34]. L’iterazione tra agente e ambiente avviene in maniera

sequenziale: l’agente osserva lo stato dell’ambiente, decide quale azione

attuare e l’ambiente risponde fornendo l’osservazione del nuovo stato rag-

giunto. Inoltre, l’ambiente fornisce all’agente una ricompensa, ovvero una

quantità numerica che l’agente cercherà di massimmizare durante la sua in-

terazione con l’ambiente.

L’Apprendimento per Rinforzo prende ispirazione dal processo di apprendi-

mento di esseri umani e animali. Infatti, possiamo trovare diverse analogie

tra il funzionamento dei MDPs e l’addestramento di un cane: il padrone

chiede la zampa e se il cane risponde al comando guadagnerà un biscotto

(ricompensa). L’obiettivo implicito del cane è chiaramente massimizzare la

quantità di biscotti mangiati. Per raggiungere questo obiettivo il cane dovrà

imparare la politica ottima, ovvero alzare la zampa ogni volta che il padrone

lo richiede.

Nella maggior parte delle applicazioni, l’ambiente è considerato un’entità

fissa fuori dal controllo dell’agente. Tuttavia, ci sono molti problemi reali in

cui abbiamo la possibilità di modificare alcuni parametri ambientali. Ad es-

empio, in un’applicazione di guida autonoma, dove lo scopo dell’agente è im-

parare a guidare una vettura, potremmo modificare diversi parametri della

macchina come la reattività del motore, la stabilità del veicolo o la velocità

massima. I Processi Decisionali di Markov Configurabili (Conf-MDPs) [29],

sono un’estensione dei MDPs che possono modellizzare gli ambienti config-

urabili al fine di trovare simultaneamente la politica ottimale dell’agente e la

configurazione ambientale che massimizza le sue prestazioni. Da un punto
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di vista astratto, i Conf-MDP sono composti da due entità cooperative: un

agente, il cui scopo è apprendere il comportamento ottimale nell’ambiente,

e un configuratore, che seleziona le dinamiche ambientali che meglio si adat-

tano alle esigenze dell’agente.

La domanda che ha dato vita al tema di ricerca presentato in questa tesi è:

“cosa potrebbe succedere se l’agente e il configuratore non fossero coopera-

tivi?”

In tal caso, il configuratore deve raggiungere un proprio obiettivo poten-

zialmente diverso da quello dell’agente. Pensiamo, ad esempio, ad un super-

mercato: un cliente (ovvero l’agente) vuole comprare alcuni prodotti e il suo

scopo è acquistare il necessario nel minor tempo possibile; il gestore del su-

permercato (ovvero il configuratore) deve sistemare i prodotti negli scaffali

in modo da indurre il cliente a comprare altro rispetto a quello che aveva

pianificato. In questo caso, gli obiettivi dell’agente e del configuratore sono

chiaramente diversi: l’agente vuole comprare il necessario nella maniera più

efficiente possibile, mentre il configuratore vuole massimizzare i ricavi.

In questa tesi, studiamo a fondo l’interazione tra l’agente e un configu-

ratore non-cooperativo. Introduciamo una nuova estensione dei Conf-MDP

denominata Processi Decisionali di Markov Configurabili Non-Cooperativi

(NConf-MDPs) per descrivere scenari in cui l’obiettivo del configuratore non

coincide con quello dell’agente. Risolvere un NConf-MDP significa trovare

la configurazione che massimizza la funzione di ricompensa del configura-

tore sapendo che l’agente agirà per massimizzare la propria funzione di ri-

compensa. Presentiamo due algoritmi, chiamati Action-feedback Optimistic

Configuration Learning (AfOCL) e Reward-feedback Optimistic Configura-

tion Learning (RfOCL), per risolvere un generico NConf-MDP sfruttando la

struttura del problema. Inoltre, forniamo delle garanzie teoriche sulle perfor-

mance, mostrando sia teoricamente sia sperimentalmente come il rimpianto

prodotto dai nostri algoritmi converge a una quantità costante. Infine, pre-

sentiamo una valutazione sperimentale su diversi domini applicativi con-

frontando i nostri algoritmi con UCB, che risolve NConf-MDP ignorando la

struttura del problema.
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Notation

Matrices and vectors are denoted by bold (e.g. V) and when the components

are not clear by the context they are indicated as subscripts (e.g. Rs or

Psas′). Cursive uppercase letters (e.g. A, S, P) are used to denote sets.

S state space

A action space

P configuration space

P(E) probability of event E

x ∼ d(·) x is sampled from distribution d(·)

x̂ estimated version of a generic variable x

∆(X ) set of probability distributions over the set X

[N ] Set {1, 2, . . . N}

〈. . . 〉 triangular brackets are used as delimiters for tuples

〈st, at, rt〉t=0,...,T the sequence s0, a0, r0, s1, a1, r1, . . . sT , aT , rT
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Chapter 1

Introduction

Everyday, even several times a day, humans are facing decisions. We de-

cide what to eat, what to study or who we want to spend our time with.

Sometimes, we act to receive an immediate satisfaction, like eating a candy,

sometimes we ponder our decisions by reducing the short-term pleasure for

a higher long-term satisfaction. We are decision makers that have to make a

sequence of decisions to achieve our long-term goals. This kind of problems

are known in Artificial Intelligence literature as Sequential Decision Making.

As humans, we continuously make mistakes, taking wrong decisions that

bring us to deal unpleasant situations. However, our brain is meant to learn

from mistakes in order to gradually understand the effect of our actions and

reduce the probability of making same mistakes twice. Just think of a child

in front of a lit candle: he/she is intrigued by the movement of the flame

and decides to catch it with his/her hands. As expected, the child will get

a small burn and he/she will learn to not do it again. Our brains learn

by interacting with the environment in an endless sequence of trial and er-

ror. We are likely to not repeat actions causing a negative reinforcement.
1 On the other hand, we tend to redo actions that brought us positive re-

inforcement in the past. Reinforcement Learning (RL) [39] is a sub-field

of Artificial Intelligence that takes inspiration from the learning process of

humans and animals studying how software agents ought to take actions

in an environment in order to maximize the notion of cumulative reward.

In RL context, the environment is usually stated in term of Markov Deci-

1In behavioral psychology, reinforcement is defined as a consequence that follows an op-

erant response that affects the likelihood of that response occurring in the future. Positive

reinforcements, like the production of dopamine, increase the likelihood of that response

happening again while negative reinforcements, like pain or punishment, reduce that like-

lihood.



sion Processes (MDPs). A Markov Decision Process [34] is a mathematical

framework for modelling sequential decision making problems and it will be

widely discussed in Section 2.1.

In most RL applications, the environment is considered a fixed entity out

of the agent’s control. However, there are many real world problems where

we have the possibility to set some environmental parameters. For instance,

in a car driving task, where a RL agent has to learn to drive a car, we

could tune some parameters like vehicle stability or engine boost. In order

to model these configurable environments, a new framework called Con-

figurable Markov Decision Process (Conf-MDP) has been proposed in [29].

Conf-MDPs are a generalization of the standard MDPs with the possibility

of altering the environmental dynamics. We can think to a Conf-MDP as

a system with two entities: a learning agent that has to learn the optimal

behavior in the environment and a configurator that chooses the environ-

mental dynamics that best suit the agent’s needs. From an abstract point

of view, you can think to a Conf-MDP as a fully-cooperative scenario with

two entities sharing the same goal.

1.1 Motivations and Goal

The question that gave birth to the research topic presented in this thesis

is:

What if the agent and the configurator are no longer cooperative?

In that case, the configurator is meant to achieve its own goal different from

the one of the agent. In other words, the configurator should choose the

environmental dynamics that maximize its own performance. Think, for

instance, to an e-commerce scenario: the configurator has to choose the

position of products on the website and the learning agent is the customer

who wants to buy some products. Clearly, the goals of the configurator

and the customer are different. The customer wants to buy what he or she

needs in the most efficient way while the configurator wants to maximize

the e-commerce’s revenue.

1.2 Contributions

In this thesis, we analyze in depth the non-cooperative interaction between

these two agents and we present a new framework, called Non-Cooperative
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Configurable Markov Decision Process (NConf-MDP). The two entities in-

teracts sequentially: the configurator selects an environmental configura-

tion and then the agent will learn the behavior that maximize its own per-

formance in the proposed configuration. We also present two algorithms

to solve NConf-MDPs, i.e. finding the configuration that maximize the

configurator’s performance. The two algorithms differ by the way they

handle information coming from agent trajectories and they are called re-

spectively Action-feedback Online Configuration Learning (Af-OCL) and

Reward-feedback Online Configuration Learning (Rf-OCL). We provide the-

oretical performance guarantees of these algorithms showing both theoret-

ically and experimentally that they suffer only bounded regret. In other

words, while other approaches that ignore the structure of the problem (like

UCB) generate regret that grows indefinitely over time, our algorithms are

able to converge to a zero-regret strategy. Moreover, we present an ex-

perimental evaluation on different application domains comparing our algo-

rithms with UCB, in order to highlight the advantages of using an ad-hoc

framework for configurable environments.

1.3 Outline of the Thesis

The contents of this thesis are organized as follows. In Chapter 2, we dis-

cuss preliminary theoretical concepts on which the proposed framework is

based. In particular, we provide a basic overview on Markov Decision Pro-

cesses, Multi-armed Bandits and Stackelberg games. Chapter 3 is dedicated

to the state of the art. In this chapter, we mainly present the Conf-MDP

literature showing the results obtained in recent years in this field. More-

over, we provide some links between our works and other related works in

the Online Learning literature. In Chapter 4, after the discussion of some

basic preliminaries, we present the novel framework Non-Cooperative Con-

figurable Markov Decision Process focusing on the theoretical aspects and

providing a formal definition of the problem. Chapter 5 is completely ded-

icated to the algorithmic contributions. We present our two algorithms for

solving NConf-MDPs called Action-feedback Online Configuration Learning

(Af-OCL) and Reward-feedback Online Configuration Learning (Rf-OCL).

Chapter 6 provides the experimental evaluation of our algorithms compared

with UCB1 [2] showing how a specialized framework as NConf-MDP outper-

forms a Multi-armed Bandit approach that does not leverage the structure

of the problem. Before showing the experimental results, we describe in

details the three environments we used to run experiments. In Chapter 7,

we present some final considerations and we discuss the future research di-
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rections of the presented work. In Appendix A, we report the proofs and

derivations that have been omitted in the text. In Appendix B, we provide

some additional details on the presented experiments.
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Chapter 2

Preliminaries

In this chapter, we introduce the fundamental theoretical frameworks on

which this work is based. The algorithms and the theoretical discussion

proposed in this thesis include various topics in the field of Artificial Intelli-

gence, in particular Reinforcement Learning, Multi-armed Bandit and Game

Theory. For this reason, we explain these topics, underlining the concepts

necessary to understand the proposed framework.

Artificial Intelligence (AI) is the discipline that studies the theory and the

development of computer systems able to perform tasks requiring human

intelligence. Machine learning (ML) is a subfield of Artificial Intelligence

that leverages statistical techniques to develop algorithms able to learn from

data. Reinforcement Learning (RL) [39] is one of the three main branches of

Machine Learning (ML), alongside Supervised Learning and Unsupervised

Learning. While the goals of supervised and unsupervised learning can be

summarized respectively in “learning a model” and “learning a better rep-

resentation of data”, the goal of RL is “learning to control”. Hence, RL

studies how artificial agents ought to take actions in an environment in or-

der to maximize a cumulative reward coherent with its goal.

In Section 2.1, we will introduce Markov Decision Processes (MDP), i.e.

the theoretical framework on which most of Reinforcement Learning litera-

ture is based. Then, in Section 2.2, we will analyze a specific class of Markov

Decision Processes, called Multi-armed Bandits. Finally on Section 2.3.2, we

will introduce some basic concepts of Game Theory focusing on a particular

framework called Stackelberg Games.



Figure 2.1: [39] Scheme describing the interaction between the agent and the envi-

ronment

2.1 Markov Decision Processes

A Markov Decision Process (MDP) [34] is a mathematical framework for

modelling sequential decision making problems.

The learner or decision-maker is called agent. The entity it interacts with

is called the environment, and it represents everything outside the agent

[39]. These interacts continuously, as described in Figure 2.3: the agent

selects an action to perform and the environment responds to that action

and presents a new situation to the agent. In addition, the environment

provides rewards, special numerical values that the agent tries to maximize

through the selection of actions.

In this manuscript, we will deal exclusively with discrete-time MDPs. This

means that the agent and the environment interact at each step of a dis-

crete time sequence, t = 0, 1, 2, 3 . . . . More precisely, at each time step t

the agent receives a perception of the environment’s state st ∈ S, select an

action at ∈ A and receives a reward rt ∈ R.

s0, a0, r0, s1, a1, r1, . . .

The goal of the agent is to collect as much reward as possible during the

entire (possibly infinite) time horizon H. It is worth to notice that the agent

is not interested in maximizing immediate rewards but the long-term cumu-

lative sum of rewards; therefore, the agent may decide to give up immediate

rewards in order to obtain higher rewards in the future.

In the following sections, we discuss the main aspects of MDPs by assuming

that the time horizon is infinite. Instead, in Section 2.1.7, we present finite-

horizon MDPs, discussing the main differences with the infinite-horizon set-
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ting.

2.1.1 Formal Definition

Formally, an infinite-horizon MDP is a tuple 〈S,A, p, r, γ, µ〉 [39], where:

• S is a non-empty set of states, called state space;

• A is a non-empty set of actions, called action space;

• p is a function p : S × A → ∆(S), called transition model, where

p(·|s, a) represents the probability distribution over the next state

given the current state s and the performed action a;

• r is a function r : S ×A → R, called reward function, where r(s, a) is

the reward for performing action a in state s. Sometimes - as in this

thesis - we can make the assumption that the reward function depends

only on states r : S → R.

• γ ∈ [0, 1] is the discount factor, which models the interest of the agent

in future rewards.

• µ(s) ∈ ∆(S) is the initial state distribution

In this thesis, we will consider only MDPs with finite state and action

spaces, i.e. S = |S| ∈ N and A = |A| ∈ N. A trajectory is a sequence

〈sh, ah, rh〉h=0,...,T−1, where sh, ah, rh represent the current state, the action

performed, the immediate reward at time step h and T is the length of the

trajectories.

The dynamics of the environment, modeled by the transitional model, must

satisfy two properties:

• Markov property : the next state s′ depends only on the current state

s and the chosen action a, and not on the history;

• Stationarity : the dynamics of the environment do not change over

time.

While the former represents a fundamental feature of MDPs, the classic

MDP can be extended to deal with non-stationary transition models [20,

17, 19, 10].
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2.1.2 Policy

In a Reinforcement Learning scenario, the agent performs actions through

a stochastic policy π(a|s) ∈ Π, which provides a probability distribution

over A given the current state s. The set Π is called policy space and is the

function space containing all the possible policies.

π : S → ∆(A)∑
a∈A

π(a|s) = 1 ∀s ∈ S

A policy is said to be deterministic if for all the states s there exists an

action a such that π(a|s) = 1. A deterministic policy can also be defined as:

πd : S → A

2.1.3 Performance of a policy

The goal of the agent is to find the optimal policy π∗ w.r.t. an optimality

criterion. The general idea is that a policy π1 is better then a policy π2 if

an agent following policy π1 collects on average more reward than another

agent following π2. Several approaches have been proposed in literature [34],

the most common one is to measure the performance of an agent along a

trajectory as the γ-discounted cumulative return:

v =

H−1∑
t=0

γtrt

Hence, the performance of a policy π can be defined as the expected return

V π of trajectories induced by π.

V π = Eπ[v]

Definition 2.1.1. The expected return V π induced by the policy π can be

computed as:

V π =
1

1− γ
∑
s∈S

dπ(s)
∑
a∈A

π(a|s)r(s, a),

where dπ(s) is the γ-discounted state distribution [40].

We can recursively define dπ(s) as:

dπ(s) = (1− γ)µ(s) + γ
∑
s∈S

dπ(s′)pπ(s′|s)
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where pπ(s′|s) is the kernel function, obtained by marginalizing the transi-

tion model over the action space:

pπ(s′|s) =
∑
a∈A

π(a|s)p(s′|s, a). (2.1)

It is worth to notice that in infinite-horizon MDP, the role of the discount

factor γ is crucial. Infact, in these scenarios, if we removed the effect of

discount factor, setting γ = 1, the return of trajectories would diverge:

v = lim
H→∞

H−1∑
t=0

rt =∞

On the other hand, in finite-horizon MDP, the discounted sum of rewards

would be finite even if the discount factor γ is set to 1.

Definition 2.1.2. A policy π∗ is said to be optimal if it maximizes the

expected return Jπ.

π∗ = arg max
π∈Π

V π.

2.1.4 Value functions

In most cases, it is useful for the agent to measure the utility of a state, or

a state-action pair, in order to compare them and derive an optimal policy.

Value functions provide such utility measure. It is straightforward to realize

that the value of a state (or a state-action pairs) depends on the agent’s

behavior from that state forward. In other words, value functions depends

strictly on the current policy of the agent.

Definition 2.1.3. We define state value function V π : S → R under a policy

π the following recursive equation, named Bellman expectation equation:

V π(s) =
∑
a∈A

π(a|s)

(
r(s, a) + γ

∑
s′∈S

p(s′|s, a)V π(s′)

)
(2.2)

Hence, given a state s we can consider V π(s) as the expected return obtained

from state s by following the policy π. Based on this consideration we can

rewrite the performance of a policy π (definition 2.1.1) as:

V π =
∑
s∈S

µ(s)V π(s)

Equivalently, we can rewrite definition 2.1.3 in matrix notation. Let’s define

Rπ
s as the vector of length |S| containing rπ(s), the reward induced by policy

π in state s:

rπ(s) =
∑
a∈A

π(a|s)r(s, a).
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Moreover, let’s define Pπ
ss′ as the |S| × |S| matrix where in position s, s′

there is the probability pπ(s′|s) of ending up in state s′ following policy π

on state s (equation 2.1).

Named Vπ the vector of length |S| containing the state values, we can

reformulate definition 2.1.3 as:

Vπ = Rπ
s + γPπ

ss′V
π (2.3)

Definition 2.1.4. We can define the expected Bellman operator T π : R|S| →
R|S| associated with policy π as:

T π(Vπ) = Rπ
s + γPπ

ss′V
π (2.4)

Although the state value function is essential for the evaluation of a policy,

it is not provide any information on the value of actions in a given state.

For this reason, the state value function is not suitable for control purpose

and the state-action value function is needed in order to support the agent

in the decision problem.

Definition 2.1.5. We define state-action value function Qπ : S × A → R
under a policy π the following recursive equation:

Qπ(s, a) = r(s, a) + γ
∑
s′∈S

p(s′|s, a)
∑
a′∈A

π(a′|s′)Qπ(s′, a′), (2.5)

or equivalently

Qπ(s, a) = r(s, a) + γ
∑
s′∈S

p(s′|s, a)V π(s′). (2.6)

2.1.5 Methods to solve a MDP

Solving a Markov Decision Process means finding the optimal policy. Many

algorithms have been proposed in literature and they can be classified along

four dimensions:

• Value-based vs Policy-based. The former estimates the value of states

V (s) or state-action pairs Q(s, a) and uses these estimates to derive

a greedy policy. Popular algorithms presented in literature are Policy

Iteration, Value Iteration [39, 41] . On the other hand Policy-based

algorithm finds a policy by searching directly in a space of policies.

Algorithms in this category [12] can be classified in Policy Gradient,

Expectation Maximization and Information-Theoretic.
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• Model-based vs Model-free. Model-based methods leverages a model

of the environment that could be estimated from sample or known a

priori. Instead, model-free methods derive a policy without an explicit

model of the environment.

• On-line vs Off-line. In on-line methods, the agent learns while the

experience is collected. While in off-line algorithms, the agent starts

learning when all the experience have been collected.

• On-policy vs Off-policy. In on-policy algorithms the agent tries to esti-

mate the optimal policy and uses the cur rent estimate to interact with

the environment. In off-policy methods, instead, the current estimate

of the optimal policy is updated by the the experience collected by a

different policy.

In the following sections, two of the main value-based algorithm, namely

Policy Iteration and Value Iteration, will be explored in depth.

Policy Iteration

Policy Iteration [21] is an algorithm based on the alternation of two phases:

policy evaluation and policy improvement. In the policy evaluation phase

we evaluate the current policy computing the value function. While, in the

policy improvement phase we leverage that value function to derive a new

policy that is guaranteed to be better then the previous one. More specifi-

Figure 2.2: [39] A graphic representation of the policy iteration algorithm.

cally, in the policy evaluation phase we compute the state value function of

the policy π(t), estimated at time t, applying multiple times the expected

Bellman operator (equation 2.4) until convergence. Since the expected Bell-

man operator is a contraction (see appendix A.1 for more details), it can be

proved that for any policy π and for any initial vector V:

lim
k→+∞

(T π)kV = Vπ. (2.7)
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Algorithm 1 Policy Iteration

1. Initialize policy π(0) arbitrarily

2. Policy Evaluation

repeat

V← T π
(t)

(V)

until convergence

3. Policy Improvement

πold ← π

π(s) = arg maxa r(s, a) + γ
∑

s′ p(s
′|s, a)V (s′), ∀s

if π(s) = πold(s), ∀s then stop and return π else go to 2

This means that we are able to compute the value function associated with a

given policy by applying the expected Bellman operator an infinite number

of times starting from a random initial vector.

In the policy improvement phase, instead, we compute a new policy that

is greedy w.r.t. the state-action value function, derived by equation 2.6.

The complete procedure is formalized in the algorithm 1.

2.1.6 Value Iteration

One drawback of policy iteration is that each iteration requires a policy

evaluation. Nevertheless, it can be proven that the policy evaluation step can

be truncated in several ways without losing the convergence guarantees of

policy iteration. In vanilla policy evaluation we apply the expected Bellman

operator until convergence, i.e. when the new value function is almost equal

to the previous one. However, the algorithm will converge even with a fixed

finite number of application of that operator. One important special case is

when the policy evaluation step is stopped after just one step. In that case

the algorithm is called value iteration. In value iteration algorithm, the two

phases of evaluation and improvement can be condensed in one step defining

a single update rule, known as Bellman optimality equation:

V (s) = max
a

[
r(s, a) + γ

∑
s′

p(s′|s, a)V (s′)

]
∀s. (2.8)
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Algorithm 2 Value Iteration

1: repeat

2: V← T ?(V)

3: until convergence

4: π(s) = arg maxa r(s, a) + γ
∑

s′ p(s
′|s, a)V (s′), ∀s

5: return optimal policy π

In most cases is convenient to write the Bellman optimality equation in

matrix notation:

V = max
a

[
Rs,a + γPs,a,s′V

]
, (2.9)

where V is the vector of state values, R and P are respectively the reward

and the transition model matrices and the subscripts indicates the shape of

the matrices.

Definition 2.1.6. We can define the Bellman optimality operator as:

T ?(V) = max
a

[
Rs,a + γPs,a,s′V

]
, (2.10)

Hence, Value Iteration algorithm finds the optimal value function by mul-

tiple applications of the Bellman optimality operator and then returns the

greedy policy w.r.t the state-action value function, computed using equation

2.6. Value Iteration algorithm is formalized in Algorithm 2.

2.1.7 Finite Horizon MDPs

In this thesis, we mainly deal with finite-horizon MDPs therefore it is worth

discussing what are the main differences w.r.t. the infinite-horizon setting.

A finite-horizon Markov Decision Process is a tuple M = 〈S,A, p, r, µ,H〉
where 〈S,A, p, r, µ〉 is a classic MDP and H ∈ N≥1 is the finite time hori-

zon, i.e. the maximum number of time steps that the agent has available to

interact with the environment. Moreover, we suppose finite state and action

spaces, i.e. S = |S| and A = |A|.

The first difference with infinite-horizon MDPs concerns the definition of

policy. Let’s define a deterministic decision rule πh : S → A which prescribes

in a given time step h ∈ [H] an action πh(s) ∈ A for every state s ∈ S. In

finite-horizon MDPs, a deterministic policy π = 〈π1, π2, . . . , πH〉 ∈ ΠH
D is

defined as a sequence of decision rules, where ΠH
D is the set of deterministic

policies.
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Algorithm 3 Backward Value Iteration

1: VH(s) = maxa∈A [r(s, a)] ∀s ∈ S
2: for h = H − 1, H − 2 . . . 1 do

3: Vh ← T ?(Vh+1)

4: end for

5: πh(s)← arg maxa [r(s) + γ
∑

s′ p(s
′|s, a)Vh+1(s′)] ∀s ∈ S, ∀h ∈ [H − 1]

6: πH(s)← arg maxa [r(s, a)] , ∀s ∈ S
7: π ← (π1, π2, . . . , πH)

8: return optimal policy π

As for the policy, even the definition of value functions is adapted for the

finite-horizon setting. Indeed, in finite-horizon MDPs, the value function

V π
h (s) represents the expected return for following policy π starting from

state s ∈ S at time step h ∈ [H]. In this context, we no longer have to find

a single optimal value function V ?(s) as in classic MDP but we need a value

function V ?
h (s) for each time step h ∈ [H]. The value function V ?

h (s) rep-

resents the average reward that the agent can gather following the optimal

policy starting from state s ∈ S on time step h ∈ [H]. The value function

V ?
h (s) for a generic time instant h ∈ [H] can be defined as

V ?
h (s) = max

a∈A

[
r(s, a) +

∑
s′

p(s′|s, a)V ?
h+1(s′)

]
, (2.11)

or equivalently, using the the Bellman optimality operator:

V?
h = T ?(V?

h+1) (2.12)

It is straightforward to realize that on the last time step h = H, since

the time budget is over, the optimal value function is equal to the reward

function:

V ?
H(s) = max

a∈A
[r(s, a)] ∀s ∈ S. (2.13)

Hence, a finite-horizon MDP can be easily solved in a backward manner

starting from the last time instant H (equation 2.13) and going backward

applying equation 2.11. This procedure represents the adaption of the value

iteration algorithm for the finite-horizon setting, namely Backward value it-

eration (Algorithm 3).

For the same reasons, even the state-action value functions are modified

so to characterized the values of state-action pairs for each time step. Hence

we can define Qπh(s, a) as the expected return for playing action a ∈ A is
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state s ∈ S at time step h ∈ [H] following policy π. Analogously, Q?h(s, a)

is the state-action functions associated with the optimal policy π?.
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2.2 Multi-armed Bandits

In this section, we will focus on a specific class of Markov Decision Processes,

called Multi-armed Bandits.

Imagine having access to k slot machines. Sometimes, slot machines are

also called one-armed bandits because of the mechanical lever on the side

and their ability to empty players’ pockets. We know that, among those k

machines, there is one that provides more money than the others, but we

do not know which one it is. So we start playing almost randomly all the

machines keeping track of gains and losses until we are quite sure to have

identified the best machine. From then on, it is reasonable to keep playing on

that machine most of the time to maximize our gains (or rather minimize our

losses). However, we cannot be sure to have identified exactly the machine

which yields more money. Hence, we keep exploring other options although

playing on suboptimal machines could cause us lose money. This conflict

between exploring new possibilities and exploiting current information has

been extensively studied in the reinforcement learning literature and it is

known as the exploration-exploitation dilemma. Algorithms in the family

of Multi-armed Bandit (MAB) can solve this kind of problem balancing

the exploration-exploitation dilemma. MAB is a simple but very powerful

framework to make decisions over time under uncertainty [38]. Thanks to

its simplicity and effectiveness it has been applied in several applications

domains, such as:

• A/B testing A gaming company is testing a new user interface. The

designers are undecided about the color of the button for buying ad-

ditional coins. Once the user enters the game, the algorithm chooses

the color of the button. The user can play as usual and possibly buy

new coins. The algorithm will learn which is the color of the button

which induces more gamers to buy.

• Healthcare The goal is to evaluate k experimental treatments for

disease. For each patient, the algorithm chooses which treatment to

administer and receives feedback based on the effect of the treatment

on the patient. The algorithm will tend to give to patients treatments

that proved to have better effects.

• Dynamic pricing A digital store is selling a given product online.

Every time a user enters the web page, the algorithm proposes a price

for the product to the user. The customer can buy (or not) and then

leaves the page forever. The goal of the algorithm is to maximize store

revenues.
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2.2.1 Formal Definition

The multi-armed bandit (MAB) can be seen as a set of real distribution

B = {R1,R2, ...,Rk}, where k ∈ N+ is the number of arms and distribution

Ri describes the behavior of the stochastic reward ri ∼ Ri associated with

arm i. At each iteration, the agent selects an arm to pull and observes the

returned reward. The goal of the agent is to maximize the accumulated

reward over a time horizon H, also called budget in this context. It is easy

to show that multi-armed bandits can be modeled using one-state Markov

Decision Processes, where all the actions are associated with different arms.

Performances and regret

In a k-armed bandit problem [39], each of the k actions has an expected

reward, also called value. We denote by ah and rh respectively the selected

action and the reward at time h ∈ [H]. The value of an arbitrary arm i,

namely Vi, is the expected return when that arm is pulled and it can be

defined as:

Vi
.
= E[rh|ah = a].

As already explained, the goal of the agent is to maximize the accumulated

reward over an episode of length H. To achieve this goal the agent should

play as much as possible the arm i? with higher value Vi? . More formally,

the optimal strategy is playing always arm i?, where i? = arg maxi∈[k] Vi. In

order to formalize the agent’s objective we introduce a new quantity called

regret. Informally, the regret ∆ is the cost of playing a suboptimal strategy

and can be defined as the difference between the reward that could have

been obtained by playing the optimal strategy and the accumulated reward

by playing the current strategy.

∆ = H · Vi?︸ ︷︷ ︸
performance

optimal strategy

−
H∑
t=1

rt︸ ︷︷ ︸
performance

current strategy

.

Analogously, the regret can also be expressed as follow:

∆ =

k∑
i=1

E[Ni] ·∆i,
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where E[Ni] is the expected number of time arm i is pulled over the time

horizon and ∆i = Vi? − Vi is the suboptimality gap, i.e. the difference be-

tween the expected return of the optimal arm and a generic arm i.

Hence, the goal of the agent is to find a strategy that minimize the re-

gret over the time horizon H. A zero-regret strategy is a strategy whose

average regret per round ∆/H tends to zero with probability 1 when the

number of played rounds tends to infinity [43].

Bandit strategies

If we knew the value of actions, the k-armed bandit problem would be triv-

ially solved by playing always the actions with the higher value. Therefore

we assume that we do not know exactly actions’ value but we have to esti-

mate them from samples. We denote the estimated value for arm i at time

h as V̂i,h. We would like that the estimated value V̂i,h is close to the real

value Vi for each action i ∈ [k]. If we have access to a good approximation

of the real values of actions it could be reasonable to play a so called greedy

strategy, i.e. pulling always the arm î? with the higher estimated value:

î? = arg max
i∈[k]

V̂i,h.

However, in most of real cases, it is rare to have a good estimate of the

values without interacting with the environment. It is straightforward to

conclude that we should spend some rounds exploring all the arms to build

a reliable estimate of the values of actions. One natural way to estimate

them is by averaging the reward actually received [39, p. 27]:

V̂i,h
.
=

sum of rewards when i is selected

number of times i is selected
=

∑H
h=1 rh · Iah=i∑H
h=1 Iah=i

,

where Iah=i denotes the indicator function that it is 1 when arm i has been

pulled at time h and 0 otherwise. Once estimates become more and more

precise we can exploit them to play a greedy strategy. Many variants [9] of

the greedy strategy have been proposed in literature, including:

• Epsilon-greedy strategy: This is the easiest variant of the greedy

strategy and consists in playing the best arm with probability 1 − ε.
On the other hand, with probability ε, the agent pulls a random arm.

The value of ε is usually small (e.g. ε = 0.1).
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• Epsilon-decreasing strategy: Very similar to the previous strategy

but the probability ε to select a random actions decreases as the num-

ber of rounds increases. This is reasonable since the estimates become

more reliable as the number of collected sample increases.

• Epsilon-first strategy: Unlike the previous strategies, here there is

a clear distinction between an exploration phase and an exploitation

phase. Defined as H the total number of rounds, the agent spends

the first εH rounds exploring the environment by selecting randomly

the arms and the last (1− ε)H rounds exploiting the information col-

lected in the first phase by playing a greedy strategy. This strategy is

generally used to solve 2-armed bandits and is widely known as A/B

testing.

Although the presented strategies have been extensively used in practice,

they suffer from a problem: they try the non-greedy actions indiscriminately,

with no preference for those that are nearly greedy or particularly uncertain.

In order to address this issue an algorithm called Upper Confidence Bound

(UCB) has been presented in the literature by Auer et al.[2]. This algorithm

will be extensively explained in the next section.

2.2.2 Upper-Confidence-Bound Action Selection

The Upper Confidence Bound (UCB) [2] is an action selection criterion based

on the OFU principle. OFU stands for “Optimism in Face of Uncertainty”

and, as the name suggests, this principle aims to be optimistic in the eval-

uation of the actions pretending that the actions have the maximum value

they can aspire to. For this purpose, in addition to estimating the values of

each arm, we need to build and update confidence intervals on these values.

Having confidence intervals allows us to compute an “optimistic value” for

each arm. The arm selected by the UCB criterion will be the one with the

highest optimistic value.

A prerequisite for building a confidence interval is to know the distribution

from which the samples are drawn or at least to have enough sample to as-

sume a Gaussian distribution, applying the central limit theorem. However,

we cannot satisfy none of these prerequisites. In order to overcome this is-

sue, confidence intervals can be constructed using Hoeffding’s concentration

inequality :

P (|E(x)− x̂| ≥ ε) ≤ 2e−2Nε2 ,
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Figure 2.3: In this picture, we show an instance of UCB algorithm in a 4-arm

setting. Each arm i is associated with a confidence interval centered in V̂i,h. In

each iteration the arm with the highest upper bound will be selected.

where x is a generic random variable, x̂ is the sample mean, N is the number

of sample and ε is an lower bound for the deviation of the sample mean from

the actual mean value.

As shown in [2], we can leverage this inequality to build a confidence in-

terval on the action values, obtaining:

V̂i,h − c

√
lnh

Ni,h
≤ Vi ≤ V̂i,h + c

√
lnh

Ni,h
,

where i is a generic arm, h is the number of rounds played so far, Ni,h is the

number of time arm i has been pulled until time h and c > 0 controls the

degree of exploration.

As already mentioned, the UCB criterion selects the arm with the highest

optimistic value or, more formally, the arm with the highest upper bound of

the confidence interval. Hence, the action selection strategy at time h can

be formalized as follow:

ah
.
= arg max

i∈[k]

[
V̂i,h + c

√
lnh

Ni,h

]
.
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2.3 Game theory concepts

Tools from Game Theory are playing an increasingly important role in Ma-

chine Learning. This can be credited to the possibility to formulate the

learning process as an interaction between non-cooperative algorithms or

players. In this section, we present two important classes of games, namely

Simultaneous games and Stackelberg games, and we formally discuss their

solution concepts.

2.3.1 Simultaneous games

Most game theory literature focuses on the study of Simultaneous games. In

Simultaneous game, each player reveals its selected strategy concurrently. A

famous example of Simultaneous game is the prisoner dilemma in which two

members of a criminal gang are arrested and imprisoned. The two crimi-

nals must decide (simultaneously and without communicating with other) to

collaborate with justice betraying their partner or to remain silent. If both

remain silent they both will stay in prison for 1 year while if both betray

they will remain in prison 2 years. If criminal A betrays his partner while

criminal B remains silent, criminal A will be free while criminal B will stay

in prison for 3 years. This scenario can be summarized by the payoff matrix

in Table 2.1. The solution of a non-cooperative simultaneous game is often

A

B B stays

silent

B

betrays

A stays

silent -1

-1

-3

0

A

betrays 0

-3

-2

-2

Table 2.1: Payoff matrix of prisoner dilemma

framed in term of Nash Equilibrium. In a Nash Equilibrium, each player

plays the best response to the joint strategy of the competitors so that no

player can benefit from unilaterally deviating from this strategy [13]. In the

prisoner dilemma example, 〈A betrays, B betrays〉 represent a Nash Equilib-

rium strategy since none of the two prisoners are willing to change his choice

if the choice of the other prisoner remains fixed. Indeed, if prisoner A knows

that B will betray he has no interest on changing his choice remaining silent

since he will stay in prison for 3 years rather then 2. Clearly, this reasoning

is the same for prisoner B who is not interest on unilaterally deviates his
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strategy.

Formal definition

In a Nash equilibrium strategy, each player has no advantage in changing its

strategy if the opponents’ joint strategy remains the same. This concept can

be formalized as follow. Let us first introduce some typical game-theoretic

notation. We call I the player index set, Ai represents the action space of

player i ∈ I and A = A1×A2×, . . . ,A|I| is the joint action space. Moreover,

a−i = (aj)j∈I/{i} denotes the joint action profile of all the agents excluding

agent i and ri : A → R is the reward function of player i ∈ I representing

the cost of the player i given an action profile a ∈ A. A Nash equilibrium

strategy can be formalized with the following defintion.

Definition 2.3.1 (Nash equilibrium). The joint strategy a? ∈ A is a Nash

equilibrium if for each i ∈ I,

ri(a
?) ≥ ri(ai, a?−i), ∀ai ∈ Ai. (2.14)

2.3.2 Stackelberg games

Although Simultaneous games can describe a large variety of learning scenar-

ios, there are many problems exhibiting a hierarchical order of play between

agents in several fields such as human-robot interaction [30, 26], economics

[1, 7] and autonomous vehicles [14, 36]. In game theory, this problem is

known as Stackelberg game and the solution concept studied is called a

Stackelberg equilibrium. The simplest formulation of Stackelberg game is

characterized by two players, a leader and a follower, that interact in a hier-

archical structure, i.e. the follower plays the selected strategy first and then

the follower plays its best response. The leader usually can benefit from the

advantage of moving as first player and this makes the Stackelberg Equilib-

rium more convenient for the leader than the Nash Equilibrium obtained by

the analogous simultaneous game. For instance, we can model a duopoly

market as a Stackelberg games. Suppose that one of the two firms is the

market leader - namely Firm 1 - and it can be modeled as a Stackelberg

leader. Let ai be the production volume of Firm i and P (a1, a2) be the de-

mand function providing the good price as a function of the volumes a1, a2

produced by the two firms. Naming Ci(ai) the production cost of Firm i for

producing ai pieces of the good, we can define the reward functions of the
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two firms as:

r1(a1, a2) = P (a1, a2)a1 − C1(a1)

r2(a1, a2) = P (a1, a2)a2 − C2(a2)

Hence, we can easily derive the reaction functions BR1(a2) and BR2(a1) as

∂r1(a1, a2)

∂a1
= 0→ a?1 = BR1(a2)

∂r2(a1, a2)

∂a2
= 0→ a?2 = BR2(a1)

where BRi(aj) represents the best response volume a∗i of Firm i if Firm j

produced the volume aj . Clearly, being the leader represents an advantage

since Firm 1 can substitute Firm 2’s reaction function in its own reward

equation, which it will then maximize as if it were a monopolist:

r1(a1) = P (a1, BR2(a1))a1 − C1(a1) (2.15)

Therefore, the final Stackelberg Equilibrium will be:

(a?1, ã2)

where a?1 can be derived maximizing Equation 2.15 with the first-order con-

dition ∂r1(a1)
∂a1

= 0 and ã2 is the best response volume, i.e. ã2 = BR2(a?1).

In summary, Stackelberg games represent a powerful tool to model a hi-

erarchical interaction between agents. In our work, we used this framework

to describe relationship between the configurator and the learning agent.

In this scenario, the configurator is modeled as the leader who acts as first

player choosing an environment configuration, while the learning agent is

modeled as the follower who learns the optimal policy in the environment

selected by the configurator.

Formal definition

Consider a game between two agents where one is deemed the leader and

the other the follower. Let us adopt the typical game theoretic notation in

which the player index set is I = {1, 2}, where player 1 is the leader and

player 2 the follower. Let A1 and A2 be respectively the action space of the

two players. The leader and the follower’ reward function are respectively
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r1 : A → R and r2 : A → R, where A = A1 × A2. Solving a Stackelberg

game in practice means solving two distinct optimization problems. The

leader aims to solve the optimization problem given by

max
a1∈A1

{
r1(a1, a2)|a2 ∈ arg max

a∈A2

r2(a1, a)

}
(2.16)

while the follower, given the leader’s strategy a1 ∈ Ai, aims to solve the

optimization problem

max
a2∈A2

r2(a1, a2). (2.17)

Definition 2.3.2 (Stackelberg Equilibrium). In a two-player game with

player 1 as the leader, a strategy a?1 ∈ A1 is called a Stackelberg equilibrium

strategy for the leader if

min
a2∈BR(a?1)

r1(a?1, a2) ≥ min
a2∈BR(a1)

r1(a1, a2), ∀a1 ∈ A1, (2.18)

where BR(a1) = {a ∈ A2|r2(a1, a) ≥ r2(a1, a2),∀a2 ∈ A2}.

Clearly, this definition can be extended even for n-follower setting when

BR(a1) is replaced with the set of Nash equilibria NE(a1), given that player

1 is playing a1 so that the followers’ reaction strategies a−1 is a Nash equi-

librium.
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Chapter 3

State of the art

In this chapter, we mainly focus of the state of the art of Configurable

Markov Decision Processes (Conf-MDPs) and Online Learning in general.

In Section 3.1, we introduce in details the literature of Conf-MDPs focusing

both on theoretic and algorithmic aspects; while, in Section 3.2 we present

some interesting connections between our works and other related works on

Online Learning literature.

3.1 Configurable Markov Decision Processes

In this section, we extensively explained an extension of classic Markov

Decision Processes called Configurable Markov Decision Processes (Conf-

MDPs). The Conf-MDP framework was introduced in [29] in order to deal

with configurable environments, i.e. environments characterized by tunable

parameters. For example, in a car racing task, a Reinforcement Learning

agent has to learn to drive a car and there is the possibility to modify the

car setup to suit the driver’s need. From a logical point of view, we can

consider Conf-MDP as a fully-cooperative scenario with two entities acting

in the environment: an agent who learns the optimal policy and a supervisor

(also called configurator) whose aim is to configure parameters in order to

optimize the agent’s learning process. Solving a Conf-MDP, in practice,

means finding simultaneously a policy and a configuration that maximize

the expected return of the agent.

3.1.1 Formal Definition

As already mentioned in the previous section, the transition model of a MDP

describes the dynamics of the environment. Moreover, tuning environmen-

tal parameters means altering in some way environmental dynamics. Hence,



it is straightforward to realize that tuning environment’s parameters means

changing the transition model of a MDP. For this reasons, in Conf-MDP

we have no longer a single transition model but a set (possibly infinite) of

possible transition models associated with different configurations of the en-

vironment.

Formally, a Conf-MDP is a tuple (S,A, r, γ, µ,P,Π) where (S,A, r, γ, µ) is

an MDP without the transition model and P and Π are respectively the

model and policy spaces. Solving a Conf-MDP means finding the optimal

model-policy pair (p, π) that maximizes the agent’s expected return Jp,π,

defined as:

V p,π =
1

1− γ

∫
S
dp,π(s)

∫
A
π(a|s)r(s, a)dads, (3.1)

where dp,π is the γ-discounted state distribution parametrized by the tran-

sition model p and the policy π:

dp,π = (1− γ)µ(s) + γ

∫
S
dπ(s′)pπ(s′|s)ds′ (3.2)

3.1.2 Algorithms to Solve Conf-MDP

In this section, we go into details of the two state-of-the-art algorithms

for solving Conf-MDPs. The first algorithm, presented in [29], is called

Safe Model-Policy Improvement (SMPI) and represents the first approach

to learn simultaneously the model and the policy in discrete environments

with known dynamics. The second algorithm is called Relative Entropy

Model Policy Search (REMPS) and it has been presented in [27] in order

to overcome the limitations of SMPI, dealing with continuous environments

without requiring the knowledge of the true model of the environment.

Safe Model-Policy Improvement

Safe Model-Policy Improvement (SMPI) is the first algorithm, proposed in

[29], to solve a Conf-MDP. The SMPI algorithm jointly optimize the policy

and the environment configuration. The proposed ”safe” update rule guar-

antees that the new model-policy pair p′, π′ provides higher performance

than the previous pair p, π. The difference between the performance V p′,π′
µ

of the new pair p′, π′ and the performance V p,π
µ of the current model-policy

pair p, π can be bounded by the following lower-bound, as proved in [29]:

V p′,π′
µ − V p,π

µ︸ ︷︷ ︸
performance
improvement

≥ B(p′, π′) =
Ap
′,π
p,π,µ + Ap,π

′
p,π,µ

1− γ︸ ︷︷ ︸
adventage

− γ∆Qp,πD

2(1− γ)2︸ ︷︷ ︸
dissimilarity
penalization

. (3.3)
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The meaning of each symbol that composes the lower-bound B(p′, π′) is be-

yond the scope of this section but it is worth notice that the lower-bound is

composed by two terms, like in traditional performance improvement bounds

in RL [33, 23]: the first term, adventage, represents how much gain in perfor-

mance can be locally obtained by moving from (p, π) to (p′, π′), whereas the

second term, dissimilarity penalization, discourages updates towards model-

policy pairs that are too far away. The idea of the algorithm is to select

at each iteration the model-policy pair (p′, π′) that maximize the aforemen-

tioned lower-bound:

p′, π′ = arg max
p,π

B(p, π). (3.4)

Following the approach proposed in [33], the new model policy pair (p′, π′)

can be formulated as linear combination of the current model-policy pair

(p, π) and a target model-policy pair (p̄, π̄):

π′ = απ̄ + (1− α)π, p′ = βp̄+ (1− β)p, (3.5)

where α, β ∈ [0, 1], π̄ ∈ Π and p̄ ∈ P. Therefore, we can rewrite equation 3.4

using the new symbols introduced in 3.5 and searching for values of α and

β that maximizes the lowerbound B(α, β). However, it can be proven that

the unique admissible solution is a saddle point, that is uninteresting for

optimization purpose. Nevertheless, B(α, β) is continuous on the compact

set [0, 1]2 and so, for Weierstrass theorem, it admits a global maximum.

Notice that such point is not a stationary point so it must lie on the boundary

of [0, 1]2. By setting to zero the equations ∂B
∂α |β=0, ∂B

∂α |β=1, ∂B
∂β |α=0, ∂B

∂β |α=1

we can the optimal values α?0, α
?
1, β

?
0 , β

?
1 . Hence, we can rewrite equation 3.4

as follow:

α?, β? = arg max
α,β

{B(α, β) : (α, β) ∈ V} , (3.6)

where V ∈ {(α?0, 0), (α?1, 1), (0, β?0), (1, β?1)}. The values α?0, α?1, β?0 and β?1
(shown in [29]) are not relevant in this section. The SMPI algorithm can

be formalized by Algorithm 4, assuming that the PolicyChooser and Mod-

elChooser procedures return respectively a policy and transition model fol-

lowing a greedy criterion.

Relative Entropy Model Policy Search

Although SMPI succeeded in showing the benefits of configuring the envi-

ronment in some illustrative examples, it is quite far from being applicable

to real-world scenarios. It suffers from two significant limitations. First

of all, it is only applicable to problems with a finite state-action space,
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Algorithm 4 Safe Model Policy Improvement

Initialize π0, p0

for i = 0,1,2 ... until ε-convergence do

π̄i = PolicyChooser(πi)

p̄i = ModelChooser(pi)

V ∈
{

(α?0,i, 0), (α?1,i, 1), (0, β?0,i), (1, β
?
1,i)
}

α?i , β
?
i = arg maxα,β {B(α, β) : (α, β) ∈ V}

πi+1 = α?i π̄i + (1− α?i )πi
pi+1 = β?i p̄i + (1− β?i )pi

end for

while the most interesting Conf-MDP examples have, at least, a continuous

state space (e.g., the car configuration problem). Second, it requires full

knowledge of the environment dynamics. This latter limitation is the most

relevant since, in reality, we almost never known the true environment dy-

namics, and even if a model is available it could be too approximate or too

complex and computationally expensive (e.g., the fluid-dynamic model of a

car). To overcome these issues a new trust-region method called Relative

Entropy Model Policy Search (REMPS) has been proposed in [27]. REMPS

belongs to the trust-region class of methods [37] and takes inspiration from

REPS [32].

REMPS is able to optimize simultaneously the policy and the configura-

tion of the Conf-MDP by searching in the space of stationary distribution

dπθ ,pω induced by a given policy πθ and transition model pω, where θ and ω

are respectively the parametrization of the policy and the transition model.

Notice that dπθ ,pω(s, a, s′) is the probability of ending up in state s′ after

having performed action a in state s. Let’s define ΠΘ = {πθ : θ ∈ Θ ⊆ Rp}
as the parametric policy space and PΩ = {pω : ω ∈ Ω ⊆ Rq} as the para-

metric model space. Given the policy space ΠΘ and the model space PΩ,

we can define DΠ,Ω as the set of possible stationary distribution induced by

a generic model-policy pair (p, π) ∈ PΩ ×ΠΘ.

The algorithm is divided in two main phases: optimization and projection.

In the first phase, the algorithm searches for a new stationary distribution

d? that maximizes the performance of the agent, in a neighborhood of the

current stationary distribution d. Notice that the constraint on the dis-

tance of the new distribution from the current one is expressed in terms of

a threshold k > 0 on the KL-divergence. The optimization phase can be
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formalized by the following optimization problem:

d′ = arg max
d′∈∆(S,A,S)

Jd′ s.t. DKL(d′||d) ≤ k. (3.7)

Once we have found the new stationary distribution d′, we want to find

the policy πθ and the transition model pω that will induce that stationary

distribution d′. However, the stationary distribution d′ could fall outside

the space of the representable stationary distribution DΠ,Ω. Therefore in

the projection phase we retrieve a policy πθ and a configuration pω inducing

a stationary distribution dπθ ,pω as close as possible to d′. More formally,

the aim of projection phase is to solve the following optimization problem

(PROJd):

θ′,ω′ = arg min
θ∈Θ,ω∈Ω

DKL(d′||dπθ,Pω). (3.8)

However, solving this problem requires the knowledge of dπθ ,pω in functional

form. This limitation makes the optimization problem unfeasible since in

most cases dπθ ,pω cannot be computed in closed form. In [27], two relaxations

are proposed in order to perform the optimization phase. The first relaxation

consists in finding an approximation of the transition kernel p′π
′

induced by

d′ (PROJpπ):

θ′,ω′ = arg min
θ∈Θ,ω∈Ω

Es∼d′
[
DKL(p′π

′
(·|s)||pπθω (·|s))

]
. (3.9)

By the way, as before, we can perform this optimization problem only if

we are able to compute pπθω in functional form. This is possible only if the

action space is finite as, in that case, we can marginalize over the action

space the transition model: pπθω (s′|s) =
∑

a∈A πθ(a|s)pω(s′|s). The second

relaxation overcomes this issue separating projections for the policy and the

transition model (PROJπ,p):

θ′ = arg min
θ∈Θ

Es∼d′
[
DKL(π′(·|s)||πθ(·|s)

]
(3.10)

ω′ = arg min
ω∈Ω

Es,a∼d′
[
DKL(p′(·|s, a)||pω(·|s, a)

]
. (3.11)

The REMPS method can be formalized by the Algorithm 5.

3.1.3 Applications of Conf-MDP

In many real-world problems, there is the possibility to configure some envi-

ronmental parameters to improve the performance of a learning agent. Some

examples could be car racing tasks, as already discussed, or student-teacher
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Algorithm 5 Relative Entropy Model Policy Search

Initialize θ0, ω0 arbitrarly

for i = 0,1,2 ... until ε-convergence do

Collect N samples {(si, ai, s′i, ri)}Ni=1 with dπθt ,pωt
(Optimization) Compute d′

(Projection) Project d′ and obtain θt+1 and ωt+1

end for

domain where a teacher (modeled as the configurator) has to propose exer-

cises, characterized by different value of difficulty, to a student (the learning

agent). The goal of both entities is to maximize the notions learned by the

student.

Configurable Markov Decision Processes have proved to be useful also in

policy space identification tasks [28] where the configurability of the envi-

ronment can be leveraged to let the agent reveal its real potential. How

Conf-MDPs can enhance the policy space identification task will be ex-

plained in the following section.

Policy Space Identification in Configurable Environment

We analyze the problem of identifying the agent’s policy space in a Conf-

MDP [28], by observing the agent’s behavior and, possibly, exploiting the

configuration opportunities of the environment. Let’s suppose that the pol-

icy space of the agent is a subset of a known super-policy space ΠΘ induced

by a parameter space Θ ⊆ Rm. Therefore, any policy πθ is induced by a m-

dimensional parameter vector θ ∈ Θ. However, the agent is able to control

only a smaller number m? < m of parameters (which are unknown), while

the remaining ones are set to zero. Our goal is to identify what are the

parameters that the agent can control, given a set of demonstration of the

optimal policy π?. It is important to notice that there could be controllable

parameters that, given the peculiarities of the environment, are useless for

achieving the goal and its optimal value is actually zero. This makes the

problem of policy identification much harder because it becomes challenging

to distinguish uncontrollable parameters from useless controllable parame-

ters since the optimal value in both cases will be zero. In [28], it has been

proved that we can leverage the configurability of the environment in order

to let the agent reveal what is its real potential, clarifying the distinction be-

tween uncontrollable parameters and useless controllable ones. Intuitively,

a controllable parameters may be useless in an environment configuration
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but crucial in another one.

3.1.4 Open Questions in Conf-MDPs

In this section we have explored in depth the details of Configurable Markov

Decision Processes. All the considerations brought forward so far are based

on the following fundamental hypothesis:

The learning agent and the configurator share the same objective.

In other words, the learning agent and the configurator optimize the same

reward function. As already discussed in the introduction of this section,

from an abstract point of view we can consider the agent and the configura-

tor as two separate entities acting in a fully-cooperative scenario. However,

from a practical point of view, it could be misleading to adopt a cooperative

multi-agent approach. The supervisor acts externally, at a different level

and could be, possibly, totally transparent to the learning agent. But what

if the configurator did not not have the same intentions of the agent? Would

Conf-MDPs be able to model that situations? Would the framework need

to me extend? In section 4, we will answer all these questions in depth.

3.2 Other Related Works

In this section we provide some connections between the work presented

in this thesis and the Online Learning literature. As already briefly de-

scribed in the Section 1, in the next section we present an extension of

Conf-MDPs called Non-Cooperative Configurable Markov Decision Process

(NConf-MDP), in order to deal with scenarios where the configurator and

the learning agent are not cooperative. The role of the configurator is alter-

ing the environment dynamics in order to optimize its own reward function;

while, the aim of the agent is to learn the optimal policy in the environment

configuration chosen by the configurator.

Many works in the Online Learning literature have exploited the idea of

altering the environment dynamics to improve the learning process of the

agent. For instance, in Curriculum Learning [6], the agent learns in a se-

quence of environments of increasingly difficulty. This method takes inspi-

ration by the way humans are used to learn. When we want to learn a new

skill, like playing guitar, we start doing very simple exercises and then move

on to more complex ones. Similarly, in Curriculum learning, we alter the
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environment dynamics increasing the level of difficulty shaping the learn-

ing process of the agent with possible benefits on the learning speed, e.g.

[11, 15]. By the way, while the configuration of the environment is an intrin-

sic property of the NConf-MDP, in Curriculum Learning the configuration

phase is performed in simulation only.

Moreover, there are many works in literature treating the problem of en-

vironment configuration in a non-cooperative manner. For instance, robust

control literature [31, 22] studies the interaction between the agent and the

non-cooperative configurator, in order to compute a robust policy for the

agent. The underlying idea is that if the agent is able to behave optimally

even in the worst possible environments, we end up with a policy that is

resilient to unpleasant situations. Hence, while the agent is interested in

maximizing its expected return, the configurator tries to challenge the agent

presenting uncomfortable environments.

In [16], an extension of MDP has been proposed to deal with situation where

an adversary tries to interfere with the reward generating process altering

the transition probabilities. In addition, the field of planning, environment

configuration carried out by an external entity has been studied as a form

of environment design [45].

In Section 5, we introduce two algorithms that are able to solve NConf-

MDPs, i.e. finding the configuration that maximizes the configurator’s re-

ward function. In particular, in our framework, the agent and the configura-

tor interacts sequentially: the configurator selects a configuration among a

set of possible configurations and the agent learns the optimal policy in the

selected configuration. The configurator observes trajectories of the agent’s

optimal policy and leverages the gathered information to select next config-

urations.

Our algorithms is inspired by the principle of optimism in face of uncer-

tainty for stochastic multi-armed bandits e.g. [24, 2, 18, 25] and MDPs

e.g. [3, 5, 4]. Moreover, the problem of configuration learning can be cast as

a Multi-armed Bandit problem [25], where the configurator can pull different

arms, i.e. configurations, and receives a stochastic return based on the pol-

icy learned by the agent in the selected configuration. Hence our algorithms
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are related to structured bandits or bandits with correlated arms.1

1In our case, playing a configuration provides information about the agent’s reward,

which in turns provides information about the value of all configurations.
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Chapter 4

Non-Cooperative

Configurable Markov

Decision Processes

In this chapter, the novel framework Non-Cooperative Markov Decision Pro-

cesses (NConf-MDP) will be introduced mainly focusing on the theoretical

aspects. The algorithmic and experimental details will be analysed in the

next chapters. In Section 4.1, we will introduce the main reasons behind the

formulation of this novel framework providing some application domains.

Finally, in Section 4.2, the formal definition of NConf-MDP will be pre-

sented.

In this thesis, we will consider finite-horizon MDPs with finite state and

actions only. In particular, a finite-horizon Configurable Markov Decision

Process (Conf-MDP) is defined as CM = 〈S,A,P, µ, r,H〉 and extends

finite-horizon MDPs (Section 2.1.7) considering a configuration space P in-

stead of a configuration model p.

From now on, we will consider the reward as a state-only function. Note

that a state-only reward function r : S → [0, 1] is always equivalent to a

state-action reward function r̃ : S × A → [0, 1] that satisfies the following

condition:

r̃(s, a) = r(s) ∀s ∈ S ∀a ∈ A.

Hence, all the considerations made so far using state-action reward functions

are still valid also in the state-only setting.



4.1 Non-Cooperative Configurable Markov Deci-

sion Process

As already discussed in Section 3.1, Conf-MDP can model scenarios where an

agent has to learn in a configurable environment. Thanks to this framework

we are able to enhance the learning process of the agent and reach higher

performance finding the model-policy pair that maximize the agent’s reward

function. However, as anticipated in Section 3.1.4, Conf-MDPs cannot deal

with situations where the configurator and the agent have different interests.

In this section, we present a new framework, called Non-Cooperative Con-

figurable Markov Decision Process (NConf-MDP), that has been introduced

in order to model a non-cooperative interaction between the agent and the

configurator [35].

For instance, in a supermarket a customer has to buy some groceries, possi-

bly spending as little time as possible; while the supermarket’s owner has to

arrange products on shelves in order to maximize the supermarket’s revenue.

This setting is clearly non-cooperative since the customer (the agent) and

the supermarket’s owner (the configurator) do not share the same interest

and a classic Conf-MDP is not able to model this kind of interactions. Since

the supermarket’s owner does not know the customer’s shopping needs -

namely, the reward function that the agent is optimizing - he can try almost

randomly different configurations and evaluate the customer reaction. How-

ever, if the owner knew the reward function that the customer is optimizing,

he could infer what will be the customer’s behavior in all the configura-

tions and select configurations that maximize supermarket’s revenues, for

instance, placing complementary products near the products needed by the

customer. Below, we present our novel framework Non-Cooperative Con-

figurable Markov Decision Process (NConf-MDP) as an extension of Conf-

MDP in order to deal with non-cooperative scenarios.

Definition 4.1.1. A Non-Cooperative Configurable Markov Decision Pro-

cess (NConf-MDP) is defined by a tuple NCM = 〈S,A,P, µ, rc, ro, H〉,
where 〈S,A,P, µ,H〉 is a Conf-MDP without reward and rc, ro : S × A →
[0, 1] are the configurator and the agent (opponent) reward functions, respec-

tively.

Before diving into the details of this novel framework, let’s formalize the def-

inition of policy, Q-function and V-function in a NConf-MDP. As in classic

finite-horizon MDP, named H the horizon, a policy π = 〈π1, π2 . . . , πH〉 ∈
ΠH
D is defined as a sequence of deterministic decision rules πi. Each deci-
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sion rule πi : S → A is a deterministic mapping between states and ac-

tions. Given a policy π = 〈πh〉h∈[H] ∈ ΠH
D and a configuration p ∈ P, we

can define the configurator and the agent (opponent) Q-functions, for every

(s, a) ∈ S ×A and h ∈ [H]:

Qπ,pc,h (s, a) = E
sh′+1∼p,π

[
H∑

h′=h

rc(sh′)|sh = s, ah = a

]
,

Qπ,po,h(s, a) = E
sh′+1∼p,π

[
H∑

h′=h

ro(sh′)|sh = s, ah = a

]
.

Now, we can define the value functions as V π,p
c,h = Qπ,pc,h (s, πh(s)) and V π,p

o,h =

Qπ,po,h(s, πh(s)), which represent the expected return for playing policy π in

a model p starting in state s at time instant h. Moreover, we denote with

V π,p
c = Es∼µ[V π,p

c,1 (s)] and V π,p
o = Es∼µ[V π,p

o,1 (s)] respectively the expected

returns for the configurator and the agent.

4.2 Problem Formulation

In this section, we go into details of the formulation of the problem of learn-

ing a configuration in a non-cooperative scenario. Let us start introducing

the concept of optimality in a NConf-MDP. In classic Conf-MDP [29], it is

easy to express an optimality criterion since the configurator and the agent

share the same reward function therefore a model-policy pair is optimal in a

Conf-MDP if it maximizes the agent’s return (that is the same for the con-

figurator). In a NConf-MDP, where the configurator and the agent present

different reward functions, the definition of an optimality criterion is not

that straightforward. Indeed, a given model-policy pair could be profitable

for the agent but very bad for the configurator and vice versa.

Think to the supermarket example introduced at the beginning of this chap-

ter: the supermarket owner (configurator) decides how to arrange products

on shelves and waits for the customer (agent) to adapt to changes. In this

context, for instance, there exist configurations that are beneficial for cus-

tomers - e.g. if the products they need most are close to each other - and

others successful for the supermarket owner. It is crucial to underline that

the supermarket owner is privileged as it has a fundamental advantage: act-

ing first. This is considered an advantage since if the owner knew (or were

able to infer) the behavior of the customer in all the configurations then he

would choose directly the configuration that maximize the supermarket rev-

enue. This kind of sequential interaction between agents has been largely

37



studied in Stackelberg games literature and it is known as leader-follower

protocol [8], as discussed in Section 2.3.2.

Hence, we can assume a sequential interaction between the configurator and

the agent: first, the configurator (leader) chooses a transition model p ∈ P
among the transition space P and then the agent (follower) plays its best re-

sponse policy π?p ∈ ΠH
D , that is assumed to be a deterministic optimal policy

for the MDP (S,A, p, µ, ro, H). More formally, the agent and the configu-

rator solve at each iteration two different optimization problem. While the

agent searches for an optimal policy π?p ∈ ΠH
D in the current configuration

p ∈ P:

π?p ∈ arg max
π∈ΠHD

V π,p
o , (4.1)

the configurator searches for the transition model p? ∈ P that maximizes the

configurator expected return assuming that the agent will play the optimal

policy corresponding to that transition model:

p? ∈ arg max
p∈P

V
π?p ,p
c . (4.2)

Or equivalently, using a game theoretic formulation, the pair (p?, π?p?) rep-

resents a Stackelberg equilibrium of this game [8].

Remark 4.2.1 (Agent’s policy is optimal). We assume that the policy

played by the agent at every episode is optimal. In practice, this means

that the configurator has to wait until the agent learns the optimal behavior

in the chosen configuration before evaluating its own performance.

The configurator knows everything about the NConf-MDP, except for the

agent reward function ro. We assume that, at each episode k ∈ [K], the

configurator selects a configuration pk ∈ P and then observes a trajectory

of H steps generated by the agent’s best response policy π?pk . The goal of

the configurator is to minimize the expected regret all over the episodes:

E[Regret(K)] = E

[
K∑
k=1

max
p∈P

V
π?p ,p
c − V

π?pk
,pk

c

]
(4.3)

In this work, we assume that the configuration space P = {p1, p2, . . . , pM}
is composed by a finite number M ∈ N of stochastic transition models. In

order to streamline the notation, we will call πi, instead of π?pi , the best re-

sponse policy of the agent in configuration π and πi,h indicates the decision

rule associated with policy πi at time step h . Moreover, we denote with Vi,
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instead of V
π?pi ,pi
c , the configurator’s expected return when transition model

pi is selected and policy πi is played by the agent.

In the next chapter, we will understand how the configurator can leverage

the information provided by trajectories sampled from the optimal policy πi
in configuration pi in order to identify the optimal configuration.

39



40



Chapter 5

Optimistic Configuration

Learning

In this chapter, we will discuss the details of the two algorithms proposed

in this manuscript: Action-feedback Optimistic Configuration Learning (Af-

OCL) and Reward-feedback Optimistic Configuration Learning (Rf-OCL).

The two algorithms differ by the way they handle the information provided

by demonstrations of best response policies in each configuration. We discuss

two types of feedback:

• Action-feedback (Af). The agent’s trajectories observed by the config-

urator are composed by state and actions only.

• Reward-feedback (Rf). The agent’s trajectories observed by the con-

figurator are composed by states, actions and a noisy version reward.

It is worth to notice that Rf is more demanding than Af since it requires a

noisy version of reward sample. On the other hand, Rf uses the additional

information to transfer information across different configurations with pos-

sible performance benefits. Both algorithms are based on the following as-

sumption.

Assumption 1. The agent’s best response policy πi is deterministic for all

the configuration i ∈ [M ]. Moreover, every time the configurator selects a

given configuration i the agent will play always the same optimal determin-

istic policy πi.

While, in the Action-feedback setting the configurator observes only the

actions performed by the agent in each state, in the Reward-feedback setting

a noisy version of the immediate rewards are provided to the configurator.



The reward signal can be used to transfer the knowledge gathered from a

configuration across all the other configurations. In other words, Rf-OCL

leverages the structure of underlying MDPs.

5.1 Action-feedback Optimistic Configuration Learn-

ing

In this section we treat the action-feedback (Af) setting in which the con-

figurator observes the agent’s trajectories composed by states and actions

only:

〈s1, a1, . . . , sH−1, aH−1, sH〉,

where ah = πi,h(sh).

The proposed algorithm, Action-feedback Optimistic Configuration Learn-

ing (Af-OCL), is based on the OFU principle introduced in Section 2.2.2.

Indeed, at each episode the configurator selects the configuration that max-

imize an optimistic estimate of its expected return. To do so, the algorithm

maintains, for each configuration, a set of plausible policies - that provably

contains the optimal policy of the agent. Then, the configurator will select

the configuration that maximize its expected return, considering an opti-

mistic policy among the set of plausible policies.

More specifically, naming M the number of configurations, H the time hori-

zon and K the number of episodes, we can denote with Aik,h(s) ⊆ A the set

of plausible actions in state s at step h for configuration pi at the beginning

of episode k. Once the agent visit state s before episode k at given time step

h in a given configuration i we can set Aik,h(s) = {πi(s)}. This is due to the

fact that the agent policy is deterministic and so when we observed the ac-

tion performed in a given configuration i, state s and time step h we are sure

that for all future episodes the action performed by the agent in analogous

situations will be the same. In all the other cases we have no information

of the actions that the agent will perform therefore we set Aik,h(s) = A.

Now that we have defined the set of plausible agent’s actions, we can for-

malize the criterion through which the configurations are selected. At each

episode k ∈ [K], the configurator computes an optimistic approximation of

its expected return Ṽ i
k for each configuration i ∈ [M ]. In order to compute

these optimistic returns, we can adopt an extension of the value iteration

algorithm described by Algorithm 6. In particular, the only difference with
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Algorithm 6 Optimistic Value Iteration

1: Ṽ i
k,H(s) = 0 ∀s ∈ S

2: for h = H − 1, H − 2, . . . , 1 do

3: Ṽ i
k,h(s) = rc(s) + maxa∈Aik,h(s)

∑
s′∈S pi(s

′|s, a)Ṽ i
k,h+1(s′)

4: end for

5: return Expected return
∑

s∈S Ṽ
i
k,1(s)µ(s)

the classical value iteration algorithm is the update step:

Ṽ i
k,h(s) = rc(s) + max

a∈Aik,h(s)

∑
s′∈S

pi(s
′|s, a)Ṽ i

k,h+1(s′). (5.1)

In fact, the support of maximization operator is set to Aik,h(s) rather than

A (Algorithm 6).

Therefore, for visited pair (s, h) the maximization over the actions reduces

to the evaluation of the transition model in the agent’s action πi,h(s). On

the other hand, in non-visited pairs (s, h), we will consider the action that

maximizes the configurator return: that makes optimistic the approximation

of the configurator’s expected return. Hence, we have that Ṽ i
k,h(s) ≥ V i

h(s)

deterministically for all s ∈ S, h ∈ [H] and i ∈ [M ]. Thus, at each episode

k ∈ [K] the configurator plays the transition model pIk maximizing the

optimistic approximation of its expected return Ṽ i
k :

Ik ∈ arg max
i∈[M ]

Ṽ i
k .

The AfOCL procedure is reported in Algorithm 7. The time complexity of

the algorithm is O(KMHS2A), since at each episode k ∈ [K] and for each

configuration i ∈ [M ] we run Algorithm 6, whose complexity is bounded by

that of value iteration O(HS2A).

5.1.1 Regret guarantees

In this section, we provide an expected regret bound for the AfOCL algo-

rithm. The detailed proof is discussed in Appendix A.2.1.

First of all, let’s remind that the expected regret is defined as follow:

E[Regret(K)] =
∑

i∈[M ]:∆i>0

∆i E[Ni], (5.2)
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Algorithm 7 Action-feedback Optimistic Configuration Learning (AfOCL).

1: Input: S, A, H, P = {p1, . . . , pM}
2: Initialize Ai

1,h(s) = A for all s ∈ S, h ∈ [H], and i ∈ [M ]

3: for episodes 1, 2, . . . ,K do

4: Compute Ṽ i
k for all i ∈ [M ]

5: Play pIk with Ik ∈ arg maxi∈[M ] Ṽ
i
k

6: Observe (sk,1, ak,1, . . . , sk,H−1, ak,H−1, sk,H)

7: Compute the plausible actions for all s ∈ S and h ∈ [H]:

Ai
k+1,h(s) =

{
{ak,h} if i = Ik and s = sk,h

Ai
k,h(s) otherwise

8: end for

where E[Ni] is the expected number of times a suboptimal configuration i

is chosen and ∆i = V ? − Vi is the suboptimality gap, i.e. the difference

between the expected return of the optimal configuration and a suboptimal

configuration i.

The main challenge of AfOCL is estimating the agent’s best response pol-

icy in every model. Although all the states could be visited by the agent

- thanks to the stochasticity of the environment - the agent may end up

in some states with low probability and this makes the task of the config-

urator more difficult since some configurations are selected a high number

of times before being discarded. In particular, thanks to the determinism

of the agent’s policies, it can be proven that the expected number of times

a suboptimal configuration i is selected is proportional to 1
∆i

, ignoring de-

pendencies on other quantities (in contrast to standard bandits where it is

proportional to 1
∆2
i
):

E[Ni] ∝
1

∆i
(5.3)

This result combined with Equation 5.2, removes the dependency on sub-

optimality gaps of the expected regret bound.

The second surprising result is that the upper bound for the expected num-

ber of times a suboptimal configuration is selected does not depend on the

number of episodes K. In particular, E[Ni] can be bounded as follow:

E[Ni] ≤ 2
H3S2

∆i − c
, (5.4)
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where H is the time horizon, S is the number of states and c > 0 is an

arbitrary positive constant. Hence, we can conclude that the expected regret

bound is constant and independent on the number of episodes K.

E[Regret(K)] =
∑

i∈[M ]:∆i>0

∆i E[Ni] ≤
∑

i∈[M ]:∆i>0

∆i2
H3S2

∆i − c
≤ 2MH3S2,

having taken the infimum over c > 0.

Theorem 5.1.1 (Regret of AfOCL). Let NCM = (S,A,P, µ, rc, ro, H)

with P = {p1, . . . , pM} be the M finite-horizon MDPs of the problem. The

expected regret of AfOCL at every episode K > 0 is bounded by:

E[Regret(K)] ≤MH3S2. (5.5)

5.2 Reward-feedback Optimistic Configuration Learn-

ing

One of the main limitations of AfOCL is that there is no way to transfer in-

formation across different configurations. In particular, the sample collected

in a given configuration cannot be leveraged to update estimates associated

with other configurations. In other words, AfOCL does not leverage the

structure of the environment, represented by the agent reward function ro.

Since the agent reward function ro remains the same in all the configura-

tions, it represents a link between them. Indeed, if the configurator knew

exactly the reward function of the agent it could compute the agent’s opti-

mal policy in all the configurations and select always the configuration that

maximizes its own reward function rc without interacting with the agent.

Hence, the reward function of the agent represents a valuable information

that could be used to speed up the identification of the best configuration.

In this section, we present an algorithm called Reward-feedback Optimistic

Configuration Learning (RfOCL) that leverages noisy samples of the agent’s

reward function coming from trajectories to transfer information across dif-

ferent configurations. In particular, the configurator observes trajectories

composed by states, actions and rewards:

〈s1, r̃1, a1, . . . , sH−1, r̃H−1, aH−1, sH , r̃H〉,

where ah = πi,h(sh) and r̃h is a noisy version of ro(s).

Based on the noisy reward sample, RfOCL is able to compute an estimate
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of the agent reward function maintaining a confidence interval Rk(s) =

[ro,k(s), ro,k(s)] for every states s ∈ S using the samples collected up to

episode k − 1 in all the configurations. This confidence interval can easily

be computed applying Höeffding’s inequality:

r̂o,k(s)±

√
log(SHk3)

max{Nk(s), 1}
, (5.6)

where Nk(s) is the number of times state s has been visited up to episode k

and r̂o,k(s) is the sample mean of the noisy reward samples collected in the

first k − 1 episodes in state s.

The confidence interval on the agent’s reward function represents a source of

information for all the configurations. In order to leverage this information,

we can derive the possible agent’s behaviors in all the configurations. To do

so, for each configuration, we can compute a confidence interval on Q-values

Qik,h(s, a) = [Qi
o,k,h

(s, a), Q
i
o,k,h(s, a)] induced by the reward confidence in-

terval Rk. The bounds Qi
o,k,h

and Q
i
o,k,h of the confidence interval can be

computed performing two separate instances of value iteration algorithm

with two different reward function respectively ro,k(s) and ro,k(s).

More specifically Qi
o,k,h

(s, a) is computed applying the following Bellman

equation:

Qi
o,k,h

(s, a) = ro,k(s) +
∑
s′∈S

pi(s
′|s, a) max

a′∈A
Qi
o,k,h+1

(s′, a′),

and Qi
o,k,H

(s, a) = ro,k(s).

On the other hand, Q
i
o,k,h(s, a) is computed as:

Q
i
o,k,h(s, a) = ro,k(s) +

∑
s′∈S

pi(s
′|s, a) max

a′∈A
Q
i
o,k,h+1(s′, a′),

and Q
i
o,k,H(s, a) = ro,k(s).

The fact that the real agent reward function belongs to the confidence in-

terval, i.e. ro ∈ Rk, implies that the Q-values induced by ro belongs to the

confidence interval, i.e. Qih ∈ Qk,h.

Since the best response policy of the agent in each consideration is greedy

w.r.t. the Q-values, we can use Qk,h to restrict the set of plausible actions in
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a state without actually observing the agent playing the action in that state.

For this purpose, we can say that, for a given triplet (s, h, i) ∈ S× [H]× [M ],

an action a ∈ A is dominated by an action a′ ∈ A at episode k ∈ [K]

if Q
i
o,k,h(s, a) ≤ Qi

o,k,h
(s, a′), i.e. the maximum value of Qio,k,h(s, a) is less

then the minimum value of Qio,k,h(s, a′) with high probability. Therefore,

the actions that the agent may perform are those that are not dominated

by any other actions. In other words, the plausible actions are those that

have an upper Q-value larger than the maximum Q-value lower bound:

Ãik,h(s) =

{
a ∈ A : Q

i
o,k,h(s, a) ≥ max

a′∈A
Qi
o,k,h

(s, a′)

}
. (5.7)

Clearly, the considerations made for the Action-feedback setting are still

valid and every time we observe playing an action in (s, h, i) ∈ S× [H]× [M ]

we can set the plausible actions to the singleton {πi,h(s)}. Based on this

new definition of plausible actions, we can compute the optimistic estimate

Ṽ i
k of the configurator expected return as in Algorithm 6 and proceed play-

ing the optimistic configuration. The pseudocode of RfOCL is reported in

Algorithm 8. The computational complexity of an iteration of RfOCL is

dominated by the value iteration (steps 5 and 9) leading, as for AfOCL, to

O(KMHS2A).

5.2.1 Regret guarantees

In this section, we provide an expected regret bound for RfOCL algoritm.

The detailed proof is discussed in Appendix A.2.2.

Notice that RfOCL algorithms is an extension of AfOCL, therefore all the

considerations presented in Section 5.1.1 are still valid. In particular, Theo-

rem A.2.1 stands also for RfOCL. In addition, under centain conditions, we

have proven that the expected regret bound of RfOCL is independent from

the number of configurations M .

In order to prove this result we have to make the following assumption

on the NConf-MDP.

Assumption 2. There exists ε > 0 such that:

min
i∈[M ]

min
s∈S

max
h∈[H]

dih(s) ≥ ε,

where dih(s) is the probability of visiting the state s ∈ S at time h ∈ [H] in

configuration pi under the agent’s best response policy πi.
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Algorithm 8 Reward-feedback Optimistic Configuration Learning

(RfOCL)

1: Input: S, A, H, P = {p1, . . . , pM}
2: Initialize Ai1,h(s) = A for all s ∈ S, h ∈ [H], and i ∈ [M ]

3: Initialize ro,1(s) = 1, ro,1(s) = 0, and N1,h(s) = 0 for all s ∈ S and

h ∈ [H]

4: for episodes 1, 2, . . . ,K do

5: Compute Ṽ i
k for all i ∈ [M ]

6: Play pIk with Ik ∈ arg maxi∈[M ] Ṽ
i
k

7: Observe

(sk,1, r̃k,1, ak,1, . . . , sk,H−1, r̃k,H−1, ak,H−1, sk,H , r̃k,H)

8: Compute r0,k+1(s), ro,k+1(s), and Nk+1,h(s) for all s ∈ S and h ∈ [H]

using r̃k,1 · · · r̃k,H as in Equation (5.6)

9: Compute Qi
o,k+1,h

(s, a), Q
i
o,k+1,h(s, a) for all s ∈ S, a ∈ A, h ∈ [H],

and i ∈ [M ]

10: Compute the plausible actions for all s ∈ S and h ∈ [H]:

Aik+1,h(s) =


{ak,h} if i = Ik and s = sk,h

Aik,h(s) if Nk,h(s) > 0

Ãik+1,h(s) otherwise

with Ãik+1,h(s) as in Equation (5.7).

11: end for

This means that the agent, in all the configurations, visits at least all the

states once with non-zero probabilities. More formally, this assumption

guarantees that for every model i ∈ [M ] and every state s ∈ S there exists

a time instant h ∈ [H] such that the probability of visiting state s at time

h is strictly greater than 0. This assumption ensures that the confidence

interval on the reward of every state shrinks at every episode. Assumption 2

is related to the concept of ergodicity of a MDP. Indeed, a MDP is said to

be ergodic if each state is visited at least once under any policy [34]. Hence,

Assumption 2 is less strict than the standard ergodicity since it requires the

MDP to be ergodic only under the optimal policy. Under Assumption 2, we

can prove the following regret guarantee.

Theorem 5.2.1 (Regret of RfOCL). Let NCM = (S,A,P, µ, rc, ro, H) with

P = {p1, . . . , pM} be the M finite-horizon MDPs of the problem. Under

Assumption 2, the expected regret of RfOCL at every episode K > 0 is
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bounded by:

E[Regret(K)] ≤ K∆ +
π2

3
,

where K is the smallest integer solution of the inequality

K ≥

(
2(SH + 1)2 log(SHK3)

∆2
Q

+

√
K

2
log(S∆K2)

)
1

ε
,

∆ = maxi∈[M ] ∆i, i.e. the maximum suboptimality gap, and ∆Q is the

minimum positive gap of the agent’s Q-values.

As already anticipated, the regret bound does not depend on the number of

configurations M . This result is crucial for practical applications as it allows

the algorithm to scale when the number of configurations is large. However,

as expected, the bound depends on the minimum visitation probability ε.

5.3 Discussion

In this chapter, we have presented two different types of feedback. Thanks

to Assumption 1, stating that the agent’s best response policies are de-

terministic, both algorithms are able to reach constant regret. Moreover,

RfOCL allows eliminating the dependence on the number of configurations,

assuming that the agent, for each configuration, visits all the states with a

non-zero probability (Assumption 2). This leads RfOCL to achieve higher

performance than AfOCL, especially when the number of configuration is

large. On the other hand, RfOCL is more computational intensive than

AfOCL (although the asymptotic complexity is the same) as it requires to

compute, for each episode, the optimistic values of the agent Q functions for

each model.

It is worth to notice that Assumption 2 must hold in order to exploit the

advantages of RfOCL. Indeed, if we removed this assumption all theoretical

guarantees of RfOCL are no longer valid and the two algorithms are likely

to achieve the same results. However, both algorithms are based on the fun-

damental assumption on the determinism of the policy (Assumption 1). If

we removed this assumption, we no longer have theoretic guarantees of the

regret generated by the two algorithms. Anyway, it is reasonable to believe

that the regret generated by AfOCL grows logarithmically with the number

of episodes K, as in unstructured bandits. On the other hand, RfOCL still

transfer information across different configurations leveraging the structure

of the underlying MPD. Therefore, we conjecture that it will keep paying
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constant regret. The investigation of this case represents one of the main

future directions of this work.

The problem of learning a configuration can be cast to a stochastic multi-

armed bandit problem [25]. In fact, the configurator, at each episode, can

pull different arms (configurations) and receives a random realization of

its expected return. Hence, in general, we can learn a configuration us-

ing standard multi-armed bandit algorithms, like UCB1 [2]. Although this

algorithms are less computational intensive, they suffer regret that grows

logarithmically with the number of episodes K. Indeed, they do not exploit

neither the fact that the agent’s policy is deterministic nor the structure

induced by the agent’s reward function. In Chapter 6, we will compare our

algorithms with UCB1 in different environments in order to show experi-

mental evidences of the advantages provided by the proposed algorithms.
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Chapter 6

Experimental Evaluation

“In God we trust, all others must bring data.”

W. Edwards Deming

In this section, we evaluate our algorithms on three different domains com-

paring them with the standard implementation of UCB1 [2]. In Section 6.1,

we will describe in details the domains used during the experimental phase.

While, in Section 6.2, the results of the experiments will be presented, show-

ing that our algorithms are able to achieve constant regret as discussed in

Section 5.

6.1 Environmental domains

In this section we are going to describe in details three domains we used

as environments in the experiments presented in this chapter: Configurable

Gridworld, Student-Teacher, Configurable Market.

6.1.1 Configurable Gridworld

Configurable Gridworld is a variant of a classic 3× 3 Gridworld. As shown

in Figure 6.1, a Configurable Gridworld, in contrast to standard implemen-

tation of Gridworld, is characterized by an obstacle in the central cell. The

agent starts in the cell (0, 1) and its goal is to reach the final cell (2, 1) with

the minimum number of steps. If the agent is in the central cell (1, 1) and

performs action “go right”, it hits the obstacle and it is bounced back with

probability p. The configurator can change the probability or power p of the

obstacle and its goal is to maximize the number of time spent by the agent

in the central cell.



Configuration #1 Configuration #2 Configuration #3

Figure 6.1: Configurable Gridworld: from left to right the 3 configurations represent

increasing ”power” of the obstacle.

In a classic Gridworld (p = 0), the optimal policy of the agent is trivially

going straight to the final cell passing through the center of the Gridworld.

On the other hand, in a Configurable Gridworld it is not that trivial. In-

deed, if the power of the obstacle is small the agent keeps preferring the

central path even if in some cases it will be bounced back by the obstacle.

Instead, if the power of the obstacle is large then the agent will decide to

avoid the interaction with the obstacle by passing close to the boundaries

and this brings to very poor performances for the configurator. Hence, the

role of the configurator is very sensitive: it is interested in increasing the

power of the obstacle to let the agent remains in the central cell but not

that much to let the agent prefer the “long path”. At implemetation level,

the configurator selects a model among a set of M transition models with

different values of p, obtained by a discretization of the interval [0, 1].

6.1.2 Student-Teacher

Student-Teacher is an environment that models a basic interaction between

a student and a teacher. The teacher has prepared a list of S exercises

characterized by a different level of difficulty and its goal is to find the right

sequence of exercises in order to optimize the learning process of the stu-

dent. On the other hand, the student perceives the level of difficulties of the

exercises in a different way and it can decide to not solve some exercises.

The student’s goal is the same as that of the teacher, namely to start solv-

ing most difficult exercises as soon as possible. Nevertheless, the different

perception of difficulty makes the environment non-cooperative.

We can model this scenario with a MDP with S states where each state

represents an exercise - or equivalently a class of exercises with the same

difficulty level. The states are ordered based on the difficulty assigned by
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Figure 6.2: This picture shows 3 different configurations in a Teacher Student

domain.

the teacher, i.e., the exercise associated with state s is more difficult (ac-

cording to the teacher) than the one associated with s′ if s > s′. In each

state the student, i.e. the learning agent, can perform two actions answer

or not-answer. If the agent decides to not answer in state s he will end

up in state s′ = max(s − 1, 0) with probability 0.7 or in a random state

with probability 0.3. Instead, if the agent decides to answer the teacher,

i.e. the configurator, must decide which exercise should be proposed next.

In practice, this can be implemented considering a set of M configurations

that differ each other by the way they assign the probabilities to next states

when the agent decides to answer. In the presented experiments, we have

considered M random configurations.

An illustrative example of Student-Teacher domain is shown in Figure 6.7.

Red arrows correspond to answer No, and green arrows to answer Yes. The

transparency is due to the level of probability of every transition. The con-

figurator can change the transition matrix for the answer Yes, instead the

transition matrix for action No is fixed for all the configurations. The reward

function of the configurator and the agent are the difficulty levels associated

with the current state. Therefore, the configurator’s immediate reward for

each state are

rc(s) = s

while the immediate rewards of the agent are a permutation of the one of

the configurator since the student perceives differently the difficulty level of

exercises.

6.1.3 Configurable Market

Configurable Market is a variant of a Gridworld for modelling the behavior

of a customer in a marketplace. The customer (the agent) wants to buy a
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Configuration #1 Configuration #2 Configuration #3

Figure 6.3: The figure shows a 4 × 4 configurable market. The red state is the

starting state, instead the green state is the ”end” state. The stars are the product

and the orange star is the only product the agent is interested in.

set of products QA. On the other hand, the owner of the marketplace (the

configurator) can change the location of all the products Q ⊃ QA. While

the goal of the agent is minimizing the time spent in the marketplace, the

configurator has to place products in the marketplace so to induce the agent

to buy other products in addition to QA in order to maximize the market-

place’s revenues. In Figure 6.3, we show an instance of a 4× 4 Configurable

Market where the configurator has to place 3 products (|Q| = 3) in the Grid-

world but only one of this products is needed by the agent, i.e |QA| = 1.

The reward of the agent is 0.9 in states with a product in QA and −1 in any

other state. On the other hand, the reward of the configurator is 0 every-

where except in the states with any product in Q where it earns a bonus of 1.

At implementation level, the configurator cannot change the location of

products in the Gridworld but it can select a transition model among a set

of randomly-generated transition models. Anyway, from an abstract point of

view, this is the same of shuffling the position of products in the gridworld.

6.2 Experiments

In the following section, our algorithms will be tested on the presented

environmental domains. In particular, we have recorded the cumulative

regret as a function of the episodes. We will show that our algorithms

are able to converge to a zero-regret strategy, in contrast to UCB1 whose

cumulative regret grows logarithmically. Additional details on the hyper-

parameters used during the experiments are provided in Appendix B.
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6.2.1 Configurable Gridworlds experiments

The results of the experiments in the Configurable Gridworld domain are

shown in Figures 6.4, 6.5 and 6.6.

In the first experiment (Figure 6.4), we test the three algorithms in two

settings that differs for the number of configurations, respectively 10 and

30. We have considered 3000 episodes and a time horizon H = 10. As ex-

pected from the theoretical guarantees, our algorithms are able to converge

to a zero-regret strategy while UCB1 keep paying logarithmic regret. More-

over, RfOCL is able to converge in both cases in less of 500 episodes, while

AfOCL needs 2000 episodes with M = 10 and 3000 episodes with M = 30.

It is worth notice that increasing the number of configurations has a nega-

tive impact on the performance of AfOCL, while the performance of RfOCL

remains quite stable. This is not surprising because, being Assumption 2

fulfilled - due to the stochasticity of the environment - the RfOCL regret

bound does not depends on the number of configurations.

In Figure 6.5, we show a more extreme setting. We consider only 3 con-

figurations, designed to not fulfilled Assumption 2. In this case, all the

theoretical guarantees on RfOCL are no longer valid since the optimal pol-

icy of the agent generates a non-ergodic Markov chain. As can be seen in

Figure 6.5, as expected, RfOCL does not bring any advantages compared

to AfOCL. However, since Assumption 1 on the determinism of the agent’s

best response policies is still valid, both our algorithms converges to a con-

stant regret.

Finally, in the last experiment, shown in Figure 6.6, we test our algorithm

with a large number of configurations respect to the first experiment. As ex-

pected, being the ergodic assumption fulfilled, RfOCL is able to outperform

AfOCL and UCB1 for higher number of configuration. This last experiment

clearly highlights the difference between the regret bound of AfOCL and

RfOCL. Indeed, since AfOCL regret upper-bound depends linearly on the

number of configuration the algorithm always produces higher regret respect

to RfOCL, whose regret upper-bound is independent on the number of con-

figuration. Moreover, this gap gets larger as the number of configuration

increases.
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Figure 6.4: Cumulative regret as a function

of the episodes for the Gridworld experiment.
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Figure 6.5: Cumulative regret as

a function of the episodes for the

Gridworld experiment in the ex-

treme setting. 50 runs, 98% c.i.
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Figure 6.6: Cumulative regret as a function of the episodes for the Gridworld

experiment with higher number of configuration. 50 runs, 98% c.i

56



6.2.2 Student-Teacher experiments

In this section, we present the experiment in the Student-Teacher domain,

shown in Figure 6.7. In particular, we test the algorithms in three different

settings characterized by a number of configurations M ∈ {40, 60, 100} and

horizon H = 10. Each curve in Figure 6.7, has been obtained averaging the

outcomes of 50 independent runs. In each runs, we construct M different

randomly-generated configurations and we change the difficulty of exercises

from the agent’s perspective, i.e. the agent’s reward function.

As in the previous experiments, it is evident how the increasing use of struc-

ture positively affects performances. Indeed, RfOCL performs always better

than AfOCL and UCB1 and the higher is the number of configurations the

more this advantage is perceptible. Anyway, both AfOCL and RfOCL are

able to converge to constant regret in all the cases under consideration.

6.2.3 Configurable Market experiments

In this section, we discuss the result obtained in the experiment in the Con-

figurable Market domain, shown in Figure 6.8. The experiment has been

performed in a 4 × 4 Configurable Market with number of configurations

M = 10 and time horizon H = 15. The configurator can place 3 products

on the gridworld, of which only 1 is needed by the agent. The 10 configura-

tions are randomly generated at each run.

The result we obtained in this last experiment is coherent with the pre-

vious ones. In fact, as expected, UCB1 performs very poor with respect to

our algorithms. On the other hand, RfOCL and AfOCL perform in a sim-

ilar way. This is not surprising since the number of configuration is small

and the advantages brought by the Reward-feedback setting are not very

appreciable. However, RfOCL at the end of the available episodes is able to

achieve quasi-constant regret.
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experiment. 50 runs, 98% c.i.
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Chapter 7

Conclusions and Future

Research Directions

In this chapter, we discuss the main contribution of this thesis and the fu-

ture research directions of the proposed topic.

The first contribution of this work is the proposal of the novel frame-

work called Non-Cooperative Configurable Markov Decision Process (NConf-

MDP) as an extension of the existing framework known as Configurable

Markov Decision Process (Conf-MDP) introduced in [29]. Before the in-

troduction of the Conf-MPDs, the environment was considered as a fixed

entity out of the agent control. Indeed, when we firstly introduced Markov

Decision Processes in Section 2.1, we defined the environment as “everything

outside the agent” [39]. Conf-MDPs have overcome this limitation by pro-

viding the agent with partial control over the environment. In fact, thanks

to learning algorithms like SMPI or REMPS proposed in [29, 27], the agent

is able to learn simultaneously the optimal policy and the optimal environ-

ment configuration. Although Conf-MDPs have revealed its great potential

in modeling configurable environments, they are not able to deal with those

scenarios where the configurator does not share the same interests of the

learning agent. This is a great lack of expressiveness since many real world

applications are characterized by a non cooperative interaction between the

configurator and the learning agent. NConf-MDPs overcome these issues

allowing the configurator to optimize a reward function different from the

one of the agent. We have discussed how the sequential interaction between

the configurator and the agent can be modeled as a Stackelberg game where

the leader is the configurator who firstly selects a configuration pi and the

follower is the learning agent who plays the optimal policy π?pi in the chosen



configuration pi. Hence, solving a NConf-MDP means finding the Stackel-

berg equilibrium (p?, π?p?), composed by the optimal configuration p?, i.e.

the configuration that maximizes the configurator’s performance, and the

optimal policy π?p? , i.e. the policy that maximizes the agent’s performance

in configuration p?.

The second contribution of this thesis is the proposal of two algorithms

for solving NConf-MDPs: Action-feedback Optimistic Configuration Learn-

ing (Af-OCL) and Reward-feedback Optimistic Configuration Learning (Rf-

OCL). The two algorithms differ by the way they handle information coming

from agent’s trajectories. While Af-OCL ignores immediate reward samples,

Rf-OCL leverages these samples for transferring information across different

configurations. This feature makes Rf-OCL achieve higher performance than

Af-OCL. On the other hand, Rf-OCL can be used only if we can observe

reward samples while Af-OCL only needs trajectories composed by states

and actions. In Section 6, we have compared our algorithms with UCB1

showing how the increasing use of the structure of the problem positively

affects performance. In particular, UCB1 makes no use of the structure

treating the configuration problem as a classic Multi-armed Bandit problem

where the configurator can pull different arms, i.e. different configurations.

On the other hand, Af-OCL leverages the fact that each ”arm” is associated

with an underlying MDP. Finally, Rf-OCL is able to estimate the reward

function of the agent providing a link to transfer information gathered in

a given configuration in all the others. The different uses of the structure

of the problems affect the regret trend. In fact, regret generated by UCB1

grows indefinitely with logarithmic speed. On the other hand, both our al-

gorithms are able to reach a zero-regret strategy. In particular, the regret

upper bound for Rf-OCL is independent from the number of configurations

and this makes this algorithm significantly more efficient than the others

when the number of configurations is large.

The work presented in this thesis can be further extended in the future

following different research directions.

Stochastic policy The algorithms proposed in this work are based on

Assumption 1 stating that the agent’s best response policy πi is determinis-

tic in all the configuration i ∈ [M ] and every time the configurator selects a

configuration i ∈ [M ] the agent will play always the same optimal policy πi.

It is worth to notice that the performance achieved by the configurator is

not totally fixed in each configuration due to the stochasticity of the tran-
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sition model. Breaking Assumption 1 gives rise to two possible scenarios

representing the future research directions of this work. The first scenario

is characterized by fixed stochastic agent’s policies. This means that when

the configurator chooses a configuration i ∈ [M ], the agent will respond

always with the same stochastic policy πsi . On the other hand, the second

scenario arises when there is no guarantee that the agent will always play

the same optimal policies (which could be deterministic or stochastic). As

it can be imagined, this second scenario is the most difficult since, even in

case of deterministic policies, the configurator could achieve totally different

performances in the same configuration. Indeed, the agent could converge to

different optimal policies that are equivalents in term of the agent’s reward

function but very different in term of configurator’s reward function.

Awareness The work presented in this thesis is based on the assumption

that the agent is unaware of the presence of a non-cooperative configurator.

Based on this assumption, the best response of the agent to the chosen con-

figuration is trivially playing the optimal policy. On the other hand, if the

agent were aware of the game it could try to deceive the configurator playing

sub-optimal policies to influence the configuration selection strategy to his

advantage. The awareness of the agent makes the game more difficult to

solve for the arising of deeper strategic behaviors. This scenario represents

an interesting research directions that is worth to be explored in the future.

Multiple Learning Agents In this thesis, we have considered only

situations with only one learning agent. However, in several real world

applications we have to deal with multiple agents. For instance, in the e-

commerce scenario, presented in Section 1, the website may be visited by

several customers simultaneously. In order to deal with these situations, we

have to consider multiple learning agents that act in the environment opti-

mizing different functions. Clearly, this makes the role of the configurator

much harder since it must take into account the behaviors of all the agents.

Moreover, this scenario combined with the awareness of the agents may lead

to a collaborative behavior of agents against the configurator.

Inverse Reinforcement Learning As already discussed, one of the

main limitations of RfOCL is that it requires reward samples in order to

estimate a confidence interval over the agent’s reward function. However,

in practical applications, this is a great limitation. Indeed, if we think to

the e-commerce example provided in Section 1, we can only observe how

the customer is behaving on the website without observing reward samples.
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Nevertheless, this limitation can be easily overcome using Inverse Reinforce-

ment Learning for the estimation of the agent’s reward function. While the

goal of Reinforcement Learning is to induce an optimal behavior given a re-

ward function, the goal of Inverse Reinforcement Learning (IRL) is to infer

the reward function that the agent is optimizing given its optimal behavior.

For instance, in the e-commerce example, we could analyze the customer’s

behavior to identify the reward function that he is optimizing. However, it is

worth to notice that IRL is an ill-posed problem, i.e., there exists several re-

ward functions making the agent’s behavior optimal. To solve this problem,

IRL algorithms presented in the literature optimize some additional objec-

tives, like the entropy or the suboptimality gap, to discriminate between

equivalent reward functions. However, in order to eliminate the dependen-

cies on reward samples in RfOCL we need not only a reward function but

a confidence interval on the reward of each state. A viable research direc-

tion is represented by the combination of an IRL algorithm with bootstrap

sampling. In this way, we could leverage different subsets of the agent’s tra-

jectories to derive several reward functions acting as a proxy of the reward

samples.
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Appendix A

Proofs and Derivations

A.1 Bellman Operators

In this section, we provide some additional details on the expected Bell-

man operator and Bellman optimality operators and we discuss the con-

vergence properties of policy iteration (Algorithm 1) and value iteration

(Algorithm 2). Both algorithm are characterized by an iterative application

of Bellman operators. In particular, policy iteration algorithms apply until

convergence the expected Bellman operator T π associated with the current

policy π in the policy evaluation step. Similarly, value iterations applies at

each step the Bellman optimality operator T ?. An iterative application of a

given operator T provably converges to a unique value if the operator T is

a contraction. Hence it is sufficient to prove that the Bellman operators are

contractions in order to prove the convergence of the algorithms.

Definition A.1.1 (Contraction). Given an operator T : Rn → Rn and a

real number γ ∈ (0, 1), T is a contraction if

‖T (V)− T (V′)‖∞ ≤ γ‖V −V′‖∞

for every vectors V,V′ ∈ Rn.

Theorem A.1.1. The expected Bellman operator T π, associated with any

policy π, is a contraction.

Proof. Let’s remind that T π(V) = Rπ
s + γPπ

ss′V. Equivalently, we can

rewrite the expected operator, using the element-wise notation:

T π(V)(s) = rπ(s) + γ
∑
s′∈S

pπ(s′|s)V (s′).
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Thus, we have:

‖T π(V)− T π(V′)‖∞ = max
s∈S

[
T π(V)(s)− T π(V′)(s)

]
= max

s∈S

[
rπ(s) + γ

∑
s′∈S

pπ(s′|s)V (s′)− rπ(s)− γ
∑
s′∈S

pπ(s′|s)V ′(s′)

]

= γmax
s∈S

[∑
s′∈S

pπ(s′|s)V (s′)−
∑
s′∈S

pπ(s′|s)V ′(s′)

]
= γmax

s∈S

∑
s′∈S

pπ(s′|s)(V (s′)− V ′(s′))

≤ γmax
s∈S

∑
s′∈S

pπ(s′|s)‖V −V′‖∞

= γ‖V −V′‖∞max
s∈S

∑
s′∈S

pπ(s′|s)

= γ‖V −V′‖∞

Theorem A.1.2. The Bellman optimality operator T ? is a contraction.

Proof. Let’s remind that T ?(V) = maxa
[
Rs,a + γPs,a,s′V

]
or, equivalently

using element-wise notation

T ?(V)(s) = max
a∈A

[
r(s, a) + γ

∑
s′

p(s′|s, a)V (s′)

]
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Thus, we have:

‖T ?(V)− T ?(V′)‖∞ = max
s∈S

[
T π(V)(s)− T π(V′)(s)

]
= max

s∈S

[
T π(V)(s)− T π(V′)(s)

]
= max

s∈S

[
max
a∈A

[
r(s, a) + γ

∑
s′

p(s′|s, a)V (s′)

]

−max
a∈A

[
r(s, a) + γ

∑
s′

p(s′|s, a)V ′(s′)

]]

≤ max
s,a

∣∣∣∣∣r(s, a) + γ
∑
s′

p(s′|s, a)V (s′)− r(s, a)− γ
∑
s′

p(s′|s, a)V ′(s′)

∣∣∣∣∣
= γmax

s,a

∣∣∣∣∣∑
s′

p(s′|s, a)V (s′)−
∑
s′

p(s′|s, a)V ′(s′)

∣∣∣∣∣
= γmax

s,a

∑
s′

p(s′|s, a)
∣∣V (s′)− V ′(s′)

∣∣
≤ γmax

s,a

∑
s′

p(s′|s, a)‖V −V′‖∞

= γ‖V −V′‖∞max
s,a

∑
s′

p(s′|s, a)

= γ‖V −V′‖∞

A.2 Optimistic Configuration Learning

A.2.1 Regret bound of Af-OCL

Lemma A.2.1. The distance between the optimistic value function Ṽ1 and

the real value function V1 is bounded by:

Ṽ1 − V1 ≤ 2H
∑
s∈S

H∑
h=1

1 {s is not yet visited} dh(s) (A.1)
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Proof.

Ṽ1 − V1 =
∑
s∈S

[
µ(s)r(s)− µ(s)r(s) +

H∑
h=2

(d̃h(s)− dh(s))r(s)

]
(A.2)

=
∑
s∈S

H∑
h=2

(d̃h(s)− dh(s))r(s) (A.3)

=
∑
s∈S

H−1∑
h=1

∑
s′∈S

d̃h(s′)p̃(s|s′)r(s)− dh(s′)p(s|s′)r(s) (A.4)

=
∑
s∈S

H−1∑
h=1

∑
s′∈S

(d̃h(s′)− dh(s′))p̃(s|s′)r(s)+ (A.5)

+ dh(s′)(p̃(s|s′)− p(s|s′))r(s)

≤
∑
s∈S

∑
s′∈S

H−1∑
h=1

∥∥∥(d̃h(s′)− dh(s′))r(s)
∥∥∥∥∥p̃(s|s′)∥∥+ (A.6)

+
∥∥dh(s′)(p̃(s|s′)− p(s|s′))

∥∥ ‖r(s)‖
≤ Ṽ H−1

1 − V H−1
1 +

∑
s∈S

∑
s′∈S

H−1∑
h=1

∥∥dh(s′)(p̃(s|s′)− p(s|s′))
∥∥ (A.7)

≤ H
∑
s′∈S

dh(s′)

H−1∑
h=1

∑
s∈S

∥∥(p̃(s|s′)− p(s|s′))
∥∥ (A.8)

≤ 2H
∑
s′∈S

H∑
h=1

1
{
s′ is not yet visited

}
dh(s′), (A.9)

where line (A.2) is the definition of value function, in line (A.4) we rewrite

the visiting distribution, in line (A.5) we expanded the probability distri-

bution of visiting states, in line(A.6) we multiply for the mixed terms, line

(A.7) is due to upperbounding the reward with 1, line (A.8) is due to triangle

inequality and recursion, line (A.9) is due to upperbounding the probability

with 2.

Lemma A.2.2. A model is no longer played if every state with dh(s) ≥ ∆i−c
2H2S

is visit at least one time, with c > 0 and where ∆i is the gap between the

best model i∗ and the model i.
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Proof.

Ṽi = Ṽi − Vi + Vi (A.10)

≤ Vi + 2H
∑
s∈S

H∑
h=1

1 {s is not yet visited} dih(s) (A.11)

≤ Vi + 2H2S
∆i − c
2H2S

(A.12)

= Vi + ∆i − c < V ∗ (A.13)

in line (A.11) we apply lemma A.2.1 and in the final inequality we use the

fact that V ∗ − Vi = ∆i.

Theorem A.2.1 (Regret of AfOCL). Let NCM = (S,A,P, µ, rc, ro, H)

with P = {p1, . . . , pM} be the M finite-horizon MDPs of the problem. The

expected regret of AfOCL at every episode K > 0 is bounded by:

E[Regret(K)] ≤MH3S2. (A.14)

Proof. We define the regret as:

E[Regret(K)] =
∑

i∈[M ]:∆i>0

∆i E[Ni],

where Ni is the expected number of time that the algorithm plays model i

different from optimal model i∗. We bound the expected value of Ni:

E[Ni] ≤
∞∑
l=0

Pr(Ni ≥ l) (A.15)

≤
∞∑
l=0

Pr(Ṽ i
l − Ṽ ∗l ≥ 0) (A.16)

≤ 2 +
∞∑
l=2

Pr(Ṽ i
l − Ṽ ∗l ≥ 0) (A.17)

≤ 2 +
∞∑
l=2

Pr(Ṽ i
l − V ∗l ≥ 0) (A.18)

In line (A.16) we use the fact that a model is selected only if its optimistic

expected return is more than the optimistic expected return of optimal ex-

pected return, and in line (A.17) we use optimism. We observe that for

lemma A.2.2, if every state s ∈ S with dh(s) ≥ ∆i−c
2H2S

is visited at least one
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time then the model i will no play again. So:

E[Ni] ≤ 2 +
∞∑
l=2

Pr(Ṽ i
l − Ṽ ∗l ≥ 0) (A.19)

≤ 2 +
∞∑
l=2

Pr

(
∃s ∈ S, ∃h ∈ [H] s.t. dih(s) ≥ ∆i − c

2H2S
s.t. (A.20)

s is not yet visited after l pulls

)

≤ 2 +
∞∑
l=2

∑
s∈S,h∈[H]:dih(s)≥∆i−c

2H2S

Pr(s is not yet visited (A.21)

after l pulls)

≤ 2 + SH

∞∑
l=2

(
1− ∆i − c

2H2S

)l−1

(A.22)

= 2 + SH
1− ∆i−c

2H2S
∆i−c
2H2S

≤ 2
H3S2

∆i − c
, (A.23)

where line (A.21) is due to union bound, in line (A.22) we use the fact that

the probability is a geometric series and in line (A.23) we observed that

SH ≥ 2. So the expected regret is bounded by:

E[Regret(K)] =
∑

i∈[M ]:∆i>0

∆i E[Ni] ≤
∑

i∈[M ]:∆i>0

∆i2
H3S2

∆i − c
≤ 2MH3S2,

having taken the infimum over c > 0.

A.2.2 Regret bound of Rf-OCL

In this section, we are going to prove the regret for the algorithm RfOCL.

We start defining the events Gk for k ∈ [K] such that:

Gk =

{
∃s ∈ S s.t. |r(s)− r(s)| ≤

√
log(SHk3)

2Nk(s)

}

This event means that at step k the estimated reward for all states s ∈ S
are inside the confidence intervals.

Lemma A.2.3 (Simulation lemma for finite-horizon). For every transi-

tion probabilities pi ∈ P, the distance between the optimistic state-action

value function Q
i
o,k,1(s, a) and the real optimal state-action value function
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Qio,1(s, a) at episode k, if all Gk hold, for all s ∈ S and for all a ∈ A is

bounded by:

Q
i
o,k,1(s, a)−Qio,1(s, a) ≤

√
log(SHk3)

2Nk(s)
+
∑
s′∈S

∑
h∈[H]

d
i
k,h(s′)

√
log(SHk3)

2Nk(s′)
,

where d
i
k,h is the visitation distribution induced by the greedy policy πi w.r.t.

Q
i
o,k.

Proof. The proof is basically taken from [44, 4, 42].

Q
i
o,k,1(s, a)−Qio,1(s, a) ≤ Qio,k,1(s, a)−Qπio,1(s, a) (A.24)

= r(s)− r(s) +
∑
s′∈S

∑
h∈[H]

d
i
k,h(s′) (r(s)− r(s)) (A.25)

=

√
log(SHk3)

2Nk(s)
+
∑
s′∈S

∑
h∈[H]

d
i
k,h(s′)

√
log(2SHk3)

2Nk(s′)
, (A.26)

where line (A.24) is due to Qio,1(s, a) ≥ Qπio,1(s, a), recalling that Qio,1 is the

optimal Q-value under model pi.

Lemma A.2.4. Let s ∈ S be a state with minimum visitation probability

p(s) := mini∈[M ] maxh∈[H] d
i
h(s) > 0. Then, at episode k ∈ [K] it holds that:

E[Nk(s)] ≥ (k − 1)p(s).

Proof. We simply apply the definition of Nk(s):

E[Nk(s)] = E

k−1∑
i=1

∑
h∈[H]

1 {sk,h = s}


=

k−1∑
i=1

∑
h∈[H]

Pr(sk,h = s|pIi)

=

k−1∑
i=1

∑
h∈[H]

dIih (s)

≥
k−1∑
i=1

max
h∈[H]

dIih (s)

≥ (k − 1) min
i∈[M ]

max
h∈[H]

dih(s) = (k − 1)p(s).



76 Appendix A. Proofs and Derivations

Lemma A.2.5. Let s ∈ S be a state with minimum visitation probability

p(s) := mini∈[M ] maxh∈[H] d
i
h(s) > 0. Then, after k episodes with probability

at least 1− δk it holds that:

Nk(s) ≥ kp(s)−

√
k − 1

2
log

(
1

δk

)
Proof.

Pr

(
Nk(s)≤E[Nk(s)]−

√
k−1

2
log
(

1
δk

))
≤Pr

(
Nk(s)≤(k−1)p(s)−

√
k−1

2
log
(

1
δk

))
≤δk

Using Höeffding inequality and Lemma A.2.4.

Lemma A.2.6. If for all s ∈ S and for all i ∈ [M ],
√

log(SHk3)
2Nk(s) ≤ ∆Q−c

2(SH+1)

then the policies of all the MDPs are well estimated.

Proof. Let ∆Q be the minimum gap between the Q-function in the optimal

action and a different action in all transition probabilities pi ∈ P:

∆Q = min
i∈[M ]

min
s∈S

min
h∈[H]

{
max
a∈A

Qio,h(s, a)− max
a′∈A\arg maxa∈AQ

i
o,h(s,a)

Qio,h(s, a′)

}
.

If maxs∈S

√
log(SHk3)

2Ns
≤ ∆Q−c

2(SH+1) , with c > 0, then for all s ∈ S and i ∈ [M ],

we denote with a∗ = arg maxa∈AQ
i
o,h(s, a) and we have for all a ∈ A\{a∗}:

Q
i
o,k,h(s, a)−Qi

o,k,h
(s, a∗) = Q

i
o,k,h(s, a) +Qio,h(s, a)−

Qio,h(s, a)−Qi
o,k,h

(s, a∗)+

Qio,h(s, a∗)−Qio,h(s, a∗)

≤ 2(SH + 1) max
s∈S

√
log(SHk3)

2Nk(s)
−∆Q (A.27)

≤ 2(SH + 1)
∆Q − c

2(SH + 1)
−∆Q ≤ −c (A.28)

Where line (A.28) is due to Lemma A.2.4. So the policies are well estimated.

Theorem A.2.2 (Regret of RfOCL). Let NCM = (S,A,P, µ, rc, ro, H)

with P = {p1, . . . , pM} be the M finite-horizon MDPs of the problem. Under

Assumption 2, the expected regret of RfOCL at every episode K > 0 is

bounded by:

E[Regret(K)] ≤ K∆ +
π2

3
,
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where K is the smallest integer solution of the inequality

K ≥

(
2(SH + 1)2 log(SHK3)

∆2
Q

+

√
K

2
log(S∆K2)

)
1

ε
,

∆ = maxi∈[M ] ∆i, i.e. the maximum suboptimality gap, and ∆Q is the

minimum positive gap of the agent’s Q-values.

Proof. So we rewrite the expected regret as:

E[Regret(K)] =

K∑
k=1

(E[∆Ik1 {Gk}] + E[∆Ik1 {¬Gk}])

≤
K∑
k=1

E[∆Ik |Gk]︸ ︷︷ ︸
A

+H
K∑
k=1

P (¬Gk)︸ ︷︷ ︸
B

We start bounding the B term:

H
K∑
k=1

P (¬Gk) = H
K∑
k=1

P (∃s ∈ S s.t. |r(s)− r(s)| >

√
log(SHk3)

2Nk(s)
)

(A.29)

≤ H
K∑
k=1

∑
s∈S

P (|r(s)− r(s)| >

√
log(SHk3)

2Nk(s)
) (A.30)

≤ H
K∑
k=1

∑
s∈S

k−1∑
j=0

P (|r(s)− r(s)| >

√
log(SHk3)

2j
) (A.31)

≤ H
K∑
k=1

∑
s∈S

k−1∑
j=0

e− log(SHk3) (A.32)

=
K∑
k=1

SHk
1

SHk3
≤ π2

6
(A.33)

where line (A.30) is due to the union bound on the states, line (A.31) is due

to the union bound on the possible values of the random variable Ns and in

line (A.32) we use Hoeffding inequality.

For the first term (A) we define the event Ek ∀k ∈ [K]:

Ek =

{
∀s ∈ S : Nk(s) ≥ kp(s)−

√
k

2
log

(
S

δk

)}
.
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So we can rewrite the term (A) as:

K∑
k=1

E[∆Ik |Gk] ≤
K∑
k=1

E[∆Ik |Gk, Ek]︸ ︷︷ ︸
C

+ ∆

K∑
k=1

P (¬Ek)︸ ︷︷ ︸
D

We start bounding the second term (D):

∆

K∑
k=1

P (¬Ek) = ∆

K∑
k=1

δk

We set δk = 1
k2∆

. So:

∆

K∑
k=1

P (¬Ek) = ∆

K∑
k=1

1

k2∆
≤ π2

6

Now it remains to bound the term (C) that, using lemma A.2.6, is zero:

∀K > K ≥

2(SH + 1)2 log(SHK
3
)

(∆Q)2
+

√
K

2
log(S∆K2)

 1

ε
. (A.34)

Then the total regret is:

E[Regret(K)] = min

{
2MH3S2,K∆ +

π2

3

}
.



Appendix B

Additional Experimental

details

In this appendix, we report the hyperparameters employed in the experi-

mental results, presented in Section 6.2.

B.1 Configurable Gridworld Experiments

In this section we provide the hyperparameters used for conducting the

experiments on Configurable Gridword domain.

B.1.1 Experiment 1

The first experiment (Figure 6.4) presents the following hyperparameters:

• Number of states: 9

• Number of actions: 4

• Probability of action failure: 0.1

• Number of configurations: 10, 30

• Time horizon: 10

• Number of episodes: 3000

• Number of independent runs: 50
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B.1.2 Experiment 2

The second experiment (Figure 6.5) presents the following hyperparameters:

• Number of states: 9

• Number of actions: 4

• Probability of action failure: 0

• Number of configurations: 3

• Time horizon: 10

• Number of episodes: 1000

• Number of independent runs: 50

B.1.3 Experiment 3

The third experiment (Figure 6.6) presents the following hyperparameters:

• Number of states: 9

• Number of actions: 4

• Probability of action failure: 0.1

• Number of configurations: 10, 30, 100, 200

• Time horizon: 10

• Number of episodes: 5000

• Number of independent runs: 50

B.2 Student-Teacher Experiment

In this section we provide the hyperparamenters of the experiment in the

Student-Teacher domain:

• Number of states: 10

• Number of actions: 2

• Probability of action failure: 0.1

• Number of configurations: 40, 60, 100
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• Time horizon: 10

• Number of episodes: 4000

• Number of independent runs: 50

B.3 Configurable Marketplace Experiment

In this section we provide the hyperparamenters of the experiment in the

Configurable Marketplace domain:

• Number of states: 16

• Number of actions: 4

• All products: {0, 1, 2}

• Products needed by the agent: {1}

• Probability of action failure: 0.1

• Number of configurations: 10

• Time horizon: 15

• Number of episodes: 30000

• Number of independent runs: 50


