
Thesis Project

Anno accademico: 2020/2021

Stablecoins: Stability Analysis and
Price Manipulation

Relatore:
Emilio Barucci

Studente:
Piervito Coletta



Abstract

Following the same rise in popularity of Bitcoin and Ethereum, Stablecoins are
set to become the future of digital transactions. Indeed, given a completely
different structure, these new Coin aims to maintain a stable value compared to
the already proven high volatility of Cryptocurrencies. The increasing interest,
along with the general lack of solid and well-oiled regulation of the Exchange
Markets, has led, however, to the diffusion of illicit behavior directly connected
to these Cryptocurrencies. This project will focus on one particular scheme,
the Pump and Dump Scheme, which has generated over 300M$ of profit in a
single year. After a stability analysis of the price, the main goal is to determine
whether the Stablecoins considered, DAI and USD Coin, have been targeted by
this kind of activity and can be susceptible in case of future attacks.
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Chapter 1

Introduction

Since the creation of the first Bitcoin, digital currencies have always been as-
sociated with various illegal activities, undermining the credibility of this new
possible meter of wealth. From Dark Web transactions to price manipulations,
the life of Cryptocurrencies has never been relatively calm. In particular, due
to the nature of these coins, based on decentralization, and the underestima-
tion of the Crypto Phenomenon, which now values almost 2 Trillion, governing
financial institutions left Exchange Markets unregulated for almost a decade.

In this unsupervised environment, numerous price manipulation has taken
place. The first massive one occurred on the Mt. Gox Exchange in 2013. Gandal
et al.[12] shows how the event developed and its direct consequences. Hackers
stole a substantial amount of coins (approximately 650.000 units) from the ex-
change servers. In order to avoid the collapse of the Exchange due to the lack
of capital, Mt. Gox created a scheme to attract fiat capital. To begin with, they
began to place fake massive purchase orders. The first bot covered a longer time
interval, buying a smaller amount of coins daily, up to 335K coins. In contrast,
the activity of the second bot was more intense, leading to a purchase of 250K
coins in a fourth of the time interval covered by the first bot. Therefore the
Mt.Gox exchange bought almost 600K of coins, yet no actual transaction took
place. Indeed, the cryptocurrency exchange market functions as banks where
customers buy and sell coins but typically maintain balances of fiat currencies
and coins on the Exchange without retaining direct access to the currency. In
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1.1. CRYPTOCURRENCY AS CURRENCY CHAPTER 1. INTRODUCTION

this way, Mt. Gox created interest, increasing trading volume, fraudulent activ-
ity set apart, of approximately 2% during the active bots period.
At the end of this operation, the Exchange gained money from collecting trans-
action fees and, more importantly, converted consumer bitcoin balances into
fiat money, hiding the missing coins. As long as the user would remain confi-
dent in the stability of the Exchange, the default could be avoided. However,
as the story tells, the consumers tried to withdraw money from the ecosystem
of the Exchange, unveiling the fraud that the Mt.Gox owner put in place. The
Mt.Gox owner didn’t expect the massive consequences that this price manipula-
tion would create. Indeed after a descriptive analysis Gandal et al.[12], discov-
ered that all the other exchange that were operating the same pair BTC-USD,
were influenced by the bots. The magnitude of the increase can be considered
similar to the one occurred in the Mt.Gox, up to 5% in percentage rate change
of the price.

What happened in 2013 was unprecedented in crypto framework and almost
surely never to occur again due to the regulations that governing institution are
imposing. Nowadays what is concerning most is the impact of a large commu-
nity that as an organized entity matching the fire power of an investment bank
can do in this online trading system. It already happened with Gamestop and
the sudden upward shift of 300% of the stock value of firm. The goal of this
project is to understand how much stable coins can handle this kind of activity.

1.1 Cryptocurrency as Currency

Since the first coin was created, Cryptocurrencies have drawn enormous at-
tention, introducing an actual application of the concept of decentralization,
thanks to the distributed ledger (DLT). A DLT is essentially a record of in-
formation or database shared across a network without the need for a central
validation process. It is considered by most of the important central banks in
the world a powerful tool which potential has yet to be exploited. The infras-
tructure offered through DLT, be it in public or private form, could serve as
a record of holdings and be used to transfer various kinds of assets. So when
Bitcoin White Paper was released in 2008, the discussion about the future of
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1.2. STABLECOIN DESIGN CHAPTER 1. INTRODUCTION

money was triggered, leading to the creation of more than 2000 cryptocurren-
cies. However, it was clear from the beginning that none of these crypto-assets
could be considered the future of digital transactions. Indeed the European
Central Bank [8] defines three different functions that have to perform a tool in
order to be considered as "money":

• Medium of exchange for buying things: it is a means of payment with a
value that everyone trusts.

• Unit of account for pricing: it is a unit of account allowing goods and
services to be priced.

• Store of value for savings: it represents a meter of wealth and indeed
only a portion is actually circulating.

Cryptocurrencies cannot meet the requirements to be considered a form of
money given the definition that the ECB [8] is using:

• Crypto-Asset: "a new type of asset recorded in digital form and enabled by the
use of cryptography that does not represent a financial claim on, or a liability
of, any identifiable entity".

The lack of an underlying makes the asset highly unstable, leading to a risky
application as a store of savings.

1.2 Stablecoin Design

In search of stability in cryptocurrencies, developers around the globe created
Stablecoins. Again this brand new tool, as for the cryptocurrencies in 2008,
lacks an agreed definition, so the one used by the ECB [8] will be considered:

• Stablecoin: "digital units of value that are not a form of any specific currency
(or basket thereof) but rely on a set of stabilisation tools which are supposed to
minimize fluctuations of their price in such currency(ies)".

Each type of Stablecoin differs in three criteria: i) the existence/absence of an
issuer that is responsible for satisfying any attached claim; ii) the decentral-
ization/centralization of responsibilities over the Stablecoin initiative; iii) what
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underpins the value of a Stablecoin and its stability in the currency of reference.
By these criteria, four classes of Stablecoins can be identified:

• Tokenised Funds: supported by funds, which implies the issuer’s com-
mitment to their redeemability and the need for someone (possibly a cus-
todian) to take responsibility for their safekeeping.

• Off-chain collateralised stablecoins: supported by other traditional asset
classes, which require a custodian for their safekeeping and are in the
possession of the issuer only as long as the user does not claim them back.

• On-chain collateralised stablecoins: supported by assets, typically crypto-
assets, which can be held for safekeeping in a decentralised manner and
do not need an issuer to be identified.

• Algorithmic stablecoins: supported solely by users’ expectations about
the future purchasing poweer of their holdings, which does not require
the accountability of any part, nor the custody of any underlying asset.

To better understand the differences of these stablecoins design a crypto-cube
can be produced where each criteria occupy an axis.
The analysis are going to be performed on two Stablecoins, USD Coin (To-
kenised Funds) and DAI (On-chain collateralised Stablecoins).

1.2.1 Tokenized Funds: USD Coin

Units of monetary value that are stored electronically in a distributed ledger
to represent a claim on the issuer and are issued, for the purpose of making
payment transactions to persons other than the issuer, are often labelled “fiat-
backed stablecoins”. These coin does not represent actually a new form of asset
but rather represent axisting currency units in a distributed ledger. So the fund
undergo a tokenization process making possible transaction also on the DLT.
To own a tokenised funds corresponds to a claim on the issuer over the funds
it received from users. In the case a custodian is needed to channel the funds,
the issuer has to be identifiable and accountable in order to enter into an agree-
ment with the custodian of the funds. Moreover the funds must be redeemable
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1.2. STABLECOIN DESIGN CHAPTER 1. INTRODUCTION

Figure 1.1: Taxonomy of stablecoins within the “crypto-cube" [8]

according to the terms of service communicated to users. Three operations char-
acterize a tokenized funds:

• Issuance: User transfer funds to the issuer’s account, opened with the
custodian who keep them safe. Upon confermation of the transfer, the
issuer creates and allocates an equivalent amount of Coins through the
smart contract it mantains.

• Transfer: Sender initiates a transfer to a receiving user by instructing the
smart contract. DLT participants verify and validate the transfer.

• Redeeming: User sends units of tokenized funds to the address specified
by the user who will withdraw them from circulating, in order to mantain
redeemability of circulating units. Then custodian transfer corresponding
amount of funds back to the user.

The USD Coin (USDC), in particular, was the product of the direct tokenization
of the US Dollar(USD) until June 2021, when Circle, the issuer of the coin,
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1.2. STABLECOIN DESIGN CHAPTER 1. INTRODUCTION

changed the fund backing the stablecoin, in "fully reserved assets" redeemable
on a 1:1 basis for US Dollars. The USDC nowadays occupies the second position,
between all stablecoin, according to market capitalization which amount to a
total of 27 Billion USD.

1.2.2 On-chain Collateralized Stablecoins: DAI

Collateralized stablecoins are backed by units of an asset (or assets) that the
coin owner can redeem. However, the collateral price can fluctuate over time in
the currency of reference, in contrast to tokenized funds whose smart contract
guarantees the ratio at which it is possible to redeem the value of the stable-
coins. Therefore this type of coin is characterized by over-collateralization to
ensure that every stablecoin is backed by collateral valued at par in the cur-
rency of reference. In this way, users can store the proceeds from crypto-assets
without the need to go through the service of the trading platform and can avoid
the penalty fee associated with the default of collateral position. The On-Chain
collateralized stablecoin relates to assets in digital form and, for this reason, can
be completely decentralized, delegating the control process to the DLT partici-
pants. Thus the operations of issuance, transfer, and redeeming are completely
different from tokenized funds:

• Issuance: The user sends directly to the address of the smart contract
that governs the scheme the on-chain collateral. So the smart contract
then creates the coins and sends them to the user

• Transfer: Unlike the tokenized funds, no central party is needed so that
DLT participants maintain the smart contract governing stablecoin trans-
fer.

• Redeeming: It can be voluntary. Thus user sends stablecoins to the smart
contract, which burns them and returns to the user address the equivalent
on-chain collateral. Alternatively, it can be compulsory. It can happen
when the circulating stablecoins are under-collateralized due to a possible
default of the collateral. In this case, smart contracts search for new funds
to retrieve the under-collateralized coins and issue new secondary backed
coins.
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The DAI, in particular, is a stablecoin backed by on-chain collateral (Ethereum
more precisely) with a floating peg to 1USD, associated with the secondary to-
ken MKR, issued both by MakerDAO. It is a "decentral autonomous organi-
zation represented by rules encoded as a computer program transparent and
controlled by MKR holders", which have governance duties along with failure
responsibilities, thus also incentivized by potential seigniorage revenue.

1.3 Conditional Volatility

The analysis of the volatility is probably the most common process that has
been performed talking about Bitcoin. So it is commonly accepted the highly
volatile characteristics associated with Bitcoin in contrast to the traditional cur-
rencies. Indeed, numerous model has been implemented to understand and
predict the volatility of cryptocurrencies. The most used and analyzed model
is the GARCH used to compute conditional volatility, which is considered the
best quantity to describe the stability.

Introduced by Bollerslev(1982) [6], the GARCH model has been the key to com-
pute the variance of a time series conditional on the past values, leaving the un-
conditional variance constant. Starting from the ARCH model introduced by
Engle(1982) [11], the Generalized Autoregressive Conditional Heteroscedastic-
ity model showed a longer memory and a more flexible lag structure. Neverthe-
less, GARCH models showed some limitations, according to Nelson(1991). The
starting point of the critics relied on the symmetry property, which could not
distinguish the negative jumps correctly from the positive ones. Then he pro-
ceeded to list other weaknesses: the adverse correlation between assets’ returns
and changes in return volatility, the nonnegativity constraints of the parameters
complications, and the persistence of shocks.
Thus four features were introduced in order to classify a model as a good choice.
First, the model should show volatility clustering (a period of high volatility
must follow another with a similar volatility level). Second, the model must
present the mean reversion component, meaning that after some shocks in the
time series and thus in volatility, the latter’s level must return to some average
level. Third, the model must implement an asymmetric structure. Otherwise,
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the impact of positive and negative shocks will be considered the same. Finally,
exogenous variables have to be added in case the phenomenon considered re-
quires it.
As a consequence, a considerable amount of versions of the GARCH model were
introduced. In Chu et al. [9], a large-scale study has been conducted to deter-
mine the best fitting GARCH model in the cryptocurrencies framework. The
research interested twelve different GARCH models fitted on the seven most
popular cryptocurrencies traded at that time. The selection process was based
on a comparison of five quantities, AIC, BIC, CAIC, AICc, and HQC. The re-
sults show that IGARCH and GJR-GARCH are the models that provide the best
fits. However, the choice of the IGARCH can lead to some significant alteration
of the predicted volatility due to its infinite memory feature.

1.3.1 Stablecoin Stability

Regarding Stablecoins, state of the art in volatility analysis is not as consis-
tent as the bitcoin one. In Hoang et al. [14], a stability analysis focused on
studying the volatility of the six largest stablecoins by market capitalization.
The project manages to fit an AR(1)-TGARCH(1,1) (asymmetric model) to the
time series of the exchange rates against the US Dollar in order to compute the
conditional volatility. Moreover, they fitted the same model also to the prices
of Bitcoin, two fiat currencies (EUR and USD) and gold. Then to determine
whether the stablecoins could maintain their promised stability, confronted
the conditional volatility through a correlation computation. Results were not
promising, showing high volatility at intraday level, precisely 5-min and hourly
frequencies.
Moreover, Hoang et al.[14] warned against the use of the Realized Volatility
Estimation in this kind of stability analysis. Indeed, BTC and USDT showed
different distributions at different frequencies. Thus when computing the RV,
which values considerably the frequency distributions summing up squared
returns during the day, a poor and biased measure of relative volatility was
obtained.

11



1.4. PUMP AND DUMP SCHEME CHAPTER 1. INTRODUCTION

1.4 Pump and Dump Scheme

Pump and Dump scheme (P&D) is the form of price manipulation considered
in this project, that involves artificially inflating an asset price before selling the
cheaply purchased assets at higher price.

Figure 1.2: Pump and Dump Pattern

This practice is deemed illegal in the stock market by most countries world-
wide. Nevertheless, due to the weaker regulations that the Crypto exchanges
have, opposed to the stock one, it has taken hold in the cryptocurrencies frame-
work, essentially focusing on microcap coins.
A P&D is a trade-based manipulation of the price, meaning it involves manip-
ulating the price of a security by buying and then selling or vice versa. Thus to
operate a successful P&D is necessary that a large amount of user participate.
Thanks to the use of the Telegram channel, the pump organizer invited other
investors to join the group advertising the operation on social media as an easy
and highly profitable method. Then, using the Telegram channels or Discord
groups, the operator announces the target date, time, and exchange usually a
day in advance, not disclosing, however, the cryptocurrency to purchase until
the scheduled time. When the pump begins, the operator, and probably an-
other tiny group of people affiliated to, sells the coins they previously bought
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1.4. PUMP AND DUMP SCHEME CHAPTER 1. INTRODUCTION

in large quantities, triggering the dumping effect that intensifies when all the
other participants, fearing losses, sell, in turn, their coins.

1.4.1 Players

To understand how this manipulation takes place, Dhawan et al.[10] classify the
participants into two classes, non-manipulators (the ones that don’t know the
coin to target until the Pump begin) and maniputaltors (the actual organizers
of the scheme). Then they separates the non-manipulators into two category:

• Overconfident participants: people who actually believe at the false ad-
vertisment the manipulators posts on telegram channel, overestimating
the ability to sell the assets at its peak.

• Gambler: people who involve manipulating the price of a security by buy-
ing and then selling or vice versa.

Independently of the type of non-manipulator, the P&D is a negative-sum game.
Indeed, according to Dhawan et al.[10], the Pump & Dump can be modeled as
a four period game.

In the Period 0, the manipulators select the coin to target, which price is P0.
Then, in Period 1, manipulators take long positions of M total units in the coin
selected and inform the non-manipulators of the coming P&D. Assuming mar-
ket orders have linear price impacts, the prices are determined by the function
Pt = P0 + βXt where β is the price impact parameters between 0 and 1, Pt is the
price at time t and Xt is the cumulative volume of buys received by the market
at time t. So, taking a long position means pumping the price up to P1 = P0+Mβ.
In Period 2 the Pump signal is launched to the N non-manipulators. Given
Exchange markets place order sequentially in a queue, it is possible to define
the price at which each non-manipulator buys as {(P1 + 1β), (P1 + 2β), ...}, so that
the combined price impact corresponds to Nβ with price P2 = P0 +Mβ +Nβ at
the end of Period 2.
Finally in Period 3 the players exit the pump selling the coins bought. As be-
fore, sell orders are placed sequentially, executed at prices {(P2−1β), (P2 +2β), ...}
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making the price drop to the initial level P3 = P0.

Assuming entry prices Pentry and exit prices Pexit are uniformly distributed re-
spectively {(P0 +β(M + 1)), (P0 +β(M + 2)), ..., (P0 +β(M +N )) and {(P0 +β(M +N −
1)), ..., (P0) the expected profit of a non-manipulator individual is:

E[πnm] = E[Pexit − Pentry] = −
β(2 +M)

2

The player expects a loss composed of half the initial price impact and the
round-trip trade cost, not considering any transaction fees. These results imply
that no rational player with a risk-averse or risk-neutral utility function would
ever enter a Pump and Dump game.
Dhawan et al.[10] also computed the expected profit of a manipulator player:

E[πm] = E[Pexit − Pentry] =
βM

2
(N − 2M)

Thus also the manipulator faces some risks which depends on the level of in-
volvement in the event. The value computed, of course, is the sum of all the
losses of the non-manipulators participants.

1.4.2 Detection

Exchange regulators never offered an optimal tool to detect an ongoing pump
and dump to block the illicit activity from completing. The only detection
that has been conducted is post-event, mainly due to the reduced duration of
a crypto P&D. In Victor and Hagemann[23], they identify three classes of P&D
events that can occur:

• Sustained Pump: This type of pump leads to elevated price levels that are
sustained hours after the pump. Although there typically is an immediate
price peak, from which there will be a drop, the price does not return to
the initial levels.

• Short-term Pump: When the price briefly increases, but returns to or be-
low initial levels, then the pump was only short term, immediately fol-
lowed by a selloff (dump).
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• Failed Pump: When the price briefly increases, but returns to or below
initial levels, then the pump was only short term, immediately followed
by a selloff (dump).

Thanks to this classification and the telegram chat history, they train a classifier
conducting a supervised detection. The precision obtained from the XGBoost
in the Cross-Validation test was acceptable, yet in an unsupervised framework,
even with a trained classifier, numerous P&D events were detected, not guaran-
teeing, of course, that an actual P&D scheme has been successfully conducted.
Unfortunately, in this project, a telegram history chat could not be retrieved.
Thus it has been implemented only an unsupervised analysis following the in-
structions of the Kamps et al.[17] paper.

1.4.3 Indicators

Generally, a crypto P&D lasts for only several minutes, in contrast to the stock
market, which can reach months. Moreover, the pumping effect is due to the
combined purchase of thousand of people and is not based on the release of
false information. The only case of the Pumping effect in the stock market
that had similarity to the one on crypto exchanges is the Gamestop case, where
almost 2 million users bought an incredible amount of stocks pumping up to
300% the initial value.
The Kamps et al. [17] provides the peculiarities that distinguish a crypto P&D
from a penny stock one in Table 1.1:
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Stock Crypto
Target Low market cap Low market cap

Low volume Low volume
Low price Low price
Lack of reliable Lack of reliable
information information

Tactic Misinformation Real-Time Misinformation
Privately organised Public or private group
(smaller scale) scams (larger scale)

Timescale Medium (days to weeks) Short (minutes to hours)

Table 1.1: Comparison of traditional and crypto pump-and- dump schemes

Moreover Kamps et al. [17] provides a list of indicators, using the identified
characteristics of a crypto P&D dividing them in two groups, to determine if a
price manipulation occurred:

• Breakout Indicators: Signals that will always be present during a Pump
and Dump Scheme

• Reinforcers: Indicators which increase confidence that observed data are
the result of a price manipulation
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Indicators of pump-and-dumps per temporal dimension and indicator type

Temporal Dimension

Real Time Indicators Post-pump Indicators

Breakout Indicators
Volume Has the volume at the

current data point been
significantly higher than
in the estimation win-
dow?

Was there a decline in
volume after the event
window where a pump
was detected?

Price Has the price at the cur-
rent data point been sig-
nificantly higher than in
the estimation window?

Was there a decline in
price after the event win-
dow where a pump was
detected?

Reinforcers
Market Cap Is the market cap of the coin relatively low? (+)
Number of Exchanges Whether the coin is listed on multiple exchanges

and the indicators only spike on one (+)
Whether the coin is not listed on multiple ex-
changes (+)

Symbol Pair Whether the coin is trading for BTC or some other
cryptocurrency (+)
Whether the coin is trading for USD or some other
fiat currency (-)

Table 1.2: (+) corresponds to an increase in confidence that data shows a P&D,
while (-) corresponds to a decrease in confidence

17



1.4. PUMP AND DUMP SCHEME CHAPTER 1. INTRODUCTION

1.4.4 Susceptibility of Price to Volume Shocks

Due to the difficulties that the detection of the P&D poses, an analysis of the
presence of Granger Causality of the Volume on the price can be useful. Indeed,
in a trade-based manipulation, it is crucial that the price of the asset targeted
inflates as the trading volume increases. Thus, what a P&D causes is a shock
in the price pattern, meaning a non parametric Causality-in-Quantiles test can
implemented following the work of Balcilar et al[2].
As first step, they checked if a linear Granger cause test could be applied, look-
ing for non-linearity or structural break in the time series of the bitcoin returns.
The BDS test results showed signs of non-linearity, meaning a linear approach
would lead to misspecification and thus unreliable results. Then they imple-
mented a non-parametric Causality-in-Quantiles test to understand if the vol-
ume could predict the returns.
Results showed a significant level of causality over the quantiles range of 0,25
to 0.75 of the conditional distribution of returns. However, When the market
is in bearish or bullish phases all information about volume is irrelevant, only
past values of the returns can be useful.
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Chapter 2

Data

The main data for this project are tick-level trading data of the pair USDC/USD
and DAI/USD. The variables contained in the datasets are timestamp of the
transaction at the millisecond level, the price at which the trade occurred, the
volume of coins traded and a logic array corresponding to the label sold or
bought. For each coin there is a substantial difference between the number of
transaction on each exchange (10 times bigger), leading to issue to simple com-
putation such correlation between returns.
The time interval covered starts on the 1st June 2020 and ends on the 30th

September 2020 for both exchanges for a total of 112 days. Given the highly ir-
regular structure of the datasets, following the work of Brownlees and Gallo[7],
data were downsampled using different approach for different frequencies:

5min and Hour Daily

First Element Linear Poin Interpolation

y∗j = yf where tf =minti |ti ∈ (t∗j−1, t
∗
j ]; y∗j = (1− t∗J−tp

tn−tp )yp +
t∗j−tp
tn−tp yn

Table 2.1: y: real value, y∗: downsampled value, f :first, n: next, p: previous

The problem in using these methods, is that they might employ information
not available at tj . However the data are dense enough to apply both methods
without any danger. In the case of DAI, data regarding transactions on the
15th August 2020 on Coinbase exchange are missing, thus the date will not be
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considered in the following computations for both exchanges.

2.1 USDC

Data regarding the USD Coin comes from two market exchanges, Bittrex and
Kraken. Unfortunately, due to the lower interest in the Bittrex platform, traded
volumes belongs to two different orders of magnitude. Indeed before the down-
sampling, in the period considered, the former registered about 80K transac-
tions while the latter more than 1M. This difference is evident also in the daily
traded volume which is represented below:

Figure 2.1: Traded volume of USD Coin in the range between 06 June and 12
June

Price Analysis

A preliminary analysis has been conducted to visually understand the pattern
behavior of the time series, test the stationarity, and finally check if the data
had to be cleaned. The following figure represents the price series sampled at
5 minutes and the moving mean sampled at the hour and day level. A possible
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pump and dump event signal in the price analysis is the lasting shock present
in higher frequencies and remains in lower ones.

Figure 2.2: 5-min Price dynamics and hourly and daily rolling window on Bit-
trex(BT) and Kraken(KK)

The two exchanges exhibit different price dynamics, which are persistent at
the hourly level; a correlation analysis is necessary to understand whether a
possible arbitrage opportunity can be exploited in this framework. It has to
be taken into consideration. However, the differences in volume registered to
make the price much stable in the case of Bittrex exchange. Apart from these
differences, the price at the daily level (in black) has promising behavior, always
remaining close to the 1 US Dollar reference value.
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Price Analysis: Additive Decomposition

Subsequently a naive analysis of the seasonality can be exploited, eliminating a
possible disturbance in the stability and detection computations. Starting from
the assumption that the time series is composed by a trend component Tt, a
seasonal component St and a residual term et so that the time series is:

Xt = Tt + St + et

The results are obtained by first estimating the trend by applying a convolution
filter to the data. The trend is then removed from the series and the average of
this de-trended series for each period is the returned seasonal component. The
method used is Seasonal and Trend decomposition using Loess, thus a decom-
position based on a non linear least square regression.

Figure 2.3 shows that the trend generally confirms the stability highlighted by
the boxplots analysis, while the seasonality decomposition can be avoided. In-
deed, the quantity ranges between −0,0004$ and +0,0004$ for Bittrex and be-
tween −0,0001$ and +0,0001$ for Kraken, thus a negligible quantity. Moreover,
there is no real explanation for this kind of seasonality. Thus results can be dis-
carded.
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Figure 2.3: Additive Decomposition at hour level of the price on Bittrex(BT)
and Kraken(KK)
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Returns

All the computation are based on the returns, to avoid the possibility of non-
stationarity of the price time series. They are computed as: Where the choice of
Log-returns is consistent with the hourly and daily frequencies.
The following figures represent the return dynamics alongside the volume and
number of transactions, which occurred in 5 minutes intervals.

Figure 2.4: Returns, Volume and Number of Transaction dynamics on Bit-
trex(BT)

Regarding Bittrex returns, the values remain close to zero apart from rare spikes,
validating possible stability. Moreover, it can be interesting to check if the vol-
ume and number of transaction spikes also correspond to price sudden increase.
A promising absence of this correspondence makes the pump and dump event
highly improbable.
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Figure 2.5: Returns, Volume and Number of Transaction on Kraken(KK)

In the Kraken exchange, we have general stability around the zero values as in
the previous exchange, but there are much more price spikes that belong to the
same time interval of a volume and several transactions spikes. If a pump and
dump event occurs, the spikes must happen only on the exchange considered
and is not present on the Bittrex exchange.

Returns: Boxplot

A useful view of the volatility of the trading pair is offered also by the boxplot
analysis at different level. The colored bar represent the Interquantile Range
IQR = Q0,75 − Q0,25, where Qα is the quantile of order α of the distribution
considered, while rhombuses represents the outliers.
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Figure 2.6: Boxplots of the Daily Price on Bittrex(BT) and Kraken(KK)

The boxplots are computed on the 5min distributions of the returns for each
day. The Figure 2.6 shows low volatility with interquantile range IQR always
under the 0,1% on both exchanges. The higher amount of outliers for the USDC
derives from a more anomalous pattern of the price, with multiple spikes, an
indicator of a possible presence of Pumping effect.
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Figure 2.7: Boxplots of the Hourly Price on Bittrex(BT) and Kraken(KK)

Instead in Figure 2.7 boxplots are computed on the 5min distribution of returns
for each hour. As expected the intra-day returns are more noisy, with an IQR
around the zero values and an abundant number of outliers in the most volatile
day identified.

Ruturns Analysis: Summary Statistics

Moreover a general summary statistics has been computed to better have a gen-
eral idea of the returns pattern that characterize these time series, along with
the results of the ADF test, necessary in order to use the GARCH modeling

BT 5min KK 5min BT hour KK hour BT day KK day

Mean 8,1e-07 3,1e-08 3,1e-06 4,9e-08 2,6e-06 -1,6e-06
St.Dev. 1,2e-03 2,5e-04 2,3e-03 3,1e-04 2,3e-03 3,0e-04

Min -0,1 -0,1 -0,0047 -0,0042 -0,0098 -0,0042
Max 0,108 0,009 0,05 0,0042 0,011 0,0008

Table 2.2: Statistics of different frequencies of the two exchanges

Results show two different pictures of the returns of the two exchanges. In-
deed the standard deviation is one order of magnitude smaller in the case of
the Kraken exchange in contrast to the Bittrex one. Also, looking at the maxi-
mum values, there are some differences: in the case of the Kraken is one-tenth
the Bittrex value.
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In order to proceed with the fitting of GARCH model and the Causality in
Quantiles test, returns must be stationary, thus the classical Augmented Dickey–Fuller
test has been implemented.
Starting from the regression model to predict rt based on

rt = c+ βt +αrt−1φ1∆rt−1 + ...+φp∆rt−p + εt

where rt−1 is the lag 1 of the return time series, while ∆rt−1 is the first difference
of the series at time t − 1. If the slope coefficient β is not significantly different
from one, than we cannot reject the null hypothesis that the series is non sta-
tionary. However, if β is significantly less than one, then we can reject the null
hypothesis:

H0 : β = 0
H1 : β < 0

ADF Test Results

BT 5min KK 5min BT hour KK hour BT day KK day

Test Statistics -42 -37 -16 -18 -7,2 -6,6
P-Value 0,0 0,0 0,0 0,0 0,0 0,0

Table 2.3: If p-val less than 0.05, null hypothesis of non-sationarity rejected

Results in Table 4.1 show high confidence in stationarity of the returns.

Returns analysis: Correlation analysis

Finally, regarding the USD Coin, a correlation analysis is performed to under-
stand the price’s behavior in the exchanges to check if the coin can suffer from
an arbitrage opportunity. The correlation quantity computed is the Pearson’s
Correlation Value for time series.

In Figure 2.8, on the diagonal are represented the distributions of the returns,
while on the antidiagonal, respectively the Pearson’s Correlation value and the
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returns of both exchanges. Results shows a strange non-correlation between
exchanges in the returns. This represents a worrying situation in which an ar-
bitrage opportunity can be exploited, making suffer the credibility of the ex-
changes and coins.

(a) 5min Level (b) Hour Level

(c) Day Level

Figure 2.8: Correlation at three different levels

29



2.2. DAI CHAPTER 2. DATA

2.2 DAI

Data regarding the DAI coin comes from two market exchanges, Coinbase and
Kraken. Unfortunately, due to the outstanding popularity of the Coinbase plat-
form, traded volumes belong to two different orders of magnitude. Indeed be-
fore the downsampling, in the period considered, the former registered about
4,5M transactions while the latter less than 500K . This difference is evident
also in the daily traded volume, which is represented below:

Figure 2.9: Traded volume of DAI coin in the range between 06 June and 12
June

Price Analysis

As for the USD Coin, the same type of preliminary analysis has been conducted
on the DAI price and returns time series. The following figure represents the
price series sampled at 5 Minutes along with the moving mean sampled at hour
and day level.

30



2.2. DAI CHAPTER 2. DATA

Figure 2.10: 5-min Price dynamics and hourly and daily rolling window on
Coinbase(CB) and Kraken(KK)

The price dynamics of the DAI differ entirely from the USD Coin. There is a
high level of instability of the price with multiple spikes. Identifying a possible
Pump and Dump event on these kinds of Stablecoin can be extremely difficult
using the simple moving average methods. Indeed multiple positive signals
will come out from the detection analysis, yet no info can be retrieved to under-
stand if the signal corresponds, actually, to a P&D. However, in contrast with
the USD Coin, the two exchanges shows a high level of correlation given the
price follows the same dynamics on the two exchanges.
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Price Analysis: Additive Decomposition

Subsequently, the addtive decomposition has been computed, eliminating a
possible disturbance in the stability and detection computations as for USDC.

Figure 2.11: Additive Decomposition at hour level of the price on Coinbase(CB)
and Kraken(KK)

Figure 2.11 shows that the trend has not the stability desired, while the sea-
sonality decomposition can be avoided. Indeed, the quantity ranges between
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−0,0002$ and +0,0004$ for Coinbase and between −0,0004$ and +0,0006$ for
Kraken, thus a negligible quantity. Also, the frequency poses some difficulties
in understanding the meaning.

Returns

Computations on returns are the same as for the USD Coin, including the choices
of the log returns. The following figures represent the return dynamics along-
side the volume and number of transactions, which occurred in 5 minutes in-
tervals.

Figure 2.12: Returns, Volume and Number of Transaction dynamics on Coin-
base(CB)

Regarding Coinbase returns, the values present some spikes, which occurred in
the exact moment of volume and number of transactions. The probability of a
P&D event with similar dynamics is high.
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Figure 2.13: Returns, Volume and Number of Transaction on Kraken(KK)

In the Kraken exchange, we have higher instability with returns that hit 4%.
Moreover, two important spikes belong to the same time interval of a volume
and several transactions spikes. Also, in this case, the probability of similar
dynamics to the P&D is high, but it must be considered that one spike occurred
at the exact moment of the Coinbase exchange. Thus it is more probable that it
was a moment of high profitability of the DAI rather than a Pumping event.

Returns: Boxplot

As for the USDC, also for DAI, according to the methodology introduced, the
boxplots have been computed with colored bar representing the Interquantile
Range IQR while rhombuses representing the outliers:
In Figure 2.14 the boxplots are computed on the 5min distributions of the re-
turns for each day. The IQR for DAI is a little bit higher than the USD Coin,
reaching 0,5%, with more consistency between the two exchanges.
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Figure 2.14: Boxplots of the Daily Price on Coinbase(CB) and Kraken(KK)
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Figure 2.15: Boxplots of the Hourly Price on Coinbase(CB) and Kraken(KK)

In Figure 2.15 boxplots are computed on the 5min distribution of returns for
each hour. The intra-day boxplots highlights a less stable price, with large
amount of outliers.

Ruturns Analysis: Summary Statistics

Moreover, a general summary statistics has been computed to have a better
general idea of the returns pattern that characterizes these time series, along
with the results of the ADF test, necessary to use the GARCH modeling.

CB 5min KK 5min CB hour KK hour CB day KK day

Mean 6,2e-07 5,8e-07 4,0e-06 4,0e-06 6,2e-05 6,1e-05
St.Dev. 8,4e-04 7,8e-04 1,6e-03 1,5e-03 5,2e-03 5,3e-04

Min -0,022 -0,041 -0,026 -0,022 -0,031 -0,031
Max 0,024 0,043 0,028 0,012 0,014 0,015

Table 2.4: Statistics of different frequencies of the two exchanges

In contrast with the USD Coin results, the DAI returns show a higher correla-
tion between the two exchanges, with standard deviations and the same order
as for the mean. While talking about the maximum value, the value is con-
siderably higher for the Kraken exchange. The same can also be said for the
minimum value.
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ADF Test Results

BT 5min KK 5min BT hour KK hour BT day KK day

Test Statistics -29 -51 -28 -25 -8,3 -10
P-Value 0,0 0,0 0,0 0,0 0,0 0,0

Table 2.5: If p-val less than 0.05, null hypothesis of non-sationarity rejected

Table 4.3 shows high confidence in stationarity of the returns, thus no more
manipulation of the data will be needed.

Returns analysis: Correlation analysis

Finally, the correlation analysis is performed to understand the price behavior
in the exchanges and check if the coin can suffer from an arbitrage opportunity.
The correlation quantity computed is the Pearsons Correlation Value for time
series as for the USD Coin.

As for the USDC results, in Figure 2.16, on the diagonal are represented the dis-
tributions of the returns, while on the antidiagonal, respectively the Pearson’s
Correlation value and the returns of both exchanges. As expected, Figure 2.16
highlights a more realistic scenario than the one depicted for USD Coin, where
the intra-hour correlation is low but increases with the frequency, reaching the
0.93 level. Thus an arbitrage opportunity is highly improbable.
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(a) 5min Level (b) Hour Level

(c) Day Level

Figure 2.16: Correlation at three different levels

2.3 Bitcoin

Part of the stability analysis is based on comparing the bitcoin returns dynam-
ics, which is considered highly volatile, with the stablecoins ones. Thus a time
series of the price has been retrieved, unfortunately only at an hour and day
level, from the CoinMarketCap.com platform covering the same period of the
DAI and USD Coin. The retrieved price is the BTC/USD trading pair. However,
the platform from which time-series are retrieved is not an exchange platform.
Thus the price of any crypto asset is a volume-weighted average of market pair
prices for the crypto asset. The higher percentage of volume contributed from
the pair, the more influence it has on the average price. So this situation will not
provide the best consistency in results computation. In particular, this kind of
computation should lower the volatility of the BTC price, not enough, however,
to be defined as stable.
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Price Analysis

In the case of BTC, it has been not possible to retrieve more granular data, so
the figure 2.17 represents the price dynamics at hour level and the daily rolling
window:

Figure 2.17: Hour Price dynamics and daily rolling window

There are some consistent spikes, which will be higlighted by the returns com-
putations.

Returns

The computations are the same as the previous coins. Following figures repre-
sents the returns dynamics along the day-wise bloxplot in the month of higher
instability, August:
Bitcoin returns offer a completely different picture, with values consistently
higher and an IQR generally equal to 3%, one order of magnitude higher than
stablecoins. The source of the BTC data probably has made the dynamics less
noisy but not less volatile.
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Figure 2.18: Returns dynamics and Day-wise Boxplot
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Chapter 3

Stability Analysis

3.1 Methodology

In this section, according to Hoang and Baur’s [14] work, a stability analysis
will be performed to understand if the stablecoin can compete as a possible
alternative as digital currency or if the anomaly detection process that follows
will suffer from unexpected high volatility. To be consistent, the stability anal-
ysis is divided into Absolute, based on computation on unconditional volatility,
and in Relative, based on computation on conditional volatility.

3.1.1 Absolute Stability

The Absolute stability will be determined using a simple χ2-test on standard
deviation. A perfect stable coin should show no variation, which means zero
standard deviation. However, a zero variance does not exist in reality so that
the following hypothesis will characterize the test:

H0 : σsc < σ0 (3.1)

H1 : σsc ≥ σ0 (3.2)

where σsc is the standard deviation of the stablcoin considered and the σ0 =
0.1%, so that σsc can vary a little bit. The Test Statistics on which the critical
region is computed is:

T =
(N − 1) ∗ σsc

σ0

H0∼ χ2(N − 1)
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3.1.2 Relative Stability

The relative stability is more complex to be determined. The analysis starts
with a statistical test on the variance ratio between the stablecoin selected and
the bitcoin, which is highly volatile. The hypothesis of the test are:

H0 :
σsc
σbtc
≥ 1 (3.3)

H1 :
σsc
σbtc

< 1 (3.4)

where the test statistics is T = σsc
σbtc

H0∼ F(N −1,N −1). A non powerful test in this
case, due to the non-gaussanity of the returns of stablecoin. Thus the relative
stability analysis proceeds to compare the conditional volatility of the Bitcoin
with the stablecoin ones, computing the Pearson’s Correlation Coefficient. To
compute the conditional volatility is necessary to check whether the time series
shows signs of heteroscedasticity and then apply the version of the GARCH
model selected.

GJR-GARCH(1,1)

The generalized autoregressive conditionally heteroscedastic or GARCH model
main goal is to model the strong dependance of sudden burst of variability in
series own past. The model is as follow:

rt = δrt−1 + εt with εt |φt ∼N (0,σ2
t ) (3.5)

σ2
t =ω0 +αεt−1 + βσ2

t−1 (3.6)

where φt is the information set on which the residual of the AR(1) process is
conditioned. The stationarity conditions tested before are necessary in order to
ensure that the moments of the normal distribution are finite.
So the GARCH model captures volatility clustering. The volatility is more likely
to be high at time t if it was also high at time t1. Another way of seeing this is
noting that a shock at time t1 also impacts the variance at time t. However, as
proved in Chu et al.[9], a better version of the GARCH, in modeling financial
returns, is the GJR-GARCH version. The GJR-GARCH model was introduced
for capturing asymmetries in volatility, distinguishing positive and negative
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parts of the innovation process. Starting from the usual GARCH model, the
GJR-GARCH includes an ulterior parameter γ :

rt = δrt−1 + εt with εt |φt ∼N (0,σ2
t ) (3.7)

σ2
t =ω0 +αε2

t−1 +γε2
t−11{εt−1 < 0}+ βσ2

t−1 (3.8)

Thus the GARCH model is a restricted version of the GJR-GARCH, with γ = 0

3.2 Results

All the computation performed are based on the time series sampled at hour
level, as no 5Min time series could be retrieved for the Bitcoin price.
Absolute Stability The results of the test are, as supposed in the Data section,
not promising.

Chi-Square Test Results

DAI CB DAI KK USDC BT USDC KK

P-Value 0,0 0,0 0,0 0,0

Table 3.1: If p-value less than 0.05, null hypothesis of σsc < σ0 rejected

The standard deviation is much higher than the 0,1%.

Relative Stability

The results of the Fisher test, instead, looks better, given the standard deviation
is compared to the one of Bitcoin which is consistently higher.

Fisher Test Results (σsc < σ0)

DAI CB DAI KK USDC BT USDC KK

P-Value 0,0 0,0 0,0 0,0

Table 3.2: If p-value less than 0.05, null hypothesis of σsc < σ0) rejected

However, as introduced before, unconditional variance cannot be used to deter-
mine the stability of a coin, in particular, if it seems not to be present gaussian-
ity in the returns.
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So to implement the GJR-GARCH model, a preliminary test on the heteroscedas-
ticity of the residuals is necessary. The test selected is the Breusch-Pagan, which
compares the residual variance computed from the AR(1) fitting to the return
series and the variance of the 1-lagged returns that correspond to the exogenous
variables in the fitted model.

Breusch-Pagan Test Results

DAI CB DAI KK USDC BT USDC KK BTC

P-Value 0,0 0,0 0,0 0,0 0,0

Table 3.3: If p-value less than 0.05, null hypothesis of σsc > σbtc rejected

The results confirm the presence of heteroscedasticity, the GJR-GARCH model
can be implemented.

AR(1) - GJR-GARCH(1,1) Model Results DAI CB

Coefficients Std. Err. P-value(t-stat)

Constant 6,47e-03 2,46e-03 8,4e-03
rt−1 -0,161 2,69e-02 2,4e-09

ω0 1,70e-03 6,93e-04 1,42e-02
α 0,373 0,105 3,98e-04
γ -0,323 0,101 1,35e-03
β 0,749 5,88e-02 3,69e-37

Table 3.4: Model Results for DAI Coinbase
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AR(1) - GJR-GARCH(1,1) Model Results DAI KK

Coefficients Std. Err. P-value(t-stat)

Constant 4,43e-03 2,18e-03 4,29e-02
rt−1 -0,221 2,43e-02 1,14e-19

ω0 8,20e-04 3,19e-04 1,03e-02
α 0,226 4,82e-02 2,82e-06
γ -0,168 4,05e-02 3,44e-05
β 0,833 4,35e-02 1,81e-81

Table 3.5: Model Results for DAI Kraken

For the DAI, the GJR-GARCH seems to be a good choice due to the low P-Value
of all the coefficients. The main goal of this section is to understand the corre-
lation of the bitcoin volatility with one of the other stable coins.
Regarding the USD Coin, the GJR-GARCH could not produce acceptable re-
sults, given that the γ coefficient was not significant. A basic GARCH model
has been implemented instead. The same happened for Bitcoin, in contrast
with the results of Peng et al[20]. In figure 4.2 the results of the GARCH model.
Coefficients seem significant enough except for the ω one.
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AR(1) - GARCH(1,1) Model Results USDC BT

Coefficients Std. Err. P-value(t-stat)

Constant 5,14e-03 2,61e-03 4,90e-02
rt−1 -0,309 3,36e-02 3,75e-20

ω0 1,27e-03 7,94e-04 0,110
α 0,047 1,95e-02 1,74e-02
β 0,932 1,66e-02 0,0

Table 3.6: Model Results for USDC Bittrex

AR(1) - GARCH(1,1) Model Results USDC KK

Coefficients Std. Err. P-value(t-stat)

Constant 1,93e-04 4,69e-04 0,681
rt−1 -0,442 1,88e-02 1,76e-12

ω0 8,02e-05 5,0e-05 0,109
α 0,1 2,0e-02 6,08e-07
β 0,8 8,57e-02 1,05e-20

Table 3.7: Model Results for USDC Kraken

AR(1) - GARCH(1,1) Model Results BTC

Coefficients Std. Err. P-value(t-stat)

Constant 5,71e-03 7,48e-03 0,445
rt−1 -0,055 2,66e-02 4,04e-02

ω0 6,13e-03 4,37e-03 0,161
α 0,135 7,84e-02 8,61e-02
β -0,859 7,17e-02 3,54e-33

Table 3.8: Model Results for BTC
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The next step is to compute the conditional volatility of the model and compare
values with bitcoin volatility pattern.

Figure 3.1: Conditional Volatility in period 01/07-01/08

In general, July has been a volatile month for all coins; thus, in the case of USDC
on Bittrex, the conditional volatility has exceeded bitcoin values. In particular,
this spike in volatility corresponds to the one seen in price in the Data section
and has been carried for almost two days. The period is probably shorter due
to low results produced by the GARCH model, yet it reached a compromising
level.

For the DAI case instead, the volatility remains under the Bitcoin values. How-
ever, it follows a similar pattern with a notable amount of co-occurrencies of
the spikes. Thus the correlation analysis should provide a high level of serial
correlation.
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Figure 3.2: Correlation between DAI and BTC

Figure 3.3: Correlation between USDC and BTC
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The correlations plot shows the high level of correlation between DAI and BTC
conditional volatility. Thus the stablecoin is much more stable than Bitcoin. At
the same time, the USDC is much less correlated and more stable than the DAI
coin. This implies that tokenized funds result in being the best tool in stabiliz-
ing the volatility of the crypto asset. Indeed the first coin by market capitaliza-
tion is the USD Tether, the first tokenized funds stablecoin. In conclusion, the
two stablecoin are more stable than the bitcoin but remain however, in general
volatile. This can lead to detection of anomaly deriving from a volatile period
rather than an actual Pump and Dump scheme taking place. So the Causality
in Quantiles test comes in handy to better understand the dynamics in the most
extreme values, searching for the Granger Causality in Volume and Number of
Transaction.
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Pump and Dump

This section will apply the methods introduced by Kamps et al.[17] and by
Jeong et al.[16] to understand if and how these stablecoins be affected by the
P&D event. The first phase is dedicated to the detection of any anomaly in the
price, volume and number of transactions time series using the moving average
method. The goal is to identify the major spikes in price, comparing them to the
average of the previous values, and to search for a co-occurance of the spike also
in the volume and the number of transaction. If it is present, then, according to
the breakout indicators introduced by Kamps et al.[17], they will be classified
as a possible P&D or not. Moreover it will be implemented the Causality in
Quantiles test, to search for Granger causality in price by volume and number
of transaction, in the region of higher quantile. The results will explain if the
volume or the number of transaction can affect the price, as would happen in a
trade-based manipulation event.

4.1 Methodology: Anomaly Detection

What characterizes a P&D event is the pumping and dumping phase. In this
case, the manipulation is trade-based. Thus the pumping can only occur if nu-
merous purchase transactions happen in a relatively small amount of time. So
a P&D event will exhibit, on a given time interval, volume, number of transac-
tions, and price anomaly. An anomaly can be identified as a non-conforming
value to the rest of the set, thus an outlier. The identification of the outlier
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can be supervised, relying on a training dataset or unsupervised, which relies
on the assumption that anomalies are a rare occurrence in the data to avoid
false-positive signals. This project will focus on unsupervised detection, as no
training dataset could be retrieved, most notably on detecting anomalies con-
cerning recent history.
The anomaly detection technique is a thresholding technique. Thus for each
5-minutes value of the price, a simple moving average is computed, taking the
average of previous values in a time window preselected, defined as the lag
factor. The idea is to compare the past trend with the value selected to check if
it conforms to that trend or can be classified as an outlier.

Price anomaly

Following the work of Kamps et al.[17] the anomaly will be detected if:

P rice_Anomalyt =

 T rue, p
high
t > ε ∗µγ (pt)

False, p
high
t ≤ ε ∗µγ (pt)

where phight is the highest price registered in the time interval t selected, ε is the
percentage increase factor, γ is the lag factor and µγ (pt) is the moving average

computed as µγ (pt) =
∑t
i=t−γ p

close
t

γ .
So if the price observed phigh is bigger than the ε percentage of the µγ (pt) value

computed over the γ past values of phight , a price anomaly is detected.

Volume and Number of Transaction Anomaly

In the same way as for the price anomaly, the volume anomaly is detected if:

V olume_Anomalyt =

 T rue, vt > ε ∗µγ (vt)
False, vt ≤ ε ∗µγ (vt)

Num_of _T rans_Anomalyt =

 T rue, qt > ε ∗µγ (qt)
False, qt ≤ ε ∗µγ (qt)

where vt and qt is the total traded volume and total of transactions registered
in the time interval t selected, ε is the percentage increase factor, γ is the lag
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factor and µγ (vt) is the moving average computed as µγ (vt) =
∑t
i=t−γ vt
γ . Of course

for the qt variable all the computations are the same.
So if the volume traded vt is bigger than the ε percentage of the µγ (xt) value
computed over the γ past values of vt, a volume anomaly is detected.

Pump-Connected Anomaly

The idea is to detect not only an anomaly on these three-time series but, most
notably, a co-occurrence of the anomaly and an absence of the triple anomaly on
other exchanges considered. Only in this situation, a P&D can be detected. Un-
fortunately, this method suffers incredibly from the parameters choices. Thus a
selection phase is necessary to understand the best values to implement.

4.2 Methodology: Causality-in-Quantiles Test

In order to better classify the detected events in the previous phase, a causality
in quantiles test is necessary. The Causality in Quantiles test is a test introduced
by Jeong et al.[16] capable of capturing the Granger causality in a non-linear
time series. Moreover, the causality can be exploited at different quantiles so
that a more precise picture of the events taking place is obtained. The test is
a non-parametric test based on the kernel method. This project will be used
to test the significance of the regressors Volume and Number of Transactions.
Given two time series yt and wt, the Granger Causality in quantile is defined as
follow:

• wt does not cause yt in the θ-quantile with respect to {yt−1, ..., yt−p,

wt−1, ...,wt−p} if :

Qθ(yt |yt−1, ..., yt−p,wt−1, ...,wt−p) =Qθ(yt |yt−1, ..., yt−p)

• wt does cause yt in the θ-quantile with respect to {yt−1, ..., yt−p,

wt−1, ...,wt−p if :

Qθ(yt |yt−1, ..., yt−p,wt−1, ...,wt−p) ,Qθ(yt |yt−1, ..., yt−p)
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where Qθ(yt |·) is the θth conditional quantile of yt given · which depends on t.
So the reporting the Jeong et al.[16] procedure, denote xt ≡ (yt−1, ..., yt−p),
zt = (yt−1, ..., yt−p,wt−1, ...,wt−p) and the conditional distribution function yt given
zt(xt) by Fyt |zt (yt |zt)(Fyt |zt (yt |xt)). According to Jeong et al.[16] Fyt |zt (yt |zt) is abso-
lutely continous in y for almost all (zt,xt).
So the hypothesis of the test can be defined as:

H0 : P {Fyt |zt (Qθ(xt)|zt) = θ} = 1 a.s.

H1 : P {Fyt |zt (Qθ(xt)|zt) = θ} < 1 a.s.

The null hypothesis can reformulated as E[1{yt ≤Qθ(xt)|zt}] = θ or 1{yt ≤Qθ(xt)|zt} =
θ+εt where E[εt |zt] = 0 and 1(·) is the indicator function. To implement the test,
Jeong et al.[16] introduced the following distance measure which will be con-
sidered the test statistics:

J = E[{Fyt |zt (Qθ(xt)|zt)−θ}2fzt (zt)]

where fzt (zt) is the marginal density function of zt. The formula is however
impossible to implement, so starting from the assumption that the expected
value E[εt |zt] = Fyt |zt {Qθ(xt)|zt} −θ the distance measure is:

J = E{εtE[εt |zt]fzt (zt)}

This implies that the estimation of the expected value of residuals of the in-
dicator function can be computed using kernel methods. The estimator of the
residuals are:

Ê[εt |zt]f̂zt (zt) =
1

(T − 1)hm

T∑
s,t

Ktsεs

where Kts = K{(zt − zs)/h} is the Kernel function and h is the bandwidth.
For the θ-conditional quantile, as before, the estimator is computed using the
non-parametric kernel method.

Q̂θ(xt) = F̂−1
yt |xt (θ|xt) where F̂yt |xt (yt |xt) =

∑
s,t Lts1(ys ≤ yt)∑

s,t Lts

F̂yt |xt (yt |xt) is the Nadaraya-Watson kernel estimator of Fyt |xt (yt |xt) with Lts =
L{(xt − xs)/a} the kernel function and a the bandwidth associated.
Finally Jeong et al.[16] presents the estimator to compute:
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Ĵt =
1

T (T − 1)hm

T∑
t=1

T∑
s,t

Ktsεtεs (4.1)

=
1

T (T − 1)hm

T∑
t=1

T∑
s,t

Kts[1{yt ≤ Q̂θ(xt)} −θ][1{ys ≤ Q̂θ(xs)} −θ] (4.2)

To define the critical region, Jeong et al.[16] introduced the asymptotic distri-
bution of the test statistics under the null hypothesis:

T hm/2Ĵt
L−→N (0,σ2

0 )

where the variance can be estimated as σ̂2
0 = 2θ2(1 − θ)2/(T (T − 1)hm)

∑T
s,tK

2
ts

finally obtaining the estimator:

T hm/2Ĵt/σ̂
2
0 = (4.3)

=

√
T

T − 1

∑T
t=1

∑T
s,tKts[1{yt ≤ Q̂θ(xt)} −θ][1{ys ≤ Q̂θ(xs)} −θ]

√
2θ(1−θ)

√∑T
s,tK

2
ts

(4.4)

BDS Test

In order to apply the test, the assumption of non-linearity of the time series has
to satisfy. According to Bisaglia e Gerolimetto [5] research, a robust test to ver-
ify the non-linearity is the BDS Test(Brock et al., 1987). BDS is a nonparamet-
ric test, originally designed to test for independence and identical distribution
(iid), but shown to have also power against a large gamma of linear and nonlin-
ear alternatives. The BDS statistics is based on the correlation integral, a mea-
sure of the number of times temporal patterns are repeated in the data. Given
a time series Xt, t = 1,2, ...,n and define its m-history as Xmt = (xt,xt1, ...,xtm+1),
the correlation integral at the embedding dimension m is:

Cm,T (ε) =
∑
t<s

Iε(X
m
t ,X

m
s ){ 2

Tm(Tm − 1)
}

where Tm = T − (m − 1) and Iε(X
m
t ,X

m
s ) is an indicator function is the ||Xmt −

Xms || < ε. Basically, Cm,T (ε) counts up the number of m-histories that lie within
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a hypercube of size ε of each other. Bisaglia e Gerolimetto [5] (1996) define the
BDS statistics as follows:

Vmε =
√
T
Cm,T (ε)−C1,T (ε)m

sm,t

which converges to a N (0,1).

Bandwidth Selection: Cross-Validation for Time Series

In the implementation of the Causality in Quantiles test, bandwidth selection
plays a crucial role. The Cross-Validation method is the most used to compute
the bandwidth. However, in the case of a time series, the time dependency has
to be maintained. Following the work of Peter et al.[19], the selection procedure
minimizes the quantity:

CV (h(i)) =
1

n−n(w)

n∑
t=1

Mθ(Yt, µ̂
(−t)
θ (Xi))w(Xt)

where w : Rd → Rd is a nonnegative weight function used to omit observation
at boundaries, n(w) is the number of observations that take zero values in w(Xt)
and µ̂(−t)

θ (Xi) is the leave-one(block)-out estimate obtained as:

µ̂
(−t)
θ (Xi) = inf {y ∈ R|F̂(−t)

Xi
(y) > θ}

F̂
(−t)
Xi

(y) is the inverse of the Nadaraya-Watson kernel estimator, insteadMθ(y,µ)
is the loss function defined as:

Mθ(y,µ) = θ|y −µ|+ + (1−θ)|y −µ|−

with |y−µ|+ and y−µ|− the absolute of negative and positive values respectively.

4.3 Results

4.3.1 Anomaly Detection

As mentioned in the methodology, the detection method suffers from parame-
ter selection. The initial analysis has been conducted with a 2% increase in the
moving mean of the price, 25% increase in the volume and number of transac-
tions, while the lag factor is 12 hours.
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DAI Anomalies

Number of Anomaly: Initial Parameters

Type of Anomaly DAI CB DAI KK

Price 2 4
Volume 776 763

N. Transactions 689 816

Table 4.1: Anomaly detected in time series separately analyzed

These initial parameters are already effective in price anomaly, while the vol-
ume and number of transactions time series show higher volatility. The dates
identified for the Coinbase exchange in the DAI case are:

Coinbase

• 14/06/2020 21:00:00

• 05/09/2020 16:00:00

Kraken

• 24/06/2020 11:00:00

• 24/07/2020 14:00:00

• 31/07/2020 12:00:00

• 05/09/2020 16:00:00

As Kamps et al.[17] reminded, no P&D event can co-occur on two different
exchanges. Thus the 05/09/2020 date is undoubtedly not a P&D event. For the
other dates, a plot of the anomaly and a candlestick plot has been computed.
In figure 5.1 the anomaly is evident. Indeed there is a positive spike, but soon
after, a negative spike. It can be a P&D, but the volume under the price time
series does not show any particularity of the specific property of a P&D event.
There is an increase in the trading volume, but it seems that is caused by the
price higher volatility, with an increasing trend.
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Figure 4.1: Candlestick 14/06 DAI Coinbase

In the case of Kraken’s anomalies, there is a positive spike on the 24th June with
a difference between the Closing price and the Highest price of 0,025$ and no
difference between Opening and Closing price. Thus, inside that hour, a con-
siderable price increase has happened. Nevertheless, the coin quickly lost all
the value acquired. This means that a Short-Term Pump maybe has happened.
With a closer look at 5Min level analysis and an Hour-wise plot in figure 5.3, it
is clear that the price manipulation did not occur. The duration is short enough
to exclude the possibility. Moreover, that spike does not correspond to a volume
spike.
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Figure 4.2: Candlestick 24/06 DAI Kraken

Figure 4.3: Anomaly 24/06 11:00 DAI Kraken

The rest of the other anomalies exhibit the same type of spike of the one oc-
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curred on the 24th June.

Figure 4.4: Candlestick 24/07 DAI Kraken

Figure 4.5: Candlestick 31/07 DAI Kraken
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(a) Coinbase 14/06 (b) Kraken 24/06

(c) Kraken 24/07 (d) Kraken 31/07

Figure 4.6: Anomalies On DAI Coin
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In conclusion, the initial parameters were just right to detect the price anoma-
lies. More strict parameters provided no anomalies. Instead, with a 400% in-
crease from the moving average, the volume and number of transactions re-
duced the number of detected spikes to less than 100 elements. No actual P&D
events have been detected.
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USDC Anomalies

Number of Anomaly: Initial Parameters

Type of Anomaly USDC BT USDC KK

Price 0 0
Volume 679 821

N. Transactions 812 794

Table 4.2: Anomaly detected in time series separately analyzed

In the USD coin case, no price anomalies have been detected with the same ini-
tial parameters chosen for the DAI coin. A second relaxation of the parameters
would be non-sense, as a 2% increase is already low. Thus also the USD Coin
seems has not been targeted by this kind of fraudulent activity.
These results confirm the initial hypothesis: these two coins have a market cap-
italization too big to be considered a possible target. What can be determined,
also, the susceptibility of the price to volume and the number of transactions
spikes? Given the absence of price anomaly, in contrast to numerous volume
and number of transactions anomalies, the Causality in Quantiles test results
should reject the null hypothesis.

4.3.2 Causality in Quantiles Test

Unfortunately, due to the lack of data from the Bittrex exchange for the USD
Coin, the time series cannot be analyzed. Kernel method suffers the consider-
able number of zero elements.

BDS Test Results (m = 2)

Type of Anomaly DAI CB DAI KK USDC KK

Test Statistics 13,94 3,80 5,25
P Value 0,0 2,9e-04 4,13e-07

Table 4.3: Results of the BDS Test with embedding dimension m = 2

The results highlight a non-linearity property for all the time series considered.
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According to Jeong et al.[16], for the Kernel Estimation method, a gaussian ker-
nel function has been chosen in both kernel computations, while the lag factor
at which the test statistic has been computed is m = 2. Indeed the test has to
check if the volume or the number of transaction influence the price in a short
period, which corresponds to 10 minutes. The bandwidth computation instead
was performed for ten quantiles, from 0,1 to 0,9, in the case of the Nadaraya-
Watson Kernel estimator.

Bandwidth Nadaraya-Watson Kernel Estimator

Quantiles DAI CB DAI KK USDC KK

0,1 2,939e-04 8,033e-05 1,108e-04

0,2 1,291e-04 2,939e-04 1,108e-04

0,3 1,291e-04 2,573e-04 5,592e-05

0,4 1,230e-04 1,963e-04 3,761e-05

0,5 1,169e-04 1e-06 1,597e-04

0,6 1,902e-04 1e-06 1e-06

0,7 2,267e-04 1,291e-04 2,329e-04

0,8 2,878e-04 1,352e-04 1,780e-04

0,9 2,756e-04 2,329e-04 1,475e-04

Table 4.4: Bandwidth results from Cross Validation Procedure

To avoid heavy computation, (the bandwidth selection with a dataset cutted to
2’000 elements from the originals 35’000 element, took almost 3 hours for each
time series) the datasets has divided into 17 blocks of 2000 elements and for
each block the J-distance estimator has been computed, and averaged for all
the blocks result.
Figure 4.7 shows that the initial hypothesis made after the anomaly detection
in the DAI case is correct. Indeed the null hypothesis of no causality cannot be
rejected, as the value of , never reaches a critical value of 1.65, for both volume
and number of transactions.
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(a) DAI Coinbase (b) DAI Kraken

(c) USDC Kraken

Figure 4.7: Ĵ distance estimator results

Instead, in the Kraken case, for both DAI and USD Coin, there is an initial
causality in the first quantiles (from 0,1 to 0.6 for DAI and 0,2 to 0,5 for USDC)
but then the collapses under the critical value in the quantiles of interest for
susceptibility to P&D event.
In conclusion, these coins seem to be strong enough not to suffer from these il-
licit activities. This can be said by looking at how they have never been targeted
in anomaly detection and how the price does not suffer from volume spikes,
even if they are frequent as in these exchanges.

64



Chapter 5

Conclusion

This project aimed to perform a general analysis on the stablecoins considered
to understand if there could be a future regarding these coins. As introduced
before, cryptocurrencies suffer from the illicit activity and high volatility, un-
dermining their credibility. This is also the reason why investments banks pre-
fer more classic financial tools to use.
In basic investment portfolio theory, to reduce the risk exposure, the simplest
option is to buy Bonds, which guarantee low volatility at the expense of lower
returns. Moreover, when risk is high, investments banks can also shift the risk
to another type, liquidating all the assets and thus exposing to currency risk, in
the case the latter is significantly low.
Unfortunately, these simple procedures of any Stock Exchange Market are not
operable in the Cryptocurrency Exchange Markets. The liquidation fee of the
coins in any Exchange Market is consistently higher than exchanging one coin
for another, making the practice avoidable in most cases. Thus, a new kind of
coin was necessary for this framework to limit exposure to risk without paying
enormous fees. With these objectives, stablecoin was born. Thus, the main goal
was to lower the volatility that characterizes cryptocurrencies. In this sense,
both coins, DAI and USDC, achieved their ambitions. Indeed in the condi-
tional volatility analysis, the DAI and USDC one are consistently lower than
Bitcoin one. However, to be considered a safe haven (Baur [4]) against bitcoin’s
high volatility, their price volatility must also be uncorrelated to the other cryp-
tocurrencies. Unfortunately, only the USDC manage to keep their price stable
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against a high period of the volatility of other coins.
Moreover, thanks to lower fees in exchanging coins on the same platform, the
Pump and Dump scheme has become one of the most popular fraudulent ac-
tivities to perform. Thanks to Telegram, Discord, and Reddit, it has been pos-
sible to coordinate thousands of people to purchase the same coins. As said
in the beginning, chances to detect, with unsupervised techniques, this kind
of activity was not an easy task. The probability that these coins were tar-
geted was low, as their value is backed by something not connected to the cryp-
tocurrencies framework, the time series on which computations were made re-
garded the pairs USDC/USD and DAI/USD, and the market capitalization was
much higher than usual targeted coins. Indeed results show that no P&D event
took place in the period considered. Moreover, the Causality in Quantiles test
showed that, at higher quantiles, the volume and the number of transactions
registered on the exchange markets analyzed did not cause any spikes, so that
if future attacks may happen, no success is guaranteed.
In conclusion, the best overall coin was the USDC, given the low correlation
with Bitcoin and no non-linear Granger Causality was found above the 0,5
quantiles. The DAI performed well but showed consistently higher volatility
than its competitor, as expected, given its design (On-Chain Collaterilized Sta-
blecoin) suffer the volatility of the units of assets that backs its value. In the DAI
case, these assets are Cryptocurrencies (Ethereum), thus the high correlation of
the conditional volatility with Bitcoin and less stable value. The Causality In
Quantiles also showed no Granger Causality in volume and number of transac-
tions.
In the end, stablecoins fulfill the space of the exchange market, which is occu-
pied by Bonds in the Stock market. Maybe the design has to be perfected, but
the initial results are promising. Indeed, not surprisingly, J.P. Morgan decided
to invest in cryptocurrencies in 2020 publicly.
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