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Abstract 

Brain networks are formed by pathways which connect cerebral regions. It is 

possible to investigate them in a non-invasive way thanks to Magnetic Resonance 

Imaging techniques. In this context, brain networks can be analyzed with respect 

to graph theory, considering the structural or functional connectivity pathways to 

analyze the brain’s organization and using different graph metrics. However, the 

MRI techniques are characterized by several limitations. These problems make the 

statistical investigation of structural or functional connectivity subject to 

uncertainty. In this context, a sensitivity analysis and the bootstrapping technique 

were introduced to test the uncertainty of graph indexes.  

Three datasets were tested: a functional and a structural connectivity datasets of 

healthy subjects and also a functional connectivity dataset formed by control and 

schizophrenic subjects. First, the sensitivity analysis was performed to evaluate 

the influence of the connectivity weight outliers. Second, the Bootstrapping 

technique was used to obtain surrogate data of random extraction of connectivity 

weights, which were normalized according to a probabilistic normalization 

procedure to obtain more robust results.  

The major findings of this work were about the quantification of the variability of 

the metrics and biases of the distributions. On one hand, the sensitivity analysis 

confirmed the hypothesis that the great variability of the connectivity weights 

causes a great variability of the indexes and uncertainties. On the other hand, 

differences (p < 0.05) between healthy and schizophrenic subjects in several graph-

based indexes, lacking in the original data, emerged using the bootstrapping 

procedure. 

Then, a software for the analysis of subgraphs (Spider-Net) was used to show the 

connectivity pathways between specific subsets of brain parcels with the 

connectogram visualization. The structural connectivity dataset in terms of 

comparison between two MRI processing techniques and the differences between 

healthy and schizophrenic subjects in the Default Mode Network (DMN) were 

qualitatively analyzed. 
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Abstract in italiano 

Le reti neurali sono formate da vie che connettono le regioni cerebrali. È possibile 

investigare tali reti non maniera non invasiva con tecniche di risonanza magnetica 

(MRI). Le reti neurali, inoltre, possono essere analizzate secondo la teoria dei grafi, 

considerando i percorsi di connettività strutturale e funzionale per l’investigazione 

della topologia cerebrale usando metriche dei grafi. Tuttavia, le tecniche MRI sono 

caratterizzate da diverse limitazioni. Queste fanno sì che l’analisi statistica di 

connettività strutturale o funzionale sia affetta da incertezze. In questo contesto, 

un’analisi di sensitività e il bootstrap sono stati introdotti per testare l’incertezza 

sugli indici dei grafi. 

Tre dataset sono stati considerati: un dataset funzionale e uno strutturale formati 

solo da soggetti sani e un dataset funzionale formato da soggetti schizofrenici e di 

controllo. In primo luogo, l’analisi di sensitività è stata usata per analizzare 

l’influenza degli outliers sui pesi di connettività. Successivamente, il bootstrap è 

stato usato per ottenere dati surrogati attraverso estrazione random dei pesi di 

connettività, i quali sono stati anche normalizzati secondo una normalizzazione 

probabilistica per ottenere risultati più robusti.  

I risultati più importanti di questa tesi sono relativi alla quantificazione della 

variabilità degli indici di grafi e i bias delle distribuzioni di tali indici. Da un lato, 

l’analisi di sensitività ha confermato l’ipotesi sulla elevata variabilità dei pesi di 

connettività che causa incertezze e variabilità degli indici. Dall’altro lato, 

differenze (p < 0.05) tra soggetti sani e schizofrenici in molti indici di grafi sono 

emerse usando il bootstrap . 

Inoltre, un software per l’analisi di sottografi, chiamato Spider-Net, è stato usato 

per mostrare le connessioni tra specifiche parcels  attraverso la visualizzazione in 

connettogrammi. Il dataset strutturale è stato analizzato comparando due tecniche 

di preprocessing MRI e analizzando quantitativamente le differenze tra soggetti 

sani e schizofrenici nella Default Mode Network (DMN).  
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1. Introduction 

The brain is the most tangled network known to 

mankind. Indeed, it comprises billions of neurons which 

form trillions of synapses between each other. 

Considering the methods used to investigate brain 

networks, Magnetic Resonance Imaging (MRI) is the 

dominant technique mainly because of its safety, spatial 

resolution and availability throughout the world. On 

one hand, functional MRI (fMRI) inspects the dynamics 

of activity in each gray matter (GM) area. The functional 

activations of the GM areas are based on the Blood 

Oxygen Level Dependent (BOLD) response. On the 

other hand, Diffusion Tensor Imaging (DTI) and High 

Resolution Angular Imaging (HARDI) allow to visualize 

and examine the organization, the orientation and the 

trajectories of white matter (WM) tracts. The latter solves 

the intrinsic limitation of DTI  of not detecting crossing 

configurations characterized by high curvatures, known 

as the crossing fiber problem [1]. In the context of the 

analysis of functional brain networks,  considering the 

known dynamic and condition-dependent nature of 

brain activity, it is obvious that the functional 

connectivity metrics such as the Pearson correlation 

coefficient or the wavelet coherence will change over 

time [1]. This variation of the connectivity metrics is, 

however, not easy to be explained. The comprehension 

of brain networks is a complex field of research named 

connectomics, which addresses the brain networks at all 

its scales and features [1].  It is possible to map the 

parcels of the network according to well-known brain 

atlases from the structural or functional point of view 

[2]. The brain network analysis is based on the creation 

of connectivity matrices, which are investigated in their 

organization and function, through methods from the 

graph theory. Thus, a graph can be defined as a 

collection of nodes (brain regions) and links (anatomical 

or functional connections) between pairs of nodes [2]. 

The weights of the connectivity matrices can be 0 and 1 

(binary) considering the presence/absence of an edge 

connecting two regions. Conversely, they can represent 

the strengths of the connections according to the 

connectivity measure used (such as the number of fibers 

in the structural case, or the Pearson's correlation in the 

functional case).  In graph theory, it is possible to 

analyze and compare different networks towards the 

investigation of their topological features, with binary or 

weighted indexes such as node degree, node strength, 

clustering coefficient, efficiency, path length or 

modularity [2]. These indexes represent relevant 

properties in brain connectivity since many studies, 

revealed changes of these metrics in a pathological 

condition, such as schizophrenia [3], or Alzheimer’s 

disease. Due to the limitations of the MRI techniques [1] 

the statistical investigation of structural brain 

connectivity datasets is often subject to uncertainty. In 
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this context, a sensitivity analysis based on graph 

perturbation could be useful in understanding and 

quantifying the uncertainties. In particular, the 

investigation is based on removing some nodes/edges 

and investigate how this removal affects the graph 

results. Considering the great variability of structural or 

functional connectivity measures from a statistical point 

of view [1], the Bootstrapping technique can be 

introduced. This technique is able to use repeated 

random sampling from a set of measurements, creating 

surrogate data which allow to obtain more robust 

estimates of the variability and uncertainty of different 

graph features. Recently, the investigation of brain 

networks focused on the visualization of connectivity 

pathways between specific subsets of interest through 

connectograms. In this regards, a novel software tool 

allowing the analysis of subgraphs can be introduced, 

called SPIDER-Net Tool (SNT) [4]. The aims of this study 

were: 

1.  the development of a method for assessing the 

connectivity considering the intrinsic 

uncertainty of the measures, employing: 

a.  a sensitivity analysis to analyze the 

variability of the brain connectivity 

weights; 

b.  a Bootstrapping procedure with a 

probabilistic normalization to obtain 

more robust brain indexes, testing it 

on structural and functional healthy 

control dataset; 

2.  the validation of the method on a healthy 

control-schizophrenic study; 

3.  the extraction and the exploration of 

connectivity of specific sub-network of interest 

(such as the Default Mode Network) [1]. 

2. Materials and Methods 

This section first characterizes the main dataset used in 

this work, then the protocols employed to obtain the 

results are described. 

2.1 Data Acquisition and Study Population 

The investigations of this work were done on 3 different 

datasets: a functional connectivity dataset and a 

structural connectivity dataset formed by healthy 

controls, and a functional connectivity dataset of 

schizophrenic and control subjects. The considered 

datasets are derived from ethically approved protocols, 

informed consent and anonymization included. The first 

dataset used was acquired from resting state  fMRI scans 

in a group of 10 healthy subjects, 5 males and 5 females, 

with age between 30 and 43 years (mean age + SD = 36 ± 

6.32). In order to construct the connectivity matrices, 

AAL atlas was used to divide the brain in 90 parcels 

which were considered as nodes in the network. A 90x90 

correlation matrix of Pearson’s correlation coefficients 

between all possible connections of node pairs was, thus, 

computed. The functional connectivity matrices, initially 

fully-connected, were density-thresholded at 50% with 

SNT. 

The structural dataset consists of 17 healthy control 

(HCs) subjects (7 males and 10 females; mean age ± SD: 

52.5 ± 8.3 years) acquired with both DTI and HARDI 

techniques. The brain was divided in parcels, 165 in 

total, according to the Destrieux atlas. The structural 

connectivity matrices were obtained by computing the 

edges as the number of the reconstructed fibers 

normalized by the sum of the nodes volume. Further 

information and details on data acquisition are reported 

in [4].  

The functional connectivity dataset of Schizophrenic and 

Healthy subjects in formed by fifteen healthy volunteers 

(mean age 33.3 years, SD = 9.2 years, 14 male) and 12 

subjects with chronic schizophrenia (mean age 32.8 

years, SD = 9.2 years, 10 male) diagnosed according to 

standard operational criteria in the Diagnostic and 

Statistical Manual of Mental Disorders IV (American 

Psychiatric Association, 2000). Nodes were labelled 

according to the AAL segmentation defining a 74×74 

connectivity matrix for each subject. The functional 

connectivity matrices were adjusted to reset negative 

connections and put the diagonal weights to zero. 
Further information and details on data acquisition are 

reported in [5]. 

2.2 Protocol 

Bootstrap was applied with the aim of creating 

resampled data to evaluate the topology of the 

functional network.  After the creation of the surrogate 

data, the network indexes were computed through the 

Brain Connectivity Toolbox (BCT) [2] and the CI were 

computed, with the Standard formulas used in this 

context to compute both the boundaries, such that:  

𝑢𝑝𝑝𝑒𝑟, 𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 = 

𝑚𝑒𝑎𝑛 ± 1.96 ·
𝑠𝑡𝑑(𝐵𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝𝑅𝑒𝑠𝑎𝑚𝑝𝑙𝑒𝑠)

√𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
 

(1) 

Bootstrap method was analyzed with respect to the 

expected results in terms of the reduced variability of 

the index distributions and alignment to the original 

data. Specifically, the bias of the mean of the 

distributions of the values of the different graph metrics 

is computed such that: 
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𝑏𝑖𝑎𝑠 = 𝑎𝑏𝑠 (
𝑚𝑒𝑎𝑛(𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝐷𝑎𝑡𝑎) − 𝑚𝑒𝑎𝑛(𝐵𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝𝑅𝑒𝑠𝑎𝑚𝑝𝑙𝑒𝑠)

𝑚𝑒𝑎𝑛(𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝐷𝑎𝑡𝑎)
 · 100) 

(2) 

In order to analyze the huge variability of the 

connectivity weights resulting from the limitations of the 

MRI techniques, a sensitivity analysis was performed to 

investigate the variability of the graph indexes. In 

particular, the contribution of strongest/weakest 

connections was explored. The variability of the indices 

was examined by resetting one at a time the connectivity 

weights outside the 10th – 90th percentile range and 

computing the value of the graph metrics at each 

resetting. Weighted Clustering Coefficient, Node 

Strength and Weighted Efficiency were considered for 

this analysis. The aim of this analysis was to verify that 

the outliers weights are the ones that cause the 

variability of the values of the graph indexes. 

Furthermore, to reduce the variability of the connectivity 

weights, the data were normalized according to a 

probabilistic normalization procedure, whose flowchart 

is represented in Figure 1. 

 

Figure 1 Flowchart of the Probabilistic Normalization 

procedure 

In particular, after the preconditioning phase (1), a 

counter is initialized (2), which counts how many times 

each ith,jth element in the matrices is present. Obtained 

this counter matrix, the next step concerns the creation 

of a probability matrix (3) by dividing each element of 

the counter matrix by the total number of matrices 

present in the dataset, thus, obtaining a matrix of 

probabilities characterized by ith,jth elements ranging 

from 0 to 1 (0% to 100%). Then, a Density Analysis (4) is 

performed to investigate the variation of the density of 

the dataset at the resetting of the rarest connections. A 

threshold that did not vary the density of the dataset 

was selected and applied according to the probability of 

each connection to be present in the dataset (5). 

Afterwards, the mean matrix of the so obtained dataset 

is evaluated. The normalization (6) is then achieved by 

dividing the initial matrices by the Mean Matrix 

obtained at the previous step. Unpaired t-tests for the 

graph indexes within healthy and schizophrenic groups 

were performed. They were computed from: the original 

data; the normalized data; the surrogate data obtained 

from the standard bootstrapping method and the 

surrogate data obtained from the normalized 

bootstrapping method. In the end, the DMN-

subnetwork connectograms of healthy and 

schizophrenic subjects were extracted in SNT and 

analyzed. 

3. Results 

An example of the Weighted Clustering Coefficient is 

reported in the Figures 1 and 2 for illustrative purposes. 

In particular, Figure 1 (a) and (c), represent the 

distribution of the index extracted from the initial data, 

whereas Figure 1 (b) and (d) the distributions after the 

bootstrapping procedure with the boundaries of the 

confidence intervals represented with different colors. It 

is possible to notice the restriction of the distributions 

assumed by the values of the index after the bootstrap 

with both techniques. Moreover, a bias of the 

distribution can be seen from this figure, particularly in 

the Standard bootstrapping method (Figure 1 (b)), while 

it is reduced with the normalization (Figure 1 (d)).  

Table 1 and 2 represent the numerical results of the 

distribution of the indices of the two populations after 

the bootstrapping procedure applied in the Standard 

and Normalization cases, respectively. The only 

statistically significant index (p-value BeforeBoot < 0.05) 

on the initial data before the application of the bootstrap 

is the Modularity. After the normalization of the data, 

the statistically significant indexes (p-value BeforeBoot < 

0.05) are the Weighted Path Length, Weighted Efficiency 

and Strength. After the application of the bootstrap, all 

indexes in both Standard and Normalized cases become 

statistically significant (p-value AfterBoot < 0.05). The 

biases of the distributions considering before and after 

the bootstrap are higher in the pathological group for all 

indexes in both the Standard and Normalized cases, 

except from the Modularity in the Normalized case. This 

result is in line with what evaluated also in the 

functional and structural connectivity datasets. Indeed, 

distributions of all graph-indexes from the healthy 

subjects are shrinked after the bootstrap, and the biases 

reduced with the application of the normalization (from 

17% to 8% in the functional connectivity dataset and 

from 13.3% to 11.5% in the structural connectivity 

dataset for the Weighted Clustering Coefficient). Figure 

2 shows the results of the Sensitivity Analysis for two 

sample subjects from both control and pathological 

groups. In particular, the blue circles represent the 

values the index corresponding to the removal of the 

connections having outlier weights. On the other hand, 

the red dots represent the values of the index removing 

the connections leading  to the greatest changes. This 

analysis confirmed that the outliers of the connectivity 

matrices, thus the variability of the weights, influence 

the variability of the values of the indexes. The 
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sensitivity analysis results highlighted that more 

weights in the schizophrenic population will cause a 

change in the values of the considered indexes, as 

expected from the different biases found through the 

bootstrap. Finally, Figure 3 shows the connectograms 

extracted with SNT of the DMN of the sixth control and 

tenth schizophrenic subjects aimed at identifying 

disruptions and a reduced activation of this subnetwork. 

It can be noticed that the schizophrenic case presents 

sparser connectograms and a reduced activity of the 

DMN. Indeed, the density of the DMN in the control 

population was 97.7%  ± 3.8%, while it was 95.4% ± 4.6% 

in the schizophrenic population. Furthermore, the 

schizophrenic population is characterized by a weaker 

activation of the DMN as can be seen by Figure 3 middle 

panel, where the prevalence of yellow (weak) 

connectivity pathways is a sign of a network 

characterized by a low activation. Conversely, in the 

control connectogram, it is evident the prevalence of red 

(strong) connectivity pathways. Furthermore, the 

weights in the healthy control group (HC) are stronger 

than the pathological one (SCH), as highlighted by the 

strength (HC = 20.0 ± 4.1; SCH = 16.5  ± 5.1). After the 

removal of the weakest connections, the density results 

were 88.6% for the control group and 79.3% in the 

pathological one. 

 

     (a)                                   (b)                            (c)                                    (d)   

Figure 2 Distributions of the Weighted Clustering Coefficient  for the Standard (figures (a) and (b)) and Normalized  (figures (c) 

and (d)) data. The values of the confidence intervals evaluated after the bootstrap (figure (b) and (d) for standard and normalized 

procedures, respectively) are shown with different colors, such that the red and the magenta horizontal line represent the upper and 

lower value (respectively) of the confidence interval (CI) in the control case, while the black and the blue horizontal lines represent 

the upper and lower values (respectively) of the confidence interval in the schizophrenic group. 

 

Figure 3 Scatterplots of the Sensitivity analysis for the  Weighted Clustering Coefficient for the first subject of the control group 

and the sixth subject of the schizophrenic one. 

Graph-Based Indexes Binary Weighted 

Standard Control Schizophrenic p-value Control Schizophrenic p-value 

Clustering 

Coefficient 

Mean: 0.486 ± 0.002 

[0.486; 0.487] 

Bias: 0.409% 

Mean: 0.418 ± 0.003 

[0.417; 0.418] 

Bias: 1.182% 

BeforeBoot: 0.162 

AfterBoot < 0.05 

Mean: 0.454 ± 0.003 

[0.454; 0.455] 

Bias: 2.783% 

Mean: 0.375 ± 0.003 

[0.374; 0.375] 

Bias: 5.542% 

BeforeBoot: 0.156 

AfterBoot < 0.05 

Degree/Strength Mean: 71.750 ± 0.121 

[71.741; 71.760] 

Bias: 0.002% 

Mean: 69.211 ± 0.201 

[69.201; 69.232] 

Bias: 0.009% 

BeforeBoot: 0.132 

AfterBoot < 0.05 

Mean: 35.391 ± 0.154 

[35.381; 35.402] 

Bias: 0.002% 

Mean: 30.262 ± 0.185 

[30.251; 30.270] 

Bias: 0.017% 

BeforeBoot: 0.147 

AfterBoot < 0.05 

Path Length Mean: 1.017 ± 0.002 

[1.017; 1.018] 

Bias: 0.002% 

Mean: 1.052 ± 0.003 
[1.051; 1.052] 

Bias: 0.008% 

BeforeBoot: 0.132 

AfterBoot < 0.05 

Mean: 0.208 ± 0.012 

[0.207; 0.209] 

Bias: 31.85% 

Mean: 0.108 ± 0.008 

[0.107; 0.108] 

Bias: 49.03% 

BeforeBoot: 0.158 

AfterBoot < 0.05 

Efficiency Mean: 0.991 ± 8.265 * 

10-4 

[0.991; 0.992] 

Bias: 8.216 * 10-4 % 

Mean: 0.974 ± 0.001  

[0.974; 0.975] 

Bias: 0.004% 

BeforeBoot: 0.132 

AfterBoot < 0.05 

Mean: 0.525 ± 0.002 

[0.524; 0.525] 

Bias: 4.578% 

Mean: 0.484 ± 0.002 

[0.483; 0.484] 

Bias: 8.497% 

BeforeBoot: 0.158 

AfterBoot < 0.05 

Modularity Na Na Na Mean: 1.647 ± 0.231 

[1.633; 1.662] 

Mean: 1.775 ± 0.312 

[1.756; 1.794] 

BeforeBoot < 0.05 

AfterBoot < 0.05 
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Bias: 0.844% Bias: 11.94% 

Table 1 Numerical results of the distribution of the indices of the two populations after the bootstrapping procedure applied in the 

Standard case (no normalization applied). Mean Values and Standard Deviation, Confidence Intervals within square brackets, p-

values and biases percentages are shown. Na: Index not available for binary/weighted cases. 

Graph-Based Indexes Weighted 

Normalized Control Schizophrenic p-value 

Clustering Coefficient Mean: 0.410 ± 0.002 

[0.409; 0.410] 

Bias: 2.148% 

Mean: 0.329 ± 0.003 
[0.328; 0.330] 

Bias: 4.697% 

BeforeBoot: 0.054 

AfterBoot< 0.05 

Node Strength Mean: 31.41 ± 0.156 

[31.40; 31.42] 

Bias: 0.019% 

Mean: 25.99 ± 0.177 

[25.98; 26.00] 

Bias: 0.023% 

BeforeBoot < 0.05 

AfterBoot < 0.05 

Path Length Mean: 0.272  ± 0.013 

[0.271; 0.273] 

Bias: 16.06% 

Mean: 0.133 ± 0.010 

[0.133; 0.134] 

Bias: 39.34% 

BeforeBoot < 0.05 

AfterBoot < 0.05 

Efficiency Mean: 0.460 ± 0.002 

Standard CI:  

[0.459; 0.460] 

Bias: 3.064% 

Mean: 0.410 ± 0.002 

Standard CI:  

[0.409; 0.410] 

Bias: 6.389% 

BeforeBoot < 0.05 

AfterBoot < 0.05 

Modularity Mean: 1.652 ± 0.263 

[1.635; 1.668] 

Bias: 10.38% 

Mean: 1.730 ± 0.352 

[1.708; 1.752]  

Bias: 6.164% 

BeforeBoot: 0.103 

AfterBoot < 0.05 

Table 2 Numerical results of the distribution of the weighted indices of the two populations after the bootstrapping procedure applied 

in the Normalized case. Mean Values and Standard Deviation, Confidence Intervals within square brackets, p-values and biases 

percentages are shown. 

Figure 4 Connectograms obtained by extracting the DMN with SNT from the sixth subjects in the control (left) and schizophrenic 

(right) datasets. In particular, the top panel shows the DMN subgraphs without thresholding, the middle panel shows the subgraphs 

with the connectivity weights shown, such that that red: 0.66 < weight < 1, orange: 0.33 < weight < 0.66, yellow: 0 < weight < 0.33.  

The bottom panel shows the connectograms of the DMN subnetworks whose weakest connections (weights < 0.2) were reset to 

evidence the disparity in terms of disconnections between the pathological and the control population. 

4. Discussion 

In accordance with literature [3], it is concluded that the 

schizophrenic population is characterized by disrupted 

brain networks, which can be investigated in terms of 

graph indexes by decreased Clustering Coefficients, 

Efficiencies, Strength, Degree and higher Path Lengths 

and Modularity. These results were confirmed with and 

without normalization  in Tables 1 and 2 with exception 

of the Weighted Path Length, greater in the control 

population. Then, statistically significant differences (p 

< 0.05) were found in the Modularity index (without 

normalization) and in Strength, Path Length and 

Efficiency (with normalization). Thus, the 

normalization with respect to the group allowed to find 

new differences. This first result highlights the 

importance of applying it for the problem of the great 

variability of the connectivity measures [1]. Regarding 

the bootstrap analysis, it is first worth noting that, in 

Figure 1, a bias of the distributions emerged. For this 

reason, a Sensitivity Analysis was performed to verify 

that the abovementioned problem of the variability of 

the weights also influences the bias. The results 

highlighted that: most of the weights that affect the 
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indexes most are the outlier weights, confirming the 

hypothesis that a normalization is needed; the previous 

result is greater for schizophrenics, thus expecting more 

influence in this case. The bootstrap application 

confirmed the latter, for all indexes as shown in Table 1 

and 2. Considering the CI, both bootstrap 

methodologies granted to obtain appropriate 

boundaries in the ideal purpose of producing a 

normality range. The bootstrap brought advantages 

considering the p-values. As can be seen by the 

numerical values shown in the Table.1 and Table.2, it 

can be stated that the bootstrap is beneficial in the 

statistical investigation of the distribution of the graph 

metrics. Before the application of the bootstrap, instead, 

all indexes were not statistically significant except from 

the Modularity. These advantages are related to the 

possibility of having more robust values for all indexes, 

with respect to the original population, and to have 

aligned distribution, with respect to Standard 

Bootstrap, that can be affected by a bias. Furthermore, 

these results are in line with what obtained from 

healthy controls being promising for the investigation 

of  normality ranges. Regarding the connectograms 

results shown in Figure 3 top panel, it can be seen that 

the disruptions and reduced activity of the DMN is not 

straightforwardly identifiable in the schizophrenic 

subject, as can also be seen by the numerical results of 

the mean densities of the two populations. In Figure 3 

middle panel, it is possible to see that the schizophrenic 

DMN is characterized by a much weaker activation 

than the control one. In this context, the weakest 

connections (weights less than 0.2) were removed, and 

disruptions of some DMN regions are identifiable, as 

shown by Figure 3 bottom panel. Further investigations 

on the functional role of these regions can be performed 

in future analyses. 

5. Conclusion 

Considering the method proposed in this work to 

analyze graph indexes, it is possible to state that it 

represents a robust technique to investigate brain 

networks from the graph theory point of view, even 

considering the well-known limitations affecting the 

reliability of data processed from MRI techniques [1]. 

Indeed, several preprocessing features can be treated in 

different ways, bringing several differences in the 

reconstruction of fibers, such as stopping criteria, 

subject-motion or background artifacts removal 

methods.  Further developments are related to 
validating bootstrap and sensitivity analysis as a tool to 

evaluate uncertainty also for other widely used metrics. 

In the context of the normalization of the data, a 

logarithmic normalization could be a development in 

the validation of the results on a single case study 

subject. In the context of the second-level analysis 

treated in this work, schizophrenia is a mental disorder 

characterized by altered perception, irregular emotion 

regulation, hallucinations and weakened working 

memory, while the DMN is a network deeply involved 

in  social behavior, control of the emotional state of the 

individual [3].  SNT connectograms allowed to 

visualize the disconnections and the weaker activation 

of the DMN in a straightforward way, thus, validating 

the usefulness of this tool in connectomics. 

Furthermore, the analysis of the DMN graph indexes 

allowed to evidence the typical disruptions and 

disconnections from this point of view, which deserves 

further investigation. Future developments for this 

topic might be related to evidence specifically which 

brain regions and brain networks present more altered 

connectivity pathways.  
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Introduction 

1.1 Aims of the thesis 

 

The investigation of the networks of the brain has been an open issue for decades 

in the field of neurosciences; however, nowadays, the introduction of advanced 

magnetic resonance imaging techniques made possible to examine and quantify 

structural and functional connections based, respectively, on the fibers connecting 

brain areas and the correlation of their functional activity. The two approaches are 

indicated as Structural Connectivity (SC) and Functional Connectivity (FC), and 

lead to two complementary descriptions of the networks connecting brain areas.  

In this context, graph theory gives the possibility to represent, compare and 

investigate the human’s brain anatomical and functional systems in a consistent 

and relatively uncomplicated way, such that it is strongly used to analyze data 

coming from neuroimaging techniques.  

This thesis begins with the description of the basic concepts of brain connectivity, 

such as the definition of the different types from the different modalities, and the 

graph theory in the context of brain networks investigation. Next, the focus is put 

on the mapping of the brain in parcellation atlases, which represents a 

fundamental step for a flexible and straightforward analysis of the huge datasets 

coming from neuroimaging data. To complete the first introductive part, the 

physical principles undergoing magnetic resonance imaging are described, 

together with the advanced techniques such as Diffusion Weighted Imaging 

(DWI) and HARDI (High Angular Resolution Diffusion Imaging) used for SC. 

Moreover, the physical principles, advantages and limitations of fMRI used for FC 

are dealt with at the end of the introductive part. 

Following this framework, attention is put on the definition of the brain 

connectivity matrix, which is, in graph theory, the fundamental point in the 

description of the network metrics, which were used thoroughly in this work. 

Thereafter, a novel software for brain network and sub-network mapping and 

visualization is introduced, called Spider-Net (Software Package Ideal for 

Deriving Enhanced Representations of NETworks) [4]. This software is the result 

of a collaboration between Politecnico di Milano, Milano (IT) and CADiTeR, MRI 
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Laboratory of Fondazione Don Carlo Gnocchi, Milano (IT). The aim was to 

develop a software capable of exploring the brain networks in an undemanding 

way, which is fundamental in the clinical research context.  

The investigation of changes in structural and functional connectivity based on 

graph indexes is a powerful tool in the clinical context for the analysis of brain 

organization, mostly from a statistical point of view, to compare groups of subjects 

characterized by the different conditions or an individual vs. the  normality 

ranges. However, there are some issues to fulfill this purpose, such as the 

sensitivity to noise of the neuroimaging techniques and some limitations in the 

preprocessing techniques. In this context, the focus in this work is put on the 

analysis of the uncertainty through the Bootstrap technique which allows to 

estimate the statistical features of a population characterized by the same 

condition from a limited number of measurement samples. This procedure is 

based on a random sampling of the initial dataset to create “surrogate” data which 

can better explain the statistical properties of the population under analysis. 

Indeed, the bootstrap procedure was applied in this work to allow a comparison 

between the different network metrics extracted from different brain connectivity 

datasets taking into account a certain degree of uncertainty. 

Moreover, the Spider-Net software was used to investigate the advantages and 

disadvantages in terms of the detection of brain connectivity pathways with two 

different advanced magnetic resonance imaging techniques, such as (Diffusion 

Tensor Imaging (DTI) and HARDI (High Angular Resolution Diffusion Imaging).  

Eventually, both these approaches were used in the investigation of a dataset 

involving  healthy control and schizophrenic subjects. In particular, bootstrapping 

was applied to analyze the differences in terms of network metrics in the two 

populations. Then, the Spider-Net software was used to inspect and visualize the 

brain connectivity dissimilarities in the whole-brain connectivity matrix and in 

sub-networks of interest, such as the Default Mode Network (DMN). This is a 

functional network known for being active when a person is not focused on the 

outside world and the brain is at wakeful rest, besides, the network is also 

activated for emotion control and recollecting past memories. From different 

studies, it was clear that this circuit is altered in schizophrenia, pathology 

characterized by disturbs of behavior, hallucinations, and cognitive deficits [6], [3], 

[7], [8]; thus justifying the aim of this work in investigating the variability of the 

schizophrenic subjects connectivity pathways. 

 

 

 

https://en.wikipedia.org/wiki/Wakefulness
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1.2 Brain Networks 

 

The brain is the most tangled network known to mankind. Indeed, it comprises 

billions of neurons which form trillions of synapses between each other. The 

collective actions of individual nerve cells linked organized in networks of 

connections makes behavior, thought, memory and consciousness possible. In this 

context, clinical disorders, like dementia or schizophrenia, are characterized by an 

alteration in the connections’ paths. It is, thus, understandable that neurosciences 

have been focused on the topic of brain network connectivity in the last decades.  

However, neuroscientists cannot fully comprehend the brain functions without a 

multiple scale approach. This is based on classifying the networks which organize 

neurons in functional brain regions and associate brain and body in a thorough 

organism. Thus, the comprehension of network interactions across various levels 

of organization is fundamental for a more complete understanding of the brain as 

an integrated system. This utmost wide and complex field of research is called 

connectomics and addresses the brain connectome at all its scales and features. 

Within this framework, the introduction of the concept SC and FC, addressing 

connection at the scale of brain areas to describe the respective connectivity  

matrices and represent all possible pairwise connections between the parcellation 

of areas in the brain, is a huge simplification but also an essential scale of brain 

areas classified by their anatomical position and function in well-established 

atlases is in the order of 100 parcellations, each representing a connectivity matrix 

entry, or graph node. This concept thus relies on an extremely simplified 

representation of the cellular wiring and organization of the brain, yet supported 

by the current knowledge of well localized brain areas with specific functions. In 

particular, Fig.1 (left panels) shows how a gray matter (GM) parcellation atlas (top) 

is projected onto a subject’s brain (bottom) after a co-registration. 

Passing from the definition of graph nodes to the weight of graph edges, different 

features are considered in SC compared to FC. 

In particular, SC considers the links established between GM areas by the fibers 

travelling in the brain white matter (WM). The procedure for edge mapping is 

shown in Fig.1 (right panels). WM tractography (right, bottom panel) consists in 

extracting all possible virtual fibers (stream-lines) given the diffusion weighted 

images (DWI) of the brain in many directions. The resulting pattern of stream-

lines is very complex and imbricated, nonetheless, it permits the extraction of 

neural fiber tracts (alias, fascicles or bundles) based on anatomical sorting rules. In 

the case of SC matrix extraction, the rule for each edge is to select all stream-lines 

touching at their ends the two connected areas (right, top panel). Weights in the SC 
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matrix (Fig.1, central bottom panel) are finally derived based on quantitative and/or 

qualitative properties of the connecting streamlines.  

 

Figure 1 Creation of the connectome. On the left, the definition of the nodes of the matrix 

representing the brain parcellations is depicted. On the right, the mapping of the edges of the 

matrix representing anatomical connections extracted  through white matter tractography is 

shown [9]. 

Passing to the FC matrix and graph, the definition of GM areas as network nodes 

it exactly the same shown in Fig.1 (left panels) for SC. Concerning the weights of 

graph edges, the functional interactions between areas can be obtained by the 

correlation of the spontaneous dynamics of activity in brain areas. The cortical 

activity changes in time can be accurately mapped by the functional magnetic 

resonance imaging (fMRI), which indirectly derives it by the neurovascular 

coupling, implying higher oxygenation in phases of higher activity. Since the 

underlying hemodynamic response function has a duration of about 10 s, fMRI 

can follow only slow fluctuations. Noninvasive electrophysiological signals such 

as EEG (electroenchephalography) and MEG (magnetoencephalography) 

conversely provide faster dynamic features and alternative ways to study FC [9].  
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1.2.1  Graph theory for the analysis of brain networks 

 

Complex networks have topological properties that show a more or less elaborate 

organization, neither random nor regular. These systems range from societies to 

molecular relationships between organisms, and their complexity stands on the 

fact that they are represented by millions and millions of elements interacting with 

each other. Different methods were developed to deal with this type of data, such 

that it became mathematically appealing to investigate the properties of the 

complex networks in terms of their organization. In this context, a modern field of 

network analysis was borne, based on representing complex networks and 

investigating their organization and function: graph theory [1].  

The first creation of a graph used to understand a real-world system is related to 

the mathematician Leonard Euler, who lived in a city surrounded by seven 

bridges linking the four main lands of the urban area. The problem at the time was 

about the possibility to walk around the town with a pathway which crossed each 

of the seven bridge only once. Euler solved this issue by representing the four land 

masses as nodes and the seven bridges as edges as represented in Fig.2. From this 

graph, it was shown that it was impossible to find a route around the city which 

crossed each bridge only once [10]. 

 

Figure 2 The origins of graph theory: (a) Simplified geographical map of the Prussian city where 

Euler lived, characterized by four landmasses marked from A to D and linked by seven bridges 

marked from a to f. The problem was related to the possibility of finding a pathway which allowed 

to cross each bridge only once. (b) Graphical representation of the issue described by Euler’s binary 

graph where nodes represent the landmasses and edges representing bridges [10]. 

 



32 | Introduction 

 

 

In general, a graph is a mathematical representation of a real-world complex 

system and can be defined as a collection of nodes (vertices) and links (edges) 

between pairs of nodes [2].  Thus, nodes and edges are the fundamental elements 

of brain networks and their definition is cardinal for a graph theoretical approach 

of complex networks [11]. Focusing on brain networks, what are nodes and edges 

in the nervous system? The answer to this question is dependent on which scale 

was used to represent the brain. Moreover, the definition of nodes and edges in 

also influenced by the chosen measurement technique. Indeed, for example, a 

graph constructed from electrophysiology can be analyzed in the same way as a 

graph constructed from functional magnetic resonance imaging. Nonetheless, the 

nodes and edges derived from these two techniques do not refer to the same 

biological processes. 

Generally speaking, connectomics distinguishes between three spatial scales to 

define brain connectivity: microscopic, mesoscopic and macroscopic [1]. The brain 

connectivity at the microscopic scale is characterized by neurons interconnected 

by synapses which are represented as nodes of the graph, while axonal projections 

and synapses are the edges of the graph. The brain connectivity at the macroscopic 

scale analyses white matter tracts (edges) interconnecting confined cortical areas 

(nodes) across the whole brain. The mesoscopic scale acts as a bridge between 

macroscopic and microscopic. In particular, at this scale, the investigations 

address local networks among and within a limited region of brain areas. The 

integration of the various scale is one of the most ambitious goals for neuroscience 

for many years to come. The analyses considered in the present study are limited 

to the macroscale of brain parcellation into distinct areas. 

 

1.2.2  Macroscale connectomics 

 

Nowadays, the macroscale techniques are the most appropriate for mapping the 

human connectome with cognitive and behavioral associations [12]. Indeed, the 

interpretation of macroscale measurements is the easiest way to detect lesions and 

to conduct brain imaging studies at the scale of structures (GM areas, WM tracts, 

etc.). Furthermore, the imaging techniques for the measurement of the macroscale 

connectomics, MRI (Magnetic Resonance Imaging), EEG (Electroencephalography) 

and MEG (Magnetoencephalography), are non-invasive for in vivo studying of the 

human brain networks with respect to the same aim at the microscale. In 

particular, the MEG measuring system in shown in Fig.3(a) together with the 

frequency bands (Fig.3(b)) used to identify the different aggregation of neurons, 

forming the networks (Fig.3(c)). The benefits of these methods are based on their 
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safety from the clinical point of view and the possibility of analyzing the whole-

brain connectivity across different pathological or healthy subjects or across 

different periods of time [1]. These advantages allow to investigate the evolution 

and the changes at the macroscopic scale. Nevertheless, these techniques can only 

distinguish elements on the scale of millimeters and centimeters which 

corresponds to the aggregation of large populations of neurons, axons and 

synapses. This assortment obviously decreases the precision with which it is 

possible to delineate nodes and edges of the brain networks. 

 

Figure 3 Macroscale functional connectivity networks measured with MEG: (a) representation of 

how the sensors are used outside the head of the patient to detect the electrical and magnetic 

activities of neurons. (b) MEG frequency bands. In particular, the colors are related to the different 

anatomical divisions, mainly related to the lobes. (c) Functional connectivity networks represented 

with respect to the anatomical parcellations used to estimate the signals coming from the different 

sources [1]. 

Considering the methods used for macro-connectomics, magnetic resonance 

imaging (MRI) is dominant mainly because of its safety, spatial resolution and 

availability throughout the world. Moreover, MRI allows to investigate structural 

and functional features at the macroscale with diffusion-weighted magnetic 

resonance imaging (DWI) and functional MRI (fMRI), respectively. The former 

allows to visualize and examine the organization, the orientation and the 

trajectories of white matter tracts. The latter inspects the dynamics of activity in 

each GM area, thus, in resting state condition (i.e. with no stimulus) it can provide 

the correlation between the spontaneous activations/inhibitions between each pair 

of areas. 

The mapping of a connectome at the macroscale is based on the problem of the 

definition of nodes [9]. Historically, in humans, the first attempt in classifying the 

cerebral cortex into discrete parcels or areas was represented  by the Brodmann 

areas, defined by the homonymous neuroscientist in 1909 [13], based on the 

cytoarchitectural organization of neurons, where the lateral and medial view’s 

numerical organizations are shown in Fig.4.  
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(a)  (b)  

Figure 4 Lateral (a) and mesial (b) view and numerical categorization of the Brodmann’s areas 

However, the Brodmann’s parcellation scheme introduces some limitations related 

to not taking into account the variability of the cytoarchitectonic boundaries across 

individuals. In this context, information additional to cytoarchitecture was 

introduced thanks to the evolution and the increasing precision available 

nowadays with magnetic resonance imaging, which is behind the development of 

actual atlases (see next Section 1.2.3.). Still these atlases refer their improved 

parcellations to the numeration of areas introduced by Brodmann. 

 

1.2.3 Brain Atlas Segmentation 

 

During the last decades, it was felt the need of flexible and suitable techniques 

aimed at investigating and dividing appropriately big data related to brain 

acquisitions. Within this framework, it is possible to define the network’s nodes 

based on the macroscopic landmarks visible with MRI, such as sulci or gyri [14] 

[15]. Nonetheless, the parcels obtained with this kind of approach can be 

characterized by variability in size which can alter the analysis of the connectome. 

Moreover, the anatomical atlases may not establish a match between these kinds 

of landmarks and functional boundaries [16]. In this context, functional maps are a 

possible solution to these issues. The functional atlases are, usually, derived from 

multi-modal data coming from resting-state fMRI, task-based fMRI or diffusion 

weighted MRI to acquire a whole-brain parcellation scheme characterized by 

considering different features of the brain’s organization.  For example, Glasser 

and colleagues, in their study, fuse information coming from myelin content, 

cortical folding, rs-fMRI and task-fMRI to obtain an atlas which is properly able to 

specify the cortical properties [17]. The main atlases in the literature and those 

related to the present work are described in the following.  
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An example is provided by the Talaraich atlas, [18], which is a volume-filling, 

hierarchical, anatomical labelling scheme where anatomical structures are defined 

as a collection of voxels, each voxel described by x-y-z coordinates. Standardized 

3D coordinates describe with precision the locations of the anatomical labels 

within the atlas. The Talaraich atlas labels are defined with a subdivision of a 

structure at level N into its substructures of level N-1. In particular, the brain is 

subdivided into its volumetric structures, cerebrum, cerebellum and brainstem, at 

level 1 as shown in Fig.5. Besides, the cerebrum is subdivided into lobes and 

sublobar regions at level 2 and so on for every structure until level 5 for this atlas. 

This type of segmentation, however, cannot be performed with complete accuracy 

since a surrogate atlas with characteristics similar to the subject of interest would 

be needed to have a more correct labelling. Most clinicians use the Talaraich atlas 

to investigate the localization of the brain regions which are activated or 

deactivated in different conditions, thus, in functional connectivity studies [19]. 

Nonetheless, assigning a set of coordinates to anatomical labels can be inaccurate 

due to many ambiguities when the objective is to define a set of coordinates 

between different brain areas. 

 

 

Figure 5 The anatomical structure-naming used for organizing the anatomical regions based on 

volume occupancy. In particular, the volumes of interest are organized into five hierarchical levels: 

Hemisphere, Lobe, Gyrus, Tissue type and Cytoarchitecture. BA: Brodmann Area; WM: White 

Matter; GM: Gray Matter; CSF: CerebroSpinal Fluid [18].  

This kind of procedure was improved by the definition of an automatic labelling 

of the activation of the different brain regions to classify from a hierarchical point 

of view the different Brodmann’s areas. Indeed, a more precise classification 

requires the use of automatic algorithms. The purpose of the study produced by 

Tzourio-Mazoyer and colleagues [19] is to present an automated anatomical 

labelling of activations detected with fMRI which does not aim at resolving the 

inter-individual anatomical differences, which are about 9 to 18 mm depending on 

the brain regions considered. Indeed, the inter-individual variability does not 

provide the absolute anatomical localization that can only be obtained with a 

reference to the particular anatomical map. Preferably, the work suppresses the 
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ambiguity related to the relationship between a set of coordinates and the 

corresponding anatomical labelling. This, indeed, represents a crucial point, since 

the strength of a brain atlas is to provide a common system to be used in 

functional connectivity studies reporting the localization of the activation of the 

different brain regions. This automatic anatomical labelling (AAL) atlas is based 

on the main sulci used as landmarks for the 3D definition of 45 anatomical regions 

of interest for each hemisphere. The procedure involves, firstly, a software which 

divides the brain according to the sulci, then the regions of interest were manually 

drawn with the same software every 2 mm on the axial slices; eventually, each of 

the total 90 regions are described with a label [19].  

In the development of brain atlases, two different perspectives are considered.  

Firstly, the approach involves the selection and identification of a group of 

individuals with the same characteristics, such that the atlas built in this way is 

specific for the particular group.  On one hand, this method achieves great 

accuracy, on the other hand, it has problems from a practical point of view in the 

assessment of different properties across populations.  

The second method is based on the development of a more general atlas which is 

are less accurate within a single population but applicable across different groups. 

In the creation of the structural Desikan atlas [14], each hemisphere is divided in 

34 regions. The labelling procedure is based on a sulcal approach by a manual 

tracing from one sulcus to another to define the different labels. This kind of 

procedure was performed with respect to different sources of information such as 

neuroanatomical conventions or modifications of previous studies. These were 

used to define the region-of-interest on the images, that are then transposed onto 

the inflated cortical surface of the reconstructed brain. The inflated surface allows 

the representation of the cortical surface with respect to sulci and gyri. The 

localization of sulco-gyral structures of the human cerebral cortex is important for 

the description of structural/morphological data. This type of labeling is 

potentially useful for delineating regions-of-interest on the anatomical images 

acquired on the particular patients.  

However, this kind of labelling is time consuming due to the complexity of the 

anatomical brain structures and it also requires important experience by clinicians. 

To solve this issue, automatic techniques were improved substantially to produce 

a rapid and precise reconstruction of the human brain. In this context, the study 

provided by Destrieux et al. describes a complete parcellation of the cortical 

surface using standard nomenclature and criteria, available in the FreeSurface 

package software [15].  
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The procedure involves first a computer assisted hand sulco-gyral parcellation 

subdividing the brain into 84 labels per hemisphere. In this way, the cortex is 

divided into sulcal and gyral structures depending on the values of the local mean 

curvature and the mean convexity from the reconstructed output of the FreeSurfer 

software; in particular, structures with average convexity value below a given 

threshold are considered as sulci, while vertices above or equal to this threshold 

are considered as gyri. Secondly, after the classification of the cortical surface in 

gyri or sulci, the limits between adjacent gyri and sulci are drawn manually using 

tools included in the FreeSurface software. Eventually, each cortical structure is 

associated with a label chosen from the database name, with particular large 

structures divided in further sub-parcellations, such as the cingulate gyrus which 

is divided into middle-anterior, middle-posterior, posterior-dorsal, posterior-

ventral parts. After this whole procedure, each structure of the cortical surface is 

assigned to an anatomical label [15]. 

Finally, it is possible to state that the problem of the definition of the connectome 

at the mascroscale and the construction of brain atlases is critical. Indeed, if 

clinicians cannot be sure that the nodes are matched with respect to appropriate 

parcels of the brain, it is difficult to determine if the results coming from the 

investigation on the connectome are meaningful or ill-posed. Often, it is useful to 

repeat the same analysis across different kinds of parcellations to check for the 

repeatability and steadiness of the results. 

  

 

1.2.4  Integration/Segregation Paradigm and Definition of Functional Networks 

 

In the investigation of brain networks, it is important to highlight the fact that the 

brain is characterized by functional dynamical changes to support different tasks 

execution. In particular, the brain reconfiguration is related to the specific task to 

be performed and relies on either independent specialized subsystems 

(segregation) or cooperation between subsystems (integration), as shown in Fig.6 

exhibiting the concept of integration and segregation of nodes on a networks. [20]. 
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Figure 6 Segregation (left) and integration (right) paradigms of nodes interconnected to form 

brain networks 

 

The brain activity at rest is supposed to balance segregation and integration 

demands, which need to be explicitly defined and quantified [20]. In this context, 

the knowledge of some structural network topological features, such as node 

clustering or path length, provides information about the functional segregation 

and integration of network interactions [21]. Moreover, combining the knowledge 

coming from these two topological features, it is possible to define the small-

worldness, a dimensionless parameter to be integrated with the anatomy of the 

brain to have some kind of information about the activation of functional 

networks. It was studied that the small-world topology of brain networks is 

efficiently combined with physical distances, defined as economical model 

embedded in physical space [22], [23]. In particular, the edges of a brain network 

characterized by high clustering tend to be at short anatomical distance (low path 

length), while the edges at further distance (high path length) tend to be low 

clustered [24]. In this context, it is possible to define the brain as an economical 

small-world network, such that  the term “economical” is related to the concept of 

“value for money” [25]. In particular, nodes characterized by high clustering are 

anatomically close to each other, therefore minimizing the wiring cost (path 

length). However, this minimization of the wiring cost, although maximizing the 

small-worldness of the network, makes the network to lose its integrative capacity 

which is increased in case of an increased path length, thus, reducing the small-

worldness of the brain network [24]. The economical idea is related to the concept 

that brain networks find a compromise between the minimization of the wiring 

cost (low path length, high clustering coefficient, therefore increased small-

worldness) and the maximization of the integration between nodes  (high path 

length, low clustering coefficient, therefore, decreased small-worldness). Thus, the 
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brain networks can be generated by economical models for different ranges of the 

two parameters controlling the wiring cost and the topological integration [24]. 

 

In the context of the characterization of the functional brain networks which are 

activated during different tasks, it was first reported by Mesulam [26] the division 

in 5 core functional brain networks:  a spatial attention network; a language 

network anchored in Wernicke’s and Broca’s areas; a memory network anchored 

in the hippocampal-entorhinal complex and inferior parietal cortex; a face-object 

recognition network and a working memory-executive functional network [21]. 

Thus, anatomical areas and functional circuits are activated during tasks 

performed to complete complex cognitive functions such as speech, language, 

visual processing and sensorimotor actions. However, the integration between 

these systems represents still an open issue in formulating how these circuits 

cooperate. In particular, the issue is related to how consciousness is formed in the 

individual and studies in literature are focused on this topic such as the one 

developed by Casali and colleagues based on determining an index of 

consciousness independent from sensory processing or behavior [27]; or the one 

developed by Rosanova and colleagues based on recovering effective connectivity 

pathways to detect and track recovery of consciousness in brain-injured patients 

who are unable to exchange information with the external environment [28]. 

 

The brain regions forming these networks have been detected from fMRI 

activations during specific tasks. Separately from the different tasks, the functional 

organization of the brain at rest can show specific patterns of activation whose 

difference with respect to the patterns activated during tasks allows to understand 

cognitive performance. The functional brain networks are in close correspondence 

in the analysis of resting and task-related connectivity patterns, suggesting that 

these networks are coupled at rest and  during cognition. This allowed to put the 

focus on brain networks which are activated during rest or social cognitive and 

deactivated during cognitively demanding tasks, an example of which 

represented by the Default Mode Network (DMN) [21]. The DMN was introduced 

in 2001 by the neurologist ME Raichle by referring to the state in which the brain is 

not activated, thus, not involved in any task requiring some kind of skill [29]. 

Structurally, the DMN is formed by three brain’s zones, defined as the ventral 

medial prefrontal cortex, the dorsal medial prefrontal cortex and the posterior 

cingulate cortex, together with the entorhinal cortex and the lateral parietal cortex 

[30]. In particular, the ventral medial prefrontal cortex receives the information 

coming from the senses and the body, thus, it is involved in social behavior and 

control of the emotional state of the individual. The dorsal medial prefrontal 

cortex, instead, is associated with self-reference and judgement, while the other 
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regions involved in this network are generally referred to the recollection of past 

memories and the experiences involved during wakefulness and sleep.  

 

 

1.3  Magnetic Resonance Imaging (MRI) 

 

For the largest part of history, brain anatomy and functions were considered as 

unresolved, hidden beneath the cranium and suitable only for post-mortem 

studies [31]. The evolution of new methodologies and tools uncovered 

organizational and operational features of the brain. In particular, anatomical 

approaches unveiled the pattern of connectivity between brain cells and regions, 

while physiological techniques yielded functional schemes, such as sensory and 

motor responses maps. Nowadays, brain activity can be studied using different 

methods, each characterized by its own arrangement considering spatial and 

temporal resolution and invasiveness. 

Magnetic resonance is a measurement technique used to investigate atoms and 

molecules based on the relationship between a created magnetic field and a 

particle characterized by spin and charge [1]. The Magnetic Resonance Imaging 

(MRI) focuses on the nuclei of particles, with a phenomenon known as Nuclear 

Magnetic Resonance (NMR), experimentally determined by Purcell in 1946 [32]. 

As the name states, NMR implies the resonance phenomenon of the nuclei and the 

external magnetic field. The NMR requires a magnet for a very high and 

homogeneous main field B0 (up to 3 Tesla, in current clinical MRIs). The body is 

inserted into a bore surrounded by a powerful coil (superconductive for high 

fields such as 1.5 or 3 T) which generated B0 [33]. Under the magnetic field, the 

body nuclear spins are in one of the two possible energy states: low energy state 

(“spin-up”, parallel to B0), or high energy state (“spin-up”, antiparallel to B0). The 

atomic nuclei all include protons and neutrons and are characterized by a net 

positive charge [34]. Some atomic nuclei, for example the hydrogen 1H or the 

phosphorus 31P, show the “spin” property based on the number of protons which 

can be represented as a spinning of the nucleus around its own axis at a constant 

rate. The rotation of the nucleus positive charge (atomic number multiplied by the 

proton charge: N · e+) creates a dipole field µ. Normally, all dipoles are randomly 

directed and the net magnetization M is zero (Fig.7 (a)). However, when the nuclei 

are inside the strong magnetic field B0,  the prevalence of the spin-up status creates 

a net magnetization M directed as B0 (Fig.7 (c)). Nonetheless, their angular 

momentum J, due to the spinning, impedes the alignment due to the gyroscopic 
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effect (Fig.7 (b)). Eventually, they get a precession motion around the axis of B0 at 

the Larmor frequency [33]: 

𝜔 =  𝛾 ·  𝐵0 

(1)  

where γ is defined as the gyromagnetic ratio, calculated as:  

𝛾 =  
µ

𝐽
 

(2)  

 thus the ratio of the magnetic dipole and the angular momentum.  

 

Figure 7 (a): initial null net magnetization due to the random orientation of the dipoles. (b): 

angular momentum J of the spins and representation of the magnetic dipole µ. (c): when the dipoles 

are inserted into a strong magnetic field B0, they align their axes producing the magnetization 

vector M [33] 

A limited number of values for the spin are available in nature, such that the spin 

number , I, is quantized to certain discrete values. There are only three groups of 

values for the spin number I: zero (indicating no spin), integer and half-integer. 

The hydrogen nucleus (1H), consisting of a single proton, is the most used one in 

MRI thanks to its half integer spin and due to the fact that its response to an 

external magnetic field is one of the largest found in nature. Moreover, body 

tissues are mostly formed by water and fat which both contain 1H [33]. I.e., they 

have a high proton density, where “proton” stands for the 1H nucleus. 
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Nuclei that are characterized by a spin number different from zero can be excited 

inside the strong magnetic field B0 thanks to the application of a second field B1 

perpendicular to B0, activated at short radiofrequency (RF) pulses. For a large 

collection of protons inside a certain volume of tissue, the effect is absorption and 

emission, happening during the RF pulse and depending on the state of the 

proton. Nonetheless, since there are usually more protons in the lower energy 

state with respect to the higher one, the main effect is the absorption of energy by 

the tissue. The orientation difference between B0 and B1 allows the coupling 

between the RF pulse and the magnetization vector M0, thus, the energy is 

conveyed to the protons, as shown in Fig.8(a). The macroscopic effect is that of 

moving the magnetization vector by a flip angle α proportional to the RF pulse 

duration τ and amplitude B1 [35]: 

𝛼 =  𝛾 ·  𝜏 ·  𝐵1 

(3)  

This produces the development of a transverse magnetization component: 

𝑀𝑥𝑦 =  𝑀0 · sin 𝛼 

(4)  

which is the only measurable effect since it is a dipole rotating at RF, thus, 

transmitting out a RF signal consisting in the observed NMR, also called Free 

Induction Decay (FID), exhibited in Fig.8 (b).  

(a) 

 (b) 

Figure 8 (a) Coupling between the RF pulse and the magnetization vector which moves 

the vector proportionally with respect to the flip angle α. (b) Representation of the FID 

signal [35]. 
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Magnetic resonance imaging is not only caused by the dissimilarities in proton 

density, but also by differences in nuclear processes also known as relaxation. 

Indeed, in the behavior of spins, two relaxation mechanisms are noticed: the 

longitudinal relaxation with a time constant T1 explained by the spin-to-lattice 

interactions, which absorb the spin-down excess of energy and converts it into 

heat; and the transverse relaxation with time constant T2 (T2
*) explained by the 

spin-to-spin interactions.  

 

1.3.1  Diffusion Weighted Imaging (DWI) 

 

Diffusion weighted imaging (DWI) has been employed since the 1990s to 

investigate the possibility of early stroke and other neurological disorders [36]. 

One of the most important advantages of this methodology is that it uses the 

intrinsic contrast between tissues without the introduction of any exogenous 

contrast material. In this context, within the last decade, DWI was continuously 

improved to become a routine clinical application in ischemia and is also the 

methodology used in research in other neurological diseases such as multiple 

sclerosis, dyslexia and schizophrenia [37]. Moreover, there are examples of DWI 

studies on the liver, the kidneys and the lymph nodes [38], [39]. Considering the 

physical background of DWI, it refers to the random (Brownian) motion of water 

molecules in a fluid that results from the thermal energy carried by these 

molecules [40]. 

The amount of diffusion depends on the diffusion coefficient, D. In particular, in a 

homogenous mean, the diffusion coefficient is the same in every direction, or 

isotropic. Conversely, in some biological tissues (e.g. neural fibers), the diffusion 

coefficient is different, or anisotropic. The diffusion coefficient is expressed in 

terms of 
𝑚𝑚2

s
 and describes the mean displacement, d, with respect to the motion 

within a time, τ, and it refers to the standard deviation of the position, such that 

[41]:  

𝑑 =  √6 ·  𝜏 · 𝐷 

(5)  

The apparent diffusion coefficient (ADC) of water molecules in tissues measured 

by DWI is much lower than that in free water due to hindering and restriction 

created by the cellular structures and macromolecules. Importantly, the ADC is 

related to the average microstructure within a voxel and, in anisotropic tissues, 

also to the explored direction. So, DTI, which will be discussed later in the 

paragraph 1.3.2, measures water molecule diffusion in different directions in every 
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pixel of a magnetic resonance image, and it is derived by performing DWI in more 

than six non-collinear directions. 

As stated in the beginning of paragraph 1.3.1, the NMR phenomenon combined 

with magnetic field gradients grants to build images characterized by different 

types of contrasts. Namely, DWI requires to insert in a sequence with a long echo-

time (TE), hence T2-weighted, a bipolar gradient made by a dephasing and a 

rephasing gradient pulse separated by a long (20-30 ms) diffusion time τ = Δ. This 

permit to evaluate the amount of diffusion motion of the protons (mainly, in water 

molecules) along the direction of the bipolar gradient [42]. The most frequent 

technique used for DWI is by means of a single shot readout of an entire slice 

called echo-planar-imaging (EPI). The need to provide a consistent diffusion time 

Δ is satisfied by the EPI readout applied over a spin echo with a long echo time 

(TE > Δ), which causes a T2-weight to be combined with the diffusion one [36]. 

Diffusion weighing is introduced by a bipolar gradient made of two opposite 

gradient pulses: the former dephases all spins proportionally to their position 

along the gradient direction, while the latter, delivered after the diffusion time Δ, 

rephases them. 

However, the random diffusion displacements during the diffusion time Δ cause 

the moved protons to experience a rephasing different from the initial dephasing. 

The resulting dispersion of spin phases produce an attenuation of the magnetic 

resonance signal, indicating the level of ADC. 

With the application of the diffusion gradients in a single spatial direction, only 

the motion due to diffusion parallel to this direction would be detected. On one 

hand, this investigation is sufficient to acquire the diffusion properties in an 

isotropic medium. On the other hand, muscles or nerves are highly anisotropic 

tissues and the diffusion will be lower in the direction orthogonal to fibers 

compared to the parallel one, resulting in a decreased apparent diffusion 

coefficient [37]. This issue detected can be solved with the diffusion tensor which 

represents the diffusion no longer with a single scalar, but with a matrix 

(described  later in paragraph 1.6.3). 

The degree of signal attenuation can be calculated as:  

SI =  𝑆𝐼0  · 𝑒−𝑏 · 𝐴𝐷𝐶  

(6)  

where, SI0 is the signal intensity of the T2-weighted image with no diffusion 

gradient (i.e., with b = 0) applied and b is the degree of diffusion weighting (b-

value):  
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𝑏 = 𝛾2 ∙ 𝛿2 ∙ 𝐺2 (Δ −
𝛿

3
) 

where 𝛾 is the gyromagnetic ratio, while 𝛿 and 𝐺 are the duration and size of the 

gradient pulses. 

This value, in particular, tunes the diffusion attenuation and it is measured in 
𝑠

𝑚𝑚2. 

In the context of imaging it is fundamental to set the b-value properly [43], since 

different values of b are considered to have the most accurate diffusion coefficient 

able to correctly characterize different kinds of tissues with sufficient SNR, as 

shown in Fig.9. Describing the role of the b-value in acquiring images, it is 

important to realize that the higher its value, the more the water molecules are 

sensitive to their molecular displacement, thus, increasing the signal attenuation, , 

as shown in Fig.9, but also increasing the scanning time due to the fact that in the 

clinical practice the only way to increase the b-value is to raise the diffusion time. 

The most used values of b range from 600 to 1500 𝑠 · 𝑚𝑚−2, where the lower 

values in this interval are typically used for the imaging of premature babies, 

while the higher values are commonly used for stroke patients. [44].  

The ADC can be evaluated by solving the previous equation with respect to this 

term, such that [44]:  

𝐴𝐷𝐶 =  
𝑙𝑛 (

𝑆𝑖
𝑆0

)

𝑏
 

(7) 

In the clinical practice, the final image, characterized by different ADC for each 

pixel, is referred to an ADC map [36]. In anisotropic diffusion the molecular 

mobility is not equal in all directions producing distinct ADCs in the different 

directions.  
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Figure 9 Diffusion Weighted Images for different b-values. It is important to appropriately tune 

the b-value to avoid, on one hand, a very low signal attenuation when b is too low or a reduced 

signal-to-noise ratio when b is too high[45] . 

 

1.3.2  Diffusion Tensor Imaging (DTI) 

 

As discussed in the previous section (1.3.1), the variations in the diffusion-

weighted signal intensity related to anisotropy of white matter tracts complicates 

the interpretation of the DW images in the clinical practice, except if ADC maps 

are computed [44]. The anisotropic motion of water molecules was found to be 

much faster along the white matter pathways than the perpendicular direction 

with respect to them [46]. The problem is solved by composing DWIs in several 

direction and describing anisotropy by a proper model. The simplest possible 

model maintains the Gaussian nature of free diffusion but with an anisotropic 

structure described by the principal axis (eigenvectors) of a 3D Gaussian. The 

variance of displacements is hence no more described by a scalar but by a 

covariance tensor which is a 3X3 symmetric matrix 

Diffusion Tensor Imaging revolutionized the field of white matter mapping. From 

its presentation in the 1990s by the neuroscientist Basser [46], it was provided a 

straightforward technique to describe the complex neuroanatomical information 

coming from anisotropic white matter tracts. 

The diffusion tensor is a 3x3 symmetric matrix of vectors representing a 

mathematical model of the pattern of diffusion anisotropy of white matter 

pathways. The tensor, D, is dependent on the signal intensities, S and S0 (defined 

before in paragraph 1.6.2), such that [46]:  
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𝑆

𝑆0
=  𝑒−(∑ ∑ 𝑏𝑖,𝑗·𝐷𝑖,𝑗𝑗=𝑥,𝑦,𝑧𝑖=𝑥,𝑦,𝑧 ) 

(11)  

where, 

𝑏𝑖,𝑗 =  𝛾2 · 𝑔𝑑𝑖 · 𝑔𝑑𝑗 ·  𝛿2 · (𝛥 −
𝛿

3
) 

(12)  

Six or more measurements of S are needed to estimate D. Redundancy of 

measures in respect to the 6 unknowns is usually dealt with by least square fitting 

methods.  

Eventually, the diffusion tensor is represented as: 

𝐷 = [
𝐷𝑥𝑥 𝐷𝑥𝑦 𝐷𝑥𝑧
𝐷𝑥𝑦 𝐷𝑦𝑦 𝐷𝑦𝑧
𝐷𝑥𝑧 𝐷𝑦𝑧 𝐷𝑧𝑧

] 

The most intuitive way to represent the information described by the diffusion 

tensor is to see it from a geometrical point of view as the angular variation of the 

ADC values in the shape of a 3D ellipsoid, as shown in Fig.10 [44].  

 

 

Figure 10 Geometrical information provided by the diffusion tensor. In the image, the diffusion 

ellipsoids and tensors are shown for isotropic unrestricted diffusion, isotropic restricted diffusion, 

and anisotropic restricted diffusion [44]. 
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In this context, the diffusion ellipsoid is described by six variables which represent 

the ADC of water molecules in each direction. For isotropic diffusion (Fig.10 on 

the left middle row), the ellipsoid is a sphere since the ADC is the same in every 

direction, on the other hand, the anisotropy is modelled with an elongated 

ellipsoid which assumes this kind of shape due to the fact that there is an 

increased diffusion distance along the main axes of the ellipsoid (Fig.10 on the left 

middle row). In all the different types of diffusion, the elements of the tensor 

above the diagonal are always equal to the ones below. Thus, there are only 6 

independent parameters of the tensor which need to be identified with a 

minimum of 6 non-collinear diffusion-encoding acquisitions. 

 

1.3.2.1 DTI Metrics 

 

Three main parameters can be extracted from the diffusion tensor, known as the 

mean diffusivity, the diffusion anisotropy and the main diffusion orientation. The 

mean diffusivity, Dmean, represents the diffusion coefficient averaged over the 

spatial directions and it is calculated as a third of the sum of the three diagonal 

elements of the tensor (trace of a matrix), such that [47]:  

𝐷𝑚𝑒𝑎𝑛 =  
𝐷𝑥𝑥 + 𝐷𝑦𝑦 + 𝐷𝑧𝑧

3
 

(13)  

The diffusion anisotropy, instead, or fractional anisotropy (FA), indicates how 

much the diffusion phenomenon of interest deviates from being isotropic. In order 

to calculate this parameter from the diffusion tensor, the tensor is represented in a 

frame rotated along the ellipsoid principal axes (i.e. the tension eigenvectors) 

where the tensor is reduces to a diagonal matrix, such that: 

 

𝐷 = [
𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

] 

 

with λ1, λ2, λ3 being the eigenvalues corresponding to the eigenvectors v1, v2, v3. 

After this mathematical manipulation, the FA is evaluated as [47]: 
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𝐹𝐴 =  (√
3

2
) ·

√(λ1 − 𝐷𝑚𝑒𝑎𝑛)2 +  (λ2 −  𝐷𝑚𝑒𝑎𝑛)2 +  (λ3 − 𝐷𝑚𝑒𝑎𝑛)2

√λ12 + λ22 + λ32
 

(14)  

Furthermore, it is also possible to define the Relative Anisotropy (RA), such that  

[44]: 

 

𝑅𝐴 =  (
1

√3
) ·

√(λ1 − 𝐷𝑚𝑒𝑎𝑛)2 +  (λ2 −  𝐷𝑚𝑒𝑎𝑛)2 +  (λ3 − 𝐷𝑚𝑒𝑎𝑛)2

𝐷𝑚𝑒𝑎𝑛
 

(15) 

The Fractional Anisotropy allows to describe diffusion anisotropy differences by 

building gray-scale maps characterized by limits between zero and one. Indeed, in 

white matter, the FA is high, near one in the most organized areas; the increased 

FA value specifies the fast diffusivity along the fibers and the slow diffusivity 

perpendicular to them [48]. In gray matter and cerebrospinal fluid, instead, the FA 

is near zero since diffusivity is similar in all directions. Due to its ease of 

interpretation and calculation, FA and RA have become through the years the 

most extensively used parameter of anisotropy in the clinical practice. 

 

 

Figure 11 Diffusion Tensor maps. In the first row, the first, second and third eigenvalues (in 

decreasing order) are shown with the same intensity scaling. In the second row, the left image 

represents the map derived from the averaged diffusivity, which corresponds to the mean of the 3 

eigenvalues. The middle image in the bottom row shows the FA map, while the right one describes 
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the map which was colored to show the orientation of the primary eigenvector with left-to-right 

fibers colored as green, anterior-to-posterior as red, and inferior-to-superior as blue [44].  

Each eigenvector v1, v2, v3 obtained by the tensor describes the directions and 

lengths of the three diffusion ellipsoid axes in decreasing order of magnitude. In 

this context, the largest eigenvector is the primary direction of water diffusion, 

also called “axial diffusivity”. This eigenvector is fundamental for the fiber 

tractographic algorithmic rules since it corresponds to the orientation of the axonal 

fiber pathways [40]. Indeed, the primary diffusion vector is also called the 

“longitudinal diffusivity” since it indicates the rate of diffusion along axonal fiber 

bundles. The second and the third eigenvectors (v2, v3) are perpendicular to the 

primary eigenvector; the associated eigenvalues (λ2, λ3) describe the strength of 

diffusion in the transversal plane. Within this frame of reference, it is possible to 

define the “radial diffusivity” as the mean between these two eigenvalues [49]. 

A different typology of the representation of the eigenvectors is by the mapping of 

colors. In this context, the largest eigenvector v1 is associated with x, y and z 

components which can be shown as grayscale maps (Fig.11 top row). These maps 

are usually multiplied by the FA map (Fig.11 middle image in the bottom row) to 

distinguish between low and high-anisotropy regions where the first are 

characterized by absence of dominant fibers, so enhancing the high anisotropy 

regions which allow to form images based on more information from an 

anatomical point of view. The x, y, and z components forming the image are put in 

correspondence to the RGB (Red-Green-Blue) color scheme and the components 

are unified to form a single color-coded map (Fig.11 right image in the bottom 

row). The RGB color scheme which is usually used to describe the orientation of 

the eigenvectors is chosen such that: blue is superior-inferior, red is left-right and 

green is anterior-posterior directions of fibers [49].  

 

1.3.3  Fiber Tracking in Diffusion Tensor Imaging 

 

The mapping of the structural connectivity of the human brain has been a crucial 

scientific purpose for decades [50]. Nowadays, the sole safe, noninvasive 

technique to fulfill this goal is diffusion MRI tractography, which uses knowledge 

coming from the displacement of water molecules in the brain. Conversely, in the 

past, invasive tract tracing was the most used technique to map connectivity in the 

brain. However, in these kinds of experiments, after the injection of the radiotracer 

dye, the animal under interest is euthanized to dissect the brain and to map the 

different kinds of neural elements. Hence, the ethical limits are clear in performing 

these experiments in animals, while they are not applicable on humans. In 
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particular, this method can be used to describe the trajectory of white matter fibers 

or the connectivity among different regions of the brain. The usefulness of DTI 

tractography is related to the simultaneous non-invasiveness feature and the 

possibility of localization and estimation of neural pathways applied to diagnostic 

procedures, both in the clinical and surgical practice. Indeed, this method is used 

not only by neuroscientists to acquire information about brain functioning, but 

also by surgeons for surgery planning and by neurologists to assess the 

healthiness of the main WM tracts [50]. It is, thus, clear that the accuracy in 

classifying the presence or absence of connections and in delineating the fiber 

pathways is essential for correct diagnosis and proper surgical results.  

Tractography is a technique which integrates the information coming from fiber 

orientations into a pathway which connect brain regions. This pathway is called 

“streamline” which can be defined as a curve whose tangent is always parallel to 

the vector field and they are reconstructed by starting from a seed point and 

following the local vector information, an example of which is shown in Fig.12(b) 

[51].  

 

(a)  (b)  

Figure 12 Streamline tractography. (a) Mathematical representation of the streamline 

tractography such that the location is parametrized with a vector r and the length of the streamline 

is known as s. The tangent to the streamline is called t(s) and it is the estimate of local fiber 

orientation. (b) The white streamline follows the orientation of the diffusion with least obstacles 

[51]. 

From the mathematical point of view, the location of the streamline, r, is expressed 

in function of the distance along the streamline from the start, knows as the arc 

length, s. In particular, the tangent to the streamline at arc length is considered to 

be the estimation of the fiber orientation. (Fig.12(a)). Considering the diffusion 

tensor model, described in the previous paragraph, the tangent at the arc length 
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can be defined as the first eigenvector of the diffusion tensor as: 𝑡(𝑠) = 𝑣1(𝑟(𝑠)), 

where 𝑟(𝑠) is the location that is distance s along the streamline [51]. At this point, 

it is possible to define the evolution of a streamline, as:  

𝑑𝑟(𝑠)

𝑑𝑠
= 𝑐𝑜𝑛𝑠𝑡 · 𝑣1 

(16) 

with 𝑟(0) = 𝑟0 being the seed point. In practice, tractographic algorithms proceed 

numerically, propagating a streamline from one voxel to the next by following the 

direction of the main eigenvector 𝑣1. 

The defined trajectories will pursue the largest eigenvector of the diffusion tensor 

from pixel to pixel, with end-stopping criteria based on the maximum turning 

angle of the streamline or the minimum FA within a pixel or both rules could be 

used simultaneously. The choice of the proper end-stopping criterion is 

fundamental to avoid false positives, thus, to dodge the possibility to detect 

connections which in reality are missing. This largely applied deterministic 

propagation can be substituted by stochastic approaches, which are particularly 

useful when anisotropy has more complex models as in HARDI protocols (see 

next). In summary, the DTI ellipsoid or the more complex HARDI patterns are 

seen as the probability of fiber propagation in any direction. The problem is hardly 

solved by analytical ways and Monte Carlo algorithms are used. I.e., fibers are 

propagated by random extraction according to the probability of each direction in 

each voxel, repeating the random extraction a large number of times to get 

statistically representative patterns. 

 

1.3.4  DTI limitations 

 

The initial condition of the differential equation described in the previous 

paragraph, is defined a priori and allows to describe the seed point of the 

streamline. The characterization of the initial condition is the key step in the DTI-

based tractography procedure; in order to do this, it is important have knowledge 

about the anatomy of the white matter of the chosen region-of-interest (ROI) [48]. 

This, however, can be an issue if considering modest fiber systems where knowing 

the pathways of the fibers might be difficult or in patients where the anatomy of 

the white matter is altered for example by a lesion. 

The selection of the appropriate ROI to start the fiber tractography algorithm is 

not the only problem considering these types of procedures. Indeed, the DTI 

model, as it is defined, is different from the real anatomical situation. It is assumed 
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that the diffusion in white matter is considered as Gaussian which is obviously not 

true in real conditions due to the presence of restrictions in the anatomical 

pathways. Moreover, only an average fiber population is modelled for every voxel 

which represents a fundamental limitation when the voxels are characterized by 

multiple crossing fibers. When this situation is met, the tensor model is not valid 

anymore, since these voxels can no longer be represented by the Gaussian 

distribution. Indeed, voxels in which at least two different fiber directions can be 

identified represent about 66% to 90% of the total voxels representing the white 

matter. It is, thus, critical to go beyond DTI and consider higher order models and 

new reconstruction techniques able to describe non-Gaussian voxels. This 

necessity led to the development of the HARDI (High Resolution Angular 

Imaging) technique (more details in Section 1.3.5). 

Another fundamental limitation related to the DTI include the inability of 

distinguishing the neural direction of axonal pathways. Considering SC, we 

cannot have directed graphs indicating the weights of fibers from area A to area B 

and vice versa. Indeed, the polarity of a neural pathway does not affect diffusion, 

thus, it cannot be detected by this technique [52]. This represents still an open 

issue and its solving could provide important information about the structural 

changes in white matter pathways, which can predict functional changes in a 

pathological subject depending on polarity. It should be remarked that this 

limitation is inherent to DWI measures and is shared by DTI and the more 

sophisticated HARDI models. In fact, it’s the physics of diffusion itself to be 

symmetric on both orientation of an axis. In perspective, this problem could be 

solved by fusing information about the streamline endings and a priori anatomical 

knowledge. But this is by far not accessible nowadays due to the limited resolution 

of DWI (in the order of millimeters). Indeed, even detecting the direction of a 

pathway (efferent or afferent), within a voxel containing a bundle of parallel 

axons, there will be axonal pathways running in both directions [52].  

Furthermore, one more problem related to DTI to be analyzed is because the voxel 

signal is the sum of all the tissue signals within the voxel. This causes a mixture of 

signals at the interface of two tissues, also named Partial Volume Effect (PVE), 

which causes loss of contrast within edges, provoking even the impossibility to 

detect small lesions near these edges [53]. This effect is not negligible since causes 

issues in the ROI detection considering DTI and errors in the volume 

measurements in MRI. Besides, this effect is more acute when the difference 

between the signals coming from two different tissues is greater or when the 

boundaries within the tissue interface bends with a shallow angle with respect to 

the edge of the voxel. One of the main source of PVE in DTI can be found in 

cerebrospinal fluid (CSF) contamination of gray matter on the surface of the 
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cortical ribbon [53]. Indeed, the CSF gray matter is characterized by high contrast 

in MRI images and the cortical ribbon is denoted with considerable undulations, 

producing shallow surfaces. The PVE causes an overestimation of the Mean 

Diffusivity and underestimation of Fractional Anisotropy, representing a critical 

issue in the investigation of the brain structures. A major problem is that PVE are 

more pronounced in subjects with altered brain integrity. A possibility to solve the 

PVE is to reduce the size of imaging voxels to avoid the signal’s contamination 

between different tissues; however, this causes a floss in the SNR [53]. 

Eventually, it is also necessary to highlight the impact of the pre-processing steps 

on the connectivity metrics to be derived from the diffusion signal. Indeed, there 

are multiple software packages which are able to analyze the signal coming from 

diffusion MRI data. However, it is important to select the appropriate one, since 

an erroneous choice would lead to differences in data quality, and the potential 

power of the investigation of to detect connectivity differences between subjects 

[54]. In the context of erroneously interpreting connectivity measures, it is 

important to state that the tractography does not provide a quantitative 

information of connectivity strength. Indeed, in many studies, it is chosen to not 

rely on the information about weights and perform investigations on binary 

diffusion tensors, as analyzed in Section 2.1.1 [55]. In particular, these are obtained 

from the binarization of the weighted network, by setting edges which have at 

least one streamline as one, and edges characterized by the absence of streamlines 

as zero. This processing is usually performed because tractography algorithms are 

not able to quantify in an anatomical context neither the number of axonal 

projections nor the connection strength. 

 

1.3.5 HARDI (High Angular Resolution Diffusion Imaging) 

 

As stated in the previous paragraph, improvements can be gained by solving the 

limitations of DTI related to the problem of the crossing fibers in order to have 

more precise and rich robust tractographic reconstructions [56]. The issue here is 

how to overcome the Gaussian assumption. One possible answer to this matter 

could be to consider a different number of Gaussians. Nonetheless, since a single 

Gaussian distribution has six parameters, obtained from six diffusion-weighted 

images, parametrized by the diffusion tensor; the higher the number of Gaussians, 

the more the unknowns to estimate, thus, the more the diffusion measurements 

which are needed. Another possible answer to the problem related to the Gaussian 

assumption is to consider model-free techniques. This gives birth to two possible 
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families of methods: model-free and mixture model techniques. These have in 

common to take into account more data and more acquisition and optimization 

schemes necessary for reconstruction of images. Mixture model methods make 

biophysical assumptions on the fiber populations within an imaging voxel and 

describe how the water molecules diffuse in this assumed environment [57]. On 

the other hand, model free methodologies do not make physical assumptions 

about tissue properties and represent the diffusion signal with respect to diffusion 

features. In this context, in the HARDI (High Angular Resolution Diffusion 

Images) acquisition schemes, the diffusion signal is measured along many (order 

of 100) gradient directions uniformly distributed on the sphere, with a single b-

value or even repeated with two or more b-values, called “shells”. Nowadays, 

there are three acquisition strategies used in 3D advanced diffusion imaging 

which are diversified with respect to the number of directions, N, and the number 

of b-values. The aim of single-shell techniques is to build an angular function 

whose maxima are aligned with respect to the fiber orientation structure. In this 

context, 45 < N < 200 in terms of the number of measurements, while the b-value 

needs to be chosen usually between 2000 and 4000 
𝑠

𝑚𝑚2 and the acquisition time is 

between 5 and 20 minutes. Consequently, the advantage of single-shell HARDI is 

related to the taking of a single sample of a sphere in the q-space, which reduces 

the acquisition time despite the high angular resolution results. Furthermore, the 

signal-to-noise ratio is improved by the choice of the appropriate b-value. 

Nowadays, most HARDI acquisition protocols involve a b-value equal to 1500  
𝑠

𝑚𝑚2, 60 directions and 2 mm isotropic resolution for a good signal and angular 

contrasts. 

 

Figure 13 HARDI fiber tracking versus DTI. It is shown how HARDI is superior with respect to 

DTI such that there are obtained more accurate reconstructions of complex fiber crossing 

configurations characterized by high curvatures such as the corpus callosum (above CC) and the 

cingulum (below Cg) [57]. 
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As DTI, HARDI is also characterized by some disadvantages. Indeed, although, on 

one hand, it allows to describe crossing fibers if enough measurements are 

performed, as shown in Fig.13 exhibiting the superiority of HARDI in the 

detection of the streamlines of the Corpus Callosum and the Cingulum. On the 

other hand, it is important to investigate which kind of crossing voxels can be 

analyzed by this technique. As a matter of fact, the method is not able to 

distinguish between crossing, branching or curving configurations of fibers 

producing ambiguity in the interpretation of data. This represents a problem in 

the tractography schemes, and new methods have started to investigate beyond 

the voxels to not come across these ambiguities. Nevertheless, these studies are 

still in the preliminary phase and, thus, the problem of the choice of the tracking 

method in general remains an open question. Furthermore, it is necessary to 

consider the number of false-positive connections with HARDI tractography 

algorithms. These connections are commonly filtered in the post-processing phase 

by selecting fibers of a particular length or considering a specific cortical region 

which, however, is not able to control all false-positives/negatives.  

Another limitation is related to the scanning time required with high direction 

numbers and in multi-shell methods [57]. Moreover, a small difference in seeding 

or stopping criterion can produce a critical change on fiber tracking output, as for 

example a small change in the FA threshold which can switch from a situation in 

which there are no fibers passing through the area of interest to thousands of 

crossing fibers in the same zone. In this context, improved visualization 

techniques are developed to understand these kinds of uncertainties in the 

acquisition of images and the appropriate selection of the tracking parameters.  

Thus, tractography outcomes can be seen with unbelief due to the presence of 

these limitations. As of today, nevertheless, clinicians are convinced in the 

usefulness of HARDI tractography applications for structural connectivity 

mapping purposes, connectivity-based parcellation and functional/structural 

connectivity analyses [57].  

 

1.3.5  Functional MRI (fMRI) 

 

The functional organization of the brain can be defined by the amount of 

information being processed [58]. The interconnections between brain regions is 

provided by synchronized activity, thus, brain networks consist in spatially and 

functionally connected regions which process information. To explain the contrast 

mechanism used by fMRI it is necessary to introduce brain metabolism [59]. 
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Figure 14 Representation of brain tissue capillary during rest (above figure) and activation (below 

figure). In particular, red circles are red blood cells which are fully oxygenated (HbO2), while blue 

circles represent red blood cells which are fully deoxygenated (Hb). The magnetic resonance signal 

is increased in the activated state due to the fact that the blood flow is increased and this causes the 

deoxyhemoglobin to be reduced with the oxyhemoglobin; this swap causes the BOLD signal to 

increase [59]. 

All the activities of neural signaling in the brain need energy in the form of 

adenosine triphosphate (ATP). When a brain region is activated by a specific task 

the supplementary neural firing result in an increased energy requirement, 

producing an increased cerebral metabolic rate of oxygen in that particular brain 

region, as shown in Fig.14. The increased metabolic rate of oxygen brings about a 

dilatation in the adjacent blood vessels, causing an increase in blood flow. The 

intensification of blood flow to match the deficit in the metabolic oxygen demand 

produces, however, more oxygen than is needed. This creates a decrease in the 

deoxygenated hemoglobin (deoxy-Hb) in the local micro-vascular bed [59]. A 

decreased concentration of the paramagnetic deoxy-Hb decreases the magnetic 

field inhomogeneity ∆𝐵0 thus enhancing the T2*-weighted signal according to the 

formula: 

1

𝑇2∗
=

1

𝑇2
+ 𝛾∆𝐵0 

In this way a Blood Oxygen Level Dependent (BOLD) contrast  is obtained by 

means of the dynamic analysis of T2*-weighted contrast. The typical MRI 

sequence applied is echo-planar-imaging (EPI), which, being a gradient echo 

sequence, has the needed characteristics of being very fast in scanning a brain slice 

(order of 100 ms or less) and to provide T2*-weighted contrast. Currently, a stack 

of slices covering the whole brain volume (about 30 slices) can be acquired at a 

repetition time TR of about 2–3 s. Hence, the BOLD signal can be analyzed voxel 

wise at this sampling rate, comparing periods of activation and periods of rest. 
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The basic fMRI applications were developed inducing activation by the 

performance of different kinds of tasks to induce distinct changes in the neural 

activity, such as visual or auditory stimuli, and the objective is to build activation 

maps which compare the specific brain region activity before and after its 

activation, as exhibited in Fig.15. 

 

Figure 15 Acquisition scheme and analysis of fMRI maps. The acquisition (top) is based 

on repeating the stimulus after a certain repetition time (TR) at which the images are 

acquired, while the analysis (bottom) is performed by considering the difference of the 

resting-state and the stimulated images which allow to create the activation map [59]. 

It is worth remarking that the experimental design shown in Fig.15 searches for 

correlation of voxels or entire areas with the external stimulus related to the task. 

Conversely, FC analyzes the BOLD signal dynamics searching for correlations 

between brain voxels or areas. For this reason, the typical experimental design for 

FC is considering a few minutes (about 5–10) of resting-state (rsMRI or rsfMRI) in 

the absence of any external stimulus, with the subject asked to stay awake with no 

particular thought in his/her mind. 

Functional MRI imaging has inaccurate time resolution in the order of seconds but 

precise spatial resolution in the order of millimeters. Indeed, this technique was 

used to construct functional brain networks related to different type of tasks 

operating at low frequencies, lower than 0.5 Hz [6]. To construct functional brain 

networks, different measures of coordination between the ongoing BOLD signal 

can be defined, being the simplest one the Pearson linear correlation coefficient. 

This measure, indeed, computes the linear correlation of the BOLD signal between 

pairs of voxels or pairs of areas (in this case getting the signal averaged on each 

area) and thus a link forming the network is built if the correlation exceeds an 

arbitrary threshold [60]. Different FC measures exist, apart from the Pearson linear 
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correlation coefficient, such as the mutual information, coherence and wavelet 

coherence which take into account different aspects of the statistical dependence 

between BOLD signals (such as information domain, frequency-domain and 

wavelet-domain) [61].  

Nowadays, there are several studies describing the effects of different diseases and 

disorders considering fMRI brain networks. For example, Liu et al. study in 

schizophrenia showed that graph metrics such as clustering coefficient and small-

worldness are related with an inverse proportionality to the duration of the illness 

[3]. There are several findings of functional connectivity disturbances in 

schizophrenia, reflected in the alteration of the values of the graph metrics and 

disconnections in the brain networks. Another example of a study investigating 

schizophrenic subjects was developed by Zalesky and colleagues who analyzed a 

dataset formed by 15 control subjects and 12 pathological ones. In particular, they 

used a statistical tool to identify disruptions in the pathological population 

characterized by fronto-temporal and occito-temporal disconnections [5]. 

Another study conducted by Supekar and colleagues was related to Alzheimer’s 

Disease (AD) functional connectivity networks, and it showed that clustering 

coefficient was largely reduced in AD patients, and, thus, it could be used to 

distinguish between healthy and unhealthy patients [62].  

The analysis of functional networks can also be performed with other techniques 

rather than the fMRI, known as Electroencephalography (EEG) and 

Magnetoencephalography (MEG). It is necessary to highlight that they carry 

information about the brain’s electromagnetic activity over an extensive range of 

frequencies, from 1 to 100 Hz, with appropriate time resolution in the order of 

milliseconds and coarse spatial resolution in the order of centimeters. Thus, MEG 

and EEG were widely employed to analyze connectivity in parallel or in place of 

fMRI to study organizational and topological changes of brain networks. Indeed,  

considering an example of study using MEG data, Stam and colleagues analyzed 

AD patients who were characterized by reduced functional connectivity strength, 

decreased clustering coefficient and increased path length. The innovation of this 

study is related to the multimodality, indeed the authors investigated data coming 

from both MEG and fMRI techniques [63].  
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1.3.7 fMRI limitations 

 

To conclude this paragraph, it is important to mention some limitations related to 

the fMRI and the functional networks analysis. Indeed, in the interpretation of the 

results coming from this technique, stationarity is often assumed. However, 

considering the known dynamic and condition-dependent nature of brain activity, 

it is obvious that the functional connectivity metrics such as the Pearson 

correlation coefficient will change over time [64]. This variability allows to define 

the paradigm of dynamic functional connectivity analysis. These changes over 

time are related to task demands, learning and large state transitions such as sleep 

or anesthesia [64]. Moreover, it is relevant to consider the dynamic functional 

connectivity, since this type of connectivity also varies within the same subject and 

even between time windows within the same session. In this context, the variation 

of the functional connectivity metrics, such as the correlation coefficient or the 

wavelet coherence, is not easy to be explained. Indeed, functional connectivity 

acquisitions are characterized by low signal-to-noise ratio (SNR) and non-neural 

noise related to cardiac and respiratory processes and hardware instability.  

Besides, what complicates the interpretation of the results coming from functional 

connectivity studies is the fact that the networks can overlap, such that the time 

series coming from two nodes can have correlations with different networks. Thus 

the functional connectivity between two regions involved in a particular network 

can change if the time series are not separated. [64]. In this context, some strategies 

were developed to interpret these variations of the time series derived from the 

BOLD signal fluctuations. The most used strategy for translating these functional 

connectivity dynamics is the sliding window approach. In particular, a fixed-

length time window is selected and the time-series signal inside that window is 

used to calculate the functional connectivity metric. Then, the window is shifted 

time by time. This technique allows to quantify the variation in time of the chosen 

metric given a sufficient number of data points where to shift the window. 
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Methods 

2.1 From the Connectivity Matrix to Graph Theory 

As stated earlier, graph theory allows to describe mathematically the complex 

networks. A undirected (or directed) network G = (N,L) is defined as two sets N 

and L with N being any system different from the empty system,  while L is a set 

of unordered (or ordered)  pairs of elements of N. In this context, the elements of 

N are the nodes of the graph G, while the elements of L are the edges [65]. A node 

is defined by its order i in the set N. In an undirected graph, each edge is defined 

by a pair of nodes i and j, known as lij, where the order is not important. In a 

directed graph, the order of the two nodes is, conversely, fundamental, indeed, lij 

is the edge which goes from i to j, and lij is different from lji. In graph theory, the 

usual way to picture a network is by representing the nodes as dots and edges by 

links connecting pairs of dots. An example of a directed and an undirected graph 

is drawn in Fig.16.  

 

Figure 16 Undirected (a);  Directed (b) graphs with  7 nodes and 14 links. In the directed graph 

(b), adjacent nodes are connected by arrows, indicating the direction of each link [65]. 

An important notion related to graph theory is the reachability of two distinct 

nodes. In particular, a walk from node i to node j can be defined as a sequence of 

nodes and edges which begins with node i and node j, and the length of the walk is 

represented as the number of edges in the walk. In this context, it is important to 

define trails and paths, where the former ones are walks with no edge repeated, 

while the latter ones are walks where no node is touched more than once. 

Considering paths, the minimal length of a walk between two nodes is known as 
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the shortest path; moreover, a graph is denominated as connected if, for every 

combination of different nodes i and j, it does exist a path from i to j, differently, 

the graph is said to be disconnected [65]. 

Considering the background of graph theory, the fundamental point in the 

description of the network measures is the appropriate definition of the 

connectivity matrix, which is the cardinal representation of network connectivity 

[66]. Considering undirected graphs, the adjacency matrix is squared and 

symmetric N x N, where the dimension of the matrix corresponds to the number of 

nodes in the network: 

𝐴 =  [

𝑎11 … 𝑎1𝑛

⋮ ⋱ ⋮
𝑎𝑛1 … 𝑎𝑛𝑛

] 

 

The diagonal elements of the adjacency matrix (a11…ann) are defined as the 

connectivity strength of each node with itself. Nonetheless, in the context of the 

analysis of brain networks, the diagonal is usually neglected, imposing the 

diagonal to zero. On the other hand, the off-diagonal elements describe the 

connectivity strength between a pair of nodes, with values depending on the 

metrics used for connectivity estimation. These values can be used to describe the 

type (excitatory or inhibitory) and strength of connectivity between each pair of 

nodes [1].   

The off-diagonal elements can be divided into a lower triangle, defined by all 

values beneath the matrix diagonal, and an upper triangle, all elements above the 

diagonal. The upper and lower triangles refer to the earlier defined concept of 

directed and undirected networks. In particular, if the matrix is characterized by 

different values in the upper and lower triangles, the matrix is asymmetric and the 

graph is directed. Conversely, if the upper and lower triangle of the connectivity 

matrix are identical, the matrix is symmetric and the graph is undirected [1].  

Considering the aij values in the connectivity matrix, in binary, or unweighted, 

graphs, these assume only 0 and 1 considering the presence or absence of an edge 

connecting two nodes (Fig.17(b)). On the other hand, in weighted networks, the 

adjacency matrix values represent the strengths of the edge connecting two nodes 

wij, where an example of weighted networks is shown in Fig.17(a)(c). As previously 

stated in the Section related to the DTI limitations (1.3.4), the information about 

connectivity strength is sometimes discarded and the connectivity matrices 

binarized according to the number of detected streamlines being below (0) or 

above (1) a given threshold. Clearly, this process might lose important 
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information, but, on the contrary, will not consider weight changes due to errors 

intrinsic to the tractographic methods, thus providing more robust outcomes. 

 

 

Figure 17 Equivalence between graphs and matrices. (a) A weighted, directed graph is shown in 

the upper panel with connection strengths represented as variations in the edges’ thickness, the 

corresponding connectivity matrix is shown in the lower panel where the different colors of the aij 

elements describe the different weights. (b) A binarized, directed graph is shown in the upper panel 

with edges characterized by the same thickness due to the binarization, also the corresponding 

connectivity matrix in the lower panel is formed by either 1s or 0s indicating the presence or 

absence of a connection, respectively. (c) A weighted, undirected network is shown in the upper 

panel, where the absence of directionality is described by the lack of arrows, the corresponding 

connectivity matrix is symmetric such that aij = aji. (d) A binarized, undirected network is shown 

with its corresponding connectivity matrix [1]. 

 

2.1.1 Thresholding Methods and the Importance of Weak Connections 

 

The main limitation of computing binary networks by setting a threshold is that 

weak connections are missed, possibly losing important information coming from 

the investigation of the adjacency matrix. Indeed, the analysis of the connectivity 

matrix can provide comprehension about the structure of the connectome by 

putting the spotlight on which connections exist and where they are positioned. It 

is expected that the analysis of weighted connectomes instead of binary ones could 

solve the problem of the influence of weak connections. However, the same 

procedure of removing weak connections is applied also by the thresholding of 

weighted graphs, also known as “pruning” [67]. To use this technique, it is 
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important to select the appropriate method, such that, removing all the 

connections up to a given connection strength, by cutting out the connections up 

to a given density or deleting the connections according to the values of different 

graph metrics. However, without a standardization of the thresholding approach, 

the same study on the same data could produce different results due to 

divergences in thresholding methodologies.  

Recently, many studies investigated the potential usefulness of weak connections 

in recognizing different behaviors and conditions of different diseased or control 

subjects. Indeed, often, in studies, the exploration of human brain networks has 

focused on the strong connectivity patterns of the particular brain regions, while 

the role of weaker connections has not been widely considered. To analyze this 

topic in further depth, Santarnecchi and colleagues investigated the different 

connection weights to explain individual differences in Intelligent Quotients (IQs) 

[68]. In particular, it was concluded that, inspecting the functional connectivity 

networks of 98 individuals of different age, the differences in IQs were mostly 

explained by long-distance and weak connections, with only a limited 

contribution by strong brain connectivity. In another study by Bassett and 

colleagues, the complexity of the human’s brain is investigated in schizophrenic 

patients using a multi-level analysis of low frequency resting-state fMRI data [6]. It 

was found that weak connections could be used as clinical biomarkers correlated 

with attention, memory and schizophrenic symptoms, as shown in Fig.18. Before 

investigating the connectomes, it is usually performed some kind of processing 

and filtering of the connections, for example before binarization. A common 

procedure is to threshold the matrix to lower the presence of low-weight/spurious 

connections of the network, which, however, can generate some issues in the 

interpretation of the connectivity pathways due to the removal also of useful 

information. 

 

Figure 18 Diagnostics of healthy and schizophrenic patients thanks to the characterization of weak 

connections. In the study conducted by Bassett and colleagues [6], the connectivity matrices were 

computed according to the AAL atlas. The strength of the connections is represented in the 
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different ai,j elements of the functional connectivity matrix and it is scaled with colors such that the 

bluer the weight, the weaker is the connection. It is visible that the connection weights are 

significantly decreased in patients, indicating that the magnitude of functional connectivity was 

lower in the schizophrenic population.  

 

Absolute thresholding applies a single cut-off threshold, τ, to individuate which 

connections are to be set to zero, such that: 

𝑎𝑖𝑗 =  {
𝑎𝑖𝑗  𝑖𝑓 𝑎𝑖𝑗 > 𝜏

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

This operation aims at the cancellation of spurious connections due to noise. 

Nonetheless, it is difficult to determine which specific threshold should be used, 

so the proper choice of τ. This approach is also known as “absolute thresholding” 

[69]. Examples of the thresholding and binarization procedure performed over a 

functional connectivity matrix are exhibited in Fig.19 (a)(b)(c). 

 

(a)                                           (b)                                                (c) 

Figure 19 Thresholding and binarization of a functional connectivity  matrix. In all figures it is 

possible to notice the zeros on the main diagonal, while, in figure (a), being a fully connected 

network, every non-diagonal element is different from zero. However, some kind of thresholding of 

the connectivity matrix is necessary to remove spurious connections characterized by being noisy. 

In figure (b) it is shown the same matrix of figure (a) thresholded. In figure (c) the network is 

binarized [1]. 

This is an elementary and powerful approach to investigate networks but, 

however, characterized by some issues. Indeed, the selection of the absolute 

threshold changes the number of edges to be kept across datasets and also across 

populations giving problems in the analysis of the topological features, such as 

graph metrics.  

To overcome the above limitations, an approach named as “proportional or 

density-based thresholding” was proposed, which adapts the threshold of each 

subject to maintain an equal number of connections, thus equalizing the density of 

the considered datasets [69]. In the procedure of proportional thresholding, 

however, having the same number of connections (same density) across networks 
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means to include also low correlations  which increase the possibility of random 

and noisy fluctuations in the networks. 

 

2.1.2 Network Metrics 

 

In graph theory, it is possible to analyze and compare different networks towards 

the investigation of their topological features at different spatial levels. 

Local and Global topological properties: 

The node degree, ki, for the ith node, ni, is defined as the number of nodes 

connected to node, ni, and can be calculated from the binary adjacency matrix, 

such that [1]:  

𝑘𝑖 =  ∑ 𝑎𝑖𝑗

𝑁

𝑗=1

 

(18) 

If the graph is directed, the degree of the node is characterized by two 

components: the number of outgoing links 𝑘𝑖
𝑜𝑢𝑡 =  ∑ 𝑎𝑖𝑗𝑗  , also known as the out-

degree of the network, and the number of ingoing links 𝑘𝑖
𝑖𝑛 =  ∑ 𝑎𝑖𝑗𝑗  , also known 

as the in-degree of the network [66]. Thus, the total degree is defined as:  

𝑘𝑖 =  𝑘𝑖
𝑜𝑢𝑡 +  𝑘𝑖

𝑖𝑛 

(19) 

In weighted networks, the analogous parameter with respect to degree is the node 

connection strength, si, such that [1]:  

𝑠𝑖 =  ∑ 𝑤𝑖𝑗

𝑁

𝑗=1
 

(20) 

Often, strength values are normalized with respect to the number of weights, such 

that:  

𝑠𝑖
′ =  

1

𝑁 − 1
· ∑ 𝑤𝑖𝑗

𝑖≠𝑗

 

(21) 
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Moreover, the edge weights can be signed, such that a positive signed connection 

indicates an excitatory connection between nodes, while a negative one represents 

antagonism. Within this framework, it is possible to compute the positive strength, 

𝑠𝑖
+, and the negative strength, 𝑠𝑖

−, of the ith node, by summing the negative edge 

weights, 𝑤𝑖𝑗
−, and positive edge weights, 𝑤𝑖𝑗

+, such that:   

𝑠𝑖
+ =  ∑ 𝑤𝑖𝑗

+
𝑖≠𝑗  and 𝑠𝑖

− =  ∑ 𝑤𝑖𝑗
−

𝑖≠𝑗  

(22) 

These signed parameters can be also normalized by dividing the sum for N – 1. 

From this perspective, Rubinov and Sporns in their study [70] proposed a unified 

normalized strength measure which considers the signed and normalized 

parameters of the strength, such that:  

𝑠𝑖
∗ =  𝑠𝑖

′+ −  (
𝑠𝑖

−

𝑠𝑖
+ +  𝑠𝑖

−) · 𝑠𝑖
′− 

(23) 

This parameter makes sure that positively weighted edges make stronger 

contribution with respect to negative ones. Indeed, in clinical studies, it is common 

practice to emphasize the contribution of positive edge weights thinking them as 

hubs of brain networks which integrate different elements.  

Another measure of network connectivity is defined as the graph density,  

𝜌, and it describes the ratio of the number of edges in the graph and the possible 

maximum number of edges. In particular, this parameter is used to detect 

potential changes in the networks which can be related to thresholding, for 

example. The total number of possible connections is defined as 𝑁 · (𝑁 − 1)/2, 

where 𝑁 is the number of nodes in the network and 𝑁 · (𝑁 − 1) is the number of 

off-diagonal elements in the connectivity matrix. Thus, the connection density is 

calculated as [65]: 

𝜌 =
𝑘𝑖

𝑁 · (𝑁 − 1)
  

(24) 

Being a ratio, the density varies between zero and one, where 𝜌 = 0 corresponds to 

the absence of connections, while 𝜌 = 1 indicates that the graph is fully connected. 

A further network metric to be described is the path length; indeed, shortest paths 

are fundamental in representing carrying and communication of information.  In 

graphs, a geodesic path length, dij, is the smallest number of edges required to 

connect node i to node j. The maximum value of dij is the diameter of the network. 

The parameter which is usually used to define the separation between two nodes 
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is called the average shortest path length, known as characteristic path length, defined 

as the mean path length over all pairs of nodes. The equation of this metric can be 

written as [65]:  

𝐿 =  
1

𝑁 · (𝑁 − 1)
· ∑ 𝑑𝑖𝑗

𝑖,𝑗∈𝑁,   𝑖≠𝑗

 

(25) 

However, this representation of L is characterized by the fact that it diverges if 

there are disconnections in the graphs, indeed, if two nodes are not connected, the 

path length is supposed to be infinite. To solve this issue, it is possible to either 

limit the sum in the formula only to pairs of connections belonging to connected 

components, or to consider the mean of geodesic paths, defining the efficiency E, 

such that [65]:  

𝐸 =  
1

𝑁 · (𝑁 − 1)
· ∑

1

𝑑𝑖𝑗
𝑖,𝑗∈𝑁,   𝑖≠𝑗

 

(26) 

Indeed, with this quantity, the problem of the divergence is solved due to the fact 

that any pair of nodes belonging to disconnected components produces a 

contribution equal to zero to the sum. It is also possible to define the path length 

for weighted networks, 𝑑𝑖𝑗
𝑤 , thanks to a Dijkstra’s algorithm [71]. This is an 

iterative algorithm which provides the shortest path from one particular starting 

node to all other nodes in the network. For example, applying this concept to a 

real case, representing the nodes of the graph as cities, and edge paths as driving 

distances between pairs of cities connected by a direct road, the algorithm is used 

to identify the shortest path between one city and all the others. In the context of 

paths, the process of determining the low-cost paths starting at node ni starts with 

connected nodes, and is repeated for path lengths, with the increasing of the 

number of iterations until all the (N-1) low-cost paths are obtained. This allows to 

determine the mean geodesic weighted-path length for node i, such that:  

𝑑𝑖
′𝑤 =  

∑ 𝑑𝑖𝑗
𝑤𝑁

𝑗=1,   𝑖≠𝑗

𝑁 − 1
 

(27) 

Furthermore, another important graph metric is the clustering coefficient. To define 

it, however, it is first necessary to describe network motifs. In particular, a motif 

can be defined as a subgraph with a peculiar configuration, the purpose of motifs 

investigation is to represent which of these recur in a network with a specific 

repetition. Considering for example a triplet of nodes, in an undirected graph, 
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these can be connected in only two possible ways, indeed, they form either an 

open or a closed triangle. In a directed network, instead, there are 13 potential 

ways of connecting these nodes [65]. In particular, all the potential patterns of 

connections are shown in Fig.20, such that each of the outlines represent a possible 

motif of the networks. 

 

Figure 20 All the possible 13 motifs formed by three nodes’ subgraphs [65]. 

Conventionally, a motif is represented as a node-connected subgraph formed by 

M nodes connected by at least M-1 edges; for every motif there is a particular 

number of possible wiring compositions, known as classes. In this context, 

clustering, ci, is a measure of the presence of motifs of triangular connections for 

the node, ni. The computation of the clustering coefficient, ci, of node i in a binary, 

undirected network is done by counting the number of edges in the graphs, which 

correspond to the i’s neighbors connected to each other. Mathematically, this is 

expressed as the probability of having ajm = 1, between two nodes j and m. This 

value is then normalized between zero and one by the total numbers of i’s 

neighbors, defined as 𝑘𝑖 · (𝑘𝑖 − 1)/2. Thus, the equation can be written as [65]:  

𝑐𝑖 =  
∑ 𝑎𝑖𝑗 · 𝑎𝑗𝑚 · 𝑎𝑚𝑖𝑗,𝑚

𝑘𝑖 · (𝑘𝑖 − 1)
 

(28) 

Considering now graphs, the binary clustering coefficient of the network, C, is 

obtained by averaging the ci of all the nodes, such that: 

𝐶 =  
1

𝑁
· ∑ 𝑐𝑖

𝑖 ∈ 𝑁

 

(29) 

Where the division by the total number of nodes N is done to have the value 

comprised between zero and one. In the context of brain networks, a value of the 

clustering coefficient near one indicates efficient communication and complex task 
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processing. In light of weighted graphs, Onnela and colleagues in their study [72] 

introduced the weighted clustering coefficient, ci,O, which changes the sum of 

binary triangular elements with the scaled edge weights, thus, normalized by the 

maximum edge weight in the network. The equation which allows to calculate this 

parameter can be expressed as:  

𝑐𝑖,𝑂 =  
1

𝑘𝑖 · (𝑘𝑖 − 1)
· ∑ [𝑤′

𝑖𝑗 · 𝑤′
𝑗𝑚 · 𝑤′

𝑖𝑚]
1
3

𝑁

𝑗,𝑚=1
 

(30) 

where, 

𝑤′
𝑖𝑗 =  

𝑤𝑖𝑗

max (𝑤𝑖𝑗)
 

(31) 

As can be seen by the equations, 𝑤′
𝑖𝑗 , or 𝑤𝑖𝑗 , tends to one in the triangles, the 

weighted clustering coefficient tends to the binary clustering coefficient, making 

sure that the network is converted from weighted to binary it will produce the 

same results.  

 

Network Configurations and  Small-Worldness property 

Graphs can have different configurations and at the changing of the local and 

global topological properties defined earlier in this Section, it is possible to 

characterize networks with distinct models. 

The small-world feature of graphs, as an example, was observed in different 

realistic networks, in particular technological ones. Indeed, its idea was observed 

from social networks which are characterized by clustering since there is a great 

possibility that two friends of a single person are also friends with themselves [1]. 

Moreover, from the work of the psychologists Travers and Milgram [73], it was 

shown that messages in social networks travel long distances in a few number of 

steps, so, according to graph theory, characterized by a relatively low average 

path length. In this context, Watts and Strogatz in their seminal work in 1998 [74] 

have defined a new class of networks characterized by being neither random nor 

regular, exhibited in Fig.21 in the middle, indeed featured with low path length, 

which a sign of randomness, shown in Fig.21 on the right, and high clustering 

coefficient, which is a feature of regularity, shown in Fig.21 on the left.  
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Figure 21 Regular, Small-World and Random Networks. In the work of Watts and Stogatz in 

1998 [74], it was shown that in between completely random and regular networks, there is a class 

of networks. small-world, which can be generated by randomly rewiring an arbitrary proportion of 

edges in a regular network [1]. 

From a mathematical point of view, it is necessary to be more precise in the 

quantification of the small-worldness of a network than by simply defining a 

network with “low” average path length and “high” clustering coefficient. In 

particular, it is critical to quantify when the clustering coefficient can be 

considered as high and when path length can be thought as low. Humphries and 

Gurney, in their work, introduced the small-worldness parameter which considers 

the path length and clustering coefficient obtained from random networks with 

the same dimension with respect to the network under analysis, and define the 

ratio between the considered and the random measures, such that it is possible to 

compute the normalized clustering coefficient and normalized path length as [1]:  

𝛾 =  
𝑐𝑔

𝑐𝑁
  and  𝜆 =  

𝑙𝑔

𝑙𝑁
 

(32) 

where cg and cN are the average clustering coefficient of the network of interest and 

the one computed on an ensemble of random ones, respectively The same applies 

to lg and lN. At this point the small-worldness is obtained by [75]:  

𝜎 =  
𝛾

𝜆
 

(33) 

In a network characterized by small-world properties, it is expected that γ ~ 1 and 

λ > 1, thus describing a network with a comparable average path length and a 

greater clustering than random, respectively. In this context, the scalar σ is greater 

than one, becoming an indicator of this feature.  

In clinical research, the small-worldness index is used to distinguish between 

different disorders of brain networks linked with either a more random 
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organization or a more organized topology. In particular, disorders in which σ is 

decreased are associated with randomization of networks, instead, diseases in 

which the index is increased are characterized by regularity. However, it is 

necessary to be cautious about drawing conclusions related to brain organization 

from this kind of parameter. Indeed, being a global measure, it can hide different 

variations occurring at the individual nodes level. For this reason, the examination 

on global measures needs to be integrated by an analysis of properties at a lower 

level to recognize different properties of the brain network under investigation. 

Intermediate scale analysis of networks 

Analyzing networks at a scale intermediate between local node analysis and the 

whole graph, the nodes can aggregate into subgroups which are defined as 

modules. In these, a strong connectivity is observed with respect to the other parts 

of the network. Furthermore, these modules are organized in a hierarchical way, 

thus, containing modules within modules at different levels of resolution [1]. 

Usually, networks characterized by modularity are defined by small-world 

properties, thus, as stated in the previous paragraph, high clustering coefficient 

and low path length. To further analyze network properties, it can be seen that 

nodes within a module, characterized by strong connectivity, share the same 

properties. On the other hand, weak connections are a sign of nodes which belong 

to different modules. This division of nodes into modules, characterized by strong 

connectivity within and weak connectivity between them, is a class of 

complications related to data clustering. The main focus, in particular, is to recede 

a large set of observations into a smaller subset of clusters, by detecting hubs 

characterized by the same features. Within this framework, the solution to this 

kind of problems can be divided into two main categories: agglomerative and 

divisive. The former starts from individual nodes and agglomerate these into 

larger clusters; the latter begins with all nodes related to a single cluster and 

divide it into subsets of observations. Nonetheless, there is no way in determining 

which clustering solution is better than the other, thus, the quality of the 

hierarchical partitioning. In this context, Newman and Girvan in their work [76]. 

defined two possible criteria for accurate division. Firstly, a partition agglomerates 

nodes into cohesive modules, such that nodes belonging to the same module will 

be characterized by high connectivity. Secondly, the connectivity within the same 

module will be defined by a higher connectivity with respect to networks in which 

the edges are placed at random. To describe these criteria from a mathematical 

point of view, it is possible to define a parameter of partition quality, also known 

as the modularity index. At first, it is necessary to count the number of edges 

between nodes belonging to the same module. In particular, for a binary, 

undirected network, the modularity index is given by [1]:  
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𝑀 =  
1

2
· ∑ 𝑎𝑖𝑗 · 𝛿(𝑚𝑖, 𝑚𝑗)

𝑖𝑗

 

(34) 

where 𝛿(𝑚𝑖, 𝑚𝑗) is termed the indicator which has the property of being equal to 

one if nodes i and j are associated with the same module and zero otherwise. The 

indicator makes sure that only edges between nodes within the same module are 

counted.  

Moreover, it is also possible to analyze the mesoscale connectivity of networks 

with other organizations, such as the rich-club structures, where the graph is 

characterized by highly connected and dense nodes; thus, a structure defined by 

ranking the nodes in descending order of degree. Another example is provided by 

core-periphery organization, where the core nodes, defined as a critical 

information processing subgraph, occupy a central position in the graph and are 

highly interconnected with each other, while the peripheral nodes are moderately 

connected to the core ones and sparsely connected with each other [1]. 

To conclude this part, a summary table of the proposed graph metrics is proposed 

in Table.1. 

 

Index Mathematical Expression Definition 

Degree 
𝑘 =

1

𝑁
 ∑ 𝑎𝑖𝑗

𝑁

𝑗=1

 

 

Average of all degrees 

(number of connections 

that link one node to the 

rest of the network) 

Strength 
𝑠 =

1

𝑁
 ∑ 𝑤𝑖𝑗

𝑁

𝑗=1
 

 

Analog parameter of the 

node degree in weighted 

networks 

Density 
𝜌 =

𝑘𝑖

𝑁 · (𝑁 − 1)
 

Measure of sparsity of 

the matrix; it is the 

number of actual 

connections with respect 

to the maximum number 

of connections 

Characteristic 

Path Length 
𝐿 =  

1

𝑁 · (𝑁 − 1)
· ∑ 𝑑𝑖𝑗

𝑖,𝑗∈𝑁,   𝑖≠𝑗

 Measure of integration, 

expressing the average 

shortest path between 

nodes pair. dij is the 

distance computed 

according to the 

connection weights 



74 

| 2.1 From the Connectivity Matrix to 

Graph Theory 

 

 

Global 

Efficiency 
𝐸 =  

1

𝑁 · (𝑁 − 1)
· ∑

1

𝑑𝑖𝑗
𝑖,𝑗∈𝑁,   𝑖≠𝑗

 

 

Measure of high 

efficiently the 

information travel 

through the whole 

network. It is the 

average inverse of the 

characteristic path 

length 

Global 

Clustering 

Coefficient 

𝐶 = 
1

𝑁
· ∑

∑ 𝑎𝑖𝑗 · 𝑎𝑗𝑚 · 𝑎𝑚𝑖𝑗,𝑚

𝑘𝑖 · (𝑘𝑖 − 1)
𝑖 ∈ 𝑁

 

 

Counts the number of 

edges in the graphs, 

which correspond to the 

i’s neighbors connected 

to each other to form a 

triangle 

Weighted 

Clustering 

Coefficient 

 

𝑐𝑖,𝑂 =  
1

𝑘𝑖 · (𝑘𝑖 − 1)
· ∑ [𝑤′

𝑖𝑗 · 𝑤′
𝑗𝑚 · 𝑤′

𝑖𝑚]
1
3

𝑁

𝑗,𝑚=1
 

 

Generalization of 

clustering coefficient in 

weighted case, where 

the number of triangles 

is replaced with the 

geometric mean of its 

weights 

Small-

Worldness 
𝜎 =  

𝛾

𝜆
 

 

Ratio between 

normalized clustering 

coefficient and 

normalized path length 

Modularity 
𝑀 =  

1

2
· ∑ 𝑎𝑖𝑗 · 𝛿(𝑚𝑖 , 𝑚𝑗)

𝑖𝑗

 
Quantifies to what 

extent the intra-/inter-

community link 

densities are anomalous 

in comparison to chance. 

Table 1 Graph metrics with mathematical expressions and definitions 
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2.2 Connectograms for graph and sub-graph representation and analysis 

As illustrated in Chapter.1, brain connectomics allows to map the human brain 

with respect to its neural units and their connections formed by white matter 

pathways, which represent an investigation from the structural connectivity (SC) 

point of view, or conversely analyze the degree functional connectivity (FC) 

detected in resting state fMRI experiments. Importantly, the network nodes are 

fixed once an atlas has been chosen for the parcellation of the brain cortex. 

In this context, on one hand the adjacency matrices are a powerful tool to 

represent brain networks, on the other hand, it is difficult to visualize the 

connectivity patterns, which often hide important pieces of information, due to the 

large size of these matrices. It is, thus, fundamental to derive methods to interpret 

visually the connectivity patterns, in particular for explorative investigations of 

case studies or for the interpretation of the differences in a second level analysis 

between groups, discriminating healthy and pathological individuals.  

In order to bridge the gap between quantitative analyses and intuitive graphical 

representation of brain networks of the results, connectograms were proposed. 

Indeed, they are circular graphs in which the different nodes of the networks are 

written along the perimeter of the circle according to the particular atlas chosen to 

investigate the network, while edges are represented as arcs connecting the nodes 

[4]. Connectograms are widely produced using Circos (http://circos.ca/software/) 

[77] which is a software designed for creating illustrations about different kinds of 

data in a very flexible way.  

However, the addressed SC and FC networks, with more than 100 nodes, may 

show thousands of links, thus producing a representation which is difficult to 

interpret due to the large density of the links, as can be seen for example in Fig.22. 

Within this framework, it is important to extract sub-networks in the investigation 

of brain connectivity patterns which produces the possibility of having an easier 

analysis of data and also to inspect particular connections between nodes 

belonging to specific brain regions.  

Beyond visualization and qualitative purposes, it is also necessary to 

quantitatively investigate the features of brain networks in terms of connectivity 

measures, such as node degree, small-worldness, modularity and clustering 

coefficient, defined in Section 2.1 of this work. 
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Figure 22 Example of a connectogram extracted with the software Circos [77]. 

Thus, the investigation of the architecture of brain networks in parallel with the 

calculation of these indices allows to both qualitatively and quantitatively analyze 

different brain diseases and conditions. However, gold standards with respect to 

standardized procedures for the network construction, the values of the 

connectivity measures and the topology of networks are still missing in literature 

and represent an open issue. Hence, further accessible tools for assessing the 

topology and the architecture of networks are necessary to be. In this context, 

generating Spider-Net connectograms could be a good general strategy to test the 

robustness of the processing pipeline, including the connectivity metrics 

formation, further conditioning (e.g., thresholding or binarization), and global or 

local graph indices [4].  

Spider-Net (SNT) is a software developed as a collaborative project between 

Politecnico di Milano, Milano (IT) and CADiTeR, MRI Laboratory of Fondazione 

Don Carlo Gnocchi, Milano (IT). The idea for software development started with 

the motive of improving visualization of the brain connectivity and extend current 

functionalities provided by Circos. This software provides superior visualization 

properties by allowing the user to select regions of interest in brain and 

subsequently extract the corresponding subgraph. This is achieved thanks to a 

flexible and user-friendly Graphical User Interface (GUI) which allows a fast 

network exploration and the possibility of the creation of subgraph based on user 

selections (Fig.23).  
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Figure 23 Graphical User Interface (GUI) of Spider-Net. 

The software, furthermore, allows to automatically threshold, compute graph 

metrics and define the characteristics of the output connectogram. The interface of 

Spider-Net requires 3 input files: an Atlas file, a Label file and a Connectivity 

Matrix file. Before uploading these, it is necessary to choose if the investigation 

will be performed on a structural or a functional connectivity matrix in SNT 

Homepage (Fig.24). 

 

Figure 24 Homepage Spider-Net. 

The first file is an XSL/XSLX Excel file which describes the atlas used to describe 

the connections between nodes. The list of the Atlas parcels is shown in a column 

of this Excel file, which are then represented as nodes in the connectogram 

generated by Spider-Net, with their sorting in the .xsl file determining the position 

of the parcels in the connectogram. For example, the first parcel is represented on 

the top of the circle. In the Excel file, it is also possible to group parcels with 

respect to, for example, brain lobes or resting state networks. There is also shown a 

column called “Attribute” which comprises optional attributes related with each 
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parcel, such as functional characteristics of each node. These two features allow to 

select entire groups of parcels (Group-Parcellation or Sub-Parcellation shown in 

Fig.25). In this context, it also possible to customize or create new atlases according 

to the aim of the investigations by creating or modifying .xsl files.  

 

Figure 25 Selection of Group-Parcellations and Sub-Parcellations with their definition on the 

right. 

The second file needed as input to create connectograms is the Label file, which 

can be either a .xsl file or a .txt file. It is simply a list of the parcels name where the 

sorting of them needs to be the same as the order of rows and columns in the 

Connectivity Matrix and their name needs to match the ones in the first column of 

the Atlas file.  

Eventually, the Connectivity matrix file is a .txt file representing the connectivity 

weights in the different rows and columns. It needs to be square and symmetric 

with the diagonal weights conventionally set to zero. Once the inputs have been 

uploaded, the selection of either single parcels, groups of parcels or different 

attributes is available in the Graphical User Interface, exhibited in Fig.23.  

Two of the main outputs of Spider-Net are: the computation of graph topological 

properties and visualization of connectivity.  

 

2.2.1 Computation of topological properties 

 

The calculation of graph properties is performed according to the implementation 

of the graph-based indexes in the software of the Brain Connectivity Toolbox 

(BCT) and the main ones are:  
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1.  Density; 

2.  Average node degree; 

3.  Average node strength; 

4.  Unweighted Clustering Coefficient; 

5.  Weighted Clustering Coefficient; 

6.  Path Length; 

7.  Global Efficiency; 

8.  Modularity; 

The computed parameters (if requested) are obtained at each plot of the 

connectogram, comparing the original unmanipulated connectivity matrix and the 

selected subset of nodes with its particular characteristics. Thus, beyond the plot 

of the connectogram, the output provided by Spider-Net is represented also by 

local graph metrics, depicted by scatter plots, where on the x-axis there are the 

names of the parcels written according to the particular atlas, while the y-axis 

shows the values of the metrics. Under these plots, there are also written the 

values of the global indexes (Fig.26 a-b). All these results are saved in the output 

folder after the software terminates its particular task. 

(a)

(b) 
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Figure 26 First Outputs of Spider-Net analysis. In figure (a)  the initial structural 

connectivity matrix with the heat-map describing the values of the weights, the scatterplots 

of the main graph metrics concerning the columns of the adjacency matrix and the values 

of the global indices are shown on the bottom right. In figure (b) the same indications 

obtained from  a sub-network of the initial connectivity matrix are shown. Indeed, the 

selected structural connectivity matrix characterized by a smaller size with respect to the 

main one and the unselected nodes highlighted in gray are shown. 

 

2.2.2 Connectograms Extractions 

 

Considering the visualization of the connectogram, two possibilities are offered to 

the user by the software, namely the modalities called: “Explore from current 

selected subset” and “Extract a subgraph”. In the first modality, the user is 

allowed to select one parcel or sub-parcel of the brain and the software draws in 

the connectogram the edges from this source to the selected targets, if selected, 

otherwise all links between the starting parcel and all parcels are shown (Fig.27). 

This option is useful for the investigation of possible alterations due to brain 

lesions or to control the presence of potential errors in the connectivity matrix 

generation. For example, in the context of structural connectivity studies, the 

explorative mode can be used to check for the presence of connections which 

should exist by general anatomical knowledge regarding the presence of 

connections between a seed node and all the others. 

 

Figure 27 Example of use of the “Explore Mode” selecting the Left Parietal Lobe as seed. 
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The visualization of the connectogram allows also to extract a subgraph of all 

common links within the selected parcels or sub-parcels (Fig.28). The extraction 

mode is particularly valid considering the inspection of specific brain circuits or an 

analysis of single well-known connections by literature, to have a quality control 

of the acquisition/preprocessing phases [4].  

 

Figure 28 Example of “Extraction of  a Subgraph” mode. In particular, the subnetwork is formed 

by the Left Insular, Left Temporal and Left Occipital lobes. 

 

2.2.3 Other settings 

 

In the end, the figure and all related files are automatically saved in a folder 

created at each execution of the software. Nonetheless, interactive changes to the 

output connectogram are possible within the software GUI. For example, single 

nodes can be hidden/shown with respect to the selected labels.  

In the context of the modification of the connectograms, the software provides the 

chance to perform density-based thresholding in the main software interface, such 

that, firstly, the goal density is selected and then the connectivity matrix which 

approximates at best the density chosen by the user is extracted by removing the 

weak connections. (Fig.29(a)). It is also possible to display the value of weights of 

the connectivity matrix in the connectogram, such that the links connecting nodes 

are colored according to the value of the weight in the connectivity matrix (Fig. 29 
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(b)). The possible colors are yellow, orange, red and blue, corresponding 

respectively to weak, middle, strong and negative connections. Eventually, in 

every modality (Explore or Extract of a Subgraph), it is also possible to select to 

keep or not the connections within the same parcel in order to highlight the 

presence or absence of connections between different regions or to investigate the 

connections within the same parcel (Fig. 29 c-d). 

 

(a)          (b) 

 

 (c)         (d) 

Figure 29 Different kinds of connectograms extractable from Spider-Net. In figure (a)  the 

connectogram referred to the explorative mode with the Right Insular lobe with 10% thresholding 

to keep the strongest connections is shown. In figure (b) the connectogram related to the “Show 

Weights” mode in the explorative modality with respect to the Right Temporal lobe with the colors 

of links representing the strength of the connection is shown. In figures (c) and (d)  two 

connectograms in the extraction of a subgraph modality from Left Frontal to Right Insular lobes 

are shown. In figure (c) the intra-parcel connections are not shown, whereas in figure (d) the intra-

lobe connections are shown.  
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2.3 Bootstrapping 

The investigation of changes in structural and functional connectivity is a 

powerful tool to analyze brain organization, mostly from a statistical point of 

view, with respect to a group of subjects characterized by the same condition. At 

the individual level, statistical tests have the uncertainties related to the 

acquisition of MRI images. In particular, the main issues for structural data are 

related to the assumption of a Gaussian distribution, which is questionable 

together with the other limitations explained before in Section 1.3.4 [78]. To solve 

these problems, different probabilistic tractography algorithms were developed to 

estimate the pathways variability by distinct probability density functions which 

describe the direction of the fibers, such as the one provided by the study of Lazar 

and colleagues in 2003 [79] or the one developed by Parker in 2005 [80]. However, 

these algorithms may be ineffective when the variance of the model does not 

describe the variance in the data since the initial dataset size is too small for 

estimating, in the proper way, the statistical properties of the considered 

distribution. Also considering functional connectivity data investigations, several 

limitations affect these data as stated before in Section 1.3.7, such as the 

assumption of stationarity of the data. 

In this context, the bootstrap method allows to estimate the statistical features of a 

population from a limited number of measurement samples, without any 

assumptions about the distribution assumed by the initial data [81]. Indeed, 

bootstrap is based on randomly sampling the initial data, thus that statistical 

features can be investigated in the resampled data. This approach represents an 

alternative to traditional hypothesis testing, since it does not require to have a test 

statistic satisfying certain assumptions largely dependent on the experimental 

design and to know the properties of the data. Conversely, it is possible to 

compute a bootstrap test statistic from bootstrap samples, simply observing the 

sampling distribution. The central assumption is that the original sample 

accurately represents the actual population. As a result, the main advantage of the 

method is that the uncertainty variability of the estimator can be quantified, 

characterizing the dispersion and other errors in the null hypothesis [82], [81], [83]. 

In the context of investigating network data, the quantification of the uncertainties 

intrinsic to the data is essential for their scientific usefulness. In the study 

provided by Green and colleagues, [84], the bootstrap was applied on random 

graphs. It was seen that the resampling of the data was able to approximate the 

distributions of motif densities, such as, the number of times fixed subgraph 

appear in the network, remembering the definition of motif in Section 2.1.1 [84]. In 

this work, the bootstrap was applied with the same purposes, such as to quantify 
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the uncertainties about network metrics through the resampling of the initial data. 

Another example is given by the study provided by Gel and colleagues, where 

Bootstrap was applied for the quantification of estimation uncertainties in graph 

degree distributions [83]. 

Indeed, when applying the bootstrap over a distribution of data characterized by a 

certain variability and certain size, the expected result are about a better definition 

of the variability of the distributions centered with respect to the initial mean of 

the same distribution at the increasing of the number of iterations used to create 

resampled data [85], [86]. Considering the number of bootstrap samples used, the 

resulting statistics represent a random sample with replacements from the initial 

distribution characterize by a smaller size. It is worth remarking to consider that 

obtaining thousands of bootstrap observations from the initial data is not the same 

as collecting new data. Indeed, the approach is based on an ensemble of simulated 

data (known as “surrogates”) and  the usefulness of bootstrapping is related to the 

quantification of statistical quantities such as the standard error, a possible bias 

and confidence intervals of a particular sample of data. 

Considering a real application of the bootstrapping in the context of brain 

connectivity analysis, in the study provided by Wei and colleagues [87] resting 

state functional connectivity records were investigated. In particular, in the clinical 

practice, the correlation analysis of functional connectivity data is performed to 

obtain feature selections. Nonetheless, due to the limitations of the fMRI 

techniques, explained in Section 1.3.7, the correlation analysis can predict 

uncertain features. To reduce this uncertainty, the study proposed a bootstrap 

approach applied to the functional connectivity data to create surrogate graphs. 

The bootstrap used to create surrogate graphs allowed to reduce the uncertainty in 

the feature selection scheme applied to four different prediction models to forecast 

cognitive skills. However, a limitations of this approach is related to 

computational costs since the bootstrapping methods are based on multiple 

resampling of the original dataset, creating surrogate graphs, thus it can be 

computationally expensive, especially for large datasets [87].   

Considering the validity and the reliability of the method in different contexts and 

applications, bootstrapping was proposed and adapted for the evaluation of the 

uncertainty in the brain connectivity of different populations (see Section 3.3.1). 
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2.4 Sensitivity Analysis 

 

A mathematical model study can be associated with different sources of 

uncertainty. The sensitivity analysis investigates the influence of these 

uncertainties by identifying, quantifying, and analyzing the responses of output 

variables of the model, impacted by the uncertainties of the input variable [88]. In 

general, a sensitivity analysis in an observational study assesses the robustness of 

significant findings to unmeasured confounding. A common procedure used for 

the analysis of uncertainty of data is through the introduction of perturbation in 

the data to understand how it changes the results. In particular, this method has 

been employed in different types of graphs, such as in the study provided by 

Ouyang and colleagues [89] whose purpose was to investigate the importance of 

edges in real-world networks. Indeed, their importance was quantified  by 

removing some edges and quantifying how this removal affected the connectivity 

data, thus perturbing the initial data and drawing conclusions on the thus 

obtained data. In particular, an importance measure was proposed, named 

nearest-neighbor connectivity-based edge importance, and used to quantify the 

importance of a single edge or a set of edges after their removal from the network 

[89]. Another study involving the graph perturbation was developed by Wang 

and colleagues [90], who investigate the robustness of binary graphs describing 

artificial neural network classifiers after the simulation of the loss of edges from 

the network. This removal is indeed thought to lessen the capability of the 

network to predict and classify, thus, justifying the analysis of how varies the 

robustness of data after the erasing of some edges [90]. Another study provided by 

Mishkovski and colleagues [91] examined the vulnerability of networks after a 

certain number of nodes had been removed from the network. The study 

proposed a vulnerability index to analyze the robustness of synthetic and real-

world networks, finalizing that the Watts-Strogatz model of small-world network 

[74] is the most robust one after the removal of different nodes [91]. A similar 

approach to these studies was implemented in this work such that some 

connections, causing the great variability in the distributions and  thought to be 

the ones causing uncertainties in the data, were removed and the influence on 

different network metrics was investigated (see more detail in Section 3.3.3). 
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Protocol 

This chapter of the thesis focuses on the tools and the technologies used in the 

present work, beyond that, the specification of the datasets considered.  

In particular, a novel software called Spider-Net used for visualizing and studying 

the brain connectivity is introduced. First, Spider-Net was tested on a functional 

connectivity dataset and on a structural connectivity dataset acquired with both 

DTI and HARDI techniques. Both functional and structural datasets were 

composed of only healthy controls. This software was employed for the 

visualization and the study of whole-brain and regional connectivity through the 

construction of “connectograms”. Afterwards, a second-level analysis on a 

functional connectivity dataset of patients with schizophrenia and healthy controls 

was performed. All protocols for data acquisition, the processing techniques 

employed and the experimentation performed are described. Specifically, the 

study of uncertainty through sensitivity analysis and the Bootstrapping methods 

conceived for the comparison of the two groups are reported. 

All calculations of graph metrics and plots formation in the present work were 

carried out in MATLAB ver. R2019a [92]. Calculation of networks metric is based 

on Brain Connectivity Toolbox (BCT) which is a feature available in Matlab which 

allows to calculate the graph metrics in both the binary and weighted cases 

(http://www.brainconnectivity-toolbox.net). 

3.1 Study Populations and Data Acquisitions 

The investigations of this work were done on 3 different datasets, a functional 

connectivity dataset and a structural connectivity dataset formed by healthy 

controls, and a functional connectivity dataset of schizophrenic and control 

subjects. The considered datasets are derived from ethically approved protocols, 

informed consent and anonymization included. 

 

 

http://www.brainconnectivity-toolbox.net/
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3.1.1 Healthy Functional Connectivity Dataset 

 

The first dataset used was acquired from resting state  fMRI scans in a group of 10 

healthy subjects, 5 males and 5 females, with age between 30 and 43 years (mean 

age + SD = 36 ± 6.32). The images acquisition was performed with a 1.5T Siemens 

MRI scanner in IRCCS Fondazione Don Gnocchi in Milan. Data were acquired 

from 5 minutes resting-state and consist in BOLD EPI images characterized by a 

TR equal to 2500 milliseconds, TE equal to 20 milliseconds and resolution equal to 

3.125 x 3.125 x 2.5 mm3. Images were then processed within the FMRIB (FSL) 

software library. Afterwards, to construct the connectivity matrices, AAL atlas [19]  

was used to divide the brain in 90 parcels which were considered as nodes in the 

network. The mean time courses were extracted from each ROI and time-point (for 

each 3D volume). Finally, a 90x90 correlation matrix of Pearson’s correlation 

coefficients between all possible connections of node pairs was computed. 

 

3.1.2 Healthy Structural Connectivity Dataset 

 

The dataset consists of 17 healthy control (HCs) subjects (7 males and 10 females; 

mean age ± SD: 52.5 ± 8.3 years). 

All the participants data were acquired with a 1.5 T MRI scanner. In particular, the 

acquisition protocol included first a high-resolution 3D T1-weighted 

Magnetization Prepared Rapid Gradient-Echo (MPRAGE) image, (repetition time 

(TR)/echo time (TE) = 1,900/3.37 ms, Field of View (FoV) = 192 × 256 mm2, 

resolution = 1 × 1 × 1 mm3, 176 axial slices); then, a diffusion-weighted echo planar 

images (EPI) image along 64 directions (b- value 1,500 s/mm2, TR/TE 7,800/109 ms, 

matrix size = 102 × 102 × 46, resolution = 2.5 × 2.5 × 2.5 mm3) and 3 b0 images. 

Eventually, a dual-echo turbo spin echo proton density PD/T2-weighted image 

(TR = 4,540 ms, TE = 28/112 ms, matrix size = 320 × 320 × 60, resolution = 0.75 × 0.75 

× 2 mm3) [4]. 

Afterwards, the obtained volumes were divided in parcels, and labeled into 75 

cortical parcels for each hemisphere (150 in total) according to the Destrieux atlas 

[15]. Moreover, some more segmentations were added according to the study 

provided by Fischl and colleagues [93] who labelled also the left and right 

thalamus, caudate, putamen, pallidum, nucleus accumbens, amygdala and 

hippocampus for a total of 165 parcels. Diffusion-weighted images were 

preprocessed using the FMRIB’s Software Library (FSL) to correct geometric 
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| 3.1 Study Populations and Data 

Acquisitions 

 

 

artifacts, head movements and eddy current distortion, according to the protocol 

defined in the study provided by Pellizzari and colleagues [94]. Then, the 

diffusion tensor was estimated for each voxel using the FSL DTIFIT toolbox [95], 

[96], [97].  

In addition, diffusion weighted data were processed to estimate the fiber 

orientation according to the HARDI spherical deconvolution processing [98]. The 

cortical and subcortical parcels, obtained from the 3D T1-weighted images, were 

registered to the respective diffusion-weighted space using the FSL flirt toolbox 

[99]. Successively, for each subject, WM tracts connecting each pair of parcels were 

reconstructed with TrackVis software. 

 

3.1.3 Functional Connectivity Dataset of Schizophrenic and Healthy Subjects 

 

Fifteen healthy volunteers (mean age 33.3 years, SD = 9.2 years, 14 male) and 12 

people with chronic schizophrenia (mean age 32.8 years, SD = 9.2 years, 10 male) 

diagnosed according to standard operational criteria in the Diagnostic and 

Statistical Manual of Mental Disorders IV (American Psychiatric Association, 2000) 

[5]. Acquisition A 1.5 Tesla GE Signa scanner (General Electric, Milwaukee, WI) 

located at the BUPA Lea Hospital, Cambridge, UK, was used to acquire T2*-

weighted echo-planar images depicting blood oxygenation level-dependent 

contrast as participants laid quietly in the scanner with eyes closed. Imaging 

parameters were as follow: repetition time: 2 s, echo time: 40 ms, flip angle: 70 

degrees, voxel size: 3.05×3.05×7 mm, slice gap: 0.7 mm, flip angle: 70 degrees, 

number of volumes: 512. Each subject's functional volumes were realigned using a 

rigid-body transformation to correct for geometric displacements associated with 

head movements and rotations [100]. Temporal motion correction was then 

performed by regressing the current and lagged first and second order 

displacements against the time series of the realigned images.  Nodes were 

labelled according to the AAL segmentation in parcels. In addition, all nodes 

comprising the cerebellum were excluded as well as any nodes for which the 

node-averaged time series could not be accurately estimated. As such, a node-

averaged time series was estimated in a total of 74 nodes spanning the cortex and 

subcortex. A 74×74 connectivity matrix was then populated for each subject, where 

the correlation in the preprocessed times series between the ith and the jth node was 

stored in element (i, j) [5]. 
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3.2 Preconditioning of the data 

This sections briefly highlights the manipulation of the different datasets 

performed before applying the protocols described in the next section (3.3).  

In particular, the first functional connectivity matrices described in Section 3.1.1, 

initially fully-connected, were density-thresholded at 50% with the Spider-Net 

software. The thresholded matrices were then saved and analyzed through the 

bootstrap approach. 

Considering the structural connectivity dataset, the 17 165x165 matrices acquired 

with both techniques (DTI and HARDI) related to the structural Destrieux atlas 

were first divided with respect to the corresponding volume matrices, in order to 

take into account the differences of the brain volumes. Practically, The 

connectivity matrices were obtained by computing the edges as the number of the 

reconstructed fibers normalized by the sum of the nodes volumes [101]. 

In the context of the functional connectivity dataset formed by control and 

schizophrenic subjects,  the 27 matrices of both the control and the schizophrenic 

groups were implemented in Matlab and adjusted to reset negative connections 

and put the diagonal weights to zero. 

3.3 Experimentation and Evaluation 

 

This section focuses on the protocols which were employed to explore and analyze 

the data, assess and interpret the results. Specifically, the description of the 

Bootstrap approach, the calculation of graph metrics and confidence intervals, the 

Sensitivity Analysis, the Probabilistic Normalization, the Spider-Net Explorations 

and the Statistical Tests are described. 
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3.3.1 Bootstrapping Application 

 

Bootstrap was applied to evaluate the topology of the networks. Indeed, the graph 

features extracted from data with particular regards to their weighted versions can 

be highly conditioned by various sources of noise and errors, as reported in 

Sections 1.3.4 and 1.3.7.  

For this reason, a bootstrapping procedure was implemented, as it is summarized 

in Fig.30.  

 

 

Figure 30 Bootstrapping procedure based on the creation of surrogate connectivity matrices 

 

Specifically, surrogate data are created where the ith,jth element of the kth surrogate 

matrix defined at the kth iteration is chosen randomly with respect to the same ith,jth 

element from one of the matrices forming the dataset. This procedure at this step 

of the work was repeated with 100, 200, 500, 1000 and 5000 iterations resulting in 

100, 200, 500, 1000, 5000 surrogate matrices. In this way, a more reliable analysis 

due to the creation of a surrogate dataset composed by a higher number of 

matrices than the initial one is provided and it is also possible to evaluate how 

many iterations are needed to obtain stable distributions of the bootstrapped 

indices. In particular, the 100, 200, 500, 1000 and 5000 random extractions to 
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compute the surrogate data were considered with the functional and structural 

connectivity datasets formed by healthy subjects, while for the functional 

connectivity dataset describing control and schizophrenic subjects, the step was 

performed at 1000 iterations. 

 

3.3.2 Graph Metrics and Confidence Intervals (CI) Computations 

 

The purpose of the Bootstrapping approach was to obtain a confidence interval to 

ideally find normality ranges of the different network measures. In particular, 

after the creation of the surrogate data, these confidence intervals were computed 

with respect to different graph metrics chosen, which, for the functional 

connectivity dataset formed by healthy subjects were:  

1-  Node Degree; 

2-  Node Strength; 

3-  Binary Clustering Coefficient; 

4-  Weighted Clustering Coefficient.  

Instead, the structural connectivity dataset formed by healthy subjects was 

analyzed with respect to: 

1-  Node Strength 

2-  Weighted Clustering Coefficient 

3-  Weighted Path Length 

 

Finally, the functional connectivity dataset formed by control and schizophrenic 

subjects was investigated with respect to: 

1-  Weighted Clustering Coefficient; 

2-  Binary Clustering Coefficient; 

3-  Node Strength; 

4-  Node Degree; 

5-  Weighted Path Length; 

6-  Binary Path Length 

7-  Weighted Efficiency; 

8-  Binary Efficiency 

9-  Modularity; 

These indices were computed thanks to the Brain Connectivity Toolbox (BCT) [2]  

formulas which were implemented in Matlab at each step of the Bootstrapping 



92 | 3.3 Experimentation and Evaluation 

 

 

procedure. Before the calculation of the confidence intervals, the boxplots relative 

to each index at each step were plotted and analyzed. The boxplot, in particular, is 

a graphical representation used to describe the distribution of the values assumed 

by the index in each of the surrogate matrices. It is represented vertically by a 

rectangle delimited by first and the third quantiles, defined as the 25th and the 75th 

quantiles and divided by the second quantile, also known as the mean of the 

distribution. In this way, it was possible to notice the changes in the distributions 

of the indexes with the number of extractions of the bootstrapping procedure.  

The Confidence Intervals (CI), eventually, were evaluated in two different ways: 

the first one is the Percentile method which consists in the straightforward 

construction of the 95% confidence interval from the resampled distribution. In 

particular, for example, for 1000 bootstrap surrogates, it is possible to use the 25 th 

and the 975th value of the ranked values in increasing order assumed by the index 

of interest as the boundaries of the 95% confidence interval because, in this way, 

the interval comprises the central 95% of the distribution, also known as the 

percentile interval. Translating this example with 5000 resamples, the 95% 

confidence interval is comprised from the 125th (lower boundary) to the 4875th 

element (upper boundary) of the increasing ranked vector describing the 

distribution of the values assumed by the index of interest. The second method 

used to calculate the confidence interval is defined by the Standard formulas used 

in this context to compute both the boundaries, such that: 

𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 = 𝑚𝑒𝑎𝑛 − 1.96 ·
𝑠𝑡𝑑(𝐵𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝𝑅𝑒𝑠𝑎𝑚𝑝𝑙𝑒𝑠)

√𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
 

(35)  

𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 = 𝑚𝑒𝑎𝑛 + 1.96 ·
𝑠𝑡𝑑(𝐵𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝𝑅𝑒𝑠𝑎𝑚𝑝𝑙𝑒𝑠)

√𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
 

(36) 

Fig.31 sums the steps involved in the procedure described above, such that the 

first step is based on Preconditioning the matrices forming the different datasets 

(if necessary). Then, the second step is based on the creation of the surrogate 

bootstrapped data. Afterwards, the third step involves the computation of the 

chosen graph metrics. Next, the confidence intervals are computed with respect to 

the two methods defined before in this paragraph. Eventually, the bias of the 

mean of the distributions of the values of the different graph metrics is computed 

such that: 
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𝑏𝑖𝑎𝑠 = 𝑎𝑏𝑠 (
𝑚𝑒𝑎𝑛(𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝐷𝑎𝑡𝑎) − 𝑚𝑒𝑎𝑛(𝐵𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝𝑅𝑒𝑠𝑎𝑚𝑝𝑙𝑒𝑠)

𝑚𝑒𝑎𝑛(𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝐷𝑎𝑡𝑎)
 · 100) 

(37)  

 

 

Figure 31 Flowchart of the Standard Bootstrapping: (1) Preconditioning, (2) Creation of surrogate 

data, where “nIter” is the number of resamples and “i,j” refers to the row and column, respectively, 

of the matrix, (3) Graph Metric calculation), (4) CI and (5) biases  computation procedure.  

 

3.3.3 Sensitivity Analysis 

 

This first investigation on the distributions of the values assumed by the indexes 

after the application of the bootstrap showed, however, an unexpected behavior. 

Indeed, as can be seen in Fig.32, a non-negligible bias of the distributions of the 

values of the Weighted Clustering Coefficient before (“Initial Data”) and after 

(“Bootstrap”) the application of the bootstrapping. Indeed, the distribution after the 

bootstrap is not centered with respect to the initial value. This characteristic is 

visible in the distributions of most of the considered indexes. Hence, to analyze in 

further depth this issue, a sensitivity analysis was performed. 
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Figure 32 Boxplots of the Weighted Clustering Coefficient’s distributions evaluated on the control 

(upper figure) and schizophrenic (lower figure) population of the functional connectivity dataset 

before (right) and after (left) the bootstrap at 1000 iterations. A bias between the two distributions 

considering before and after the application of the bootstrap is visible. 

 

The sensitivity analysis of this work, in particular, focused on the connectivity 

weights, whose variability thought to be the ones causing the biases of the 

distributions of the graph metrics that occur after the application of the 

Bootstrapping procedure. Indeed, considering the structural connectivity analysis, 

the data processing which allow to pass from the raw data to the connectivity 

matrices is often complex, computationally intensive and requires expert quality 

control [102]. Moreover, the weights are often so variable that connectivity 

thresholds are applied to remove spurious connections, a practice considered as 

necessity in the analysis of structural connectivity datasets [103]. It is possible to 

examine the huge variability of the connectivity weights before the normalization 

of the weights between 0 and 1 in Fig.33, which is mainly formed by outliers, 

represented by red crosses spanning over 4 orders of magnitude. 
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Figure 33 Boxplot showing the distributions of the connectivity weights of the first subject of the 

structural connectivity dataset. The variability of the connectivity weights is shown by their 

variation over 4 magnitude orders.. 

The variability of the connectivity weights thought to cause the biases of the 

distributions of the graph metrics was also observed in both the functional 

connectivity datasets analyzed in this work. 

In this context, the sensitivity analysis was performed on the functional 

connectivity dataset composed by healthy and schizophrenic subjects and  was 

based on inspecting which are the weights ith,jth in the connectivity matrices that 

deviate most from the other connections in the same matrix. In particular, the 10th 

and the 90th percentile of the weights for each matrix were evaluated. An example 

of the distribution of the weights of the first control subject and the sixth 

schizophrenic one is shown in Fig.34.  

 

Figure 34 Boxplots of the connectivity weights distribution of the first control subject (left figure) 

and the sixth schizophrenic subject (right figure). The red horizontal line represents the value of the 

10th percentile,  whereas the black one the 90th percentile. 
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In order to investigate the variability of the values of the indexes causing non 

negligible biases, the graph metrics were computed removing the connection 

whose weight was out the 10th – 90th percentile range. Hence, the contribution of 

strongest/weakest connections was explored. 

In particular, the position ith, jth of each weight which was lower than the 10th 

percentile or greater than the 90th one was saved. Next, the variability of the 

indices was examined by resetting one at a time the positions outside the 10 th – 90th 

percentile range and computing the value of the graph metrics at each resetting. 

Weighted Clustering Coefficient, Node Strength and Weighted Efficiency were 

considered for this analysis. 

Then, a difference matrix for each of the considered matrix was created. In 

particular, the ith,jth element of this matrix is computed by resetting every weight of 

the matrix one at a time, calculating the graph metrics at each resetting and 

quantifying the difference between the so obtained value and the initial one before 

any resetting. Successively, the positions of the highest differences in the matrix 

are saved. The comparison between the two sets of positions (the ones outside the 

10th-90th percentile range and the ones obtained with the difference matrix 

analysis) is done by overlapping them. For each of the resetting of the overlapped 

positions, the corresponding value of the graph metrics is computed.  

The resulting values were analyzed through a scatterplot to show the overlapping 

of the weights that influence most the indexes and the weights that deviate most 

from the distributions. Hence, variability of the connectivity weights in relation to 

great changes in the distributions of the indexes were, thus, verified to assess the 

emerging biases  (See Section 4.3.1). 

 

3.3.4 Probabilistic Normalization 

 

One of the main purposes of this work was to investigate the changes in the biases 

of the different graph metrics by applying a normalization of the data before the 

application of the bootstrap. This was done because normalizing the weights with 

respect to group weights distributions, the variability responsible of causing the 

biases is reduced. The chosen normalization was a probabilistic one and the 

flowchart of the technique is shown in Fig.35.  
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Figure 35 Flowchart of the Probabilistic Normalization procedure: (1) Preconditioning of the data, 

(2) Setting of the Counter of every element from 0 the maximum number of matrices forming the 

dataset counting how many times each connection is present in the data, (3) Creation of the 

Probability Matrix by dividing the Counter with the number of matrices of the dataset to obtain the 

probability of having each connection in the data, (4) Density Analysis to investigate the variation 

of the density of the dataset at the resetting of the connections present  less times than the different 

values of the probability matrix through a scatterplot. An example of the scatterplot representing 

the changing of the density of the functional connectivity dataset formed by healthy people 

changing density is presented in Fig.36. (5) Probabilistic Thresholding; (6) Normalization of the 

Data by dividing the initial matrices with respect to the Mean Matrix of the dataset obtained after 

the probabilistic thresholding; (7) Application of the bootstrap.  

  

Figure 36 Example of a Scatterplot of the density of the functional connectivity dataset formed by 

healthy subjects with changing probability threshold. 
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In particular, after the preconditioning phase, a counter is initialized, which counts 

how many times each ith,jth element in the matrices is present. Obtained this 

counter matrix, the next step concerns the creation of a probability matrix by 

dividing each element of the counter matrix by the total number of matrices 

present in the dataset, thus, obtaining a matrix characterized by ith,jth elements 

ranging from 0 to 1 (0% to 100%). These values express the percentage of times 

that each connection is present in the dataset. Afterwards, a density analysis is 

performed. In particular, a scatterplot is created by putting on the x-axis the 

probability values from 0% to 100% with a step of 10%, and on the y-axis the mean 

density of the dataset that results from the elimination of the connections which 

are present in less percentage with respect to each percentage step (as shown in 

Fig.36). This is done to find an arbitrary threshold value which allows to eliminate 

the rarest connections of the dataset without changing too much the density of the 

dataset. Next, a probabilistic thresholding on the dataset is performed, consisting 

in resetting the rarest ith,jth connections according to the selected threshold. 

Afterwards, the mean matrix of the so obtained dataset is evaluated. The 

normalization is then completed with the division of the initial matrices by the 

Mean Matrix obtained at the previous step. This normalization is thought to 

reduce the biases of the mean of the graph indices considering before and after the 

bootstrap. Indeed, dividing the most variable weights in the connectivity matrices, 

which are probably caused by some kind of errors, by the mean value of them is 

thought to reduce their variability, thus reducing the values of the biases.  

The normalization step is finalized by setting the Inf and NaN values of the 

normalized dataset to zero with the BCT function weight_conversion(dataset, 

‘autofix’) [2].  Achieved the probabilistic normalization, the bootstrapping 

procedure is applied in the same way as described in section 3.3.1 of this work, 

together with the exploration of the distributions of the graph metrics, the 

computation of the confidence intervals and the calculation of the biases. 

 

3.3.5 Spider-Net Explorations 

 

This Section focuses on how the SNT software was used in the investigation of the 

structural connectivity dataset formed by healthy subjects and the functional 

connectivity dataset formed by control and schizophrenic subjects.  

Considering the structural connectivity dataset formed by 17 healthy subjects 

acquired with both DTI and HARDI, the differences throughout the data acquired 

with the two different techniques and the different connections detected by the 
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two methods were analyzed. In particular, the purpose was to find the 

connections detected by HARDI and not by DTI and the ones detected by DTI but 

not by HARDI. The main expected results are that HARDI should be able to reveal 

a far greater number of connections with respect to the DTI technique. Indeed, 

HARDI acquisition schemes are able to solve the limitations of the DTI related to 

the problem of the crossing fibers in order to have more robust tractography 

measurements [56]. 

Specifically, to have coherent data to investigate, normalization and thresholding 

procedures were performed. In particular, the matrices were first normalized with 

respect to the greatest value of the total number of streamlines between the data 

acquired with DTI and HARDI for each subject. For example, considering the first 

of the 17 subjects, calculating the number of streamlines with respect to the DTI 

and HARDI methods, the highest value is used to normalize each weight in the 

corresponding matrix. This was done to equalize the data since the total number 

of streamlines is greatly higher with HARDI due to its ability in reconstructing 

fibers. Next, the datasets were absolutely thresholded at 30%, 20% and 10% in 

order to draw conclusions regarding the weight of the connections in the two 

datasets and investigate which method was able to detect the most important 

ones, indeed, the higher the thresholding, the more the weaker connections are 

eliminated. Next, the matrices composing the datasets were binarized at the same 

thresholding levels, which implies to set a 1 all non-null weights produced by the 

thresholding. Following the binarization, to find clearly which connections were 

detected by HARDI and not by DTI and viceversa, a simple subtraction was 

performed, such that [56]:  

Resulting_Matrix = HARDI_Matrix – DTI_Matrix 

In this way, in the Resulting Matrix, the weights detected by both HARDI and DTI 

are set to zero, the weights detected by HARDI but not by DTI are set to 1 and the 

weights detected by DTI but not by HARDI are set to -1. The difference matrices, 

evaluated for each of the 17 healthy subjects, were then split into two datasets 

considering the 1s and the -1s in order to have a better visualization of the 

connections detected by one technique in Spider-Net. In particular, the software 

was used to obtain the connectogram in the “Explore from the current Subset” 

modality, referred to the Left and Right Temporal Lobe for each of the 17 

difference matrices obtained with the normalization with respect to the number of 

streamlines and thresholded at 30%, 20% and 10%. The temporal lobe was selected 

since DTI often loses several connections within this region due to the crossing 

fiber issue between the corpus callosum and the cortico-spinal tract [104]. Thus, it 

was worth investigating if HARDI was able to correctly reconstruct these missing 

streamlines. 
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Considering the functional connectivity dataset formed by 15 control and 12 

schizophrenic subjects, it was investigated in terms of visually representing the 

connectograms describing  the connectivity pathways regarding the Default Mode 

Network (DMN). The DMN, as described in section 1.2.4, is a network deeply 

involved in  social behavior, control of the emotional state of the individual and 

recollection of past memories. On the other hand, schizophrenia is a mental 

disorder characterized by altered perception, irregular emotion regulation, 

hallucinations and weakened working memory. Thus, the investigation of the 

DMN for this kind of pathology became a focus of research in the clinical context 

[30], [7]. In particular, the investigation of the dis-connectivity patterns present in 

the subnetwork formed by the regions involved in the DMN and its weaker 

activation can provide a deeper analysis on the severity and importance of the 

pathology [29].  

In order to perform this kind of analysis, Spider-Net was used to represent the 

connectivity pathways underlying the network of interest.  

Specifically, after adding the possibility of relating an attribute to each parcel of 

the AAL atlas used as input of SNT (as shown in Section 3.3.5), the regions 

involved in the DMN were highlighted. The choice of parcels was performed by 

investigating in the literature, considering different studies and labelling which 

parcels belonging to the AAL scheme are also associated to the Default Mode 

Network [30], [29], [105], [106], [107], [108], [109]. 

In this way, it was possible to visually represent all the connectivity edges linked 

to the DMN (within or outwards) in the connectogram visualization. 

 

3.3.6 Statistical Tests  

 

A t-test is defined as an inferential statistic used to determine if there is a 

significant difference between the means of two groups and how they are related. . 

Mathematically, the t-test takes a sample from each of the two sets and establishes 

the problem statement. It assumes a null hypothesis that the two means are equal. 

Using the formulas, values are calculated and compared against the standard 

values. The assumed null hypothesis is accepted or rejected accordingly [110]. 

This kind of investigation was performed in the comparison between healthy and 

schizophrenic subjects. The statistical tests for the different graph indexes were 

performed through to the “ttest2” function implemented in Matlab, which returns 

a test decision for the null hypothesis that the data in input vectors comes from 

https://www.investopedia.com/terms/s/statistics.asp


 

101 

independent random samples from normal distributions with unknown and 

unequal variances, using the two-sample t-test. As output this function produced 

a logical value of either 1 if the test rejects the null hypothesis at the 5% 

significance level, and 0 otherwise; together with the p-value which is a number 

describing how likely it is that data would have occurred under the null 

hypothesis of the statistical test.  

In the context of a second-level (group) analysis, the purpose was to investigate 

the statistical differences of the two populations in the distributions assumed by 

the values of the graph metrics considering before and after the application of the 

Bootstrap. As regards as bootstrap hypothesis testing, standard errors and 

confidence intervals were calculated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://it.mathworks.com/help/stats/ttest2.html#btrkaaw


102 | Results & Discussion 

 

 

Results & Discussion 

This chapter summarizes the results and discusses the investigation performed 

over the 3 datasets described in Section 3.1. In particular, the results after the 

application of the Standard and Probabilistic Normalization bootstrap methods on 

the functional connectivity dataset formed by 10 healthy subjects are discussed. 

Next, the same techniques are applied on the structural connectivity dataset 

composed by 17 subjects acquired with DTI. For both cases, surrogate data results 

with the reduction of the emerging bias are reported and discussed. Moreover, the 

analysis of the structural connectivity dataset also compares the DTI and HARDI 

techniques, which are differently affected by possible errors and source of 

uncertainties.  

The hypothesis reported for the first two datasets about the connectivity weights 

and biases are then investigated in further depth through a Sensitivity Analysis on 

the functional connectivity dataset formed by healthy and schizophrenic subjects. 

Afterwards, the Standard and Probabilistic Normalization bootstrap methods 

results on this dataset are reported. Thus, the group (alias, second-level) analysis 

was performed to evaluate statistically significant differences between the two 

groups and to study the uncertainty which can be related to fMRI processing and 

connectivity measures extraction. Finally, connectivity patterns related to the 

DMN were investigated through Spider-Net Tool (SNT) to explore the 

involvement of the network in schizophrenia. 

4.1 Healthy Functional Connectivity Dataset Results 

This section highlights the results on the functional connectivity dataset formed by 

10 healthy subjects with both Standard and Probabilistic Normalization bootstrap 

methods. 

4.1.1 Standard Bootstrapping Results 

 

The numerical results of the mean values of the distributions of the considered 

graph metrics before and after the application of the bootstrap, together with their 

standard deviation are represented in Table.2. 
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Graph Indexes 

Standard 

Bootstrap 

Mean Values and 

Standard Deviation 

Confidence Intervals Bias 

Percentage 

 Initial 

Data 

Standard 

Bootstrap 

Percentile 

Method 

Standard 

Method 

 

Node Degree 44.475 ± 

0.069 

44.482 ± 

0.388 

[43.700; 

45.233] 

[44.471; 

44.492] 

0.016 % 

Node Strength 16.733 ± 

5.443 

16.733 ± 

0.158 

[16.419; 

17.039] 

 

[16.728; 

16.737] 

0.000% 

Binary 

Clustering 

Coefficient 

0.295 ± 

0.104 

0.244 ± 

0.003 

[0.238; 

0.250] 

 

[0.243; 

0.244] 

17.288% 

Weighted 

Clustering 

Coefficient 

0.273 ± 

0.103 

0.225 ± 

0.003 

[0.220; 

0.231] 

[0.224; 

0.225] 

17.582% 

Table 2 Numerical results of the considered graph metrics distributions before and after the 

Bootstrapping procedure, Confidence Intervals and the Bias of the Mean considering Before and 

After Bootstrapping. The boundaries of the CI are computed as described in Section 3.3.4 and 

reported within square brackets. The bias percentage is calculated as exhibited in Section 3.3.4. 

The results obtained from each index with the respective distributions are 

reported below in box-plots are reported below in box-plots to visualize the effect 

of the bootstrap technique. Namely, the following Fig.37, Fig.38, Fig.39, Fig.40 

show the distributions of the index values as the number of resamples (iterations) 

increases. The horizontal black lines drawn on the leftmost panel in all figures 

represent the calculated confidence interval with the percentile method. 

First, the Node Degree, Fig.37, refers to a count of links with 50% thresholding, as 

stated in the preconditioning section 3.2. The results are in line with what expected 

(as explained in section 2.3). However, a slight increase in the distribution 

dispersion was found, on the order of 1 or 2 links compared to an average of 44.5 

links. This small change is not significant and progressively defined as the number 

of surrogate extractions is risen up to 5000 (from right to left). Importantly, a 

virtually null bias of the average value is seen with a % value at 5000 extractions 

equal to 0.016 (Table.2). 
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Figure 37 Distributions of the Node Degree considering, from right to left, the initial 10 

functional connectivity matrices, 100, 200, 500, 1000 and 5000 bootstrap iterations. 

In the context of the Node Strength, which is defined as the sum of all edge 

weights connected to the nodes (see Section 2.1), it is possible to state that the 

expected results from the bootstrap application were better confirmed. Indeed, the 

distributions shrink even with a limited number of extractions and keeps steady as 

the number is increased up to 5000. Hence, a low variability of the distribution of 

the Node Strength is obtained, as reported in Fig.38. Moreover, the numerical 

results shown in Table.2 are optimal due to the absence of any bias. 

 

Figure 38 Distributions of the Node Strength considering, from right to left, the initial 10 

functional connectivity matrices, 100, 200, 500, 1000 and 5000 bootstrap iterations. 

The expected results about the shrinking of the distribution were also confirmed 

for the values assumed by the Binary Clustering Coefficient, defined as the 

fraction of node’s neighbors which are neighbors to each other. In this case, as can 

be seen by the numerical results shown in Table.2 and in the distributions reported 
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in Fig.39, it exhibits a greater bias (17.288%) with respect to the previously 

analyzed indexes. Despite this unexpected bias, the variability of the distribution 

was significantly reduced as expected. 

 

Figure 39 Distributions of the Binary Clustering Coefficient considering, from right to left, the 

initial 10 functional connectivity matrices, 100, 200, 500, 1000 and 5000 bootstrap iterations. 

In view of the Weighted Clustering Coefficient, defined as the average “intensity” 

(geometric mean) of all triangles associated with a node, the results are in line with 

those obtained with the Binary Clustering Coefficient. Indeed, the distribution of 

the assumed values, shown in Fig.40, shrinks with respect to the increasing of the 

number of iterations involved in the Bootstrapping procedure. However, as 

justified by the numerical results in Table.2, a bias is present (17.582%) similar to 

the binary index.  

 

Figure 40 Distributions of the Weighted Clustering Coefficient considering, from right to left, 

the initial 10 functional connectivity matrices, 100, 200, 500, 1000 and 5000 bootstrap iterations. 



106 

| 4.1 Healthy Functional Connectivity 

Dataset Results 

 

 

In general, the numerical results reported in Table.2 concerning the confidence 

interval boundaries calculated with respect to the Percentile Method and the 

Standard Formula for all the considered indexes are also shown. It is possible to 

notice how the standard method produces narrower intervals for all the graph 

metrics, highlighting the possibility of reaching a standard value for the indices.  

4.1.2 Probabilistic Bootstrapping Results 

 

The first step of the probabilistic normalization procedure was the density 

analysis, which was performed to deal with the bias issue reducing the variability 

of the indexes distribution, as described in section 3.3.4. The result of this analysis 

is represented in Fig.41. It is worth noting that the maximum density, the one at 

the initial step is of about 0.5 (the leftmost point in Fig.41), and then this density 

decreases as the percentage of times that an element is removed with respect to its 

presence in the dataset increases. The chosen value of the probability threshold 

(shown on the x-axis)  was 0.3, such that the ith,jth elements which are present less 

than 3 times in the dataset composed by 10 subjects were reset. This value 

produces a reduction of the mean density of the healthy functional connectivity 

dataset only from about 0.5 to 0.42 by the removal of the rarest connections among 

all subjects. 

 

 

Figure 41 Scatterplot of the density of the dataset (y-axis) with changing probability threshold (x-

axis). 

The results are described and shown as in section 4.1.1. The table with all indexes 

is first reported, then the distributions for each investigated index are discussed 

(Node Degree, Node Strength, Binary and Weighted Clustering Coefficient).  
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Graph Indexes 

Probabilistic 

Normalization 

Bootstrap 

Mean Values and 

Standard Deviation 

Confidence Intervals Bias 

Percentage 

 Initial 

Data 

ProbNorm

Bootstrap 

Percentile 

Method 

Standard 

Method 

 

Node Degree 39.433 ± 

1.758 

39.008 ± 

0.323 

[38.334; 

39.644] 

[38.999; 

39.017] 

1.089% 

Node Strength 12.998 ± 

2.526 

13.118 ± 

0.153 

[12.815; 

13.418] 

[13.115; 

13.123] 

0.914% 

Binary 

Clustering 

Coefficient 

0.237 ± 

0.040 

0.195 ± 

0.003 

[0.189; 

0.201] 

[0.194; 

0.195] 

17.722% 

Weighted 

Clustering 

Coefficient 

0.226 ± 

0.044 

0.206 ± 

0.006 

[0.196; 

0.220] 

[0.205; 

0.207] 

8.765% 

Table 3 Numerical results of the considered graph metrics distributions before and after the 

Probabilistic Normalization Bootstrap, Confidence Intervals and the Bias of the Mean considering 

Before and After the Bootstrapping. The boundaries of the CI are computed as described in Section 

3.3.4 and reported within square brackets. The bias percentage is calculated as exhibited in Section 

3.3.4. 

First, considering the Node Degree, in Fig.42 (top) it is possible to notice that the 

results are more accurate with the probabilistic normalization in terms of the 

reduction of the variability of the distributions. Indeed, contrary to what shown in 

Fig.37, where the width of the boxplot slightly increased with respect to an 

increasing number of iterations; in this case, the boxplot shrinks as the number of 

iterations grows. With respect to the numerical results shown in Table.3, compared 

with the ones shown in Table.2, it is noticed that the Node Degree with the 

probabilistic normalization assumes lower values due to the resetting of the rarest 

connection. Indeed, since the degree is defined as the number of links connected to 

a node, a lower degree will be obtained. Besides, the bias remains negligible, as 

shown by its value of about 1%. The Node Strength, also shown in Fig.42(bottom) 

presents a negligible bias (0.914%) and a clearly visible shrinkage almost 

unchanged with the number of surrogate extractions. 



108 

| 4.1 Healthy Functional Connectivity 

Dataset Results 

 

 

 

Figure 42 Distributions of the Node Degree (top panel) and the Node Strength (bottom 

panel) obtained with the Probabilistic Bootstrapping technique considering, from right to left, the 

initial 10 functional connectivity matrices, 100, 200, 500, 1000 and 5000 bootstrap iterations. 

Also concerning the Binary and the Weighted Clustering Coefficients with the 

Probabilistic Normalization (shown in top and bottom panels, respectively, in 

Fig.43), the results regarding the shrinking of the distributions behaved as 

expected with the increasing of the number of surrogate samples. However, the 

bias for the Binary Clustering Coefficient is comparable to that in the standard 

bootstrapping case (17.288% in the Standard Bootstrapping, and 17.722% in the 

Probabilistic case). On the other hand, the bias of Weighted Clustering Coefficient 

reduces from 17.582% in the Standard case to 8.765%  in the Probabilistic one. 
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Figure 43 Distributions of the Binary Clustering Coefficient (top panel) and the Weighted 

Clustering Coefficient (bottom panel)  obtained with the Probabilistic Bootstrapping technique 

considering, from right to left, the initial 10 functional connectivity matrices, 100, 200, 500, 1000 

and 5000 bootstrap iterations. 

 

 

4.1.3 Discussion about Bootstrapping Results over healthy functional connectivity 

dataset 

 

As a whole the bootstrapping allowed to quantify the dispersion and obtain more 

robust values of the indexes under investigation, both with the Standard 

procedure and the Probabilistic Normalization. This was confirmed by the 

reduction of the distributions dispersion, with a slight exception of the Node 

Degree in the Standard Bootstrapping, characterized by a marginal broadening of 

its distribution of about one or two links. Moreover, it was possible to notice that a 
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large increasing in the number of iterations used to create surrogate data does not 

coherently change the variability of the distribution assumed by the values of the 

indexes. Hence, we speculate that this might be due to the fact the number of 

iterations needed in the case of 10 subjects is lower than those selected. However, 

we acknowledge that there are considerable and well-known discussions among 

researchers about the optimal number of surrogate data (iterations) to generate 

[111], [112], [113] and that further and specific experimentation must be performed 

in future to optimize it.  

Analyzing the graph metrics, it is possible to state that the index whose result is 

more accurate in terms of respecting the desired outcome was the Node Strength 

in both the Probabilistic and the Standard cases. On the other hand, the worst 

performing index in this perspective is the Binary Clustering Coefficient, given its 

non-negligible bias, not reduced by the Probabilistic Normalization approach. 

When dealing with connectivity matrices, a common procedure is to absolutely 

threshold the matrix to lower the presence of low-weight/spurious connections of 

the network [6], [114]. However, absolute thresholding can generate some issues 

in the interpretation of the connectivity pathways due to the removal also of 

useful information [6]. To overcome the above limitations, an approach named as 

“density-based thresholding” was proposed, which adapts the threshold of each 

subject to maintain an equal number of connections, thus equalizing the density of 

the considered datasets [69]. In the procedure of density-based thresholding, 

however, having the same number of connections (same density) across networks 

means to include also low correlations  which increase the possibility of random 

and noisy fluctuations in the networks. Besides, equalizing the densities of a 

control and a pathological subject could bring the loss of information (for example 

a lesion) since a reduced number of connections might be related to the pathology 

itself. Thus, the correct thresholding technique to be used in the context of brain 

connectivity analysis is still an open issue. In this work a thresholding method 

based on the probability that a connection is present in a population is proposed. 

Analyzing the proposed results, it seems to be a useful technique to both preserve 

information and reduce the problem of the bias in the investigated functional 

connectivity dataset formed by healthy subjects. 

With regards to the results shown in the previous sections, it is possible to see an 

improvement in the distributions assumed by the indexes with the Probabilistic 

Normalization performed to eliminate the rarest connections of the dataset and to 

normalize the connectivity weights of the matrices to reduce their variability. 

Precisely, this procedure allows to reduce the widening of the distribution of the 

Node Degree and to lessen the bias referred to the Weighted Clustering 

Coefficient. In terms of Confidence Intervals, with both the Standard and 
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Probabilistic methodologies, the Bootstrap procedure granted to obtain 

appropriate boundaries with both the Percentile method and with the Standard 

Formula, where this last produced narrow boundaries for the Confidence 

Intervals. 

4.2 Healthy Structural Connectivity Dataset Results 

 

This Section exhibits the Standard and Probabilistic Normalization Bootstrapping 

results of the protocol described in Chapter 3 on the structural connectivity dataset 

formed by 17 control subjects acquired with the DTI technique. 

This investigation was performed to analyze if the Bootstrap allowed to obtain the 

desired results in terms of variability of the indexes reduction, calculation of the 

confidence intervals and computation of the biases in a different scenario in terms 

of uncertainty of the data. The aim of the protocol was to have a more robust 

estimation of the data through surrogate data, that is independent from the 

different noise sources in the acquisition of functional and structural connectivity 

data. 

The dataset regarding structural connectivity matrices was not thresholded to 

maintain all the available information and the procedures are  the same as the 

ones described previously in this work in Sections 3.3.1, 3.3.2. The considered 

segregation indices were the Node Strength, the Weighted Clustering Coefficient, 

as before, plus the Path Length. The results are shown in the same way as Section 

4.1 of this work, using 1000 iterations for the bootstrapping procedure instead of 

5000 for the graph metrics. This was done for computational reasons regarding the 

calculation of the Path Length with the Brain Connectivity Toolbox (BCT) [2], 

which requires two steps: first, the definition of the distance matrix and then the 

calculation of the Path Length. In particular, the distance matrix contains the 

lengths of the shortest paths between all pairs of nodes as defined by the Dijkstra’s 

algorithm [71] defined earlier in this work, in section 2.1. An entry, ith,jth element of 

the matrix, represents the length of the shortest path from node i to node j. With 

this matrix the Path Length is, then, calculated. It is, thus, possible to notice the 

computational problem in calculating this index for 5000 surrogate samples which 

takes lot of time to run the Matlab code. Moreover, for our investigation purposes, 

the number of iterations (1000) suggested by the previous investigation of the 

functional connectivity dataset are sufficient. 
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4.2.1 Standard Bootstrapping Results 

 

The results shown in this section exhibit the numerical values of the boundaries of 

the confidence intervals obtained with the Standard Formula and the Percentile 

Method. Furthermore, the bias between the means with the Standard 

Bootstrapping procedure without any manipulation of the initial dataset (no 

thresholding and no normalization) is shown. All the numerical results are 

summarized in Table.4. 

 

Graph Indexes 

Standard 

Bootstrap 

Mean Values and 

Standard Deviation 

Confidence Intervals Bias 

Percentage 

 Initial Data Standard 

Bootstrap 

Percentile 

Method 

Standard 

Method 

 

Node Strength 3.008 ± 

0.319 

3.009 ± 

0.021 

[2.968; 

3.053] 

[3.008; 

3.010] 

0.033% 

Weighted 

Clustering 

Coefficient 

0.015 ± 

0.002 

0.013 ± 

1.264 * 10-4 

[0.011; 

0.013] 

 

[0.012; 

0.013] 

13.333% 

Path Length 8.376 · 10-4 ± 

1.140·10 -4 

7.918 · 10-4 ± 

1.748 ·10-5 

[7.571 · 10-4 ; 

8.257 · 10-4] 

 

[7.907 · 10-4 ; 

7.928 · 10-4] 
5.784% 

Table 4 Numerical results of the considered graph metrics distributions before and after the 

Standard Bootstrapping, applied on the Structural Connectivity dataset. Confidence Intervals and 

the Bias of the Mean considering Before and After the Bootstrapping are shown. The boundaries of 

the CI are computed as described in Section 3.3.4 and reported within square brackets. The bias 

percentage is calculated as exhibited in Section 3.3.4. 

 

Examining the numerical results of the Node Strength, it is possible to state that 

the index is characterized by a negligible bias, whereas the Weighted Clustering 

Coefficient is characterized by a greater bias (13.333%) than the other investigated 

metrics. Considering the Path Length, the numerical value of the bias of the mean 

shows that it is small (5.784%). Moreover, the numerical results concerning the 
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confidence interval boundaries. It is possible to notice that the Standard Method 

produces narrower intervals for all the graph metrics, than the Percentile Method. 

Considering the distributions of the values assumed by the considered graph 

indexes, all of them are characterized by the desired outcomes in terms of the 

reduction of the variability of the distributions after the creation of surrogate data, 

as exhibited in Fig.44. 

 

        (a)                                                     (b)  

 

(c) 

Figure 44 Distributions of the (a) Weighted Clustering Coefficient  (top panel, left figure), 

(b) Node Strength (top panel, right figure) and (c) Path Length (bottom panel) obtained 

with the Standard Bootstrapping technique regarding DTI structural connectivity data. The blue 

horizontal lines in the left graph displaying the boundaries of the Confidence Intervals obtained 

with the Percentile Method and the black horizontal line representing the mean value of the 

distribution of the index. 

4.2.2 Probabilistic Normalization Bootstrapping Results 

 

The Fig.45 shows the scatterplot created by putting on the x-axis the values that 

the probability matrix values from 0% to 100%, with a step of 10% between each 

one, and on the y-axis the mean density of the structural connectivity dataset that 
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results from the elimination of the connections which are present in less 

percentage with respect to each step. This is done, again, to find a threshold which 

allows to eliminate the rarest connections of the dataset without changing too 

much its density. This time, the threshold was chosen with respect to a lower 

elimination of the connections to analyze the performances of the Bootstrapping 

without manipulating too much the data. In particular, only the connections 

present less than 20% of the times with respect to the total 17 were removed. 

 

 

Figure 45 Scatterplot of the density of the structural connectivity dataset with changing 

probability threshold. 

As can be seen in Fig.45, indeed, the density of the structural dataset passes from 

the initial 55% to 50% after the resetting of the rarest connections, while in the 

previous functional connectivity case, the decrease of the density due to the setting 

to zero of the least present connections was greater (from 50% to 42%). 

The results about the table and the graph metrics boxplots, biases and confidence 

intervals are shown in the same way as in the previous section. 

Considering the numerical results of the Node Strength, shown in Table.5, the bias 

is, again negligible also with the Probabilistic Normalization. Looking at the 

Weighted Clustering Coefficient, the bias slightly reduces with respect to the 

standard case, passing from 13.333% (Table.4) to 11.538% (Table.5). Conversely, in 

the case of the Path Length, the bias slightly increases (6.667%), with respect to the 

Standard Bootstrapping value  (5.784%). 
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Graph Indexes 

Probabilistic 

Normalization 

Bootstrap 

Mean Values and 

Standard Deviation 

Confidence Intervals Bias 

Percentage 

 Initial 

Data 

ProbNorm

Bootstrap 

Percentile 

Method 

Standard 

Method 

 

Node Strength 7.441 ± 

1.089 

7.439 ±  

0.084 

[7.276; 

7.608] 

[7.437; 

7.441] 

0.027% 

Weighted 

Clustering 

Coefficient 

0.052 ± 

0.007 

0.046 ± 

4.724 * 10-4 

[0.045; 

0.047] 

 

[7.437; 

7.441] 

11.538% 

Path Length 0.015 ±  

0.002 

0.014 ± 

4.055 · 10-4 

[0.013; 

0.015] 

[0.013; 

0.014] 

6.667% 

Table 5 Numerical results of the Probabilistic Normalization Bootstrapping procedure on the 

Structural Connectivity dataset of the considered graph metrics of the Mean Values Before and 

After Bootstrapping procedure together with their Standard Deviations, CI  boundaries computed 

with the Percentile and the Standard Method within square brackets, and the Bias of the 

distributions. 

As in the Standard Bootstrapping case and with the previous functional 

connectivity dataset, the Node Strength is characterized, also with the Probabilistic 

Normalization performed before the Bootstrapping in terms of the negligible bias 

of the mean regarding before and after Bootstrapping, as exhibited numerically in 

Table.5. 

Also in the Probabilistic Normalization case, the expected behavior of the 

distributions dispersion was found, as highlighted by the standard deviation and 

the Confidence Intervals (CI). 

 

4.2.3 Comparison between Structural and Functional results and discussion 

 

It is, thus, possible to state that the bootstrap on structural connectivity dataset, as 

for the functional one, allowed to reduce the variability of the values assumed by 

all the considered indexes. This result was highlighted by the Confidence Intervals 

values (computed with both the Percentile and the Standard Methods). 

Comparing the advantages of the Probabilistic Normalization in both the datasets, 



116 

| 4.2 Healthy Structural Connectivity 

Dataset Results 

 

 

in the functional one the improvements were clearer in the functional dataset, 

mainly in terms of the reduction of the bias of the Weighted Clustering 

Coefficient. In the structural case, the developments were reduced, probably due 

to the consideration of more rare connections and to the noisy and spurious 

connections characteristic of this technique. Indeed, before, in the functional 

connectivity case, the bias regarding the Weighted Clustering Coefficient dropped 

considerably, passing from 17.582% in the Standard Case to 8.765% with the 

Probabilistic Normalization. In the Structural Connectivity dataset, instead, the 

bias still reduced, but very slightly, passing from 13.333% in the Standard case to 

11.538%. 

In general, the Bootstrapping procedure allowed, again, to reduce the variability 

of the distribution of the values assumed by the indexes of interest (Node 

Strength, Weighted Clustering Coefficient and Path Length) also with the 

Structural Connectivity dataset. However, the probabilistic thresholding was able 

to remove the rarest connections, a practice which positively influenced the 

bootstrap results in terms of alignment of the distributions.  From the comparison 

between the probabilistic normalizations performed on the functional and the 

structural connectivity datasets, the protocol resulted more robust and, thus, less 

characterized by biases when a more selective thresholding was performed. This, 

however, brings inevitably the loss of the information provided by weak 

connections, which was analyzed in literature to be important [68], [6].  

In this context it is possible to state that every connection, even having low weight 

is important to evaluate the whole topology. In particular, the importance of the 

weak connections was analyzed at different levels of absolute thresholdings in the 

next section (4.2.4) by comparing DTI and HARDI. 

On the other hand, the contribution of the outlier weights was considered in the 

Sensitivity Analysis to explain the great variability of the graph indexes, whose 

results are shown in Section 4.3.1. 

 

4.2.4 HARDI/DTI COMPARISON 

 

To further investigate the information coming from the structural connectivity 

matrices, the same 17 healthy subjects considered before, and acquired with the 

DTI technique, were explored with respect to the HARDI technique. This 

comparison had the aim of analyzing the benefits of the HARDI technique, 

described before in section 1.3.5, mainly in the solving of the crossing fiber 
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problem and to have more robust tractography data.  It is worth remarking that 

the DTI and the HARDI tractographic reconstructions were generated by the same 

DWI scans performed on a high number of directions (64) [4]. This permitted both 

the simplified DTI modelling and the more complex HARDI analysis by spherical 

deconvolution. In this way, DTI provided a single streamline direction per voxel, 

while HARDI could disentangle the two directions in voxels with crossing fibers.  

This allows to obtain more accurate reconstructions of complex crossing fibers 

configurations characterized by high curvatures, as can be seen previously in 

Fig.13. The differences throughout the data acquired with the two different 

techniques and the different connections detected by the two methods were 

analyzed. In particular, the purpose was to find the connections detected by 

HARDI and not by DTI and the ones detected by DTI but not by HARDI using 

SNT. In order to accomplish this, some operations (normalization for number of 

streamlines, thresholding etc.) and subtraction between the two matrices were 

performed as reported in Section 3.4.5. SNT was used to obtain the connectograms 

referred to the Left and Right Temporal Lobe for each of the 17 Resulting Matrices. 

The temporal lobe was selected since DTI often loses several connections within 

this region due to the crossing fiber issue between the corpus callosum and the 

cortico-spinal tract [104].  In Fig.46, Fig.47, Fig.48 the connectograms extracted 

from the Subject 5 of 17 matrices describing the connections detected by HARDI 

and not by DTI (on the left), and the ones detected by DTI and not by HARDI (on 

the right) starting from the thresholded structural connectivity matrices at 30% 

(Fig.46), 20% (Fig.47) and 10% (Fig.48), considering the Left and Right Temporal 

Lobes are shown. Furthermore, the density values of the selected subset of nodes 

are shown in Table.6 (30% thresholding), Table.7 (20% thresholding), Table.8 (10% 

thresholding).  
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Figure 46 Connectograms of the Subject number 5 showing the Left (top figures) and Right 

(bottom figures) connections detected only by HARDI (Left figures) and only by DTI (Right 

Figures) considering the thresholding at 30% of both the structural connectivity datasets. 

 

30% Thresholding Only HARDI Only DTI 

Density Left Temporal: 1.38% 

Right Temporal: 1.28% 

Left Temporal: 0.93% 

Right Temporal: 1.18% 

Table 6 Numerical values of the Density of the corresponding connectograms of the Subject 

number 5  shown in the previous figure (Fig.46). 
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Figure 47 Connectograms of the Subject number 5 showing the Left (top figures) and Right 

(bottom figures) connections detected only by HARDI (Left figures) and only by DTI (Right 

Figures) considering the thresholding at 20% of both the structural connectivity datasets. 

 

20% Thresholding Only HARDI Only DTI 

Density Left Temporal: 0.87% 

Right Temporal: 0.87% 

Left Temporal: 0.59% 

Right Temporal: 0.89% 

Table 7 Numerical values of the Density of the corresponding connectograms of the Subject 

number 5  shown in the previous figure (Fig.47). 
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Figure 48 Connectograms of the Subject number 5 showing the Left (top figures) and Right 

(bottom figures) connections detected only by HARDI (Left figures) and only by DTI (Right 

Figures) considering the thresholding at 10% of both the structural connectivity datasets. 

 

10% Thresholding Only HARDI Only DTI 

Density Left Temporal: 0.37% 

Right Temporal: 0.32% 

Left Temporal: 0.28% 

Right Temporal: 0.42% 

Table 8 Numerical values of the Density of the corresponding connectograms of the Subject 

number 5  shown in the previous figure (Fig.48). 

The previous figures and tables about the subject 5 highlighted the possibility of 

HARDI in detecting more connections regarding the left and right temporal lobe. 

Going in deeper into these kinds of analysis for all the 17 subjects acquired with 

both techniques, the results are controversial. Indeed, the results are opposed with 

respect to the desired ones, since the density of the temporal lobe subgraph was 

higher in the DTI case with respect to the HARDI one. This can be seen in Table.9, 
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showing the mean densities of the connectograms of the Temporal Lobe for all the 

17 subjects processed with DTI and HARDI. In particular, all the values of the 

densities are greater in the DTI acquisitions. 

 

30% Thresholding Only HARDI Only DTI 

Mean Density Left Temporal: 1.13% 

Right Temporal: 0.96% 

Left Temporal: 1.14% 

Right Temporal: 1.17% 

20% Thresholding Only HARDI Only DTI 

Mean Density Left Temporal: 0.74% 

Right Temporal: 0.58% 

Left Temporal: 0.82% 

Right Temporal: 0.91% 

10% Thresholding Only HARDI Only DTI 

Mean Density Left Temporal: 0.33% 

Right Temporal: 0.21% 

Left Temporal: 0.41% 

Right Temporal: 0.48% 

Table 9 Table showing the Left and Right mean numerical results of the densities of the 

connectograms obtained only by HARDI and only by DTI for all subjects considering the 

thresholding at 30%, 20% and 10% of both the structural connectivity datasets. 

 

4.2.5 Discussion about the HARDI/DTI comparison results 

 

The controversial results of the DTI/HARDI comparison were analyzed in further 

depth by referring to a study with the same aims conducted by Prckovska and 

colleagues [115]. In their study, graph-based measures were analyzed on the data 

acquired from 22 healthy subjects comparing the connectivity matrices obtained 

with DTI, HARDI and Diffusion Spectrum Imaging (DSI, not considered in the 

present study). The investigated graph matrices were: Global Efficiency, Node 

Strength, Density and Path Length. Highlighting the differences in these metrics 

comparing HARDI and DTI, it was found that HARDI showed higher Global 

Efficiency, Node Strength (evidencing an overall higher connectivity), Density 

(indicating a more sparse connectome in DTI than HARDI), while the Path Length 

was lower in HARDI with respect to DTI, as shown in Fig.49(a), 50(a), 51(a), 52(a),. 

In the figures, the results coming from DTI are represented in red, while those 

related to HARDI in green.  
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The same indices were calculated in this work on the population of 17 165x165 

structural connectivity matrices. However, the results were in contrast with 

respect to the study provided by Prckovska and colleagues [115], as is represented 

in Fig.49(b), 50(b), 51(b), 52(b), where the boxplot on the Left shows the results 

coming from DTI and on the Right the ones coming from HARDI. In particular, in 

the structural dataset considered in this work, Density, Global Efficiency and 

Node Strength were higher in the DTI acquisitions while the Path Length was 

higher in HARDI.  

(a) (b) 

Figure 49  (a),(b) Global Efficiency calculated on DTI and HARDI datasets. (a) Distributions of 

the Global Efficiency in the DTI (red) and HARDI(green) cases evaluated in the study provided by 

Prckosvka and colleagues [115]  (b) Boxplots of the Global Efficiency in the DTI (left) and HARDI 

(right) cases evaluated on the 17 healthy structural connectivity matrices. 

(a) (b) 

Figure 50  (a),(b) Density calculated on DTI and HARDI datasets. (a) Distributions of the 

Density in the DTI (red) and HARDI(green) cases evaluated in the study provided by Prckosvka 

and colleagues [115](b) Boxplots of the Density in the DTI (left) and HARDI (right) cases 

evaluated on the 17 healthy structural connectivity matrices. 
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(a) (b) 

Figure 51 (a),(b) Path Length calculated on DTI and HARDI datasets. (a) Distributions of the 

Path Length in the DTI (red) and HARDI(green) cases evaluated in the study provided by 

Prckosvka  [115](b) Boxplots of the Path Length in the DTI (left) and HARDI (right) cases 

evaluated on the 17 healthy structural connectivity matrices. 

 

(a) (b) 

Figure 52 (a),(b) Node Strength calculated on DTI and HARDI datasets. (a) Distributions of the 

Node Strength in the DTI (red) and HARDI(green) cases evaluated in the study provided by 

Prckosvka and colleagues [115](b) Boxplots of the Node Strength in the DTI (left) and HARDI 

(right) cases evaluated on the 17 healthy structural connectivity matrices. 
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Figure 53 Boxplots of the number of streamlines evaluated on the 17 structural connectivity 

matrices in the DTI (left) and HARDI (right) cases. 

Hence, our results were unexpected, highlighting the importance of having a 

coherent preprocessing pipeline in DTI and HARDI. Indeed, several preprocessing 

features can be treated in different ways, bringing several differences in the 

reconstruction of fibers, such as stopping criteria, subject-motion or background 

artifacts removal methods.  [54], [116], [117], [118], [119], [98], [120]. 

In particular, HARDI connectivity matrices should be characterized mainly by a 

higher density and also a higher number of streamlines with respect to DTI, as can 

be seen in the example provided in Fig.13 showing a far greater density and 

number of connections in the HARDI case than the DTI one. The number of 

streamlines is evaluated by summing all the connectivity weights in the matrices 

composing the two datasets regarding the same healthy subjects and, again, the 

results were not expected, due to the fact that the DTI dataset had greater number 

of streamlines with respect to the HARDI one, as shown in Fig.53. Further 

explorations are needed to verify the influence of the preprocessing pipelines in 

DTI and HARDI data 

In conclusion, it is possible to state that the results are ambiguous. Indeed, the 

comparison of some subjects acquired with DTI and HARDI confirms the 

conclusions of the literature studies exhibited in Section 1.3.5, thus solving the 

crossing fiber problem. In particular the temporal lobe investigation allowed to 

individuate the connections with HARDI even if  DTI often loses some 

connections in this region due to the crossing fiber problem between the corpus 

callosum and the corticospinal tract [104]. However, the results present some 

ambiguities. Indeed, in some other subjects, the HARDI advantages related to the 

detection of more connections by solving the crossing fiber problem are not 

evident. This is exhibited by the different results in terms of the graph metrics 
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investigated in the study provided by Prckosvka and colleagues [115] and the 

results acquired with a different subject of the dataset. Further explorations are 

needed to verify the influence of the preprocessing pipelines to reconstruct DTI 

and HARDI data. 

4.3 Schizophrenic-Control Dataset Analysis 

The final part of this work is related to the analysis of a dataset provided by A. 

Zalesky and colleagues [5], composed by fifteen healthy volunteers  and 12 

subjects with chronic schizophrenia. Schizophrenia is a critical mental disease 

characterized by behavior disorders, hallucinations and cognitive deficits; it is, 

thus, clear that this kind of sickness causes altered brain connectivity pathways 

which were captured thanks to the development of MRI [7]. 

Representing the functional connections between brain regions in terms of graph 

theory to analyze the topology of the network, the first step involved in the 

experimental protocol on this dataset was about the investigation of the results of 

the sensitivity analysis, as explained in Section 3.3.3. 

 

4.3.1 Results & Discussion about the Sensitivity Analysis 

 

The following scatterplots of the weighted indices described in section 3.3.3 

(Weighted Clustering Coefficient, Node Strength, and Weighted Efficiency) are 

referred to two illustrative example cases from the control group and the 

schizophrenic one. The figures show the overlapping of the outlier weights with 

the weights influencing most of the graph indexes.  

First, it is possible to notice that for all the indexes considered a high amount of 

the most influential connectivity weights are the outlier weights, confirming a 

great variability in the index distributions. 

Then, the analysis of the weights outside the 10th and 90th percentile range showed 

that the control subject was characterized by a higher number of connections 

outside this range with respect to the schizophrenic one. Despite this, considering 

the same number of differences obtained from the Difference Matrix, as described 

in Section 3.3.3; more positions overlapped in the schizophrenic case than the 
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control one for the considered weighted indices. This can be, indeed, seen from the 

next figures (Fig.54, Fig.55, Fig.56). In particular, these scatterplots allow to 

appreciate how many overlaps occur for the considered graph metrics, 

considering the values obtained by resetting each of the weights outside the 

percentile range of interest and the positions saved from the greatest values of the 

Difference Matrix.  

 

 

Figure 54 Scatterplots of the Sensitivity analysis for the  Weighted Clustering Coefficient for 

the first subject of the control group (top) and the sixth subject of the schizophrenic one (bottom). 

The red and the blue dots represent the value of the index after the removal of the connections with 

most deviating weights and greatest change, respectively. The black horizontal line representing 

the value of the metric computed for the specific matrix before any resetting of connections 
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Figure 55 Scatterplots of the Sensitivity analysis for the Node Strength for the first subject of the 

control group (top) and the sixth subject of the schizophrenic one (bottom). The red and the blue 

dots represent the value of the index after the removal of the connections with most deviating 

weights and greatest change, respectively. The black horizontal line representing the  value of the 

metric computed for the specific matrix before any resetting of connections 
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Figure 56 Scatterplots of the Sensitivity analysis for the Weighted Efficiency for the first subject 

of the control group (top) and the sixth subject of the schizophrenic one (bottom). The red and the 

blue dots represent the value of the index after the removal of the connections with most deviating 

weights and greatest change, respectively. The black horizontal line representing the value of the 

metric computed for the specific matrix before any resetting of connections 

This analysis allowed to state that the outliers of the connectivity matrices, thus 

the variability of the weights, influence the variability of the values of the indexes. 

The sensitivity analysis results highlighted that more weights in the schizophrenic 

population will cause a change in the values of the considered indexes. It can be, 

thus, expected that the biases of the mean considering before and after the 

bootstrapping procedure would be greater in the schizophrenic population with 

respect to the control one, as confirmed by the results of the Standard and the 

Probabilistic Normalized bootstrapping techniques examined in the Section 4.3.3.  
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4.3.2 Graph Metrics Results & Discussion 

 

The proposed indices (Weighted and Binary Clustering Coefficient, Strength, 

Degree, Weighted and Binary Path Length, Weighted and Binary Efficiency and 

Modularity) were calculated initially for both the populations and the 

distributions of the values assumed by these metrics are shown in the following 

figures (from Fig.57 to Fig.63). 

 

Figure 57 Distributions of the Weighted (subplot on the left) and Binary Clustering Coefficient 

(subplot on the right) of the control (left) and the schizophrenic (right) groups. 

 

Figure 58 Distributions of the Node Strength (subplot on the left) and Degree (subplot on the 

right) of the control (left) and the schizophrenic (right) groups. 
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Figure 59 Distributions of the Weighted (subplot on the left) and Binary (subplot on the right) 

Path Length of the control (left) and the schizophrenic (right) groups 

 

Figure 60 Boxplots of the distribution of the Weighted (subplot on the left) and Binary (subplot 

on the right) Efficiency of the control (left) and the schizophrenic (right) groups 

 

Figure 61 Distributions of the Modularity (left) and the schizophrenic (right) groups 
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The numerical results are summarized in Table. 10. In particular, the mean value of 

the indices is represented, along with the interquantile range (25th and 75th 

percentile) within square brackets, the Standard Deviation of the index and the p-

value. It was obtained by performing a statistical t-test between the values 

assumed by the metric between control subjects and schizophrenics. The only 

statistically significant difference was found in the modularity index. 

 

Graph-

Based 

Indexes 

Binary Weighted 

Initial Data Control Schizophre

nic 

p-value Control Schizophre

nic 

p-value 

Clustering 

Coefficient 

Mean: 0.488 ± 

0.096 

[0.456; 0.552], 

Mean: 0.423 ± 

0.130 

[0.353; 0.518], 

0.162 Mean: 0.467 ± 

0.102 

[0.434; 0.527], 

Mean: 0.397 ± 

0.139 

[0.321; 0.495], 

0.156 

Degree/ 

Strength 

Mean: 71.750 

± 2.178  

[71.74; 72.86] 

Mean: 69.207 

± 5.149  

[69.34; 72.86] 

0.132 Mean: 35.389 

± 7.165 

[33.17; 39.65] 

Mean: 30.265 

± 9.858  

[24.97; 37.40] 

0.147 

Path Length Mean: 1.017 ± 

0.030 

[1.002; 1.017] 

Mean: 1.050 ± 

0.071 

[1.002; 1.050] 

0.132 Mean: 0.306 ± 

0.141 

[0.213; 0.369] 

Mean: 0.217 ± 

0.151 

[0.106; 0.316] 

0.111 

Efficiency Mean: 0.991 ± 
0.015  

[0.991; 0.999] 

Mean: 0.974 ± 

0.035 

[0.975; 0.999] 

0.132 Mean: 0.502 ± 

0.083 

[0.468; 0.555] 

Mean: 0.446 ± 

0.109 

[0.380; 0.527], 

0.158 

Modularity Na Na Na Mean: 1.661 ± 

0.197  

[1.500; 1.812] 

Mean: 2.016 

± 0.109 

[1.534; 2.480] 

< 0.05 

Table 10 Numerical results of the indices of the two populations (Control and Schizophrenic). In 

particular, for each index, are shown: Mean Value and Standard Deviation, Interquantile Range 

(25th and 75th percentiles) within square brackets) and p-value. Na: Index not available for 

binary/weighted cases. 

These indices were selected considering several findings of functional connectivity 

disturbances in schizophrenia, reflected in the alteration of the values of the graph 

metrics defined before. Indeed, for example, in the study conducted by Liu et al., 

31 schizophrenic subjects matched by age with the control ones (mean age = 24 

years) were acquired with on a 1.5 Tesla GE scanner in the Second Xiangya 

Hospital with a resting-state fMRI protocol analog to one used to obtain the data 
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provided by the Zalesky dataset [3]. In this context, the pathological group was 

characterized by lower Node Degree, Clustering Coefficients and Node Strength, 

while a higher Path Length was obtained in the schizophrenic group with respect 

to the control one. Moreover in another study provided by  Alexander-Bloch and 

colleagues in 2010 [121], graph theory was used to investigate the topology of 

networks derived from resting-state fMRI data on 13 Childhood-Onset-

Schizophrenia patients and 19 healthy volunteers, thus, younger subjects (mean 

age = 19 years) than the ones considered in the dataset under analysis in this work. 

Bloch and colleagues [121] concluded that the schizophrenic group was 

characterized by altered Modularity and reduced or unchanged Efficiency with 

respect to the control group. The same results about the values of the graph 

connectivity metrics described so far were also confirmed by the analysis of the 

study conducted by Yu and colleagues in 2012 on 24 schizophrenic and 24 control, 

age-matched subjects acquired on a 5 minutes resting-state fMRI procedure. 

Indeed, even in their study the control group had slightly higher connectivity 

strength, higher clustering coefficient and abnormal modularity [8]. The results of 

these studies highlight the fact that the schizophrenic networks are characterized 

by more segregation (lower clustering coefficients, lower degree, lower strength, 

lower or comparable efficiency, higher path length and altered modularity), 

reflected in the presence of heavier disconnections in the brain connectivity 

matrices of the pathological population. 

It is possible to state that the same outcomes are obtained with this dataset. 

Indeed, considering Weighted and Binary Clustering Coefficients, Node Strength, 

Node Degree and Weighted and Binary Efficiency, it is clear to see the higher 

segregation of the schizophrenic networks reflected in lower coefficients with 

respect to the control group, as shown both figuratively in Fig.57, Fig.58, Fig.60, 

respectively, and numerically in Table.10. Moreover, bringing back the study 

conducted by Yu and colleagues [8], in this work, equally, Modularity is abnormal 

in the pathological group with respect to the control one. In particular, as can be 

seen by both Fig.61 and Table.10, this index in the schizophrenic group is higher 

with respect to the control one. Recalling that the modularity measures the 

number of interconnections in the communities of the network, since there are 

more disconnections in the schizophrenic group, in keeping with more sparse 

communities, producing a higher value of the index. Concerning the Path Length, 

the results of the analysis over this dataset were slightly different with respect to 

the considered study provided by Liu and colleagues [3] where the considered 

metric was higher in the schizophrenic group. Indeed, as exhibited in Fig.59 and 

Table.10, the metric is slightly higher in the pathological case with respect to the 

control one. In the weighted case the Path Length is greater in the control case 
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than the schizophrenic one, thus, not resulting in line with the reference study 

conducted by Liu et al [3]. 

 

4.3.3 Probabilistic Normalization Procedure 

 

To further investigate the dataset, the bootstrapping procedure was applied to 

find the confidence intervals of the proposed graph indices. The creation of the 

surrogate data was performed as described in the dedicated section (3.3.1) of this 

work, such that, in the standard case, 1000 surrogate extractions were considered. 

First, the density of the dataset obtained from both the populations was analyzed 

with respect to the resetting of the outlier connections. Analyzing these 

scatterplots, shown in Fig.62, it can be seen that the schizophrenic population is 

characterized by a higher number of disconnections since the density of the 

dataset presents an earlier decrease at the increase of the counter used to reset the 

connections present less times than the value of the counter.  

 

 

Figure 62 Scatterplots describing the Density of the dataset for each of the reset counters in the 

control (left) and schizophrenic (right) datasets. 

Then, the normalization of the initial data was obtained by dividing each of the 

matrices composing the control and the schizophrenic datasets with respect to the 

Mean Matrix of each population, without any resetting of connections. Due to the 

fact that no connection was reset before applying the Normalization, the analysis 

of the indices is shown only in the Weighted cases (Weighted Clustering 

Coefficients, Node Strength, Weighted Path Length, Weighted Efficiency and 

Modularity). 
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4.3.4 Normalized Graph Metrics Results & Discussion 

 

The distributions of the initial values of the weighted metrics after the 

normalization of the data are proposed in Fig.63, Fig.64, Fig.65.  

 

 

Figure 63 Boxplots of the distribution of the Weighted Clustering Coefficient (left figure) and 

Node Strength (right figure) of the control (left boxplot) and the schizophrenic (right boxplot) 

groups after the normalization of the initial data 

 

Figure 64 Distributions of the Weighted Path Length (Left) and Weighted Efficiency (Right) 

of the control (left boxplot) and the schizophrenic (right boxplot) groups after the normalization of 

the initial data 
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Figure 65 Distributions of the Modularity of the control (left boxplot) and the schizophrenic 

(right boxplot) groups after the normalization of the initial data 

Then, all results and significant differences are summarized in Table 11. 

 

Table 11 Numerical results of the indices of the two populations after the normalization of the data 

(Control and Schizophrenic). In particular, for each index, there are shown: Mean Values and 

Graph-Based Indexes Weighted 

Normalization of data Control Schizophrenic p-value 

Clustering Coefficient Mean: 0.419 ± 

0.080 

[0.376; 0.465] 

Mean: 0.345 ± 

0.103 

[0.295; 0.422] 

0.054 

Node Strength Mean: 31.404 ± 

5.612  

[27.95; 34.73] 

Mean: 25.984 ± 

7.338 

[22.61; 31.42] 

< 0.05 

Path Length Mean: 0.324 ± 

0.116 

[0.237; 0.396] 

Mean: 0.220 ± 

0.121 

[0.139; 0.292] 

< 0.05 

Efficiency Mean: 0.446 ± 

0.066 

[0.391; 0.483] 

Mean: 0.385 ± 

0.082 

[0.335; 0.450] 

< 0.05 

Modularity Mean: 1.496 ± 

0.089 

[1.449; 1.564], 

Mean: 1.630 ± 

0.251 

[1.480; 1.689], 

0.103 
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Standard Deviation, Interquantile Range (25th and 75th percentiles) within square brackets, and p- 

values. 

The table confirms the outcome of the previous analysis about a more segregated 

network in the schizophrenic case as can be seen by the lower Clustering 

Coefficient, Node Strength, and Efficiency, and higher Modularity, obtained also 

with the Normalization of the initial data. Again, however, the Path Length, which 

should have been higher in the schizophrenic population to have a more 

disconnected network, is slightly higher in the control case with respect to the 

pathological one. This difference is limited (0.346 in the control group vs. 0.218 in 

the schizophrenic one) though statistically significant. Seemingly, the higher 

segregation level confirmed in the schizophrenic group is not related to a loss in 

the connections weights but in a loss of the overall integration structure.  

The normalization of the data also brings advantages in terms of the p-values. 

Indeed, as shown in Table.11, the majority of the p-values are below the threshold 

at 0.05 (Node Strength, Weighted Path Length and Weighted Efficiency). Without 

normalization of the data, instead, as shown in Table.10, only the Modularity p-

value is less than 0.05, while the other weighted indices are characterized by p-

value above the threshold, finding new significant differences. 

 

4.3.5 Standard and Probabilistic Normalization Bootstrapping Results 

 

After the application of the bootstrapping procedure, in both cases (standard and 

normalized), the distributions of the considered indices were plotted. Figures from 

66 to 74 (a, left panels) recall the previously shown boxplots of the initial 

distributions in the control group (left) and schizophrenic one (right). In the right 

panels in the figures from 66 to 74 (b), instead, the bootstrap  results are compared 

with the original distributions, shown again to enhance the bootstrap vs. original 

distributions both in controls (left) and schizophrenics (right). Confidence 

Intervals (CI) found by bootstrap are also shown. In particular, the red and the 

magenta horizontal line represent the upper and lower value (respectively) of the 

confidence interval (CI) in the control case . The black and the blue horizontal 

lines, instead, represent the upper and lower values (respectively) of the 

confidence interval in the schizophrenic group. In the following figures, firstly the 

binary indices are represented, thus, only the standard bootstrapping case is 

considered. Following the representation of the boxplots describing the binary 

indices, the weighted metrics are represented comparing the standard and the 

normalized bootstrapping procedures. 
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Binary Indexes (standard Bootstrapping): 

 

                                     (a)                                                                                 (b) 

Figure 66 Distributions of the Binary Clustering Coefficient for the initial data (a) and after the 

bootstrapping procedure (b) with the boundaries of the confidence intervals calculated with the 

percentile method in both populations. 

 

                                     (a)                                                                                 (b) 

Figure 67 Distributions of the Node Degree for the initial data (a) and after the bootstrapping 

procedure (b) with the boundaries of the confidence intervals calculated with the percentile method 

in both populations. 
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                                     (a)                                                                                 (b) 

Figure 68 Distributions of the Binary Path Length for the initial data (a) and after the 

bootstrapping procedure (b) with the boundaries of the confidence intervals calculated with the 

percentile method in both populations. 

 

                                     (a)                                                                                 (b) 

Figure 69 Distributions of the Binary Efficiency for the initial data (a) and after the 

bootstrapping procedure (b) with the boundaries of the confidence intervals calculated with the 

percentile method in both populations. 

The expected results concerning the boxplots were about a significant shrinking of 

the index distributions after the application of bootstrapping procedure,  which is 

clearly seen in all the above figures. Remarkably, small biases were present so that 

the between group contrasts were never changed by the bootstrap. Combining this 
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with the shrinking and the narrow CIs it can be concluded that the bootstrap is 

able to focus graph properties, which survive the random mixing performed by 

data surrogation.  

Weighted Indexes (comparing standard and normalized Bootstraps): 

 

                                     (a)                                                                                 (b) 

Figure 70 Distributions of the Weighted Clustering Coefficient in the standard case (subplots 

above) and with the probabilistic normalization one (subplots below). Figures (a)  represent the 

distribution of the index evaluated for the initial data. Figures (b) show the boxplots estimated after 

the bootstrapping procedure with the boundaries of the confidence intervals with different colors 

calculated with the percentile method in both the control and schizophrenic groups. 
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                                     (a)                                                                                 (b) 

Figure 71 Distributions of the Node Strength in the standard case (subplots above) and with the 

probabilistic normalization one (subplots below). Figures (a) represent the distribution of the index 

evaluated for the initial data. Figures (b) show the boxplots estimated after the bootstrapping 

procedure with the boundaries of the confidence intervals with different colors calculated with the 

percentile method in both the control and schizophrenic groups. 
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                                     (a)                                                                                 (b) 

Figure 72 Distributions of the Weighted Path Length in the standard case (subplots above) and 

with the probabilistic normalization one (subplots below). Figures (a)  represent the distribution of 

the index evaluated for the initial data. Figures (b) show the boxplots estimated after the 

bootstrapping procedure with the boundaries of the confidence intervals with different colors 

calculated with the percentile method in both the control and schizophrenic groups 
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                                     (a)                                                                                 (b) 

Figure 73 Distributions of the Weighted Efficiency in the standard case (subplots above) and 

with the probabilistic normalization one (subplots below). Figures (a)  represent the distribution of 

the index evaluated for the initial data. Figures (b) show the boxplots estimated after the 

bootstrapping procedure with the boundaries of the confidence intervals with different colors 

calculated with the percentile method in both the control and schizophrenic groups 
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                                     (a)                                                                                 (b) 

Figure 74 Distributions of the Modularity in the standard case (subplots above) and with the 

probabilistic normalization one (subplots below). Figures (a)  represent the distribution of the 

index evaluated for the initial data. Figures (b) show the boxplots estimated after the bootstrapping 

procedure with the boundaries of the confidence intervals with different colors calculated with the 

percentile method in both the control and schizophrenic groups 

Considering the Weighted Indexes, again, the expected outcomes are in terms of 

the reduction of the variability of the distributions for all the considered graph 

metrics. As regards as the differences between the pathological and the control 

groups, it is possible to notice the disruptions in the schizophrenic networks. 

Indeed, lower Weighted Clustering Coefficient (Fig.70), Strength (Fig.71)  
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Weighted Efficiency (Fig.73), Strength and higher Modularity (Fig.74). The Path 

Length does not represent disruptions in the weighted case (Fig.72) because, also 

after the bootstrap, it remains larger in the control case than the schizophrenic one.  

As in the previous functional and structural connectivity datasets investigations, 

the aim was to calculate an appropriate Confidence Interval (CI) for the particular 

graph metric, which were evaluated as before described in section 3.3.2 of this 

work, with the standard method. This last one allowed to obtain a restricted 

interval approaching this kind of analysis to ideally find a normality value for all 

the indices in both the populations and with both the standard and normalized 

Bootstrapping procedures. 

 

Graph-Based 

Indexes 

Binary Weighted 

Standard 

Bootstrapping 

Control Schizophrenic p-value Control Schizophrenic p-value 

Clustering 

Coefficient 

Mean: 0.486 ± 

0.002 

Standard CI:  

[0.486; 0.487] 

Bias: 0.432% 

Mean: 0.418 ± 

0.003 

Standard CI: 

[0.417; 0.418] 

Bias: 1.275% 

< 0.05 Mean: 0.454 ± 

0.003 

Standard CI:  

[0.454; 0.455] 

Bias: 2.738% 

Mean: 0.375 ± 

0.003 

Standard CI:  

[0.374; 0.375] 

Bias: 5.500% 

< 0.05 

Degree/Strength Mean: 71.748 ± 

0.121 

Standard CI:   

[71.740; 71.760] 

Bias: 0.002% 

Mean: 69.213 ± 

0.201 

Standard CI:  

[69.201; 69.230] 

Bias: 0.009% 

< 0.05 Mean: 35.388 ± 

0.154 

Standard CI:  

[35.382; 35.401] 

Bias: 0.002% 

Mean: 30.261 ± 

0.185 

Standard CI:  

[30.251; 30.272] 

Bias: 0.012% 

< 0.05 

Path Length Mean: 1.017 ± 

0.002 

Standard CI:  

[1.017; 1.018] 

Bias: 0.002% 

Mean: 1.052 ± 

0.003 

Standard CI:  

[1.051; 1.052] 

Bias: 0.008% 

< 0.05 Mean: 0.208 ± 

0.012 

Standard CI:  

[0.207; 0.209] 

Bias: 31.85% 

Mean: 0.108 ± 

0.008 

Standard CI:  

[0.107; 0.108] 

Bias: 49.03% 

< 0.05 

Efficiency Mean: 0.991 ± 

8.265e-04  

Standard CI:  

[0.991; 0.992] 

Bias: 8.216 * 

10-4 % 

Mean: 0.974 ± 

0.001 

Standard CI:  

[0.974; 0.975] 

Bias: 0.004% 

< 0.05 Mean: 0.525 ± 

0.002 

Standard CI:  

[0.524; 0.525] 

Bias: 4.578% 

Mean: 0.484 ± 

0.002 

Standard CI:  

[0.483; 0.484] 

Bias: 8.497% 

< 0.05 

Modularity Na Na Na Mean: 1.647 ± 

0.231 

Standard CI:  

Mean: 1.775 ± 

0.312 

Standard CI:  

< 0.05 
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[1.633; 1.662] 

Bias: 0.844% 

[1.756; 1.794] 

Bias: 11.94% 

Table 12 Numerical results of the distribution of the indices of the two populations after the 

bootstrapping procedure applied in the Standard case. In particular, for each index, there are 

shown: Mean Value and Standard deviation, Confidence Intervals of the distribution calculated 

with the Standard Method, p-value and the bias percentage of the distributions of the indices 

considering before and after the bootstrapping procedure. Na: Index not available for 

binary/weighted cases. 

Graph-Based Indexes Weighted 

Probabilistic 

Normalization 

Bootstrapping 

Control Schizophrenic p-value 

Clustering Coefficient Mean: 0.410 ± 0.002 

Standard CI:  

[0.409; 0.410] 

Bias: 2.185% 

Mean: 0.329 ± 0.003 

Standard CI:  

[0.328; 0.330] 

Bias: 4.697% 

< 0.05 

Node Strength Mean: 31.41 ± 0.156 

Standard CI:  

[31.40; 31.42] 

Bias: 0.032% 

Mean: 25.99 ± 0.177 

Standard CI:  

[25.98; 26.00] 

Bias: 0.023% 

< 0.05 

Path Length Mean: 0.272 ± 0.013 

Standard CI:  

[0.271; 0.273] 

Bias: 16.06% 

Mean: 0.133 ± 0.010 

Standard CI:  

[0.133; 0.134] 

Bias: 39.34% 

< 0.05 

Efficiency Mean: 0.460 ± 0.002 

Standard CI:  

[0.459; 0.460] 

Bias: 3.064% 

Mean: 0.410 ± 0.002 

Standard CI:  

[0.409; 0.410] 

Bias: 6.389% 

< 0.05 

Modularity Mean: 1.652 ± 0.263 

Standard CI:  

[1.635; 1.668] 

Bias: 10.38% 

Mean: 1.730 ± 0.352 

Standard CI:  

[1.708; 1.752] 

Bias: 6.164% 

< 0.05 

Table 13 Numerical results of the distribution of the weighted indices of the two populations after 

the bootstrapping procedure applied in the Probabilistic Normalization case. In particular, for 

each weighted index, there are shown: Mean Value and Standard Deviation, Confidence Intervals 

of the distribution calculated with the Standard Method,  p-value and the bias percentage of the 

mean of the distributions of the indices considering before and after the bootstrapping procedure. 
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As it can be seen by the numerical results shown in the Table.12 and Table.13, the 

biases are greater in the schizophrenic population considering the majority of the 

indexes. This highlights the major impact of the more variable connectivity 

weights for the schizophrenic population, as concluded in the Sensitivity Analysis 

section 4.3.1.  

Regarding the differences of the results between the standard and the normalized 

procedure, the aim was to obtain reduced biases of the mean considering the 

distribution assumed by the values of the indices before and after the 

bootstrapping with the normalization of the data than the standard case; since this 

highlights the fact that normalizing the connectivity weights before applying the 

bootstrap is beneficial for the numerical results because the impact of those 

weights which bring a change in the values assumed by the indices is reduced. As 

can be seen by the numerical results shown in the Table.12 and Table.13, the 

proposed hypothesis is, again, confirmed since the biases of the weighted graph 

metrics decrease with the normalization of the data applied before the bootstrap. 

The Weighted Path Length results are worth to be mentioned; in particular, it is 

the metric characterized by the greatest bias considering the mean before and after 

the bootstrapping procedure in both the control and schizophrenic populations 

(31.85% and 49.03% respectively in the Standard Bootstrapping case, 16.06% and 

39.34% in the Probabilistic Normalization Bootstrapping case). The advantages 

brought by the normalization of the data computed before the bootstrapping 

procedure in terms of the reduction of the bias are evident, as exhibited by the 

numerical results described before.  

The bootstrap brought advantages considering the p-values. Their numerical 

values computed on the surrogate data, exhibited in the Table.12 and Table.13, 

show that the bootstrap is beneficial in the statistical assessment of group 

differences in the graph metrics. Indeed, after the bootstrapping, the p-values are 

all below the significance threshold of 0.05. Before the application of the bootstrap, 

instead, all indexes were not statistically significant except the Modularity. These 

advantages are related to the possibility of having more robust values for all 

indexes, with respect to the original population, and to have aligned distribution, 

with respect to Standard Bootstrap, that can be affected by a bias. 
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4.3.6 Extraction of the DMN with Spider-Net Results & Discussion 

 

This section highlights the results about the extraction of the connectograms of the 

Default Mode Network (DMN) with Spider-Net Tool (SNT). 

In particular, after the labelling of the appropriate parcels of the AAL atlas 

belonging to the Default Mode  Network, described in Section 3.3.5, the 

connectograms can be obtained, with an example proposed in Fig.75. It shows the 

DMN subgraph obtained from the 6th subject of the control group and the 6th  

subject of the pathological group. 

.  

Figure 75 Connectograms obtained by extracting the DMN from the sixth subjects in the control 

(left) and schizophrenic (right) datasets 

Considering Fig.75, it can be seen that the disruptions and reduced activity of the 

network is not straightforwardly identifiable in the schizophrenic subject, 

although comparing the two figures, it is possible to spot slightly less dense 

connectivity pathways in the schizophrenic subject’s connectogram. 

The output matrices given by Spider-Net and describing the DMN subgraph were 

used to compute the 9 weighted and binary graph metrics, together with the mean 

density of the network of each population to investigate the possible disruptions 

in the DMN present in the schizophrenic population. Inspecting the numerical 

results shown in Table.14, the schizophrenic disconnected network in terms of the 

values of the indices can be, again, confirmed, since the Clustering Coefficients 

and the Efficiency in both the weighted and binary cases, the Node Strength and 

the Node Degree are lower in the pathological population, the Modularity is 

greater and the Path Length slightly greater in the schizophrenic population in the 
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binary case, while, however, the weighted Path Length remains greater in the 

control population, as in the previous analyses relevant to the whole graph. 

 

Graph-Based Indexes Binary Weighted 

DMN subnetwork Control Schizophrenic Control Schizophrenic 

Clustering Coefficient Mean: 0.489 ± 

0.096 

[0.450; 0.551] 

Mean: 0.413 ± 

0.121  

[0.341; 0.518] 

Mean: 0.468 ± 

0.103 

[0.429; 0.531] 

Mean: 0.381 ± 

0.129 

[0.306; 0.495] 

Degree/Strength Mean: 40.62 ± 

1.567 

[39.96; 40.86] 

Mean: 39.24 ±  

1.879 

[38.24; 40.86] 

Mean: 20.01 ± 
4.082 

[18.33; 22.50] 

Mean: 16.48  ± 

5.146 

[13.45; 21.05] 

Path Length Mean: 1.009 ± 

0.038 

[1.003; 1.025]  

Mean: 1.043 ± 

0.046 

[1.003; 1.067] 

Mean: 0.336  ± 

0.137 

[0.233; 0.408] 

Mean: 0.199 ± 

0.162 

[0.124; 0.401] 

Efficiency Mean: 0.995 ± 
0.019 

[0.987; 0.998] ] 

Mean: 0.978 ± 

0.023 

[0.966; 0.998] 

Mean: 0.504 ± 

0.085 

[0.461; 0.556] 

Mean: 0.431 ± 

0.107 

[0.373; 0.529] 

Modularity Na Na Mean: 1.524 ± 

0.312 

[1.452; 1.845] 

Mean: 1.595 ± 

0.602 

[1.524; 1.893] 

Density Mean: 97.77%  ± 

3.820% 

Mean: 95.41% ± 

4.580% 

Na Na 

Table 14 Numerical results of the weighted and binary graph metrics of both the control and 

schizophrenic populations calculated on the DMN subnetwork, showing the mean values and the 

standard deviations , the Interquantile range (25th and 75th percentiles); together with the mean 

density and standard deviation of the subnetwork. Na: Index not available for binary/weighted 

cases. 

The slight difference between densities in the connectograms is also identifiable in 

Table.14. Deeper insight in the visual inspection of the connectograms can be 

obtained by the density thresholding permitted by the Spider-Net interface, as 

explained in section 2.2. Besides, by selecting the option “Show Weights” it is 

possible to distinguish the most intense links in terms of connectivity which are 

colored in red, orange or yellow and designed with different width, according to 

the strength of connections between two different parcels in the functional 

connectivity matrices, such that red is for the connectivity weights between 0.66 

and 1 representing the strongest functional connectivity, orange between 0.33 and 
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0.66 representing the middle functional connectivity and yellow between 0 and 

0.33 representing the weakest functional connectivity.  

From the figures below (Fig.76 and Fig.77) it is possible to identify visually in an 

undemanding way the weak activation of the Default Mode Network typical of 

the schizophrenic  population, as can be seen by the prevalence of yellow 

connectivity pathways between parcels in Fig.77 (left), associated with weak 

connections, compared to the same DMN connectogram represented for the 

control subject in Fig.76 (left). 

 

Figure 76 Connectograms from the sixth subject of the control dataset of the DMN subnetwork 

extracted from Spider-Net with the option “Show Weights” (left), and the same connectogram with 

density-thresholding at 40% (right). 

 

Figure 77 Connectograms from the tenth subject of the schizophrenic dataset of the DMN 

subnetwork extracted from Spider-Net with the option “Show Weights” (left), and the same 

connectogram with density-thresholding at 40% (right). 

This difference in the activation of the DMN subnetwork can be interpreted more 

easily by density-thresholding the connectivity matrices of the two subjects. 

Indeed, by considering the Fig.76 (right) and Fig.77 (right), the schizophrenic 
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subject is characterized by the weak connections also after the thresholding, while 

in the control subject, the DMN is strongly activated as can be seen by the 

presence of only red connectivity pathways between the parcels in Fig.77 (right). 

Analyzing more in depth the weaker activation and the disruptions of the DMN of 

the schizophrenic population, the weakest connections were reset by arbitrarily 

selecting a threshold at 0.2, which is a weak one, given the range of connection 

weights from 0 to 1. Once this resetting was done in the whole dataset, the mean 

density of the DMN subnetwork was computed for each population producing a 

value of 88.63% for the control group and 79.35% in the pathological one. These 

results, thus, identify more clearly the disruptions of the DMN in the 

schizophrenic population. Moreover, plotting the connectograms of the DMN of 

the reset matrices, it was also possible to visually identify these disruptions, as 

exhibited in Fig.78.  

 

Figure 78 Connectograms of the Default Mode Network subgraphs extracted from the sixth 

subject of the control group matrix (left) and the tenth subject of the schizophrenic one (right) 

whose weakest connections (weights < 0.2) were reset to evidence the disparity in terms of 

disconnections between the pathological and the control population 

The slight differences in the densities of the DMN between control and 

schizophrenic groups may be related to other factors. Indeed, as explained in the 

study provided by Zalesky and colleagues, 4 subjects of the schizophrenic 

population (12 total) were under  psychotropic medication [5]. Although to reduce 

acute drug effects these patients were not medicated the day of acquisition, still 

the treatment of the pathology could have influenced the results.  

To conclude the analysis of this dataset formed by 27 functional connectivity 

matrices with 15 control and 12 schizophrenic subjects, it is important to mention 
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the presence of a probable outlier in the control group, represented by subject 

number 14. Indeed, considering this last part about the analysis of the Default 

Mode Network disruptions in the schizophrenic populations, it was seen that by 

removing this outlier subject from the control group, the disruptions between the 

healthy and the pathological datasets are more evident. This is due to a higher 

difference in terms of the mean density of the connectomes from the extraction of 

the DMN in each subject of the control group. Indeed, the mean density passes 

from 97.77% to 98.85% on the initial data and from 88.63% to 92.00% after the 

removal of the weakest connections (weights < 0.2).  

Conclusion 

The research on the brain networks has been rapidly growing in the last decades. 

The possibility to represent them according to graph theory and quantify their 

topological characterization according to graph metrics allow to represent brain 

networks in an undemanding way. Correspondingly, this increasing interest 

needs new technical tools for conducting more efficient analysis on connectivity 

pathways. Moreover, the limitations of the techniques [48], [52], [53], [54], [57], [64]  

necessitate the introduction of a method to make the connectivity investigation 

more robust and valid.  

In this context, the bootstrap can be applied. In particular, this technique allows to 

estimate the statistical features of a population characterized by the same 

condition from a limited number of measurement samples [81]. This procedure is 

based on a random sampling of the initial dataset to create “surrogate” data which 

can better explain the statistical properties of the population under analysis. This 

approach could extract a more stable normality range of values of various graph 

metrics [82], [83]. 

The bootstrap was applied in this work with respect to 3 different datasets: a 

functional connectivity dataset formed by 10 healthy subject, a structural 

connectivity dataset formed by 17 healthy subjects [4] and a case study involving a 

functional connectivity dataset formed by 15 healthy and 12 schizophrenic 

individuals [5]. 

First, exploration studies and the protocol setting were performed on the 

structural and functional datasets of healthy control subjects. 
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Specifically, different graph metrics were calculated and the bootstrap was applied 

with respect to a different number of iterations to investigate the distributions of 

the values after the creation of the surrogate data. It was seen that the variability of 

these values reduces after the bootstrap. Moreover, the advantage of the 

bootstrapping technique is to provide data-driven confidence intervals, without 

the need of an a-priori hypotheses. These confidence intervals were computed 

after the creation of surrogate data in two different methodologies: a) the 

Percentile method based on the straightforward construction of the 95% 

confidence interval from the resampled distribution; b) the Standard Method 

based on well-known formulas to compute the lower and upper boundaries of the 

confidence intervals. It was seen that both methods allowed to obtain appropriate 

confidence intervals, with the Standard Method producing narrower boundaries. 

The distributions of the bootstrapped graph metrics values highlighted a bias, 

often very limited, though sensible in some of them. Conversely, from previous 

studies on bootstrapping, the surrogate distributions were expected to be 

narrower but unbiased and aligned to the original distributions of values [83], [84].  

This points out on the well-known issues related to the brain connectivity analysis. 

Indeed, one of the main limitations of graph analysis is the lack of standardized 

procedure regarding network construction and even the most widespread 

connectivity measures  are constantly object of active research [122], [123]. Gold-

standard for the definition of matrix weights is still lacking, spurious connections 

are well-known to be still present and the great variability of the weights can be a 

confounding factor for the interpretation of the results [114]. 

For these reasons, before applying the bootstrap, the data were normalized 

according to a Probabilistic Normalization procedure, based on the group 

connectivity, to enable a more robust analysis. This method finds the rarest 

connections in the datasets, resetting them according to a threshold related to the 

population and normalizing the data by dividing the initial connectivity matrices 

with the mean matrix of the dataset. The application of this normalization allowed 

to reduce the outlier weights and, thus, the biases, in particular, for the weighted 

graph metrics, for all the considered datasets. Even in the case study involving 

healthy and pathological subjects, where only normalization was applied, the 

results were promising.  

The methods developed and tested on the first two datasets were then validated 

on a complete second-level (i.e. group) analysis of the third dataset. This involved 

the comparison of functional connectivity matrixes in healthy controls and 

schizophrenic subjects. A sensitivity analysis was, first, performed to analyze 

which were the most variable connectivity weights in each matrix, since these are 

thought to be the ones causing the biases of the distributions. The sensitivity 



 

153 

analysis was based on graph perturbation [89], [90], [91] to investigate the results 

of the indexes at the removal of the outlier connections  It was seen that the 

schizophrenic subjects were characterized by an higher number of variable 

weights, maybe due to the disconnections in brain networks caused by the 

pathology, resulting in higher values of the biases for all the considered graph 

metrics. 

Moreover, the graph metrics were computed on the initial data to analyze the 

segregation of the brain networks of the pathological subjects; characterized by 

disconnections in the connectivity pathways. The results on the initial data 

highlighted only one statistically significant index (p < 0.05), the Modularity. The 

normalization of the data was applied and it highlighted statistical significances in 

all the indexes except from Modularity and Weighted Clustering Coefficient,  

which have anyway p-values close to 0.05, highlighting the advantages of the 

normalization. 

The application of the bootstrapping technique confirmed the sensitivity analysis 

hypothesis since the pathological population was characterized by higher values 

of biases in all the considered graph metrics. These biases were reduced by 

applying the normalization, which allowed to reduce the variability of the 

connectivity weights. After the application of the bootstrap, all indexes in both 

standard and normalized cases were statistically significant. 

In addition, in the context of providing new technical tools for conducting more 

efficient analysis on connectivity pathways, a novel software, Spider-Net Tool 

(SNT) [4], was used for focused analysis on subgraphs of interest. 

In particular, SNT was used to investigate the structural connectivity dataset 

formed by 17 healthy subjects precessed with DTI and HARDI technique, where 

the latter is thought to bring advantages with respect to DTI. Indeed, in DTI only a 

single-fiber population is modelled for every voxel which represents a 

fundamental limitation when the voxels are characterized by multiple crossing 

fibers [124]. HARDI solves this problem with its acquisition schemes [57]. To 

analyze the ability of HARDI in detecting connections, the structural connectivity 

matrices were equalized in terms of density and number of streamlines to 

investigate which and how many connections were detected by HARDI and not 

by DTI and viceversa. In particular, the analysis was done at different levels of 

absolute thresholding [69], [6], and the connectograms were shown with respect to 

the left and right temporal lobes. The temporal lobe was chosen since DTI often 

loses several connections within this region due to the crossing fiber issue between 

the corpus callosum and the cortico-spinal tract [104], [125]. Nevertheless, the 

results were ambiguous, such that some subjects in the dataset showed more 

connections detected by HARDI and other more connections detected by DTI.  



154 | Conclusion 

 

 

Moreover, the distributions of some network metrics (Density, Efficiency, Path 

Length and Node Strength) were examined according to a study developed by 

Prckosvka and colleagues [115].  However, the structural connectivity dataset 

under investigation was characterized by the opposite characteristics. There 

results were unexpected, highlighting the importance of having a coherent 

preprocessing pipeline in DTI and HARDI [54], [116], [117], [118], [119], [98], [120]. 

Furthermore, SNT was used to investigate the case study of healthy and 

schizophrenic subjects to extract the Default Mode Network (DMN) [30]. This 

subnetwork deeply involved in  social behavior, control of the emotional state of 

the individual, recollection of past memories [30], [106], [108]. Schizophrenia is a 

mental disorder characterized by altered perception, irregular emotion regulation, 

hallucinations and weakened working memory; thus justifying studies on the 

involvement of the DMN [7], [29], [126].  

After the extraction of the connectograms composed of all connections related to 

the DMN subnetwork, the selected graph metrics were computed to, again, show 

the connectivity disruptions in the schizophrenic subjects, also numerically 

confirmed by a slight difference in density between the two populations.  

To further analyze the differences in the DMN, it was seen that the schizophrenic 

populations was characterized by the majority of weak connections in the  DMN 

subgraph extracted by SNT. In addition, using Spider-Net with the appropriate 

threshold settings, it could be easily seen the differences in the strength of 

activation of the DMN. Moreover, by the resetting of the weakest connections in 

the dataset, the disruptions in the subnetwork were clearly identifiable in the 

connectograms, highlighting the advantages brought by this software both in 

terms of visualization and manipulation of data. 

Further developments of this work are related to a deeper validation on different 

types of data, especially in the structural connectivity case. In particular, to 

investigate coherent data, it is necessary to maintain the same preprocessing 

pipeline to reconstruct fibers from the acquisitions. Moreover, considering the 

investigation of graph indexes, it would be needed to validate bootstrap and 

sensitivity analysis as a tool to evaluate uncertainty also for other widely used 

metrics. Concerning the analysis of the biases, of bootstrap vs. original mean 

values further insight should be gained concerning the effect of the original data 

dispersion and presence of outliers. Data normalization should be also further 

studied as alternative or complementary to thresholding in the equalization of 

data. In the present study, a group-level normalization (dividing the group data 

by the group Mean Matrix) was successfully applied. However, other aspects 

could be introduced, such as normalizing by the grand average of groups (thus 

fully cancelling differences in density) or, conversely, scaling the weight to 
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compressed scales such as the logarithmic one. The latter, especially in structural 

connectivity where weights based on the streamline count span over orders of 

magnitude. Besides, an increased robustness in the analysis of the weights and the 

indexes could be fundamental for the consideration and investigation of weak 

connections, whose information is often excluded but that was proved to be 

potentially powerful in acquiring new knowledge on the connectivity topic [24]. 

Finally, the investigation of the neuroimaging data was thoroughly treated in this 

work, analyzing the strength and the weaknesses coming from the information 

derived from brain networks. This thesis highlighted the fact that it is necessary to 

implement both graph theory algorithms and visualization techniques to 

understand the connectivity pathways described by the neuroimaging datasets. 

These types of evaluations, however, are often hindered by uncertainties and 

artifacts which need to be sized with appropriate methods and, given the 

complexity of the brain, require further research in this field. 
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